WO2013174271A1 - Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique - Google Patents

Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique Download PDF

Info

Publication number
WO2013174271A1
WO2013174271A1 PCT/CN2013/076100 CN2013076100W WO2013174271A1 WO 2013174271 A1 WO2013174271 A1 WO 2013174271A1 CN 2013076100 W CN2013076100 W CN 2013076100W WO 2013174271 A1 WO2013174271 A1 WO 2013174271A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery group
threshold
electric quantity
temperature
battery
Prior art date
Application number
PCT/CN2013/076100
Other languages
English (en)
Inventor
Xingchi WU
Hongjun Wang
Shibin Xie
Original Assignee
Shenzhen Byd Auto R & D Company Limited
Byd Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Byd Auto R & D Company Limited, Byd Company Limited filed Critical Shenzhen Byd Auto R & D Company Limited
Publication of WO2013174271A1 publication Critical patent/WO2013174271A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • Exemplary embodiments of the present disclosure relate generally to a power system, and more particularly, to a power system of an electric vehicle, an electric vehicle comprising the power system and a method for heating a battery group of the electric vehicle.
  • the new energy vehicle especially the electric vehicle enters into a family as the means of transport.
  • the performance requirement especially the comfort requirement of the user for the vehicle is higher and higher, which requires that the vehicle must adapt to different running requirements. But currently most electric vehicles can not satisfy the requirements.
  • the temperature is low so that the capability of the battery, no matter the discharge capability or the battery capacity, may be decreased or even the battery can not be used.
  • the work temperature of the battery especially lithium ion battery is generally within a range from -20°C to 55°C, and the battery is not allowed to be charged at a low temperature. Under a low temperature condition, the battery in the electric vehicle may have the following problems.
  • the lithium ions may be deposited easily at the negative electrode and lose the electric activity at the low temperature, and therefore, if the battery in the electric vehicle is usually used at the low temperature, the life of the battery may be shortened and a safety problem may be caused accordingly.
  • the lithium ions When the lithium ion battery is charged at the low temperature, the lithium ions may be deposited easily at the negative electrode to become dead ions and thus the capacity of the battery may be decreased, and more ever, the deposited ions grow larger and larger during the continuous use, thus leading to a potential danger such as an internal short circuit.
  • the discharge capability of the battery is limited at the low temperature. All of the problems listed above may be not favorable for the electric vehicle which uses green and environment friendly new energy.
  • the method for heating a battery is a very important technology in the electric vehicle field.
  • a heating strategy of the battery and the performance of the battery heater influence the comfort, operation stability and safety of the vehicle directly.
  • Many new technologies are applied in the battery heating, but because of the self capability defects, the technologies are not widely applied in the vehicle field.
  • a thermal insulation sleeve is provided to warm the battery by the thermal insulation material
  • an infrared radiation film is used to heat the battery and a thermal insulation sleeve is provided to keep warm, or a heating patch is attached on the surface of the battery.
  • the methods are only suitable for the fixed battery. Furthermore, using the external power to heat the battery is not suitable for the vehicle which is not fixed in position. Therefore, the above methods have not been widely applied in the electric vehicle field.
  • a power system of an electric vehicle comprises: a battery group; a battery heater, connected with the battery group and configured to charge and discharge the battery group to heat the battery group, in which the battery heater comprises an output power adjusting module configured to adjust a heating power of the battery heater by adjusting a charge current and/or a discharge current; a battery management device, connected with the battery group and the battery heater respectively, and configured to control the battery heater to heat the battery group in a running heating mode or in a parking heating mode according to a temperature and a residual electric quantity of the battery group when the temperature of the battery group is lower than a first heating threshold and the residual electric quantity of the battery group is larger than a parking electric quantity threshold, to control the output power adjusting module to adjust the heating power of the battery heater to heat the battery group according to the temperature of the battery group, and to control the battery heater to heat the battery group intermittently; an electric distribution box, configured to distribute a voltage output by the battery group; a motor; a motor
  • the internal resistor of the battery itself may be heated so that the battery group may be heated. Without any external power supply, the electricity for heating is totally supplied by the battery group.
  • a heating management may be performed for the battery group by the battery management device and the battery heater, which may greatly reduce the restriction on the use of the electric vehicle at the low temperature, thus satisfying the requirements of running and charging at the low temperature.
  • the power system heats the battery group directly, and therefore, a higher heating efficiency, a lower cost and a better utility may be obtained.
  • an electric vehicle comprising the above power system.
  • the electric vehicle can normally run in a cold region and the battery group can be heated while the electric vehicle is running, thus ensuring a safe and smooth running.
  • a method for heating a battery group of an electric vehicle comprises: detecting a temperature and a residual electric quantity of the battery group; if the temperature of the battery group is lower than a first heating threshold and the residual electric quantity of the battery group is larger than a parking electric quantity threshold, controlling a battery heater to heat the battery group in a running heating mode or in a parking heating mode according to the temperature and the residual electric quantity of the battery group; adjusting a heating power of the battery heater according to the temperature of the battery group and controlling the battery heater to heat the battery group intermittently when the battery group is heated; and if the temperature of the battery group is lower than the first heating threshold and the residual electric quantity of the battery group is lower than the parking electric quantity threshold, indicating the battery group is inhibited from being heated or charged and the electric vehicle is inhibited from being driven.
  • the battery group may be heated directly without any external power supply, the temperature of the battery group may be increased to a required temperature and then the battery group may be charged or discharged normally, which may greatly reduce the restriction on the use of the electric vehicle at the low temperature, thus satisfying the requirements of running and charging at the low temperature.
  • the battery group in different heating modes and by adjusting the heating power of the battery heater according to the real-time temperature of the battery group, it is possible to control the heating process more precisely to make better use of the performance of the battery group and to increase a safety of the battery group.
  • Fig. 1 illustrates a schematic diagram of a power system of an electric vehicle according to an exemplary embodiment
  • Fig. 2 illustrates a schematic diagram of a power system of an electric vehicle according to an exemplary embodiment
  • Fig. 3A illustrates an electric principle diagram of a power system of an electric vehicle according to an exemplary embodiment
  • Fig. 3B illustrates an electric principle diagram of a power system of an electric vehicle according to an exemplary embodiment
  • Fig. 4 illustrates an electric connection diagram of a power system of an electric vehicle according to an exemplary embodiment
  • Fig. 5 illustrates an electric connection diagram of a power system of an electric vehicle according to an exemplary embodiment
  • Fig. 6 illustrates a schematic diagram of an electric distribution box in a power system of an electric vehicle according to an exemplary embodiment
  • Fig. 7 illustrates a flow chart of a method for heating a battery group of an electric vehicle according to an exemplary embodiment
  • Fig. 8 illustrates a flow chart of a method for heating a battery group of an electric vehicle according to an exemplary embodiment
  • Fig. 9 illustrates a flow chart of a method for heating a battery group of an electric vehicle according to an exemplary embodiment
  • Fig. 10 illustrates a flow chart of a method for heating a battery group of an electric vehicle according to an exemplary embodiment
  • Fig. 11 illustrates a flow chart of a method for heating a battery group of an electric vehicle according to an exemplary embodiment.
  • a power system of an electric vehicle comprises: a battery group 101, a battery heater 102, a battery management device 103, an electric distribution box 104, a motor 105, a motor controller 106 and an isolation inductor L2.
  • the battery heater 102 is connected with the battery group 101 and configured to charge and discharge the battery group 101 to heat the battery group 101.
  • the battery heater 102 comprises an output power adjusting module 1021, and the output power adjusting module 1021 is configured to adjust a heating power of the battery heater 102 by adjusting a discharge current and/or a charge current.
  • the battery management device 103 is connected with the battery heater 102 via a CAN cable 107 and connected with the battery group 101 via a sampling cable 108 to sample the temperature and voltage of each battery and the output current of the battery group 101.
  • the battery management device 103 is also configured to judge the current status of the electric vehicle, to calculate the temperature and the residual electric quantity of the battery group 101, and to send the control signals to the relevant electric devices via the CAN cable 107 so as to manage the relevant devices.
  • the battery management device 103 is configured to control the battery heater 102 to heat the battery group in a running heating mode or in a parking heating mode according to a temperature and a residual electric quantity of the battery group 101 when the temperature of the battery group 101 is lower than a first heating threshold and the residual electric quantity of the battery group 101 is larger than a parking electric quantity threshold. Furthermore, the battery management device 103 is configured to control the output power adjusting module 1021 to adjust the heating power of the battery heater 102 according to the temperature of the battery group 101 and to control the battery heater 102 to heat the battery group 101 intermittently when the battery group 101 is heated.
  • the electric distribution box 104 is a high voltage device for turning on and off the large current.
  • a voltage output by the battery group 101 is distributed by the battery management device 103 by sending a control signal to the electric distribution box 104.
  • the motor controller 106 is connected with the motor 105 and the electric distribute box 104 respectively, and comprises a first input terminal, a second input terminal and a pre-charging capacitor C2 connected between the first input terminal and the second input terminal.
  • the motor controller 106 is configured to supply power to the motor 105 according to a control command and a voltage distributed to the motor controller 106 by the electric distribution box 104.
  • the motor controller 106 converts the DC supplied by the battery group 101 into the three-phase AC required by the motor 105 to supply power to the motor 105 by the internal driving circuit of the motor controller 106, and controls the motor 105 according to the control signal sent by the battery management device 103.
  • the isolation inductor L2 is connected between the battery group 101 and the electric distribution box 104, and the inductance of the isolation inductor L2 matches with the capacitance of the pre-charging capacitor C2.
  • the battery heater 102 may be configured to perform a failure self-test and send the test result to the battery management device 103.
  • the battery heater 102 comprises: a first switch module 301, at least one first capacitor CI, a first inductor LI and a second switch module 302.
  • a first terminal of the at least one first switch module 301 is connected with a first electrode of the battery group 101 and the isolation inductor L2 respectively.
  • a first terminal of the at least one first capacitor CI is connected with a second terminal of the first switch module 301, and a second terminal of the at least one first capacitor CI is connected with a second electrode of the battery group 101.
  • a first terminal of the first inductor LI is connected with a node between the first switch module 301 and the at least one first capacitor CI.
  • a first terminal of the second switch module 302 is connected with a second terminal of the first inductor LI, a second terminal of the second switch module 302 is connected with the second electrode of the battery group 101.
  • the control terminal of the first switch module 301 and the control terminal of the second switch module 302 are connected with the battery management device 103.
  • the battery management device 103 sends a heating signal to the control terminal of the first switch module 301 and the control terminal of the second switch module 302 to control the first switch module 301 and the second switch module 302 to turn on in turn so as to generate a charge current and a discharge current in turn.
  • first capacitor CI there may be one first capacitor CI or a plurality of first capacitors CI in the battery heater 102.
  • the number of the first capacitors is 4.
  • the four first capacitors in Fig. 3 A are denoted by Cll, CI 2, C13 and C14 respectively
  • the four first capacitors in Fig. 3B are denoted by C.l, C.2, C.3 and C.4 respectively.
  • the ESR is an equivalent resistor of the battery group 101
  • the ESL is an equivalent inductor of the battery group 101
  • E is a battery package.
  • L2 is an isolation inductor and is configured to isolate the battery heating circuit Part 2 from the motor equivalent load circuit Part 5. Therefore, the reversed voltage of the battery group 101 is absorbed by the isolation inductor L2 and may not be applied to the load follow-up.
  • C2 is a pre-charging capacitor; and R is the equivalent load of the motor.
  • an internal switch module thereof turns on or off in a certain timing sequence.
  • the switch module (e.g., the first switch module 301 or the second switch module 302) may be an insulated gate bipolar transistor (IGBT).
  • IGBT1 insulated gate bipolar transistor
  • the battery package E charges the first capacitor CI by the charging loop "E-ESR-ESL-D1- Cl-E". After the battery package E has charged the first capacitor CI for a time, the voltage of the first capacitor CI is equal to the voltage of the battery package E.
  • the first capacitor CI continues being charged so that the voltage of the first capacitor CI is higher than that of the battery package.
  • the first capacitor CI begins to discharge by the discharging loop "C1-D1-ESL-ESR-E-C1" until the discharge current is zero.
  • the IGBT1 is off and the IGBT2 is on, the first capacitor CI continues discharging by the discharging loop "C1-D2-L1-IGBT2-C1". Because there is the first inductor LI, the first capacitor CI continues to discharge so that the voltage of the first capacitor CI is lower than that of the battery package E. Above process is thus repeated.
  • a corresponding first capacitor CI (Cll, C12, C13 or C14)
  • the peak voltage of Cll, C12, C13 or C14 in a discharging loop (i.e., heating loop) Part 2 will change, and thus the peak values of the forward current and the reverse current in the heating loop will change. Therefore, the heating power of the battery heater is adjusted. In other words, the larger the capacitance is, the larger the heating power is.
  • changing a duty ratio (i.e., pulse width) of the output pulse of the second switch module 302 will achieve an optimal action time of the forward charging and the reverse charging in the heating loop.
  • the output power adjusting module 1021 is configured to adjust the duty ratios of the output pulses of the first switch module 301 and the second switch module 302 according to an instruction sent by the battery management device 103.
  • the battery management device 103 sends a CAN signal (instruction) to the output power adjusting module 1021 of the battery heater 102 according to the temperature of the battery group 101 (i.e., battery package) so as to make the output power adjusting module 1021 connect with the corresponding first capacitor CI (e.g., Cll, C12, C13 or C14) to adjust the pulse width (i.e., the duty ratio of the output pulse) of the second switch module 302 (IGBT2), and therefore, the heating power of the battery heater 102 is adjusted to be adapted to a required power to be provided by the battery group 101.
  • the first capacitor CI e.g., Cll, C12, C13 or C14
  • the peak voltage of the first capacitor CI in the discharging loop (i.e., heating loop) Part 2 will change, and thus the peak values of the forward current and the reverse current in the discharging loop (i.e., heating loop) Part 2 will change. Therefore, the heating power of the battery heater 102 is adjusted.
  • the corresponding first capacitor CI e.g., Cll, C12, C13 or C14
  • the duty ratio of the output pulse i.e., pulse width of the second switch module 302 (IGBT2) will be changed.
  • the pulse widths of the first switch module 301 (IGBT1) and the second switch module 302 (IGBT2) change with the adjustment of the first capacitor CI (i.e., the selection of the first capacitor Cll, CI 2, C13 or CI 4).
  • the change in the pulse widths can not be too large, that is, the pulse widths shall be adjusted slightly.
  • the capacitance of the first capacitor Cll is lower than the capacitance of the first capacitor CI 2
  • the capacitance of the first capacitor C12 is lower than the capacitance of the first capacitor CI 3
  • the capacitance of the first capacitor C13 is lower than the capacitance of the first capacitor C14.
  • a plurality of first capacitors CI may be identical.
  • the heating power is adjusted by changing the number of the first capacitors connected with the output power adjusting module 1021.
  • the output power adjusting module 1021 adjust the number of the first capacitors connected with the output power adjusting module 1021 according to an instruction sent by the battery management device 103.
  • the four capacitors C.l, C.2, C.3 and C.4 are connected in parallel.
  • the equivalent capacitance of two capacitors connected in parallel is a sum of the capacitances of the two capacitors. Therefore, provided the capacitances of the four capacitors C. l, C.2, C.3 and C.4 are the same, it can be obtained that:
  • the output power adjusting module 1021 may be a relay, as shown in Figs. 3A-3B.
  • the isolation inductor L2 may prevent the pre- charging capacitor C2 from charging the first capacitor CI through the first switch module 301 so that the current waveform of the first capacitor CI may be controlled and thus the characteristics of the heating circuit may be controlled. Therefore, the circuit may run normally. As a result, when the motor 105 and the battery heater 102 operate simultaneously, the isolation inductor L2 may be needed.
  • the inductance L of the isolation inductor L2 may be determined according to the formula ⁇ ⁇ 2 * JLC ⁇ w h ere [ s an equivalent load work cycle of the motor 105 and C is the capacitance of the pre-charging capacitor C2.
  • the battery heater 102 needs to control the IGBT module and switch on/off the first switch module 301 or the second switch module 302. Assuming that a switching frequency of the first switch module 301 or the second switch module 302 is t, in order to reduce the influence of the battery heater 102 on the motor controller 106, it may be assumed that a cycle of a circuit comprising the isolation inductor L2 and the pre-charging capacitor C2 is T.
  • T 10t, thus meeting the design requirements. Therefore, as used herein, the expression "T is an equivalent load work cycle of the motor 105" means that T is the cycle of the circuit comprising the isolation inductor L2 and the pre-charging capacitor C2.
  • the battery heater 102 further comprises a power connector configured to connect and fasten a power cable 109.
  • the power connector needs to satisfy the requirement of the anti-vortex. When the battery heater 102 works, the frequency of the current is changed very quickly, which leads to very quick increase in the temperature of the magnetic material in the power connector, so the magnetic permeability of the power connector must be low.
  • the battery heater 102 further comprises a low voltage connector, which is connected and communicates with the external system.
  • the low voltage connector comprises a CAN cable 107 configured to connect to the battery management device 103, a self-test signal cable and a failure signal cable.
  • the isolation inductor L2 is disposed in the battery heater 102.
  • a fuse 401 is also disposed in the battery heater 102.
  • the battery heater 102 comprises the isolation inductor L2, the fuse 401 and a power supply for the battery heater 102.
  • the battery heater 102 further comprises four power connectors, in which two power connectors are connected to the battery group 101 via the power cable 109 and the other two power connectors are connected to the electric distribution box 104 via the power cable 109.
  • the power connectors are used in the head end and the tail end of a high voltage cable.
  • the isolation inductor L2 is disposed in the battery heater 102, and when the battery group 101 does not need to be heated, the battery heater 102 may be removed, so that the electric distribution box 104 may be connected directly to the battery group 101.
  • the electric vehicle does not need any battery heater in the high temperature area but needs the battery heater in the low temperature area. Therefore, if the electric vehicle needs to be modified to adapt to different areas, the modification may be small, thus greatly reducing the cost.
  • the isolation inductor L2 may be disposed in the electric distribution box 104. No matter the isolation inductor L2 is disposed in the battery heater 102 or the electric distribution box 104, the isolation inductor L2 is disposed between the battery group 101 and the electric distribution box 104. Referring to Fig. 1, the electric distribution box 104 is not connected to the battery heater 102 directly.
  • the battery group 101 comprises four power connectors, in which two power connectors are connected to the battery heater 102 via two power cables 109 and the other two power connectors are connected to the electric distribution box 104 via another two power cables 109.
  • the power system of the electric vehicle further comprises a relay 501 configured to select whether the isolation inductor L2 is connected to the circuit, as shown in Fig. 5.
  • the battery heater 102 is connected in parallel with the electric distribution box 104.
  • the fuse 401 is mounted in the battery group 101.
  • the isolation inductor L2 is disposed in the electric distribution box 104 so that the influence on the electric distribution box 104 by the battery heater 102 may be greatly reduced. Furthermore, when the battery heater 102 works, the isolation inductor L2 may be connected into the circuit by the relay 501, and when the battery heater 102 stops working, the isolation inductor L2 may be disconnected from the circuit by the relay 501.
  • the power system of the electric vehicle further comprises a cooling assembly 110 configured to cool the first switch module 301 and the second switch module 302.
  • the cooling assembly 110 comprises: a wind channel arranged in the battery heater 102; and a fan arranged at one end of the wind channel. The fan is used to dissipate heat for the battery heater 102.
  • the cooling assembly 110 comprises: a coolant channel arranged in the battery heater 102; a coolant inlet and a coolant outlet arranged in the battery heater 102 respectively.
  • the heat dissipation effect and the sealing performance of the battery heater may be improved by using the coolant to cool the battery heater.
  • the electric distribution box 104 comprises: a primary contactor 601 and a pre-contactor 602.
  • the primary contactor 601 is configured to distribute the voltage output by the battery group 101 to a power consumption equipment, such as the motor 105 of the electric vehicle.
  • the pre-contactor 602 is connected with the first input terminal 603 or the second input terminal 604 of the motor controller 106, and configured to charge the pre-charging capacitor C2 under the control of the battery management device 103 before the motor controller 106 controls the motor 105 to start.
  • the electric vehicle when the residual electric quantity (also named as SOC (state of charge)) of the battery group 101 is larger than a running electric quantity threshold, the electric vehicle is allowed to enter in a running heating mode.
  • the running electric quantity threshold is larger than the parking electric quantity threshold.
  • the running heating mode means that besides the battery group 101 being heated by the battery heater 102, other high voltage power consumption equipments of the electric vehicle such as the motor and the air conditioner may work simultaneously under a limited power. Accordingly, the parking heating mode means that except the battery group 101 being heated by the battery heater 102, the other high voltage power consumption equipments of the electric vehicle such as the motor and the air conditioner do not work.
  • the running electric quantity threshold is a first predetermined residual electric quantity of the battery group when the electric vehicle is allowed to enter in the running heating mode
  • the parking electric quantity threshold is a second predetermined residual electric quantity of the battery when the electric vehicle is allowed to enter in the parking heating mode.
  • the battery management device 103 controls the battery heater 102 to heat the battery group 101 in the running heating mode: the temperature of the battery group is higher than a first temperature threshold and lower than a second temperature threshold, and the residual electric quantity of the battery group is larger than a first electric quantity threshold;
  • the temperature of the battery group is higher than the second temperature threshold and lower than a third temperature threshold, and the residual electric quantity of the battery group is larger than a second electric quantity threshold, while the second electric quantity threshold is lower than the first electric quantity threshold;
  • the temperature of the battery group is higher than the third temperature threshold and lower than a fourth temperature threshold, and the residual electric quantity of the battery group is larger than a third electric quantity threshold, while the third electric quantity threshold is lower than the second electric quantity threshold;
  • the temperature of the battery group is higher than the fourth temperature threshold and lower than a fifth temperature threshold and the residual electric quantity of the battery group is larger than a fourth electric quantity threshold, while the fourth electric quantity threshold is lower than the third electric quantity threshold.
  • the first temperature threshold may be -30°C
  • the second temperature threshold may be -25°C
  • the third temperature threshold may be -20°C
  • the fourth temperature threshold may be -15°C
  • the fifth temperature threshold may be -10°C
  • the first electric quantity threshold may be 30% of the total electric quantity of the battery group 101
  • the second electric quantity threshold may be 27.5% of the total electric quantity of the battery group 101
  • the third electric quantity threshold may be 25% of the total electric quantity of the battery group 101
  • the fourth capacity threshold may be 22.5% of the total electric quantity of the battery group 101.
  • the battery management device 103 judges whether the temperature of the battery group 101 is higher than a sixth temperature threshold, if yes and the residual electric quantity of the battery group 101 is larger than a fifth electric quantity threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 in the running heating mode, and if no the battery management device 103 judges whether the temperature of the battery group 101 is higher than a seventh temperature threshold, if yes and the residual electric quantity of the battery group 101 is larger than a sixth electric quantity threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 in the running heating mode, and if no the battery management device 103 judges whether the temperature of the battery group 101 is higher than an eighth temperature threshold, if yes and the residual electric quantity of the battery group 101 is larger than a seventh electric quantity threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 in the running heating mode, and if no the battery management device 103 judges whether the temperature of the battery group 101 is higher than a ninth temperature
  • the sixth temperature threshold is higher than the seventh temperature threshold, the seventh temperature threshold is higher than the eighth temperature threshold, and the eighth temperature threshold is higher than the ninth temperature threshold.
  • the fifth electric quantity threshold is lower than the sixth capacity threshold, the sixth capacity threshold is lower than the seventh capacity threshold, and the seventh capacity threshold is lower than the eighth capacity threshold.
  • the ninth temperature threshold may be -30°C
  • the eighth temperature threshold may be -25°C
  • the seventh temperature threshold may be -20°C
  • the sixth temperature threshold may be -15°C
  • the eighth electric quantity threshold may be 30% of the total electric quantity of the battery group 101
  • the seventh electric quantity threshold may be 27.5% of the total electric quantity of the battery group 101
  • the sixth electric quantity threshold may be 25% of the total electric quantity of the battery group 101
  • the fifth electric quantity threshold may be 22.5% of the total electric quantity of the battery group 101.
  • the electric vehicle when the residual electric quantity of the battery group 101 is lower than the running electric quantity threshold and larger than the parking electric quantity threshold, the electric vehicle is allowed to enter in the parking heating mode.
  • the battery management device 103 controls the battery heater 102 to heat the battery group 101 in the parking heating mode: the temperature of the battery group 101 is higher than a tenth temperature threshold and lower than an eleventh temperature threshold and the residual electric quantity of the battery group 101 is larger than a ninth electric quantity threshold;
  • the temperature of the battery group 101 is higher than the eleventh temperature threshold and lower than a twelfth temperature threshold and the residual electric quantity of the battery group 101 is larger than a tenth electric quantity threshold, while the tenth electric quantity threshold is lower than the ninth electric quantity threshold;
  • the temperature of the battery group 101 is higher than the twelfth temperature threshold and lower than a thirteenth temperature threshold and the residual electric quantity of the battery group 101 is larger than an eleventh electric quantity threshold, while the eleventh electric quantity threshold is lower than the tenth electric quantity threshold;
  • the temperature of the battery group 101 is higher than the thirteenth temperature threshold and lower than a fourteenth temperature threshold and the residual electric quantity of the battery group 101 is larger than a twelfth electric quantity threshold, while the twelfth electric quantity threshold is lower than the eleventh electric quantity threshold.
  • the tenth temperature threshold may be -30°C
  • the eleventh temperature threshold may be -25°C
  • the twelfth temperature threshold may be -20°C
  • the thirteenth temperature threshold may be -15°C
  • the fourteenth temperature threshold may be -10°C
  • the ninth electric quantity threshold may be 20% of the total electric quantity of the battery group 101
  • the tenth electric quantity threshold may be 17.5% of the total electric quantity of the battery group 101
  • the eleventh electric quantity threshold may be 15% of the total electric quantity of the battery group 101
  • the twelfth electric quantity threshold may be 12.5% of the total electric quantity of the battery group 101.
  • the battery management device 103 judges whether the temperature of the battery group 101 is higher than a fifteenth temperature threshold, if yes and the residual electric quantity of the battery group 101 is larger than a thirteenth electric quantity threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 in the parking heating mode, and if no the battery management device 103 judges whether the temperature of the battery group 101 is higher than a sixteenth temperature threshold, if yes and the residual electric quantity of the battery group 101 is larger than a fourteenth electric quantity threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 in the parking heating mode, and if no the battery management device 103 judges whether the temperature of the battery group is higher than a seventeenth temperature threshold, if yes and the residual electric quantity of the battery group 101 is larger than a fifteenth electric quantity threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 in the parking heating mode, and if no the battery management device 103 judges whether the temperature of the battery group is higher
  • the fifteenth temperature threshold is higher than the sixteenth temperature threshold, the sixteenth temperature threshold is higher than the seventeenth temperature threshold, and the seventeenth temperature threshold is higher than the eighteenth temperature threshold.
  • the thirteenth electric quantity threshold is lower than the fourteenth electric quantity threshold, the fourteenth electric quantity threshold is lower than the fifteenth electric quantity threshold, and the fifteenth electric quantity threshold is lower than the sixteenth electric quantity threshold.
  • the eighteenth temperature threshold may be -30°C
  • the seventeenth temperature threshold may be -25 °C
  • the sixteenth temperature threshold may be -20 °C
  • the fifteenth temperature threshold may be -15°C
  • the sixteenth electric quantity threshold may be 20% of the total electric quantity of the battery group 101
  • the fifteenth electric quantity threshold may be 17.5% of the total electric quantity of the battery group 101
  • the fourteenth electric quantity threshold may be 15% of the total electric quantity of the battery group 101
  • the thirteenth electric quantity threshold may be 12.5% of the total electric quantity of the battery group 101.
  • the battery management device 103 may control the battery heater 102 to heat the battery group 101 in the running heating mode or in the parking heating mode according to the temperature and residual electric quantity of the battery group 101.
  • the control accuracy of the battery management device 103 is higher and it is easier to achieve the control procedure.
  • the power system further comprises a heating button connected with the battery management device 103. When the heating button is pressed, the battery management device 103 sends a heating signal to the battery heater 102 to control the battery heater 102 to heat the battery group 101.
  • the battery management device 103 is further configured to: after controlling the battery heater 102 to heat the battery group 101, if the heating button is pressed again, judge whether the operation of pressing the heating button satisfies a preset condition (i.e., judge whether the heating button is pressed and held for a preset time), if yes, control the electric vehicle and/or the battery heater 102 according to the temperature and the residual electric quantity of the battery group 101.
  • a preset condition i.e., judge whether the heating button is pressed and held for a preset time
  • the battery management device 103 determines whether the residual electric quantity of the battery group 101 is larger than a seventeenth electric quantity threshold.
  • the battery management device 103 indicates to inhibit the electric vehicle from being heated, driven or charged; and if the residual electric quantity of the battery group 101 is larger than the seventeenth electric quantity threshold and the temperature of the battery group 101 is higher than the nineteenth temperature threshold, the battery management device 103 allows the electric vehicle to run under a limited power.
  • the nineteenth temperature threshold may be - 20°C
  • the seventeenth electric quantity threshold may be 25% of the total electric quantity of the battery group 101.
  • the battery management device 103 is further configured to adjust the output power of the battery heater 102 according to the real time temperature of the battery group 101 to heat the battery group 101 by different heating procedures. Specifically, when the temperature of the battery group 101 is higher than a third heating threshold and lower than a fourth heating threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 with a first power; when the temperature of the battery group 101 is higher than a fourth heating threshold and lower than a fifth heating threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 with a second power, in which the second power is lower than the first power; when the temperature of the battery group 101 is higher than a fifth heating threshold and lower than a sixth heating threshold, the battery management device 103 controls the battery heater 102 to heat the battery group 101 with a third power, in which the third power is lower the second power; or when the temperature of the battery group 101 is higher than a sixth heating threshold and lower than a seventh heating threshold, the battery management device 103
  • the third heating threshold may be -30°C
  • the fourth heating threshold may be -25°C
  • the fifth heating threshold may be -20°C
  • the sixth heating threshold may be -15°C
  • the seventh heating threshold may be -10°C.
  • the battery management device 103 is further configured to judge whether the heating time reaches a first preset time Tl and to control the battery heater 102 to suspend heating the battery group 101 when the heating time reaches the first preset time. In one embodiment of the present disclosure, after controlling the battery heater 102 to suspend heating the battery group 101, the battery management device 103 is further configured to calculate a suspension time and control the battery heater 102 to heat the battery group 101 when the suspension time reaches a second preset time T2.
  • the battery management device 103 is further configured to judge whether a current throttle depth change rate of the electric vehicle reaches a preset throttle depth change rate threshold, if yes, to control the battery heater to stop heating the battery group, and if no, to control the battery heater to continue heating the battery group.
  • the throttle depth change rate is determined according to a change value of the throttle depth within a certain time.
  • a driver determines whether the battery heater is controlled to heat the battery group according to the change in the throttle depth within a certain time. Specifically, when the electric vehicle is in a running uphill procedure or in an urgent acceleration procedure, it needs more electric quantity, and therefore, the current throttle depth change rate of the electric vehicle will increase (the output power increases).
  • the preset threshold is the throttle depth change rate of the electric vehicle when the battery group 101 supplies the maximum power support to the electric vehicle. Therefore, once the current throttle change rate reaches the preset throttle depth change rate threshold, it means that the output power of the battery group 101 has reached the maximum value in a normal case, in other words, the battery group 101 cannot supply power to the battery heater 102, and thus to avoid an over discharging of the battery group 101 and to ensure a safety of the battery group, and therefore, a service life of the battery group 101 is prolonged.
  • the battery group may be heated. Without any external power supply, the electricity for heating is totally provided by the battery group.
  • a heating management may be performed for the battery group by the battery management device and the battery heater, which may greatly reduce the restriction on the use of the electric vehicle at the low temperature and satisfy the requirement of running and charging at the low temperature, that is, the battery group may be heated while the electric vehicle may run under a limited power.
  • the power system of the electric vehicle heats the battery group directly, and therefore, a higher heating efficiency, a lower cost, a better utility and an easy industrialization may be achieved.
  • an electric vehicle comprises the power system of the electric vehicle mentioned above.
  • the electric vehicle may run in a low temperature environment, and the electric vehicle may run while the battery group may be heated, thus ensuring a safe and smooth running.
  • a method for heating a battery group of an electric vehicle is described in detail with reference to Figs. 7-11.
  • the detailed values (such as, -10°C) are only illustrative to explain various thresholds (such as the first heating threshold), but not used to limit the scope of the present disclosure.
  • the values of various thresholds may be changed according to actual conditions, which is obvious for a person skilled in the art.
  • the executing orders of the steps in Figs. 7-11 are only illustrative and exemplary, but not used to limit the scope of the present disclosure.
  • the executing order of the steps may be changed according to actual conditions, which is also obvious for a person skilled in the art.
  • a method for heating a battery group of an electric vehicle comprises the following steps.
  • step SI 101 a temperature and a residual electric quantity of the battery group are detected.
  • a battery heater is controlled to heat the battery group in a running heating mode or in a parking heating mode according to the temperature and the residual electric quantity of the battery group.
  • a heating power of the battery heater is adjusted according to the temperature of the battery group, and the battery heater is controlled to heat the battery group intermittently.
  • step SI 104 if the temperature of the battery group is lower than the first heating threshold and the residual electric quantity of the battery group is lower than the parking electric quantity threshold, the battery group is inhibited from being heated or charged and the electric vehicle is inhibited from being driven.
  • the method for heating the battery group of the electric vehicle may comprise the following steps.
  • step S701 the electric vehicle is powered on.
  • step S702 it is detected whether the temperature of the battery group is lower than the first heating threshold. If no, step S703 is followed; if yes, the electric quantity of the battery group needs to be detected and then step S704 is followed.
  • the battery management device controls the primary contactor in the electric distribution box to be switched on. Before switching on the primary contactor, the battery management device controls the pre-contactor to be switched on, and after the pre-charging is finished, the primary contactor is switched on.
  • the battery management device judges whether the heating and running condition is satisfied according to the temperature and the residual electric quantity of the battery group. Specifically, when the residual electric quantity of the battery group is larger than the running electric quantity threshold, the electric vehicle is allowed to enter in the running heating mode; and when the residual electric quantity of the battery group is lower than the running electric quantity threshold but larger than the parking electric quantity threshold, the electric vehicle is allowed to enter in the parking heating mode.
  • the running electric quantity threshold is larger than the parking electric quantity threshold.
  • step S705 it is judged whether the heating is in the running heating mode. If yes, step
  • step S706 when the temperature of the battery group is lower than the first temperature threshold, the battery management device sends a message to a meter to display that the temperature of the battery group is too low so that the electric vehicle is not allowed to be heated, driven or charged.
  • the battery management device controls the battery heater to heat the battery group, and step S710 is followed; and if the residual electric quantity of the battery group is lower than the first electric quantity threshold, step S709 is followed.
  • the battery management device controls the battery heater to heat the battery group, and step S710 is followed; and if the residual electric quantity of the battery group is lower than the second electric quantity threshold, step S709 is followed, in which the second electric quantity threshold is lower than the first electric quantity threshold.
  • the battery management device controls the battery heater to heat the battery group, and step S710 is followed; and if the residual electric quantity of the battery group is lower than the third electric quantity threshold, step S709 is followed, in which the third electric quantity threshold is lower than the second electric quantity threshold.
  • the battery management device controls the battery heater to heat the battery group, and step S710 is followed; and if the residual electric quantity of the battery group is lower than the fourth electric quantity threshold, step S709 is followed, in which the fourth electric quantity threshold is lower than the third electric quantity threshold.
  • the battery heater heats the battery group in the parking heating mode.
  • step S708 when the temperature of the battery group is lower than the tenth temperature threshold, the battery management device sends a message to the meter to display that the temperature of the battery group is too low so that the electric vehicle is not allowed to be heated, driven or charged.
  • the battery management device controls the battery heater to heat the battery group, and step S710 is followed; and if the residual electric quantity of the battery group is lower than the ninth electric quantity threshold, step S709 is followed.
  • the battery management device controls the battery heater to heat the battery group, and step S710 is followed; and if the residual electric quantity of the battery group is lower than the tenth electric quantity threshold, step S709 is followed, in which the tenth electric quantity threshold is lower than the ninth electric quantity threshold.
  • the battery management device controls the battery heater to heat the battery group, and step S710 is followed; and if the residual electric quantity of the battery group is lower than the eleventh electric quantity threshold, step S709 is followed, in which the eleventh electric quantity threshold is lower than the tenth electric quantity threshold.
  • the battery management device controls the battery heater to heat the battery group, and step S710 is followed; and if the residual electric quantity of the battery group is lower than the twelfth electric quantity threshold, step S709 is followed, in which the twelfth electric quantity threshold is lower than the eleventh electric quantity threshold.
  • the battery management device sends a message to the meter to display that the residual electric quantity of the battery group is too low so that the electric vehicle is not allowed to be heated, driven or charged.
  • step S710 the battery heater performs a self-test to detect whether there is a failure, if yes, step S712 is followed; and if no, step S711 is followed.
  • step S711 the battery heater heats the battery group, and during the heating process, step
  • step S713 is also performed.
  • the electric vehicle is not allowed to be heated, driven or charged.
  • the battery heater performs a self-test to detect whether there is a failure, if yes, step S715 is followed; and if no, step S714 is followed.
  • step S714 it is judged whether the heating is finished. If yes, step S716 is followed; and if no, step S711 is followed.
  • the battery heater stops heating the battery group.
  • a CAN message is sent to the battery heater to make the battery heater stop heating the battery group.
  • the first heating threshold may be -10°C
  • the first temperature threshold may be -30°C
  • the second temperature threshold may be -25°C
  • the third temperature threshold may be -20°C
  • the fourth temperature threshold may be -15°C
  • the fifth temperature threshold may be -10°C
  • the first electric quantity threshold may be 30% of the total electric quantity of the battery group
  • the second electric quantity threshold may be 27.5% of the total electric quantity of the battery group
  • the third electric quantity threshold may be 25% of the total electric quantity of the battery group
  • the fourth electric quantity threshold may be 22.5% of the total electric quantity of the battery group
  • the tenth temperature threshold may be -30°C
  • the eleventh temperature threshold may be -25°C
  • the twelfth temperature threshold may be -20°C
  • the thirteenth temperature threshold may be -15°C
  • the fourteenth temperature threshold may be -10°C
  • the ninth electric quantity threshold may be 20% of the total electric quantity of the battery group
  • the tenth electric quantity threshold may be 17.5% of the total
  • the method for heating the battery group of the electric vehicle may comprise the following steps.
  • step S801 the electric vehicle is powered on.
  • step S802 it is detected whether the temperature of the battery group is lower than the first heating threshold. If no, step S803 is followed; if yes, the electric quantity of the battery group needs to be detected and then step S804 is followed.
  • the battery management device controls the primary contactor in the electric distribution box to be switched on. Before switching on the primary contactor, the battery management device controls the pre-contactor to be switched on, and after the pre-charging is finished, the primary contactor is switched on.
  • the battery management device judges whether the heating and running condition is satisfied according to the temperature and the residual electric quantity of the battery group. Specifically, when the residual electric quantity of the battery group is larger than the running electric quantity threshold, the electric vehicle is allowed to enter in the running heating mode, and when the residual electric quantity of the battery group is lower than the running electric quantity threshold but larger than the parking electric quantity threshold, the electric vehicle is allowed to enter in the parking heating mode.
  • the running electric quantity threshold is larger than the parking electric quantity threshold.
  • step S805 it is judged whether the heating is in the running heating mode. If yes, step S806 is followed; and if no, step S807 is followed.
  • step S806 the battery management device judges whether the temperature of the battery group is higher than the sixth temperature threshold. If yes and if the residual electric quantity of the battery group is larger than the fifth electric quantity threshold, step S810 is followed, and if the residual electric quantity of the battery group is lower than the fifth electric quantity threshold, step S809 is followed. If no, the battery management device further judges whether the temperature of the battery group is larger than the seventh temperature threshold. If yes and the residual electric quantity of the battery group is larger than the sixth electric quantity threshold, step S810 is followed, and if the residual electric quantity of the battery group is lower than the sixth electric quantity threshold, step S809 is followed.
  • the battery management device further judges whether the temperature of the battery group is higher than the eighth temperature threshold, if yes and the residual electric quantity of the battery group is larger than the seventh electric quantity threshold, step S810 is followed, and if the residual electric quantity of the battery group is lower than the seventh electric quantity threshold, step S809 is followed. If no, the battery management device judges whether the temperature of the battery group is larger than the ninth temperature threshold, if yes and the residual electric quantity of the battery group is larger than the eighth electric quantity threshold, step S810 is followed, and if the residual electric quantity of the battery group is lower than the eighth electric quantity threshold, step S809 is followed.
  • the battery management device sends a message to the meter to display that the temperature of the battery group is too low so that the electric vehicle is not allowed to be heated, driven or charged.
  • the sixth temperature threshold is higher than the seventh temperature threshold, the seventh temperature threshold is higher than the eighth temperature threshold, and the eighth temperature threshold is higher than the ninth temperature threshold.
  • the fifth electric quantity threshold is lower than the sixth electric quantity threshold, the sixth electric quantity threshold is lower than the seventh electric quantity threshold, and the seventh electric quantity threshold is lower than the eighth electric quantity threshold.
  • the battery heater heats the battery group in the parking heating mode.
  • step S808 the battery management device judges whether the temperature of the battery group is higher than the fifteenth temperature threshold, if yes and the residual electric quantity of the battery group is larger than the thirteenth electric quantity threshold, step S810 is followed, and if the residual electric quantity of the battery group is lower than the thirteenth electric quantity threshold, step S809 is followed. If no, the battery management device further judges whether the temperature of the battery group is higher than the sixteenth temperature threshold, if yes and the residual electric quantity of the battery group is larger than the fourteenth electric quantity threshold, step S810 is followed, and if the residual electric quantity of the battery group is lower than a fourteenth electric quantity threshold, step S809 is followed.
  • the battery management device further judges whether the temperature of the battery group is higher than the seventeenth temperature threshold, if yes and the residual electric quantity of the battery group is larger than the fifteenth electric quantity threshold, step S810 is followed, and if the residual electric quantity of the battery group is lower than the fifteenth electric quantity threshold, step S809 is followed. If no, the battery management device further judges whether the temperature of the battery group is higher than the eighteenth temperature threshold, if yes and the residual electric quantity of the battery group is larger than the sixteenth electric quantity threshold, step S810 is followed, and if the residual electric quantity of the battery group is lower than the sixteenth electric quantity threshold, step S809 is followed.
  • the battery management device sends a message to the meter to display that the temperature of the battery group is too low so that the electric vehicle is not allowed to be heated, driven or charged.
  • the fifteenth temperature threshold is larger than the sixteenth temperature threshold, the sixteenth temperature threshold is larger than the seventeenth temperature threshold, and the seventeenth temperature threshold is larger than the eighteenth temperature threshold.
  • the thirteenth electric quantity threshold is lower than the fourteenth electric quantity threshold, the fourteenth electric quantity threshold is lower than the fifteenth electric quantity threshold, and the fifteenth electric quantity threshold is lower than the sixteenth electric quantity threshold.
  • the battery management device sends a message to the meter to display that the residual electric quantity of the battery group is too low so that the electric vehicle is not allowed to be heated, driven or charged.
  • step S810 before heating, the battery heater performs a self-test to detect whether there is a failure, if yes, step S812 is followed, and if no, step S811 is followed.
  • step S811 the battery heater heats the battery group, and during the heating process, step S813 is also performed.
  • the electric vehicle is not allowed to be heated, driven or charged.
  • step S813 the battery heater performs a self-test to detect whether there is a failure, if yes, step S815 is followed, and if no, step S814 is followed.
  • step S814 it is judged whether the heating is finished, if yes, step S816 is followed, and if no, step S811 is followed.
  • the battery heater stops heating the battery group.
  • a CAN message is sent to the battery heater to make the battery heater stop heating the battery group.
  • the first heating temperature threshold may be -10°C
  • the ninth temperature threshold may be -30°C
  • the eighth temperature threshold may be -25°C
  • the seventh temperature threshold may be -20°C
  • the sixth temperature threshold may be -15°C
  • the eighth electric quantity threshold may be 30% of the total electric quantity of the battery group
  • the seventh electric quantity threshold may be 27.5% of the total electric quantity of the battery group
  • the sixth electric quantity threshold may be 25% of the total electric quantity of the battery group
  • the fifth electric quantity threshold may be 22.5% of the total electric quantity of the battery group
  • the eighteenth temperature threshold may be -30°C
  • the seventeenth temperature threshold may be -25°C
  • the sixteenth temperature threshold may be -20°C
  • the fifteenth temperature threshold may be -15°C
  • the sixteenth electric quantity threshold may be 20% of the total electric quantity of the battery group
  • the fifteenth electric quantity threshold may be 17.5% of the total electric quantity of the battery group
  • the fourteenth electric quantity threshold may be 15% of the total electric quantity of the battery group
  • step S901 the electric vehicle is powered on.
  • step S902 the temperature and the residual electric quantity of the battery group are detected.
  • step S903 it is judged whether the temperature of the battery group is lower than the first heating threshold, if yes, step S905 is followed, and if no, step S904 is followed.
  • the battery management device controls the pre-contactor to be switched on, and after the pre-charging is finished, the primary contactor is switched on.
  • the electric vehicle runs normally.
  • the battery management device controls the pre-contactor in the electric distribution box to be switched on to charge the pre-charging capacitor and controls the pre-contactor to be switched off after the pre-charging is finished.
  • step S905 the battery management device calculates whether the residual electric quantity of the battery group is larger than the running electric quantity threshold, if yes, step S907 is followed, and if no, step S906 is followed.
  • the battery management device calculates whether the residual electric quantity of the battery group is larger than the parking electric quantity threshold, if yes, step S907 is followed, and if no, step S908 is followed.
  • the running electric quantity threshold is larger than the parking electric quantity threshold.
  • step S907 the user confirms whether the battery group needs to be heated, if yes, step
  • step S910 is followed.
  • the battery management device sends a message to the meter to display that the residual electric quantity of the battery group is too low so that the electric vehicle is not allowed to be heated, driven or charged.
  • step S909 the battery heater performs a self-test to detect whether there is a failure, if yes, step S911 is followed, and if no, step S912 is followed.
  • the battery management device sends a message to the meter to display that the electric vehicle is not allowed to be heated, driven or charged.
  • the battery management device stops supplying power and sending a message to the battery heater, and sends a message to the meter to display that there is a failure in the battery heater so that the electric vehicle is not allowed to be heated, driven or charged.
  • the battery management device sends a heating signal to the battery heater to heat the battery group.
  • the battery management device controls the pre-contactor to be switched on, and after the pre-charging is finished, the primary contactor is switched on and then the battery group is heated, while the battery heater keeps on performing a self-test. Specifically, the battery management device calculates the current temperature and the current residual electric quantity of the battery group, calculates the maximum output power of the battery group according to the current temperature and the current residual electric quantity of the battery group, and controls the electric vehicle to run under a limited power according to the maximum output power.
  • step S914 it is judged whether the heating button is pressed and held for a preset time, if yes, step S915 is followed, and if no, step S920 is followed.
  • the preset time may be 2 seconds.
  • step S915 it is judged whether the temperature of the battery group is lower than the nineteenth temperature threshold, if yes, step S916 is followed, and if no, step S917 is followed.
  • the electric vehicle is not allowed to be heated, driven or charged.
  • step S917 it is judged whether the residual electric quantity of the battery group is larger than the seventeenth electric quantity threshold, if yes, step S918 is followed, and if no, step S919 is followed.
  • step S918 the electric vehicle is allowed to run under a limited power.
  • the battery management device sends a message to the meter to display that the user stops heating so that the electric vehicle is not allowed to be heated, driven or charged.
  • step S920 it is detected whether there is a failure in the battery heater, if yes, step S921 is followed, and if no, step S922 is followed.
  • step S921 the battery heater stops working and the meter displays an alarm so that the electric vehicle is not allowed to be heated, driven or charged.
  • step S922 it is detected whether the temperature of the battery group is higher than the first heating threshold, if yes, step S925 is followed, and if no, step S923 is followed.
  • step S923 it is detected whether the temperature of any single battery in the battery group is higher than the second heating threshold, if yes, step S925 is followed, and if no, step S924 is followed.
  • step S924 it is detected whether the continuous heating time is higher than a heating time threshold, if yes, step S925 is followed, and if no, step S913 is followed.
  • step S925 the heating is finished and the battery heater stops working.
  • the first heating threshold may be -10°C
  • the second heating threshold may be 20°C
  • the nineteenth temperature threshold may be -20°C
  • the seventeenth electric quantity threshold may be 25% of the total electric quantity of the battery group
  • the heating time threshold may be 20 minutes.
  • the method for heating the battery group of the electric vehicle may comprise the following steps.
  • step SI 001 the electric vehicle is powered on.
  • step SI 002 the temperature and the residual electric quantity of the battery group are detected.
  • step SI 003 it is judged whether the temperature of the battery group is lower than the first heating threshold, if yes, step SI 005 is followed, and if no, step SI 004 is followed.
  • the battery management device controls the pre-contactor to be switched on, and after the pre-charging is finished, the primary contactor is switched on.
  • the electric vehicle runs normally.
  • step SI 005 the battery management device calculates whether the residual electric quantity of the battery group is larger than the running electric quantity threshold, if yes, step SI 008 is followed, and if no, step SI 006 is followed.
  • the battery management device calculates whether the residual electric quantity of the battery group is larger than the parking electric quantity threshold, if yes, step
  • step SI 007 is followed.
  • the running electric quantity threshold is larger than the parking electric quantity threshold.
  • the battery management device sends a message to the meter to display that the residual electric quantity of the battery group is too low so that the electric vehicle is not allowed to be heated, driven or charged.
  • step S1008 the user confirms whether the battery group needs to be heated, if yes, step
  • step S1010 is followed.
  • step SI 009 the battery heater performs a self-test to detect whether there is a failure, if yes, step S1011 is followed, and if no, step S1012 is followed.
  • the battery management device sends a message to the meter to display that the electric vehicle is not allowed to be heated, driven or charged.
  • the battery management device stops supplying power and sending a message to the battery heater, and sends a message to the meter to display that there is a failure in the battery heater so that the electric vehicle is not allowed to be heated, driven or charged.
  • the battery management device sends a heating signal to the battery heater to heat the battery group.
  • the battery management device controls the pre-contactor to be switched on, and after the pre-charging is finished, the primary contactor is switched on and then the battery group is heated, while the battery heater keeps on performing a self-test. Specifically, the battery management device calculates the current temperature and the current residual electric quantity of the battery group, calculates the maximum output power of the battery group according to the current temperature and the current residual electric quantity of the battery group, and controls the electric vehicle to run under a limited power according to the maximum output power.
  • step S1014 the temperature of the battery group is detected.
  • the battery management device controls the battery heater to heat the battery group with the first power; when the temperature of the battery group is higher than the fourth heating threshold and lower than the fifth heating threshold, the battery management device controls the battery heater to heat the battery group with the second power, in which the second power is lower than the first power; when the temperature of the battery group is higher than the fifth heating threshold and lower than the sixth heating threshold, the battery management device controls the battery heater to heat the battery group with the third power, in which the third power is lower than the second power; or when the temperature of the battery group is higher than the sixth heating threshold and lower than the seventh heating threshold, the battery management device controls the battery heater to heat the battery group with the fourth power, in which the fourth power is lower than the third power.
  • step S1016 the battery management device judges whether the throttle depth change rate of the electric vehicle reaches the preset throttle depth change rate threshold according to the throttle depth message, if yes, step S1017 is followed, and if no, step S1019 is followed.
  • step S1017 the battery heater stops working and the battery group only supplies power to the power consumption equipment of the electric vehicle and the driving of the electric vehicle.
  • step SI 018 it is judged whether a running uphill procedure or an urgent acceleration procedure is finished, if yes, step S1013 is followed, and if no, step S1017 is followed.
  • step S1019 the battery management device judges whether the heating time reaches the first preset time Tl, if yes, step S1020 is followed, and if no, step S1021 is followed.
  • step SI 020 the battery heater suspends working and the battery management device judges whether the suspension time reaches a second preset time T2, if yes, step S 1013 is followed, and if no, step SI 020 is followed.
  • step S1021 it is judged whether the heating button is pressed and held for a preset time, if yes, step SI 022 is followed, and if no, step SI 027 is followed.
  • the preset time may be 2 seconds.
  • step SI 022 it is judged whether the temperature of the battery group is lower than the nineteenth temperature threshold, if yes, step S1023 is followed, and if no, step S1024 is followed.
  • step SI 023 the electric vehicle is not allowed to be heated, driven or charged.
  • step SI 024 it is detected whether the residual electric quantity is larger than the seventeenth electric quantity threshold, if yes, step S1025 is followed, and if no, step S1026 is followed.
  • step SI 025 the electric vehicle is allowed to run under a limited power.
  • the battery management device sends a message to the meter to display that the user stops heating so that the electric vehicle is not allowed to be heated, driven or charged.
  • step S1027 it is detected whether there is a failure in the battery heater, if yes, step S1028 is followed, and if no, step SI 029 is followed.
  • step S1028 the battery heater stops working and the meter displays an alarm so that the electric vehicle is not allowed to be heated, driven or charged.
  • step SI 029 it is detected whether the temperature of the battery group is higher than the first heating threshold, if yes, step SI 032 is followed, and if no, step SI 030 is followed.
  • step SI 030 it is detected whether the temperature of any single battery in the battery group is higher than the second heating threshold, if yes, step S1032 is followed, and if no, step SI 031 is followed.
  • step SI 031 it is detected whether the continuous heating time is larger than the heating time threshold, if yes, step S1032 is followed, and if no, step S1013 is followed.
  • the heating is finished and the battery heater stops working.
  • the third heating threshold may be -30°C
  • the fourth heating threshold may be -25°C
  • the fifth heating threshold may be -20°C
  • the sixth heating threshold may be -15°C
  • the seventh heating threshold may be -10°C
  • the nineteenth temperature threshold may be 20°C
  • the seventeenth electric quantity threshold may be 25% of the total electric quantity of the battery group
  • the first heating threshold may be -10°C
  • the second heating threshold may be 20°C
  • the heating time threshold may be 20 minutes.
  • the battery management device when the electric vehicle is powered on, the battery management device detects the temperature of the battery group and the status of the primary contactor.
  • the temperature of the battery group is an average of temperatures of all single batteries in the battery group.
  • the battery management device samples the temperature of each single battery in the battery group through an information collector and calculates the temperature of the battery group. If the temperature of the battery group is lower than the first heating temperature and the residual electric quantity of the battery group is larger than the parking electric quantity threshold, the user presses and holds the heating button for 2 seconds, and then the battery management device sends a message to the battery heater through the CAN cable to allow the battery group to be heated.
  • the battery management device Before heating the battery group in the running heating mode, that is, before the motor works, the battery management device sends the control signal to the electric distribution box to control the pre-contactor to be switched on so that the battery group charges the pre-charging capacitor C2.
  • the voltage of the pre-charging capacitor C2 is substantially equal to that of the battery group, the motor is allowed to work.
  • the heating button is disposed on the meter. Provided that the temperature of the battery group is lower than the first heating threshold and the residual electric quantity of the battery group is larger than the parking electric quantity threshold, when the heating button is pressed, the battery heater is allowed to work. If the heating button is pressed again and held for 2 seconds, the battery heater is forced to stop working.
  • the primary contactor is disposed in the electric distribution box and configured to connect the motor controller to a power supply or disconnect the motor controller from a power supply.
  • the battery management device sends the control signal to the electric distribution box to control the primary contactor to be switched on so that the motor is allowed to work.
  • the motor controller converts the DC to the three-phase AC required by the motor through the driving circuit, to supply power to the motor and to allow the electric vehicle to run under a limited power.
  • the pre-contactor is also disposed in the electric distribution box and connected to the pre- charging capacitor C2 in series.
  • the pre-charging capacitor C2 is charged before the motor works.
  • the reasons may be as follows.
  • a current shock may be avoided in the pre-charging procedure and an agglomeration caused when the primary contactor is switched on may be avoided.
  • a current limiting resistor is connected in series between the pre-charging capacitor and the pre-contactor.
  • the battery management device controls the primary contactor to be switched on and then controls the pre-contactor to be switched off.
  • the voltage of the whole battery group is reduced.
  • the pre-charging capacitor C2 is charged firstly until the voltage thereof is substantially equal to that of the battery group, and then the motor is started. Because the voltage of the pre-charging capacitor can not change suddenly, by connecting the pre- charging capacitor and the motor in parallel, the affect on the voltage of the battery group resulting from the start of the motor may be decreased.
  • the battery heater When the battery heater receives the heating signal sent by the battery management device, the battery heater performs a self-test to detect whether there is a failure in the battery heater. In one embodiment of the present disclosure, the battery heater sends a single pulse of 0.5ms to detect whether there is a failure in the battery heater. If there is not any failure, the battery heater sends a control pulse (for example with a cycle of 20ms and a duty ratio of 20%) to the internal switch module to make the battery group short the circuit in a short time. So the heating purpose is achieved. Meanwhile, the battery heater sends a CAN signal to the meter. The meter receives the CAN signal and displays that "the battery group is being heated".
  • a control pulse for example with a cycle of 20ms and a duty ratio of 20%
  • the battery management device and the battery heater keep on detecting the status of the battery group. If the temperature of the battery group is higher than the first heating threshold, or the continuous heating time is larger than the heating time threshold, or the maximum temperature of a single battery in the battery group is higher than the second heating threshold, the battery heater stops sending the control pulse to the internal switch module to stop heating the battery group.
  • the battery heater sends a CAN signal to the meter.
  • the meter receives the CAN signal and displays that "the heating is finished”.
  • the heating procedure is finished.
  • the second heating threshold may be 20°C
  • the heating time threshold may the 20 minutes.
  • the battery group is stopped from being heated.
  • the battery management device works normally. If the temperature of the battery group is lower than the first heating threshold and the residual electric quantity of the battery group is less than the parking electric quantity threshold, the primary contactor is not switched on and the battery management device sends the CAN signal to the battery heater and the meter, so that the battery group is not allowed to be heated. When the meter receives the CAN signal, the meter displays that "the residual electric quantity of the battery group is not enough" so that the electric vehicle is not allowed to be heated, driven or charged.
  • a failure of the battery heater including under voltage protection, over- voltage protection, overheat protection, pulse width interval protection or maximum turn-on time protection, appears during the self-test process, it is not allowed to heat the battery group.
  • the battery heater sends a failure signal.
  • the meter receives the failure signal and displays that "a failure in the battery heater". The heating is not allowed.
  • the battery heater stops heating the battery group and sends a failure signal.
  • the meter receives the failure signal and displays that "a failure in the battery heater". The heating is ceased.
  • the battery heater comprises a protection circuit to prevent the failures mentioned above.
  • the protection circuit will be described in detail as follows.
  • the frequency of the pulse sent by a DSP may not be too high and the pulse width may not be too long.
  • the maximum pulse width may be 5ms and the minimum interval may be 7-10 ms, or else a failure signal will be output.
  • a DC-DC isolation power supply is used to drive the IGBT.
  • the positive bias voltage for the gate terminal of the IGBT may be +15V, and the negative bias voltage for the gate terminal of the IGBT may be -7V.
  • the negative bias voltage for the gate terminal of IGBT may turn off the IGBT quickly and avoid a malfunction of turning on IGBT because of the overlarge surge current.
  • the protection circuit comprises an under voltage protection circuit.
  • the under voltage protection circuit may avoid an increase in the power consumption of the IGBT caused by the deficient driving voltage.
  • the driving voltage decreases to a first voltage threshold, the under voltage protection circuit starts to work.
  • the first voltage threshold may be 9V.
  • the over-heat protection circuit may avoid the damage to the IGBT caused by the high temperature.
  • the protection circuit samples the temperature by using a thermistor. When the temperature of the IGBT is higher than a safe temperature threshold, the over-heat protection circuit starts to work.
  • the protection circuit may also be configured to detect whether there is an open circuit in the thermistor. When there is an open circuit in the thermistor, the equivalent impedance is infinite and a protection signal is output.
  • the safe temperature threshold may be 85°C.
  • the over-voltage protection circuit may avoid the over high voltage of the collector terminal to damage the IGBT at the moment of turning off the IGBT.
  • a protection signal will be output.
  • the second voltage threshold may be 800V.
  • the battery heater stops heating the battery group so that the battery group is not allowed to be charged and the electric vehicle is not allowed to be driven.
  • the battery group of the electric vehicle may be heated without any external power supply.
  • the battery group is heated to a required temperature and then may be charged or discharged normally. So the restriction on the use of the electric vehicle at the low temperature may be greatly reduced and the requirements of running and charging at the low temperature may be satisfied.
  • the battery group by heating the battery group in different heating modes and by adjusting the heating power of the battery heater according to the real-time temperature of the battery group, it is possible to control the heating process more precisely to make better use of the performance of the battery group and to increase a safety of the battery group.
  • the throttle depth change rate of the electric vehicle by sampling the throttle depth change rate of the electric vehicle and judging whether the output power of the battery group is too large, it is possible to stop heating the battery group when the output power of the battery group is too large, and thus to avoid the over discharging of the battery group, prolong a service life of the battery group and ensure the dynamic property of the electric vehicle.
  • heating the battery group intermittently (i.e., heating continuously for a time and then suspending heating for a time, and repeating the above process), an influence of the large current on the battery group is reduced and the service life of the battery group is prolonged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne un système d'énergie d'un véhicule électrique, un véhicule électrique le comprenant et un procédé de chauffage d'un groupe de batteries du véhicule électrique. Le système d'énergie comprend : un groupe de batteries ; un chauffage de batterie connecté au groupe de batteries, dans lequel le chauffage de batterie comprend un module de réglage de puissance de sortie configuré pour régler une puissance de sortie du chauffage de batterie ; un dispositif de gestion de batterie connecté au groupe de batteries et au chauffage de batterie respectivement, et configuré pour commander le chauffage de batterie afin de chauffer le groupe de batteries selon différents modes de chauffage, pour commander le module de réglage de puissance de sortie afin d'ajuster la puissance de sortie du chauffage de batterie selon une température du groupe de batteries et pour commander le chauffage de batterie afin de chauffer le groupe de batteries de manière intermittente ; un contrôleur de moteur connecté à un moteur et à une boîte de distribution électrique respectivement ; et un inducteur d'isolation.
PCT/CN2013/076100 2012-05-22 2013-05-22 Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique WO2013174271A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210160498.9 2012-05-22
CN201210160498.9A CN103419656B (zh) 2012-05-22 2012-05-22 电动汽车、电动汽车的动力系统及电池加热方法

Publications (1)

Publication Number Publication Date
WO2013174271A1 true WO2013174271A1 (fr) 2013-11-28

Family

ID=49623133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076100 WO2013174271A1 (fr) 2012-05-22 2013-05-22 Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique

Country Status (2)

Country Link
CN (1) CN103419656B (fr)
WO (1) WO2013174271A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3573176A1 (fr) * 2018-05-22 2019-11-27 Contemporary Amperex Technology Co., Limited Appareil de chauffage de bloc-batterie et procédé de commande de chauffage de bloc-batterie
CN112060976A (zh) * 2020-09-16 2020-12-11 广州小鹏汽车科技有限公司 一种车辆动力电池的加热方法、装置和车辆
EP3753778A1 (fr) * 2019-06-20 2020-12-23 Quanta Computer Inc. Batterie intelligente et procédé de charge
DE102020112038B3 (de) 2020-05-05 2021-11-11 Audi Aktiengesellschaft Verfahren zum Durchführen eines Tests eines Thermomanagementsystems und Thermomanagementsystem
EP3902092A4 (fr) * 2018-12-21 2022-01-26 BYD Company Limited Appareil d'entraînement de moteur électrique, procédé de commande, véhicule et support de stockage lisible

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109818101B (zh) * 2017-11-20 2022-03-29 明创能源股份有限公司 独立大电能电动设备用的热管理系统
CN109244568B (zh) * 2018-08-02 2020-09-18 宝沃汽车(中国)有限公司 用于动力电池的控制方法、装置和车辆
CN111355429B (zh) * 2018-12-21 2021-09-03 比亚迪股份有限公司 电机驱动装置、控制方法、车辆及可读存储介质
CN113224410B (zh) * 2020-01-21 2022-09-13 广汽埃安新能源汽车有限公司 一种纯电动汽车低温充电加热控制方法
CN111366880A (zh) * 2020-04-03 2020-07-03 深圳市超力源科技有限公司 一种智能识别电池是否接上的电路
JP7519831B2 (ja) * 2020-07-17 2024-07-22 本田技研工業株式会社 昇温装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154068B2 (en) * 2004-05-26 2006-12-26 Ford Global Technologies, Llc Method and system for a vehicle battery temperature control
US20090179616A1 (en) * 2006-07-10 2009-07-16 Toyota Jidosha Kabushiki Kaisha Power Supply System, Vehicle with the Same and Temperature Managing Method
CN101885313A (zh) * 2010-07-14 2010-11-17 李辉 电动汽车热管理系统
CN101931100A (zh) * 2009-06-18 2010-12-29 比亚迪股份有限公司 一种电池组件
CN102055042A (zh) * 2009-10-29 2011-05-11 比亚迪股份有限公司 一种车辆用电池加热控制系统及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120025B2 (ja) * 1997-07-02 2008-07-16 日産自動車株式会社 電気自動車用電池のヒートアップ装置
JP4529960B2 (ja) * 2006-08-28 2010-08-25 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
CN201400078Y (zh) * 2009-05-08 2010-02-10 比亚迪股份有限公司 一种电动汽车
KR20110139424A (ko) * 2010-06-23 2011-12-29 현대자동차주식회사 고전압 배터리 및 그의 승온 제어 방법
CN102074759B (zh) * 2010-07-30 2012-06-06 比亚迪股份有限公司 一种电池的加热电路
CN201893429U (zh) * 2010-11-26 2011-07-06 上海汽车集团股份有限公司 电池热管理系统
CN102139646B (zh) * 2011-02-18 2012-11-28 奇瑞汽车股份有限公司 一种动力电池热管理系统及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154068B2 (en) * 2004-05-26 2006-12-26 Ford Global Technologies, Llc Method and system for a vehicle battery temperature control
US20090179616A1 (en) * 2006-07-10 2009-07-16 Toyota Jidosha Kabushiki Kaisha Power Supply System, Vehicle with the Same and Temperature Managing Method
CN101931100A (zh) * 2009-06-18 2010-12-29 比亚迪股份有限公司 一种电池组件
CN102055042A (zh) * 2009-10-29 2011-05-11 比亚迪股份有限公司 一种车辆用电池加热控制系统及其控制方法
CN101885313A (zh) * 2010-07-14 2010-11-17 李辉 电动汽车热管理系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3573176A1 (fr) * 2018-05-22 2019-11-27 Contemporary Amperex Technology Co., Limited Appareil de chauffage de bloc-batterie et procédé de commande de chauffage de bloc-batterie
US11001165B2 (en) 2018-05-22 2021-05-11 Contemporary Amperex Technology Co., Limited Battery pack heating apparatus and method of battery pack heating control
EP3902092A4 (fr) * 2018-12-21 2022-01-26 BYD Company Limited Appareil d'entraînement de moteur électrique, procédé de commande, véhicule et support de stockage lisible
US11990853B2 (en) 2018-12-21 2024-05-21 Byd Company Limited Motor drive apparatus, method for controlling the same, vehicle, and readable storage medium
EP4344051A3 (fr) * 2018-12-21 2024-06-12 BYD Company Limited Appareil d'entraînement de moteur, son procédé de commande, véhicule et support d'informations lisible
EP3753778A1 (fr) * 2019-06-20 2020-12-23 Quanta Computer Inc. Batterie intelligente et procédé de charge
US11171500B2 (en) 2019-06-20 2021-11-09 Quanta Computer Inc. Smart battery device and charging method
DE102020112038B3 (de) 2020-05-05 2021-11-11 Audi Aktiengesellschaft Verfahren zum Durchführen eines Tests eines Thermomanagementsystems und Thermomanagementsystem
US11626629B2 (en) 2020-05-05 2023-04-11 Audi Ag Method for performing a test of a thermal management system
CN112060976A (zh) * 2020-09-16 2020-12-11 广州小鹏汽车科技有限公司 一种车辆动力电池的加热方法、装置和车辆

Also Published As

Publication number Publication date
CN103419656A (zh) 2013-12-04
CN103419656B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
EP2853002B1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant
EP2837056B1 (fr) Système d'énergie de véhicule électrique, véhicule électrique comprenant celui-ci et procédé de chauffage de groupe de batterie de véhicule électrique
EP2853001B1 (fr) Système d'alimentation de véhicule électrique hybride, véhicule électrique hybride comprenant ledit système d'alimentation et procédé de chauffage de groupe batterie de véhicule électrique hybride
EP2853003B1 (fr) Système d'alimentation de véhicule électrique, véhicule électrique comprenant celui-ci et procédé de chauffage de groupe de batterie de véhicule électrique
WO2013174271A1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique
EP2853000B1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique
WO2013174278A1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique
WO2013174274A1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique
WO2014005470A1 (fr) Système électrique de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage d'un groupe de batteries de véhicule électrique
WO2013174275A1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique
WO2013174281A1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique
WO2013174277A1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique
WO2013174282A1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique
WO2013174270A1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique
WO2013174269A1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique
WO2013174273A1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique
WO2013174280A1 (fr) Système d'énergie de véhicule électrique, véhicule électrique le comprenant et procédé de chauffage de groupe de batteries de véhicule électrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794002

Country of ref document: EP

Kind code of ref document: A1