WO2013172673A1 - Plating method and plating solution for zirconium alloy plating and titanium alloy plating - Google Patents

Plating method and plating solution for zirconium alloy plating and titanium alloy plating Download PDF

Info

Publication number
WO2013172673A1
WO2013172673A1 PCT/KR2013/004358 KR2013004358W WO2013172673A1 WO 2013172673 A1 WO2013172673 A1 WO 2013172673A1 KR 2013004358 W KR2013004358 W KR 2013004358W WO 2013172673 A1 WO2013172673 A1 WO 2013172673A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
zirconium
compound
citric acid
complexing agent
Prior art date
Application number
PCT/KR2013/004358
Other languages
French (fr)
Korean (ko)
Inventor
윤종오
Original Assignee
Yoon Jong-Oh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoon Jong-Oh filed Critical Yoon Jong-Oh
Publication of WO2013172673A1 publication Critical patent/WO2013172673A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1671Electric field
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50

Definitions

  • This technology relates to zirconium alloy plating and titanium alloy plating solutions and plating methods.
  • the inventor of this technology invented a titanium ion aqueous solution in February 2011, and invented the patent of Korean Patent Application No. 10-2011-0074492, knowing that alloy plating using this titanium ion aqueous solution is possible, and in addition, Korean Patent Application No. 10 Zirconium alloy plating and alloy plating of titanium were carried out through -2011-0016960, Korean Patent Application No. 10-2011-0074496.
  • the plating range was insufficient so that the plating range was too narrow to be industrially available, and the surface was rough.
  • the plating solution was easily decomposed into black due to the strong electrical resistance of titanium ions, so that the plating solution was difficult to manage.
  • This problem is related to the inherent properties of metals in which zirconium and titanium have lower electrical conductivity than other plateable metals.
  • zirconium and titanium have a significantly lower electrical conductivity than metals used as plating metals in general, and have a metal conductivity three times lower than that of chromium, which requires the most electrical reducing power in electroplating. admit.
  • the plating solution was decomposed by generating a lot of loads and resistances during plating, and high energy was required.
  • the surface of this difficult-plated product was so rough that the appearance was difficult to have commerciality.
  • DL-Tartaric acid used as a complexing agent, acted as a complexing agent of titanium and zirconium, but was not sufficient. It was a sole complexing agent that did not connect other vacant metals together. It did not help.
  • An object of the present invention is to provide a titanium or zirconium alloy plating method having excellent coating power.
  • Another object of the present invention is to provide a plating liquid for smoothly using the provided plating method.
  • Still another object of the present invention is to provide a plated product having a zirconium alloy plated layer or a titanium alloy plated layer having a beautiful appearance and high durability by using the provided plating solution.
  • Products coated with the titanium and zirconium alloy plating solution according to the present invention will replace the overall surface treatment at a high speed in the future with high durability and excellent decoration.
  • hexavalent chromium since hexavalent chromium has a high durability and corrosion resistance as well as excellent coating power, it can be used without any difficulty in the conventional plating process, and also excellent in economic efficiency due to high bath stability.
  • 1 is a schematic view of a linked complexing agent.
  • the present invention provides a composite reduction plating method for forming a titanium and zirconium alloy plating layer.
  • the present invention provides a plating solution capable of selectively using a composite reduction plating method.
  • the present invention provides a method for producing a plating solution that can use a complex reduction plating method, comprising the steps of: a) providing at least one of a zirconium compound or a titanium compound; And b) liquefying the zirconium or titanium compound of step a); c) adding a citric acid compound as a complexing agent to the liquid phase of step b); Dissolving the main metal compound to be alloyed with titanium or zirconium in the solution of step d); e) injecting a reducing agent into the liquid phase of step d) as necessary; f) additionally adding auxiliary metal ions to the liquid phase of step e) as needed; g) adjusting the pH of the alloy plating solution; provides a method for producing a titanium and zirconium alloy composite reduction method plating solution comprising a.
  • titanium dioxide identified by the inventors' invention can be dissolved in concentrated sulfuric acid
  • titanium tetrachloride can be used as titanium chloride
  • titanium compounds such as titanium trichloride and titanium dichloride.
  • zirconium zirconium tetrachloride (ZrCl 4 ), zirconium sulfate (Zr (SO 4 ) 2 4H 2 O), zirconium oxychloride (ZrOCl 2 8H 2 O), zirconium dioxide (ZrO 2 ), acetic acid, zirconium salt ( cas no.7585-20-8) and about 40 species.
  • the present invention is described as a starting material of zirconium sulfate, zirconium oxychloride and titanium sulfate, which can easily obtain zirconium or titanium ions as a means for achieving the above object, but is not limited thereto.
  • titanium and zirconium are simultaneously used by using the reducing power of electricity in a manner of applying electricity while adding a chemical reducing agent used in a reducing plating method rather than a substitution plating method to the plating liquid to use the chemical reducing power. Overcome the lack of electrical conductivity you have.
  • the reducing agent may use hypophosphite ions and boron ions or formalin, glyoxylic acid, and hydrazine. More specifically, sodium hypophosphite, potassium hypophosphite, ammonium hypophosphite, dimethylamine borane (DMAB), diethylamine borane (DEAB), sodium borohydride, hydrazine, formalin, glyoxylic acid, and the like.
  • hypophosphite ions and boron ions or formalin, glyoxylic acid, and hydrazine More specifically, sodium hypophosphite, potassium hypophosphite, ammonium hypophosphite, dimethylamine borane (DMAB), diethylamine borane (DEAB), sodium borohydride, hydrazine, formalin, glyoxylic acid, and the like.
  • DL-Tartaric acid which is conventionally used as a complexing agent suitable for simultaneously using such a reducing agent and electrical reduction, does not play a role of a conducting aid and does not serve as a linking complexing agent with metals to be plated together.
  • DL-tartaric acid acted as a complexing agent for titanium ions or zirconium ions, but it was more difficult to obtain high coverage because it did not act as a complexing agent for nickel or cobalt.
  • the linking complexing agent refers to a complexing agent in which titanium and zirconium and nickel and cobalt, which are main vacant metals, can be commonly used with one complexing agent interposed therebetween.
  • the complexing agent may be selected from citric acid ions, that is, citric acid compound group, and more specifically, citric acid, sodium citrate, and ammonium citrate may be used. Since citrate ions are known to be metals in which titanium and zirconium are not plated with a single metal, they connect to each other as nickel and cobalt, the main metals used as vacant metals, as a common complexing agent in any environment.
  • Citrate ions which are linked complexing agents, faithfully play the role of complexing agents and conduction aids in the reduction reaction and electroreduction through chemical reducing agents.
  • various alloy plating layers may be obtained through additional input of various metal ions, which were conventionally free of cobalt, nickel, and vacancies.
  • various metal ions which were conventionally free of cobalt, nickel, and vacancies.
  • vacancy with Au, Pt, Cu, Pd, Pb, Ag can be easily induced.
  • citric acid ions can secure a wider plating range than DL-Tartaric Acid and serve as conduction aids. In charge of. In addition, the plating of the composite reduction method is also possible by adding a Korean agent.
  • this complex type complexing agent even in the case of zirconium alloy plating or titanium alloy plating, even a small current of 0.5A / 1dm 2 can cover a wide range evenly to the minute parts of the product, and in a strong acid environment below pH 2.0 As it can induce vacancies of titanium and zirconium, many vacancies of titanium and zirconium are made, and a wide range of thickness can be applied by using a large amount of current of 10 A / dm 2 or less.
  • Reducing agent Sodium hypophosphite 20g / L
  • Anode Iridium Coated Anode
  • Example 2 After adding sodium hypophosphite to the solution of Example 1 and dissolving it, plating was performed at 85 ° C. and pH 1.5 over 30 minutes. Plated products were plated on the front and back so that no metal was visible. After the current was lowered to 0.5 A / dm 2 , even when the new specimen was plated, it was evenly plated to the rear surface.
  • Anode Iridium Coated Anode
  • the plating was performed over 30 minutes on brass specimens under the temperature of 90 ° C. Plating was relatively evenly plated, but rarely plated on the back.
  • Anode Iridium Coated Anode
  • Example 3 After adding and dissolving sodium hypophosphite, a chemical reducing agent, to the solution of Example 3, plating was performed at 85 ° C. and pH 1.5 over 30 minutes. Plated products were plated on the front and back so that no metal was visible.
  • Anode Iridium Coated Anode
  • Anode Iridium Coated Anode
  • Ti-Zr-Co plating was carried out for 1 hour at a temperature of 85 ° C. by drying 1 liter of the above composition, and a plating thickness of about 8.0 ⁇ m was measured.
  • a conductive aid can be used.
  • Conductive aids can be used with or without reducing agent, and sodium, potassium and ammonium compounds can be used.
  • sodium sulfate, potassium sulfate, ammonium sulfate, sodium chloride, potassium chloride, ammonium chloride, sodium nitrate, potassium nitrate, ammonium nitrate, and the like may be used, but ammonium compounds are more preferable than sodium or potassium.
  • ammonium sulfate ammonium chloride, ammonium nitrate, and ammonium nitrate is more preferable because it is a dangerous substance.
  • Anode Iridium Coated Anode
  • the pH in the [Table 2] is the pH of the plating liquid used in the plating example.
  • Each plated product exhibits extremely high corrosion resistance, making it impractical to test corrosion resistance with normal salt spray. Particularly, when the thickness is less than 2.0, the surface is hardly eroded even in the nitrate stock solution.
  • the chemical reducing agent and the electrical reduction method at the same time to allow the plating at such a low pH, in this process, the citric acid ions, the linking complexing agent plays a big role not only as a complexing agent but also as a conductive aid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

The present invention relates to a complex reduced plating solution and to a plating method, in which a citric acid ion which is a link type reducing agent is used as substitute technology for hexavalent chrome to thus use a titanium ion and a zirconium ion which have been difficult to use in plating, thereby achieving high corrosion resistance and high acid resistance and wide covering power.

Description

지르코늄 합금 도금 및 티타늄 합금 도금의 도금 방법 및 도금액Plating method and plating solution of zirconium alloy plating and titanium alloy plating
본 기술은 지르코늄 합금 도금 및 티타늄 합금 도금액 및 도금 방법에 관한 것이다. This technology relates to zirconium alloy plating and titanium alloy plating solutions and plating methods.
이 기술의 발명자는 2011년 2월 티타늄 이온 수용액을 발명하면서, 이 티타늄 이온 수용액을 이용한 합금 도금이 가능하다는 것을 알고 대한민국 특허 출원번호 10-2011-0074492호의 특허를 발명하였으며, 이외에 대한민국 특허 출원번호 10-2011-0016960호, 대한민국 특허 출원번호 10-2011-0074496호를 통하여 지르코늄 합금 도금 및 티타늄의 합금 도금을 실시 하였다.The inventor of this technology invented a titanium ion aqueous solution in February 2011, and invented the patent of Korean Patent Application No. 10-2011-0074492, knowing that alloy plating using this titanium ion aqueous solution is possible, and in addition, Korean Patent Application No. 10 Zirconium alloy plating and alloy plating of titanium were carried out through -2011-0016960, Korean Patent Application No. 10-2011-0074496.
그러나, 티타늄의 경우 대한민국 특허 출원번호 10-2011-0074492호의 내용과 같이, 전기도금시 저전류 부위에 피복이 되지 않는 문제가 심하게 발생하였고, 이러한 문제를 제거하기 위하여, pH를 상승시키면, Ti의 공석비가 낮아져서 원하는 내식성등의 물성을 얻을 수 없었다.However, in the case of titanium, as described in the Republic of Korea Patent Application No. 10-2011-0074492, there was a serious problem that the coating is not applied to the low current site during the electroplating, and to eliminate this problem, when the pH is raised, Vacancies ratio was lowered to obtain the desired properties such as corrosion resistance.
또한 pH를 더욱 낮추어 Ti의 공석비를 향상시키려고 하면, 도금 범위가 너무 좁아 산업상 이용하기가 불가능할 정도로 도금 범위가 부족하였으며, 표면이 거칠었다. 뿐만 아니라, 도금액은 티타늄 이온의 강한 전기저항 때문에 쉽게 검은 색으로 분해되는 현상이 발생하여 도금액 관리가 어렵다는 단점이 있었다.In addition, when trying to improve the vacancy ratio of Ti by further lowering the pH, the plating range was insufficient so that the plating range was too narrow to be industrially available, and the surface was rough. In addition, the plating solution was easily decomposed into black due to the strong electrical resistance of titanium ions, so that the plating solution was difficult to manage.
한편, 대한민국 특허 출원번호 10-2011-0074496호에 의한 지르코늄 합금 전기도금액 조성물 관련된 특허를 통해 지르코늄 합금 도금을 실시할 경우에도 해당 특허에 첨부된 사진에서처럼, 표면 외관이 상품성을 가지지 못할 만큼 심하게 거칠고, 구름낀 현상을 제거하기 어려웠다.Meanwhile, even when the zirconium alloy plating is performed through a patent related to the zirconium alloy electroplating solution composition according to Korean Patent Application No. 10-2011-0074496, the surface appearance is severely rough so as not to have commercial properties, as shown in the photograph attached to the patent. It was difficult to remove the cloudy phenomenon.
이러한 문제는 지르코늄과 티타늄이 다른 도금 가능한 금속에 비하여 낮은 전기전도도를 가지는 금속의 고유 특성과 관계가 있다.This problem is related to the inherent properties of metals in which zirconium and titanium have lower electrical conductivity than other plateable metals.
표 1 주요 금속의 전기 전도도
금속명 원소기호 전기전도도(106/cm )
Ag 0.6300
구리 Cu 0.5960
니켈 Ni 0.1430
코발트 Co 0.1720
크롬 Cr 0.0774
지르코늄 Zr 0.0236
티타늄 Ti 0.0234
Table 1 Electrical conductivity of the main metals
Metal name Symbol Conductivity (10 6 / cm)
silver Ag 0.6300
Copper Cu 0.5960
nickel Ni 0.1430
cobalt Co 0.1720
chrome Cr 0.0774
zirconium Zr 0.0236
titanium Ti 0.0234
[표 1]에서 보듯 지르코늄과 티타늄의 경우 평상시에 도금금속으로 사용되는 금속에 비하여 현저히 낮은 전기전도도를 보이는 금속으로서, 전해도금에서 가장 많은 전기적 환원력을 요구하는 크롬보다도 전기전도도가 3배 이상 낮은 금속들이다. As shown in [Table 1], zirconium and titanium have a significantly lower electrical conductivity than metals used as plating metals in general, and have a metal conductivity three times lower than that of chromium, which requires the most electrical reducing power in electroplating. admit.
이러한 이유로 도금시에 많은 부하와 저항을 발생시켜 도금액을 분해시키고, 높은 에너지를 요구하였으며, 이렇게 어렵게 도금된 제품도 외관이 상품성을 가지기 어려울 정도로 표면이 거칠었다.For this reason, the plating solution was decomposed by generating a lot of loads and resistances during plating, and high energy was required. The surface of this difficult-plated product was so rough that the appearance was difficult to have commerciality.
뿐만 아니라 티타늄의 경우, 금속으로 환원되자마자 물(H2O)에서 산소를 빼앗아 O2피막이 발생하는 문제로 수용액 상에서의 도금을 더욱 어렵게 만든다. 다만, 지르코늄의 경우 전통적인 무전해 도금 방식에 의한 합금 도금층을 얻을 수 있었지만, 전기도금 방식에 의하여서는 역시 티타늄만큼 낮은 전기 전도도로 인하여 같은 문제가 발생하였다.In addition, in the case of titanium, as soon as it is reduced to the metal deprives oxygen from water (H 2 O) to make the O 2 film to make the plating on the aqueous solution more difficult. However, in the case of zirconium, the alloy plating layer was obtained by the traditional electroless plating method, but the same problem occurred due to the electrical conductivity as low as titanium by the electroplating method.
또한, 착화제로 사용한 DL-Tartaric acid이 티타늄과 지르코늄의 착화제 역할을 하긴 하였지만 충분하지 아니하였고, 공석되는 다른 금속이 같이 연결되지 않는 단독적인 착화제이며, 전도 보조제 역할을 수행하지도 못하여 피복력 향상에 도움이 되지 못하였다. In addition, DL-Tartaric acid, used as a complexing agent, acted as a complexing agent of titanium and zirconium, but was not sufficient. It was a sole complexing agent that did not connect other vacant metals together. It did not help.
따라서 전통적인 전기도금 방식으로는 피복력이 우수하며, 높은 내식성과 내산성을 가진 지르코늄 합금 도금층 또는 티타늄 합금 도금층을 낮은 pH에서 얻는 것은 어려웠다.Therefore, it is difficult to obtain a zirconium alloy plating layer or a titanium alloy plating layer having a high coating resistance and high corrosion resistance and acid resistance by the conventional electroplating method at low pH.
본 발명의 목적은 피복력이 우수한 티타늄 또는 지르코늄 합금 도금방법을 제공하는 것이다.An object of the present invention is to provide a titanium or zirconium alloy plating method having excellent coating power.
본 발명의 다른 목적은 제공된 도금 방법을 원활하게 사용하기 위한 도금액을 제공하는 것이다.Another object of the present invention is to provide a plating liquid for smoothly using the provided plating method.
본 발명의 또 다른 목적은 제공된 도금액을 이용하여 외관이 미려하고, 높은 내구성을 가진 지르코늄 합금 도금층 또는 티타늄 합금 도금층을 가진 도금제품을 제공하는 것이다.Still another object of the present invention is to provide a plated product having a zirconium alloy plated layer or a titanium alloy plated layer having a beautiful appearance and high durability by using the provided plating solution.
본 발명에 의한 티타늄 및 지르코늄 합금 도금액으로 도금된 제품은 높은 내구성과 뛰어난 장식성으로 향후 표면처리 전반을 빠른 속도로 대체해 나갈 것이다.Products coated with the titanium and zirconium alloy plating solution according to the present invention will replace the overall surface treatment at a high speed in the future with high durability and excellent decoration.
특히 6가 크롬 대체기술로써 높은 내구성과 내식성을 가지는 것은 물론, 우수한 피복력을 가지고 있기 때문에 종래의 도금 공정에서 아무런 무리 없이 사용할 수 있을 뿐만 아니라, 높은 욕 안정성으로 경제성 또한 뛰어나다.In particular, since hexavalent chromium has a high durability and corrosion resistance as well as excellent coating power, it can be used without any difficulty in the conventional plating process, and also excellent in economic efficiency due to high bath stability.
본 발명의 기술적 사상 또는 보호 범위 내에서 당 분야의 통상의 지식을 가진 자에 의해 본 발명의 변형이나 개량이 가능함이 명백하다. 따라서, 본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허 청구 범위 및 그 동등범위에 의하여 명확해질 것이다.It is apparent that modifications and improvements of the present invention are possible by those skilled in the art within the technical spirit or protection scope of the present invention. Therefore, all the simple modifications and variations of this invention belong to the scope of the present invention, The specific protection scope of this invention will become clear by the attached claim and its equal range.
도 1은 연결형 착화제의 모형도.1 is a schematic view of a linked complexing agent.
상기 목적을 달성하기 위하여 본 발명에서는, 티타늄 및 지르코늄 합금 도금층을 형성하기 위한 복합 환원 도금방법을 제공한다.In order to achieve the above object, the present invention provides a composite reduction plating method for forming a titanium and zirconium alloy plating layer.
또한 복합 환원 도금방법을 선택적으로 사용할 수 있는 도금액을 제공한다.In addition, the present invention provides a plating solution capable of selectively using a composite reduction plating method.
또한, 본 발명은 복합환원 도금방법을 사용할 수 있는 도금액의 제조방법에 있어서, a) 지르코늄화합물 또는 티타늄 화합물 중 적어도 하나 이상을 제공하는 단계; 및 b) 상기 a)단계의지르코늄 또는 티타늄 화합물을 액상화시키는 단계; c) 상기 b)단계의 액상에 착화제로 구연산 화합물을 투입하는 단계; 상기 d)단계의 용액에 티타늄 또는 지르코늄과 합금화될 주요 금속화합물을 용해하는 단계; e) 상기 d)단계의 액상에 필요에 따라 환원제를 투입하는 단계; f) 상기 e)단계의 액상에 필요에 따라 보조금속이온을 추가적으로 투입하는 단계; g) 상기합금도금액의 pH를 조절하는 단계;를 포함하는 티타늄 및 지르코늄 합금복합환원방식 도금액의 제조방법을 제공한다.In addition, the present invention provides a method for producing a plating solution that can use a complex reduction plating method, comprising the steps of: a) providing at least one of a zirconium compound or a titanium compound; And b) liquefying the zirconium or titanium compound of step a); c) adding a citric acid compound as a complexing agent to the liquid phase of step b); Dissolving the main metal compound to be alloyed with titanium or zirconium in the solution of step d); e) injecting a reducing agent into the liquid phase of step d) as necessary; f) additionally adding auxiliary metal ions to the liquid phase of step e) as needed; g) adjusting the pH of the alloy plating solution; provides a method for producing a titanium and zirconium alloy composite reduction method plating solution comprising a.
이하에서는 본원 발명의 구성수단의 작용과 바람직한 실시예를 중심으로 본원발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the action of the constituent means of the present invention and preferred embodiments.
도금에 사용할 지르코늄 이온 및 티타늄 이온을 을 첨가하는 방법은 종류가 많고 다양하다. There are many ways to add zirconium ions and titanium ions to be used for plating.
티타늄의 경우 발명자의 발명에 의하여 확인된 이산화티타늄을 진한 황산에 용해하여 사용할 수도 있고, 사염화티타늄을 티타늄 클로라이드로 만들어 사용할 수도 있으며, 이 이외에 삼염화티타늄, 이염화티타늄등 다양한 티타늄 화합물이 있다.In the case of titanium, the titanium dioxide identified by the inventors' invention can be dissolved in concentrated sulfuric acid, titanium tetrachloride can be used as titanium chloride, and there are various titanium compounds such as titanium trichloride and titanium dichloride.
또 지르코늄의 경우에도 사염화 지르코늄(ZrCl4), 황산지르코늄 (Zr(SO4)2·4H2O), 지르코늄 옥시 클로라이드 (ZrOCl2 8H2O), 이산화지르코늄 ( ZrO2 ), 아세트산, 지르코늄 염 ( cas no. 7585-20-8 ) 등 약 40여종에 이른다.Also in the case of zirconium, zirconium tetrachloride (ZrCl 4 ), zirconium sulfate (Zr (SO 4 ) 2 4H 2 O), zirconium oxychloride (ZrOCl 2 8H 2 O), zirconium dioxide (ZrO 2 ), acetic acid, zirconium salt ( cas no.7585-20-8) and about 40 species.
따라서 본 발명은 상기 목적을 달성하기 위한 방편으로 손쉽게 지르코늄 또는 티타늄 이온을 얻을 수 있는 황산지르코늄, 옥시염화지르코늄 및 황산티타늄을 출발물질로 하여 설명하지만 여기에 국한되는 것은 아니다.Therefore, the present invention is described as a starting material of zirconium sulfate, zirconium oxychloride and titanium sulfate, which can easily obtain zirconium or titanium ions as a means for achieving the above object, but is not limited thereto.
본 발명은 티타늄과 지르코늄 이온이 전기전도도가 나빠서 순수한 전기의 환원력으로는 높은 피복력을 확보할 수 없기 때문에, 환원제를 이용한 화학적 환원과 전기적 환원을 도금시에 모두 사용하여 높은 피복력을 확보하여, 티타늄 및 지르코늄 합금 도금의 문제를 해결한다.In the present invention, since titanium and zirconium ions are poor in electrical conductivity, high coating power cannot be secured by pure electric reducing power. Thus, both chemical reduction and electrical reduction using a reducing agent are used at the time of plating, thereby ensuring high coating power. It solves the problem of zirconium alloy plating.
지르코늄의 경우 화학적 환원제로 무전해 합금 도금이 가능하지만, 티타늄의 경우에는 수용액속에서 무전해 합금 도금을 하고자 하면, 처음에는 환원반응이 일어나지만, 이후 도금액 내의 물(H2O)에서 산소를 받아들여 산화피막을 쉽게 만들기 때문에 이후 두께도금이 불가능한 단점이 있다. (반응은 지속되지만 도금층이 형성되지는 않는다.)In the case of zirconium, electroless alloy plating is possible with a chemical reducing agent, but in the case of titanium, when electroless alloy plating is performed in an aqueous solution, a reduction reaction occurs at first, but then receives oxygen from water (H 2 O) in the plating solution. Since the oxide film is easily indented, there is a disadvantage in that thickness plating is impossible later. (Reaction continues but no plating layer is formed.)
또한 전기도금에 있어서는 전술한 바와 같이 낮은 전기전도도로 인하여, 넓은 피복력을 얻기가 어려웠다. In addition, in the electroplating, it is difficult to obtain a wide coating force because of the low electrical conductivity as described above.
넓은 피복력을 얻고자 pH를 상승시킬 경우 낮은 공석비로 인하여, 내식성 또는 내산성이 낮아져 합금 도금의 의미가 줄어드는 단점이 있었다. When increasing the pH to obtain a wide coverage, due to the low vacancy ratio, there was a disadvantage that the meaning of the alloy plating is reduced due to the low corrosion resistance or acid resistance.
본 발명은 이러한 문제를 해결하기 위하여, 치환도금이 아닌 환원도금 방식에 사용되는 화학적 환원제를 도금액에 첨가하여 화학적 환원력을 이용하면서, 전기를 인가하는 방식으로 전기의 환원력을 동시에 사용하여 티타늄과 지르코늄이 가지고 있는 부족한 전기전도도를 극복한다.In order to solve this problem, titanium and zirconium are simultaneously used by using the reducing power of electricity in a manner of applying electricity while adding a chemical reducing agent used in a reducing plating method rather than a substitution plating method to the plating liquid to use the chemical reducing power. Overcome the lack of electrical conductivity you have.
본 발명에 있어서 환원제는 차아인산이온과 붕소이온 또는 포르말린, 글리옥실산, 히드라진을 사용할 수 있다. 좀 더 구체적으로는 차아인산나트륨, 차아인산칼륨, 차아인산암모늄, 디메틸아민보란(DMAB), 디에틸아민보란(DEAB), 수소화붕소나트륨, 히드라진, 포르말린, 글리옥실산 등을 들 수 있다. In the present invention, the reducing agent may use hypophosphite ions and boron ions or formalin, glyoxylic acid, and hydrazine. More specifically, sodium hypophosphite, potassium hypophosphite, ammonium hypophosphite, dimethylamine borane (DMAB), diethylamine borane (DEAB), sodium borohydride, hydrazine, formalin, glyoxylic acid, and the like.
이러한 환원제의 사용과 함께, 0.5A/dm2 내지 10A/dm2의 전기를 인가하여 도금하여, 폭 넓은 피복력을 확보할 수 있다. 0.5A/dm2 미만은 인가하는 전류량이 너무 미약하여 효과가 미미하고, 10A/dm2 초과의 높은 전류까지는 필요로 하지 않는다.Along with the use of such a reducing agent, it is possible to apply a plating of 0.5A / dm 2 to 10A / dm 2 by plating to secure a wide coating force. Less than 0.5 A / dm 2, the amount of current to be applied is so small that the effect is insignificant, and does not require up to a high current of more than 10 A / dm 2 .
또한, 이러한 환원제와 전기적 환원을 동시에 사용하기에 적합한 착화제로서 종래에 사용하는 DL-Tartaric acid은 전도보조제 역할을 하지도 못하고, 같이 도금하는 금속들과의 연결형 착화제 역할도 하지 못하여 적합하지 아니하다. 즉, DL-tartaric acid는 티타늄 이온이나 지르코늄 이온의 착화제 역할은 하였지만, 같이 공석되는 니켈이나 코발트에 대하여는 착화제 역할을 수행하지 못하였기 때문에 높은 피복력을 얻기가 더더욱 힘들었다. In addition, DL-Tartaric acid, which is conventionally used as a complexing agent suitable for simultaneously using such a reducing agent and electrical reduction, does not play a role of a conducting aid and does not serve as a linking complexing agent with metals to be plated together. . In other words, DL-tartaric acid acted as a complexing agent for titanium ions or zirconium ions, but it was more difficult to obtain high coverage because it did not act as a complexing agent for nickel or cobalt.
여기서 연결형 착화제란 티타늄 및 지르코늄과 주요 공석 금속인 니켈 및 코발트가 한가지의 착화제를 사이에 두고 공통으로 사용할 수 있는 착화제를 뜻한다. Here, the linking complexing agent refers to a complexing agent in which titanium and zirconium and nickel and cobalt, which are main vacant metals, can be commonly used with one complexing agent interposed therebetween.
이 외에 금, 백금, 구리, 파라듐, 납, 은을 합금 도금용 주요금속으로 사용하여 도금하는 경우에도, 폭 넓은 피복력을 확보하여 준다.In addition, even when gold, platinum, copper, palladium, lead, and silver are used as the main metal for alloy plating, a wide coating power is secured.
이러한 합금 도금용 주요 금속 이온의 공급원으로서, 황산니켈, 설파민산니켈, 염화니켈, 초산니켈, 황산코발트, 염화코발트, 황산코발트암모늄, 염화제2금(AuCl3·2H2O), 염화제2금수소산(HAuC14·4H20), 시안화금(AuCN), 시안화제1금칼륨(KAu(CN)2·2H20), 시안화제1금나트륨(NaAu(CN)2), 염화백금산, 염화제2백금, 질산백금암모늄, 황산구리, 염화구리, 시안화구리, 피로인산구리, 황산팔라듐, 염화팔라듐, 질산팔라듐암모늄, 초산납, 붕불화납, 질산납, 염기성탄산납, 질산은, 염화은, 산화은, 황산은, 시안화은, 시안화은칼륨, 시안화은나트륨 등의 금속화합물을 용해하여 사용할 수 있다.As a source of the main metal ions for plating such an alloy, nickel sulfate, nickel sulfamate, nickel chloride, nickel acetate, cobalt sulfate, cobalt chloride, cobalt ammonium sulfate, ferric chloride (AuCl 3 · 2H2O), dihydrogen chloride hydrochloride (HAuC1 4 · 4H20), gold cyanide (AuCN), potassium cyanide potassium (KAu (CN) 2 · 2H20), sodium cyanide sodium (NaAu (CN) 2 ), platinum chloride, platinum chloride, nitric acid Platinum ammonium, copper sulfate, copper chloride, copper cyanide, copper pyrophosphate, palladium sulfate, palladium chloride, palladium nitrate, lead acetate, lead borofluoride, lead nitrate, lead carbonate, silver nitrate, silver chloride, silver oxide, silver sulfate, silver cyanide, silver cyanide Metal compounds, such as potassium and silver cyanide, can be melt | dissolved and used.
본 발명에 있어서 착화제는 구연산 이온 즉, 구연산 화합물 군에서 선택할 수 있으며, 더욱 구체적으로는 구연산, 구연산나트륨, 구연산암모늄을 사용할 수 있다. 이 구연산 이온은 티타늄과 지르코늄이 단일금속으로 도금되지 않는 금속으로 알려져 있기 때문에 공석되는 금속으로 사용되는 주요금속인 니켈 및 코발트와 어떠한 환경에서도 공통의 착화제 역할로 서로를 연결하여 준다. In the present invention, the complexing agent may be selected from citric acid ions, that is, citric acid compound group, and more specifically, citric acid, sodium citrate, and ammonium citrate may be used. Since citrate ions are known to be metals in which titanium and zirconium are not plated with a single metal, they connect to each other as nickel and cobalt, the main metals used as vacant metals, as a common complexing agent in any environment.
예를 들어 Ti-Ni, Ti-Co, Zr-Ni, Zr-Co, Ti-Zr-Ni, Ti-Zr-Co, Ti-Zr-Ni-Co등의 조합에 있어서 완벽한 연결형 착화제 역할을 하여주며, 그 양에 따라 전도 보조제 역할까지 충실히 수행하여 주기 때문에 DL-Tartaric acid를 쓸 때보다 더 폭넓은 피복력을 확보할 수 있으나, 이 경우에도 화학적 환원과 전기적 환원을 동시에 사용한 경우보다 더 넓은 피복력을 갖지는 않는다.For example, Ti-Ni, Ti-Co, Zr-Ni, Zr-Co, Ti-Zr-Ni, Ti-Zr-Co, Ti-Zr-Ni-Co, etc. Because it faithfully performs the role of conduction aid according to the amount, it can secure wider coverage than when using DL-Tartaric acid, but in this case, it has more coverage than chemical and electrical reduction. I don't have it.
이 연결형 착화제인 구연산 이온은 , 화학적 환원제를 통한 환원반응과 전기환원에 있어서도 동시에 착화제로서와 전도보보제로서의 역할을 충실하게 수행해낸다. Citrate ions, which are linked complexing agents, faithfully play the role of complexing agents and conduction aids in the reduction reaction and electroreduction through chemical reducing agents.
뿐만 아니라, 종래에 코발트 및 니켈과 공석이 자유로웠던 각종 금속이온들의 추가적인 투입을 통해 다양한 합금 도금층을 얻을 수 있다. 예를 들면, Au, Pt, Cu, Pd, Pb, Ag와의 공석을 손쉽게 유도할 수 있다. In addition, various alloy plating layers may be obtained through additional input of various metal ions, which were conventionally free of cobalt, nickel, and vacancies. For example, vacancy with Au, Pt, Cu, Pd, Pb, Ag can be easily induced.
이러한 금속이온들 예를 들면, Au, Pt, Cu, Pd, Pb, Ag와 Ti 또는 Zr합금 도금에 있어서도 구연산 이온은 DL-Tartaric Acid에 비하여, 폭 넓은 도금 범위를 확보할 수 있으며, 전도 보조제 역할을 담당한다. 또한, 한원제를 투입하여 복합환원 방식의 도금도 가능하다.Even in the plating of these metal ions, such as Au, Pt, Cu, Pd, Pb, Ag and Ti or Zr alloys, citric acid ions can secure a wider plating range than DL-Tartaric Acid and serve as conduction aids. In charge of. In addition, the plating of the composite reduction method is also possible by adding a Korean agent.
이 연결형 착화제의 사용으로 인하여, 지르코늄 합금 도금 또는 티타늄 합금 도금에 있어서도 0.5A/1dm2 의 미세한 전류만 흘려도 제품의 미세한 부분까지 골고루 넓은 범위를 피복할 수 있게 되며, pH 2.0 미만의 강산 환경하에서 티타늄 및 지르코늄의 공석을 유도할 수 도 있기 때문에 티타늄과 지르코늄의 많은 공석이 이루어지며, 10A/dm2 이하의 많은 양의 전류를 이용하여 폭 넓은 범위에 두께도금도 가능하다. Due to the use of this complex type complexing agent, even in the case of zirconium alloy plating or titanium alloy plating, even a small current of 0.5A / 1dm 2 can cover a wide range evenly to the minute parts of the product, and in a strong acid environment below pH 2.0 As it can induce vacancies of titanium and zirconium, many vacancies of titanium and zirconium are made, and a wide range of thickness can be applied by using a large amount of current of 10 A / dm 2 or less.
[실시예 1] Example 1
옥시염화지르코늄 8수화물 100g100 g of zirconium oxychloride octahydrate
염화니켈 20gNickel Chloride 20g
구연산 60g60 g citric acid
붕산 30g30 g of boric acid
전류밀도 : 2.5A/dm2 Current density: 2.5A / dm 2
양극 : 카본 양극Anode: Carbon Anode
상기 재료를 순수 600ml에 용해한 후 물을 체워 1리터의 도금액을 제조하였으며, 온도는 85℃, pH 1.5에서 30분에 걸쳐 도금을 실시하였다. 시편은 황동 시편을 세정하여 사용하였다. 실험결과 전면부에는 고르게 피복되었으나, 배면엔 거의 도금이 되지 아니하였다. 이후 전류량을 10A/dm2 까지 상승시켰지만 배면에 도금이 거의 올라가지 아니하였다.After dissolving the material in 600 ml of pure water, water was filled to prepare a 1 liter plating solution, and the plating was performed at 85 ° C. and pH 1.5 for 30 minutes. The specimen was used to clean the brass specimen. The test results were evenly coated on the front part, but hardly plated on the back side. Since the amount of current was raised to 10A / dm 2 but the plating almost did not rise on the back.
[실시예 2] Example 2
도금용액 : 실시예 1의 용액.Plating solution: solution of Example 1.
환원제 : 차아인산나트륨 20g/LReducing agent: Sodium hypophosphite 20g / L
전류밀도 : 2.5A/dm2 Current density: 2.5A / dm 2
양극 : 이리듐 코팅 양극Anode: Iridium Coated Anode
상기 실시예1의 용액에 차아인산 나트륨을 첨가하고 용해한 후 85℃, pH 1.5에서 30분에 걸쳐 도금을 실시하였다. 도금제품은 앞면과 뒷면이 모두 소지금속이 보이지 않도록 도금되었다. 이후 전류량을 0.5A/dm2 까지 낮추어 새로운 시편에 도금을 하였을 때도 배면까지 고르게 도금되었다.After adding sodium hypophosphite to the solution of Example 1 and dissolving it, plating was performed at 85 ° C. and pH 1.5 over 30 minutes. Plated products were plated on the front and back so that no metal was visible. After the current was lowered to 0.5 A / dm 2 , even when the new specimen was plated, it was evenly plated to the rear surface.
실제 도금되기에는 미약한 전류이지만, 지속적으로 환원반응을 유도하는 역할을 하여, 낮은 pH에서도 환원제가 환원 역할을 같이 담당하는 효과를 가져와서 이런 결과가 나오는 것으로 판단되었다. Although it is a weak current to be actually plated, it plays a role of continuously inducing a reduction reaction, and this result was judged to have the effect of reducing agent acting as a reducing role even at low pH.
[실시예 3] Example 3
황산티탄 (TiOSO4 2H2O) 50gTitanium Sulfate (TiOSO 4 2H 2 O) 50g
구연산 60g60 g citric acid
요소 15g15 g of urea
염화니켈 20gNickel Chloride 20g
붕산 30g30 g of boric acid
전류밀도 : 2.5A/dm2 Current density: 2.5A / dm 2
양극 : 이리듐 코팅 양극Anode: Iridium Coated Anode
pH 3.5 ( 염산 및 암모니아 사용 )pH 3.5 (with hydrochloric acid and ammonia)
온도 90℃의 조건에서 황동시편에 30분에 걸쳐 도금을 실시하였다. 도금은 비교적 고르게 도금되었으나, 배면에는 도금이 거의 되지 아니하였다. The plating was performed over 30 minutes on brass specimens under the temperature of 90 ° C. Plating was relatively evenly plated, but rarely plated on the back.
[실시예 4] Example 4
도금용액 : 실시예 3의 용액.Plating solution: solution of Example 3.
첨가제 : 차아인산나트륨 20g/LAdditive: Sodium hypophosphite 20g / L
전류밀도 : 2.5A/dm2 Current density: 2.5A / dm 2
pH 1.5 ( 염산 및 암모니아 사용 )pH 1.5 (with hydrochloric acid and ammonia)
양극 : 이리듐 코팅 양극Anode: Iridium Coated Anode
상기 실시예3의 용액에 화학적 환원제인 차아인산 나트륨을 첨가하고 용해한 후 85℃, pH 1.5에서 30분에 걸쳐 도금을 실시하였다. 도금제품은 앞면과 뒷면이 모두 소지금속이 보이지 않도록 도금되었다. After adding and dissolving sodium hypophosphite, a chemical reducing agent, to the solution of Example 3, plating was performed at 85 ° C. and pH 1.5 over 30 minutes. Plated products were plated on the front and back so that no metal was visible.
[실시예 5] Example 5
황산티탄 (TiOSO4 2H2O) 50gTitanium Sulfate (TiOSO 4 2H 2 O) 50g
황산지르코늄 (Zr(SO4)2 4H2O) 30gZirconium Sulfate (Zr (SO 4 ) 2 4H 2 O) 30g
구연산 80gCitric acid 80g
요소 15g15 g of urea
염화니켈 20gNickel Chloride 20g
붕산 30g30 g of boric acid
첨가제 : 차아인산나트륨 20g/LAdditive: Sodium hypophosphite 20g / L
전류밀도 : 2.5A/dm2 Current density: 2.5A / dm 2
pH 1.5 ( 염산 및 암모니아 사용 )pH 1.5 (with hydrochloric acid and ammonia)
양극 : 이리듐 코팅 양극Anode: Iridium Coated Anode
상기의 조성으로 1리터를 건욕하여 Ti-Zr-Ni도금을 85℃의 온도에서 1시간 동안 실시하였으며, 도금두께는 약 10.0㎛이 측정되었다.1 liter of the bath was dried and Ti-Zr-Ni plating was carried out at a temperature of 85 ° C. for 1 hour, and the plating thickness of about 10.0 μm was measured.
[실시예 6] Example 6
황산티탄 (TiOSO4 2H2O) 50gTitanium Sulfate (TiOSO 4 2H 2 O) 50g
황산지르코늄 (Zr(SO4)2 4H2O) 30gZirconium Sulfate (Zr (SO 4 ) 2 4H 2 O) 30g
구연산 80gCitric acid 80g
요소 15g15 g of urea
황산코발트 20g20 g of cobalt sulfate
염화암모늄 50g50 g ammonium chloride
붕산 30g30 g of boric acid
첨가제 : 차아인산나트륨 20g/LAdditive: Sodium hypophosphite 20g / L
전류밀도 : 2.5A/dm2 Current density: 2.5A / dm 2
pH 1.5 ( 염산 및 암모니아 사용 )pH 1.5 (with hydrochloric acid and ammonia)
양극 : 이리듐 코팅 양극Anode: Iridium Coated Anode
상기의 조성으로 1리터를 건욕하여 Ti-Zr-Co도금을 85℃의 온도에서 1시간 동안 실시하였으며, 도금두께는 약 8.0㎛이 측정되었다.Ti-Zr-Co plating was carried out for 1 hour at a temperature of 85 ° C. by drying 1 liter of the above composition, and a plating thickness of about 8.0 μm was measured.
본 발명에 있어서 전도 보조제를 쓸 수 있다. 전도보조제는 환원제의 투입 여부와 상관없이 사용할 수 있으며, 나트륨화합물, 칼륨화합물, 암모늄화합물들을 쓸 수 있다.In the present invention, a conductive aid can be used. Conductive aids can be used with or without reducing agent, and sodium, potassium and ammonium compounds can be used.
좀 더 자세하게는 황산나트륨, 황산칼륨, 황산암모늄, 염화나트륨, 염화칼륨, 염화암모늄, 질산나트륨, 질산칼륨, 질산 암모늄 등을 사용할 수 있으나, 나트륨 또는 칼륨에 비하여 암모늄 화합물들이 더 바람직하다.More specifically, sodium sulfate, potassium sulfate, ammonium sulfate, sodium chloride, potassium chloride, ammonium chloride, sodium nitrate, potassium nitrate, ammonium nitrate, and the like may be used, but ammonium compounds are more preferable than sodium or potassium.
따라서, 황산암모늄, 염화암모늄, 질산암모늄을 사용하는 것이 바람직하며, 이 중 질산암모늄은 위험물질이므로 사용을 자제하는 것이 더욱 바람직하다.Therefore, it is preferable to use ammonium sulfate, ammonium chloride, ammonium nitrate, and ammonium nitrate is more preferable because it is a dangerous substance.
[실시예 7] Example 7
황산티탄 (TiOSO4 2H2O) 50gTitanium Sulfate (TiOSO 4 2H 2 O) 50g
황산지르코늄 (Zr(SO4)2 4H2O) 30gZirconium Sulfate (Zr (SO 4 ) 2 4H 2 O) 30g
구연산 100g100 g citric acid
요소 15g15 g of urea
황산코발트 20g20 g of cobalt sulfate
염화니켈 20gNickel Chloride 20g
염화암모늄 50g50 g ammonium chloride
붕산 30g30 g of boric acid
첨가제 : 차아인산나트륨 20g/LAdditive: Sodium hypophosphite 20g / L
전류밀도 : 2.5A/dm2 Current density: 2.5A / dm 2
pH 1.5 ( 염산 및 암모니아 사용 )pH 1.5 (with hydrochloric acid and ammonia)
양극 : 이리듐 코팅 양극Anode: Iridium Coated Anode
상기의 조성으로 1리터를 건욕하여 Ti-Zr-Co-Ni도금을 85℃의 온도에서 1시간 동안 실시하였으며, 도금두께는 약 8.0㎛이 측정되었다.1 liter of the bath was dried in the above composition, and Ti-Zr-Co-Ni plating was performed at a temperature of 85 ° C. for 1 hour, and a plating thickness of about 8.0 μm was measured.
[실시예 8]Example 8
표 2 내식성 및 내산성 실험
구분 질산50% 염산50% 황산원액 왕수
실시예1 pH1.5 OK OK OK OK
실시예2 pH1.5 OK OK OK OK
실시예3 pH3.5 NG(검게변함) OK OK OK
실시예4 pH1.5 OK OK OK OK
TABLE 2 Corrosion and Acid Resistance Test
division Nitric Acid 50% Hydrochloric acid 50% Sulfuric acid aqua regia
Example 1 pH1.5 OK OK OK OK
Example 2 pH1.5 OK OK OK OK
Example 3 pH 3.5 NG (turns black) OK OK OK
Example 4 pH1.5 OK OK OK OK
여기서, 상기 [표 2]에서의 pH는 도금 실시예에서 사용된 도금액의 pH임.Here, the pH in the [Table 2] is the pH of the plating liquid used in the plating example.
도금된 각 제품은 일반적인 염수분무로 내식성을 테스트 하는 것이 의미를 가지기 어려울 만큼 초 고내식성을 발휘한다. 특히 pH가 2.0 미만인 경우 두께도금을 한 경우에는 질산 원액에서도 표면이 거의 침식되지 않는다. Each plated product exhibits extremely high corrosion resistance, making it impractical to test corrosion resistance with normal salt spray. Particularly, when the thickness is less than 2.0, the surface is hardly eroded even in the nitrate stock solution.
이러한 낮은 pH에서 도금을 행할 수 있도록 하여주는 것이 화학적 환원제와 전기적 환원방법을 동시에 사용하기에 가능한 것이며, 이 과정에서 연결형 착화제인 구연산 이온이 착화제로서 뿐만 아니라 전도 보조제로서도 큰 역할을 담당한다.It is possible to use the chemical reducing agent and the electrical reduction method at the same time to allow the plating at such a low pH, in this process, the citric acid ions, the linking complexing agent plays a big role not only as a complexing agent but also as a conductive aid.
상술한 실시 예는 본 발명의 바람직한 실시 예에 대해 기재한 것이지만, 본 발명은 이에 한정되지 않고 본 발명의 기술적인 사상에서 벗어나지 않는 범위 내에서 다양한 형태로 변경 실시할 수 있음은 본 발명의 기술분야에 종사하는 통상의 기술자들에게 있어서 명백한 것이다.Although the above-described embodiment has been described with respect to the preferred embodiment of the present invention, the present invention is not limited thereto and may be modified in various forms without departing from the technical spirit of the present invention. It is obvious to the ordinary technicians who are engaged in.

Claims (22)

  1. 구연산 화합물을 착화제로 사용하는 티타늄 합금 도금을 위한 전기 도금액.Electroplating solution for titanium alloy plating using citric acid compound as a complexing agent.
  2. 제 1항에 있어서, 상기티타늄은, 황산티타늄을 출발물질로 사용한 것을 특징으로 하는 구연산 화합물을 착화제로 사용하는 티타늄 합금 도금을 위한 전기 도금액.The electroplating solution for titanium alloy plating according to claim 1, wherein the titanium is made of titanium sulfate as a starting material.
  3. a) 티타늄화합물을 제공하는 단계; 및a) providing a titanium compound; And
    b) 상기 a)단계의 티타늄화합물을 물에 녹여 액상화시키는 단계;b) liquefying the titanium compound of step a) in water;
    c) 상기 b)단계의 액상에 착화제로 구연산 화합물을 투입하는 단계;c) adding a citric acid compound as a complexing agent to the liquid phase of step b);
    d) 상기 c)단계의 액상화된 용액에 티타늄과 합금화될 니켈, 코발트, 금, 백금, 구리, 팔라듐, 납, 은, 지르코늄 금속 및 이들 금속의 금속화합물 중 적어도 하나 이상의 물질을 용해하는 단계;d) dissolving at least one material of nickel, cobalt, gold, platinum, copper, palladium, lead, silver, zirconium metal and metal compounds of these metals to be alloyed with titanium in the liquefied solution of step c);
    g) 상기 d)단계의 액상에서 pH를 1.0 ~ 12.0으로 조절하는 단계;를 포함하는 구연산 화합물을 착화제로 사용하는 티타늄 합금 도금을 위한 전기 도금액의 제조방법.g) adjusting the pH to 1.0 to 12.0 in the liquid phase of step d); a method for producing an electroplating solution for titanium alloy plating using a citric acid compound as a complexing agent.
  4. 제 3항에 있어서, d) 단계에서의 니켈화합물은 황산니켈, 설파민산니켈, 염화니켈, 초산니켈 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하고, The method of claim 3, wherein the nickel compound in step d) is formed by mixing any one or two or more groups of nickel sulfate, nickel sulfamate, nickel chloride, and nickel acetate,
    코발트 화합물은 황산코발트, 염화코발트, 황산코발트암모늄 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하며, The cobalt compound is formed by mixing any one group or two or more groups of cobalt sulfate, cobalt chloride, and cobalt ammonium sulfate,
    금 화합물은 염화제2금(AuCl3·2H2O), 염화제2금수소산(HAuC14·4H20), 시안화금(AuCN), 시안화제1금칼륨(KAu(CN)2·2H20), 시안화제1금나트륨(NaAu(CN)2) 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하고, Gold compounds include dichlorochloride (AuCl 3 · 2H 2 O), dichlorohydrochloride (HAuC 1 4 · 4H 2 0), gold cyanide (AuCN), potassium cyanide (KAu (CN) 2 · 2H 2 0), sodium cyanide sodium (NaAu (CN) 2 ), or a mixture of two or more groups,
    백금 화합물은 염화백금산, 염화제2백금, 질산백금암모늄 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성된 것을 특징으로 하며, The platinum compound is characterized in that formed by mixing any one group or two or more groups of platinum chloride, platinum chloride, platinum ammonium nitrate,
    구리화합물은 황산구리, 염화구리, 시안화구리, 피로인산구리 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성된 것을 특징으로 하며, 팔라듐 화합물은 황산팔라듐, 염화팔라듐, 질산팔라듐암모늄 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하고,The copper compound is formed by mixing any one or two or more groups of copper sulfate, copper chloride, copper cyanide, copper pyrophosphate, and the palladium compound is any one of palladium sulfate, palladium chloride, and palladium ammonium nitrate, or Formed by mixing two or more groups,
    납 화합물은 초산납, 붕불화납, 질산납, 염기성탄산납 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하며,The lead compound is formed by mixing any one or two or more groups of lead acetate, lead boride fluoride, lead nitrate, and basic lead carbonate,
    은화합물은 질산은, 염화은, 산화은, 황산은, 시안화은, 시안화은칼륨, 시안화은나트륨 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하며, 지르코늄 화합물은 황산지르코늄, 옥시염화지르코늄, 디염화지르코늄, 플루오린화 지르코늄, 지르코늄 질산염, 아세트산 지르코늄 염, 지르코늄 옥탄산염, 탄산 칼륨 지르코늄 염 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하는 것을 특징으로 하는 구연산 화합물을 착화제로 사용하는 티타늄 합금 도금을 위한 전기 도금액의 제조방법.The silver compound is formed of silver nitrate, silver chloride, silver oxide, silver sulfate, silver cyanide, silver cyanide, silver cyanide, or a combination of two or more groups, and the zirconium compound is zirconium sulfate, zirconium oxychloride, dizirconia, fluorinated Zirconium, zirconium nitrate, zirconium acetate salt, zirconium octanate, potassium zirconium salt of any one group or a mixture of two or more groups formed by mixing a citric acid compound as a complexing agent of an electroplating solution for titanium alloy plating Manufacturing method.
  5. 제 3항에 있어서, c) 단계에서의 착화제로 사용하는 구연산 화합물은 구연산, 구연산나트륨, 구연산암모늄 중 어느 하나의 군 또는 2 이상의 군 을혼합하여 사용하는 것을 특징으로 하는 구연산 화합물을 착화제로 사용하는 티타늄 합금 도금을 위한 전기 도금액의 제조방법.4. The citric acid compound according to claim 3, wherein the citric acid compound used as the complexing agent in step c) is used as a complexing agent by using any one group of citric acid, sodium citrate, ammonium citrate or a mixture of two or more groups. Method for producing an electroplating solution for titanium alloy plating.
  6. 제 3항에 있어서, 상기 d)단계와 g)단계 사이에는 환원제를 투입하는 e)단계가 더 포함되는 것에 특징이 있는 구연산 화합물을 착화제로 사용하는 티타늄 합금 도금을 위한 전기 도금액의 제조방법.The method of claim 3, wherein the step d) and g) step of the step of introducing a reducing agent further comprises the step of e) using a citric acid compound as a complexing agent.
  7. 제 6항에 있어서, 상기 e) 단계에서의 환원제는 차이인산, 차아인산나트륨, 차아인산칼륨, 차아인산 암모늄, 디메틸 아민보란(DMAB), 디에틸 아민보란(DEAB), 수소화붕소나트륨, 히드라진, 포르말린 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 사용하는 것을 특징으로 하는 구연산 화합물을 착화제로 사용하는 티타늄 합금 도금을 위한 전기 도금액의 제조방법.The method of claim 6, wherein the reducing agent in step e) is chaophosphate, sodium hypophosphite, potassium hypophosphite, ammonium hypophosphite, dimethyl amineborane (DMAB), diethyl amineborane (DEAB), sodium borohydride, hydrazine, A method for producing an electroplating solution for plating titanium alloy using a citric acid compound as a complexing agent, characterized in that any one group of formalin or a mixture of two or more of them.
  8. 제 7항에 있어서, 환원제는 전기적 환원과 화학적 환원을 모두 사용하는 금속환원인 복합 환원 방식으로 도금을 하는 경우에 투입하는 것을 특징으로 하는 구연산 화합물을 착화제로 사용하는 티타늄 합금 도금을 위한 전기 도금액의 제조방법.The method of claim 7, wherein the reducing agent is added when the plating is performed in a complex reduction method, which is a metal reduction using both electrical reduction and chemical reduction of the electroplating solution for titanium alloy plating using a citric acid compound as a complexing agent. Manufacturing method.
  9. 제 3항에 있어서, 상기 d)단계와 g)단계 사이에는 추가로 합금화할 금속이온을 투입하는 f)단계가 더 포함되어 구성되는 것에 특징이 있는 구연산 화합물을 착화제로 사용하는 티타늄 합금 도금을 위한 전기 도금액의 제조방법.[4] The method of claim 3, wherein the step d) and g) further comprises a step f) of additionally injecting metal ions to be alloyed for the titanium alloy plating using the citric acid compound as a complexing agent. Method for producing an electroplating solution.
  10. 제 9항에 있어서, f) 단계에서 추가로 합금화할 금속이온은 Au, Pt, Cu, Pd, Pb, Ag, Zr 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 사용하는 것을 특징으로 하는 구연산 화합물을 착화제로 사용하는 티타늄 합금 도금을 위한 전기 도금액의 제조방법.10. The citric acid compound according to claim 9, wherein the metal ion to be alloyed further in step f) is a mixture of any one of Au, Pt, Cu, Pd, Pb, Ag, Zr, or two or more groups. Method for producing an electroplating solution for the titanium alloy plating using a complexing agent.
  11. 제 1항의 도금액으로 도금된 도금층이 적어도 한층 이상 도금된 도금제품.A plated product in which at least one plating layer plated with the plating liquid of claim 1 is plated.
  12. 구연산 화합물을 착화제로 사용하는 지르코늄 합금 도금을 위한 전기 도금액.Electroplating solution for plating zirconium alloys using citric acid compounds as complexing agents.
  13. 제 12항에 있어서, 상기지르코늄은, 황산지르코늄, 옥시염화지르코늄을출발물질로사용한것을특징으로하는구연산 화합물을 착화제로 사용하는 지르코늄 합금 도금을 위한 전기 도금액.The electroplating solution for plating a zirconium alloy according to claim 12, wherein the zirconium is characterized by using zirconium sulfate and zirconium oxychloride as starting materials.
  14. a) 지르코늄 화합물을 제공하는 단계; 및a) providing a zirconium compound; And
    b) 상기 a)단계의 지르코늄화합물을 물에 녹여 액상화시키는 단계;b) liquefying the zirconium compound of step a) in water;
    c) 상기 b)단계의 액상에 착화제로 구연산 화합물을 투입하는 단계;c) adding a citric acid compound as a complexing agent to the liquid phase of step b);
    d) 상기c)단계의 액상화된 용액에 지르코늄과 합금화될 니켈, 코발트, 금, 백금, 구리, 팔라듐, 납, 은 금속 및 이들 금속의 금속화합물 중 적어도 하나 이상의 물질을 용해하는 단계;d) dissolving at least one material of nickel, cobalt, gold, platinum, copper, palladium, lead, silver metals and metal compounds of these metals to be alloyed with zirconium in the liquefied solution of step c);
    g) 상기 d)단계의 액상에서 pH를 1.0 ~ 12.0으로 조절하는 단계;를 포함하는 구연산 화합물을 착화제로 사용하는 지르코늄 합금 도금을 위한 전기 도금액의 제조방법.g) adjusting the pH to 1.0 to 12.0 in the liquid phase of step d); a method for producing an electroplating solution for zirconium alloy plating using a citric acid compound as a complexing agent.
  15. 제 14항에 있어서, d) 단계에서의 니켈화합물은 황산니켈, 설파민산니켈, 염화니켈, 초산니켈 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하고, 코발트화합물은 황산코발트, 염화코발트, 황산코발트 암모늄 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하며, 금화합물은 염화제2금(AuCl3·2H2O), 염화제2금수소산(HAuC14·4H20), 시안화금(AuCN), 시안화제1금칼륨(KAu(CN)2·2H20), 시안화제1금나트륨(NaAu(CN)2) 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하고, 백금화합물은 염화백금산, 염화제2백금, 질산백금암모늄 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성된것을 특징으로 하며, 구리화합물은 황산구리, 염화구리, 시안화구리, 피로인산구리 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성된 것을 특징으로 하며, 팔라듐화합물은 황산팔라듐, 염화팔라듐, 질산팔라듐암모늄 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하고, 납화합물은 초산납, 붕불화납, 질산납, 염기성탄산납 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 형성하며, 은화합물은 질산은, 염화은, 산화은, 황산은, 시안화은, 시안화은칼륨, 시안화은나트륨 중 어느 하나의 군 또는 2 이상의군을혼합하여 형성하는 것을 특징으로 하는 구연산 화합물을 착화제로 사용하는 지르코늄 합금 도금을 위한 전기 도금액의 제조방법.15. The method according to claim 14, wherein the nickel compound in step d) is formed by mixing any one or two or more groups of nickel sulfate, nickel sulfamate, nickel chloride, and nickel acetate, and the cobalt compound is cobalt sulfate, cobalt chloride, It is formed by mixing any one group or two or more groups of ammonium cobalt sulfate, and the gold compound is dichlorochloride (AuCl 3 · 2H 2 O), dichlorohydrochloride (HAuC1 4 · 4H 2 0), gold cyanide (AuCN), potassium cyanide potassium (KAu (CN) 2 .2H 2 0), sodium cyanide sodium (NaAu (CN) 2 ), or a mixture of two or more of the group formed by the platinum compound Silver is formed by mixing any one group or two or more groups of chloroplatinic acid, platinum chloride, platinum ammonium nitrate, and the copper compound is any one of copper sulfate, copper chloride, copper cyanide, copper pyrophosphate or Characterized in that formed by mixing two or more groups, The sodium compound is formed by mixing any one group or two or more groups of palladium sulfate, palladium chloride, and palladium ammonium nitrate, and the lead compound is any one or two or more groups of lead acetate, lead borofluoride, lead nitrate, and basic lead carbonate. The group is formed by mixing, and the silver compound is formed by mixing any one group of silver nitrate, silver chloride, silver oxide, silver sulfuric acid, silver cyanide, silver potassium cyanide, sodium cyanide, or two or more groups as a complexing agent. Method of producing an electrical plating solution for zirconium alloy plating.
  16. 제 14항에 있어서, c) 단계에서의 착화제로 사용하는 구연산 화합물은 구연산, 구연산나트륨, 구연산암모늄 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 사용하는 것을 특징으로 하는 구연산 화합물을 착화제로 사용하는 지르코늄 합금 도금을 위한 전기 도금액의 제조방법.The citric acid compound according to claim 14, wherein the citric acid compound used as the complexing agent in step c) is used as a complexing agent, wherein any one group of citric acid, sodium citrate, ammonium citrate or a mixture of two or more groups is used. Method for producing an electroplating solution for zirconium alloy plating.
  17. 제 14항에 있어서, 상기 d)단계와 g)단계 사이에는 환원제를 투입하는 e)단계가 더 포함되는 것에 특징이 있는 구연산 화합물을 착화제로 사용하는 지르코늄 합금 도금을 위한 전기 도금액의 제조방법.15. The method of claim 14, wherein the step d) and g) step further comprises the step of e) injecting a reducing agent, the method of producing an electroplating solution for zirconium alloy plating using a citric acid compound as a complexing agent.
  18. 제 17항에 있어서, 상기 e) 단계에서의 환원제는 차이인산, 차아인산나트륨, 차아인산칼륨, 차아인산암모늄, 디메틸아민보란(DMAB), 디에틸아민보란(DEAB), 수소화붕소나트륨, 히드라진, 포르말린 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 사용하는 것을 특징으로 하는 구연산 화합물을 착화제로 사용하는 지르코늄 합금 도금을 위한 전기 도금액의 제조방법.The method of claim 17, wherein the reducing agent in step e) is chaophosphate, sodium hypophosphite, potassium hypophosphite, ammonium hypophosphite, dimethylamine borane (DMAB), diethylamine borane (DEAB), sodium borohydride, hydrazine, A method for producing an electroplating solution for plating a zirconium alloy using a citric acid compound as a complexing agent, characterized in that any one group of formalin or a mixture of two or more of them.
  19. 제 18항에 있어서, 환원제는 복합환원방식(전기적 환원과 화학적 환원을 모두 사용하는 금속 환원 방식)으로 도금을 하는 경우에 투입하는 것을 특징으로 하는 구연산 화합물을 착화제로 사용하는 지르코늄 합금 도금을 위한 전기 도금액의제조방법.19. The method of claim 18, wherein the reducing agent is added when the plating is performed in the complex reduction method (metal reduction method using both electrical reduction and chemical reduction), the electric for zirconium alloy plating using the citric acid compound as a complexing agent Method of manufacturing plating solution.
  20. 제 14항에 있어서, 상기 d)단계와 g)단계 사이에는 추가로 합금화할 금속이온을 투입하는 f)단계가 더 포함되어 구성되는 것에 특징이 있는 구연산 화합물을 착화제로 사용하는 지르코늄 합금 도금을 위한 전기 도금액의 제조방법.15. The method of claim 14, wherein the step d) and g) step further comprises the step of adding a metal ion to be alloyed f) step for zirconium alloy plating using a citric acid compound as a complexing agent Method for producing an electroplating solution.
  21. 제 20항에 있어서, f) 단계에서 추가로 합금화할 금속이온은 Au, Pt, Cu, Pd, Pb, Ag, Ti 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 사용하는 것을 특징으로 하는 구연산 화합물을 착화제로 사용하는 지르코늄 합금 도금을 위한 전기 도금액의 제조방법.21. The citric acid compound according to claim 20, wherein the metal ion to be alloyed further in step f) is a mixture of any one of Au, Pt, Cu, Pd, Pb, Ag, Ti, or two or more groups. Method for producing an electroplating solution for zirconium alloy plating using a complexing agent.
  22. 제 12항의 도금액으로 도금된 도금층이 적어도 한층 이상 도금된 도금제품.A plated product in which at least one plating layer plated with the plating liquid of claim 12 is plated.
PCT/KR2013/004358 2012-05-18 2013-05-16 Plating method and plating solution for zirconium alloy plating and titanium alloy plating WO2013172673A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0053087 2012-05-18
KR20120053087 2012-05-18
KR10-2012-0088709 2012-08-14
KR1020120088709A KR101227059B1 (en) 2012-05-18 2012-08-14 Plating solution and method for zirconium alloy plating and titanium alloy plating

Publications (1)

Publication Number Publication Date
WO2013172673A1 true WO2013172673A1 (en) 2013-11-21

Family

ID=47842718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004358 WO2013172673A1 (en) 2012-05-18 2013-05-16 Plating method and plating solution for zirconium alloy plating and titanium alloy plating

Country Status (2)

Country Link
KR (1) KR101227059B1 (en)
WO (1) WO2013172673A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150096132A (en) * 2014-02-14 2015-08-24 영남대학교 산학협력단 A Nickel-Teflon Composite Coating Method
KR20150135999A (en) * 2014-05-23 2015-12-04 윤종오 method for wet electroplating
KR101661629B1 (en) * 2016-03-11 2016-09-30 주식회사 베프스 Plationg solution of Amorphous PZT and plating method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158991A (en) * 1999-12-02 2001-06-12 Ishihara Chem Co Ltd Elctroplating pretreatment liquid for titanium and electroplating pretreatment method using the liquid
JP2001355094A (en) * 2000-06-13 2001-12-25 Citizen Watch Co Ltd Base material having ornamental coating film and its manufacturing method
JP2012082514A (en) * 2010-09-15 2012-04-26 Jfe Steel Corp Steel plate for container and method of manufacturing the same
KR101143982B1 (en) * 2009-07-20 2012-05-09 (주)엠에스티테크놀로지 Complex oxide film and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074860A (en) * 1959-01-16 1963-01-22 Satoh Shinzoh Electrolytic process for the production of metallic titanium from aqueous solution of titanium compounds
KR101165219B1 (en) * 2012-04-30 2012-07-16 이을규 Reducing ni-zr alloy electroless plating bath and plating products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158991A (en) * 1999-12-02 2001-06-12 Ishihara Chem Co Ltd Elctroplating pretreatment liquid for titanium and electroplating pretreatment method using the liquid
JP2001355094A (en) * 2000-06-13 2001-12-25 Citizen Watch Co Ltd Base material having ornamental coating film and its manufacturing method
KR101143982B1 (en) * 2009-07-20 2012-05-09 (주)엠에스티테크놀로지 Complex oxide film and method of manufacturing the same
JP2012082514A (en) * 2010-09-15 2012-04-26 Jfe Steel Corp Steel plate for container and method of manufacturing the same

Also Published As

Publication number Publication date
KR101227059B1 (en) 2013-01-28

Similar Documents

Publication Publication Date Title
DE102010012204B4 (en) Improved process for direct metallization of non-conductive substrates
WO2013172673A1 (en) Plating method and plating solution for zirconium alloy plating and titanium alloy plating
JP5436569B2 (en) Precious metal-containing layer continuum for decorative articles
CN101630703A (en) Method of light induced plating on semiconductors
JP2001152385A (en) Coated metallic product
CH652149A5 (en) AQUEOUS BATH FOR ELECTRIC PLATING WITH GOLD OR GOLD ALLOY.
CN104364421B (en) Make the method for nonconductive plastic material surface metalation
JP6150822B2 (en) Method for metallizing non-conductive plastic surface
CN101289756B (en) Electrolyte composition and method for electrolytic deposition of gold-copper alloys
CN110158121A (en) Anti- tin must CP wire production technology
CN101210327A (en) Plastic surface copper plating agent and using method thereof
US4670312A (en) Method for preparing aluminum for plating
US4474838A (en) Electroless direct deposition of gold on metallized ceramics
CN104928734B (en) The method of steel and iron parts cyanideless electro-plating tin bronze
CN110607540A (en) Zinc-nickel-micro-nano ceramic composite film layer and preparation method thereof under low current density
US6911269B2 (en) Lead-free chemical nickel alloy
JP3247517B2 (en) Plating method of titanium material
CN105506685A (en) Novel rhodanizing process for PCBs
US20040168927A1 (en) Electroconductive structure and electroplating method using the structure
EP1230034B1 (en) Process for the non-galvanic tin plating of copper or copper alloys
CN101092723A (en) Electroplating solution without cyanogen for plating silver
TW202125594A (en) Multilayer body and method for producing same
WO2014010914A1 (en) Titanium electroplating solution and plating method
CA2105814A1 (en) Platinum alloy electrodeposition bath and process for manufacturing platinum alloy electrodeposited product using the same
CN104152952A (en) High-performance cyanide-free silver pre-plating liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791164

Country of ref document: EP

Kind code of ref document: A1