WO2013174314A2 - 移动终端、定位方法及装置 - Google Patents

移动终端、定位方法及装置 Download PDF

Info

Publication number
WO2013174314A2
WO2013174314A2 PCT/CN2013/079729 CN2013079729W WO2013174314A2 WO 2013174314 A2 WO2013174314 A2 WO 2013174314A2 CN 2013079729 W CN2013079729 W CN 2013079729W WO 2013174314 A2 WO2013174314 A2 WO 2013174314A2
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
mobile terminal
intensity
determining
Prior art date
Application number
PCT/CN2013/079729
Other languages
English (en)
French (fr)
Other versions
WO2013174314A3 (zh
Inventor
李超
冷文
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/774,876 priority Critical patent/US9560623B2/en
Priority to EP13794572.1A priority patent/EP2975892B1/en
Priority to ES13794572T priority patent/ES2841736T3/es
Publication of WO2013174314A2 publication Critical patent/WO2013174314A2/zh
Publication of WO2013174314A3 publication Critical patent/WO2013174314A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of communications, and in particular, to a mobile terminal, a method and apparatus for determining an angle between a mobile terminal and an anchor node, and a positioning method and apparatus.
  • WLAN wireless local area network
  • WLAN positioning system based on time diversity and probability distribution model.
  • the basic idea of WLAN positioning system based on time diversity and probability distribution model is to use time diversity in a fixed location to obtain multiple samples of received signal strength, and to establish a probability distribution model of received signal strength based on multiple sample information.
  • the probability distribution model of the received signal strength is stored in the feature database.
  • the moving target obtains a plurality of samples of the received signal strength by using time diversity, and obtains a stable received signal strength by performing the sampled mean value to perform positioning. Since time diversity requires a lot of time, the positioning delay is increased, real-time positioning cannot be achieved, it cannot be used in mobile positioning, and the database will fail when the environment changes.
  • WLAN positioning system based on Kalman filtering.
  • WLAN positioning system based on Kalman filtering
  • the WLAN positioning algorithm is used to obtain the position estimation of the moving target, and then the state of the Kalman filter is constructed by using the moving target trajectory continuity or assuming that the moving target speed is within a certain range. Equations and observation equations filter the user's position estimate.
  • this method improves the positioning accuracy of the WLAN positioning system, since the moving target speed is set in advance, adaptive filtering cannot be realized, which limits the application in practice. At the same time, it cannot solve the WLAN positioning failure caused by the AP missing.
  • the present invention provides a mobile terminal, a method and apparatus for determining an angle between a mobile terminal and an anchor node, and a positioning method and apparatus, to at least solve the related art, in the WLAN positioning process, real-time positioning cannot be realized, or the positioning process Complex, environmentally constrained issues.
  • a mobile terminal comprising: a first antenna configured to transmit a first signal to an anchor node, wherein the first signal is used by the anchor node to detect the first antenna a signal strength; a second antenna, disposed at a predetermined angle with the first antenna, configured to transmit a second signal to the anchor node, wherein the second signal is used by the anchor node to detect the second a signal strength of the antenna, the predetermined angle overlapping the coverage of the first antenna and the second antenna, and a signal strength of the first antenna and a signal strength of the second antenna are used to determine the movement The location of the terminal.
  • the mobile terminal further includes: a radio frequency switch connected to the first antenna and the second antenna, configured to control that the first antenna and the second antenna are not in an open or closed state at the same time.
  • a method for determining an angle between a mobile terminal and an anchor node comprising: determining an intensity of a first signal transmitted by a first antenna of the mobile terminal; determining a second antenna of the mobile terminal An intensity of the transmitted second signal, wherein the second antenna and the first antenna are disposed at a predetermined angle, and the predetermined angle overlaps a coverage of the first antenna and the second antenna;
  • a relative angle between the mobile terminal and the anchor node is determined by a linear relationship of a ratio of an intensity of the first signal to an intensity of the second signal.
  • a positioning method including: transmitting an intensity of a first signal according to a first antenna of a mobile terminal received by a plurality of anchor nodes and transmitting a second signal by a second antenna of the mobile terminal Determining a plurality of relative angles between the mobile terminal and the plurality of anchor nodes, wherein the second antenna and the first antenna are disposed at a predetermined angle, the predetermined angle making the first An antenna overlaps with a coverage of the second antenna; determining a location of the mobile terminal according to a plurality of relative angles between the plurality of anchor nodes.
  • the method includes: determining, according to an intensity of the first antenna transmitting the first signal and an intensity of the second antenna transmitting the second signal a plurality of relative angles between the mobile terminal and the two anchor nodes; determining a location of the mobile terminal according to the plurality of relative angles between the two anchor nodes.
  • determining a plurality of relative angles between the mobile terminal and the two anchor nodes according to an intensity of the first antenna transmitting the first signal and an intensity of the second antenna transmitting the second signal includes: Determining, according to an intensity of the first antenna transmitting the first signal and an intensity of the second antenna transmitting the second signal, a first set of relative angles between the mobile terminal and the two anchor nodes, where The relative angle includes: a first relative angle between the mobile terminal and the first anchor node, and a second relative angle between the mobile terminal and the second anchor node; according to the mobile terminal after each rotation
  • the signal strengths of the antenna groups composed of the first antenna and the second antenna respectively determine a second set of relative angles, a third set of relative angles, and a fourth set of relative angles, wherein the mobile terminal is rotated three times, each time rotated 90 degree.
  • determining, according to an intensity of the first antenna transmitting the first signal and an intensity of the second antenna transmitting the second signal determining a first group relative to the mobile terminal and the two anchor nodes
  • the angle includes: determining, according to the strength of the first antenna transmitting the first signal and the strength of the second antenna transmitting the second signal, determining that the first anchor node is opposite to the first group of the mobile terminal An angle determining a second set of second relative angles of the second anchor node and the mobile terminal according to an intensity of the first antenna transmitting the first signal and an intensity of the second antenna transmitting the second signal .
  • the method further includes: determining a location of the mobile terminal according to the first relative angle and the second relative angle.
  • determining the location of the mobile terminal according to the multiple relative angles between the two anchor nodes comprises: respectively selecting the two anchor nodes to receive the first signal or the second signal Two opposite angles of strongest strength; determining the position of the mobile terminal based on the two relative angles.
  • the relative angle and the ratio of the strength of the first signal received from the first antenna to the intensity of the second signal of the second antenna are linear.
  • a positioning apparatus including: a first determining module, configured to transmit a strength of a first signal and a presence of the mobile terminal according to a first antenna of a mobile terminal received by a plurality of anchor nodes The strength of the second signal transmitted by the second antenna whose coverage is overlapped by the first antenna determines a plurality of relative angles between the mobile terminal and the plurality of anchor nodes; and the second determining module is configured to A plurality of relative angles between the plurality of anchor nodes determine a location of the mobile terminal.
  • the first determining module is further configured to determine the mobile terminal and two anchors according to an intensity of the first antenna transmitting the first signal and an intensity of the second antenna transmitting the second signal a plurality of relative angles between the nodes; the second determining module is further configured to determine a location of the mobile terminal according to the plurality of relative angles between the two anchor nodes.
  • the first determining module includes: a determining unit, configured to determine, according to the strength of the first antenna to transmit the first signal and the strength of the second antenna to transmit the second signal, to determine the mobile terminal and a first set of relative angles between the two anchor nodes, where the relative angle includes: a first relative angle between the mobile terminal and the first anchor node, and a number of the mobile terminal and the second anchor node
  • the determining unit is further configured to determine a second group of relative angles according to signal strengths of the antenna groups formed by the first antenna and the second antenna after each rotation of the mobile terminal, and third The group relative angle and the fourth group relative angle, wherein the mobile terminal is rotated three times, each time rotated by 90 degrees.
  • the determining unit includes: a first determining subunit, configured to determine the first according to an intensity of the first antenna transmitting the first signal and an intensity of the second antenna transmitting the second signal a first relative angle of the anchor node and the first group of the mobile terminal; a second determining subunit, configured to transmit the second signal according to the strength of the first antenna and the second antenna The intensity of the second anchor node determines a second set of relative angles of the second anchor node to the mobile terminal.
  • apparatus for determining an angle between a mobile terminal and an anchor node comprising: a third determining module configured to determine an intensity of a first signal transmitted by a first antenna of the mobile terminal; a determining module, configured to determine an intensity of a second signal transmitted by the second antenna that overlaps with a coverage of the first antenna of the mobile terminal; and a fifth determining module configured to pass the strength of the first signal
  • the mobile terminal of the present invention has two antennas, and the two antennas are arranged at a predetermined angle, which can overlap the coverage of the two antennas, and the two antennas are respectively used to transmit antenna signals to the anchor node to determine The location of the mobile terminal.
  • FIG. 1 is a schematic structural diagram 1 of a mobile terminal according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram 2 of a mobile terminal according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a positioning method according to an embodiment of the present invention
  • 4 is a flowchart of a method of determining an angle between a mobile terminal and an anchor node according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of a positioning apparatus according to an embodiment of the present invention
  • FIG. 6 is a block diagram of a positioning apparatus according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a positioning device determining unit according to an embodiment of the present invention
  • FIG. 8 is a structural block diagram of an apparatus for determining an angle between a mobile terminal and an anchor node according to an embodiment of the present invention
  • 9 is a schematic diagram of angle estimation of a dual antenna wireless terminal in accordance with a preferred embodiment of the present invention
  • FIG. 10 is a schematic diagram of an equal signal line and an anchor node not in the same quadrant according to a preferred embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the principle of triangulation according to a preferred embodiment of the present invention .
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the present invention provides a mobile terminal, and the structure of the mobile terminal is as shown in FIG.
  • the first antenna 1 is configured to transmit a first signal to the anchor node, where the first signal is used by the anchor node to detect the signal strength of the first antenna 1; the second antenna 2 is set with the first antenna 1 at a predetermined angle, And being configured to transmit a second signal to the anchor node, where the second signal is used by the anchor node to detect the signal strength of the second antenna 2, and the predetermined angle overlaps the coverage of the first antenna 1 and the second antenna 2, the first antenna 1
  • the signal strength and the signal strength of the second antenna 2 are used to determine the position of the mobile terminal.
  • the mobile terminal of this embodiment has two antennas, and the two antennas are arranged at a predetermined angle, which can overlap the coverage of the two antennas, and the two antennas are respectively used to send antenna signals to the anchor node to determine The location of the mobile terminal.
  • the mobile terminal of the embodiment By using the mobile terminal of the embodiment to perform positioning, the problem that the real-time positioning cannot be realized in the WLAN positioning process in the related art, or the positioning process is complicated and the environment is limited, and the mobile terminal having two antennas can be flexibly real-time. Positioning, independent of the environment, positioning accuracy is more accurate.
  • FIG. 2 shows a block diagram of a preferred structure of the embodiment.
  • the mobile terminal further includes: a radio frequency switch 3 connected to the first antenna 1 and the second antenna 2, and configured to control the first antenna 1 and the second antenna 2 not at the same time Turn the status on or off.
  • the embodiment of the present invention further provides a positioning method, which can be applied to the foregoing mobile terminal.
  • the process of the method is as shown in FIG. 3, and includes steps S302 to S304: Step S302, receiving according to multiple anchor nodes.
  • the strength of the first antenna of the mobile terminal transmitting the first signal and the strength of the second antenna of the mobile terminal transmitting the second signal determine a plurality of relative angles between the mobile terminal and the plurality of anchor nodes, wherein the second antenna and the first antenna Setting according to a predetermined angle, the predetermined angle overlaps the coverage of the first antenna and the second antenna; Step S304, determining the position of the mobile terminal according to the plurality of relative angles between the plurality of anchor nodes.
  • the multiple between the mobile terminal and the two anchor nodes may be determined according to the strength of the first antenna transmitting the first signal and the strength of the second antenna transmitting the second signal.
  • Relative angle determining the position of the mobile terminal according to a plurality of relative angles between the two anchor nodes. If the first antenna and the second antenna coverage area bisector (ie, the equal signal direction line) and the anchor node are in one quadrant, the measured antenna can be calculated according to the relative angle of the measured mobile terminal and the plurality of anchor nodes. The specific location of the mobile terminal.
  • the relative angle can be obtained by rotating the antenna group composed of the first antenna and the second antenna by 90 degrees.
  • determining a plurality of relative angles between the two anchor nodes it may be determined by: determining the mobile terminal and the two anchor nodes according to the strength of the first antenna transmitting the first signal and the strength of the second antenna transmitting the second signal. The first set of relative angles between the two, then rotate the mobile terminal, rotate 90 degrees each time, rotate three times in total, and determine the second set of relative angles, the third set of relative angles, and the signal strength of the antenna group after each rotation of 90 degrees. The fourth set of relative angles.
  • the relative angle includes: a first relative angle of the mobile terminal and the first anchor node, and a second relative angle of the mobile terminal and the second anchor node.
  • the process of determining the relative angle of each group is similar. The following is an example of the relative angle of the first group. In determining the first set of relative angles, determining a first set of first relative angles of the first anchor node and the mobile terminal according to an intensity of the first antenna transmitting the first signal and a strength of the second antenna transmitting the second signal; The intensity of the first antenna transmitting the first signal and the strength of the second antenna transmitting the second signal determine a second set of second relative angles of the second anchor node and the mobile terminal.
  • Determining the location of the mobile terminal according to the plurality of relative angles between the two anchor nodes may include: if the process: respectively selecting two anchor nodes to receive the first signal or the second signal with the strongest two relative angles; The relative angle determines the location of the mobile terminal.
  • WW is the intensity of the first signal received from the first antenna
  • is the strength of the second signal received from the second antenna
  • k is a natural number, and the value of k can be determined according to engineering calculations.
  • the embodiment further provides a method for determining the angle between the mobile terminal and the anchor node. The method may be applied to the foregoing positioning method. The process is as shown in FIG.
  • Step S402 determining the mobile The strength of the first signal transmitted by the first antenna of the terminal;
  • Step S404 determining an intensity of the second signal transmitted by the second antenna of the mobile terminal, where the second antenna and the first antenna are set according to a predetermined angle, the predetermined angle overlapping the coverage of the first antenna and the second antenna
  • Step S406 determining a relative angle between the mobile terminal and the anchor node by a linear relationship between the ratio of the strength of the first signal and the strength of the second signal.
  • the ratio of the intensity of the first signal to the intensity of the second signal has a linear relationship, and the implementation formula may be the same as the calculation formula of the relative angle in the above positioning method.
  • the embodiment of the present invention further provides a positioning device.
  • the structural block diagram of the device is as shown in FIG. 5, including: a first determining module 10, configured to transmit a first signal according to a first antenna of a mobile terminal received by multiple anchor nodes.
  • the intensity of the second antenna that overlaps with the coverage of the first antenna that overlaps with the coverage of the first antenna determines a plurality of relative angles between the mobile terminal and the plurality of anchor nodes; the second determining module 20,
  • the first determining module 10 is coupled to determine a position of the mobile terminal based on a plurality of relative angles between the plurality of anchor nodes.
  • the first determining module 10 is further configured to determine a plurality of relative positions between the mobile terminal and the two anchor nodes according to the strength of the first antenna transmitting the first signal and the strength of the second antenna transmitting the second signal.
  • the second determining module 20 is further configured to determine the location of the mobile terminal according to a plurality of relative angles between the two anchor nodes.
  • FIG. 6 shows a structural block diagram of the first determining module 10, comprising: a determining unit 102 configured to determine the mobile terminal and the two anchors according to the strength of the first antenna transmitting the first signal and the strength of the second antenna transmitting the second signal a first set of relative angles between the nodes, wherein the relative angle comprises: a first relative angle between the mobile terminal and the first anchor node, and a second relative angle between the mobile terminal and the second anchor node; the determining unit 102 is further configured to The second set of relative angles, the third set of relative angles, and the fourth set of relative angles are respectively determined according to signal strengths of the antenna groups after each rotation of the mobile terminal, wherein the mobile terminal can be rotated three times, each time by 90 degrees.
  • FIG. 7 is a schematic structural diagram of the determining unit 102, including: a first determining subunit 1022, configured to determine a first anchor node according to an intensity of a first signal transmitted by the first antenna and an intensity of the second signal transmitted by the second antenna a first set of first relative angles of the mobile terminal; the second determining subunit 1024, coupled to the first determining subunit 1022, configured to determine according to an intensity of the first antenna transmitting the first signal and a strength of the second antenna transmitting the second signal
  • the second anchor node is at a second relative angle to the first group of mobile terminals.
  • the embodiment further provides a device for determining an angle between a mobile terminal and an anchor node, the device being independently configurable, performing other functions after determining an angle between the mobile terminal and the anchor node, as the basic device, may also be applied to the above
  • the inside of the positioning device is used to determine the relative angle, and the function implemented by the determining unit 102 is similar to that of the determining unit 102.
  • the device may be as shown in FIG.
  • a third determining module 30 configured to determine the first antenna of the mobile terminal The intensity of the first signal transmitted; the fourth determining module 40 is configured to determine the strength of the second signal transmitted by the second antenna that overlaps the coverage of the first antenna of the mobile terminal; the fifth determining module 50, and the third
  • the determination module 30 and the fourth determination module 40 are coupled to determine a relative angle between the mobile terminal and the anchor node by a linear relationship of the ratio of the strength of the first signal to the intensity of the second signal.
  • FIG. 8 shows only one embodiment, and different modules can be coupled as needed during design, for example, the third determining module 30 and the fourth determining module 40 are also coupled.
  • the preferred embodiment of the present invention adjusts the WIFI terminal antenna to a dual directional antenna, and the AP hotspot of the positioning system combines the RSSI technology and the AOA technology to solve the problem of low accuracy and poor stability of the RSSI based on the current proximity positioning design, and system design. The complexity has not been greatly improved.
  • the design of the preferred embodiment will be described below.
  • the WIFI node to be tested (ie, the mobile terminal) with the dual directional antenna of the embodiment is composed of the following components: a dual directional antenna, a two-selection RF switch, an accessory for mounting and connecting, a plurality of WIFI anchor nodes, an omnidirectional antenna, and a plurality of connections.
  • the system control end of the anchor node also needs a processor that performs angular processing.
  • the dual directional antenna is composed of two directional antennas, and has a certain offset angle when installed, as shown in FIG. 9; the second selection of the RF switch is used to select which one of the signals from the WIFI device passes through the dual directional antenna. Antenna transmission.
  • the anchor node ie, AP hotspot in FIG.
  • the anchor node is an omnidirectional antenna
  • the measured node ie, WIFI mobile terminal
  • the equal signal line refers to the direction line represented by the intersection of the two patterns.
  • the signal strengths received by the AP hotspot from the two directional antennas are set to RSSIA and RSSIB, respectively.
  • Degrees, ⁇ / ⁇ and ⁇ are the received signal strengths from the two directional antennas, indicating a constant, which can be obtained according to engineering calculations.
  • the relative angle between the measured node and the anchor node and the two received by the anchor node The ratio of the directional antenna signal strengths RSSIA and RSSIB is in a linear relationship. We can use this relationship to measure the measured section
  • the relative angle of the point and the anchor node can be calculated according to the relative angle of the measured node and the plurality of anchor nodes.
  • the angle estimation method is The failure, therefore, in the design of the embodiment, avoiding the situation where the signal direction line and the anchor node are not in the same quadrant when positioning the angle.
  • the anchor node corresponding to the received signal strength value (4*2 total 8 values) is recorded, and the relative angle obtained each time is calculated, so that four relative angles are obtained.
  • the relative angle corresponding to the maximum signal strength is selected, that is, the direction of the equal signal and the measured node are in one quadrant, and the value at this time is the correct relative angle value.
  • the position of the measured node is determined according to the principle of triangular geometry, and the principle thereof is as shown in FIG.
  • the content of this embodiment is a transmission node design including a dual directional antenna. It can be seen from Fig.
  • the process is as follows: Open the WIFI anchor node, the anchor node works at the same time, and the measured node is placed in the place with the anchor node signal. The measured node is selected to transmit to the antenna path through the RF switch at this time.
  • the anchor node 1 detects the received signal strength 11A, and the anchor node 2 detects the received signal strength 21A.
  • the measured node is opened by the RF switch. Transmitted to the antenna path, the anchor node 1 detects the received signal strength 11B, the anchor node 2 receives the signal strength 21B, the anchor nodes 1 and 2 transmit the measured data to the system side, and the system side calculates the anchor node 1 and the measured according to the signal strength.
  • the signal strength of the signal strength anchor node 1 is measured 12 ⁇
  • the signal strength of the anchor node 2 is 22 ⁇
  • the fixed-line antenna path is replaced
  • the signal strength of the anchor node 1 is measured 12 ⁇
  • the signal of the anchor node 2 The intensity is 22 ⁇
  • the relative angles ⁇ 2, ⁇ 2 are obtained.
  • the measured node is rotated by 90 degrees twice, and finally ⁇ 3, ⁇ 3, ⁇ 4, and ⁇ 4 are obtained, that is, four sets of relative angle information are obtained.
  • the relative position of the anchor node 1 and the measured node is confirmed.
  • the present invention achieves the following technical effects:
  • the present invention simplifies the WIFI positioning method, and the existing terminal is slightly modified and a directional antenna is added to complete the positioning.
  • the method has a small amount of computation and is small for the existing system. Compared with the current WIFI positioning algorithm, the algorithm is simple and highly accurate.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Abstract

本发明公开了一种移动终端、定位方法及装置,其中,该移动终端包括:第一天线,设置为向锚节点发射第一信号,其中,第一信号用于锚节点检测第一天线的信号强度;第二天线,与第一天线按照一个预定角度进行设置,设置为向锚节点发射第二信号,其中,第二信号用于锚节点检测第二天线的信号强度,预定角度使第一天线与第二天线的覆盖范围有重叠,第一天线的信号强度和第二天线的信号强度用于确定移动终端的位置。通过运用本发明,解决了相关技术中WLAN定位过程中,无法实现实时定位,或者定位过程复杂、环境受限的问题,进而可以通过具有两根天线的移动终端灵活的实时定位,不受环境限制,定位精度更准确。

Description

移动终端、 定位方法及装置
技术领域 本发明涉及通信领域, 具体而言, 涉及一种移动终端、 确定移动终端和锚节点之 间角度的方法及装置、 定位方法及装置。 背景技术 基于无线局域网 (Wireless Local, 简称为 WLAN) 的定位系统成本低、 精度高、 应用范围广 (室内和室外) 等优点, 在基于位置的服务中如紧急救援、 智能交通和室 内定位导航等方面取得了很大的成功。 但是仍然存在以下两个问题亟需解决: (1 ) 多 径干扰等因素引起的接收信号强度 (Received Signal Strength, 简称为 RSS) 浮动严重 恶化了 WLAN定位精度; (2) 在无线访问节点 (Access Point, 简称为 AP) 没有覆盖 到的区域, 由于 AP缺失导致 WLAN定位失效。 为了解决上述问题, 人们提出了多种方法, 可以分为以下两类:
( 1 ) 基于时间分集和概率分布模型的 WLAN定位系统。 基于时间分集和概率分 布模型的 WLAN定位系统的基本思想是:在定位区域内固定位置利用时间分集来获得 接收信号强度的多个样本, 根据多个样本信息来建立接收信号强度的概率分布模型, 将接收信号强度的概率分布模型存储到特征数据库中; 在定位阶段, 移动目标利用时 间分集获得接收信号强度的多个样本, 通过求取样本均值来获得稳定的接收信号强度 来进行定位。 由于时间分集需要消耗大量的时间, 增加了定位延迟, 无法实现实时定 位, 在移动定位中无法使用, 而且当环境发生变化后数据库就会失效。 (2)基于卡尔曼滤波的 WLAN定位系统。基于卡尔曼滤波的 WLAN定位系统的 基本思想是: 首先利用 WLAN定位算法获得移动目标的位置估计,然后利用移动目标 轨迹连续性或者假定移动目标的速度在一定范围内, 构造卡尔曼滤波器的状态方程和 观测方程,对用户的位置估计进行滤波处理。这种方法虽然提高了 WLAN定位系统的 定位精度, 但是由于提前设定了移动目标速度, 因此无法实现自适应滤波, 限制了在 实际中的应用。 同时不能解决由于 AP缺失引起的 WLAN定位失效。 发明内容 本发明提供了一种移动终端、 确定移动终端和锚节点之间角度的方法及装置、 定 位方法及装置, 以至少解决相关技术中, WLAN定位过程中, 无法实现实时定位, 或 者定位过程复杂、 环境受限的问题。 根据本发明的一个方面, 提供了一种移动终端, 包括: 第一天线, 设置为向锚节 点发射第一信号,其中,所述第一信号用于所述锚节点检测所述第一天线的信号强度; 第二天线, 与所述第一天线按照一个预定角度进行设置, 设置为向所述锚节点发射第 二信号, 其中, 所述第二信号用于所述锚节点检测所述第二天线的信号强度, 所述预 定角度使所述第一天线与所述第二天线的覆盖范围有重叠, 所述第一天线的信号强度 和所述第二天线的信号强度用于确定所述移动终端的位置。 优选地, 所述移动终端还包括: 射频开关, 与所述第一天线和所述第二天线连接, 设置为控制所述第一天线和所述第二天线不同时处于打开或关闭状态。 根据本发明的另一个方面, 提供了一种确定移动终端和锚节点之间角度的方法, 包括: 确定移动终端的第一天线发射的第一信号的强度; 确定所述移动终端的第二天 线发射的第二信号的强度, 其中, 所述第二天线与所述第一天线按照一个预定角度进 行设置, 所述预定角度使所述第一天线与所述第二天线的覆盖范围有重叠; 通过所述 第一信号的强度与所述第二信号的强度之比的线性关系确定所述移动终端和锚节点之 间的相对角度。 优选地, 通过所述第一信号的强度与所述第二信号的强度之比的线性关系确定所 述移动终端和锚节点之间的相对角度 的计算公式如下: = ^ ,其中, RSSI
RSSIB Λ
接收到来自所述第一天线的第一信号的强度, ^W 为接收到来自所述第二天线的第 二信号的强度, k为自然数。 根据本发明的另一个方面, 提供了一种定位方法, 包括: 根据多个锚节点接收的 移动终端的第一天线发射第一信号的强度和所述移动终端的第二天线发射第二信号的 强度确定所述移动终端与所述多个锚节点之间的多个相对角度, 其中, 所述第二天线 与所述第一天线按照一个预定角度进行设置, 所述预定角度使所述第一天线与所述第 二天线的覆盖范围有重叠; 根据所述多个锚节点之间的多个相对角度确定所述移动终 端的位置。 优选地, 当所述锚节点的个数为两个时, 所述方法包括: 根据所述第一天线发射 所述第一信号的强度和所述第二天线发射所述第二信号的强度确定所述移动终端与两 个锚节点之间的多个相对角度; 根据所述两个锚节点之间的所述多个相对角度确定所 述移动终端的位置。 优选地, 根据所述第一天线发射所述第一信号的强度和所述第二天线发射所述第 二信号的强度确定所述移动终端与两个锚节点之间的多个相对角度包括: 根据所述第 一天线发射所述第一信号的强度和所述第二天线发射所述第二信号的强度确定所述移 动终端与所述两个锚节点之间的第一组相对角度, 其中, 所述相对角度包括: 所述移 动终端与第一锚节点的第一相对角度,和所述移动终端与第二锚节点的第二相对角度; 根据所述移动终端每次旋转之后的所述第一天线和所述第二天线组成的天线组的信号 强度分别确定第二组相对角度、 第三组相对角度和第四组相对角度, 其中, 分三次旋 转所述移动终端, 每次旋转 90度。 优选地, 根据所述第一天线发射所述第一信号的强度和所述第二天线发射所述第 二信号的强度确定所述移动终端与所述两个锚节点之间的第一组相对角度包括: 根据 所述第一天线发射所述第一信号的强度和所述第二天线发射所述第二信号的强度确定 所述第一锚节点与所述移动终端的第一组第一相对角度; 根据所述第一天线发射所述 第一信号的强度和所述第二天线发射所述第二信号的强度确定所述第二锚节点与所述 移动终端的第一组第二相对角度。 优选地, 根据所述第一天线发射所述第一信号的强度和所述第二天线发射所述第 二信号的强度确定所述第二锚节点与所述移动终端的第一组第二相对角度之后, 还包 括: 根据所述第一相对角度和所述第二相对角度确定所述移动终端的位置。 优选地, 根据所述两个锚节点之间的所述多个相对角度确定所述移动终端的位置 包括: 分别选取所述两个锚节点接收到所述第一信号或所述第二信号的强度最强的两 个相对角度; 根据所述两个相对角度确定所述移动终端的位置。 优选地, 所述相对角度和接收到来自所述第一天线的第一信号的强度与所述第二 天线的第二信号的强度之比呈线性关系。 优选地, 所述相对角度 的计算公式如下: (p = ^^k, 其中, ^?5*57 为接收到
RSSIB Λ
来自所述第一天线的第一信号的强度, 为接收到来自所述第二天线的第二信号 的强度, k为自然数。 根据本发明的又一方面, 提供了一种定位装置, 包括: 第一确定模块, 设置为根 据多个锚节点接收的移动终端的第一天线发射第一信号的强度和所述移动终端的与所 述第一天线的覆盖范围有重叠的第二天线发射的第二信号的强度确定所述移动终端与 所述多个锚节点之间的多个相对角度; 第二确定模块, 设置为根据所述多个锚节点之 间的多个相对角度确定所述移动终端的位置。 优选地, 所述第一确定模块, 还设置为根据所述第一天线发射所述第一信号的强 度和所述第二天线发射所述第二信号的强度确定所述移动终端与两个锚节点之间的多 个相对角度; 所述第二确定模块, 还设置为根据所述两个锚节点之间的所述多个相对 角度确定所述移动终端的位置。 优选地, 所述第一确定模块包括: 确定单元, 设置为根据所述第一天线发射所述 第一信号的强度和所述第二天线发射所述第二信号的强度确定所述移动终端与所述两 个锚节点之间的第一组相对角度, 其中, 所述相对角度包括: 所述移动终端与第一锚 节点的第一相对角度,和所述移动终端与第二锚节点的第二相对角度; 所述确定单元, 还设置为根据所述移动终端每次旋转之后的所述第一天线和所述第二天线组成的天线 组的信号强度分别确定第二组相对角度、 第三组相对角度和第四组相对角度, 其中, 分三次旋转所述移动终端, 每次旋转 90度。 优选地, 所述确定单元包括: 第一确定子单元, 设置为根据所述第一天线发射所 述第一信号的强度和所述第二天线发射所述第二信号的强度确定所述第一锚节点与所 述移动终端的第一组第一相对角度; 第二确定子单元, 设置为根据所述第一天线发射 所述第一信号的强度和所述第二天线发射所述第二信号的强度确定所述第二锚节点与 所述移动终端的第一组第二相对角度。 根据本发明的再一方面, 提供了一种确定移动终端和锚节点之间角度的装置, 包 括: 第三确定模块, 设置为确定移动终端的第一天线发射的第一信号的强度; 第四确 定模块, 设置为确定所述移动终端的与所述第一天线的覆盖范围有重叠的第二天线发 射的第二信号的强度; 第五确定模块, 设置为通过所述第一信号的强度与所述第二信 号的强度之比的线性关系确定所述移动终端和锚节点之间的相对角度。 优选地, 所述第五确定模块按照以下公式确定所述相对角度 (p = ^^k, 其
RSSIB
中, WW 为接收到来自所述第一天线的第一信号的强度, ^SS/ 为接收到来自所述第 二天线的第二信号的强度, k为自然数。 本发明的移动终端具有两个天线, 两个天线按照一个预定的角度进行设置, 该预 定角度能够使两个天线的覆盖范围有重叠, 两个天线分别用于向锚节点发送天线信号 以确定所述移动终端的位置。通过运用本发明,解决了相关技术中 WLAN定位过程中, 无法实现实时定位, 或者定位过程复杂、 环境受限的问题, 进而可以通过具有两根天 线的移动终端灵活的实时定位, 不受环境限制, 定位精度更准确。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据本发明实施例的移动终端的结构示意图一; 图 2是根据本发明实施例的移动终端的结构示意图二; 图 3是根据本发明实施例的定位方法的流程图; 图 4是根据本发明实施例的确定移动终端和锚节点之间角度的方法的流程图; 图 5是根据本发明实施例的定位装置的结构框图; 图 6是根据本发明实施例的定位装置第一确定模块的结构框图; 图 7是根据本发明实施例的定位装置确定单元的结构框图; 图 8是根据本发明实施例的确定移动终端和锚节点之间角度的装置的结构框图; 图 9是根据本发明优选实施例的双天线无线终端角度估计示意图; 图 10是根据本发明优选实施例的等信号线与锚节点不在同一象限示意图; 图 11是根据本发明优选实施例的被测节点 4次旋转对应的定向天线示意图;以及 图 12是根据本发明优选实施例的三角定位原理示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 基于相关技术中 WLAN定位过程中, 无法实现实时定位, 或者定位过程复杂、环 境受限的问题, 本发明实施例提供了一种移动终端, 该移动终端的结构示意如图 1所 示, 包括: 第一天线 1, 设置为向锚节点发射第一信号, 其中, 第一信号用于锚节点检测第 一天线 1的信号强度; 第二天线 2, 与第一天线 1按照一个预定角度进行设置, 设置为向锚节点发射第 二信号, 其中, 第二信号用于锚节点检测第二天线 2的信号强度, 预定角度使第一天 线 1与第二天线 2的覆盖范围有重叠, 第一天线 1的信号强度和第二天线 2的信号强 度用于确定移动终端的位置。 本实施例的移动终端具有两个天线, 两个天线按照一个预定的角度进行设置, 该 预定角度能够使两个天线的覆盖范围有重叠, 两个天线分别用于向锚节点发送天线信 号以确定移动终端的位置。 通过运用本实施例的移动终端进行定位, 解决了相关技术 中 WLAN定位过程中, 无法实现实时定位, 或者定位过程复杂、 环境受限的问题, 进 而可以通过具有两根天线的移动终端灵活的实时定位, 不受环境限制, 定位精度更准 确。 图 2示出了本实施例的优选结构框图, 该移动终端还包括: 射频开关 3, 与第一 天线 1和第二天线 2连接, 设置为控制第一天线 1和第二天线 2不同时处于打开或关 闭状态。 本发明实施例还提供了一种定位方法, 该方法可以应用在上述的移动终端中, 该 方法的流程如图 3所示, 包括步骤 S302至步骤 S304: 步骤 S302,根据多个锚节点接收的移动终端的第一天线发射第一信号的强度和移 动终端的第二天线发射第二信号的强度确定移动终端与多个锚节点之间的多个相对角 度, 其中, 第二天线与第一天线按照一个预定角度进行设置, 预定角度使第一天线与 第二天线的覆盖范围有重叠; 步骤 S304, 根据多个锚节点之间的多个相对角度确定移动终端的位置。 上述方法简化了 WLAN定位方法,将现有终端稍微改造并增加一个定向天线即可 完成定位。本方法运算量很小, 对于现有系统改造也很小, 相比目前 WLAN定位算法 简单并精确度非常高。 在实施过程中, 当锚节点的个数为两个时, 可以根据第一天线发射第一信号的强 度和第二天线发射第二信号的强度确定移动终端与两个锚节点之间的多个相对角度; 再根据两个锚节点之间的多个相对角度确定移动终端的位置。 如果是第一天线和第二天线覆盖区域等分线 (即等信号方向线) 与锚节点在一个 象限中, 则可以根据被测移动终端和多个锚节点的相对角度就可以计算出被测移动终 端的具体位置。 如果等信号方向线与锚节点不在同一象限中, 则可以通过旋转第一天 线和第二天线组成的天线组 90度来得到相对角度。 当确定两个锚节点之间的多个相对角度时, 可以通过以下方式确定: 根据第一天 线发射第一信号的强度和第二天线发射第二信号的强度确定移动终端与两个锚节点之 间的第一组相对角度, 再旋转移动终端, 每次旋转 90度, 共旋转三次, 根据每次旋转 90度之后的天线组的信号强度分别确定第二组相对角度、第三组相对角度和第四组相 对角度。 其中, 相对角度包括: 移动终端与第一锚节点的第一相对角度, 和移动终端 与第二锚节点的第二相对角度。 确定每一组相对角度的过程相似, 下面以第一组相对角度为例, 进行说明。 在确 定第一组相对角度的过程中, 可以根据第一天线发射第一信号的强度和第二天线发射 第二信号的强度确定第一锚节点与移动终端的第一组第一相对角度; 根据第一天线发 射第一信号的强度和第二天线发射第二信号的强度确定第二锚节点与移动终端的第一 组第二相对角度。 根据两个锚节点之间的多个相对角度确定移动终端的位置可以包括如果过程: 分 别选取两个锚节点接收到第一信号或第二信号的强度最强的两个相对角度; 根据两个 相对角度确定移动终端的位置。 在实施过程中, 相对角度和接收到来自第一天线的第一信号的强度与第二天线的 第二信号的强度之比呈线性关系。 其中, 相对角度 的计算公式如下: (p = ^^k,
RSSIB
其中, WW 为接收到来自第一天线的第一信号的强度, ^^^为接收到来自第二天线 的第二信号的强度, k为自然数, 可以根据工程计算确定 k的值。 本实施例还提供了一种确定移动终端和锚节点之间角度的方法, 该方法可以应用 在上述定位方法中, 其流程如图 4所示, 包括步骤 S402至步骤 S406: 步骤 S402, 确定移动终端的第一天线发射的第一信号的强度; 步骤 S404, 确定移动终端的第二天线发射的第二信号的强度, 其中, 第二天线与 第一天线按照一个预定角度进行设置, 该预定角度使第一天线与第二天线的覆盖范围 有重叠; 步骤 S406,通过第一信号的强度与第二信号的强度之比的线性关系确定移动终端 和锚节点之间的相对角度。 在上述确定移动终端和锚节点之间角度的方法中, 其第一信号的强度与第二信号 的强度之比呈一定的线性关系, 其实现公式可以与上述定位方法中相对角度 的计算 公式相同。 本发明实施例还提供了一种定位装置, 该装置的结构框图如图 5所示, 包括: 第 一确定模块 10, 设置为根据多个锚节点接收的移动终端的第一天线发射第一信号的强 度和移动终端的与所述第一天线的覆盖范围有重叠的第二天线发射第二信号的强度确 定移动终端与多个锚节点之间的多个相对角度; 第二确定模块 20,与第一确定模块 10 耦合, 设置为根据多个锚节点之间的多个相对角度确定移动终端的位置。 在一个优选实施例中, 第一确定模块 10, 还设置为根据第一天线发射第一信号的 强度和第二天线发射第二信号的强度确定移动终端与两个锚节点之间的多个相对角 度; 第二确定模块 20, 还设置为根据两个锚节点之间的多个相对角度确定移动终端的 位置。 图 6示出了第一确定模块 10的结构框图, 其包括: 确定单元 102, 设置为根据第 一天线发射第一信号的强度和第二天线发射第二信号的强度确定移动终端与两个锚节 点之间的第一组相对角度, 其中, 相对角度包括: 移动终端与第一锚节点的第一相对 角度, 和移动终端与第二锚节点的第二相对角度; 确定单元 102, 还设置为根据移动 终端每次旋转之后的天线组的信号强度分别确定第二组相对角度、 第三组相对角度和 第四组相对角度, 其中, 可以分三次旋转所述移动终端, 每次旋转 90度。 当然, 旋转 90度是一种较为优选的实现方式, 在旋转时, 也可以根据需要进行其他角度的旋转。 图 7示出了确定单元 102的结构示意图, 其包括: 第一确定子单元 1022, 设置为 根据第一天线发射第一信号的强度和第二天线发射第二信号的强度确定第一锚节点与 移动终端的第一组第一相对角度; 第二确定子单元 1024, 与第一确定子单元 1022耦 合, 设置为根据第一天线发射第一信号的强度和第二天线发射第二信号的强度确定第 二锚节点与移动终端的第一组第二相对角度。 本实施例还提供了一种确定移动终端和锚节点之间角度的装置, 该装置可以独立 设置, 在确定移动终端和锚节点之间角度之后执行其他功能, 作为基础装置, 也可以 应用在上述定位装置的内部, 用于确定相对角度, 其实现的功能与确定单元 102实现 的功能类似, 该装置可以如图 8所示, 包括: 第三确定模块 30, 设置为确定移动终端的第一天线发射的第一信号的强度; 第四 确定模块 40, 设置为确定移动终端的与第一天线的覆盖范围有重叠的第二天线发射的 第二信号的强度; 第五确定模块 50, 与第三确定模块 30和第四确定模块 40耦合, 设 置为通过第一信号的强度与第二信号的强度之比的线性关系确定移动终端和锚节点之 间的相对角度。 当然, 图 8示出的仅为一种实施例, 设计时可以根据需要将不同模块 之间进行耦合, 例如, 将第三确定模块 30和第四确定模块 40也进行耦合。 优选实施例 本发明通过调整 WIFI终端天线为双定向天线, 定位系统的 AP热点将 RSSI技术 和 AOA技术相结合, 解决目前近距离定位设计中依据 RSSI定位精度低、 稳定性差的 问题, 同时系统设计复杂度并没有较大提高。 下面描述本优选实施例的设计方案。 本实施例的含双定向天线的 WIFI被测节点 (即移动终端) 由以下几部分组成: 双定向天线、 二选一射频开关、 安装连接用配件、 多个 WIFI锚节点全向天线、 连接 多个锚节点的系统控制端, 还需要做角度运算处理的处理器。 其中, 双定向天线是由 两个定向天线组成, 安装时具有一定的偏移角, 如图 9所示; 二选一射频开关是用于 选择来自 WIFI设备的信号通过双定向天线中的哪一个天线发送。 图 9中锚节点 (即 AP热点) 作为接收节点, 用于接收来自移动终端的发射节点 的信号, 锚节点为一个全向天线, 被测节点 (即 WIFI移动终端) 包括两个定向天线, 并有部分重叠的两个方向, 如图 1所示, 其中的等信号线是指两个方向图交叉点所代 表的方向线。
AP热点接收到的来自两个定向天线的信号强度, 分别定为 RSSIA和 RSSIB。 被 测节点与锚节点相对角度为: = ^1 , 其中 为被测节点与锚节点之间的相对角
RSSIB
度, ^^/^和^^^为接收到得来自两个定向天线的信号强度, 表示一个常数, 可以 根据工程计算可得, 被测节点与锚节点相对角度与锚节点接收到的两个定向天线信号 强度 RSSIA和 RSSIB之比成一定的线性关系。 我们可以利用这个关系来测出被测节 点和锚节点的相对角度, 根据被测节点和多个锚节点的相对角度就可计算出被测节点 的具体位置。 当双天线的等信号方向线与锚节点在同一象限中, 上述角度估计方法有效, 但是 当双天线的等信号方向线与锚节点不在同一象限中 (如图 10所示), 则角度估计方法 失效, 因此在本实施例设计中, 在定位角度的时候避免等信号方向线和锚节点出现不 在同一象限的情况。 如图 11所示, 我们可以将带有双天线终端按照图中分时按照 1、 2、 3、 4个方向 摆放, 每个方向相差 90度, 即终端可以每次旋转 90度达到图示的情况, 记录每个位 置时刻锚节点对应接收到的信号强度值(4*2共 8个值), 并且计算出每一次得到的相 对角度, 这样会得到 4个相对角度。 在最后计算完毕之后选取信号强度最大值时对应 的相对角度, 即对应着等信号方向和被测节点在一个象限, 取此时的值为正确的相对 角度值。 在获取了多个锚节点与被测节点的相对角度关系之后, 根据三角几何原理确定被 测节点的位置, 其原理如图 12所示。 本实施例的内容为包含双定向天线的发射节点设计。 由图 12可以看出, 至少两个 锚节点才能定位一个被测节点, 而被测节点很有可能不符合和锚节点的测距条件, 所 以需要被测节点在初始定位一个锚节点后, 再自动的旋转 90度 4次,保证被测节点和 锚节点能够正确的被计算出来相对角度值。 下面对被测节点进行定位的过程进行说明, 其过程如下: 打开 WIFI锚节点, 锚节点同时工作, 被测节点放在有锚节点信号的地方。 被测 节点此时通过射频开关选择一定向天线通路发射, 锚节点 1检测接收信号强度 11A, 锚节点 2检测到接收信号强度 21A, 待确认测完接收强度之后被测节点通过射频开关 打开另外一定向天线通路发射, 锚节点 1检测到接收信号强度 11B, 锚节点 2接收信 号强度 21B, 锚节点 1和 2将测得数据发给系统侧, 系统侧根据信号强度计算出来锚 节点 1与被测节点的相对角度 al, 锚节点 2与被测节点的相对角度 β1。 被测节点旋转 90度后, 又测得信号强度锚节点 1的信号强度 12Α, 锚节点 2的信 号强度 22Α, 更换定线天线通路, 测得锚节点 1的信号强度 12Β, 锚节点 2的信号强 度 22Β, 最后得到相对角度 α2, β2。 被测节点再旋转 90度两次, 最后得到 α3、 β3、 α4、 β4, 即获得 4组相对角度信 息。 确认锚节点 1和被测节点的相对位置, 假设锚节点所测得信号强度 12A是最大信 号强度,则对应得到的相对角度 α2便作为锚节点 1和被测节点的相对角度。同理可以 获得锚节点 2和被测节点的真正相对角度。 根据这两个相对角度及锚节点自身确定的 位置信息即可确立被测节点的具体位置信息。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 本发明简化 WIFI定位方法, 将现有终端稍微改造并增加一个定向天线即可完成 定位。 本方法运算量很小, 对于现有系统改造也很小, 相比目前 WIFI定位算法简单 并精确度非常高。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种移动终端, 包括:
第一天线, 设置为向锚节点发射第一信号, 其中, 所述第一信号用于所述 锚节点检测所述第一天线的信号强度;
第二天线, 与所述第一天线按照一个预定角度进行设置, 设置为向所述锚 节点发射第二信号, 其中, 所述第二信号用于所述锚节点检测所述第二天线的 信号强度, 所述预定角度使所述第一天线与所述第二天线的覆盖范围有重叠, 所述第一天线的信号强度和所述第二天线的信号强度用于确定所述移动终端的 位置。
2. 根据权利要求 1所述的移动终端, 其中, 所述移动终端还包括:
射频开关, 与所述第一天线和所述第二天线连接, 设置为控制所述第一天 线和所述第二天线不同时处于打开或关闭状态。
3. 一种确定移动终端和锚节点之间角度的方法, 包括:
确定移动终端的第一天线发射的第一信号的强度;
确定所述移动终端的第二天线发射的第二信号的强度, 其中, 所述第二天 线与所述第一天线按照一个预定角度进行设置, 所述预定角度使所述第一天线 与所述第二天线的覆盖范围有重叠;
通过所述第一信号的强度与所述第二信号的强度之比的线性关系确定所述 移动终端和锚节点之间的相对角度。
4. 根据权利要求 3所述的方法, 其中, 通过所述第一信号的强度与所述第二信号 的强度之比的线性关系确定所述移动终端和锚节点之间的相对角度 的计算公 式如下:
^ ,其中, 为接收到来自所述第一天线的第一信号的强度, RSSIB Λ
为接收到来自所述第二天线的第二信号的强度, k为自然数。 一种定位方法, 包括: 根据多个锚节点接收的移动终端的第一天线发射第一信号的强度和所述移 动终端的第二天线发射第二信号的强度确定所述移动终端与所述多个锚节点之 间的多个相对角度, 其中, 所述第二天线与所述第一天线按照一个预定角度进 行设置, 所述预定角度使所述第一天线与所述第二天线的覆盖范围有重叠; 根据所述多个锚节点之间的多个相对角度确定所述移动终端的位置。
6. 根据权利要求 5所述的方法, 其中, 当所述锚节点的个数为两个时, 所述方法 包括:
根据所述第一天线发射所述第一信号的强度和所述第二天线发射所述第二 信号的强度确定所述移动终端与两个锚节点之间的多个相对角度;
根据所述两个锚节点之间的所述多个相对角度确定所述移动终端的位置。
7. 根据权利要求 6所述的方法, 其中, 根据所述第一天线发射所述第一信号的强 度和所述第二天线发射所述第二信号的强度确定所述移动终端与两个锚节点之 间的多个相对角度包括:
根据所述第一天线发射所述第一信号的强度和所述第二天线发射所述第二 信号的强度确定所述移动终端与所述两个锚节点之间的第一组相对角度,其中, 所述相对角度包括: 所述移动终端与第一锚节点的第一相对角度, 和所述移动 终端与第二锚节点的第二相对角度;
根据所述移动终端每次旋转之后的所述第一天线和所述第二天线组成的天 线组的信号强度分别确定第二组相对角度、第三组相对角度和第四组相对角度, 其中, 分三次旋转所述移动终端, 每次旋转 90度。
8. 根据权利要求 7所述的方法, 其中, 根据所述第一天线发射所述第一信号的强 度和所述第二天线发射所述第二信号的强度确定所述移动终端与所述两个锚节 点之间的第一组相对角度包括:
根据所述第一天线发射所述第一信号的强度和所述第二天线发射所述第二 信号的强度确定所述第一锚节点与所述移动终端的第一组第一相对角度;
根据所述第一天线发射所述第一信号的强度和所述第二天线发射所述第二 信号的强度确定所述第二锚节点与所述移动终端的第一组第二相对角度。
9. 根据权利要求 8所述的方法, 其中, 根据所述第一天线发射所述第一信号的强 度和所述第二天线发射所述第二信号的强度确定所述第二锚节点与所述移动终 端的第一组第二相对角度之后, 还包括: 根据所述第一相对角度和所述第二相对角度确定所述移动终端的位置。
10. 根据权利要求 8所述的方法, 其中, 根据所述两个锚节点之间的所述多个相对 角度确定所述移动终端的位置包括:
分别选取所述两个锚节点接收到所述第一信号或所述第二信号的强度最强 的两个相对角度;
根据所述两个相对角度确定所述移动终端的位置。
11. 根据权利要求 5至 10中任一项所述的方法,其中,所述相对角度和接收到来自 所述第一天线的第一信号的强度与所述第二天线的第二信号的强度之比呈线性 关系。
12. 根据权利要求 11 所述的方法, 其中, 所述相对角度 的计算公式如下: , 其中, 为接收到来自所述第一天线的第一信号的强度, RSSIB Λ
为接收到来自所述第二天线的第二信号的强度, k为自然数。
13. 一种定位装置, 其包括:
第一确定模块, 设置为根据多个锚节点接收的移动终端的第一天线发射第 一信号的强度和所述移动终端的与所述第一天线的覆盖范围有重叠的第二天线 发射的第二信号的强度确定所述移动终端与所述多个锚节点之间的多个相对角 度;
第二确定模块, 设置为根据所述多个锚节点之间的多个相对角度确定所述 移动终端的位置。
14. 根据权利要求 13所述的装置, 其中,
所述第一确定模块, 还设置为根据所述第一天线发射所述第一信号的强度 和所述第二天线发射所述第二信号的强度确定所述移动终端与两个锚节点之间 的多个相对角度;
所述第二确定模块, 还设置为根据所述两个锚节点之间的所述多个相对角 度确定所述移动终端的位置。
15. 根据权利要求 14所述的装置, 其中, 所述第一确定模块包括: 确定单元, 设置为根据所述第一天线发射所述第一信号的强度和所述第二 天线发射所述第二信号的强度确定所述移动终端与所述两个锚节点之间的第一 组相对角度, 其中, 所述相对角度包括: 所述移动终端与第一锚节点的第一相 对角度, 和所述移动终端与第二锚节点的第二相对角度;
所述确定单元, 还设置为根据所述移动终端每次旋转之后的所述第一天线 和所述第二天线组成的天线组的信号强度分别确定第二组相对角度、 第三组相 对角度和第四组相对角度, 其中, 分三次旋转所述移动终端, 每次旋转 90度。
16. 根据权利要求 15所述的装置, 其中, 所述确定单元包括:
第一确定子单元, 设置为根据所述第一天线发射所述第一信号的强度和所 述第二天线发射所述第二信号的强度确定所述第一锚节点与所述移动终端的第 一组第一相对角度;
第二确定子单元, 设置为根据所述第一天线发射所述第一信号的强度和所 述第二天线发射所述第二信号的强度确定所述第二锚节点与所述移动终端的第 一组第二相对角度。
17. 一种确定移动终端和锚节点之间角度的装置, 包括:
第三确定模块, 设置为确定移动终端的第一天线发射的第一信号的强度; 第四确定模块, 设置为确定所述移动终端的与所述第一天线的覆盖范围有 重叠的第二天线发射的第二信号的强度;
第五确定模块, 设置为通过所述第一信号的强度与所述第二信号的强度之 比的线性关系确定所述移动终端和锚节点之间的相对角度。
18. 根据权利要求 17所述的装置,其中,所述第五确定模块按照以下公式确定所述 相对角度 ,其中, 为接收到来自所述第一天线的第一信号的强度, RSSIB Λ
为接收到来自所述第二天线的第二信号的强度, k为自然数。
PCT/CN2013/079729 2013-03-14 2013-07-19 移动终端、定位方法及装置 WO2013174314A2 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/774,876 US9560623B2 (en) 2013-03-14 2013-07-19 Mobile terminal, and locating method and device
EP13794572.1A EP2975892B1 (en) 2013-03-14 2013-07-19 Mobile terminal, and locating method and device
ES13794572T ES2841736T3 (es) 2013-03-14 2013-07-19 Terminal móvil y método y dispositivo de localización

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310081803.X 2013-03-14
CN201310081803.XA CN104053229B (zh) 2013-03-14 2013-03-14 移动终端、定位方法及装置

Publications (2)

Publication Number Publication Date
WO2013174314A2 true WO2013174314A2 (zh) 2013-11-28
WO2013174314A3 WO2013174314A3 (zh) 2014-02-20

Family

ID=49624410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079729 WO2013174314A2 (zh) 2013-03-14 2013-07-19 移动终端、定位方法及装置

Country Status (6)

Country Link
US (1) US9560623B2 (zh)
EP (1) EP2975892B1 (zh)
CN (1) CN104053229B (zh)
ES (1) ES2841736T3 (zh)
PT (1) PT2975892T (zh)
WO (1) WO2013174314A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104092505A (zh) * 2014-07-30 2014-10-08 厦门大学 一种检测和识别考场内开机手机的方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010361B (zh) * 2013-02-22 2018-04-10 中兴通讯股份有限公司 定位系统和方法
CN105589065A (zh) * 2016-03-16 2016-05-18 北京金山安全软件有限公司 一种获取目标物位置信息的方法、装置及电子设备
CN106101980A (zh) * 2016-05-25 2016-11-09 龙发明 蓝牙系统、设备以及蓝牙信号的方向识别方法
CN107528606B (zh) * 2016-06-21 2020-10-16 中兴通讯股份有限公司 一种天线切换方法以及装置、移动终端
CN105954721B (zh) * 2016-06-24 2018-04-27 上海智臻智能网络科技股份有限公司 室内定位方法、装置、设备及系统
CN107690153B (zh) * 2016-08-04 2021-01-29 鸿富锦精密电子(天津)有限公司 无线通信连接系统及无线通信连接方法
CN106535099A (zh) * 2016-11-28 2017-03-22 中国电子科技集团公司第四十八研究所 一种WiFi信号源的定位方法
CN107315164B (zh) * 2017-06-01 2020-12-08 大连海事大学 一种单ais参考点的船舶自主定位方法
CN108732560A (zh) * 2018-05-21 2018-11-02 奕通信息科技(上海)股份有限公司 基于信号发射角度的WiFi定位方法和应用该方法的万向云台
US10495737B1 (en) 2019-02-07 2019-12-03 Clairvoyant Networks, LLC Methods, systems, and computer readable media for time-slotted ultra-wide-band object tracking
US10567035B1 (en) 2019-03-06 2020-02-18 Clairvoyant Networks, LLC Methods, systems, and computer readable media for distribution of time synchronization information to ultra-wide-band devices
US11012776B2 (en) * 2019-04-09 2021-05-18 International Business Machines Corporation Volume adjustment model development
US10484833B1 (en) 2019-04-12 2019-11-19 Clairvoyant Networks, LLC Methods, systems and computer readable media for providing and using ultra wideband local area networks (LANs)
CN110380797A (zh) * 2019-07-24 2019-10-25 上海库康科技有限公司 一种全向射频定位系统
CN110703191A (zh) * 2019-11-01 2020-01-17 深圳市度彼电子有限公司 定位方法、系统、装置、定位设备及存储介质
FR3105671A1 (fr) * 2019-12-20 2021-06-25 Orange Procédé d’allocation de fréquences d’émission de signaux radio entre une ou plusieurs entités de communication, permettant une réduction des interférences entre ces entités de communication utilisant le même canal en fréquence
CN112399557B (zh) * 2020-11-16 2023-09-08 Oppo广东移动通信有限公司 基于uwb的定位电路、电子设备及定位方法
CN115097377A (zh) * 2022-06-16 2022-09-23 Oppo广东移动通信有限公司 角度测量方法及相关装置
CN115473844B (zh) * 2022-09-14 2023-10-13 河南捷茂电子科技有限公司 一种通信网络连接用路由器组件
CN115696570B (zh) * 2022-11-04 2023-05-05 北京智信天一科技有限公司 一种信号分析定位仪的应用方法及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2047038B (en) 1979-03-06 1983-03-09 Marconi Co Ltd Vehicle position fixing
EP3361716B1 (en) * 2002-09-13 2021-04-07 iRobot Corporation Robotic cleaning device
US7313403B2 (en) * 2003-08-06 2007-12-25 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Location positioning in wireless networks
CN1306850C (zh) 2005-06-10 2007-03-21 重庆邮电学院 基于手持中继的移动终端跟踪定位系统及定位方法
US7603129B2 (en) * 2005-10-05 2009-10-13 Honeywell International Inc. Localization identification system for wireless devices
US7667646B2 (en) * 2006-02-21 2010-02-23 Nokia Corporation System and methods for direction finding using a handheld device
US8519889B2 (en) * 2009-07-21 2013-08-27 Research In Motion Limited Method and apparatus for estimating location of a wireless station using multi-beam transmission
CN102102470B (zh) 2009-12-18 2013-11-06 株式会社东海理化电机制作所 通信终端位置判断装置
CN101848045B (zh) 2010-06-13 2013-04-03 华中科技大学 一种测量双极化智能天线业务波束的基准方向的方法
JP2012078172A (ja) 2010-09-30 2012-04-19 Panasonic Corp 無線通信装置
WO2012066563A2 (en) 2010-11-16 2012-05-24 Muthukumar Prasad Smart radiation protection system for mobile device to reduce sar with actively tunable electromagnetic shielding screen works by sensing device proximity environment with property, position, orientation, signal quality and operating modes
CN102685883B (zh) 2011-03-18 2015-04-15 中国科学院深圳先进技术研究院 传感器网络节点定位方法
US9270346B2 (en) * 2011-12-02 2016-02-23 Apple Inc. Methods for operating wireless electronic devices in coordinated multipoint transmission networks
EP2605032B1 (en) * 2011-12-15 2018-03-21 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Localization method and system using non-regenerative UWB relays

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2975892A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104092505A (zh) * 2014-07-30 2014-10-08 厦门大学 一种检测和识别考场内开机手机的方法

Also Published As

Publication number Publication date
PT2975892T (pt) 2021-01-08
EP2975892A4 (en) 2016-03-30
US20160044626A1 (en) 2016-02-11
ES2841736T3 (es) 2021-07-09
US9560623B2 (en) 2017-01-31
CN104053229A (zh) 2014-09-17
CN104053229B (zh) 2018-09-28
EP2975892A2 (en) 2016-01-20
EP2975892B1 (en) 2020-12-02
WO2013174314A3 (zh) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2013174314A2 (zh) 移动终端、定位方法及装置
US11119181B2 (en) Direction finding antenna format
US8433337B2 (en) RSS-based DOA indoor location estimation system and method
US9674644B2 (en) Method for determining directionality using bluetooth low energy communications
US9300368B2 (en) Method and system for 60 GHz antenna adaptation and user coordination based on base station beacons
CN109155984B (zh) 确定通道时延的方法、定位方法和相关设备
WO2017146636A1 (en) Single node location system and method
JP5558241B2 (ja) マルチビームを用いて無線局の位置を推定する方法及び装置
WO2020117409A2 (en) Dynamic antenna array pattern switching in wireless systems
CN111356075A (zh) 一种多站点的定位方法及装置
WO2014127612A1 (zh) 角度确定系统和方法
US20230147613A1 (en) Spatial domain measurements for beam based positioning
WO2014130787A1 (en) Method and apparatus for focused data communications
CN108449953B (zh) 用于登记装置位置的方法和装置
KR101597437B1 (ko) 무선신호의 상대적 수신세기 비율정보를 이용한 실내측위시스템 및 방법
WO2020060686A1 (en) Methods and apparatus for improved accuracy and positioning estimates
Jais et al. Review of angle of arrival (AOA) estimations through received signal strength indication (RSSI) for wireless sensors network (WSN)
CN103237346A (zh) 一种无线多媒体传感网定位装置、方法及系统
JP2004108851A (ja) 測角装置及びこの測角装置を用いた通信装置
GB2514548A (en) Method of configuring a high-frequency radio module, associated multiband radio communication device and system
JP4499104B2 (ja) 移動体通信システムの基地局、移動機および方位検出方法
WO2019090527A1 (zh) 一种采用可重构天线进行室内定位的方法和装置
WO2023036448A1 (en) Ris-based localization method and system empowered by a joint bs-ris beam alignment
Sun et al. A high accuracy mono-station UWB positioning system
CN113242097A (zh) 水下定位方法及相关装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14774876

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013794572

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794572

Country of ref document: EP

Kind code of ref document: A2