WO2013174609A1 - Asymmetrical multi-layered membrane for electroacoustic transducers - Google Patents

Asymmetrical multi-layered membrane for electroacoustic transducers Download PDF

Info

Publication number
WO2013174609A1
WO2013174609A1 PCT/EP2013/058582 EP2013058582W WO2013174609A1 WO 2013174609 A1 WO2013174609 A1 WO 2013174609A1 EP 2013058582 W EP2013058582 W EP 2013058582W WO 2013174609 A1 WO2013174609 A1 WO 2013174609A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
μηη
cover layer
multilayer laminate
film
Prior art date
Application number
PCT/EP2013/058582
Other languages
German (de)
French (fr)
Inventor
Bernhard MÜSSIG
Yeliz Tepe
Michael Egger
Original Assignee
Tesa Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa Se filed Critical Tesa Se
Priority to CN201380026694.XA priority Critical patent/CN104335603B/en
Priority to IN10265DEN2014 priority patent/IN2014DN10265A/en
Priority to KR1020147035667A priority patent/KR101933983B1/en
Priority to MX2014013722A priority patent/MX2014013722A/en
Priority to US14/399,986 priority patent/US9796160B2/en
Priority to EP13720329.5A priority patent/EP2853100B1/en
Priority to JP2015513067A priority patent/JP6148726B2/en
Publication of WO2013174609A1 publication Critical patent/WO2013174609A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/122Non-planar diaphragms or cones comprising a plurality of sections or layers
    • H04R7/125Non-planar diaphragms or cones comprising a plurality of sections or layers comprising a plurality of superposed layers in contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3418Loud speakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2371/00Polyethers, e.g. PEEK, i.e. polyether-etherketone; PEK, i.e. polyetherketone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2231/00Details of apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor covered by H04R31/00, not provided for in its subgroups
    • H04R2231/001Moulding aspects of diaphragm or surround
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31942Of aldehyde or ketone condensation product

Definitions

  • the invention relates to an asymmetric multilayer laminate for use as a membrane for electroacoustic transducers and to a method for producing this multilayer laminate.
  • the material of a loudspeaker membrane should at the same time be as stiff, light and well damped as possible. These requirements arise from the fact that the frequency at which the membrane breaks up into partial vibrations and from which it increasingly produces resonances and distortions, is proportional to (E / p) 0 5 , where E denotes the elastic modulus and p the density of the membrane , As the factor (E / p) 0 5 increases , the upper limit of the frequency range of the loudspeaker can thus be increased. Further advantages of a light and at the same time stiff diaphragm are a fast acceleration of the diaphragm during the impulse transition and thus a higher achievable sound pressure.
  • the diaphragm should simultaneously have a high internal damping tan ⁇ for lowering the resonance frequency f 0 and suppression of resonance peaks in the frequency response. Since the criteria are stiff, light and well damped but constructively contradictory, must in speaker membranes always a certain compromise with respect to the membrane material to be received or a combination of stiff and damping layers are selected.
  • the most common membrane materials are paper, metal and plastic, which are often coated or modified to meet these requirements as much as possible.
  • Paper has a low density and good damping, the lack of rigidity can be improved for example by reinforcement with glass or Kevlar fibers.
  • Metals have a high stiffness, but are usually poorly damped, which often results in a clinking and a sharp, metallic sound.
  • the damping of metal foils (aluminum, titanium, beryllium) can be improved by e.g. Composites with a middle layer of soft polymers or damping foams are produced.
  • Plastic membranes have the advantage that they cover a very wide range of soft, well-damped polymers to very stiff materials with low attenuation and can be selected suitable for different applications.
  • EP 2 172 059 A describes a 5-layer loudspeaker membrane in which one rigid polyetheretherketone film is bonded to one side on both sides of a damping carbon fiber nonwoven via a respective thermoplastic adhesive layer.
  • a 5-ply laminate is described in which rigid outer layers are applied to both sides of an adhesive-coated polyethylene terephthalate support.
  • US Pat. No. 7,644,801 A mentions a 3-layer laminate composed of 2 polyarylate films and an intermediate acrylate adhesive, which wrinkles and wrinkles significantly less than pure polyarylate films.
  • microspeaker membranes are formed either directly from such films or from multilayer laminates of these films with additional cushioning layers.
  • membrane means the membrane formed from foils or film composites as used in the finished loudspeaker.
  • multi-layer laminate refers to a composite of at least two films and additional layers lying between these films, from which the actual speaker membrane is formed.
  • PEEKs Polyetheretherketone membranes, hereafter called PEEKs, have outstanding temperature resistance and perform best in loudspeaker manufacturers' increasingly important high-performance endurance tests, which is why micro loudspeakers are showing a clear trend towards the use of PEEK. Due to the high rigidity of PEEK, there is great interest in membranes made of PEEK multi-layer laminates with additional damping layers for the reasons mentioned above.
  • the PEEK films used to make the multilayer laminates are commercially available in both amorphous and partially crystalline versions. Amorphous or substantially amorphous PEEK films are cooled during their preparation as quickly to temperatures below the glass transition temperature T g, that the material can not form a substantially crystalline regions.
  • substantially amorphous PEEK films do not crystallize on heating above the glass transition temperature during shaping of the membrane by deep drawing or embossing. In contrast, partially crystalline PEEK films already have a crystalline content after their preparation.
  • a substantially amorphous PEEK film can be distinguished from a partially crystalline PEEK film by differential scanning calorimetry (DSC).
  • DSC measurements on amorphous and semicrystalline PEEK films were carried out with the measuring device DSC 204 F1 from Netzsch.
  • DSC 204 F1 from Netzsch.
  • about 5 mg of the film was weighed into a 25 ⁇ aluminum crucible with perforated lid and heated at a heating rate of 10 K / min from 20 ° C to 410 ° C.
  • the recorded or emitted heat is recorded and the resulting curve referred to as the first heating curve. It was then cooled at a cooling rate of 10 K / min back to 20 ° C and thereby recorded the cooling curve.
  • a second heating curve was recorded by heating a second time from 20 ° C to 410 ° C at a heating rate of 10 K / min.
  • the two film types differ in that amorphous PEEK films measured under these conditions exhibit a significant exothermic crystallization peak in the first heating curve, which is absent in the partially crystalline PEEK film.
  • a substantially amorphous in the context of this invention PEEK film is characterized in that it shows a heat of crystallization of at least 15 J / g (ie 15 J / g or more) under the above DSC measurement conditions in the first heating curve.
  • a partially crystalline PEEK film according to this invention is characterized in that it exhibits a heat of crystallization of at most 5 J / g (ie, 5 J / g or less) under the above-mentioned DSC measuring conditions in the first heating curve.
  • the thickness of the deep-drawn membrane can be adjusted very well by the process conditions, from a PEEK multilayer laminate with a given total thickness, different membrane thicknesses can be produced and adapted to the requirements of different speaker designs.
  • the disadvantage of this process is a high reject rate, since depending on the degree of deep-drawing, only a very small proportion of the multi-layer laminate used ends up in the finished membrane. This makes thermoforming just for the very expensive PEEK films not economical. In the multicavity thermoforming process, a much larger fraction of the multilayer laminate terminates in the membrane, but there is little latitude in the variation of its thickness.
  • thermoforming upwardly amorphous PEEK film is replaced by a partially crystalline PEEK film.
  • the subject of the invention is therefore multi-layer laminate for the production of membranes for electroacoustic transducers
  • the multilayer laminate may be limited to the three layers mentioned, but may also have further layers in the laminate structure.
  • a 3-layer laminate of partially crystalline PEEK film (1), adhesive (2) and amorphous PEEK film (3) is shown by way of example in FIG. 1.
  • Particularly suitable according to the invention in the sense of the second cover layer is a partially crystalline PEEK film, ie a PEEK film which has a heat of crystallization of at most 5 J / g determined in the first heating curve of the differential scanning calorimetry measurement.
  • films suitable for the purposes of the invention for use as a second cover layer - ie as a replacement for one of the two amorphous PEEK films of conventional constructions - are, for example, films of polyphenylene sulfide (PPS), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polybutylene terephthalate (PBT ), Polyarylate (PAR), polyimide (PI), polyetherimide (PEI), polyphenylsulfone (PPSU), polyethersulfone (PES) or polysulfone (PSU).
  • PPS polyphenylene sulfide
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PAR Polyarylate
  • PI polyimide
  • PEI polyetherimide
  • PPSU polyphenylsulfone
  • PES polyethersulfone
  • PSU polysulfone
  • films are used as the second cover layer, the thicknesses in the range of 1 ⁇ to 50 ⁇ , preferably from 2 ⁇ to 40 ⁇ , more preferably from 5 ⁇ have up to 15 ⁇ .
  • the amorphous PEEK films for the first cover layer in the asymmetric multilayer laminate also have thicknesses in the range from 1 ⁇ m to 50 ⁇ m, preferably from 2 ⁇ m to 40 ⁇ m, particularly preferably from 5, independently of the thicknesses of the films for the second cover layer ⁇ to 15 ⁇ on.
  • the amorphous first cover layer and the second, non-crystallizable cover layer can be selected to be the same thickness.
  • a comparison of the properties of the above-mentioned, usable as a second cover layer films with the commercially available amorphous PEEK film has shown that the shrinkage of non-crystallizable films, in particular films of the aforementioned materials having a heat of crystallization of at most 5 J / g, significantly lower as the shrinkage of the amorphous PEEK film.
  • Table 1 shows comparative values by way of example.
  • the invention therefore furthermore relates to a multilayer laminate for the production of membranes for electroacoustic transducers, comprising a first cover layer which, after 15 minutes at 200 ° C., has a shrinkage greater than 10% in at least one direction, arranged between the first and second cover layers Adhesive layer and a second cover layer, which after 15 minutes at 200 ° C in the longitudinal and transverse directions each have a shrinkage of less than 10%, preferably less 5%.
  • Such films are preferably used as films for the first and the second cover layer, as described in more detail in this specification, the statements relating to these films apply correspondingly to this multilayer laminate.
  • the shrinkage of the films is determined by two marks at a distance of 10 cm are made on the film at room temperature with a film pen and the films are stored in a convection oven at 200 ° C freely suspended for 15 minutes. After cooling, the distance between the two markings is measured again and the percentage change in the distance is determined. This measurement is carried out both in the longitudinal direction of the film - also called Machine Direction or MD - as well as in the transverse direction of the film - also called Transverse Direction or TD - to detect the different shrinkage depending on the orientation.
  • an intermediate layer of an adhesive is arranged between the amorphous PEEK film and the partially crystalline PEEK film.
  • Suitable adhesives are polyacrylates dissolved in solvents or aqueous polyacrylate dispersions and rosin-modified natural and synthetic rubber. Particularly suitable are dissolved polyacrylate adhesives.
  • the adhesive layer is preferably coated from solvent or from water with the aid of a nozzle or a doctor blade on the first cover layer - in particular on an amorphous PEEK film of thickness 6 ⁇ to 12 ⁇ - and then for 5 to 30 minutes at 100 to 170 ° C dried. On the dried adhesive is then the second cover layer - in particular a partially crystalline PEEK film thickness of 6 ⁇ to 12 ⁇ , preferably 8 ⁇ - laminated or laminated.
  • the layer thickness of the adhesive after drying is 2 ⁇ to 100 ⁇ , preferably 5 ⁇ to 50 ⁇ , more preferably 10 ⁇ to 30 ⁇ .
  • the multilayer laminates according to the invention can be used outstandingly in a process for the production of membranes for electroacoustic transducers, wherein they are subjected to the process of multicavity thermoforming.
  • the multilayer laminate is placed on the heatable thermoforming, which contains recesses with the negative impression of the membrane to be formed.
  • the multi-layer laminate is heated, for example by IR radiation and thereby softened and then pressed from above with compressed air into the recesses.
  • the softened multi-layer laminate can also be pressed into the molds with a stamp made of silicone or foamed silicone.
  • the membranes produced by this method according to the invention showed significantly less wrinkling than membranes of two 6 to 9 ⁇ m thick amorphous PEEK films with intervening adhesive layer.
  • FIG. 2 An advantageous arrangement of the laminate according to the invention in the thermoforming is shown in FIG. 2.
  • Reference numerals 1 to 3 describe the multilayer laminate as shown in FIG. This multilayer laminate is placed on the preferably heated thermoform 4 and pressed after heating with compressed air (5) in the recesses of the thermoform.
  • the invention also relates to the use of multilayer laminates, as described in the context of this document, for the production of membranes for electroacoustic transducers.
  • Example 1 The amorphous PEEK film Aptiv 2000-006GS from Victrex, thickness 6 ⁇ m, is coated with an acrylate adhesive in a layer thickness of 20 ⁇ m and then dried at 120 ° C. for 5 minutes. Then, the partially crystalline PEEK film Aptiv 1000- 008GS, thickness 8 ⁇ , applied to the adhesive layer and laminated by pressing with a roller bubble-free. From this multi-layer laminate, an approximately 10 cm by 10 cm large area is cut out and placed on the thermoforming that the amorphous PEEK film lies on the heated embossing mold and the semi-crystalline film facing upward.
  • the laminate is heated in the thermoforming and pressed by applying pressure in the form of the finished membrane.
  • the laminate is heated in the thermoforming and pressed by applying pressure in the form of the finished membrane.
  • the problem of wrinkling in the upwardly facing and the compressed air facing PEEK film does not occur.

Abstract

The invention relates to a multi-layered laminate for producing membranes for electroacoustic transducers, comprising a first layer (3) consisting of a polyether ether ketone film having a heat of crystallisation of at least 15 J/g, determined in the first heating curve of the dynamic differential calorimetric measurement, a second layer (1) consisting of a thermoplastic plastic film having a heat of crystallisation of no more than 5 J/g, determined in the first heating curve of the dynamic differential calorimetric measurement, and an adhesive layer (2) arranged between the first (3) and second (1) layers. Alternatively, the first (3) and second (1) layers are defined by their shrinkage properties after 15 minutes at 200 °C: the first layer (3) has shrinkage of more than 10% in at least one direction, and the second layer (1) has shrinkage of less than 10% in the longitudinal and transverse directions. A laminate constructed in this manner is characterised by lower fold formation when said laminate is processed using multi-cavity thermoforming.

Description

Beschreibung  description
Asymmetrische Mehrschichtmembran für elektroakustische Wandler Asymmetric multilayer membrane for electroacoustic transducers
Die Erfindung betrifft ein asymmetrisches Mehrschicht-Laminat zur Verwendung als Membran für elektroakustische Wandler sowie ein Verfahren zur Herstellung dieses Mehrschicht-Laminats. The invention relates to an asymmetric multilayer laminate for use as a membrane for electroacoustic transducers and to a method for producing this multilayer laminate.
Mit dem allgemeinen Trend zu kleineren und kompakteren Geräten im Bereich der Unterhaltungselektronik müssen zwangsläufig auch die in Mobiltelefonen, Smartphones, Kopfhörern, Personal Digital Assistants (PDAs), Notebooks etc. enthaltenen Lautsprecher immer kleiner werden. Dadurch werden bezüglich den akustischen Eigenschaften und der Lebensdauer zunehmend höhere Anforderungen an die Membranen solcher Mikrolautsprecher, deren Größe typischerweise im Bereich 20 mm2 bis 900 mm2 liegt, gestellt. With the general trend towards smaller and more compact devices in the field of consumer electronics, the speakers in mobile phones, smartphones, headphones, personal digital assistants (PDAs), notebooks etc. inevitably have to become smaller and smaller. As a result, increasingly higher demands are placed on the membranes of such microspeakers, whose size is typically in the range of 20 mm 2 to 900 mm 2 , with regard to the acoustic properties and the service life.
Allgemein sollte das Material einer Lautsprechermembran gleichzeitig möglichst steif, leicht und gut gedämpft sein. Diese Anforderungen ergeben sich daraus, dass die Frequenz, bei der die Membran in Teilschwingungen aufbricht und ab der es verstärkt zu Resonanzen und Verzerrungen kommt, proportional zu (E/p)0 5 ist, wobei E den Elastizitätsmodul und p die Dichte der Membran bezeichnet. Mit zunehmendem Faktor (E/p)0 5 kann somit das obere Limit des Frequenzbereichs des Lautsprechers angehoben werden. Weitere Vorteile einer leichten und gleichzeitig steifen Membran sind eine schnelle Beschleunigung der Membran beim Impulsübergang und damit ein höherer erreichbarer Schalldruck. Auf der anderen Seite sollte die Membran zur Absenkung der Resonanzfrequenz f0 und Unterdrückung von Resonanzspitzen im Frequenzgang gleichzeitig eine hohe interne Dämpfung tan δ besitzen. Da sich die Kriterien steif, leicht und gut gedämpft aber konstruktiv widersprechen, muss bei Lautsprechermembranen immer ein gewisser Kompromiss bezüglich des Membranmaterials eingegangen werden oder aber eine Kombination aus steifen und dämpfenden Schichten gewählt werden. In general, the material of a loudspeaker membrane should at the same time be as stiff, light and well damped as possible. These requirements arise from the fact that the frequency at which the membrane breaks up into partial vibrations and from which it increasingly produces resonances and distortions, is proportional to (E / p) 0 5 , where E denotes the elastic modulus and p the density of the membrane , As the factor (E / p) 0 5 increases , the upper limit of the frequency range of the loudspeaker can thus be increased. Further advantages of a light and at the same time stiff diaphragm are a fast acceleration of the diaphragm during the impulse transition and thus a higher achievable sound pressure. On the other hand, the diaphragm should simultaneously have a high internal damping tan δ for lowering the resonance frequency f 0 and suppression of resonance peaks in the frequency response. Since the criteria are stiff, light and well damped but constructively contradictory, must in speaker membranes always a certain compromise with respect to the membrane material to be received or a combination of stiff and damping layers are selected.
Die gängigsten Membranmaterialien sind Papier, Metall und Kunststoff, die häufig noch beschichtet oder modifiziert werden, um die genannten Anforderungen möglichst weitgehend zu erfüllen. Papier besitzt eine geringe Dichte und gute Dämpfung, die fehlende Steifigkeit kann zum Beispiel durch Verstärkung mit Glas- oder Kevlarfasern verbessert werden. Metalle weisen eine hohe Steifigkeit auf, sind dabei aber in der Regel nur schlecht gedämpft, was häufig ein Klirren und einen scharfen, metallischen Klang zur Folge hat. Die Dämpfung von Metallfolien (Aluminium, Titan, Beryllium) kann verbessert werden, indem z.B. Verbünde mit einer Mittelschicht aus weichen Polymeren oder dämpfenden Schäumen erzeugt werden. Kunststoff-Membranen haben den Vorteil, dass sie einen sehr weiten Bereich von weichen, gut gedämpften Polymeren bis hin zu sehr steifen Materialien mit geringer Dämpfung umfassen und für unterschiedliche Anwendungen jeweils passend ausgewählt werden können. Solche Kunststoff- Membranen basieren entweder auf imprägnierten Faser-Geweben oder auf Folien, deren Steifigkeit oder Dämpfungseigenschaften häufig durch Kombination mit steifen bzw. dämpfenden Schichten optimiert werden. So beschreibt die EP 2 172 059 A eine 5-lagige Lautsprechermembran, bei der je eine steife Polyetheretherketon-Folie über je eine thermoplastische Klebmasseschicht auf beide Seiten eines dämpfenden Kohlenstofffaser-Vlieses aufgeklebt ist. In der US 201 1 - 0272208 A wird ein 5-Lagenlaminat beschrieben, bei dem steife Außenschichten auf beide Seiten eines mit Klebmasse beschichteten Polyethylenterephthalat-Trägers aufgebracht sind. In der US 7,644,801 A ist ein 3-Schichtlaminat aus 2 Polyarylat-Folien und einer dazwischenliegenden Acrylat-Klebmasse genannt, das im Vergleich zu reinen Polyarylat-Folien deutlich weniger knittert und Falten wirft. The most common membrane materials are paper, metal and plastic, which are often coated or modified to meet these requirements as much as possible. Paper has a low density and good damping, the lack of rigidity can be improved for example by reinforcement with glass or Kevlar fibers. Metals have a high stiffness, but are usually poorly damped, which often results in a clinking and a sharp, metallic sound. The damping of metal foils (aluminum, titanium, beryllium) can be improved by e.g. Composites with a middle layer of soft polymers or damping foams are produced. Plastic membranes have the advantage that they cover a very wide range of soft, well-damped polymers to very stiff materials with low attenuation and can be selected suitable for different applications. Such plastic membranes are based either on impregnated fiber webs or on films whose stiffness or damping properties are often optimized by combination with stiff or cushioning layers. For example, EP 2 172 059 A describes a 5-layer loudspeaker membrane in which one rigid polyetheretherketone film is bonded to one side on both sides of a damping carbon fiber nonwoven via a respective thermoplastic adhesive layer. In US 201 1 - 0272208 A, a 5-ply laminate is described in which rigid outer layers are applied to both sides of an adhesive-coated polyethylene terephthalate support. US Pat. No. 7,644,801 A mentions a 3-layer laminate composed of 2 polyarylate films and an intermediate acrylate adhesive, which wrinkles and wrinkles significantly less than pure polyarylate films.
Diese Beispiele zeigen, dass Mehrschicht-Laminate als Lautsprechermembranen prinzipiell gut geeignet sind, trotz der Vielzahl an unterschiedlichen Varianten eine optimale Lösung aber noch nicht gefunden ist. These examples show that multilayer laminates are in principle well suited as loudspeaker membranes, despite the large number of different variants an optimal solution has not yet been found.
Wegen der starken Erwärmung der Membranen von Mikrolautsprechern im Betrieb werden für diese häufig steife Folien aus hochtemperaturbeständigen Kunststoffen wie Polyetheretherketon (PEEK), Polyetherketon (PEK), Polyetherketonketon (PEKK), Polyarylat (PAR), Polyetherimid (PEI), Polyphenylensulfid (PPS), Polyethylenterephthalat (PET), Polyethylennaphthalat (PEN), Polybutylenterephthalat (PBT) oder Aramiden eingesetzt. Die Mikrolautsprecher-Membranen werden entweder direkt aus solchen Folien oder aus Mehrschicht-Laminaten dieser Folien mit zusätzlichen dämpfenden Schichten geformt. Der Begriff Membran bezeichnet hierin die aus Folien oder Folien- Verbunden geformte Membran, wie sie im fertigen Lautsprecher eingesetzt wird. Der Begriff Mehrschicht-Laminat bezeichnet hierin einen Verbund aus mindestens zwei Folien und zusätzlichen zwischen diesen Folien liegenden Schichten, aus dem die eigentliche Lautsprechermembran geformt wird. Because of the strong heating of the membranes of microspeakers in operation for these often rigid films of high temperature resistant plastics such Polyetheretherketone (PEEK), polyether ketone (PEK), polyether ketone ketone (PEKK), polyarylate (PAR), polyetherimide (PEI), polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT) or aramides used. The microspeaker membranes are formed either directly from such films or from multilayer laminates of these films with additional cushioning layers. As used herein, the term membrane means the membrane formed from foils or film composites as used in the finished loudspeaker. As used herein, the term multi-layer laminate refers to a composite of at least two films and additional layers lying between these films, from which the actual speaker membrane is formed.
Membranen aus Polyetheretherketon, im Folgenden PEEK genannt, besitzen eine herausragende Temperaturbeständigkeit und schneiden bei den zunehmend wichtigen Hochleistungs-Lebensdauertests der Lautsprecherhersteller am besten ab, weshalb gerade bei Mikrolautsprechern ein deutlicher Trend zur Verwendung von PEEK zu beobachten ist. Aufgrund der hohen Steifigkeit von PEEK besteht aus den oben genannten Gründen sehr großes Interesse an Membranen aus PEEK-Mehrschicht- Laminaten mit zusätzlichen dämpfenden Schichten. Die zur Herstellung der Mehrschicht-Laminate eingesetzten PEEK-Folien sind kommerziell sowohl in amorpher als auch in teilkristalliner Ausführung erhältlich. Amorphe oder im Wesentlichen amorphe PEEK-Folien werden bei ihrer Herstellung so schnell auf Temperaturen unterhalb der Glasübergangstemperatur Tg abgekühlt, dass das Material keine wesentlichen kristallinen Bereiche ausbilden kann. Diese im Wesentlichen amorphen PEEK-Folien kristallisieren erst beim Erwärmen über die Glasübergangstemperatur während der Formgebung der Membran durch Tiefziehen oder Prägen. Im Gegensatz dazu besitzen teilkristalline PEEK-Folien bereits nach ihrer Herstellung einen kristallinen Anteil. Eine im Wesentlichen amorphe PEEK-Folie kann von einer teilkristallinen PEEK-Folie durch Dynamische Differenzkalorimetrie (DSC) unterschieden werden. Polyetheretherketone membranes, hereafter called PEEKs, have outstanding temperature resistance and perform best in loudspeaker manufacturers' increasingly important high-performance endurance tests, which is why micro loudspeakers are showing a clear trend towards the use of PEEK. Due to the high rigidity of PEEK, there is great interest in membranes made of PEEK multi-layer laminates with additional damping layers for the reasons mentioned above. The PEEK films used to make the multilayer laminates are commercially available in both amorphous and partially crystalline versions. Amorphous or substantially amorphous PEEK films are cooled during their preparation as quickly to temperatures below the glass transition temperature T g, that the material can not form a substantially crystalline regions. These substantially amorphous PEEK films do not crystallize on heating above the glass transition temperature during shaping of the membrane by deep drawing or embossing. In contrast, partially crystalline PEEK films already have a crystalline content after their preparation. A substantially amorphous PEEK film can be distinguished from a partially crystalline PEEK film by differential scanning calorimetry (DSC).
DSC-Messungen an amorphen und teilkristallinen PEEK-Folien wurden mit dem Messgerät DSC 204 F1 der Firma Netzsch durchgeführt. Dazu wurden ca. 5 mg der Folie in einen 25 μί Aluminium-Tiegel mit gelochtem Deckel eingewogen und mit einer Aufheizrate von 10 K/min von 20 °C auf 410 °C aufgeheizt. Die dabei aufgenommene bzw. abgegebene Wärme wird aufgezeichnet und die daraus resultierende Kurve als erste Aufheizkurve bezeichnet. Anschließend wurde mit einer Abkühlrate von 10 K/min wieder auf 20 °C abgekühlt und dabei die Abkühlkurve aufgenommen. Schließlich wurde eine zweite Aufheizkurve aufgenommen, indem ein zweites Mal mit einer Aufheizrate von 10 K/min von 20 °C auf 410 °C aufgeheizt wurde. DSC measurements on amorphous and semicrystalline PEEK films were carried out with the measuring device DSC 204 F1 from Netzsch. For this purpose, about 5 mg of the film was weighed into a 25 μί aluminum crucible with perforated lid and heated at a heating rate of 10 K / min from 20 ° C to 410 ° C. The recorded or emitted heat is recorded and the resulting curve referred to as the first heating curve. It was then cooled at a cooling rate of 10 K / min back to 20 ° C and thereby recorded the cooling curve. Finally, a second heating curve was recorded by heating a second time from 20 ° C to 410 ° C at a heating rate of 10 K / min.
Die beiden Folientypen unterscheiden sich dadurch, dass unter diesen Bedingungen gemessene amorphe PEEK-Folien in der ersten Aufheizkurve einen signifikanten exothermen Kristallisationspeak zeigen, der bei der teilkristallinen PEEK-Folie fehlt. Eine im Sinne dieser Erfindung im Wesentlichen amorphe PEEK-Folie ist dadurch gekennzeichnet, dass sie unter den oben genannten DSC-Messbedingungen in der ersten Aufheizkurve eine Kristallisationswärme von mindestens 15 J/g (also 15 J/g oder mehr) zeigt. Eine im Sinne dieser Erfindung teilkristalline PEEK-Folie ist dadurch gekennzeichnet, dass sie unter den oben genannten DSC-Messbedingungen in der ersten Aufheizkurve eine Kristallisationswärme von höchstens 5 J/g (also 5 J/g oder weniger) zeigt. Diese Obergrenze wird aufgrund von potentiellen Schwankungen der Basislinie während der Messung angegeben, in der Regel ist in der ersten Aufheizkurve der teilkristallinen PEEK-Folie kein Kristallisationspeak zu beobachten. Aufgrund der besseren Verarbeitbarkeit während der Formgebung werden für Lautsprechermembranen vorwiegend Mehrschicht-Laminate aus amorphen PEEK-Folien eingesetzt. Diese Mehrschicht-Laminate werden während des Tiefziehens oder Thermoformens bei Temperaturen oberhalb der Glasübergangstemperatur von 143 °C zur Kristallisation gebracht. Dadurch liegen die PEEK-Folien in der fertigen Membran in teilkristallinem Zustand vor und sorgen somit für eine nachträglich höhere Steifigkeit und Festigkeit der Membran. The two film types differ in that amorphous PEEK films measured under these conditions exhibit a significant exothermic crystallization peak in the first heating curve, which is absent in the partially crystalline PEEK film. A substantially amorphous in the context of this invention PEEK film is characterized in that it shows a heat of crystallization of at least 15 J / g (ie 15 J / g or more) under the above DSC measurement conditions in the first heating curve. A partially crystalline PEEK film according to this invention is characterized in that it exhibits a heat of crystallization of at most 5 J / g (ie, 5 J / g or less) under the above-mentioned DSC measuring conditions in the first heating curve. This upper limit is given due to potential fluctuations of the baseline during the measurement, as a rule, no crystallization peak is observed in the first heating curve of the semicrystalline PEEK film. Due to the better processability during shaping, multilayer laminates of amorphous PEEK films are predominantly used for loudspeaker membranes. These multilayer laminates are crystallized during thermoforming or thermoforming at temperatures above the glass transition temperature of 143 ° C. As a result, the PEEK films are present in the finished membrane in a partially crystalline state and thus provide for a subsequently higher rigidity and strength of the membrane.
Beim Verfahren des Tiefziehens kann die Dicke der tiefgezogenen Membran durch die Prozessbedingungen sehr gut eingestellt werden, aus einem PEEK-Mehrschicht-Laminat mit gegebener Gesamtdicke können dadurch unterschiedliche Membrandicken hergestellt werden und jeweils auf die Anforderungen verschiedener Lautsprecher- Designs angepasst werden. Der Nachteil dieses Verfahrens ist ein hoher Ausschuss, da je nach Tiefziehgrad nur ein sehr geringer Anteil des eingesetzten Mehrschicht-Laminats in der fertigen Membran endet. Dies macht das Tiefziehen gerade für die sehr teuren PEEK-Folien nicht wirtschaftlich. Beim Verfahren des Multicavity-Thermoformens endet ein weitaus größerer Anteil des Mehrschicht-Laminats in der Membran, allerdings besteht wenig Spielraum in der Variation deren Dicke. Da die Resonanzfrequenz der Membran proportional zur ihrer Gesamtdicke ist, müssen zum Erreichen von niedrigen Resonanzfrequenzen beim Thermoformen deshalb von vornherein auch schon dünne Mehrschicht-Laminate und damit auch dünne PEEK-Folien eingesetzt werden. Die dünnsten kommerziell erhältlichen amorphen PEEK-Folien sind aktuell 6 μηη dick. Trotz des großen Interesses an Mehrschicht-Laminaten aus diesen Folien konnten diese bisher nicht eingesetzt werden, da während des Multicavity-Thermoformens die in der Thermoform nach oben liegende und der Luft zugewandte Seite starke Falten wirft. In the process of deep drawing, the thickness of the deep-drawn membrane can be adjusted very well by the process conditions, from a PEEK multilayer laminate with a given total thickness, different membrane thicknesses can be produced and adapted to the requirements of different speaker designs. The disadvantage of this process is a high reject rate, since depending on the degree of deep-drawing, only a very small proportion of the multi-layer laminate used ends up in the finished membrane. This makes thermoforming just for the very expensive PEEK films not economical. In the multicavity thermoforming process, a much larger fraction of the multilayer laminate terminates in the membrane, but there is little latitude in the variation of its thickness. Since the resonant frequency of the membrane is proportional to its total thickness, to achieve low resonance frequencies during thermoforming, thin multi-layer laminates and thus also thin PEEK films must be used from the outset. The thinnest commercially available amorphous PEEK films are currently 6 μm thick. Despite the great interest in multi-layer laminates from these films, they could not be used until now, because during the multicavity thermoforming, the side facing up in the thermoform and the air facing throws strong wrinkles.
Überraschenderweise hat sich nun gezeigt, dass das Problem der Faltenbildung behoben wird, wenn die in der Thermoform nach oben liegende amorphe PEEK-Folie durch eine teilkristalline PEEK-Folie ersetzt wird. Durch Verwendung eines solchen asymmetrischen Mehrschicht-Laminats aus einer im Wesentlichen amorphen PEEK-Folie, Klebstoff- Schicht und teilkristalliner PEEK-Schicht wird damit die Herstellung dünner Membranen aus PEEK-Mehrschicht-Laminaten mittels des Verfahrens des Multicavity- Thermoformens ermöglicht. Surprisingly, it has now been shown that the problem of wrinkling is remedied if the thermoforming upwardly amorphous PEEK film is replaced by a partially crystalline PEEK film. By using such an asymmetric multi-layer laminate of a substantially amorphous PEEK film, adhesive layer and partially crystalline PEEK layer, it is thus possible to produce thin membranes from PEEK multilayer laminates by means of the multicavity thermoforming process.
Tatsächlich hat sich herausgestellt, dass auch andere Materialien, die entweder nicht kristallisieren können oder schon fertig auskristallisiert sind, eine der beiden amorphen PEEK-Folien ersetzen können. Gegenstand der Erfindung ist daher Mehrschicht-Laminat zur Herstellung von Membranen für elektroakustische Wandler, umfassend In fact, it has been found that other materials, which either can not crystallize or are already fully crystallized, can replace one of the two amorphous PEEK films. The subject of the invention is therefore multi-layer laminate for the production of membranes for electroacoustic transducers
a) eine erste Schicht (im Rahmen dieser Schrift als„erste Deckschicht" bezeichnet) aus einer Polyetheretherketon-Folie (PEEK-Folie) mit einer Kristallisationswärme von mindestens 15 J/g (also 15 J/g oder mehr; Kristallisationswärme QKr ^ 15 J/g), bestimmt in der ersten Aufheizkurve der Dynamischen Differenzkalorimetrie-Messung - also einer im Wesentlichen amorphen PEEK-Folie -, b) ferner eine zweite Schicht (im Rahmen dieser Schicht als „zweite Deckschicht" bezeichnet) aus einer thermoplastischen Kunststoff-Folie mit einer Kristallisationswärme von höchstens 5 J/g (also 5 J/g oder weniger; Kristallisationswärme QKr ^ 5 J/g), bestimmt in der ersten Aufheizkurve der Dynamischen Differenzkalorimetrie-Messung - also einer solchen Folie, die im Wesentlichen zu keiner Kristallisation bzw. zu keiner weiteren Kristallisation fähig ist ,-, und a) a first layer (in the context of this document referred to as "first cover layer") of a polyetheretherketone film (PEEK film) having a heat of crystallization of at least 15 J / g (ie 15 J / g or more, heat of crystallization Q Kr ^ 15 J / g), determined in the first Aufheizkurve the differential scanning calorimetry - ie a substantially amorphous PEEK film -, b) further comprises a second layer (referred to in the context of this layer as a "second cover layer") of a thermoplastic film with a heat of crystallization of at most 5 J / g (that is, 5 J / g or less, heat of crystallization Q Kr ^ 5 J / g) determined in the first heating curve of the differential scanning calorimetry measurement - that is, a film which is in the Is substantially unable to crystallize or to any further crystallization, -, and
c) eine zwischen der ersten und zweiten Deckschicht angeordneten Klebstoffschicht. Das Mehrschicht-Laminat kann auf die drei genannten Schichten beschränkt sein, aber auch weitere Schichten im Laminataufbau aufweisen. c) an adhesive layer disposed between the first and second cover layers. The multilayer laminate may be limited to the three layers mentioned, but may also have further layers in the laminate structure.
Ein 3-Schichtlaminat aus teilkristalliner PEEK-Folie (1 ), Klebmasse (2) und amorpher PEEK-Folie (3) zeigt beispielhaft Fig. 1. A 3-layer laminate of partially crystalline PEEK film (1), adhesive (2) and amorphous PEEK film (3) is shown by way of example in FIG. 1.
Als erfindungsgemäß besonders geeignet im Sinne der zweiten Deckschicht hat sich eine teilkristalline PEEK-Folie herausgestellt, also eine solche PEEK-Folie, die eine Kristallisationswärme von höchstens 5 J/g, bestimmt in der ersten Aufheizkurve der Dynamischen Differenzkalorimetrie-Messung, aufweist. Particularly suitable according to the invention in the sense of the second cover layer is a partially crystalline PEEK film, ie a PEEK film which has a heat of crystallization of at most 5 J / g determined in the first heating curve of the differential scanning calorimetry measurement.
Weitere im Sinne der Erfindung geeignete Folien für den Einsatz als zweite Deckschicht - also als Ersatz für eine der beiden amorphen PEEK-Folien herkömmlicher Aufbauten - sind beispielsweise Folien aus Polyphenylensulfid (PPS), Polyethylennaphthalat (PEN), Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), Polyarylat (PAR), Polyimid (PI), Polyetherimid (PEI), Polyphenylsulfon (PPSU), Polyethersulfon (PES) oder Polysulfon (PSU). Further films suitable for the purposes of the invention for use as a second cover layer - ie as a replacement for one of the two amorphous PEEK films of conventional constructions - are, for example, films of polyphenylene sulfide (PPS), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polybutylene terephthalate (PBT ), Polyarylate (PAR), polyimide (PI), polyetherimide (PEI), polyphenylsulfone (PPSU), polyethersulfone (PES) or polysulfone (PSU).
Bevorzugt werden Folien als zweite Deckschicht eingesetzt, die Dicken im Bereich von 1 μηη bis 50 μηη, bevorzugt von 2 μηη bis 40 μηη, besonders bevorzugt von 5 μηη bis 15 μηη besitzen. Preferably, films are used as the second cover layer, the thicknesses in the range of 1 μηη to 50 μηη, preferably from 2 μηη to 40 μηη, more preferably from 5 μηη have up to 15 μηη.
Die amorphen PEEK-Folien für die erste Deckschicht im asymmetrischen Mehrschicht- Laminat weisen - unabhängig von den Dicken der Folien für die zweiten Deckschicht - ebenfalls Dicken im Bereich von 1 μηη bis 50 μηη, bevorzugt von 2 μηη bis 40 μηη, besonders bevorzugt von 5 μηη bis 15 μηη auf. The amorphous PEEK films for the first cover layer in the asymmetric multilayer laminate also have thicknesses in the range from 1 μm to 50 μm, preferably from 2 μm to 40 μm, particularly preferably from 5, independently of the thicknesses of the films for the second cover layer μηη to 15 μηη on.
Die amorphe erste Deckschicht und die zweite, nicht kristallisationsfähige Deckschicht können dabei gleich dick gewählt werden. Ein Vergleich der Eigenschaften der oben erwähnten, als zweite Deckschicht einsetzbaren Folien mit der kommerziell erhältlichen amorphen PEEK-Folie hat gezeigt, dass der Schrumpf von nicht kristallisationsfähigen Folien, insbesondere Folien der vorgenannten Materialien mit einer Kristallisationswärme von höchstens 5 J/g, deutlich geringer ist als der Schrumpf der amorphen PEEK-Folie. In Tabelle 1 sind beispielhaft vergleichende Werte gezeigt. The amorphous first cover layer and the second, non-crystallizable cover layer can be selected to be the same thickness. A comparison of the properties of the above-mentioned, usable as a second cover layer films with the commercially available amorphous PEEK film has shown that the shrinkage of non-crystallizable films, in particular films of the aforementioned materials having a heat of crystallization of at most 5 J / g, significantly lower as the shrinkage of the amorphous PEEK film. Table 1 shows comparative values by way of example.
Tabelle 1. Schrumpf verschiedener Folien bei 200 °C und 15 min. Table 1. Shrinkage of various films at 200 ° C and 15 min.
Figure imgf000009_0001
Figure imgf000009_0001
Gegenstand der Erfindung ist daher weiterhin ein Mehrschicht-Laminat zur Herstellung von Membranen für elektroakustische Wandler, umfassend eine erste Deckschicht, die nach 15 Minuten bei 200 °C in mindestens einer Richtung einen Schrumpf größer 10 % aufweist, eine zwischen der ersten und zweiten Deckschicht angeordneten Klebstoffschicht und einer zweiten Deckschicht, die nach 15 Minuten bei 200 °C in Längs- und Querrichtung jeweils einen Schrumpf geringer 10 %, bevorzugt geringer 5 % aufweist. Bevorzugt werden als Folien für die erste und die zweite Deckschicht solche Folien eingesetzt, wie sie im weiteren in dieser Schrift beschrieben sind, die Ausführungen zu diesen Folien gelten für dieses Mehrschicht-Laminat entsprechend. Der Schrumpf der Folien wird bestimmt, indem bei Raumtemperatur mit einem Folienstift zwei Markierungen im Abstand von 10 cm auf die Folie gemacht werden und die Folien im Umluftofen bei 200 °C frei hängend für 15 Minuten gelagert werden. Nach dem Abkühlen wird der Abstand der beiden Markierungen erneut gemessen und die prozentuale Änderung des Abstands bestimmt. Diese Messung erfolgt sowohl in Längsrichtung der Folie - auch Machine Direction oder MD genannt - als auch in Querrichtung der Folie - auch Transverse Direction oder TD genannt - um den unterschiedlichen Schrumpf in Abhängigkeit von der Orientierung zu erfassen. Im erfindungsgemäßen Mehrschicht-Laminat ist zwischen der amorphen PEEK-Folie und der teilkristallinen PEEK-Folie eine Zwischenschicht aus einem Klebstoff angeordnet. Diese Schicht hat die Funktion, die oberhalb und unterhalb liegenden Folien stabil zu verbinden und die Schwingung der steifen Außenfolien zu dämpfen. Geeignete Klebmassen sind in Lösungsmitteln gelöste Polyacrylate oder wässrige Polyacrylat-Dispersionen sowie mit Kolophonium-Harzen modifizierter Natur- und Synthesekautschuk. Besonders geeignet sind dabei gelöste Polyacrylat-Klebmassen. The invention therefore furthermore relates to a multilayer laminate for the production of membranes for electroacoustic transducers, comprising a first cover layer which, after 15 minutes at 200 ° C., has a shrinkage greater than 10% in at least one direction, arranged between the first and second cover layers Adhesive layer and a second cover layer, which after 15 minutes at 200 ° C in the longitudinal and transverse directions each have a shrinkage of less than 10%, preferably less 5%. Such films are preferably used as films for the first and the second cover layer, as described in more detail in this specification, the statements relating to these films apply correspondingly to this multilayer laminate. The shrinkage of the films is determined by two marks at a distance of 10 cm are made on the film at room temperature with a film pen and the films are stored in a convection oven at 200 ° C freely suspended for 15 minutes. After cooling, the distance between the two markings is measured again and the percentage change in the distance is determined. This measurement is carried out both in the longitudinal direction of the film - also called Machine Direction or MD - as well as in the transverse direction of the film - also called Transverse Direction or TD - to detect the different shrinkage depending on the orientation. In the multilayer laminate according to the invention, an intermediate layer of an adhesive is arranged between the amorphous PEEK film and the partially crystalline PEEK film. The purpose of this layer is to stably bond the films above and below and to dampen the vibration of the stiff outer films. Suitable adhesives are polyacrylates dissolved in solvents or aqueous polyacrylate dispersions and rosin-modified natural and synthetic rubber. Particularly suitable are dissolved polyacrylate adhesives.
Die Klebstoff-Schicht wird bevorzugt aus Lösungsmittel oder aus Wasser mit Hilfe einer Düse oder eines Rakels auf die erste Deckschicht - insbesondere auf eine amorphe PEEK-Folie der Dicke 6 μηη bis 12 μηη - beschichtet und anschließend für 5 bis 30 Minuten bei 100 bis 170 °C getrocknet. Auf die getrocknete Klebmasse wird anschließend die zweite Deckschicht - insbesondere eine teilkristalline PEEK-Folie der Dicke 6 μ bis 12 μηη, bevorzugt 8 μηη - zukaschiert oder auflaminiert. The adhesive layer is preferably coated from solvent or from water with the aid of a nozzle or a doctor blade on the first cover layer - in particular on an amorphous PEEK film of thickness 6 μηη to 12 μηη - and then for 5 to 30 minutes at 100 to 170 ° C dried. On the dried adhesive is then the second cover layer - in particular a partially crystalline PEEK film thickness of 6 μ to 12 μηη, preferably 8 μηη - laminated or laminated.
Die Schichtdicke des Klebstoffs beträgt nach dem Trocknen 2 μηη bis 100 μηη, bevorzugt 5 μηη bis 50 μηι, besonders bevorzugt 10 μηη bis 30 μηι. The layer thickness of the adhesive after drying is 2 μηη to 100 μηη, preferably 5 μηη to 50 μηι, more preferably 10 μηη to 30 μηι.
Die erfindungsgemäßen Mehrschicht-Laminate lassen sich hervorragend in einem Verfahren zur Herstellung von Membranen für elektroakustische Wandler einsetzen, wobei sie dem Prozess des Multicavity-Thermoformens unterzogen werden. Bei diesem Verfahren wird das Mehrschicht-Laminat auf die beheizbare Thermoform gelegt, die Vertiefungen mit dem Negativ-Abdruck der zu formenden Membran enthält. Anschließend wird das Mehrschicht-Laminat z.B. durch IR-Strahlung aufgeheizt und dadurch erweicht und dann von oben mit Druckluft in die Vertiefungen gepresst. Alternativ kann das erweichte Mehrschicht-Laminat auch mit einem Stempel aus Silikon oder geschäumtem Silikon in die Formen gepresst werden. Die mit diesem Verfahren erzeugten erfindungsgemäßen Membranen zeigten dabei deutlich geringere Faltenbildung als Membranen aus zwei 6 bis 9 μηη dicken amorphen PEEK-Folien mit dazwischen liegender Klebmasseschicht. The multilayer laminates according to the invention can be used outstandingly in a process for the production of membranes for electroacoustic transducers, wherein they are subjected to the process of multicavity thermoforming. In this method, the multilayer laminate is placed on the heatable thermoforming, which contains recesses with the negative impression of the membrane to be formed. Subsequently, the multi-layer laminate is heated, for example by IR radiation and thereby softened and then pressed from above with compressed air into the recesses. Alternatively, the softened multi-layer laminate can also be pressed into the molds with a stamp made of silicone or foamed silicone. The membranes produced by this method according to the invention showed significantly less wrinkling than membranes of two 6 to 9 μm thick amorphous PEEK films with intervening adhesive layer.
Eine vorteilhafte Anordnung des erfindungsgemäßen Laminats in der Thermoform zeigt Fig. 2. Die Bezugsziffern 1 bis 3 beschreiben dabei das Mehrschicht-Laminat wie für Fig. 1 dargestellt. Dieses Mehrschicht-Laminat wird auf die vorzugsweise beheizte Thermoform 4 gelegt und nach dem Erwärmen mit Druckluft (5) in die Vertiefungen der Thermoform gepresst. An advantageous arrangement of the laminate according to the invention in the thermoforming is shown in FIG. 2. Reference numerals 1 to 3 describe the multilayer laminate as shown in FIG. This multilayer laminate is placed on the preferably heated thermoform 4 and pressed after heating with compressed air (5) in the recesses of the thermoform.
Gegenstand der Erfindung ist schließlich auch die Verwendung von Mehrschicht- Laminaten, wie sie im Rahmen dieser Schrift beschrieben wurden, zur Herstellung von Membranen für elektroakustische Wandler.  Finally, the invention also relates to the use of multilayer laminates, as described in the context of this document, for the production of membranes for electroacoustic transducers.
Folgendes Beispiel soll die Erfindung erläutern, ohne sie beschränken zu wollen. Beispiel 1 Die amorphe PEEK-Folie Aptiv 2000-006GS der Firma Victrex, Dicke 6 μηη, wird mit einer Acrylat-Klebmasse in einer Schichtdicke von 20 μηη beschichtet und anschließend für 5 Minuten bei 120 °C getrocknet. Daraufhin wird die teilkristalline PEEK-Folie Aptiv 1000- 008GS, Dicke 8 μηη, auf die Klebmasse-Schicht aufgebracht und durch Andrücken mit einer Rolle blasenfrei auflaminiert. Aus diesem Mehrschicht-Laminat wird ein ca. 10 cm mal 10 cm großer Bereich ausgeschnitten und so auf die Thermoform gelegt, dass die amorphe PEEK-Folie auf der beheizten Prägeform liegt und die teilkristalline Folie nach oben zeigt. Anschließend wird das Laminat in der Thermoform erwärmt und durch Anlegen von Druck in die Form der fertigen Membran gepresst. Im Gegensatz zu Mehrschicht-Laminaten aus zwei 6 bis 9 μηη dicken amorphen PEEK-Folien mit dazwischen liegender Klebmasseschicht tritt dabei das Problem der Faltenbildung in der nach oben zeigenden und der Druckluft zugewandten PEEK-Folie nicht auf. The following example is intended to explain the invention without wishing to limit it. Example 1 The amorphous PEEK film Aptiv 2000-006GS from Victrex, thickness 6 μm, is coated with an acrylate adhesive in a layer thickness of 20 μm and then dried at 120 ° C. for 5 minutes. Then, the partially crystalline PEEK film Aptiv 1000- 008GS, thickness 8 μηη, applied to the adhesive layer and laminated by pressing with a roller bubble-free. From this multi-layer laminate, an approximately 10 cm by 10 cm large area is cut out and placed on the thermoforming that the amorphous PEEK film lies on the heated embossing mold and the semi-crystalline film facing upward. Subsequently, the laminate is heated in the thermoforming and pressed by applying pressure in the form of the finished membrane. In contrast to multilayer laminates of two 6 to 9 μηη thick amorphous PEEK films with adhesive layer therebetween, the problem of wrinkling in the upwardly facing and the compressed air facing PEEK film does not occur.

Claims

Patentansprüche  claims
Mehrschicht-Laminat zur Herstellung von Membranen für elektroakustische Wandler, umfassend Multilayer laminate for the production of membranes for electroacoustic transducers, comprising
- eine erste Schicht („erste Deckschicht") aus einer Polyetheretherketon-Folie („PEEK-Folie") mit einer Kristallisationswärme von mindestens 15 J/g, bestimmt in der ersten Aufheizkurve der Dynamischen Differenzkalorimetrie- Messung,  a first layer ("first cover layer") of a polyether ether ketone film ("PEEK film") having a heat of crystallization of at least 15 J / g, determined in the first heating curve of the differential scanning calorimetry measurement,
- eine zweite Schicht („zweite Deckschicht") aus einer thermoplastischen Kunststoff-Folie mit einer Kristallisationswärme von höchstens 5 J/g, bestimmt in der ersten Aufheizkurve der Dynamischen Differenzkalorimetrie-Messung, und  - A second layer ("second cover layer") of a thermoplastic film having a heat of crystallization of at most 5 J / g, determined in the first Aufheizkurve the differential scanning calorimetry measurement, and
- eine zwischen der ersten und zweiten Deckschicht angeordnete Klebstoffschicht.  - An arranged between the first and second cover layer adhesive layer.
Mehrschicht-Laminat zur Herstellung von Membranen für elektroakustische Wandler, umfassend Multilayer laminate for the production of membranes for electroacoustic transducers, comprising
- eine erste Schicht („erste Deckschicht"), die nach 15 Minuten bei 200 °C in mindestens einer Richtung einen Schrumpf größer 10 % aufweist,  a first layer ("first cover layer") which has a shrinkage greater than 10% after 15 minutes at 200 ° C. in at least one direction,
- eine zweite Schicht („zweite Deckschicht"), die nach 15 Minuten bei 200 °C in Längs- und Querrichtung jeweils einen Schrumpf geringer 10 %, bevorzugt geringer 5 % aufweist, und  - A second layer ("second cover layer"), which after 15 minutes at 200 ° C in the longitudinal and transverse directions each have a shrinkage of less than 10%, preferably less 5%, and
- eine zwischen der ersten und zweiten Deckschicht angeordnete Klebstoffschicht.  - An arranged between the first and second cover layer adhesive layer.
Mehrschicht-Laminat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Multilayer laminate according to one of the preceding claims, characterized in that
die zweite Deckschicht aus einer zumindest teilkristallinen PEEK-Folie besteht. the second cover layer consists of an at least partially crystalline PEEK film.
Mehrschicht-Laminat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zweite Deckschicht aus einem Kunststoff besteht, dessen Hauptbestandteil ausgewählt ist aus der Gruppe bestehend aus Polyethylenterephthalat, Polybutylenterephthalat, Polyethylennaphthalat, Polyetherimid, Polyimid, Polyarylat, Polyphenylensulfid, Polyphenylsulfon, Polysulfon, Polyethersulfon. Mehrschicht-Laminat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Multilayer laminate according to claim 1 or 2, characterized in that the second cover layer consists of a plastic whose main component is selected from the group consisting of polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyetherimide, polyimide, polyarylate, polyphenylene sulfide, polyphenylsulfone, polysulfone, polyethersulfone. Multilayer laminate according to one of the preceding claims, characterized in that
die Schichtdicken der beiden Deckschichten jeweils 1 μηη bis 50 μηη, bevorzugt 2 μηη bis 40 μηι, besonders bevorzugt 5 μηη bis 15 μηη betragen. the layer thicknesses of the two outer layers in each case 1 μηη to 50 μηη, preferably 2 μηη to 40 μηι, more preferably 5 μηη to 15 μηη amount.
Mehrschicht-Laminat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Multilayer laminate according to one of the preceding claims, characterized in that
die Schichtdicke der Klebstoffschicht 2 μηη bis 100 μηη, bevorzugt 5 μηη bis 50 μηη, besonders bevorzugt 10 μηη bis 30 μηη beträgt. the layer thickness of the adhesive layer 2 μηη to 100 μηη, preferably 5 μηη to 50 μηη, more preferably 10 μηη to 30 μηη.
Verfahren zur Herstellung von Membranen für elektroakustische Wandler aus einem Mehrschicht-Laminat nach einem der Ansprüche 1 bis 6 mittels Multicavity- Thermoformens. A process for producing membranes for electroacoustic transducers from a multilayer laminate according to any one of claims 1 to 6 by means of multicavity thermoforming.
Verwendung von Mehrschicht-Laminaten nach einem der Ansprüche 1 bis 6 zur Herstellung von Membranen für elektroakustische Wandler. Use of multilayer laminates according to one of claims 1 to 6 for the production of membranes for electroacoustic transducers.
PCT/EP2013/058582 2012-05-21 2013-04-25 Asymmetrical multi-layered membrane for electroacoustic transducers WO2013174609A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201380026694.XA CN104335603B (en) 2012-05-21 2013-04-25 The asymmetric laminated diaphragm of electroacoustic transducer
IN10265DEN2014 IN2014DN10265A (en) 2012-05-21 2013-04-25
KR1020147035667A KR101933983B1 (en) 2012-05-21 2013-04-25 Asymmetrical multi-layered membrane for electroacoustic transducers
MX2014013722A MX2014013722A (en) 2012-05-21 2013-04-25 Asymmetrical multi-layered membrane for electroacoustic transducers.
US14/399,986 US9796160B2 (en) 2012-05-21 2013-04-25 Asymmetrical multi-layered membrane for electroacoustic transducers
EP13720329.5A EP2853100B1 (en) 2012-05-21 2013-04-25 Asymmetrical multi-layered membrane for electroacoustic transducers
JP2015513067A JP6148726B2 (en) 2012-05-21 2013-04-25 Asymmetric multilayers for electroacoustic transducers.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012208477.0 2012-05-21
DE201210208477 DE102012208477A1 (en) 2012-05-21 2012-05-21 Asymmetric multilayer membrane for electroacoustic transducers

Publications (1)

Publication Number Publication Date
WO2013174609A1 true WO2013174609A1 (en) 2013-11-28

Family

ID=48289116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/058582 WO2013174609A1 (en) 2012-05-21 2013-04-25 Asymmetrical multi-layered membrane for electroacoustic transducers

Country Status (10)

Country Link
US (1) US9796160B2 (en)
EP (1) EP2853100B1 (en)
JP (1) JP6148726B2 (en)
KR (1) KR101933983B1 (en)
CN (1) CN104335603B (en)
DE (1) DE102012208477A1 (en)
IN (1) IN2014DN10265A (en)
MX (1) MX2014013722A (en)
TW (1) TWI597165B (en)
WO (1) WO2013174609A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014225579A1 (en) * 2014-12-11 2016-06-16 Tesa Se Multi-layer composite for acoustic membranes
US10517636B2 (en) 2015-06-24 2019-12-31 Koninklijke Philips N.V. Transducer transfer stack

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475981B (en) * 2013-08-27 2017-05-17 歌尔股份有限公司 loudspeaker vibration system
DE102013225665A1 (en) * 2013-12-11 2015-06-18 Tesa Se Multi-layer laminate with high internal damping
DE102014204015A1 (en) * 2014-03-05 2015-09-10 Tesa Se Multi-layer composite with high internal damping
CN203883985U (en) * 2014-05-26 2014-10-15 歌尔声学股份有限公司 Loudspeaker diaphragm
CN106162454B (en) * 2016-08-31 2021-10-08 歌尔股份有限公司 Loudspeaker diaphragm, loudspeaker monomer and electronic equipment
DE102017202622A1 (en) * 2017-02-17 2018-08-23 Tesa Se Membrane for microspeakers
CN109862482B (en) * 2018-12-29 2021-10-01 瑞声声学科技(深圳)有限公司 Ball top material, vibrating diaphragm and loudspeaker
CN110972034B (en) * 2019-11-11 2021-05-18 歌尔股份有限公司 Vibrating diaphragm and sound generating device
CN113542991A (en) * 2020-04-17 2021-10-22 歌尔股份有限公司 Vibrating diaphragm and sound generating device
CN115132633A (en) * 2021-03-29 2022-09-30 3M创新有限公司 Adhesive tape

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060281381A1 (en) * 2005-06-08 2006-12-14 Onkyo Corporation Speaker member and method for manufacturing the same
US20070223773A1 (en) * 2004-10-21 2007-09-27 Tripp Hugh A Methods for forming and using thin film ribbon microphone elements and the like
DE102007030665A1 (en) * 2007-07-02 2009-01-15 Norman Gerkinsmeyer Diaphragm with multi-part construction
US7644801B2 (en) 2005-03-10 2010-01-12 Nxp B.V. Membrane with a high resistance against buckling and/or crinkling
EP2271137A1 (en) * 2009-07-03 2011-01-05 DR. KURT MÜLLER GmbH & Co. KG Loudspeaker membrane and method for manufacturing a loudspeaker membrane
US20110272208A1 (en) 2010-05-04 2011-11-10 Tao Shen Compound membrane and acoustic device using same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762748A (en) * 1986-06-30 1988-08-09 W. R. Grace & Co. Multilayer film with better layer adhesion
JPH01174100A (en) 1987-12-28 1989-07-10 Teijin Ltd Film for speaker diaphragm
DE4012589A1 (en) * 1990-04-20 1991-10-24 Hoechst Ag THERMOPLASTIC FURTHER PROCESSABLE FILM OF AROMATIC POLYETHERKETONE
DE4140499A1 (en) * 1991-12-09 1993-06-17 Danubia Petrochem Deutschland Composites contg. polyarylene ether-ketone and/or polyphenylene sulphide and/or thermoplastic polyester - formed by press-moulding the components together at a temp. between the Tg and the m.pt. of the polymer
JP2006295245A (en) * 2005-04-05 2006-10-26 Sony Corp Acoustic diaphragm
JP2009154296A (en) 2007-12-25 2009-07-16 Toray Ind Inc Resin sheet
US20100236861A1 (en) * 2009-03-17 2010-09-23 Merry Electronics Co., Ltd. Diaphragm of electro-acoustic transducer
JP5465550B2 (en) 2010-02-04 2014-04-09 フォスター電機株式会社 Small speaker unit and manufacturing method for multiple units thereof
BR112013002562A2 (en) 2010-08-04 2019-09-24 Teijin Chemicals Ltd multilayer film, decorative molding film, decorative molded body, and process for producing a multilayer film
JP5807466B2 (en) * 2010-09-17 2015-11-10 東レ株式会社 Laminated film and automotive window glass using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070223773A1 (en) * 2004-10-21 2007-09-27 Tripp Hugh A Methods for forming and using thin film ribbon microphone elements and the like
US7644801B2 (en) 2005-03-10 2010-01-12 Nxp B.V. Membrane with a high resistance against buckling and/or crinkling
US20060281381A1 (en) * 2005-06-08 2006-12-14 Onkyo Corporation Speaker member and method for manufacturing the same
DE102007030665A1 (en) * 2007-07-02 2009-01-15 Norman Gerkinsmeyer Diaphragm with multi-part construction
EP2172059A2 (en) 2007-07-02 2010-04-07 Norman Gerkinsmeyer Membrane having a multipart structure
EP2271137A1 (en) * 2009-07-03 2011-01-05 DR. KURT MÜLLER GmbH & Co. KG Loudspeaker membrane and method for manufacturing a loudspeaker membrane
US20110272208A1 (en) 2010-05-04 2011-11-10 Tao Shen Compound membrane and acoustic device using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014225579A1 (en) * 2014-12-11 2016-06-16 Tesa Se Multi-layer composite for acoustic membranes
US10397705B2 (en) 2014-12-11 2019-08-27 Tesa Se Multi-layer composite for acoustic membranes
US10517636B2 (en) 2015-06-24 2019-12-31 Koninklijke Philips N.V. Transducer transfer stack

Also Published As

Publication number Publication date
TWI597165B (en) 2017-09-01
CN104335603A (en) 2015-02-04
KR20150011007A (en) 2015-01-29
EP2853100A1 (en) 2015-04-01
US9796160B2 (en) 2017-10-24
EP2853100B1 (en) 2019-11-27
DE102012208477A1 (en) 2013-11-21
IN2014DN10265A (en) 2015-08-07
KR101933983B1 (en) 2018-12-31
CN104335603B (en) 2018-03-09
TW201412530A (en) 2014-04-01
US20150125692A1 (en) 2015-05-07
JP2015526924A (en) 2015-09-10
JP6148726B2 (en) 2017-06-14
MX2014013722A (en) 2015-02-10

Similar Documents

Publication Publication Date Title
EP2853100B1 (en) Asymmetrical multi-layered membrane for electroacoustic transducers
EP3081007B1 (en) Multi-layer laminate with high internal damping
EP2172059B1 (en) Membrane having a multipart structure
DE602004010014T2 (en) Speaker diaphragm and loudspeaker using such a membrane
DE102013206812A1 (en) Composite for the production of an acoustic membrane and acoustic membrane
DE102009006935A1 (en) Carrier reinforced heat-activated adhesives
DE112017003755T5 (en) Waterproof soundproof cover, waterproof soundproof cover and acoustic device
DE112017008048B4 (en) IMPROVED Z-STRENGTH PROTECTIVE COVER ASSEMBLY AND ELECTRONIC DEVICE
WO2016091542A1 (en) Multi-layer composite for acoustic membranes
DE3540278C2 (en)
DE102016209102A1 (en) Thermoplastic plastic composite and thermoplastic composite production process
DE112017005331T5 (en) A protective cover assembly for acoustic devices comprising a retracted / contracted membrane material
WO2018162135A1 (en) Resilient polyoelfin foam laminates
DE2819786C3 (en) Membrane for acoustic equipment
JP2015113539A (en) Net-like nonwoven fabric and reinforced laminate
JP2021024172A (en) Composite molding
WO2015052316A1 (en) Method for producing a film for a loudspeaker diaphragm or a microphone diaphragm
DE102021120028B4 (en) ACOUSTICALLY RESISTANT SUPPORTED MEMBRANE ARRANGEMENTS WITH AT LEAST ONE SUPPORT STRUCTURE
EP3323606B1 (en) Separation composite
DE102022107225A1 (en) Method for producing a laminating component or a hologram component, for producing a laminated glass, and corresponding laminating components, hologram components and laminated glasses
DE102016223297A1 (en) Tubular food casing with transfer function
EP2293938A1 (en) Foam laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13720329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013720329

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14399986

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/013722

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015513067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147035667

Country of ref document: KR

Kind code of ref document: A