WO2013172330A1 - Semi-permeable membrane and method for manufacturing same, and concentration-difference power-generating method using semi-permeable membrane - Google Patents

Semi-permeable membrane and method for manufacturing same, and concentration-difference power-generating method using semi-permeable membrane Download PDF

Info

Publication number
WO2013172330A1
WO2013172330A1 PCT/JP2013/063382 JP2013063382W WO2013172330A1 WO 2013172330 A1 WO2013172330 A1 WO 2013172330A1 JP 2013063382 W JP2013063382 W JP 2013063382W WO 2013172330 A1 WO2013172330 A1 WO 2013172330A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
formula
semipermeable membrane
polymer
layer
Prior art date
Application number
PCT/JP2013/063382
Other languages
French (fr)
Japanese (ja)
Inventor
尊大 徳山
隆一郎 平鍋
洋樹 富岡
栗原 優
上田 充
知哉 東原
誉礼 相羽
Original Assignee
東レ株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社, 国立大学法人東京工業大学 filed Critical 東レ株式会社
Priority to JP2014515629A priority Critical patent/JP6282585B2/en
Publication of WO2013172330A1 publication Critical patent/WO2013172330A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis

Definitions

  • the present invention relates to a semipermeable membrane suitably used for a power generation method using a concentration difference.
  • Concentration difference power generation using the anti-pressure osmosis method has been developed so far using commercially available composite semipermeable membranes, etc., but it is sufficient because of the structural problems of the composite semipermeable membrane described below. The amount of power generation could not be obtained. That is, a conventional composite semipermeable membrane usually consists of three layers: a separation functional layer that blocks salt, a support membrane that has a thickness of several tens of ⁇ m or more that supports the structure of the separation functional layer, and a base material that supports them. However, since it is difficult to block the salt content 100% in the separation functional layer, a slight amount of permeated salt from the salt water side to the fresh water side stays in the support membrane to cause concentration polarization.
  • Patent Document 1 further discloses a composite membrane (Patent Document 2) in which a separation functional layer is formed on a substrate having a large porosity.
  • Patent Document 3 is disclosed as a reverse osmosis membrane.
  • Patent Documents 1 and 2 have not led to a fundamental solution to the problem of a decrease in driving force of power generation due to salt retention. Further, the membrane made of polybenzimidazole mentioned in Patent Document 3 also has low water permeability, and it has not been possible to obtain a useful power generation amount in the concentration difference power generation system.
  • An object of the present invention is to solve the problems of the prior art and provide a semipermeable membrane suitable for concentration difference power generation having high water permeability and high mechanical strength.
  • the semipermeable membrane of the present invention is a semipermeable membrane comprising at least two layers of a dense layer A having a substantial solute removing ability and a microporous layer B, and the dense layer A is represented by the following (formula 1):
  • the main component is a polymer having a repeating unit structure shown in FIG.
  • polymer having the repeating unit structure represented by the above may be crosslinked by a covalent bond with each other via an N atom in the structure.
  • the semipermeable membrane of the present invention has high water permeability, excellent solute removal ability, and high mechanical strength, and thus is suitable for continuously obtaining high power generation in concentration difference power generation. .
  • FIG. 1 is a diagram schematically illustrating a concentration difference power generation apparatus.
  • FIG. 2 shows the results of FT-IR spectra measured for the semipermeable membranes of Examples 2 and 13.
  • FIG. 3 is a chemical formula illustrating the crosslinking reaction of the polymer constituting the dense layer A.
  • FIG. 4 is an explanatory view schematically showing a cross section of the semipermeable membrane produced in Examples 14 and 17.
  • Compound The semipermeable membrane of the present invention comprises at least two layers, a dense layer A having a substantial solute removing ability and a microporous layer B.
  • the compound which comprises the dense layer A has as a main component the polymer which has a repeating unit represented by the following (Formula 1). This repeating unit forms a polybenzimidazole structure.
  • the arrangement order of the repeating unit structure shown on the left side of (Formula 1) and the repeating unit structure shown on the right side is not particularly limited, and these repeating unit structures can be arranged randomly.
  • the structure X is a hydrophilic group. Specifically, it can have any structure selected from the group consisting of a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof.
  • X is preferably a sulfonic acid group or a salt thereof.
  • M represents the composition ratio (%) of the repeating unit structure including X.
  • n represents the constituent ratio (%) of the repeating unit structure not containing X.
  • m: n is preferably in the range of 20:80 to 99: 1, more preferably 30:70 to 90:10, and even more preferably 45:55 to 80:20.
  • the more the repeating unit structure in which the structure X represented by the sulfonic acid group is introduced the more the water permeability increases, but at the same time, there is a problem that the solubility of the polymer is lowered or the membrane is easily swollen by water molecules. May occur.
  • a certain amount of repeating unit structures into which structure X typified by sulfonic acid groups is not introduced are copolymerized.
  • structural units having different chain lengths are copolymerized, the molecular chain regularity is disturbed. This is preferable because a large void is generated and a water-permeable passage is generated to increase water permeability.
  • a particularly preferred hydrophilic group constituting the structure X is a sulfonic acid group or a salt thereof.
  • the sulfonic acid group may be introduced into the monomer before the polymerization, or may be introduced into the polymer by utilizing some chemical reaction after the polymerization. This is preferable because it can be introduced relatively uniformly into the repeating structure of the acid group.
  • Examples of the method to be introduced after the polymerization include a method of immersing the polymer in fuming sulfuric acid, concentrated sulfuric acid, chlorosulfonic acid, sulfur trioxide and the like.
  • Ar 2 -X including the structure X has any structure selected from the group represented by the following (formula 2), the performance of the dense layer A constituting the semipermeable membrane, polymer synthesis, and raw material for polymer synthesis From the standpoint of ease of synthesis or availability of the monomer.
  • X is an arbitrary structure selected from a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof.
  • Ar 2 —X containing the structure X may be any structure selected from the group represented by the following (formula 3). These structures have a structure in which aromatic rings are covalently bonded via another atomic group Z.
  • X is an arbitrary structure selected from a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof
  • Z is —O—, —CH 2 —
  • the structures of Ar 1 and Ar 3 , and Ar 2 and Ar 4 are the same, it is preferable from the viewpoint of ease of setting the synthesis conditions and economy from the viewpoint that the raw material may be one or two monomers.
  • the structure Ar 2 -X is selected from the structure group listed in the above (formula 2) (formula 3), the structures of Ar 1 and Ar 3 , and Ar 2 and Ar 4 are not necessarily the same. Well, the effect of this on the effect of the present invention is negligible.
  • R 1 , R 2 , R 3 , R 4 are each a hydrogen atom or the structure P.
  • the structure P has an arbitrary structure selected from the group consisting of an alkyl group, an alkyl carboxylic acid or a salt thereof, an alkyl sulfonic acid or a salt thereof, and an alkyl phosphoric acid or a salt thereof.
  • the structure X described above is introduced into the polymer structure at the same time, so that compared with the case where there is a hydrophilic group at the end of the alkyl group such as an alkylcarboxylic acid, The inferior high water permeability effect can be secured.
  • the membrane having the structure P and the hydrophilic group further comprising the structure X has more in the membrane than the membrane having neither of them or only one of them. It can contain water.
  • an alkyl group having 1 or more carbon atoms can be suitably used as the alkyl group.
  • the purpose of introducing an alkyl group into the polymer molecule is to inhibit hydrogen bonding between the polymer molecules and increase the intermolecular distance.
  • the number of carbon atoms constituting the alkyl group may be adjusted according to the target water permeability.
  • the number of carbon atoms constituting the alkyl group is preferably 1 or more, and more preferably 4 or more.
  • the carbon number which comprises an alkyl group is 12 or less. When the number of carbon atoms is 13 or more, the effect of inhibiting hydrogen bonding becomes too large, the intermolecular distance is wide, and there is a concern that the salt removability is lowered.
  • the alkyl group may contain a ring structure, a branched structure, or an unsaturated bond in the structure, and is not limited to only a carbon atom, but may be a nitrogen atom, a sulfur, as long as it is suitably used to increase the intermolecular distance.
  • An atom, a silicon atom, an oxygen atom, etc. may be included.
  • Examples of the method for introducing the structure P into the polymer include use of a monomer containing the structure P or use of a polymer reaction for the polymer.
  • the latter method is preferably used from the viewpoint of ease of synthesis.
  • the amount of structure P introduced can be controlled by adjusting the concentration and reaction time. Easy and preferable.
  • a butylsulfonic acid group can be introduced into the nitrogen atom of the polymer.
  • both R 1 and R 3 can be hydrogen atoms.
  • the constituent material of the dense layer A constituting the semipermeable membrane of the present invention may include a structure obtained by crosslinking the polymer of (Formula 1).
  • crosslinking the polymer of (Formula 1) there is an effect of improving the performance as a semipermeable membrane.
  • Examples of the method for forming a cross-link include a method using a chemical reaction between a polymer and a cross-linking agent.
  • the cross-linking agent may be any substance having at least two reactive sites and capable of forming a covalent bond with two or more polymers, and further capable of forming a covalent bond with the nitrogen atom in (Formula 1).
  • the substance is preferable from the viewpoints of a wide selection range of the crosslinking reaction conditions, high reactivity of the crosslinking reaction, and ease of crosslinking.
  • a crosslinking agent include various Michael addition type polyfunctional substances, polyfunctional halides, and the like, which are preferable from the viewpoint of availability.
  • divinyl sulfone and the like, divinyl ketone and the like, p-xylene dichloride and the like are preferably used.
  • a catalyst such as an acid may be used at the same time if necessary in order to improve the reaction time and the reaction rate.
  • the polybenzimidazole that is the main component of the polymer constituting the semipermeable membrane of the present invention is preferably polymerized from an aromatic tetraamine and an aromatic dicarboxylic acid.
  • polymerization can be performed by a melt polymerization method described in JOURNAL of Polymer Science, 50, 511 (1961), US Pat. No. 3,509, 108, or the like. Specifically, the polymerization is started at a temperature of about 100 ° C. to 160 ° C., and the temperature is gradually raised from 140 ° C. to about 350 ° C. If the degree of polymerization is to be increased, the polymerization is performed by reducing the pressure after raising the temperature.
  • the temperature can be changed from time to time depending on the polymer structure and catalyst.
  • the catalyst polyphosphoric acid (hereinafter abbreviated as PPA) or a methanesulfonic acid-niline pentoxide mixture (10: 1 weight ratio) Eaton reagent (hereinafter abbreviated as PPMA). It is preferable to use it.
  • aromatic tetraamine monomers examples include 1,2,4,5-tetraaminobenzene, 1,2,5,6-tetraaminonaphthalate, 2,3,6,7-tetraaminonaphthalate, 3, 3 ′, 4,4′-tetraaminodiphenylmethane, 3,3 ′, 4,4′-tetraaminodiphenylethane, 3,3 ′, 4,4′-tetraaminodiphenyl-2,2-propane, 3,3
  • '4,4'-tetraaminodiphenylthioether and 3,3', 4,4'-tetraaminodiphenylsulfone and their derivatives can be mentioned.
  • Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, phthalic acid, diphenyldicarboxylic acid Acid, diphenyl ether dicarboxylic acid, 4,4 ′-[1,4-phenylenebis (oxy)] bisbenzoic acid, 4,4′-dicarboxydiphenyl sulfone, diphenoxyethanedicarboxylic acid, 5-sodium sulfoisophthalic acid, hydroxy Isophthalic acid, aminoisophthalic acid, 5-N, N-dimethylaminoisophthalic acid, 5-N, N-diethylaminoisophthalic acid, 2,5-dihydroxyterephthalic acid, 2,6-dihydroxyisophthalic acid, 4,6-di
  • the semipermeable membrane of the present invention is a semipermeable membrane comprising at least two layers of a dense layer A having a substantial solute removing ability and a microporous layer B, and at least the dense layer A is
  • the main component is the polymer of (Formula 1) or a crosslinked product thereof.
  • the semipermeable membrane of the present invention has a membrane permeation flux of 0.05 (m 3 / m) when measured at a pressure of 1 MPa, a sodium chloride concentration of the supply liquid of 500 ppm, a temperature of 25 ° C., and a pH of 6.5. 2 / day) or more, preferably 0.1 (m 3 / m 2 / day) or more, and more preferably 0.4 (m 3 / m 2 / day) or more. .
  • the desalting rate is preferably 10% or more, more preferably 20% or more, and further preferably 30% or more.
  • the dense layer A is required to have a solute removing ability. Specifically, when measuring at a pressure of 1 MPa, a sodium chloride concentration of the supply liquid: 500 ppm, a temperature of 25 ° C., and a pH of 6.5, it exhibits the ability to remove sodium chloride simultaneously with water permeability. Each performance is as described above.
  • the thickness of the dense layer A is preferably less than 20 ⁇ m.
  • the dense layer A may have a thickness of 5 ⁇ m or less, 2 ⁇ m or less, or 1 ⁇ m or less. When the thickness of the dense layer A is less than 20 ⁇ m, high water permeability is obtained.
  • the thickness of the dense layer A is preferably 0.1 ⁇ m or more.
  • the dense layer A may have a thickness of 0.5 ⁇ m or more, or 0.8 ⁇ m or more. A particularly high strength is obtained when the thickness of the dense layer A is 0.1 ⁇ m or more.
  • the thickness is preferably 1 ⁇ m or more so that the dense layer A itself supports it.
  • the form of the film is not particularly limited, and may be appropriately selected as necessary.
  • the operating pressure normally used in the concentration difference power generation is about 1 to 3 MPa, but a sufficient strength can be secured even with a thickness of about 1 ⁇ m in the case of an equivalent pressurized water permeability test.
  • it may be a flat membrane or a hollow fiber membrane, and if the form of the membrane is selected flexibly according to the required performance and strength Good.
  • the microporous layer B is a support layer for the dense layer A. Accordingly, the film is not particularly limited as long as it is a film having a plurality of holes, but preferably has a substantially uniform hole or a hole whose diameter gradually increases from one surface to the other surface, and the strength of the microporous layer B. From the above problem, a membrane having a structure in which the pore diameter on one surface of the membrane is 100 nm or less is preferable. Further, the pore diameter is more preferably in the range of 1 to 100 nm. This is because if the pore diameter is less than 1 nm, the permeation flux tends to decrease.
  • the thickness of the microporous layer B is preferably in the range of 1 ⁇ m to 5 mm, and more preferably in the range of 10 to 100 ⁇ m. This is because when the thickness is less than 1 ⁇ m, the strength of the porous support membrane tends to be lowered, and when it exceeds 5 mm, it becomes difficult to handle.
  • the material used for the microporous layer B is not particularly limited.
  • homopolymers and copolymers such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, and polyphenylene sulfide sulfone are preferable.
  • the microporous layer B may include a so-called base material and a support layer formed on the base material.
  • the base material may be formed of, for example, a woven fabric or a non-woven fabric, and the support layer may be formed of the material described above as a material used for the microporous support film.
  • the microporous layer B has a sparse structure in which salt content does not easily accumulate when performing concentration difference power generation using a semipermeable membrane.
  • the sparse structure is required to have as high a porosity of the support membrane as possible, a thickness as thin as possible, a space as straight as possible, and a low flexibility.
  • these parameters are set in a preferable range from the viewpoint of suppressing salt retention, mechanical strength is remarkably impaired.
  • the dense layer A alone has a self-supporting property so that the mechanical strength is high and the low mechanical strength of the microporous layer B can be compensated. Therefore, it is preferable that the porosity of the support film is as large as possible, the thickness is as thin as possible, the void is as straight as possible, and the flexibility is low.
  • the semipermeable membrane of the present invention comprises two layers, a dense layer A and a microporous layer B. These two layers are each produced independently and may be combined thereafter, or the dense layer A and the microporous layer may be combined.
  • the conductive layer B may be produced at the same time.
  • Examples of a method of producing the dense layer A and the microporous layer B independently and then combining them include a method of arranging the dense layer A on the surface of the microporous layer B.
  • the dense layer A and the microporous layer B may or may not adhere to each other.
  • the dense layer A may be impregnated in the microporous layer B.
  • a liquid film of the dense layer A is disposed on the surface of the produced microporous layer B, and then the solvent is removed to obtain a film structure in which the dense layer A is impregnated in the microporous layer B.
  • the dense layer A and the microporous layer B can be simultaneously produced by, for example, removing a solvent from one type of liquid film and first proceeding phase separation near the surface of the liquid film to form the dense layer A. After that, the phase separation is continued as it is, so that the lower porous layer B can be a relatively sparse microporous layer B.
  • the liquid film of the dense layer A can be placed on or brought into contact with the liquid film surface of the microporous layer B, and desolvation can be caused simultaneously from each liquid film. If the final film structure is in accordance with the present invention, the course of the process can be set in any way.
  • the method for producing a semipermeable membrane includes at least a solution preparation step, a liquid membrane formation step, and a solvent removal step in addition to the polymer polymerization step.
  • the solution adjustment step includes a step of mixing a polymer having the structure of (Formula 1) and a solvent as components of the film-forming stock solution.
  • a necessary cross-linking agent may be mixed at the same time, and this process may include a plurality of steps in order to prepare a uniform transparent film forming solution.
  • the solution adjustment step may include stirring the solution containing each component while heating.
  • the mixing ratio and the order of addition are not particularly limited, and additives other than the polymer and the solvent may further be included as necessary.
  • various salts may be added as a dissolution aid within the range where there is no problem in producing a transparent and uniform solution, and various hydrophilic compounds may be added for the purpose of improving the water permeability of the membrane. .
  • the amount of each substance added to the volume of the film forming solution is preferably set so as to ensure the uniformity of the film forming solution.
  • it may be removed by a separation method such as filtration, and the filtrate may be used as a membrane-forming solution.
  • a pressure filter can be used according to the high viscosity of the solution.
  • the filtration diameter is 3 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 0.4 ⁇ m or less, and further preferably 0.2 ⁇ m or less.
  • the manufacturing method may include a step of forming a liquid film with a film forming solution (liquid film forming step).
  • the liquid film For forming the liquid film, various methods such as dip coating, spin coating, and application using an applicator can be used. When the film thickness of the dense layer A is desired to be several ⁇ m or less, the application by spin coating is particularly preferable.
  • the formation of the liquid film can be realized by, specifically, forming a sheet-like flat film by applying a film-forming solution to the substrate.
  • the hollow fiber-like microporous structure is formed in advance.
  • the layer B may be formed and the outer surface may be coated with a solution, or the solution may be passed through the inner surface to coat the inner surface.
  • the manufacturing method of the semipermeable membrane of this invention includes performing a solvent removal after a liquid film formation process.
  • the present solvent removal step there are two methods for removing the solvent: a method by heat drying and a method of immersing in a liquid that is compatible with the solvent and is a poor solvent for the polymer.
  • the drying temperature is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 110 ° C. or higher and lower than 180 ° C., and further preferably 120 ° C. or higher and lower than 150 ° C. preferable.
  • the drying time at this time is preferably from 1 minute to less than 120 minutes, more preferably from 10 minutes to less than 90 minutes, and even more preferably from 30 minutes to less than 60 minutes.
  • the method for producing a semipermeable membrane may further include other steps.
  • the semipermeable membrane formed in the solvent removal process is washed with hot water.
  • hot water washing treatment improves the mobility of the polymer and promotes the reorganization of the polymer. As a result, a denser film can be obtained. Since this step can improve the desalting property of the semipermeable membrane, it may be carried out as necessary.
  • the concentration difference power generation method using the permeable membrane of the present invention thus obtained will be described by way of example using a flat membrane-like semipermeable membrane, but is limited to the following method. Not a thing.
  • the concentration difference power generation method of the present invention includes (a) water from low-concentration salt water to high-concentration salt water by bringing low-concentration salt water and high-concentration salt water into contact with each other by any of the semipermeable membranes or composite membranes described above. And (b) driving the generator using the flow.
  • the semipermeable membrane is made up of a cylindrical water collecting pipe with a large number of holes, along with a raw water channel material such as plastic net, a permeate channel material such as tricot, and a film for increasing pressure resistance as required. By being wound around, it is suitably used as a spiral type semipermeable membrane element.
  • the semi-permeable membrane or an element using the semi-permeable membrane is brought into contact with one side (first surface) of the semi-permeable membrane while pressing high-concentration salt water Sw, and the opposite surface (second surface).
  • the low-concentration fresh water Fw is brought into contact with the surface
  • a part of the low-concentration fresh water Fw on the second surface side moves to the first surface side through the semipermeable membrane 1 by the permeation phenomenon (step (a) )).
  • the volume on the first surface side is increased by the amount of low-concentration fresh water that has permeated from the second surface side, so that the generator 2 is driven at a pressure larger than the pressure input to the first surface side.
  • Step (b) energy used for power generation can be obtained.
  • the semipermeable membrane described above By using the semipermeable membrane described above, it has high water permeability even with a small pressure difference, and the retention of salt in the membrane of the semipermeable membrane is suppressed, thereby reducing the amount of water permeability due to concentration polarization. Is suppressed. As a result, according to the power generation method of the present invention, a high power generation amount can be realized.
  • a monomer to be used for synthesizing a polymer as a main component of the dense layer A was prepared by the following procedure.
  • 3,3'-diaminobenzidine (manufactured by Tokyo Chemical Industry Co., Ltd.) was purchased and used as an aromatic tetraamine monomer.
  • the aromatic dicarboxylic acid monomer As the aromatic dicarboxylic acid monomer, a commercially available product was appropriately used. Furthermore, the aromatic dicarboxylic acid monomer was used for polymerization after introducing sodium sulfonate as a hydrophilic group, if necessary. Specifically, a 30% fuming sulfuric acid was brought into contact with an aromatic dicarboxylic acid compound in an excessive amount and reacted at 90 ° C. for 3 to 8 hours to synthesize a sulfonated aromatic dicarboxylic acid. The sulfonation rate was controlled by adjusting the reaction time. Subsequently, a sulfonic acid sodium salt of an aromatic dicarboxylic acid was synthesized by treatment with a saline solution.
  • the polymer was polymer synthesized (polymerized) basically by polymerization of an aromatic tetraamine monomer and an aromatic dicarboxylic acid monomer. First, a total amount of 3 g of aromatic dicarboxylic acid monomer and 0.5 g of polyphosphoric acid catalyst were added to the polymerization vessel and melted at 150 ° C. in a nitrogen atmosphere. After slowly cooling to room temperature, 2 g of 3,3′-diaminobenzidine was added, and the temperature was raised again to 150 ° C. After heating up to 200 degreeC over 5 hours, superposition
  • reaction vessel was cooled, washed with ice water and a 30% aqueous sodium bicarbonate solution, and dried under reduced pressure to obtain 5 g of a polybenzimidazole polymer.
  • the structure P was introduced onto the nitrogen atom in the polymer as necessary so that the polymer structures shown in Tables 1 to 4 were obtained.
  • 0.5 or 1 equivalent of Example 9, 10) was added and reacted at 90 ° C. for 12 hours.
  • the introduction rate of structure P was adjusted by the amount of butyl bromide or 1,4-butane sultone added. For example, in Examples 7 to 10, it was confirmed by proton NMR measurement that the introduction rate was 50% when 0.5 equivalent was added and the introduction rate was 100% when 1 equivalent was added before film formation.
  • Solution preparation A polymer and a dimethyl sulfoxide solvent were added to a glass container so that the polymer concentration was 15 wt%, and stirred at 100 ° C to prepare a transparent and uniform solution. Further, after slowly cooling to room temperature, 1 mol% of divinyl sulfone as a cross-linking agent was added as necessary and dissolved by stirring again (when a cross-linking agent was added here, in the remarks column of Tables 1 to 4, “ “Crosslinking” was provided). This was filtered using a membrane filter having a pore diameter of 0.4 ⁇ m, vacuum degassed, and allowed to stand at room temperature for 24 hours, and then used for film formation.
  • Liquid film formation Film formation was performed by the coating method of the polymer solution.
  • a polymer solution was applied / spin-coated on a silicon wafer to form a liquid film on the substrate. Only in Example 17, the surface of the microporous layer B was placed on the surface of the liquid film, coated, and then subjected to subsequent desolvation.
  • the solvent was removed by heat drying (120 ° C. for 60 minutes, and further heat drying at 170 ° C. for 30 minutes). After removing the solvent, the film was peeled from the substrate in pure water at room temperature, and then placed on the microporous layer B, and used for a pressurized water permeability test.
  • the semipermeable membrane was fixed to a stainless steel plate and dried at 60 ° C. for 12 hours or more, and then two separate portions were arbitrarily cut out to prepare samples.
  • the cross-sectional area of the sample was observed with a scanning electron microscope, and the thickness of an arbitrary place was measured at five points per sample with the attached length measurement software.
  • the thicknesses of the obtained 10 points were totaled and then divided by 10 to calculate the thickness of the semipermeable membrane.
  • Tables 1 to 4 show the relationship between the polymer structure of the dense layer A constituting the formed semipermeable membrane and the membrane performance. Thereafter, the same polysulfone support membrane was used for the microporous layer B unless otherwise specified.
  • the polysulfone supporting membrane used had a surface pore diameter of 30 nm, a thickness of 50 ⁇ m, and a porosity of 20%. No tearing or clogging occurred even when used in a 1 MPa pressurized water permeability test.
  • a butyl group was introduced as the structure P.
  • a sodium butylsulfonate group was introduced as structure P.
  • x indicates the introduction rate of the structure P, and 0 ⁇ x ⁇ 1.
  • As a cross-linking agent 1 mol% of divinyl sulfone was used with respect to the amount of the repeating unit of the polymer. Except for the polymer in which the hydrophilic group was not introduced in Comparative Example 2, the polymer introduced with the hydrophilic group or structure P obtained high performance by crosslinking. In particular, in Examples 13 and 14, both the amount of water permeation and salt removability improved dramatically.
  • the progress of the crosslinking reaction was confirmed by FT-IR spectrum measurement.
  • the measurement results of the films of Examples 2 and 16 are shown in FIG. 2, and the crosslinking reaction formula is shown in FIG.
  • Table 5 shows the results of measuring the water content of the semipermeable membranes obtained in Examples 12 and 14 and Comparative Example 2.
  • the moisture content is measured by vacuum drying the membrane for more than one night and immersing it in RO water (reverse osmosis membrane permeate) overnight, and then removing the water droplets adhering to the membrane surface with Kimwipe.
  • Moisture content (%) 100 (%) x (W1-W0) / W0
  • Example 12 the structure P was a butyl group, and in Example 14, the structure P was a sodium butylsulfonate group. Since the latter had a higher water content, it can be said to be a more suitable semipermeable membrane. From the viewpoint of the performance shown in Fig. 4, it can be seen that the water permeability increased with the increase of the moisture content. From these, a more suitable semipermeable membrane was obtained by introducing the structure P, and the effect of the structure P could be confirmed.
  • Example 14 ⁇ Effect of impregnation into microporous layer B>
  • the dense layer A is exactly the same, but only the microporous layer B is different.
  • the difference between Example 14 and Example 17 is whether or not the dense layer A is impregnated in the microporous layer B.
  • Example 14 after the dense layer A is formed alone, it is only disposed on the upper part of the microporous layer B, so the dense layer A is not impregnated in the microporous layer B.
  • a PVDF support membrane surface pore diameter is 30 nm, film thickness is 50 ⁇ m, porosity is 20%
  • the surface of the PVDF support membrane is bonded to the surface of the liquid film formed on the substrate, and the solvent is removed. went.
  • the dense layer A since the dense layer A disposed the microporous layer B at the liquid film stage, the dense layer A impregnates the microporous layer B.
  • FIG. 1 A schematic cross-sectional view of the films of Examples 14 and 17 is
  • Example 17 comparing the performance of both, the water permeability and salt removal rate of Example 17 were further improved as compared to Example 14. This is because when the dense layer A is impregnated into the microporous layer B, the crosslinked polymer constituting the dense layer A enters the region of several tens of nanometers, which is the pore diameter of the support membrane (microporous layer B). It is considered that excessive swelling exceeding the pore diameter of the support membrane was prevented, and salt outflow was suppressed. From the above, when the dense layer A was impregnated into the microporous layer B, a semipermeable membrane with higher performance was obtained.
  • the present invention is suitable as a semipermeable membrane used for concentration difference power generation in which a generator is driven using the flow from low-concentration salt water to high-concentration salt water generated when two liquids having different salinity concentrations are separated by a semipermeable membrane. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided is a semi-permeable membrane having high permeability which is suitable for concentration-difference power generation with high mechanical strength. The semi-permeable membrane has at least two layers: a dense layer (A) having substantial solute removal capability and a finely porous layer (B). The main component of the dense layer (A) is a polymer having the repeating unit structure shown in (Formula 1). (In this formula, Ar1, Ar2, Ar3 and Ar4 each have an aromatic ring structure; R1, R2, R3 and R4 are each a hydrogen atom or have structure P, structure P having any structure selected from among an alkyl group, alkylcarboxylic acid or a salt thereof, alkyl sulfonic acid or a salt thereof, and alkyl phosphate or a salt thereof; X is any structure selected from among a carboxylic acid group or salt thereof, a sulfonic acid group or salt thereof, and a phosphate group or salt thereof; and m and n are the constituent ratios (%) of the repeating unit structures; m ≥ 0, n ≥ 0, and m + n = 100 being satisfied, and at least one of R3 and R4 being structure P when m = 0.)

Description

半透膜およびその製造方法、半透膜を用いた濃度差発電方法Semipermeable membrane and method for producing the same, concentration difference power generation method using semipermeable membrane
 本発明は、濃度差を利用した発電方法に好適に用いられる半透膜に関する。 The present invention relates to a semipermeable membrane suitably used for a power generation method using a concentration difference.
 近年、化石燃料の消費等による炭酸ガス増加が地球規模の環境問題となっており、新たな脱炭素エネルギー技術の探索が盛んに行われている。その一つとして、海水と淡水等の塩分濃度差エネルギーを利用する濃度差発電は、エネルギー源が無尽蔵でかつ環境負荷が極めて小さい点で大きな期待が寄せられている。塩分濃度差をエネルギーへ変換する方法として、とくに半透膜を利用した抗圧浸透法が注目されている。この方法は、塩分濃度の異なる2液を半透膜で隔てたときに、正浸透現象によって生じる淡水から塩水への流動を利用して水車発電機を駆動させるものであり、1976年にロブによって提唱された(S.ロブ、ジャーナル・オブ・メンブレン・サイエンス、1巻、p49およびp249、エルゼビア(1976))。 In recent years, an increase in carbon dioxide gas due to consumption of fossil fuels has become a global environmental problem, and search for new decarbonization energy technologies has been actively conducted. As one of them, concentration difference power generation using salt concentration difference energy such as seawater and fresh water is highly expected in that the energy source is inexhaustible and the environmental load is extremely small. As a method for converting the salinity difference into energy, the anti-pressure osmosis method using a semipermeable membrane has attracted attention. In this method, when two liquids with different salinity concentrations are separated by a semipermeable membrane, the turbine generator is driven using the flow from fresh water to salt water caused by the forward osmosis phenomenon. (S. Rob, Journal of Membrane Science, Volume 1, p49 and p249, Elsevier (1976)).
 抗圧浸透法を用いた濃度差発電については、これまでに、市販の複合半透膜等を用いた開発研究がなされてきたが、以下に述べる複合半透膜の構造上の問題から十分な発電量を得ることができなかった。すなわち、従来の複合半透膜は、塩分を阻止する分離機能層、分離機能層の構造を支える数十μm以上の厚さを持つ支持膜、さらにそれらを支持する基材の3層から通常成り立っているが、分離機能層では塩分を100%阻止することは困難であるため、塩水側から淡水側へごくわずかながら透過した塩分が前記支持膜中に滞留して濃度分極を生じさせ、浸透圧の低下により発電の駆動力となる透水量が大きく減じる、という課題があった。この、濃度差発電に類似する用途である正浸透現象を利用した脱塩方法へ供する膜として、例えば、空隙率の大きな基材上へ分離機能層を支持する構造を有した非対称膜を形成させる方法(特許文献1)が、さらには、空隙率が大きい基材を用い、その上へ分離機能層を形成させた複合膜(特許文献2)が開示されている。 Concentration difference power generation using the anti-pressure osmosis method has been developed so far using commercially available composite semipermeable membranes, etc., but it is sufficient because of the structural problems of the composite semipermeable membrane described below. The amount of power generation could not be obtained. That is, a conventional composite semipermeable membrane usually consists of three layers: a separation functional layer that blocks salt, a support membrane that has a thickness of several tens of μm or more that supports the structure of the separation functional layer, and a base material that supports them. However, since it is difficult to block the salt content 100% in the separation functional layer, a slight amount of permeated salt from the salt water side to the fresh water side stays in the support membrane to cause concentration polarization. There has been a problem that the amount of water permeation, which is the driving force for power generation, is greatly reduced due to the decrease in power. For example, an asymmetric membrane having a structure that supports a separation functional layer on a substrate having a large porosity is formed as a membrane for use in a desalination method using the forward osmosis phenomenon, which is an application similar to the concentration difference power generation. The method (Patent Document 1) further discloses a composite membrane (Patent Document 2) in which a separation functional layer is formed on a substrate having a large porosity.
 しかし、膜素材としても逆浸透膜に用いられているポリアミド膜やセルロース膜を用いたこれらの例は、逆浸透のシステムと比較して膜前後の圧力差が小さく、また除去率よりも透水性が重要視される濃度差発電のシステムにおいて、十分な性能を得られていなかった。そのため、小さな圧力差で高い透水性を発現できる可能性のある新たな素材が求められており、ポリベンズイミダゾールに着目し、本願発明に至った。ポリベンズイミダゾールを用いた膜としては、逆浸透膜として(特許文献3)が開示されている。 However, these examples using polyamide membranes and cellulose membranes used as reverse osmosis membranes as the membrane material have a smaller pressure difference before and after the membrane compared to the reverse osmosis system, and water permeability is higher than the removal rate. However, sufficient performance was not obtained in the system of concentration difference power generation, which is regarded as important. Therefore, a new material that has a possibility of developing high water permeability with a small pressure difference has been demanded, and attention has been paid to polybenzimidazole, which has led to the present invention. As a membrane using polybenzimidazole, Patent Document 3 is disclosed as a reverse osmosis membrane.
米国特許第7445712号明細書US Pat. No. 7,445,712 米国特許出願公開第2011/0102680号明細書US Patent Application Publication No. 2011/0102680 米国特許出願公開第2011/0266223号明細書US Patent Application Publication No. 2011/0266223
 特許文献1、2では、塩の滞留による発電の駆動力の低下という問題の根本的解決には至っていなかった。また、特許文献3で挙げられるポリベンズイミダゾールからなる膜も透水性が低く、濃度差発電システムにおいて有用な発電量を得ることはできなかった。 Patent Documents 1 and 2 have not led to a fundamental solution to the problem of a decrease in driving force of power generation due to salt retention. Further, the membrane made of polybenzimidazole mentioned in Patent Document 3 also has low water permeability, and it has not been possible to obtain a useful power generation amount in the concentration difference power generation system.
 特許文献1,2の報告例では、いずれも、分離機能層を支持する支持層中への塩滞留に着目し、支持層の構造を疎に近づけることで、正浸透膜に好適な塩分の溜まりにくい構造に近づける努力がなされている。しかしながら、支持層を疎にすることで、塩分の滞留は軽減されたとしても、支持層の本来の利点である機械的強度の高さまでも同時に犠牲にせざるを得なかった。これらの報告における分離機能層は、単独では機械的強度が著しく低いか、または、自己支持性が欠如しており、分離機能層のみを取り出すことさえ困難である。 In the reported examples of Patent Documents 1 and 2, both focus on salt retention in the support layer that supports the separation functional layer, and the salt content suitable for the forward osmosis membrane is obtained by making the support layer structure sparse. Efforts are being made to bring it closer to difficult structures. However, even if the retention of the salt is reduced by making the support layer sparse, even the high mechanical strength, which is the original advantage of the support layer, must be sacrificed at the same time. The separation functional layer in these reports alone has a remarkably low mechanical strength or lacks self-supporting properties, and it is difficult to take out only the separation functional layer.
 本発明の課題は、かかる従来技術の問題点を解決し、高い透水性を有し、かつ、高い機械的強度を有する濃度差発電に適した半透膜を提供することにある。 An object of the present invention is to solve the problems of the prior art and provide a semipermeable membrane suitable for concentration difference power generation having high water permeability and high mechanical strength.
 本発明の半透膜は、実質的な溶質除去能を有する緻密層Aと、微多孔性層Bとの2層を少なくとも備える半透膜であって、前記緻密層Aが下記(式1)に示す繰り返し単位構造を有するポリマーを主成分とすることを特徴とする。
Figure JPOXMLDOC01-appb-C000004
(式中、Ar1,Ar2,Ar3,Ar4はそれぞれ任意の芳香環構造であり、R1,R2,R3,R4はそれぞれ水素原子または構造Pであり、該構造Pがアルキル基、アルキルカルボン酸またはその塩、アルキルスルホン酸またはその塩、アルキルリン酸またはその塩、から選択される任意の構造であり、Xは、カルボン酸基またはその塩、スルホン酸基またはその塩、リン酸基またはその塩、から選択される任意の構造であり、m,nは繰り返し単位構造の構成比率(%)を表し、m≧0,n≧0,m+n=100を満たし、m=0のとき、R3,R4の少なくとも一つが前記構造Pである。)
The semipermeable membrane of the present invention is a semipermeable membrane comprising at least two layers of a dense layer A having a substantial solute removing ability and a microporous layer B, and the dense layer A is represented by the following (formula 1): The main component is a polymer having a repeating unit structure shown in FIG.
Figure JPOXMLDOC01-appb-C000004
(In the formula, Ar 1 , Ar 2 , Ar 3 and Ar 4 are each an arbitrary aromatic ring structure, and R 1 , R 2 , R 3 and R 4 are each a hydrogen atom or a structure P, and the structure P is An alkyl group, an alkyl carboxylic acid or a salt thereof, an alkyl sulfonic acid or a salt thereof, an alkyl phosphoric acid or a salt thereof, and X is a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof , A phosphoric acid group or a salt thereof, m and n represent the constituent ratio (%) of the repeating unit structure, m ≧ 0, n ≧ 0, m + n = 100 is satisfied, m = When 0, at least one of R 3 and R 4 is the structure P.)
 さらに、前記(式1)で表される繰り返し単位構造を有するポリマーが、該構造中のN原子を介して互いに共有結合により架橋していてもよい。 Furthermore, the polymer having the repeating unit structure represented by the above (Formula 1) may be crosslinked by a covalent bond with each other via an N atom in the structure.
 発明者らが鋭意検討した結果、正浸透膜として、高強度な分離機能層を有する半透膜を見出した。分離機能層が高強度であれば、支持層の構造を疎にして塩分が溜まりにくい構造にしたとしても、その機械的強度の低下を分離機能層自身で補うことが可能である。すなわち、本発明の半透膜は、高い透水性と優れた溶質除去能を有し、かつ、高い機械的強度を有するので、濃度差発電において継続的に高発電量を得る上で好適である。 As a result of intensive studies by the inventors, a semipermeable membrane having a high-strength separation functional layer was found as a forward osmosis membrane. If the separation functional layer has high strength, even if the structure of the support layer is made sparse and the salt content does not easily accumulate, the decrease in the mechanical strength can be compensated by the separation functional layer itself. That is, the semipermeable membrane of the present invention has high water permeability, excellent solute removal ability, and high mechanical strength, and thus is suitable for continuously obtaining high power generation in concentration difference power generation. .
図1は、濃度差発電装置の概略を示した図である。FIG. 1 is a diagram schematically illustrating a concentration difference power generation apparatus. 図2は、実施例2および13の半透膜について測定したFT-IRスペクトルの結果である。FIG. 2 shows the results of FT-IR spectra measured for the semipermeable membranes of Examples 2 and 13. 図3は、緻密層Aを構成するポリマーの架橋反応を例示する化学式である。FIG. 3 is a chemical formula illustrating the crosslinking reaction of the polymer constituting the dense layer A. 図4は、実施例14および17で作製した半透膜の断面を模式的に示した説明図である。FIG. 4 is an explanatory view schematically showing a cross section of the semipermeable membrane produced in Examples 14 and 17.
 1.化合物
 本発明の半透膜は、実質的な溶質除去能を有する緻密層Aと、微多孔性層Bとの少なくとも2層からなる。このうち緻密層Aを構成する化合物は、下記(式1)で表される繰り返し単位を有するポリマーを主成分とする。この繰り返し単位は、ポリベンズイミダゾール構造を形成している。
Figure JPOXMLDOC01-appb-C000005
(式中、Ar1,Ar2,Ar3,Ar4はそれぞれ任意の芳香環構造であり、R1,R2,R3,R4はそれぞれ水素原子または構造Pであり、該構造Pがアルキル基、アルキルカルボン酸またはその塩、アルキルスルホン酸またはその塩、アルキルリン酸またはその塩、から選択される任意の構造であり、Xは、カルボン酸基またはその塩、スルホン酸基またはその塩、リン酸基またはその塩、から選択される任意の構造であり、m,nは繰り返し単位構造の構成比率(%)を表し、m≧0,n≧0,m+n=100を満たし、m=0のとき、R3,R4の少なくとも一つが前記構造Pである。)
1. Compound The semipermeable membrane of the present invention comprises at least two layers, a dense layer A having a substantial solute removing ability and a microporous layer B. Among these, the compound which comprises the dense layer A has as a main component the polymer which has a repeating unit represented by the following (Formula 1). This repeating unit forms a polybenzimidazole structure.
Figure JPOXMLDOC01-appb-C000005
(In the formula, Ar 1 , Ar 2 , Ar 3 and Ar 4 are each an arbitrary aromatic ring structure, and R 1 , R 2 , R 3 and R 4 are each a hydrogen atom or a structure P, and the structure P is An alkyl group, an alkyl carboxylic acid or a salt thereof, an alkyl sulfonic acid or a salt thereof, an alkyl phosphoric acid or a salt thereof, and X is a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof , A phosphoric acid group or a salt thereof, m and n represent the constituent ratio (%) of the repeating unit structure, m ≧ 0, n ≧ 0, m + n = 100 is satisfied, m = When 0, at least one of R 3 and R 4 is the structure P.)
 上記(式1)の左側に示す繰り返し単位構造および右側に示す繰り返し単位構造の配置順序は特に限定されるものではなく、これらの繰り返し単位構造はランダムに配置されうる。 The arrangement order of the repeating unit structure shown on the left side of (Formula 1) and the repeating unit structure shown on the right side is not particularly limited, and these repeating unit structures can be arranged randomly.
 上記(式1)における構造X,構造Ar1,Ar2,Ar3,Ar4,構造R1,R2,R3,R4および繰り返し単位の構成比率m,nについて、以下に説明する。 The structure X, the structures Ar 1 , Ar 2 , Ar 3 , Ar 4 , the structures R 1 , R 2 , R 3 , R 4 and the constituent ratios m, n of the repeating unit in the above (formula 1) will be described below.
(構造X)
 上記(式1)において、構造Xは親水性基である。具体的には、カルボン酸基またはその塩、スルホン酸基またはその塩、リン酸基またはその塩、からなる群より選択される任意の構造をとることができる。Xとしては、好ましくはスルホン酸基またはその塩であるとよい。これらXの構造を導入することで、緻密層A、すなわち半透膜の透水性が向上する。カルボン酸基、スルホン酸基およびリン酸基の塩としては、例えばこれらのナトリウム塩、カリウム塩、アンモニウム塩などが好適に用いられる。
(Structure X)
In the above (Formula 1), the structure X is a hydrophilic group. Specifically, it can have any structure selected from the group consisting of a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof. X is preferably a sulfonic acid group or a salt thereof. By introducing these X structures, the water permeability of the dense layer A, that is, the semipermeable membrane, is improved. As salts of the carboxylic acid group, sulfonic acid group and phosphoric acid group, for example, sodium salts, potassium salts and ammonium salts thereof are preferably used.
 mはXを含む繰り返し単位構造の構成比率(%)を示す。一方、nはXを含まない繰り返し単位構造の構成比率(%)を示す。m,nは0以上の実数であり、m+n=100である。m:nは20:80~99:1の範囲内が好ましく、30:70~90:10であることがより好ましく、45:55~80:20であることがさらに好ましい。スルホン酸基に代表される構造Xが導入された繰り返し単位構造が多ければ多いほど透水性が上がるが、同時にポリマーの溶解性が低下したり、水分子によって膜が膨潤しやすくなるなどの不具合が生じる場合がある。そのため、スルホン酸基に代表される構造Xが導入されていない一定量の繰り返し単位構造が共重合されていることが好ましく、特に鎖長の違う構造単位を共重合すると分子鎖の規則性が乱れて大きな空隙が生じ、水分子の透過流路が発生することで透水性が上昇するため、好ましい。 M represents the composition ratio (%) of the repeating unit structure including X. On the other hand, n represents the constituent ratio (%) of the repeating unit structure not containing X. m and n are real numbers of 0 or more, and m + n = 100. m: n is preferably in the range of 20:80 to 99: 1, more preferably 30:70 to 90:10, and even more preferably 45:55 to 80:20. The more the repeating unit structure in which the structure X represented by the sulfonic acid group is introduced, the more the water permeability increases, but at the same time, there is a problem that the solubility of the polymer is lowered or the membrane is easily swollen by water molecules. May occur. Therefore, it is preferable that a certain amount of repeating unit structures into which structure X typified by sulfonic acid groups is not introduced are copolymerized. Particularly, when structural units having different chain lengths are copolymerized, the molecular chain regularity is disturbed. This is preferable because a large void is generated and a water-permeable passage is generated to increase water permeability.
 ただし、詳細は後述するが、mが0の場合でも、R3,R4として親水性基を含有する構造を選択することで、膜の透水量を十分に確保することも可能である。 However, although details will be described later, even when m is 0, it is possible to sufficiently secure the water permeability of the membrane by selecting a structure containing a hydrophilic group as R 3 and R 4 .
 構造Xを構成する親水性基として特に好適なものにスルホン酸基またはその塩が挙げられる。スルホン酸基は、重合前の時点でモノマーに導入しておいてもよいし、重合後に何らかの化学反応を利用してポリマーに導入してもよいが、モノマーに導入してから重合した方がスルホン酸基の繰り返し構造内に比較的均一に導入され易いので、好ましい。重合後に導入する方法としては、発煙硫酸、濃硫酸、クロロスルホン酸、および、三酸化硫黄などにポリマーを浸漬する方法を挙げることが出来る。 A particularly preferred hydrophilic group constituting the structure X is a sulfonic acid group or a salt thereof. The sulfonic acid group may be introduced into the monomer before the polymerization, or may be introduced into the polymer by utilizing some chemical reaction after the polymerization. This is preferable because it can be introduced relatively uniformly into the repeating structure of the acid group. Examples of the method to be introduced after the polymerization include a method of immersing the polymer in fuming sulfuric acid, concentrated sulfuric acid, chlorosulfonic acid, sulfur trioxide and the like.
(構造Ar1,Ar2,Ar3,Ar4
 上記(式1)において、構造Ar1,Ar2,Ar3,Ar4は、任意の芳香環構造をとる。本発明の半透膜を構成する緻密層Aの透水量(膜透過流束)、脱塩性(塩除去率)を著しく損なわなければ、これらの構造は特定の芳香環構造に限定されることはない。具体例としては、例えば、ベンゼン環、ナフタレン環、カルド構造、あるいはそれらの組み合わせからなる複数の芳香環が連結した構造などが挙げられる。
(Structure Ar 1 , Ar 2 , Ar 3 , Ar 4 )
In the above (Formula 1), the structures Ar 1 , Ar 2 , Ar 3 , Ar 4 have an arbitrary aromatic ring structure. Unless the water permeability (membrane permeation flux) and desalting property (salt removal rate) of the dense layer A constituting the semipermeable membrane of the present invention are significantly impaired, these structures are limited to specific aromatic ring structures. There is no. Specific examples include a structure in which a plurality of aromatic rings composed of a benzene ring, a naphthalene ring, a cardo structure, or a combination thereof are connected.
 構造Xを含むAr2-Xが、下記の(式2)に示す群から選択されるいずれかの構造をとる場合、半透膜を構成する緻密層Aの性能、ポリマー合成、ポリマー合成の原料となるモノマーの合成あるいは入手の容易さから好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、Xは、カルボン酸基またはその塩、スルホン酸基またはその塩、リン酸基またはその塩、から選択される任意の構造である。)
In the case where Ar 2 -X including the structure X has any structure selected from the group represented by the following (formula 2), the performance of the dense layer A constituting the semipermeable membrane, polymer synthesis, and raw material for polymer synthesis From the standpoint of ease of synthesis or availability of the monomer.
Figure JPOXMLDOC01-appb-C000006
(In the formula, X is an arbitrary structure selected from a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof.)
 或いは構造Xを含むAr2-Xが、下記の(式3)に示す群から選択されるいずれかの構造であってもよい。これらの構造は、芳香環同士が他の原子団Zを介して共有結合する構造をとっている。
(式中、Xは、カルボン酸基またはその塩、スルホン酸基またはその塩、リン酸基またはその塩、から選択される任意の構造であり、Zは、-O-、-CH2-、-CO-、-CO2-、-S-、-SO2-、-C(CH32-、からなる群より選択される任意の構造である。)
Alternatively, Ar 2 —X containing the structure X may be any structure selected from the group represented by the following (formula 3). These structures have a structure in which aromatic rings are covalently bonded via another atomic group Z.
(Wherein X is an arbitrary structure selected from a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, Z is —O—, —CH 2 —, It is an arbitrary structure selected from the group consisting of —CO—, —CO 2 —, —S—, —SO 2 —, —C (CH 3 ) 2 —.
 さらに、Ar1とAr3、およびAr2とAr4の構造がそれぞれ同一である場合、原料が1種あるいは2種のモノマーで済むという観点から、合成条件の設定の容易さや経済性から好ましい。ただし、構造Ar2-Xが上記(式2)(式3)に列挙した構造群から選択される場合、必ずしもAr1とAr3、およびAr2とAr4の構造がそれぞれ同一でなくてもよく、このことが本発明の効果に与える影響は軽微である。なぜなら、構造Ar1,Ar2,Ar3,Ar4がもたらす分子間の相互作用は主には環構造由来の疎水性相互作用であり、イミダゾール環由来の水素結合に比べて遥かに弱く、無視できる程度のものだからである。 Furthermore, when the structures of Ar 1 and Ar 3 , and Ar 2 and Ar 4 are the same, it is preferable from the viewpoint of ease of setting the synthesis conditions and economy from the viewpoint that the raw material may be one or two monomers. However, when the structure Ar 2 -X is selected from the structure group listed in the above (formula 2) (formula 3), the structures of Ar 1 and Ar 3 , and Ar 2 and Ar 4 are not necessarily the same. Well, the effect of this on the effect of the present invention is negligible. This is because the intermolecular interaction brought about by the structures Ar 1 , Ar 2 , Ar 3 , Ar 4 is mainly a hydrophobic interaction derived from a ring structure, which is much weaker than a hydrogen bond derived from an imidazole ring and ignored. Because it is as much as possible.
(構造R1,R2,R3,R4
 上記(式1)において、R1,R2,R3,R4はそれぞれ、水素原子、または構造Pである。本明細書において、構造Pは、アルキル基、アルキルカルボン酸またはその塩、アルキルスルホン酸またはその塩、アルキルリン酸またはその塩、からなる群より選択される任意の構造をとる。これらの構造Pをポリマー中に導入することで、未導入のものに比べ、透水量が向上する傾向がある。
(Structure R 1 , R 2 , R 3 , R 4 )
In the above (Formula 1), R 1 , R 2 , R 3 and R 4 are each a hydrogen atom or the structure P. In the present specification, the structure P has an arbitrary structure selected from the group consisting of an alkyl group, an alkyl carboxylic acid or a salt thereof, an alkyl sulfonic acid or a salt thereof, and an alkyl phosphoric acid or a salt thereof. By introducing these structures P into the polymer, the water permeability tends to be improved as compared with those not yet introduced.
 その理由は、実施例中で詳述するが、主にはポリマー分子間の水素結合を阻害し、分子間距離を拡大させることで、水の流路となる空間を膜中に形成させることが可能であるからと考えられる。この効果は、アルキル基のみでも達成されるが、アルキルカルボン酸またはその塩、アルキルスルホン酸またはその塩、アルキルリン酸またはその塩のように、アルキル基の端に親水性基を有する場合、透水量向上の効果はより大きくなるため、好ましい。より好ましい構造Pとしては、アルキルスルホン酸またはその塩である。 The reason for this will be described in detail in the examples. Mainly, the hydrogen bond between polymer molecules is inhibited, and the intermolecular distance is increased to form a space for water flow in the film. This is thought to be possible. This effect can be achieved only with an alkyl group. However, when a hydrophilic group is present at the end of the alkyl group, such as an alkyl carboxylic acid or a salt thereof, an alkyl sulfonic acid or a salt thereof, or an alkyl phosphoric acid or a salt thereof, This is preferable because the effect of improving the amount becomes larger. A more preferable structure P is alkylsulfonic acid or a salt thereof.
 単にアルキル基のみを導入する場合、同時に前述の構造Xをポリマー構造中に導入することで、アルキルカルボン酸などのようにアルキル基の端に親水性基がある場合と比較しても、大きくは劣らない高透水効果を確保できる。実施例中で詳述するが、構造Pと、さらに構造Xからなる親水性基とを有する膜は、それらを共に有さない、または片方のみを有する膜と比較して、膜内部により多くの水を含有することができる。 When only an alkyl group is introduced, the structure X described above is introduced into the polymer structure at the same time, so that compared with the case where there is a hydrophilic group at the end of the alkyl group such as an alkylcarboxylic acid, The inferior high water permeability effect can be secured. As will be described in detail in the examples, the membrane having the structure P and the hydrophilic group further comprising the structure X has more in the membrane than the membrane having neither of them or only one of them. It can contain water.
 構造Pの具体例としては、アルキル基として、例えば炭素数1以上のアルキル基を好適に使用することができる。ポリマー分子にアルキル基を導入する目的は、ポリマー分子間の水素結合を阻害し、分子間距離を拡大することにある。アルキル鎖長が長いほど、水素結合阻害の効果は大きくなり、透水量は向上する傾向にあり、目的とする透水量に応じ、アルキル基を構成する炭素数は調節すればよい。アルキル基を構成する炭素数は1以上が好ましく、4以上がより好ましい。また、アルキル基を構成する炭素数は12以下であることが好ましい。炭素数が13以上であると、水素結合阻害の効果が大きくなりすぎ、分子間距離が広く、塩除去性の低下を招く懸念がある。 As a specific example of the structure P, for example, an alkyl group having 1 or more carbon atoms can be suitably used as the alkyl group. The purpose of introducing an alkyl group into the polymer molecule is to inhibit hydrogen bonding between the polymer molecules and increase the intermolecular distance. The longer the alkyl chain length, the greater the effect of inhibiting hydrogen bonding, and the water permeability tends to improve. The number of carbon atoms constituting the alkyl group may be adjusted according to the target water permeability. The number of carbon atoms constituting the alkyl group is preferably 1 or more, and more preferably 4 or more. Moreover, it is preferable that the carbon number which comprises an alkyl group is 12 or less. When the number of carbon atoms is 13 or more, the effect of inhibiting hydrogen bonding becomes too large, the intermolecular distance is wide, and there is a concern that the salt removability is lowered.
 さらに、アルキル基は、該構造中に環構造や分岐構造、不飽和結合を含んでもよいし、分子間距離の拡大に好適に用いられる範囲で、必ずしも炭素原子のみからでなく、窒素原子、硫黄原子、ケイ素原子、酸素原子などを含んでもよい。 Furthermore, the alkyl group may contain a ring structure, a branched structure, or an unsaturated bond in the structure, and is not limited to only a carbon atom, but may be a nitrogen atom, a sulfur, as long as it is suitably used to increase the intermolecular distance. An atom, a silicon atom, an oxygen atom, etc. may be included.
 構造Pをポリマー中に導入する方法としては、例えば、構造Pを含有するモノマーの使用、あるいはポリマーへの高分子反応の利用、が挙げられる。特に、後者の方法が合成の容易さから好適に使用される。後者の方法を利用する場合、例えば、種々の還元剤と、アルキルハロゲン化物を用い、ポリマー中の窒素原子と反応させる方法を用いれば、濃度と反応時間の調節により構造Pの導入量をコントロールし易く、好ましい。一例としては、水素化リチウムを還元剤として用い、同時に1,4-ブタンスルトンを使用すれば、ポリマーの窒素原子に対し、ブチルスルホン酸基を導入することが可能である。 Examples of the method for introducing the structure P into the polymer include use of a monomer containing the structure P or use of a polymer reaction for the polymer. In particular, the latter method is preferably used from the viewpoint of ease of synthesis. When using the latter method, for example, by using various reducing agents and alkyl halides and reacting with nitrogen atoms in the polymer, the amount of structure P introduced can be controlled by adjusting the concentration and reaction time. Easy and preferable. As an example, if lithium hydride is used as a reducing agent and 1,4-butane sultone is used at the same time, a butylsulfonic acid group can be introduced into the nitrogen atom of the polymer.
 上記(式1)において、R1およびR3を共に水素原子にすることができる。これにより、構造Pを導入した場合に比べ、ポリマーの相互作用が強くなるため、膜が緻密化し易く、膜の強度をより以上に重視したい場面において好ましい、という利点がある。 In the above (Formula 1), both R 1 and R 3 can be hydrogen atoms. Thereby, compared with the case where the structure P is introduced, there is an advantage that the interaction of the polymer becomes stronger, so that the film is easily densified and is preferable in a case where the strength of the film is more important.
(架橋)
 本発明の半透膜を構成する緻密層Aの構成素材として、(式1)のポリマーを架橋させた構造を含んでもよい。(式1)のポリマーを架橋させることで、半透膜としての性能が向上する効果がある。架橋を形成する方法としては、ポリマーと架橋剤との化学反応を利用する方法が挙げられる。架橋剤は少なくとも2点以上の反応部位を有し、2分子以上のポリマーと共有結合を形成可能な物質であればよく、さらには、(式1)中の窒素原子と共有結合を形成可能な物質が、架橋反応条件の選択域の広さ、架橋反応の反応性の高さ、架橋の容易さの観点から好ましい。このような架橋剤としては、例えば、種々のマイケル付加型多官能性物質、多官能ハロゲン化物などが挙げられ、入手の容易さからも好ましい。具体的には、ジビニルスルホンおよびその類似物、ジビニルケトンおよびその類似物、p-キシレンジクロリドおよびその類似物などが好適に使用される。さらに、反応時間や反応率を向上させるため、必要に応じ酸などの触媒を同時に使用してもよい。
(Crosslinking)
The constituent material of the dense layer A constituting the semipermeable membrane of the present invention may include a structure obtained by crosslinking the polymer of (Formula 1). By crosslinking the polymer of (Formula 1), there is an effect of improving the performance as a semipermeable membrane. Examples of the method for forming a cross-link include a method using a chemical reaction between a polymer and a cross-linking agent. The cross-linking agent may be any substance having at least two reactive sites and capable of forming a covalent bond with two or more polymers, and further capable of forming a covalent bond with the nitrogen atom in (Formula 1). The substance is preferable from the viewpoints of a wide selection range of the crosslinking reaction conditions, high reactivity of the crosslinking reaction, and ease of crosslinking. Examples of such a crosslinking agent include various Michael addition type polyfunctional substances, polyfunctional halides, and the like, which are preferable from the viewpoint of availability. Specifically, divinyl sulfone and the like, divinyl ketone and the like, p-xylene dichloride and the like are preferably used. Furthermore, a catalyst such as an acid may be used at the same time if necessary in order to improve the reaction time and the reaction rate.
(重合)
 本発明の半透膜を構成するポリマーの主成分であるポリベンズイミダゾールは、芳香族テトラアミンと芳香族ジカルボン酸から重合されることが好ましい。重合方法としてはJOURNAL of Polymer Science,50,511(1961)や米国特許第3,509,108号などに記載された溶融重合法などで重合することが出来る。具体的には100℃から160℃程度の温度で重合を開始し、140℃から350℃前後まで徐々に昇温する方法であり、重合度を上げたい場合には昇温後に減圧して重合を行うことが好ましい。温度はポリマー構造や触媒によって適時変更でき、触媒としてはポリリン酸(以下、PPAと略す)やメタンスルホン酸-五酸化ニリン混合物(10:1重量比)のEaton試薬(以下、PPMAと略す)を使用することが好ましい。
(polymerization)
The polybenzimidazole that is the main component of the polymer constituting the semipermeable membrane of the present invention is preferably polymerized from an aromatic tetraamine and an aromatic dicarboxylic acid. As a polymerization method, polymerization can be performed by a melt polymerization method described in JOURNAL of Polymer Science, 50, 511 (1961), US Pat. No. 3,509, 108, or the like. Specifically, the polymerization is started at a temperature of about 100 ° C. to 160 ° C., and the temperature is gradually raised from 140 ° C. to about 350 ° C. If the degree of polymerization is to be increased, the polymerization is performed by reducing the pressure after raising the temperature. Preferably it is done. The temperature can be changed from time to time depending on the polymer structure and catalyst. As the catalyst, polyphosphoric acid (hereinafter abbreviated as PPA) or a methanesulfonic acid-niline pentoxide mixture (10: 1 weight ratio) Eaton reagent (hereinafter abbreviated as PPMA). It is preferable to use it.
 使用できる芳香族テトラアミンモノマーとしては、1,2,4,5-テトラアミノベンゼン、1,2,5,6-テトラアミノナフタレート、2,3,6,7-テトラアミノナフタレート、3,3',4,4'-テトラアミノジフェニルメタン、3,3',4,4'-テトラアミノジフェニルエタン、3,3',4,4'-テトラアミノジフェニル-2,2-プロパン、3,3'4,4'-テトラアミノジフェニルチオエーテル、および3,3',4,4'-テトラアミノジフェニルスルホンおよびこれらの誘導体を一例として挙げることができる。 Examples of aromatic tetraamine monomers that can be used include 1,2,4,5-tetraaminobenzene, 1,2,5,6-tetraaminonaphthalate, 2,3,6,7-tetraaminonaphthalate, 3, 3 ′, 4,4′-tetraaminodiphenylmethane, 3,3 ′, 4,4′-tetraaminodiphenylethane, 3,3 ′, 4,4′-tetraaminodiphenyl-2,2-propane, 3,3 As an example, '4,4'-tetraaminodiphenylthioether and 3,3', 4,4'-tetraaminodiphenylsulfone and their derivatives can be mentioned.
 芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、フタル酸、ジフェニルジカルボン酸、ジフェニルエーテルジカルボン酸、4,4'‐[1,4-フェニレンビス(オキシ)] ビス安息香酸、4,4'-ジカルボキシジフェニルスルホン、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホイソフタル酸、ヒドロキシイソフタル酸、アミノイソフタル酸、5-N,N-ジメチルアミノイソフタル酸、5-N,N-ジエチルアミノイソフタル酸、2,5-ジヒドロキシテレフタル酸、2,6-ジヒドロキシイソフタル酸、4,6-ジヒドロキシイソフタル酸、2,3-ジヒドロキシフタル酸、2,4-ジヒドロキシフタル酸、3,4-ジヒドロキシフタル酸、3-フルオロフタル酸、5-フルオロイソフタル酸、2-フルオロテレフタル酸、テトラフルオロフタル酸、テトラフルオロイソフタル酸、テトラフルオロテレフタル酸、およびそれらの誘導体を一例として挙げることができる。 Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, phthalic acid, diphenyldicarboxylic acid Acid, diphenyl ether dicarboxylic acid, 4,4 ′-[1,4-phenylenebis (oxy)] bisbenzoic acid, 4,4′-dicarboxydiphenyl sulfone, diphenoxyethanedicarboxylic acid, 5-sodium sulfoisophthalic acid, hydroxy Isophthalic acid, aminoisophthalic acid, 5-N, N-dimethylaminoisophthalic acid, 5-N, N-diethylaminoisophthalic acid, 2,5-dihydroxyterephthalic acid, 2,6-dihydroxyisophthalic acid, 4,6-dihydroxyisophthalic acid Acid, 2,3-dihydroxyphthalic acid 2,4-dihydroxyphthalic acid, 3,4-dihydroxyphthalic acid, 3-fluorophthalic acid, 5-fluoroisophthalic acid, 2-fluoroterephthalic acid, tetrafluorophthalic acid, tetrafluoroisophthalic acid, tetrafluoroterephthalic acid, and Those derivatives can be mentioned as an example.
 2.半透膜
 本発明の半透膜は、実質的な溶質除去能を有する緻密層Aと、微多孔性層Bとの2層を少なくとも備える半透膜であって、少なくとも緻密層Aは、その主な構成成分が(式1)のポリマーまたはその架橋体である。
2. Semipermeable membrane The semipermeable membrane of the present invention is a semipermeable membrane comprising at least two layers of a dense layer A having a substantial solute removing ability and a microporous layer B, and at least the dense layer A is The main component is the polymer of (Formula 1) or a crosslinked product thereof.
 本発明の半透膜は、圧力:1MPa、供給液の塩化ナトリウム濃度:500ppm、温度:25℃、pH:6.5で測定したときに、膜透過流束が0.05(m3/m2/day)以上であることが好ましく、0.1(m3/m2/day)以上であることがより好ましく、0.4(m3/m2/day)以上であることがさらに好ましい。また、脱塩率が10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましい。この性能と同等、またはそれ以上の膜透過流束および脱塩率を有する半透膜を用いることで好適に濃度差発電を実施することができる。 The semipermeable membrane of the present invention has a membrane permeation flux of 0.05 (m 3 / m) when measured at a pressure of 1 MPa, a sodium chloride concentration of the supply liquid of 500 ppm, a temperature of 25 ° C., and a pH of 6.5. 2 / day) or more, preferably 0.1 (m 3 / m 2 / day) or more, and more preferably 0.4 (m 3 / m 2 / day) or more. . Further, the desalting rate is preferably 10% or more, more preferably 20% or more, and further preferably 30% or more. By using a semipermeable membrane having a membrane permeation flux and a desalination rate equal to or higher than this performance, concentration difference power generation can be suitably performed.
(緻密層A)
 緻密層Aは溶質除去能を有することが求められる。具体的には、圧力:1MPa、供給液の塩化ナトリウム濃度:500ppm、温度:25℃、pH:6.5で測定したときに、透水性と同時に塩化ナトリウムの除去能を発揮することであり、それぞれの性能については上記の通りである。
(Dense layer A)
The dense layer A is required to have a solute removing ability. Specifically, when measuring at a pressure of 1 MPa, a sodium chloride concentration of the supply liquid: 500 ppm, a temperature of 25 ° C., and a pH of 6.5, it exhibits the ability to remove sodium chloride simultaneously with water permeability. Each performance is as described above.
 緻密層Aの厚みは、20μm未満であることが好ましい。また、緻密層Aの厚みは、5μm以下であってもよいし、2μm以下であってもよいし、1μm以下であってもよい。緻密層Aの厚みが20μm未満であることで、高い透水性が得られる。 The thickness of the dense layer A is preferably less than 20 μm. The dense layer A may have a thickness of 5 μm or less, 2 μm or less, or 1 μm or less. When the thickness of the dense layer A is less than 20 μm, high water permeability is obtained.
 また、緻密層Aの厚みは、0.1μm以上であることが好ましい。緻密層Aの厚みは、0.5μm以上、または0.8μm以上であってもよい。緻密層Aの厚みが0.1μm以上であると、特に高い強度が得られる。微多孔性層Bの機械的強度が比較的低い場合、それを緻密層A自身がサポートするために、その厚みは1μm以上が好ましい。 The thickness of the dense layer A is preferably 0.1 μm or more. The dense layer A may have a thickness of 0.5 μm or more, or 0.8 μm or more. A particularly high strength is obtained when the thickness of the dense layer A is 0.1 μm or more. When the mechanical strength of the microporous layer B is relatively low, the thickness is preferably 1 μm or more so that the dense layer A itself supports it.
 膜の形態は特に限定されず、必要に応じ適宜選択すればよい。例えば、濃度差発電において通常利用される運転圧は1~3MPa程度であるが、同等の加圧透水テストであれば、厚み1μm程度であっても十分な強度は確保できる。さらに、使用に際する十分な透水性と強度さえ担保されれば、平膜であっても中空糸膜であってもよく、求める性能と強度に合わせて、柔軟に膜の形態を選択すればよい。 The form of the film is not particularly limited, and may be appropriately selected as necessary. For example, the operating pressure normally used in the concentration difference power generation is about 1 to 3 MPa, but a sufficient strength can be secured even with a thickness of about 1 μm in the case of an equivalent pressurized water permeability test. Furthermore, as long as sufficient water permeability and strength are ensured in use, it may be a flat membrane or a hollow fiber membrane, and if the form of the membrane is selected flexibly according to the required performance and strength Good.
(微多孔性層B)
 微多孔性層Bとは、緻密層Aの支持層である。したがって、複数の孔を有する膜であれば特に限定されないが、好ましくは、略均一な孔あるいは片面からもう一方の面まで徐々に孔径が大きくなる孔を有し、かつ微多孔性層Bの強度の問題から、膜の片側表面における孔径が100nm以下であるような構造の膜が好ましい。さらに、孔径としては1~100nmの範囲内であるとより好ましい。孔径が1nmを下回ると、透過流束が低下する傾向にあるためである。また、微多孔性層Bの厚みは、1μm~5mmの範囲内にあると好ましく、10~100μmの範囲内にあるとより好ましい。厚みが1μmを下回ると多孔性支持膜の強度が低下しやすく、5mmを超えると取り扱いにくくなるためである。
(Microporous layer B)
The microporous layer B is a support layer for the dense layer A. Accordingly, the film is not particularly limited as long as it is a film having a plurality of holes, but preferably has a substantially uniform hole or a hole whose diameter gradually increases from one surface to the other surface, and the strength of the microporous layer B. From the above problem, a membrane having a structure in which the pore diameter on one surface of the membrane is 100 nm or less is preferable. Further, the pore diameter is more preferably in the range of 1 to 100 nm. This is because if the pore diameter is less than 1 nm, the permeation flux tends to decrease. The thickness of the microporous layer B is preferably in the range of 1 μm to 5 mm, and more preferably in the range of 10 to 100 μm. This is because when the thickness is less than 1 μm, the strength of the porous support membrane tends to be lowered, and when it exceeds 5 mm, it becomes difficult to handle.
 微多孔性層Bに用いられる素材としては特に限定されないが、例えばポリスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリフェニレンオキシドなどのホモポリマーあるいはコポリマーを単独であるいはブレンドして用いることができる。上記のうち、セルロース系ポリマーとしては、酢酸セルロース、硝酸セルロースなど、ビニル系ポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリルなどを用いると好ましい。中でも、ポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホンなどのホモポリマーやコポリマーが好ましい。 The material used for the microporous layer B is not particularly limited. For example, polysulfone, polyamide, polyester, cellulose polymer, vinyl polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, polyphenylene sulfone, homopolymer or copolymer such as polyphenylene oxide, and the like. It can be used alone or blended. Among the above, it is preferable to use cellulose acetate, cellulose nitrate or the like as the cellulose polymer and polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile or the like as the vinyl polymer. Among these, homopolymers and copolymers such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, and polyphenylene sulfide sulfone are preferable.
 微多孔性層Bとは、いわゆる基材と、基材上に形成された支持層とを備えてもよい。基材は、例えば織布及び不織布等で形成されてもよく、支持層は、微多孔性支持膜に用いられる素材として上述した材料で形成されてもよい。 The microporous layer B may include a so-called base material and a support layer formed on the base material. The base material may be formed of, for example, a woven fabric or a non-woven fabric, and the support layer may be formed of the material described above as a material used for the microporous support film.
 さらに微多孔性層Bは、半透膜を用いて濃度差発電を行うに当っては、塩分の溜まりにくい疎な構造であることが好ましい。疎な構造とは、支持膜の空隙率ができるだけ大きく、かつ、厚みができるだけ薄く、かつ、空隙ができるだけ直線的であって屈曲性が低いことが求められる。通常、これらのパラメータを塩分滞留抑制の観点から好ましい範囲に設定した場合、著しく機械的強度が損なわれる。しかし、本発明においては、緻密層Aが単独で自己支持性を有するほど機械的強度が高く、微多孔性層Bの機械的強度の低さを補うことができるので、使用に際して問題のない範囲で、支持膜の空隙率ができるだけ大きく、かつ、厚みができるだけ薄く、かつ、空隙ができるだけ直線的であって屈曲性が低いことが好ましい。 Furthermore, it is preferable that the microporous layer B has a sparse structure in which salt content does not easily accumulate when performing concentration difference power generation using a semipermeable membrane. The sparse structure is required to have as high a porosity of the support membrane as possible, a thickness as thin as possible, a space as straight as possible, and a low flexibility. Usually, when these parameters are set in a preferable range from the viewpoint of suppressing salt retention, mechanical strength is remarkably impaired. However, in the present invention, the dense layer A alone has a self-supporting property so that the mechanical strength is high and the low mechanical strength of the microporous layer B can be compensated. Therefore, it is preferable that the porosity of the support film is as large as possible, the thickness is as thin as possible, the void is as straight as possible, and the flexibility is low.
 3.製造方法
 本発明の半透膜は、緻密層Aと微多孔性層Bの二層からなるが、これら二層は、それぞれ単独で作製され、その後組み合わせてもよいし、緻密層Aと微多孔性層Bを同時に作製してもよい。
3. Manufacturing Method The semipermeable membrane of the present invention comprises two layers, a dense layer A and a microporous layer B. These two layers are each produced independently and may be combined thereafter, or the dense layer A and the microporous layer may be combined. The conductive layer B may be produced at the same time.
 緻密層Aと微多孔性層Bをそれぞれ単独で作製し、その後組み合わせる方法としては、例えば、微多孔性層Bの表面に緻密層Aを配置する方法が挙げられる。この際、緻密層Aと微多孔性層Bは互いに接着していてもよいし、接着していなくてもよい。接着している場合、緻密層Aが微多孔性層Bに含浸している場合が考えられる。例えば、作製された微多孔性層Bの表面に緻密層Aの液膜を配置し、その後脱溶媒を行うことで緻密層Aが微多孔性層Bに含浸しているような膜構造とすることもできる。 Examples of a method of producing the dense layer A and the microporous layer B independently and then combining them include a method of arranging the dense layer A on the surface of the microporous layer B. At this time, the dense layer A and the microporous layer B may or may not adhere to each other. When adhered, the dense layer A may be impregnated in the microporous layer B. For example, a liquid film of the dense layer A is disposed on the surface of the produced microporous layer B, and then the solvent is removed to obtain a film structure in which the dense layer A is impregnated in the microporous layer B. You can also
 緻密層Aと微多孔性層Bの二層を同時に作製する方法としては、例えば、1種類の液膜から脱溶媒により、まず液膜表層付近の相分離を進行させ緻密な緻密層Aを形成した後、そのまま相分離を継続せしめ、下層以下を比較的疎な微多孔性層Bとすることができる。他の方法としては、微多孔性層Bの液膜表面に緻密層Aの液膜を配置または接触させ、それぞれの液膜から同時に脱溶媒を起こすこともできる。最終的な膜の構造が、本発明の通りになれば、途中の経過は如何様にも設定可能である。 For example, the dense layer A and the microporous layer B can be simultaneously produced by, for example, removing a solvent from one type of liquid film and first proceeding phase separation near the surface of the liquid film to form the dense layer A. After that, the phase separation is continued as it is, so that the lower porous layer B can be a relatively sparse microporous layer B. As another method, the liquid film of the dense layer A can be placed on or brought into contact with the liquid film surface of the microporous layer B, and desolvation can be caused simultaneously from each liquid film. If the final film structure is in accordance with the present invention, the course of the process can be set in any way.
 半透膜の製造方法は、ポリマーの重合工程に加え、溶液準備工程、液膜形成工程、脱溶媒工程を少なくとも含む。 The method for producing a semipermeable membrane includes at least a solution preparation step, a liquid membrane formation step, and a solvent removal step in addition to the polymer polymerization step.
 (溶液準備工程)
 溶液準備工程として、以下、製膜原液を調製する工程(溶液調整工程)について説明する。具体的には、溶液調整工程は、製膜原液の成分として、(式1)の構造を有するポリマー、および溶媒、とを混合するステップを備える。架橋反応を利用する場合、同時に必要な架橋剤を混合してもよく、均一透明な製膜溶液を調製するために、この工程は複数のステップを備えることができる。例えば、溶液調整工程は、各成分を含む溶液を加熱しながら攪拌することを含んでもよい。さらにその混合比および添加順序も特に限定されず、ポリマー、溶媒以外の添加物をさらに必要に応じ含んでもよい。例えば、透明均一な溶液を作製する上で問題のない範囲で、各種の塩を溶解助剤として加えたり、さらには、膜の透水性を向上させる目的で種々の親水性化合物を加えても良い。
(Solution preparation process)
As the solution preparation step, a step of preparing a film forming stock solution (solution adjustment step) will be described below. Specifically, the solution adjustment step includes a step of mixing a polymer having the structure of (Formula 1) and a solvent as components of the film-forming stock solution. When a cross-linking reaction is used, a necessary cross-linking agent may be mixed at the same time, and this process may include a plurality of steps in order to prepare a uniform transparent film forming solution. For example, the solution adjustment step may include stirring the solution containing each component while heating. Furthermore, the mixing ratio and the order of addition are not particularly limited, and additives other than the polymer and the solvent may further be included as necessary. For example, various salts may be added as a dissolution aid within the range where there is no problem in producing a transparent and uniform solution, and various hydrophilic compounds may be added for the purpose of improving the water permeability of the membrane. .
 製膜溶液の体積に対する各物質の添加量は、製膜溶液の均一性を確保するように設定されることが好ましい。ただし、不溶物が発生した場合、濾過等の分離方法によりこれを除去し、ろ液を製膜溶液として使用してもよい。塗布前に製膜溶液を濾過することで、良好な塗布性を得るとともに、膜形成後の欠点の発生を防止することができる。濾過においては、溶液粘性の高さに応じて、加圧濾過機を使用することができる。濾過により高い効果を得るために、特に、濾過径は3μm以下、好ましくは1μm以下、より好ましくは0.4μm以下、さらに好ましくは0.2μm以下である。 The amount of each substance added to the volume of the film forming solution is preferably set so as to ensure the uniformity of the film forming solution. However, when insoluble matter is generated, it may be removed by a separation method such as filtration, and the filtrate may be used as a membrane-forming solution. By filtering the film-forming solution before coating, good coating properties can be obtained, and the occurrence of defects after film formation can be prevented. In the filtration, a pressure filter can be used according to the high viscosity of the solution. In order to obtain a high effect by filtration, in particular, the filtration diameter is 3 μm or less, preferably 1 μm or less, more preferably 0.4 μm or less, and further preferably 0.2 μm or less.
 (液膜形成工程)
 製造方法は、製膜溶液により液膜を形成する工程(液膜形成工程)を備えてもよい。
(Liquid film formation process)
The manufacturing method may include a step of forming a liquid film with a film forming solution (liquid film forming step).
 液膜の形成には、ディップコート、スピンコート、アプリケーターを用いた塗布など、種々の方法を使用することができる。緻密層Aの膜厚を数μm以下としたい場合、特に、スピンコートによる塗布が好ましい。液膜の形成は、具体的には、シート状の平膜を形成する場合、基板に対する製膜溶液の塗布によって実現可能であるし、中空糸膜を形成する場合、予め中空糸状の微多孔性層Bを形成しておき、その外表面に溶液をコーティングするか、内部に通液させ内表面にコーティングしてもよい。さらには、複合紡糸を用いて、緻密層Aと微多孔性層Bを同時に作製しても良い。具体的には、緻密層Aの溶液と微多孔性層Bの溶液を、二重の口金で同時に押し出し、一方を内層、他方を外層として、同時に液膜を形成し、続く脱溶媒に供しても良い。 For forming the liquid film, various methods such as dip coating, spin coating, and application using an applicator can be used. When the film thickness of the dense layer A is desired to be several μm or less, the application by spin coating is particularly preferable. The formation of the liquid film can be realized by, specifically, forming a sheet-like flat film by applying a film-forming solution to the substrate. When forming a hollow fiber film, the hollow fiber-like microporous structure is formed in advance. The layer B may be formed and the outer surface may be coated with a solution, or the solution may be passed through the inner surface to coat the inner surface. Furthermore, you may produce the dense layer A and the microporous layer B simultaneously using composite spinning. Specifically, the solution of the dense layer A and the solution of the microporous layer B are simultaneously extruded with a double die, one is an inner layer, the other is an outer layer, and a liquid film is formed at the same time. Also good.
 (脱溶媒工程)
 本発明の半透膜の製造方法は、液膜形成工程の後に脱溶媒を行うことを含む。
(Desolvation process)
The manufacturing method of the semipermeable membrane of this invention includes performing a solvent removal after a liquid film formation process.
 本脱溶媒工程において、脱溶媒する方法としては、加熱乾燥による方法と、溶媒と相溶性を有しかつポリマーの貧溶媒であるような液体に浸漬する方法、の2通りが挙げられる。 In the present solvent removal step, there are two methods for removing the solvent: a method by heat drying and a method of immersing in a liquid that is compatible with the solvent and is a poor solvent for the polymer.
 加熱乾燥による脱溶媒の場合、加熱乾燥することで溶媒を蒸発させ、ポリマーの凝集を促進し、膜形成を行う。一方、液体浸漬の場合、液体中への溶媒の流出により相分離が進行し、ポリマーが凝固し、膜が得られる。また、これらの方法を組み合わせても良い。例えば、加熱後に液体浸漬させたり、液体浸漬後に加熱乾燥させてもよい。これらの方法を組み合わせることで、得られる膜の断面および表面の構造を種々にコントロールすることが可能である。 In the case of solvent removal by heat drying, the solvent is evaporated by heat drying to promote polymer aggregation and form a film. On the other hand, in the case of liquid immersion, phase separation proceeds due to the outflow of the solvent into the liquid, the polymer is solidified, and a film is obtained. Moreover, you may combine these methods. For example, liquid immersion after heating, or heat drying after liquid immersion may be performed. By combining these methods, it is possible to variously control the cross section and surface structure of the obtained film.
 加熱乾燥で脱溶媒を行う場合、乾燥温度としては、100℃以上250℃以下であることが好ましく、110℃以上180℃未満であることがより好ましく、120℃以上150℃未満であることがさらに好ましい。このときの乾燥時間としては1分以上120分未満が好ましく、10分以上90分未満がより好ましく、30分以上60分未満がさらに好ましい。 When removing the solvent by heat drying, the drying temperature is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 110 ° C. or higher and lower than 180 ° C., and further preferably 120 ° C. or higher and lower than 150 ° C. preferable. The drying time at this time is preferably from 1 minute to less than 120 minutes, more preferably from 10 minutes to less than 90 minutes, and even more preferably from 30 minutes to less than 60 minutes.
 (その他の工程)
 半透膜の製造方法は、さらに他の工程を含んでいてもよい。他の工程としては、例えば、脱溶媒工程で形成された半透膜を熱水で洗浄することが挙げられる。このような熱水洗浄処理により、ポリマーの運動性が向上し、ポリマーの再編成が促進されるので、結果としてより緻密な膜とすることができる。本工程により、半透膜の脱塩性を向上させることができるので、必要に応じ実施するとよい。
(Other processes)
The method for producing a semipermeable membrane may further include other steps. As another process, for example, the semipermeable membrane formed in the solvent removal process is washed with hot water. Such hot water washing treatment improves the mobility of the polymer and promotes the reorganization of the polymer. As a result, a denser film can be obtained. Since this step can improve the desalting property of the semipermeable membrane, it may be carried out as necessary.
 3.半透膜の利用
 このようにして得られた本発明の浸透膜を用いた濃度差発電方法について、平膜状の半透膜を用いた場合を例に説明するが、以下の方法に限られたものではない。本発明の濃度差発電方法は、(a)低濃度塩水と高濃度塩水とを上述したいずれかの半透膜または複合膜によって隔てて接触させることで、低濃度塩水から高濃度塩水への水の流動を生じさせること、および(b)その流動を利用して発電機を駆動させること、を備える。
3. Utilization of Semipermeable Membrane The concentration difference power generation method using the permeable membrane of the present invention thus obtained will be described by way of example using a flat membrane-like semipermeable membrane, but is limited to the following method. Not a thing. The concentration difference power generation method of the present invention includes (a) water from low-concentration salt water to high-concentration salt water by bringing low-concentration salt water and high-concentration salt water into contact with each other by any of the semipermeable membranes or composite membranes described above. And (b) driving the generator using the flow.
 半透膜は、プラスチックネットなどの原水流路材と、トリコットなどの透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回されることで、スパイラル型の半透膜エレメントとして好適に用いられる。 The semipermeable membrane is made up of a cylindrical water collecting pipe with a large number of holes, along with a raw water channel material such as plastic net, a permeate channel material such as tricot, and a film for increasing pressure resistance as required. By being wound around, it is suitably used as a spiral type semipermeable membrane element.
 上記の半透膜またはそれを用いたエレメントに対し、図1に示すように、半透膜の片面(第一面)に高濃度の塩水Swを加圧しながら接触させ、その反対面(第二面)に低濃度の淡水Fwを接触させると、浸透現象によって、前記第二面側の低濃度の淡水Fwの一部が半透膜1を通って第一面側に移動する(工程(a))。その結果、第一面側の溶液が第二面側から透過した低濃度の淡水の分だけ大きな容積となるため、第一面側に入力した圧力よりも大きな圧力で発電機2を駆動することができる(工程(b))。こうして、発電に用いるエネルギーを得ることができる。 As shown in FIG. 1, the semi-permeable membrane or an element using the semi-permeable membrane is brought into contact with one side (first surface) of the semi-permeable membrane while pressing high-concentration salt water Sw, and the opposite surface (second surface). When the low-concentration fresh water Fw is brought into contact with the surface, a part of the low-concentration fresh water Fw on the second surface side moves to the first surface side through the semipermeable membrane 1 by the permeation phenomenon (step (a) )). As a result, the volume on the first surface side is increased by the amount of low-concentration fresh water that has permeated from the second surface side, so that the generator 2 is driven at a pressure larger than the pressure input to the first surface side. (Step (b)). Thus, energy used for power generation can be obtained.
 上述した半透膜を用いることで小さな圧力差であっても高い透水性を有し、また、半透膜の膜中における塩分の滞留が抑制されるため、それによって濃度分極による透水量の低下を抑制される。その結果、本発明の発電方法によると、高い発電量を実現することができる。 By using the semipermeable membrane described above, it has high water permeability even with a small pressure difference, and the retention of salt in the membrane of the semipermeable membrane is suppressed, thereby reducing the amount of water permeability due to concentration polarization. Is suppressed. As a result, according to the power generation method of the present invention, a high power generation amount can be realized.
 次に、実施例に基づいて本発明を説明するが、本発明はこれにより必ずしも限定されるものではない。 Next, the present invention will be described based on examples, but the present invention is not necessarily limited thereto.
 表1~4に記載したように、緻密層Aを構成するポリマーの構造、緻密層Aの厚み、製膜時の脱溶媒条件等を異ならせた19種類(実施例1~17、比較例1~2)の半透膜を作製し、その膜透過流束、塩除去率を評価した。 As described in Tables 1 to 4, 19 types (Examples 1 to 17 and Comparative Example 1) in which the structure of the polymer constituting the dense layer A, the thickness of the dense layer A, the desolvation conditions during film formation, and the like were varied. The semipermeable membranes (2) to (2) were prepared, and their membrane permeation flux and salt removal rate were evaluated.
<モノマーの合成>
 緻密層Aの主成分となるポリマーの合成に供するモノマーを以下の手順にて準備した。
<Synthesis of monomer>
A monomer to be used for synthesizing a polymer as a main component of the dense layer A was prepared by the following procedure.
 芳香族テトラアミンモノマーとして、3,3'―ジアミノベンジジン(東京化成工業株式会社製)を購入し、使用した。 3 , 3,3'-diaminobenzidine (manufactured by Tokyo Chemical Industry Co., Ltd.) was purchased and used as an aromatic tetraamine monomer.
 芳香族ジカルボン酸モノマーは、市販品を適宜使用した。さらに、芳香族ジカルボン酸モノマーには、必要に応じ、親水性基としてスルホン酸ナトリウムを導入した後、重合に使用した。具体的には、芳香族ジカルボン酸化合物に対して30%発煙硫酸を過剰量接触させて90℃で3~8時間反応させ、スルホン化芳香族ジカルボン酸を合成した。スルホン化率は、反応時間を調節することで制御した。続いて食塩水で処理することで、芳香族ジカルボン酸のスルホン酸ナトリウム塩を合成した。 As the aromatic dicarboxylic acid monomer, a commercially available product was appropriately used. Furthermore, the aromatic dicarboxylic acid monomer was used for polymerization after introducing sodium sulfonate as a hydrophilic group, if necessary. Specifically, a 30% fuming sulfuric acid was brought into contact with an aromatic dicarboxylic acid compound in an excessive amount and reacted at 90 ° C. for 3 to 8 hours to synthesize a sulfonated aromatic dicarboxylic acid. The sulfonation rate was controlled by adjusting the reaction time. Subsequently, a sulfonic acid sodium salt of an aromatic dicarboxylic acid was synthesized by treatment with a saline solution.
<ポリマーの合成>
 ポリマーは、基本的に芳香族テトラアミンモノマー及び芳香族ジカルボン酸モノマーの重合によりポリマー合成(重合)を行った。まず、総量3gの芳香族ジカルボン酸モノマーと、ポリリン酸触媒0.5gを重合容器内に加え、窒素雰囲気下150℃で溶融させた。徐冷して室温に戻した後、3,3'―ジアミノベンジジン2gを加えてから、150℃に再昇温した。5時間かけて200℃まで昇温した後、200℃で24時間重合を行った。なお、芳香族ジカルボン酸モノマーには必要に応じ2種類のモノマーを混合して用いた。重合終了後に反応槽を冷却し、氷水および30%重曹水溶液で洗浄を行い、減圧乾燥することでポリベンズイミダゾールポリマーを5g得た。
<Polymer synthesis>
The polymer was polymer synthesized (polymerized) basically by polymerization of an aromatic tetraamine monomer and an aromatic dicarboxylic acid monomer. First, a total amount of 3 g of aromatic dicarboxylic acid monomer and 0.5 g of polyphosphoric acid catalyst were added to the polymerization vessel and melted at 150 ° C. in a nitrogen atmosphere. After slowly cooling to room temperature, 2 g of 3,3′-diaminobenzidine was added, and the temperature was raised again to 150 ° C. After heating up to 200 degreeC over 5 hours, superposition | polymerization was performed at 200 degreeC for 24 hours. In addition, two types of monomers were mixed and used for the aromatic dicarboxylic acid monomer as needed. After completion of the polymerization, the reaction vessel was cooled, washed with ice water and a 30% aqueous sodium bicarbonate solution, and dried under reduced pressure to obtain 5 g of a polybenzimidazole polymer.
 生成する具体的なポリマー構造は表1~4を参照されたい。 See Tables 1-4 for specific polymer structures to be produced.
 続いて、表1~4のポリマー構造になるように、必要に応じ構造Pをポリマー中の窒素原子上に導入した。合成したポリベンズイミダゾール10gを反応容器に加えた後、ポリベンズイミダゾール繰り返し単位構造の量に対し、水素化リチウムを5当量、臭化ブチル(実施例7,8)または1,4-ブタンスルトン(実施例9,10)を0.5または1当量加え、90℃で12時間反応させた。構造Pの導入率は、臭化ブチルまたは1,4-ブタンスルトンの添加量により調節した。例えば、実施例7~10において、膜形成前にあらかじめ、0.5当量添加した場合は導入率50%、1当量添加した場合は導入率100%となったことをプロトンNMR測定により確認した。 Subsequently, the structure P was introduced onto the nitrogen atom in the polymer as necessary so that the polymer structures shown in Tables 1 to 4 were obtained. After adding 10 g of the synthesized polybenzimidazole to the reaction vessel, 5 equivalents of lithium hydride, butyl bromide (Examples 7 and 8) or 1,4-butane sultone (implementation) with respect to the amount of the polybenzimidazole repeating unit structure. 0.5 or 1 equivalent of Example 9, 10) was added and reacted at 90 ° C. for 12 hours. The introduction rate of structure P was adjusted by the amount of butyl bromide or 1,4-butane sultone added. For example, in Examples 7 to 10, it was confirmed by proton NMR measurement that the introduction rate was 50% when 0.5 equivalent was added and the introduction rate was 100% when 1 equivalent was added before film formation.
<膜形成実験>
 次に、膜形成実験について説明する。代表例として、平膜の場合について本発明を説明する。
<Film formation experiment>
Next, a film formation experiment will be described. As a representative example, the present invention will be described in the case of a flat membrane.
(1)溶液調製
 ガラス容器にポリマー、およびジメチルスルホキシド溶媒をポリマー濃度が15wt%になるように加え、100℃で攪拌して透明均一な溶液を調製した。さらに、室温まで徐冷した後、必要に応じ、架橋剤であるジビニルスルホン1mol%を添加し、再度攪拌溶解した(ここで架橋剤を添加した場合、表1~4の備考欄にて、「架橋」という記載を設けた)。これを孔径0.4μmのメンブレンフィルターを用いて濾過した後、真空脱泡し、さらに24時間室温で静置した後、製膜に用いた。
(1) Solution preparation A polymer and a dimethyl sulfoxide solvent were added to a glass container so that the polymer concentration was 15 wt%, and stirred at 100 ° C to prepare a transparent and uniform solution. Further, after slowly cooling to room temperature, 1 mol% of divinyl sulfone as a cross-linking agent was added as necessary and dissolved by stirring again (when a cross-linking agent was added here, in the remarks column of Tables 1 to 4, “ "Crosslinking" was provided). This was filtered using a membrane filter having a pore diameter of 0.4 μm, vacuum degassed, and allowed to stand at room temperature for 24 hours, and then used for film formation.
(2)液膜形成
 製膜はポリマー溶液のコーティング法により行った。シリコンウェハ上にポリマー溶液を塗布/スピンコートし、基板上に液膜を形成した。実施例17でのみ、微多孔性層B表面を液膜表面上に配置し、被覆した後、続く脱溶媒に供した。
(2) Liquid film formation Film formation was performed by the coating method of the polymer solution. A polymer solution was applied / spin-coated on a silicon wafer to form a liquid film on the substrate. Only in Example 17, the surface of the microporous layer B was placed on the surface of the liquid film, coated, and then subjected to subsequent desolvation.
(3)脱溶媒等
 液膜形成後、加熱乾燥により脱溶媒を行った(120℃で60分、さらに170℃で30分加熱乾燥)。脱溶媒後、常温の純水中で膜を基板から剥離させた後、微多孔性層Bの上に配置し、加圧透水テストに用いた。
(3) Desolvation, etc. After forming the liquid film, the solvent was removed by heat drying (120 ° C. for 60 minutes, and further heat drying at 170 ° C. for 30 minutes). After removing the solvent, the film was peeled from the substrate in pure water at room temperature, and then placed on the microporous layer B, and used for a pressurized water permeability test.
<加圧透水テスト>
 透水テスト前に、膜サンプルは全てイソプロピルアルコール水溶液に一定時間浸漬処理した。透水テストは、圧力:1MPa,供給液の塩化ナトリウム濃度:500ppm,温度:25℃、pH:6.5で行った。全ての実験において、膜面積、測定時間を全て統一して実施し、透過水の膜透過流束[m3/m2/day]、塩除去率[%]を測定した。
塩除去率=100×{1-(透過水中の塩濃度/供給水中の塩濃度)}
<Pressure permeability test>
Before the water permeability test, all the membrane samples were immersed in an isopropyl alcohol aqueous solution for a certain period of time. The water permeability test was performed at a pressure of 1 MPa, a sodium chloride concentration of the supply liquid of 500 ppm, a temperature of 25 ° C., and a pH of 6.5. In all experiments, the membrane area and measurement time were all unified, and the membrane permeation flux [m 3 / m 2 / day] and the salt removal rate [%] were measured.
Salt removal rate = 100 × {1- (salt concentration in permeated water / salt concentration in feed water)}
 (膜厚の測定)
 半透膜をステンレス板に固定して60℃で12時間以上乾燥させた後、任意に別々の2箇所を切り取ってサンプルとした。走査型電子顕微鏡で該サンプルの断面積を観察し、付属の長さ測定ソフトにて任意の場所の厚みを1サンプルにつき5点計測した。得られた10点の厚みを合計し、次いで10で割ることで半透膜の厚みを算出した。 形成した半透膜を構成する緻密層Aのポリマー構造と膜性能の関係を表1~4に示す。以降、特に断りのない限り、微多孔性層Bには全て同一のポリスルホン支持膜を使用した。使用したポリスルホン支持膜は表面孔径が30nm、膜厚が50μm、空隙率20%であり、1MPaの加圧透水テストに使用しても破れや目詰まりは起こらなかった。
(Measurement of film thickness)
The semipermeable membrane was fixed to a stainless steel plate and dried at 60 ° C. for 12 hours or more, and then two separate portions were arbitrarily cut out to prepare samples. The cross-sectional area of the sample was observed with a scanning electron microscope, and the thickness of an arbitrary place was measured at five points per sample with the attached length measurement software. The thicknesses of the obtained 10 points were totaled and then divided by 10 to calculate the thickness of the semipermeable membrane. Tables 1 to 4 show the relationship between the polymer structure of the dense layer A constituting the formed semipermeable membrane and the membrane performance. Thereafter, the same polysulfone support membrane was used for the microporous layer B unless otherwise specified. The polysulfone supporting membrane used had a surface pore diameter of 30 nm, a thickness of 50 μm, and a porosity of 20%. No tearing or clogging occurred even when used in a 1 MPa pressurized water permeability test.
<構造Xの効果>
 実施例1~6と比較例1とは、脱溶媒条件および微多孔性層Bが同一である。これらは主に、Xの導入率を示すmの値が互いに異なる。実施例1~6では好適な透水量が得られ、特に実施例1~4ではより好適な透水量が得られた。比較例1ではm=0、かつR3およびR4が水素原子の場合を示したが、好適な透水量は得られなかった。
<Effect of structure X>
In Examples 1 to 6 and Comparative Example 1, the solvent removal conditions and the microporous layer B are the same. These are mainly different from each other in the value of m indicating the introduction rate of X. In Examples 1 to 6, suitable water permeability was obtained, and in Examples 1 to 4, more suitable water permeability was obtained. Comparative Example 1 showed the case where m = 0 and R 3 and R 4 were hydrogen atoms, but no suitable water permeability was obtained.
 以上より、好適な透水量を得るためには構造Xを含むことが望ましく、特にmの値が20以上、かつ100未満である場合、より良い透水量が得られるものと考えられる。 From the above, it is desirable to include the structure X in order to obtain a suitable water permeability, and it is considered that a better water permeability can be obtained particularly when the value of m is 20 or more and less than 100.
<構造Pの効果>
 実施例7~10および比較例1はm=0,n=100とした構造Xを有しない例である。実施例7,8では、構造Pとしてブチル基を導入した。また実施例9,10では、構造Pとしてブチルスルホン酸ナトリウム基を導入した。ここで、xは構造Pの導入率を示しており、0≦x≦1である。実施例7,9ではx=0.5、実施例8,10ではx=1である。
<Effect of structure P>
Examples 7 to 10 and Comparative Example 1 are examples having no structure X in which m = 0 and n = 100. In Examples 7 and 8, a butyl group was introduced as the structure P. In Examples 9 and 10, a sodium butylsulfonate group was introduced as structure P. Here, x indicates the introduction rate of the structure P, and 0 ≦ x ≦ 1. In Examples 7 and 9, x = 0.5, and in Examples 8 and 10, x = 1.
 構造Pをもたない比較例1では好適な性能は得られなかったが、これら実施例7~10ではいずれの場合でも、好適な性能を示した。構造Pを導入した場合の効果を確認した。架橋した場合、構造Pを導入する効果はより顕著となるが、このことは次の<架橋の効果>の末尾にて説明する。 In Comparative Example 1 having no structure P, suitable performance was not obtained, but in Examples 7 to 10, suitable performance was shown in any case. The effect of introducing the structure P was confirmed. In the case of crosslinking, the effect of introducing the structure P becomes more prominent. This will be described at the end of the following <Effect of crosslinking>.
<架橋の効果>
 実施例11~15および比較例2では、架橋を検討した。このうち実施例11~14,17と比較例2はm=0,n=100とした構造Xを有しない例である。架橋剤として、ポリマーの繰り返し単位の量に対し1mol%のジビニルスルホンを使用した。比較例2の親水性基を導入していないポリマーを除き、親水性基または構造Pを導入したポリマーでは、架橋により高い性能を得た。特に、実施例13,14では透水量と塩除去性が共に飛躍的に向上した。
<Effect of cross-linking>
In Examples 11 to 15 and Comparative Example 2, crosslinking was examined. Of these, Examples 11 to 14, 17 and Comparative Example 2 are examples that do not have the structure X in which m = 0 and n = 100. As a cross-linking agent, 1 mol% of divinyl sulfone was used with respect to the amount of the repeating unit of the polymer. Except for the polymer in which the hydrophilic group was not introduced in Comparative Example 2, the polymer introduced with the hydrophilic group or structure P obtained high performance by crosslinking. In particular, in Examples 13 and 14, both the amount of water permeation and salt removability improved dramatically.
 架橋反応の進行をFT-IRスペクトル測定にて確認した。代表例として、実施例2と16の膜について測定した結果を図2に、架橋反応式を図3に示す。架橋反応の進行に伴い、架橋ポリマーの構造中にはO=S=O構造が形成されるので、架橋の前後でこの構造部位の有無を比較することで、架橋の進行を確認できる。図2に示すように、実施例2(架橋なし)ではO=S=Oの非対称振動と対称振動のピークが見られなかったが、実施例16(架橋あり)では、O=S=Oの非対称振動と対称振動のピークが、それぞれ1307cm-1、1130cm-1に確認できた。このことから、架橋反応の進行を確認した。 The progress of the crosslinking reaction was confirmed by FT-IR spectrum measurement. As a representative example, the measurement results of the films of Examples 2 and 16 are shown in FIG. 2, and the crosslinking reaction formula is shown in FIG. As the cross-linking reaction proceeds, an O = S = O structure is formed in the structure of the cross-linked polymer. Therefore, the progress of cross-linking can be confirmed by comparing the presence / absence of this structural site before and after cross-linking. As shown in FIG. 2, in Example 2 (without crosslinking), the peak of asymmetric vibration of O = S = O and the peak of symmetrical vibration were not observed, but in Example 16 (with crosslinking), O = S = O. asymmetric peak vibration and symmetric vibrations, respectively 1307Cm -1, was confirmed in 1130 cm -1. From this, the progress of the crosslinking reaction was confirmed.
<膜の含水率の効果>
 実施例12,14および比較例2で得られた半透膜について、膜の含水率を測定した結果を表5に示す。含水率の測定は、膜を1晩以上真空乾燥し、RO水(逆浸透膜透過水)に1晩浸漬させた後、膜表面に付着する水滴をキムワイプで除去した後の含水状態の膜の重量W1と、乾燥した膜の重量W0を用いて、次式の様に表される。
含水率(%) = 100(%)×(W1-W0)/W0
<Effect of moisture content of membrane>
Table 5 shows the results of measuring the water content of the semipermeable membranes obtained in Examples 12 and 14 and Comparative Example 2. The moisture content is measured by vacuum drying the membrane for more than one night and immersing it in RO water (reverse osmosis membrane permeate) overnight, and then removing the water droplets adhering to the membrane surface with Kimwipe. Using the weight W1 and the weight W0 of the dried film, it is expressed as
Moisture content (%) = 100 (%) x (W1-W0) / W0
 表5より、構造Pを導入した場合は、導入していない場合に比べ、含水率が増加したことが分かった。一般に、含水率が高い膜ほど、より親水的であり、半透膜としては好適である。実施例12では構造Pがブチル基、実施例14では構造Pがブチルスルホン酸ナトリウム基であり、後者の方がより含水率が高かったことから、より好適な半透膜と言え、表3~4に示す性能の見地からも、含水率の増加に伴い、透水量は増大したことが分かる。これらのことより、構造Pを導入することでより好適な半透膜が得られ、構造Pの効果を確認できた。 From Table 5, it was found that the moisture content increased when the structure P was introduced compared to the case where the structure P was not introduced. In general, a membrane having a higher water content is more hydrophilic and suitable as a semipermeable membrane. In Example 12, the structure P was a butyl group, and in Example 14, the structure P was a sodium butylsulfonate group. Since the latter had a higher water content, it can be said to be a more suitable semipermeable membrane. From the viewpoint of the performance shown in Fig. 4, it can be seen that the water permeability increased with the increase of the moisture content. From these, a more suitable semipermeable membrane was obtained by introducing the structure P, and the effect of the structure P could be confirmed.
<微多孔性層Bへの含浸の影響>
 実施例14と17で、緻密層Aは全く同一であるが、微多孔性層Bのみが異なる。実施例14と実施例17の違いは、緻密層Aが微多孔性層Bに含浸しているかどうかの違いである。実施例14では緻密層Aを単体で形成した後に、これを微多孔性層Bの上部へと配置したのみであるので、緻密層Aが微多孔性層Bに含浸していない。実施例17では、PVDF支持膜(表面孔径が30nm、膜厚が50μm、空隙率20%)を用い、基板上に形成した液膜表面に、PVDF支持膜の表面を上部より張り合わせ、脱溶媒を行った。このように実施例17では緻密層Aが液膜の段階で微多孔性層Bを配置したので、緻密層Aが微多孔性層Bに含浸している。実施例14および17の膜の断面模式図を図4に示す。
<Effect of impregnation into microporous layer B>
In Examples 14 and 17, the dense layer A is exactly the same, but only the microporous layer B is different. The difference between Example 14 and Example 17 is whether or not the dense layer A is impregnated in the microporous layer B. In Example 14, after the dense layer A is formed alone, it is only disposed on the upper part of the microporous layer B, so the dense layer A is not impregnated in the microporous layer B. In Example 17, a PVDF support membrane (surface pore diameter is 30 nm, film thickness is 50 μm, porosity is 20%), the surface of the PVDF support membrane is bonded to the surface of the liquid film formed on the substrate, and the solvent is removed. went. Thus, in Example 17, since the dense layer A disposed the microporous layer B at the liquid film stage, the dense layer A impregnates the microporous layer B. A schematic cross-sectional view of the films of Examples 14 and 17 is shown in FIG.
 一方、両者の性能を比較すると、実施例14に比べ、実施例17の透水量および塩除去率がさらに向上した。これは、緻密層Aが微多孔性層Bに含浸することにより、支持膜(微多孔性層B)の孔径である数十nmの領域に緻密層Aを構成する架橋ポリマーが侵入し、物理的に束縛されるため、支持膜の孔径以上の過度な膨潤が阻止され、塩の流出が抑えられたためと考えられる。以上より、緻密層Aが微多孔性層Bに含浸する場合、より性能の高い半透膜が得られた。 On the other hand, comparing the performance of both, the water permeability and salt removal rate of Example 17 were further improved as compared to Example 14. This is because when the dense layer A is impregnated into the microporous layer B, the crosslinked polymer constituting the dense layer A enters the region of several tens of nanometers, which is the pore diameter of the support membrane (microporous layer B). It is considered that excessive swelling exceeding the pore diameter of the support membrane was prevented, and salt outflow was suppressed. From the above, when the dense layer A was impregnated into the microporous layer B, a semipermeable membrane with higher performance was obtained.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 本発明は、塩分濃度の異なる2液を半透膜で隔てたときに生じる低濃度塩水から高濃度塩水への流動を利用して発電機を駆動させる濃度差発電に用いられる半透膜として好適に用いることができる。 The present invention is suitable as a semipermeable membrane used for concentration difference power generation in which a generator is driven using the flow from low-concentration salt water to high-concentration salt water generated when two liquids having different salinity concentrations are separated by a semipermeable membrane. Can be used.
1  半透膜
2  発電機
Sw 塩水
Fw 淡水
1 Semipermeable membrane 2 Generator Sw Brine Fw Fresh water

Claims (16)

  1.  実質的な溶質除去能を有する緻密層Aと、微多孔性層Bとの2層を少なくとも備える半透膜であって、
     前記緻密層Aが下記(式1)に示す繰り返し単位構造を有するポリマーを主成分とする半透膜。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Ar1,Ar2,Ar3,Ar4はそれぞれ任意の芳香環構造であり、R1,R2,R3,R4はそれぞれ水素原子または構造Pであり、該構造Pがアルキル基、アルキルカルボン酸またはその塩、アルキルスルホン酸またはその塩、アルキルリン酸またはその塩、から選択される任意の構造であり、Xは、カルボン酸基またはその塩、スルホン酸基またはその塩、リン酸基またはその塩、から選択される任意の構造であり、m,nは繰り返し単位構造の構成比率(%)を表し、m≧0,n≧0,m+n=100を満たし、m=0のとき、R3,R4の少なくとも一つが前記構造Pである。)
    A semipermeable membrane comprising at least two layers of a dense layer A having a substantial solute removing ability and a microporous layer B,
    A semi-permeable membrane whose main component is a polymer in which the dense layer A has a repeating unit structure represented by the following (formula 1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, Ar 1 , Ar 2 , Ar 3 and Ar 4 are each an arbitrary aromatic ring structure, and R 1 , R 2 , R 3 and R 4 are each a hydrogen atom or a structure P, and the structure P is An alkyl group, an alkyl carboxylic acid or a salt thereof, an alkyl sulfonic acid or a salt thereof, an alkyl phosphoric acid or a salt thereof, and X is a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof , A phosphoric acid group or a salt thereof, m and n represent the constituent ratio (%) of the repeating unit structure, m ≧ 0, n ≧ 0, m + n = 100 is satisfied, m = When 0, at least one of R 3 and R 4 is the structure P.)
  2.  前記(式1)において、m:nが20:80~99:1の範囲である、請求項1に記載の半透膜。 The semipermeable membrane according to claim 1, wherein in (Formula 1), m: n is in the range of 20:80 to 99: 1.
  3.  前記(式1)で表される繰り返し単位構造を有するポリマーが、該構造中のN原子を介して互いに共有結合により架橋している構造を含む、請求項1~2のいずれかに記載の半透膜。 The half polymer according to any one of claims 1 to 2, wherein the polymer having a repeating unit structure represented by (formula 1) includes a structure in which the polymers are crosslinked by a covalent bond through N atoms in the structure. Permeable membrane.
  4.  前記(式1)において、Xが、スルホン酸基またはその塩である、請求項1~3のいずれかに記載の半透膜。 The semipermeable membrane according to any one of claims 1 to 3, wherein, in (Formula 1), X is a sulfonic acid group or a salt thereof.
  5.  前記(式1)において、Ar2-Xが、下記(式2)に示す群から選択されるいずれかの構造である、請求項1~4のいずれかに記載の半透膜。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは、カルボン酸基またはその塩、スルホン酸基またはその塩、リン酸基またはその塩、から選択される任意の構造である。)
    The semipermeable membrane according to any one of claims 1 to 4, wherein, in the (formula 1), Ar 2 -X has any structure selected from the group represented by the following (formula 2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, X is an arbitrary structure selected from a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof.)
  6.  前記(式1)において、Ar2-Xが、下記(式3)に示す群から選択されるいずれかの構造である、請求項1~4のいずれかに記載の半透膜。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Xは、カルボン酸基またはその塩、スルホン酸基またはその塩、リン酸基またはその塩、から選択される任意の構造であり、Zは、-O-、-CH2-、-CO-、-CO2-、-S-、-SO2-、-C(CH32-からなる群より選択される任意の構造である。)
    The semipermeable membrane according to any one of claims 1 to 4, wherein in the (formula 1), Ar 2 -X has any structure selected from the group represented by the following (formula 3).
    Figure JPOXMLDOC01-appb-C000003
    (Wherein X is an arbitrary structure selected from a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, Z is —O—, —CH 2 —, (It is an arbitrary structure selected from the group consisting of —CO—, —CO 2 —, —S—, —SO 2 —, —C (CH 3 ) 2 —)
  7.  前記(式1)において、Ar1とAr3、およびAr2とAr4の構造がそれぞれ同一である、請求項1~6のいずれかに記載の半透膜。 The semipermeable membrane according to any one of claims 1 to 6, wherein in (Formula 1), Ar 1 and Ar 3 , and Ar 2 and Ar 4 have the same structure.
  8.  前記(式1)において、R1とR3が共に水素原子である、請求項1~7のいずれかに記載の半透膜。 The semipermeable membrane according to any one of claims 1 to 7, wherein in (Formula 1), R 1 and R 3 are both hydrogen atoms.
  9.  前記(式1)において、構造Pが、アルキルスルホン酸またはその塩である、請求項1~8のいずれかに記載の半透膜。 The semipermeable membrane according to any one of claims 1 to 8, wherein, in the (formula 1), the structure P is an alkylsulfonic acid or a salt thereof.
  10.  前記(式1)において、構造Pを構成するアルキル基が、炭素数1以上12以下の直鎖状のアルキル基である、請求項1~9のいずれかに記載の半透膜。 The semipermeable membrane according to any one of claims 1 to 9, wherein in (Formula 1), the alkyl group constituting the structure P is a linear alkyl group having 1 to 12 carbon atoms.
  11.  前記緻密層Aが、微多孔性層Bに含浸していることを特徴とする、請求項1~10のいずれかに記載の半透膜。 The semipermeable membrane according to any one of claims 1 to 10, wherein the dense layer A is impregnated in the microporous layer B.
  12.  1種以上のテトラアミンモノマー、および1種以上のジカルボン酸モノマーまたはジカルボン酸誘導体モノマーからポリマーを重合する工程、
     得られたポリマーを少なくとも含む溶液を準備する工程、
     該溶液から液層を形成する工程、
     該液層から溶媒を除去する工程、
    を少なくとも含む工程を経て緻密層Aを形成することを備える、請求項1~11のいずれかに記載の半透膜の製造方法。
    Polymerizing a polymer from one or more tetraamine monomers and one or more dicarboxylic acid monomers or dicarboxylic acid derivative monomers;
    Preparing a solution containing at least the obtained polymer;
    Forming a liquid layer from the solution;
    Removing the solvent from the liquid layer;
    The method for producing a semipermeable membrane according to any one of claims 1 to 11, comprising forming the dense layer A through a process including at least the following.
  13.  1種以上のテトラアミンモノマー、および1種以上のジカルボン酸モノマーまたはジカルボン酸誘導体モノマーからポリマーを重合する工程、
     重合したポリマーに、高分子反応により構造Pをさらに導入する工程、
     得られたポリマーを少なくとも含む溶液を準備する工程、
     該溶液から液層を形成する工程、
     該液層から溶媒を除去する工程、
    を少なくとも含む工程を経て緻密層Aを形成することを備える、請求項1~11のいずれかに記載の半透膜の製造方法。
    Polymerizing a polymer from one or more tetraamine monomers and one or more dicarboxylic acid monomers or dicarboxylic acid derivative monomers;
    A step of further introducing the structure P into the polymerized polymer by a polymer reaction;
    Preparing a solution containing at least the obtained polymer;
    Forming a liquid layer from the solution;
    Removing the solvent from the liquid layer;
    The method for producing a semipermeable membrane according to any one of claims 1 to 11, comprising forming the dense layer A through a process including at least the following.
  14.  前記(式1)で表される繰り返し単位構造を有するポリマーと、該分子中のN原子と共有結合を形成可能な架橋剤とを少なくとも含む溶液を準備する工程、
     該溶液から液層を形成する工程、
     架橋反応を進行させる工程、
     該液層から溶媒を除去する工程、
    を少なくとも含む工程を経て緻密層Aを形成することを備える、請求項1~11のいずれかに記載の半透膜の製造方法。
    Preparing a solution containing at least a polymer having a repeating unit structure represented by (Formula 1) and a crosslinking agent capable of forming a covalent bond with an N atom in the molecule;
    Forming a liquid layer from the solution;
    A step of proceeding a crosslinking reaction,
    Removing the solvent from the liquid layer;
    The method for producing a semipermeable membrane according to any one of claims 1 to 11, comprising forming the dense layer A through a process including at least the following.
  15.  前記液層を微多孔性層Bの表面に配置する工程をさらに含む、請求項12~14のいずれかに記載の半透膜の製造方法。 The method for producing a semipermeable membrane according to any one of claims 12 to 14, further comprising a step of disposing the liquid layer on a surface of the microporous layer B.
  16.  請求項1~11のいずれかに記載の半透膜を介して、低濃度塩水と高濃度塩水とを接触させることで、前記低濃度塩水から高濃度塩水への水の流動を生じさせること、および前記流動を利用して発電機を駆動させることを備える濃度差発電方法。 Producing a flow of water from the low-concentration salt water to the high-concentration salt water by contacting the low-concentration salt water and the high-concentration salt water through the semipermeable membrane according to any one of claims 1 to 11. And a concentration difference power generation method comprising driving a generator using the flow.
PCT/JP2013/063382 2012-05-14 2013-05-14 Semi-permeable membrane and method for manufacturing same, and concentration-difference power-generating method using semi-permeable membrane WO2013172330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515629A JP6282585B2 (en) 2012-05-14 2013-05-14 Semipermeable membrane and method for producing the same, concentration difference power generation method using semipermeable membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012110533 2012-05-14
JP2012-110533 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172330A1 true WO2013172330A1 (en) 2013-11-21

Family

ID=49583735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063382 WO2013172330A1 (en) 2012-05-14 2013-05-14 Semi-permeable membrane and method for manufacturing same, and concentration-difference power-generating method using semi-permeable membrane

Country Status (2)

Country Link
JP (1) JP6282585B2 (en)
WO (1) WO2013172330A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152326A (en) * 2013-02-12 2014-08-25 Korea Institute Of Science And Technology Cardo copolybenzimidazoles, gas separation membranes and preparation method thereof
CN115181420A (en) * 2022-07-18 2022-10-14 中国科学院山西煤炭化学研究所 Ionic solvent membrane containing hydrophilic auxiliary group and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102152340B1 (en) * 2019-03-18 2020-09-09 한국에너지기술연구원 Power generating apparatus using the salinity gradient

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512291A (en) * 1998-04-18 2002-04-23 ウニヴェズィテート シュトゥットゥガルト Engineering ionomer blend and engineering ionomer blend membrane
JP2002146186A (en) * 2000-11-16 2002-05-22 Toyobo Co Ltd Polyazole-based polymer composition, film comprising the same as main component and method for forming the polyazole-based polymer composition
JP2003535940A (en) * 2000-06-02 2003-12-02 エスアールアイ インターナショナル Polymer composition
JP2004149586A (en) * 2002-10-29 2004-05-27 Tokuyama Corp Method for manufacturing ion-exchange membrane
JP2004216227A (en) * 2003-01-10 2004-08-05 Toyobo Co Ltd Composite ion exchange membrane
JP2006282969A (en) * 2005-04-05 2006-10-19 Japan Atomic Energy Agency Method for producing functional inorganic/graft polymer hybrid ion exchange membrane and electrolyte membrane for fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102291A (en) * 1978-01-31 1979-08-11 Teijin Ltd Selective permeable membrane and its preparation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512291A (en) * 1998-04-18 2002-04-23 ウニヴェズィテート シュトゥットゥガルト Engineering ionomer blend and engineering ionomer blend membrane
JP2003535940A (en) * 2000-06-02 2003-12-02 エスアールアイ インターナショナル Polymer composition
JP2002146186A (en) * 2000-11-16 2002-05-22 Toyobo Co Ltd Polyazole-based polymer composition, film comprising the same as main component and method for forming the polyazole-based polymer composition
JP2004149586A (en) * 2002-10-29 2004-05-27 Tokuyama Corp Method for manufacturing ion-exchange membrane
JP2004216227A (en) * 2003-01-10 2004-08-05 Toyobo Co Ltd Composite ion exchange membrane
JP2006282969A (en) * 2005-04-05 2006-10-19 Japan Atomic Energy Agency Method for producing functional inorganic/graft polymer hybrid ion exchange membrane and electrolyte membrane for fuel cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAUSMAN, RICHARD ET AL.: "Functionalization of polybenzimidizole membranes to impart negative charge and hydrophilicity", JOURNAL OF MEMBRANE SCIENCE, vol. 363, no. ISSUES, 23 July 2010 (2010-07-23), pages 195 - 203 *
WANG, KAI YU ET AL.: "Enhanced forward osmosis from chemically modified polybenzimidazole(PBI) nanofiltration hollow fiber membranes with a thin wall", CHEMICAL ENGINEERING SCIENCE, vol. 64, no. ISSUE, 6 January 2009 (2009-01-06), pages 1577 - 1584 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152326A (en) * 2013-02-12 2014-08-25 Korea Institute Of Science And Technology Cardo copolybenzimidazoles, gas separation membranes and preparation method thereof
CN115181420A (en) * 2022-07-18 2022-10-14 中国科学院山西煤炭化学研究所 Ionic solvent membrane containing hydrophilic auxiliary group and preparation method and application thereof
CN115181420B (en) * 2022-07-18 2024-06-21 中国科学院山西煤炭化学研究所 Ionic solvent membrane containing hydrophilic auxiliary group and preparation method and application thereof

Also Published As

Publication number Publication date
JP6282585B2 (en) 2018-02-21
JPWO2013172330A1 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6033281B2 (en) Composite membranes containing sulfonated polyaryl ethers and their use in forward osmosis processes
Lianchao et al. A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane
KR101962155B1 (en) Composite semipermeable membrane
Wei et al. New type of nanofiltration membrane based on crosslinked hyperbranched polymers
EP2695670B1 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane
KR20170021879A (en) Forward osmosis membrane and forward osmosis treatment system
Arribas et al. Improved antifouling performance of polyester thin film nanofiber composite membranes prepared by interfacial polymerization
Wu et al. Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane
KR20150121006A (en) Composite semipermeable membrane and production thereof
Yao et al. A novel sulfonated reverse osmosis membrane for seawater desalination: Experimental and molecular dynamics studies
JP5896295B2 (en) Separation membrane for nanofiltration
Tashvigh et al. Covalent organic polymers for aqueous and organic solvent nanofiltration
WO2013129610A1 (en) Complex semi-permeable membrane
WO2016136404A1 (en) Gas separation membrane, gas separation module, gas separation device and gas separation method
Byun et al. Pervaporation behavior of asymmetric sulfonated polysulfones and sulfonated poly (ether sulfone) membranes
CN104411387A (en) Composite semipermeable membrane
JPWO2013005551A1 (en) Reverse osmosis membrane for wastewater treatment
JP6282585B2 (en) Semipermeable membrane and method for producing the same, concentration difference power generation method using semipermeable membrane
Lee et al. Effects of monomer rigidity on microstructures and properties of novel polyamide thin-film composite membranes prepared through interfacial polymerization for pervaporation dehydration
KR101517653B1 (en) High Flux Reverse Osmosis Membrane Comprising Xanthene Compound And Manufacturing Method Thereof
JP2013223852A (en) Reverse osmosis membrane for saline water conversion
JP2014000533A (en) Resin composition for fine porous support membrane, fine porous support membrane using the same, and composite semipermeable membrane
JP2022505389A (en) Polymer layered hollow fiber membranes based on poly (2,5-benzimidazole), copolymers, and substituted polybenzimidazoles
CA3110147A1 (en) Forward osmosis membrane and membrane module including same
CN114534514B (en) Composite solvent-resistant film containing tannic acid-copper complex network interlayer, preparation method and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791140

Country of ref document: EP

Kind code of ref document: A1