WO2013172036A1 - Method for loading raw material into blast furnace - Google Patents
Method for loading raw material into blast furnace Download PDFInfo
- Publication number
- WO2013172036A1 WO2013172036A1 PCT/JP2013/003133 JP2013003133W WO2013172036A1 WO 2013172036 A1 WO2013172036 A1 WO 2013172036A1 JP 2013003133 W JP2013003133 W JP 2013003133W WO 2013172036 A1 WO2013172036 A1 WO 2013172036A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raw material
- blast furnace
- coke
- charging
- furnace
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/006—Automatically controlling the process
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/007—Conditions of the cokes or characterised by the cokes used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories, or equipment peculiar to furnaces of these types
- F27B1/20—Arrangements of devices for charging
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/18—Bell-and-hopper arrangements
- C21B7/20—Bell-and-hopper arrangements with appliances for distributing the burden
Definitions
- the present invention relates to a raw material charging method for a blast furnace in which the raw material is charged into the furnace with a turning chute.
- a blast furnace generally charges raw materials such as sintered ore, pellets, and massive ore and coke in layers from the top of the furnace, and flows combustion gas from the tuyere to obtain pig iron.
- the coke and ore raw material which are the charged raw materials for the blast furnace, descend from the top of the furnace to the lower part of the furnace, and ore reduction and raw material temperature rise occur.
- the ore raw material layer is gradually deformed while filling the gaps between the ore raw materials due to the temperature rise and the load from above, and the lower part of the shaft part of the blast furnace has a very high resistance to gas and almost no gas flows. Form a layer.
- raw material charging into a blast furnace is performed by alternately charging ore raw materials and coke, and in the furnace, ore raw material layers and coke layers are alternately layered. Further, in the lower part of the blast furnace, there are an ore raw material layer having a large ventilation resistance in which an ore called softening zone is softened and fused, and a coke slit having a relatively small ventilation resistance derived from coke.
- the air permeability of this cohesive zone has a great influence on the air permeability of the entire blast furnace, and the productivity in the blast furnace is limited.
- a low coke operation it is considered that the coke slit becomes extremely thin because the amount of coke used is reduced.
- Patent Document 2 ore and coke are separately stored in a bunker at the top of the furnace, and coke and ore are mixed and charged at the same time, so that a normal coke charging batch and a coke central charging batch are used. And three batches for mixing and charging are performed simultaneously.
- Patent Document 3 in order to prevent the instability of the cohesive zone shape in blast furnace operation and the decrease in gas utilization rate near the center, and to improve the safe operation and thermal efficiency, the raw material charging method in the blast furnace is In addition, all ore and all coke are thoroughly mixed and then charged into the furnace.
- JP-A-3-211210 JP 2004-107794 A Japanese Patent Publication No.59-10402
- the average particle size of typical coke described in Patent Document 3 is about 40 to 50 mm, and the average particle size of ore is about 15 mm. If only mixed, the porosity is greatly reduced, the air permeability is deteriorated in the furnace, and there is a possibility that troubles such as gas blow-out and poor lowering of raw materials may occur. In order to avoid these troubles, a method of forming a coke-only layer in the furnace axis can be considered.
- the passage of gas through the coke layer is secured in the core portion of the furnace, so that air permeability can be improved.
- the air permeability is hindered by an increase in the unburned pulverized coal and the Ore / Coke ratio (the mass ratio of ore and coke). Therefore, the air permeability especially around the furnace wall is greatly deteriorated, and it cannot be said that it is sufficient to ensure the air permeability only in the core portion of the furnace.
- the coke layer itself in the core portion of the furnace may be insufficiently formed.
- the present invention has been developed in view of the above situation, and ensures air permeability in the blast furnace even when the amount of coke is small or when a large amount of pulverized coal is injected.
- An object of the present invention is to provide a raw material charging method into a blast furnace that can achieve stabilization of blast furnace operation and improvement of thermal efficiency.
- the gist configuration of the present invention is as follows. 1. Ore raw materials such as sintered ore, pellets, massive ore and blast furnace charging raw materials for coke are disposed at at least two furnace top bunkers arranged at the top of the blast furnace and at the outlet of the top bunker. When charging into the blast furnace using the collective hopper that mixes the raw material discharged from the furnace top bunker and supplies the swirl chute and the swirl chute, When the raw material initially charged from the furnace top bunker charged with the raw material is O1, and then the raw material charged from another furnace top bunker charged with the raw material is O2, the mass of O2 is O1.
- the raw material charging method to the blast furnace which is 1.1 times or less of the mass of.
- the air permeability in the lower part of the furnace is significantly improved.
- the reduction rate of ore is greatly improved, even if the amount of coke is low, or even in the situation where a large amount of unburned powder derived from pulverized coal is generated in operation with high pulverized coal ratio, stable blast furnace operation should be performed. Can do.
- FIG. 1 It is a schematic diagram which shows one Embodiment of the raw material charging method to the blast furnace of this invention.
- (A) is a schematic diagram which shows the conventional raw material charging state according to the present invention and (b) according to the present invention. It is a schematic diagram which contrasts and shows the raw material charging state to the blast furnace by this invention, and the raw material charging state in a normal blast furnace. It is explanatory drawing which compares the raw material charging state into the blast furnace by this invention, and the raw material charging state in a normal blast furnace, and shows the reduction
- the furnace bunker 12a contains only coke
- the furnace bunker 12b contains the ore raw material and coke mixed raw material O1
- the furnace top bunker 12c contains the ore raw material and coke mixed raw material O2.
- 10 is a blast furnace
- 12a to 12c are furnace bunker
- 13 is a flow rate adjusting gate
- 14 is a collecting hopper
- 15 is a bell-less charging device
- 16 is a turning chute.
- ⁇ is an angle with respect to the vertical direction of the turning chute.
- the raw material charging destination of the swivel chute 16 is the furnace wall inner peripheral part of the blast furnace, and only the coke is charged from the furnace top bunker 12a charged with only coke.
- a central coke layer is formed in the central part of the blast furnace, and a peripheral coke layer is formed in the inner peripheral part of the furnace wall as necessary. That is, in a state where the raw material charging destination of the turning chute 16 faces the furnace wall portion of the blast furnace, the flow rate adjusting gates 13 of the furnace top bunkers 12b and 12c are closed, and the flow rate adjusting gate 13 of only the furnace top bunker 12a is opened.
- a central coke layer is provided at the center of the blast furnace, and a peripheral coke layer is provided at the inner peripheral portion of the furnace wall as required.
- the mixed raw material O1 is charged from the furnace top bunker 12b, and the charging order at that time is close to the central axis of the blast furnace, that is, moves sequentially from a position where ⁇ is small, and then the central axis of the blast furnace. It moves away from the outside, that is, moves in the direction of large ⁇ , and finally the upper end side of the inclined side wall is inserted. Further, the mixed raw material O2 is charged from the furnace top bunker 12c.
- the charging order at that time is basically the same as that of the above-mentioned O1, but in the present invention, as shown below, by providing various restrictions in the order of acquisition of the above-mentioned O1 and O2, the ventilation resistance is reduced. A low and good mixed layer can be formed.
- this cycle that is, charging of coke, charging of the mixed raw material O1, and charging of the mixed raw material O2 are repeated.
- the following explanation is for the case where the mixed raw material in one cycle is the two layers of O1 and O2, but there is no problem with three or more layers, and when the adjacent layers, that is, n is a natural number, On If On + 1 satisfies the following relationship of O1 and O2, the effect of the present invention can be obtained.
- the number of the furnace top bunker is not particularly limited, and a plurality of cuts can be performed from the same furnace top bunker. In the present invention, the number of divisions is not particularly limited. However, if the layer structure (number of times of charging) in one cycle increases, the charging speed decreases, and therefore segregation tends to occur. Since control becomes complicated, it is preferable to set the upper limit to about 20 layers.
- the ore raw material and coke are segregated in the transport equipment to the furnace top bunker, etc., only the ore raw material or coke is charged, and the other hopper bunker 12a, Although it is mixed with the coke and ore raw material charged from 12b and 12c, the ratio of the ore raw material or coke is increased and the mixed layer of the ore raw material and coke formed by the swivel chute 16 The mixing ratio becomes non-uniform. Therefore, in the present invention, the raw material charged from the furnace top bunker 12c that subsequently charges the raw material O1 is charged to the mass (WO1) of the raw material O1 that is charged from the furnace top bunker 12b that initially charges the raw material.
- the mass of O2 (WO2), that is, WO2 / WO1 is 1.1 or less. That is, by making WO2 1.1 times less than WO1, the raw material O1 charged before WO2 allows the raw material O2 to be charged next to flow into the furnace center side. It prevents it. On the other hand, if WO2 exceeds 1.1 times that of WO1, the so-called dam effect inflow prevention effect using the raw material O1 for preventing inflow cannot be exhibited, and the charged raw material O1 is destroyed. As a result, the raw materials O1 and O2 due to inflowing diffuse and the ore raw material and coke are separated, resulting in nonuniform mixing.
- the mixed raw material is divided into two parts and the charging amount is further limited to eliminate the non-uniformity of the mixing ratio.
- the amount of coke is small, Even when a large amount of blowing operation is performed, air permeability in the blast furnace can be secured.
- the above-mentioned WO2 / WO1 is in the range of 0.5 to 1.1. If WO2 / WO1 is less than 0.5, the charging range of the raw material O2 is limited, and on the contrary, the non-uniformity increases at the time of charging, so WO2 / WO1 is in the range of 0.5 to 1.1. .
- the raw material O1 and the raw material O2 are charged in an equal amount at a maximum of 0.5 to 1.0 to prevent inflow.
- the charged amount of the raw material O2 is reduced by an appropriate amount from the raw material O1, and the range of 0.5 to 0.95 is prevented to prevent inflow.
- ⁇ O2 when O2 is charged and ⁇ O1 when ⁇ 1 is averaged when O1 is charged, ⁇ O2 is It is preferable not to be less than ⁇ O1, that is, satisfy the relationship of ⁇ O1 ⁇ ⁇ O2. This is because ⁇ O2 is made larger than ⁇ O1, and O2, which is a raw material to be charged later, can be charged to the upper end side of the inclined side wall. In the present invention, it is important to satisfy the above relationship, but it is preferable that ⁇ O1 is about 30 to 40 degrees and ⁇ O2 is about 35 to 45 degrees as specific values.
- ⁇ O2 when the maximum value of ⁇ when O1 is charged is ⁇ O1MAX, it is preferable that ⁇ O2 does not fall below ⁇ O1MAX, that is, satisfies the relationship ⁇ O1MAX ⁇ ⁇ O2. This is because ⁇ O2 is made larger than ⁇ O1, and O2, which is a raw material to be charged later, can be charged to the upper end side of the inclined side wall. In the present invention, it is important to satisfy the above relationship, but as a specific value, it is desirable that ⁇ O1MAX be in the range of about 35 to 40 degrees.
- the relationship of O1CK ⁇ O2CK is satisfied. It is preferable to do. This is to ensure the air permeability of the entire blast furnace by improving the air permeability around the furnace wall having a large furnace volume. In the present invention, it is important to satisfy the above relationship, but specific values are desirably in the range of about 5 to 15% by mass of O1CK and about 10 to 20% by mass of O2CK. .
- the ratio of O2CK to O1CK that is, O2CK / O1CK satisfies the range of 1.0 to 2.0. This is because O2CK is made larger than O1CK, and O2 as raw material is charged into the upper end side of the inclined side wall to improve the air permeability around the furnace wall with a large furnace volume. This is to ensure
- the mixed layer 12e is not formed as a single layer on the central coke layer and the peripheral coke layer 12d, but on the central coke layer and the peripheral coke layer 12d. At least two layers are formed, that is, O1 and O2 in the figure.
- a layer (one cycle) composed of the above-described coke layer and mixed layers O1 and O2 is sequentially formed (repeated) in the blast furnace 10 from the lower part to the upper part.
- a coke layer having a low ventilation resistance is formed from the lower part of the blast furnace to the upper part of the blast furnace.
- mixed layers O1 and O2 in which coke and ore raw materials are completely mixed are formed.
- high temperature gas mainly composed of CO flows from the tuyere blast pipe 21 provided in the hot water reservoir in the lower part of the blast furnace 10, thereby rising through the coke layer. And a gas stream rising through the mixing layer is formed. Coke is burned by the high-temperature gas flowing in from the blower pipe 21, and the ore raw material is reduced and dissolved.
- the ore raw material in the lower part of the blast furnace 10 is melted, and the coke and the ore raw material charged in the blast furnace 10 descend from the top of the furnace to the lower part of the furnace, and the reduction of the ore raw material and the ore raw material A temperature rise occurs. For this reason, a fusion zone in which the ore material is softened is formed on the upper side of the molten layer, and the ore material is reduced on the upper side of the fusion zone.
- the ore raw material and the coke are completely mixed in the mixed layers O1 and O2, and the coke enters between the ore raw materials.
- the air permeability is improved, and the high temperature gas passes directly between the ore raw materials, so there is no heat transfer delay and the heat transfer characteristics can be improved.
- the contact area between the ore raw material and the high-temperature gas is expanded, and carburization can be promoted. Further, in the cohesive zone, air permeability and heat transfer can be improved. Furthermore, since the ore raw material and coke are arranged close to each other in the upper part of the blast furnace 10, the coupling is a mutual activation phenomenon between the reduction reaction of the ore raw material and the gasification reaction (carbon solution loss reaction). Good reduction is performed without causing a reduction delay due to the reaction.
- a coke slit is formed on the upper side of the cohesive zone, and heat is conducted to the ore mainly through the coke slit, so that a heat transfer delay occurs and the heat transfer becomes insufficient, and the upper part of the blast furnace 10 Then, since the coke layer with good air permeability and the ore layer with poor air permeability are laminated, not only the rate of temperature increase is reduced, but only the reduction reaction is performed, and the above coupling reaction cannot be expected. There arises a problem that a reduction delay occurs.
- the coke layer and the charging layer formed by the mixed layers O1 and O2 in which the coke and the ore raw material are completely mixed are laminated, so that the coke slit is formed in the mixed layer. Therefore, the gas flow is made uniform, good heat transfer is ensured and stable ventilation can be improved, and the problems of the conventional example can be solved.
- the amount of coke required for producing hot metal 1 ton (kg), that is, the coke ratio was about 350 to 365 kg / t.
- the coke ratio is set to 320. It can be reduced to about ⁇ 335 kg / t.
- a furnace core tube 32 is disposed on the inner peripheral surface of a cylindrical furnace body 31, and a cylindrical heating heater 33 is disposed outside the furnace core tube 32.
- a graphite crucible 35 is disposed at the upper end of a cylindrical body 34 made of a refractory inside the furnace core tube 32, and a charging raw material 36 is charged into the crucible 35.
- a load is applied to the charged raw material 36 from above by a load loading device 38 connected via a punch bar 37 so as to be in the same level as the fused layer at the bottom of the blast furnace.
- a drop sampling device 39 is provided below the cylindrical body 34.
- the gas adjusted by the gas mixing device 40 is sent to the crucible 35 through the lower cylindrical body 34, and the gas that has passed through the charging material 36 in the crucible 35 is analyzed by the gas analyzer 41.
- the heating heater 33 is provided with a thermocouple 42 for controlling the heating temperature, and the crucible 35 is controlled by controlling the heater 33 with a control device (not shown) while measuring the temperature with the thermocouple 42. Is heated to 1200-1500 ° C.
- the charging raw material 36 charged in the crucible 35 the following materials were used.
- Comparative Example 1 in which coke was not mixed with the ore layer at all
- Comparative Example 2 in which coke was mixed with the ore layer in an amount of 34 to 84% by mass, and this mixed layer was disposed as a single layer as shown in FIG.
- the ratio WO2 / WO1 of the mass WO1 of O1 and the mass WO2 of O2 is about 1.2, the same ratio: Invention Example 1 of about 1.1, the same ratio: about 0.9 Inventive Example 2 of the present invention, Invention Example 3 of the same ratio: about 0.5, and Invention Example 6 of the same ratio: 1.0 were respectively operated at a high pulverized coal ratio operation at a pulverized coal ratio of 148 kg / t.
- the coke ratio and the pulverized coal ratio are the amount of coke and the amount of pulverized coal (kg) used when producing hot metal 1t.
- the reducing material ratio is the sum of the coke ratio and pulverized coal ratio.
- the gas utilization rate is a ratio of the concentration of CO 2 and CO at the top of the furnace, and is calculated by the following equation.
- Gas utilization rate CO 2 / (CO 2 + CO) ⁇ 100
- CO 2 is the furnace top CO 2 concentration [%]
- CO furnace top CO concentration [%]
- ⁇ P / V is an index obtained by indexing the ventilation resistance in the blast furnace, and is calculated by the following equation.
- ⁇ P / V (BP-TP) / BGV
- BP the blowing pressure [Pa].
- TP the furnace top pressure [Pa]
- BGV Bosch gas amount [m 3 (standard state) / min]
- the present invention preferably uses reverse tilt control in which the turning chute in the blast furnace is sequentially tilted from the axial center to the outer peripheral wall side.
- the present invention is not limited thereto.
- a dedicated coke chute that feeds coke directly into the blast furnace shaft center is placed at a position where it does not interfere with the swivel chute, and the coke is charged directly into the blast furnace shaft core to form a central coke layer. You may make it do.
- O1 and O2 are also comprised as a layer comprised by mixed layer O1, O2, and O3.
- O 2 and O 2 and O 3 are in accordance with the present invention, the effects of the present invention can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacture Of Iron (AREA)
- Blast Furnaces (AREA)
Abstract
The present invention can provide a method for loading material into a blast furnace in which ventilation of the interior of the blast furnace is maintained so that improved stability and thermal efficiency can be achieved during blast furnace operation even when the coke amount is low or when carrying out an operation in which a large amount of pulverized coal is blown in. This is achieved in the present invention by designating a raw material that is loaded from a furnace-top bunker into which a raw material is initially loaded as O1, designating a raw material that is loaded from a furnace-top bunker into which a raw material is subsequently loaded as O2, and setting the mass of O2 to be no more than 1.1 times the mass of O1.
Description
本発明は、炉内への原料装入を旋回シュートで行う高炉への原料装入方法に関するものである。
The present invention relates to a raw material charging method for a blast furnace in which the raw material is charged into the furnace with a turning chute.
高炉は、一般的に焼結鉱、ペレット、塊状鉱石等の鉱石類原料とコークスとを炉頂から層状に装入し、羽口より燃焼ガスを流して、銑鉄を得る。装入された高炉装入原料であるコークスと鉱石類原料は炉頂より炉下部へと降下し、鉱石の還元と原料の昇温が起こる。鉱石類原料層は、昇温と上方からの荷重により鉱石類原料間の空隙を埋めながら徐々に変形して、高炉のシャフト部の下方においては非常に通気抵抗が大きくガスが殆ど流れない融着層を形成する。
A blast furnace generally charges raw materials such as sintered ore, pellets, and massive ore and coke in layers from the top of the furnace, and flows combustion gas from the tuyere to obtain pig iron. The coke and ore raw material, which are the charged raw materials for the blast furnace, descend from the top of the furnace to the lower part of the furnace, and ore reduction and raw material temperature rise occur. The ore raw material layer is gradually deformed while filling the gaps between the ore raw materials due to the temperature rise and the load from above, and the lower part of the shaft part of the blast furnace has a very high resistance to gas and almost no gas flows. Form a layer.
従来、高炉への原料装入は、鉱石類原料とコークスを交互に装入しており、炉内では鉱石類原料層とコークス層が交互に層状となっている。また、高炉内下部には融着帯と呼ばれる鉱石が軟化融着した通気抵抗の大きな鉱石類原料層およびコークス由来の比較的通気抵抗が小さいコークススリットが存在する。
この融着帯の通気性が高炉全体の通気性に大きく影響を及ぼしており、高炉における生産性を律速している。低コークス操業を行う場合、使用されるコークス量が減少することからコークススリットが限りなく薄くなることが考えられる。 Conventionally, raw material charging into a blast furnace is performed by alternately charging ore raw materials and coke, and in the furnace, ore raw material layers and coke layers are alternately layered. Further, in the lower part of the blast furnace, there are an ore raw material layer having a large ventilation resistance in which an ore called softening zone is softened and fused, and a coke slit having a relatively small ventilation resistance derived from coke.
The air permeability of this cohesive zone has a great influence on the air permeability of the entire blast furnace, and the productivity in the blast furnace is limited. When a low coke operation is performed, it is considered that the coke slit becomes extremely thin because the amount of coke used is reduced.
この融着帯の通気性が高炉全体の通気性に大きく影響を及ぼしており、高炉における生産性を律速している。低コークス操業を行う場合、使用されるコークス量が減少することからコークススリットが限りなく薄くなることが考えられる。 Conventionally, raw material charging into a blast furnace is performed by alternately charging ore raw materials and coke, and in the furnace, ore raw material layers and coke layers are alternately layered. Further, in the lower part of the blast furnace, there are an ore raw material layer having a large ventilation resistance in which an ore called softening zone is softened and fused, and a coke slit having a relatively small ventilation resistance derived from coke.
The air permeability of this cohesive zone has a great influence on the air permeability of the entire blast furnace, and the productivity in the blast furnace is limited. When a low coke operation is performed, it is considered that the coke slit becomes extremely thin because the amount of coke used is reduced.
融着帯の通気抵抗を改善するためには、鉱石類原料層にコークスを混合することが有効であることが知られており、適切な混合状態を得るために多くの研究が報告されている。
例えば、特許文献1においては、ベルレス高炉において、鉱石ホッパーのうち下流側の鉱石ホッパーにコークスを装入し、コンベア上で鉱石の上にコークスを積層し、炉頂バンカーに装入して、鉱石とコークスとを旋回シュートを介して高炉内に装入するようにしている。 In order to improve the cohesive zone ventilation resistance, it is known that mixing coke into the ore raw material layer is effective, and many studies have been reported to obtain an appropriate mixing state. .
For example, in Patent Document 1, in a bell-less blast furnace, coke is charged into the ore hopper on the downstream side of the ore hopper, the coke is stacked on the ore on a conveyor, charged into the furnace top bunker, and the ore And coke are charged into the blast furnace through a turning chute.
例えば、特許文献1においては、ベルレス高炉において、鉱石ホッパーのうち下流側の鉱石ホッパーにコークスを装入し、コンベア上で鉱石の上にコークスを積層し、炉頂バンカーに装入して、鉱石とコークスとを旋回シュートを介して高炉内に装入するようにしている。 In order to improve the cohesive zone ventilation resistance, it is known that mixing coke into the ore raw material layer is effective, and many studies have been reported to obtain an appropriate mixing state. .
For example, in Patent Document 1, in a bell-less blast furnace, coke is charged into the ore hopper on the downstream side of the ore hopper, the coke is stacked on the ore on a conveyor, charged into the furnace top bunker, and the ore And coke are charged into the blast furnace through a turning chute.
また、特許文献2では、炉頂のバンカーに鉱石とコークスとを別々に貯留して、コークスと鉱石を同時に混合装入することで、コークスの通常装入用バッチ、コークスの中心装入用バッチおよび混合装入用バッチの3通りを同時に行うようにしている。
In Patent Document 2, ore and coke are separately stored in a bunker at the top of the furnace, and coke and ore are mixed and charged at the same time, so that a normal coke charging batch and a coke central charging batch are used. And three batches for mixing and charging are performed simultaneously.
さらに、特許文献3では、高炉操業における融着帯形状の不安定化および中心部付近におけるガス利用率の低下を防止し、安全操業と熱効率の向上を図るために、高炉における原料装入方法おいて、全鉱石と全コークスを完全混合した後炉内に装入するようにしている。
Furthermore, in Patent Document 3, in order to prevent the instability of the cohesive zone shape in blast furnace operation and the decrease in gas utilization rate near the center, and to improve the safe operation and thermal efficiency, the raw material charging method in the blast furnace is In addition, all ore and all coke are thoroughly mixed and then charged into the furnace.
ところで、融着帯の通気抵抗を改善するためには、前述した特許文献3に記載された技術のように、鉱石層にコークスを混合しておくことが有効であることが知られている。
しかしながら、特許文献3に記載された代表的なコークスの平均粒径は約40~50mmであって、鉱石の平均粒径は約15mmであり、両者の粒径は大幅に異なることから、単純に混合しただけでは空隙率が大幅に低下して、炉内において通気性が悪化し、ガスの吹き抜けや原料の降下不良といったトラブルを生じる可能性がある。
これらのトラブルを回避するためには、炉軸心部にコークスのみの層を形成する方法が考えられる。この方法によれば、炉軸心部にコークス層によるガスの通り道が確保されるため、通気性の改善が可能となる。
ところが、高炉還元材として、羽口から微粉炭を大量に吹き込んだ操業を行う場合には、微粉炭未燃焼粉およびOre/Coke比(鉱石とコークスの質量比)の増加により通気性が阻害されるため、特に炉壁周辺の通気性が大幅に悪化することになり、炉軸心部のみ通気性を確保しても十分であるとは言えない。また、前記したような低コークス操業を行う場合には、炉軸心部のコークス層自体が形成不足となることもある。 Incidentally, in order to improve the ventilation resistance of the cohesive zone, it is known that it is effective to mix coke in the ore layer as in the technique described in Patent Document 3 described above.
However, the average particle size of typical coke described in Patent Document 3 is about 40 to 50 mm, and the average particle size of ore is about 15 mm. If only mixed, the porosity is greatly reduced, the air permeability is deteriorated in the furnace, and there is a possibility that troubles such as gas blow-out and poor lowering of raw materials may occur.
In order to avoid these troubles, a method of forming a coke-only layer in the furnace axis can be considered. According to this method, the passage of gas through the coke layer is secured in the core portion of the furnace, so that air permeability can be improved.
However, when an operation in which a large amount of pulverized coal is blown from the tuyere is performed as a blast furnace reducing material, the air permeability is hindered by an increase in the unburned pulverized coal and the Ore / Coke ratio (the mass ratio of ore and coke). Therefore, the air permeability especially around the furnace wall is greatly deteriorated, and it cannot be said that it is sufficient to ensure the air permeability only in the core portion of the furnace. Further, when performing the low coke operation as described above, the coke layer itself in the core portion of the furnace may be insufficiently formed.
しかしながら、特許文献3に記載された代表的なコークスの平均粒径は約40~50mmであって、鉱石の平均粒径は約15mmであり、両者の粒径は大幅に異なることから、単純に混合しただけでは空隙率が大幅に低下して、炉内において通気性が悪化し、ガスの吹き抜けや原料の降下不良といったトラブルを生じる可能性がある。
これらのトラブルを回避するためには、炉軸心部にコークスのみの層を形成する方法が考えられる。この方法によれば、炉軸心部にコークス層によるガスの通り道が確保されるため、通気性の改善が可能となる。
ところが、高炉還元材として、羽口から微粉炭を大量に吹き込んだ操業を行う場合には、微粉炭未燃焼粉およびOre/Coke比(鉱石とコークスの質量比)の増加により通気性が阻害されるため、特に炉壁周辺の通気性が大幅に悪化することになり、炉軸心部のみ通気性を確保しても十分であるとは言えない。また、前記したような低コークス操業を行う場合には、炉軸心部のコークス層自体が形成不足となることもある。 Incidentally, in order to improve the ventilation resistance of the cohesive zone, it is known that it is effective to mix coke in the ore layer as in the technique described in Patent Document 3 described above.
However, the average particle size of typical coke described in Patent Document 3 is about 40 to 50 mm, and the average particle size of ore is about 15 mm. If only mixed, the porosity is greatly reduced, the air permeability is deteriorated in the furnace, and there is a possibility that troubles such as gas blow-out and poor lowering of raw materials may occur.
In order to avoid these troubles, a method of forming a coke-only layer in the furnace axis can be considered. According to this method, the passage of gas through the coke layer is secured in the core portion of the furnace, so that air permeability can be improved.
However, when an operation in which a large amount of pulverized coal is blown from the tuyere is performed as a blast furnace reducing material, the air permeability is hindered by an increase in the unburned pulverized coal and the Ore / Coke ratio (the mass ratio of ore and coke). Therefore, the air permeability especially around the furnace wall is greatly deteriorated, and it cannot be said that it is sufficient to ensure the air permeability only in the core portion of the furnace. Further, when performing the low coke operation as described above, the coke layer itself in the core portion of the furnace may be insufficiently formed.
本発明は、上記の現状に鑑み開発されたもので、たとえ、コークス量が少なかったり、微粉炭の大量吹込み操業を実施したりする場合であっても、高炉内の通気性を確保して、高炉操業の安定化および熱効率の向上を達成することができる高炉への原料装入方法を提供することを目的とする。
The present invention has been developed in view of the above situation, and ensures air permeability in the blast furnace even when the amount of coke is small or when a large amount of pulverized coal is injected. An object of the present invention is to provide a raw material charging method into a blast furnace that can achieve stabilization of blast furnace operation and improvement of thermal efficiency.
すなわち、本発明の要旨構成は次のとおりである。
1.焼結鉱、ペレット、塊状鉱石などの鉱石類原料およびコークスの高炉装入原料を、高炉の炉頂に配設した少なくとも2つの炉頂バンカーと、該炉頂バンカーの排出口に配設されて該炉頂バンカーから排出される原料を混合して旋回シュートに供給する集合ホッパーと、該旋回シュートとを用いて、高炉内へ装入するに際し、
最初に原料を装入する炉頂バンカーから装入された原料をO1、続いて原料を装入する他の炉頂バンカーから装入された原料をO2としたとき、該O2の質量が該O1の質量の1.1倍以下とする高炉への原料装入方法。 That is, the gist configuration of the present invention is as follows.
1. Ore raw materials such as sintered ore, pellets, massive ore and blast furnace charging raw materials for coke are disposed at at least two furnace top bunkers arranged at the top of the blast furnace and at the outlet of the top bunker. When charging into the blast furnace using the collective hopper that mixes the raw material discharged from the furnace top bunker and supplies the swirl chute and the swirl chute,
When the raw material initially charged from the furnace top bunker charged with the raw material is O1, and then the raw material charged from another furnace top bunker charged with the raw material is O2, the mass of O2 is O1. The raw material charging method to the blast furnace which is 1.1 times or less of the mass of.
1.焼結鉱、ペレット、塊状鉱石などの鉱石類原料およびコークスの高炉装入原料を、高炉の炉頂に配設した少なくとも2つの炉頂バンカーと、該炉頂バンカーの排出口に配設されて該炉頂バンカーから排出される原料を混合して旋回シュートに供給する集合ホッパーと、該旋回シュートとを用いて、高炉内へ装入するに際し、
最初に原料を装入する炉頂バンカーから装入された原料をO1、続いて原料を装入する他の炉頂バンカーから装入された原料をO2としたとき、該O2の質量が該O1の質量の1.1倍以下とする高炉への原料装入方法。 That is, the gist configuration of the present invention is as follows.
1. Ore raw materials such as sintered ore, pellets, massive ore and blast furnace charging raw materials for coke are disposed at at least two furnace top bunkers arranged at the top of the blast furnace and at the outlet of the top bunker. When charging into the blast furnace using the collective hopper that mixes the raw material discharged from the furnace top bunker and supplies the swirl chute and the swirl chute,
When the raw material initially charged from the furnace top bunker charged with the raw material is O1, and then the raw material charged from another furnace top bunker charged with the raw material is O2, the mass of O2 is O1. The raw material charging method to the blast furnace which is 1.1 times or less of the mass of.
2.前記O2の質量をWO2(t)とし、前記O1の質量をWO1(t)としたとき、WO2/WO1が0.5~1.1の範囲を満足する前記1に記載の高炉への原料装入方法。
2. 2. The raw material charging to the blast furnace according to 1 above, wherein WO2 / WO1 satisfies the range of 0.5 to 1.1 where the mass of O2 is WO2 (t) and the mass of O1 is WO1 (t). How to enter.
3.前記O2を装入する際の前記旋回シュートの垂直方向に対する平均角度をθO2(度)とし、前記O1を装入する際の前記旋回シュートの垂直方向に対する平均角度をθO1(度)としたとき、θO1≦θO2の関係を満足する前記1または2に記載の高炉への原料装入方法。
3. When the average angle with respect to the vertical direction of the turning chute when charging the O2 is θO2 (degrees), and the average angle with respect to the vertical direction of the turning chute when charging the O1 is θO1 (degrees), 3. The raw material charging method into the blast furnace as described in 1 or 2 above, wherein the relationship of θO1 ≦ θO2 is satisfied.
4.前記O1を装入する際の前記旋回シュートの垂直方向に対する最大の旋回角度をθO1MAX(度)としたとき、前記θO2と、θO1MAX≦θO2の関係を満足する前記3に記載の高炉への原料装入方法。
4). 4. Raw material charging to the blast furnace according to 3 above, where θO1MAX (degrees) is the maximum turning angle with respect to the vertical direction of the turning chute when charging O1, and the relationship of θO2 and θO1MAX ≦ θO2 is satisfied. How to enter.
5.前記O2に対して混合されるコークスの比率をO2CK(質量%)とし、前記O1に対して混合されるコークスの比率をO1CK(質量%)としたとき、O1CK≦O2CKの関係を満足する前記1~4のいずれかに記載の高炉への原料装入方法。
5. When the ratio of coke mixed with O2 is O2CK (mass%) and the ratio of coke mixed with O1 is O1CK (mass%), the above 1 satisfying the relationship of O1CK ≦ O2CK 5. The raw material charging method to the blast furnace according to any one of 4 to 4.
6.前記O2CKと前記O1CKとの比、O2CK/O1CKが1.0~2.0の範囲を満足する前記5に記載の高炉への原料装入方法。
6). 6. The raw material charging method to the blast furnace as described in 5 above, wherein the ratio of O2CK to O1CK and O2CK / O1CK satisfies the range of 1.0 to 2.0.
本発明によれば、高炉内へ鉱石類原料およびコークスを装入する際に、通気性を効果的に向上させる2種類の層を形成するので、炉下部における通気性が格段に向上して、鉱石の還元速度が大幅に向上し、たとえ、コークス量が少なかったり、高微粉炭比操業において微粉炭由来の未燃焼粉が大量に発生したりする状況下においても、安定した高炉操業を行うことができる。
According to the present invention, when the ore raw material and coke are charged into the blast furnace, two types of layers that effectively improve the air permeability are formed, so that the air permeability in the lower part of the furnace is significantly improved. The reduction rate of ore is greatly improved, even if the amount of coke is low, or even in the situation where a large amount of unburned powder derived from pulverized coal is generated in operation with high pulverized coal ratio, stable blast furnace operation should be performed. Can do.
以下、本発明の代表的な一実施形態を図面に基づいて説明する。
高炉内に、鉱石類原料およびコークスを装入する具体的な装入要領を、図1に基づいて説明する。
以下の説明では、炉頂バンカー12aにはコークスのみが、また炉頂バンカー12bには鉱石類原料およびコークスの混合原料O1が、さらに炉頂バンカー12cには鉱石類原料およびコークスの混合原料O2が、それぞれ貯留されているものとする。
なお、図中、10は高炉、12a~12cは炉頂バンカー、13は流量調整ゲート、14は集合ホッパー、15はベルレス式装入装置、16は旋回シュートである。また、θは、旋回シュートの垂直方向に対する角度である。 Hereinafter, a representative embodiment of the present invention will be described with reference to the drawings.
A specific charging procedure for charging ore raw materials and coke into the blast furnace will be described with reference to FIG.
In the following description, thefurnace bunker 12a contains only coke, the furnace bunker 12b contains the ore raw material and coke mixed raw material O1, and the furnace top bunker 12c contains the ore raw material and coke mixed raw material O2. , Each shall be stored.
In the figure, 10 is a blast furnace, 12a to 12c are furnace bunker, 13 is a flow rate adjusting gate, 14 is a collecting hopper, 15 is a bell-less charging device, and 16 is a turning chute. Further, θ is an angle with respect to the vertical direction of the turning chute.
高炉内に、鉱石類原料およびコークスを装入する具体的な装入要領を、図1に基づいて説明する。
以下の説明では、炉頂バンカー12aにはコークスのみが、また炉頂バンカー12bには鉱石類原料およびコークスの混合原料O1が、さらに炉頂バンカー12cには鉱石類原料およびコークスの混合原料O2が、それぞれ貯留されているものとする。
なお、図中、10は高炉、12a~12cは炉頂バンカー、13は流量調整ゲート、14は集合ホッパー、15はベルレス式装入装置、16は旋回シュートである。また、θは、旋回シュートの垂直方向に対する角度である。 Hereinafter, a representative embodiment of the present invention will be described with reference to the drawings.
A specific charging procedure for charging ore raw materials and coke into the blast furnace will be described with reference to FIG.
In the following description, the
In the figure, 10 is a blast furnace, 12a to 12c are furnace bunker, 13 is a flow rate adjusting gate, 14 is a collecting hopper, 15 is a bell-less charging device, and 16 is a turning chute. Further, θ is an angle with respect to the vertical direction of the turning chute.
炉頂バンカーからの原料装入順序としては、まず、旋回シュート16の原料装入先を高炉の炉壁内周部とし、コークスのみを装入した炉頂バンカー12aからコークスのみを装入することによって、高炉の中心部には、中心コークス層を、また炉壁内周部には、必要に応じて周辺コークス層を形成する。
すなわち、旋回シュート16の原料装入先が高炉の炉壁部を向いている状態では、炉頂バンカー12bおよび12cの流量調整ゲート13を閉じ、炉頂バンカー12aのみの流量調整ゲート13を開き、この炉頂バンカー12aに貯留されているコークスのみを旋回シュート16に供給することによって、高炉の中心部には、中心コークス層を、また炉壁内周部には必要に応じて周辺コークス層を形成する。 As a raw material charging order from the furnace top bunker, first, the raw material charging destination of theswivel chute 16 is the furnace wall inner peripheral part of the blast furnace, and only the coke is charged from the furnace top bunker 12a charged with only coke. Thus, a central coke layer is formed in the central part of the blast furnace, and a peripheral coke layer is formed in the inner peripheral part of the furnace wall as necessary.
That is, in a state where the raw material charging destination of the turningchute 16 faces the furnace wall portion of the blast furnace, the flow rate adjusting gates 13 of the furnace top bunkers 12b and 12c are closed, and the flow rate adjusting gate 13 of only the furnace top bunker 12a is opened. By supplying only the coke stored in the furnace top bunker 12a to the turning chute 16, a central coke layer is provided at the center of the blast furnace, and a peripheral coke layer is provided at the inner peripheral portion of the furnace wall as required. Form.
すなわち、旋回シュート16の原料装入先が高炉の炉壁部を向いている状態では、炉頂バンカー12bおよび12cの流量調整ゲート13を閉じ、炉頂バンカー12aのみの流量調整ゲート13を開き、この炉頂バンカー12aに貯留されているコークスのみを旋回シュート16に供給することによって、高炉の中心部には、中心コークス層を、また炉壁内周部には必要に応じて周辺コークス層を形成する。 As a raw material charging order from the furnace top bunker, first, the raw material charging destination of the
That is, in a state where the raw material charging destination of the turning
ついで、炉頂バンカー12bから混合原料O1を装入するのであるが、その際の装入順序は、高炉の中心軸に近い、すなわちθが小さい位置から上方に順次移動し、その後高炉の中心軸から外側に離れる、すなわちθが大きい方向に移動し、最後に傾斜側壁の上端側が装入されるのである。
さらに、炉頂バンカー12cから混合原料O2を装入する。その際の装入順序は、上記O1と基本的には同じであるが、本発明では、以下に示すとおり、上記O1とO2との装入手順に種々の制限を設けることで、通気抵抗の低い良好な混合層を形成することができるのである。 Next, the mixed raw material O1 is charged from the furnacetop bunker 12b, and the charging order at that time is close to the central axis of the blast furnace, that is, moves sequentially from a position where θ is small, and then the central axis of the blast furnace. It moves away from the outside, that is, moves in the direction of large θ, and finally the upper end side of the inclined side wall is inserted.
Further, the mixed raw material O2 is charged from the furnacetop bunker 12c. The charging order at that time is basically the same as that of the above-mentioned O1, but in the present invention, as shown below, by providing various restrictions in the order of acquisition of the above-mentioned O1 and O2, the ventilation resistance is reduced. A low and good mixed layer can be formed.
さらに、炉頂バンカー12cから混合原料O2を装入する。その際の装入順序は、上記O1と基本的には同じであるが、本発明では、以下に示すとおり、上記O1とO2との装入手順に種々の制限を設けることで、通気抵抗の低い良好な混合層を形成することができるのである。 Next, the mixed raw material O1 is charged from the furnace
Further, the mixed raw material O2 is charged from the furnace
上記手順を1サイクルとして、高炉の操業中は、順次、このサイクル、すなわち、コークスの装入、混合原料O1の装入そして混合原料O2の装入を繰り返していくのである。
なお、以下の説明は、上記した1サイクル中の混合原料をO1とO2の2層とする場合であるが、3層以上でも問題はなく、隣り合う層、すなわちnを自然数とした時、OnおよびOn+1が、以下のO1およびO2の関係を満足すれば、本発明の効果が得られる。また、炉頂バンカーの数も特に制限されず、同一の炉頂バンカーから複数回の切り出しを行うこともできる。
本発明においては、上記分割回数に特に制限はないが、1サイクル中の層構造(装入回数)が多くなると、装入速度が小さくなるため、偏析をまねきやすく、20層を超えると極端に制御が複雑になるため、20層程度を上限とするのが好ましい。 With the above procedure as one cycle, during the operation of the blast furnace, this cycle, that is, charging of coke, charging of the mixed raw material O1, and charging of the mixed raw material O2 are repeated.
The following explanation is for the case where the mixed raw material in one cycle is the two layers of O1 and O2, but there is no problem with three or more layers, and when the adjacent layers, that is, n is a natural number, On If On + 1 satisfies the following relationship of O1 and O2, the effect of the present invention can be obtained. Further, the number of the furnace top bunker is not particularly limited, and a plurality of cuts can be performed from the same furnace top bunker.
In the present invention, the number of divisions is not particularly limited. However, if the layer structure (number of times of charging) in one cycle increases, the charging speed decreases, and therefore segregation tends to occur. Since control becomes complicated, it is preferable to set the upper limit to about 20 layers.
なお、以下の説明は、上記した1サイクル中の混合原料をO1とO2の2層とする場合であるが、3層以上でも問題はなく、隣り合う層、すなわちnを自然数とした時、OnおよびOn+1が、以下のO1およびO2の関係を満足すれば、本発明の効果が得られる。また、炉頂バンカーの数も特に制限されず、同一の炉頂バンカーから複数回の切り出しを行うこともできる。
本発明においては、上記分割回数に特に制限はないが、1サイクル中の層構造(装入回数)が多くなると、装入速度が小さくなるため、偏析をまねきやすく、20層を超えると極端に制御が複雑になるため、20層程度を上限とするのが好ましい。 With the above procedure as one cycle, during the operation of the blast furnace, this cycle, that is, charging of coke, charging of the mixed raw material O1, and charging of the mixed raw material O2 are repeated.
The following explanation is for the case where the mixed raw material in one cycle is the two layers of O1 and O2, but there is no problem with three or more layers, and when the adjacent layers, that is, n is a natural number, On If On + 1 satisfies the following relationship of O1 and O2, the effect of the present invention can be obtained. Further, the number of the furnace top bunker is not particularly limited, and a plurality of cuts can be performed from the same furnace top bunker.
In the present invention, the number of divisions is not particularly limited. However, if the layer structure (number of times of charging) in one cycle increases, the charging speed decreases, and therefore segregation tends to occur. Since control becomes complicated, it is preferable to set the upper limit to about 20 layers.
ここで、炉頂バンカーまでの搬送設備などに鉱石類原料やコークスが偏析する場合には、鉱石類原料又はコークスのみが装入されることになり、集合ホッパー14で他の炉頂バンカー12a、12bおよび12cから装入されるコークスや鉱石類原料と混合されることにはなるものの、鉱石類原料又はコークスの比率が増加して、旋回シュート16によって形成される鉱石類原料およびコークスの混合層の混合率が不均一となる。
そこで、本発明では、最初に原料を装入する炉頂バンカー12bから装入される原料O1の質量(WO1)に対して、続いて原料を装入する炉頂バンカー12cから装入された原料O2の質量(WO2)、すなわちWO2/WO1を1.1以下とすることが重要である。すなわち、WO2をWO1の1.1倍以下の装入量とすることで、WO2よりも前に装入された原料O1によって、次に装入される原料O2の炉内中心側への流れ込みを防止するのである。一方、WO2がWO1の1.1倍を超えると、流れ込みを防止する原料O1を利用した、いわゆるダム効果による流れ込み防止効果が発揮できず、装入された原料O1を崩壊させることになる。その結果、流れ込みによる原料O1およびO2が拡散することになって鉱石類原料とコークスとが分離し、混合の不均一性が生じる。
このように、本発明では、混合原料を2分割し、さらにその装入量を限定することで、上記混合率の不均一性が解消され、結果的に、コークス量が少なかったり、微粉炭の大量吹込み操業を実施したりする場合であっても、高炉内の通気性を確保できるのである。 Here, when the ore raw material and coke are segregated in the transport equipment to the furnace top bunker, etc., only the ore raw material or coke is charged, and theother hopper bunker 12a, Although it is mixed with the coke and ore raw material charged from 12b and 12c, the ratio of the ore raw material or coke is increased and the mixed layer of the ore raw material and coke formed by the swivel chute 16 The mixing ratio becomes non-uniform.
Therefore, in the present invention, the raw material charged from the furnacetop bunker 12c that subsequently charges the raw material O1 is charged to the mass (WO1) of the raw material O1 that is charged from the furnace top bunker 12b that initially charges the raw material. It is important that the mass of O2 (WO2), that is, WO2 / WO1 is 1.1 or less. That is, by making WO2 1.1 times less than WO1, the raw material O1 charged before WO2 allows the raw material O2 to be charged next to flow into the furnace center side. It prevents it. On the other hand, if WO2 exceeds 1.1 times that of WO1, the so-called dam effect inflow prevention effect using the raw material O1 for preventing inflow cannot be exhibited, and the charged raw material O1 is destroyed. As a result, the raw materials O1 and O2 due to inflowing diffuse and the ore raw material and coke are separated, resulting in nonuniform mixing.
As described above, in the present invention, the mixed raw material is divided into two parts and the charging amount is further limited to eliminate the non-uniformity of the mixing ratio. As a result, the amount of coke is small, Even when a large amount of blowing operation is performed, air permeability in the blast furnace can be secured.
そこで、本発明では、最初に原料を装入する炉頂バンカー12bから装入される原料O1の質量(WO1)に対して、続いて原料を装入する炉頂バンカー12cから装入された原料O2の質量(WO2)、すなわちWO2/WO1を1.1以下とすることが重要である。すなわち、WO2をWO1の1.1倍以下の装入量とすることで、WO2よりも前に装入された原料O1によって、次に装入される原料O2の炉内中心側への流れ込みを防止するのである。一方、WO2がWO1の1.1倍を超えると、流れ込みを防止する原料O1を利用した、いわゆるダム効果による流れ込み防止効果が発揮できず、装入された原料O1を崩壊させることになる。その結果、流れ込みによる原料O1およびO2が拡散することになって鉱石類原料とコークスとが分離し、混合の不均一性が生じる。
このように、本発明では、混合原料を2分割し、さらにその装入量を限定することで、上記混合率の不均一性が解消され、結果的に、コークス量が少なかったり、微粉炭の大量吹込み操業を実施したりする場合であっても、高炉内の通気性を確保できるのである。 Here, when the ore raw material and coke are segregated in the transport equipment to the furnace top bunker, etc., only the ore raw material or coke is charged, and the
Therefore, in the present invention, the raw material charged from the furnace
As described above, in the present invention, the mixed raw material is divided into two parts and the charging amount is further limited to eliminate the non-uniformity of the mixing ratio. As a result, the amount of coke is small, Even when a large amount of blowing operation is performed, air permeability in the blast furnace can be secured.
さらに、後に装入される原料であるO2が傾斜側壁の上端側に堆積し、中心部へ装入された原料に流れ込むことを防止すること、および装入時の不均一性を解消する必要があることから上記WO2/WO1は、0.5~1.1の範囲とする。
WO2/WO1が0.5未満では、原料O2の装入範囲が限られ、かえって装入時に不均一性が増加するので、WO2/WO1は、0.5~1.1の範囲とするのである。好ましくは、0.5~1.0として、原料O1と原料O2を最大でも等量として装入し、流れ込みの発生を防止する。望ましくは、原料O1より原料O2の装入量を適量減じて、流れ込み発生を防止する0.5~0.95の範囲とする。
なお、本発明では、上記WO2/WO1の値を満足することが重要であるが、具体的な値としては、5000m3の高炉においてはWO1が80~110トン(t)程度、WO2が55~110トン(t)程度の範囲とすることがそれぞれ望ましい。 Furthermore, it is necessary to prevent O2, which is a raw material to be charged later, from accumulating on the upper end side of the inclined side wall and flowing into the raw material charged into the central portion, and to eliminate unevenness at the time of charging. Therefore, the above-mentioned WO2 / WO1 is in the range of 0.5 to 1.1.
If WO2 / WO1 is less than 0.5, the charging range of the raw material O2 is limited, and on the contrary, the non-uniformity increases at the time of charging, so WO2 / WO1 is in the range of 0.5 to 1.1. . Preferably, the raw material O1 and the raw material O2 are charged in an equal amount at a maximum of 0.5 to 1.0 to prevent inflow. Desirably, the charged amount of the raw material O2 is reduced by an appropriate amount from the raw material O1, and the range of 0.5 to 0.95 is prevented to prevent inflow.
In the present invention, it is important to satisfy the above-mentioned values of WO2 / WO1, but as specific values, in a blast furnace of 5000 m 3 , WO1 is about 80 to 110 tons (t), and WO2 is 55 to A range of about 110 tons (t) is desirable.
WO2/WO1が0.5未満では、原料O2の装入範囲が限られ、かえって装入時に不均一性が増加するので、WO2/WO1は、0.5~1.1の範囲とするのである。好ましくは、0.5~1.0として、原料O1と原料O2を最大でも等量として装入し、流れ込みの発生を防止する。望ましくは、原料O1より原料O2の装入量を適量減じて、流れ込み発生を防止する0.5~0.95の範囲とする。
なお、本発明では、上記WO2/WO1の値を満足することが重要であるが、具体的な値としては、5000m3の高炉においてはWO1が80~110トン(t)程度、WO2が55~110トン(t)程度の範囲とすることがそれぞれ望ましい。 Furthermore, it is necessary to prevent O2, which is a raw material to be charged later, from accumulating on the upper end side of the inclined side wall and flowing into the raw material charged into the central portion, and to eliminate unevenness at the time of charging. Therefore, the above-mentioned WO2 / WO1 is in the range of 0.5 to 1.1.
If WO2 / WO1 is less than 0.5, the charging range of the raw material O2 is limited, and on the contrary, the non-uniformity increases at the time of charging, so WO2 / WO1 is in the range of 0.5 to 1.1. . Preferably, the raw material O1 and the raw material O2 are charged in an equal amount at a maximum of 0.5 to 1.0 to prevent inflow. Desirably, the charged amount of the raw material O2 is reduced by an appropriate amount from the raw material O1, and the range of 0.5 to 0.95 is prevented to prevent inflow.
In the present invention, it is important to satisfy the above-mentioned values of WO2 / WO1, but as specific values, in a blast furnace of 5000 m 3 , WO1 is about 80 to 110 tons (t), and WO2 is 55 to A range of about 110 tons (t) is desirable.
本発明では、図1に示したθ(以下、単にθと記す)が、O2を装入する際の平均をθO2とし、O1を装入する際のθの平均をθO1としたとき、θO2はθO1を下回らない、すなわちθO1≦θO2の関係を満足することが好ましい。
これは、θO2をθO1より大きくし、後に装入される原料であるO2が傾斜側壁の上端側に装入することができるからである。
なお、本発明では、上記関係を満足することが重要であるが、具体的な値としては、θO1が30~40度程度、θO2が35~45度程度の範囲とすることがそれぞれ望ましい。 In the present invention, when θ shown in FIG. 1 (hereinafter simply referred to as θ) is θO2 when O2 is charged and θO1 when θ1 is averaged when O1 is charged, θO2 is It is preferable not to be less than θO1, that is, satisfy the relationship of θO1 ≦ θO2.
This is because θO2 is made larger than θO1, and O2, which is a raw material to be charged later, can be charged to the upper end side of the inclined side wall.
In the present invention, it is important to satisfy the above relationship, but it is preferable that θO1 is about 30 to 40 degrees and θO2 is about 35 to 45 degrees as specific values.
これは、θO2をθO1より大きくし、後に装入される原料であるO2が傾斜側壁の上端側に装入することができるからである。
なお、本発明では、上記関係を満足することが重要であるが、具体的な値としては、θO1が30~40度程度、θO2が35~45度程度の範囲とすることがそれぞれ望ましい。 In the present invention, when θ shown in FIG. 1 (hereinafter simply referred to as θ) is θO2 when O2 is charged and θO1 when θ1 is averaged when O1 is charged, θO2 is It is preferable not to be less than θO1, that is, satisfy the relationship of θO1 ≦ θO2.
This is because θO2 is made larger than θO1, and O2, which is a raw material to be charged later, can be charged to the upper end side of the inclined side wall.
In the present invention, it is important to satisfy the above relationship, but it is preferable that θO1 is about 30 to 40 degrees and θO2 is about 35 to 45 degrees as specific values.
また、本発明では、前記O1を装入する際のθの最大値をθO1MAXとしたとき、上記θO2はθO1MAXを下回らない、すなわちθO1MAX≦θO2の関係を満足することが好ましい。
これは、θO2をθO1より大きくし、後に装入される原料であるO2が傾斜側壁の上端側に装入することができるからである。
なお、本発明では、上記関係を満足することが重要であるが、具体的な値としては、θO1MAXは35~40度程度の範囲とすることが望ましい。 In the present invention, when the maximum value of θ when O1 is charged is θO1MAX, it is preferable that θO2 does not fall below θO1MAX, that is, satisfies the relationship θO1MAX ≦ θO2.
This is because θO2 is made larger than θO1, and O2, which is a raw material to be charged later, can be charged to the upper end side of the inclined side wall.
In the present invention, it is important to satisfy the above relationship, but as a specific value, it is desirable that θO1MAX be in the range of about 35 to 40 degrees.
これは、θO2をθO1より大きくし、後に装入される原料であるO2が傾斜側壁の上端側に装入することができるからである。
なお、本発明では、上記関係を満足することが重要であるが、具体的な値としては、θO1MAXは35~40度程度の範囲とすることが望ましい。 In the present invention, when the maximum value of θ when O1 is charged is θO1MAX, it is preferable that θO2 does not fall below θO1MAX, that is, satisfies the relationship θO1MAX ≦ θO2.
This is because θO2 is made larger than θO1, and O2, which is a raw material to be charged later, can be charged to the upper end side of the inclined side wall.
In the present invention, it is important to satisfy the above relationship, but as a specific value, it is desirable that θO1MAX be in the range of about 35 to 40 degrees.
さらに、本発明では、O2に対して混合されるコークス量を、質量%でO2CKとし、前記O1に対して混合されるコークス量を、質量%でO1CKとしたとき、O1CK≦O2CKの関係を満足することが好ましい。
これは、炉容積の大きい炉壁周辺の通気性を改善することで、高炉全体の通気性を確保するためである。
なお、本発明では、上記関係を満足することが重要であるが、具体的な値としては、O1CKが5~15質量%程度、O2CKが10~20質量%程度の範囲とすることがそれぞれ望ましい。 Further, in the present invention, when the amount of coke mixed with O2 is O2CK in mass% and the amount of coke mixed with O1 is O1CK in mass%, the relationship of O1CK ≦ O2CK is satisfied. It is preferable to do.
This is to ensure the air permeability of the entire blast furnace by improving the air permeability around the furnace wall having a large furnace volume.
In the present invention, it is important to satisfy the above relationship, but specific values are desirably in the range of about 5 to 15% by mass of O1CK and about 10 to 20% by mass of O2CK. .
これは、炉容積の大きい炉壁周辺の通気性を改善することで、高炉全体の通気性を確保するためである。
なお、本発明では、上記関係を満足することが重要であるが、具体的な値としては、O1CKが5~15質量%程度、O2CKが10~20質量%程度の範囲とすることがそれぞれ望ましい。 Further, in the present invention, when the amount of coke mixed with O2 is O2CK in mass% and the amount of coke mixed with O1 is O1CK in mass%, the relationship of O1CK ≦ O2CK is satisfied. It is preferable to do.
This is to ensure the air permeability of the entire blast furnace by improving the air permeability around the furnace wall having a large furnace volume.
In the present invention, it is important to satisfy the above relationship, but specific values are desirably in the range of about 5 to 15% by mass of O1CK and about 10 to 20% by mass of O2CK. .
また、本発明では、上記O2CKと上記O1CKとの比、すなわちO2CK/O1CKが1.0~2.0の範囲を満足することがさらに好ましい。
これは、O2CKをO1CKより大きくし、後に装入され原料であるO2が傾斜側壁の上端側に装入して炉容積の大きい炉壁周辺の通気性を改善することで、高炉全体の通気性を確保するためである。 In the present invention, it is more preferable that the ratio of O2CK to O1CK, that is, O2CK / O1CK satisfies the range of 1.0 to 2.0.
This is because O2CK is made larger than O1CK, and O2 as raw material is charged into the upper end side of the inclined side wall to improve the air permeability around the furnace wall with a large furnace volume. This is to ensure
これは、O2CKをO1CKより大きくし、後に装入され原料であるO2が傾斜側壁の上端側に装入して炉容積の大きい炉壁周辺の通気性を改善することで、高炉全体の通気性を確保するためである。 In the present invention, it is more preferable that the ratio of O2CK to O1CK, that is, O2CK / O1CK satisfies the range of 1.0 to 2.0.
This is because O2CK is made larger than O1CK, and O2 as raw material is charged into the upper end side of the inclined side wall to improve the air permeability around the furnace wall with a large furnace volume. This is to ensure
すなわち、本発明において、混合層12eの形成は、図2に示すように、中心コークス層と周辺コークス層12dの上に単層で形成するのではなく、中心コークス層と周辺コークス層12dの上に少なくとも2層以上、すなわち図中のO1とO2で形成するのである。
That is, in the present invention, as shown in FIG. 2, the mixed layer 12e is not formed as a single layer on the central coke layer and the peripheral coke layer 12d, but on the central coke layer and the peripheral coke layer 12d. At least two layers are formed, that is, O1 and O2 in the figure.
そして、上記したコークス層並びに混合層O1およびO2で構成される層(1サイクル)を順次、高炉10内に下部から上部まで形成(繰り返)して行く。
このように、コークス層並びに混合層O1およびO2で構成される層を順次積層することにより、高炉10内の軸心部および炉壁部には通気抵抗の小さいコークス層が高炉下部から高炉上部に向かって形成され、その間にコークスと鉱石類原料とが完全混合された混合層O1およびO2が形成される。 Then, a layer (one cycle) composed of the above-described coke layer and mixed layers O1 and O2 is sequentially formed (repeated) in theblast furnace 10 from the lower part to the upper part.
In this way, by sequentially laminating the coke layer and the layers composed of the mixed layers O1 and O2, a coke layer having a low ventilation resistance is formed from the lower part of the blast furnace to the upper part of the blast furnace. In the meantime, mixed layers O1 and O2 in which coke and ore raw materials are completely mixed are formed.
このように、コークス層並びに混合層O1およびO2で構成される層を順次積層することにより、高炉10内の軸心部および炉壁部には通気抵抗の小さいコークス層が高炉下部から高炉上部に向かって形成され、その間にコークスと鉱石類原料とが完全混合された混合層O1およびO2が形成される。 Then, a layer (one cycle) composed of the above-described coke layer and mixed layers O1 and O2 is sequentially formed (repeated) in the
In this way, by sequentially laminating the coke layer and the layers composed of the mixed layers O1 and O2, a coke layer having a low ventilation resistance is formed from the lower part of the blast furnace to the upper part of the blast furnace. In the meantime, mixed layers O1 and O2 in which coke and ore raw materials are completely mixed are formed.
そのため、図3の右半部に示すように、高炉10の下部における湯溜り部に設けた羽口の送風管21からCOを主体とする高温ガスを流入させることにより、コークス層を通って上昇するガス流が形成されると共に、混合層を通って上昇するガス流が形成される。この送風管21から流入する高温ガスによって、コークスを燃焼させ、鉱石類原料を還元溶解させる。
Therefore, as shown in the right half of FIG. 3, high temperature gas mainly composed of CO flows from the tuyere blast pipe 21 provided in the hot water reservoir in the lower part of the blast furnace 10, thereby rising through the coke layer. And a gas stream rising through the mixing layer is formed. Coke is burned by the high-temperature gas flowing in from the blower pipe 21, and the ore raw material is reduced and dissolved.
これによって、高炉10の下部における鉱石類原料が溶融し、高炉10内に装入されたコークスと鉱石類原料とが炉頂より炉下部へと降下し、鉱石類原料の還元と鉱石類原料の昇温が起こる。
このため、溶融層の上部側に鉱石類原料が軟化した融着帯が形成され、この融着帯の上部側で鉱石類原料の還元が行われる。
このとき、図4の右半部に示すように、高炉10の下部では、混合層O1およびO2において、鉱石類原料とコークスとが完全混合されて、鉱石類原料間にコークスが入り込んだ状態となり、通気性が改善されるとともに、高温ガスが直接鉱石類原料間を通過するため伝熱遅れがなく伝熱特性を改善することができる。 Thereby, the ore raw material in the lower part of theblast furnace 10 is melted, and the coke and the ore raw material charged in the blast furnace 10 descend from the top of the furnace to the lower part of the furnace, and the reduction of the ore raw material and the ore raw material A temperature rise occurs.
For this reason, a fusion zone in which the ore material is softened is formed on the upper side of the molten layer, and the ore material is reduced on the upper side of the fusion zone.
At this time, as shown in the right half of FIG. 4, in the lower part of theblast furnace 10, the ore raw material and the coke are completely mixed in the mixed layers O1 and O2, and the coke enters between the ore raw materials. The air permeability is improved, and the high temperature gas passes directly between the ore raw materials, so there is no heat transfer delay and the heat transfer characteristics can be improved.
このため、溶融層の上部側に鉱石類原料が軟化した融着帯が形成され、この融着帯の上部側で鉱石類原料の還元が行われる。
このとき、図4の右半部に示すように、高炉10の下部では、混合層O1およびO2において、鉱石類原料とコークスとが完全混合されて、鉱石類原料間にコークスが入り込んだ状態となり、通気性が改善されるとともに、高温ガスが直接鉱石類原料間を通過するため伝熱遅れがなく伝熱特性を改善することができる。 Thereby, the ore raw material in the lower part of the
For this reason, a fusion zone in which the ore material is softened is formed on the upper side of the molten layer, and the ore material is reduced on the upper side of the fusion zone.
At this time, as shown in the right half of FIG. 4, in the lower part of the
加えて、高炉10の融着帯の下部では、鉱石類原料と高温ガスの接触面積が拡大し、浸炭を促進することができる。また、融着帯内では、通気性および伝熱性を改善することができる。さらに、高炉10の上部でも、鉱石類原料とコークスとが近接して配置されているので、鉱石類原料の還元反応とガス化反応(カーボンソリューションロス反応)との相互活性化現象であるカップリング反応によって還元遅れを生じることなく良好な還元が行われる。
このときの還元反応は、FeO+CO=Fe+CO2で表される。
また、ガス化反応は、C+CO2=2COで表される。 In addition, in the lower part of the cohesive zone of theblast furnace 10, the contact area between the ore raw material and the high-temperature gas is expanded, and carburization can be promoted. Further, in the cohesive zone, air permeability and heat transfer can be improved. Furthermore, since the ore raw material and coke are arranged close to each other in the upper part of the blast furnace 10, the coupling is a mutual activation phenomenon between the reduction reaction of the ore raw material and the gasification reaction (carbon solution loss reaction). Good reduction is performed without causing a reduction delay due to the reaction.
The reduction reaction at this time is represented by FeO + CO = Fe + CO 2 .
The gasification reaction is represented by C + CO 2 = 2CO.
このときの還元反応は、FeO+CO=Fe+CO2で表される。
また、ガス化反応は、C+CO2=2COで表される。 In addition, in the lower part of the cohesive zone of the
The reduction reaction at this time is represented by FeO + CO = Fe + CO 2 .
The gasification reaction is represented by C + CO 2 = 2CO.
一方、前述した鉱石とコークスとを層状に積層する従来例では、図3の左半部で示すように、高炉内に鉱石とコークスとを交互に装入して、高炉内に鉱石層とコークス層とが層状となるように装入する。この場合には、羽口の送風管21からCO主体の高温ガスを流入させたときに、図4の左半部に示すように、融着帯の下部で、コークススリット減により通気が制限されて圧損が上昇することにより、鉱石の高温ガスとの接触面積が小さくなり浸炭が制限されるという問題がある。
On the other hand, in the conventional example in which the ore and coke described above are laminated in layers, as shown in the left half of FIG. 3, ore and coke are alternately charged in the blast furnace, and the ore layer and coke are placed in the blast furnace. The layers are charged in layers. In this case, when high temperature gas mainly composed of CO is introduced from the tuyere blast pipe 21, as shown in the left half of FIG. 4, the ventilation is restricted by the reduction of the coke slit at the lower part of the cohesive zone. As the pressure loss increases, there is a problem that the contact area of the ore with the hot gas is reduced and carburization is limited.
また、融着帯の上部側では、コークススリットが形成され、主にこのコークススリットを通じて、鉱石に熱が伝導されるため、伝熱遅れが発生して伝熱不足になると共に、高炉10の上部では、通気性の良いコークス層と通気性の悪い鉱石層とが積層されているので、昇温速度が低下するだけでなく、還元反応のみが行われ、上記したカップリング反応が望めないので、還元遅れが発生するという問題が生じる。
しかしながら、本実施形態では、前述したように、コークス層およびコークスと鉱石類原料とを完全混合した混合層O1およびO2とで形成される装入層を積層したので、混合層でコークススリットが形成されることがなく、ガス流れを均一化して、良好な伝熱性を確保して安定的な通気改善が可能となり、上記従来例の問題点を解決することができる。 In addition, a coke slit is formed on the upper side of the cohesive zone, and heat is conducted to the ore mainly through the coke slit, so that a heat transfer delay occurs and the heat transfer becomes insufficient, and the upper part of theblast furnace 10 Then, since the coke layer with good air permeability and the ore layer with poor air permeability are laminated, not only the rate of temperature increase is reduced, but only the reduction reaction is performed, and the above coupling reaction cannot be expected. There arises a problem that a reduction delay occurs.
However, in the present embodiment, as described above, the coke layer and the charging layer formed by the mixed layers O1 and O2 in which the coke and the ore raw material are completely mixed are laminated, so that the coke slit is formed in the mixed layer. Therefore, the gas flow is made uniform, good heat transfer is ensured and stable ventilation can be improved, and the problems of the conventional example can be solved.
しかしながら、本実施形態では、前述したように、コークス層およびコークスと鉱石類原料とを完全混合した混合層O1およびO2とで形成される装入層を積層したので、混合層でコークススリットが形成されることがなく、ガス流れを均一化して、良好な伝熱性を確保して安定的な通気改善が可能となり、上記従来例の問題点を解決することができる。 In addition, a coke slit is formed on the upper side of the cohesive zone, and heat is conducted to the ore mainly through the coke slit, so that a heat transfer delay occurs and the heat transfer becomes insufficient, and the upper part of the
However, in the present embodiment, as described above, the coke layer and the charging layer formed by the mixed layers O1 and O2 in which the coke and the ore raw material are completely mixed are laminated, so that the coke slit is formed in the mixed layer. Therefore, the gas flow is made uniform, good heat transfer is ensured and stable ventilation can be improved, and the problems of the conventional example can be solved.
なお、従来、溶銑:1tを製造するのに必要なコークス量(kg)、すなわちコークス比は350~365kg/t程度であったが,本発明に従って原料装入を行う場合にはコークス比を320~335kg/t程度まで低減することが可能である。
Conventionally, the amount of coke required for producing hot metal: 1 ton (kg), that is, the coke ratio was about 350 to 365 kg / t. However, when raw material charging is performed according to the present invention, the coke ratio is set to 320. It can be reduced to about ˜335 kg / t.
本実施形態の効果を実証するために、図5に示す実験装置を用いて、高炉内での原料還元、昇温過程を模擬してその通気抵抗の変化を調べた。
この実験装置は、円筒状の炉体31の内周面に炉芯管32を配置し、この炉芯管32の外側に円筒状の加熱用ヒーター33を配置する。炉芯管32の内側には耐火物で構成された円筒体34の上端に黒鉛製るつぼ35を配置し、このるつぼ35内に装入原料36が装入されている。この装入原料36には、高炉下部の融着層と同程度の状態となるように、パンチ棒37を介して連結した荷重負荷装置38により上部から荷重を負荷する。円筒体34の下部には、滴下物サンプリング装置39が設けられている。 In order to verify the effect of the present embodiment, using the experimental apparatus shown in FIG. 5, the change in the ventilation resistance was examined by simulating the raw material reduction and the temperature raising process in the blast furnace.
In this experimental apparatus, afurnace core tube 32 is disposed on the inner peripheral surface of a cylindrical furnace body 31, and a cylindrical heating heater 33 is disposed outside the furnace core tube 32. A graphite crucible 35 is disposed at the upper end of a cylindrical body 34 made of a refractory inside the furnace core tube 32, and a charging raw material 36 is charged into the crucible 35. A load is applied to the charged raw material 36 from above by a load loading device 38 connected via a punch bar 37 so as to be in the same level as the fused layer at the bottom of the blast furnace. A drop sampling device 39 is provided below the cylindrical body 34.
この実験装置は、円筒状の炉体31の内周面に炉芯管32を配置し、この炉芯管32の外側に円筒状の加熱用ヒーター33を配置する。炉芯管32の内側には耐火物で構成された円筒体34の上端に黒鉛製るつぼ35を配置し、このるつぼ35内に装入原料36が装入されている。この装入原料36には、高炉下部の融着層と同程度の状態となるように、パンチ棒37を介して連結した荷重負荷装置38により上部から荷重を負荷する。円筒体34の下部には、滴下物サンプリング装置39が設けられている。 In order to verify the effect of the present embodiment, using the experimental apparatus shown in FIG. 5, the change in the ventilation resistance was examined by simulating the raw material reduction and the temperature raising process in the blast furnace.
In this experimental apparatus, a
るつぼ35には、その下部の円筒体34を介してガス混合装置40によって調整したガスを送り、るつぼ35内の装入原料36を通過したガスはガス分析装置41で分析される。加熱用ヒーター33には加熱温度制御用の熱電対42が配設され、この熱電対42で温度を測定しながら、制御装置(図示せず)で加熱用ヒーター33を制御することによって、るつぼ35を1200~1500℃に加熱する。
ここで、るつぼ35内に装入された装入原料36としては、以下に示すものを用いた。 The gas adjusted by thegas mixing device 40 is sent to the crucible 35 through the lower cylindrical body 34, and the gas that has passed through the charging material 36 in the crucible 35 is analyzed by the gas analyzer 41. The heating heater 33 is provided with a thermocouple 42 for controlling the heating temperature, and the crucible 35 is controlled by controlling the heater 33 with a control device (not shown) while measuring the temperature with the thermocouple 42. Is heated to 1200-1500 ° C.
Here, as the chargingraw material 36 charged in the crucible 35, the following materials were used.
ここで、るつぼ35内に装入された装入原料36としては、以下に示すものを用いた。 The gas adjusted by the
Here, as the charging
コークスを鉱石層に全く混合させない比較例1、コークスを鉱石層に34~84質量%混合し、この混合層を図2(a)に示したように単層で配置した比較例2、およびコークスを鉱石層に混合し、O1の質量WO1とO2の質量WO2との比WO2/WO1が約1.2である比較例3、同比:約1.1の発明例1、同比:約0.9の発明例2、同比:約0.5の発明例3、同比:1.0の発明例6を、微粉炭比:148kg/tとして、それぞれ高微粉炭比操業を行った。また、O1の平均装入角度を変更した発明例4、O2の平均装入角度を変更した発明例5、O1中のコークス比率を変更した発明例7および8を併せて実施した。
なお、高炉の一日当たりの出銑量(t/d)を炉内容積(m3)で除した値である出銑比、およびO1の質量比率(%)、O1の平均装入角度(度)、O1の最大装入角度(度)、O1中のコークス比率(質量%)、O2の質量比率(%)、O2の平均装入角度(度)、O2中のコークス比率(質量%)は、いずれも表1に示したとおりである。
また、それぞれの場合における操業結果を、表1に比較して併記する。 Comparative Example 1 in which coke was not mixed with the ore layer at all, Comparative Example 2 in which coke was mixed with the ore layer in an amount of 34 to 84% by mass, and this mixed layer was disposed as a single layer as shown in FIG. In the ore layer, the ratio WO2 / WO1 of the mass WO1 of O1 and the mass WO2 of O2 is about 1.2, the same ratio: Invention Example 1 of about 1.1, the same ratio: about 0.9 Inventive Example 2 of the present invention, Invention Example 3 of the same ratio: about 0.5, and Invention Example 6 of the same ratio: 1.0 were respectively operated at a high pulverized coal ratio operation at a pulverized coal ratio of 148 kg / t. Further, Invention Example 4 in which the average charging angle of O1 was changed, Invention Example 5 in which the average charging angle of O2 was changed, and Invention Examples 7 and 8 in which the coke ratio in O1 was changed were carried out.
It should be noted that the output ratio (t / d) per day of the blast furnace divided by the furnace volume (m 3 ), the output ratio, the mass ratio (%) of O1, and the average charging angle (degrees) of O1 ), O1 maximum charging angle (degree), coke ratio in O1 (mass%), O2 mass ratio (%), O2 average charging angle (degree), coke ratio in O2 (mass%) These are as shown in Table 1.
In addition, the operation results in each case are shown in comparison with Table 1.
なお、高炉の一日当たりの出銑量(t/d)を炉内容積(m3)で除した値である出銑比、およびO1の質量比率(%)、O1の平均装入角度(度)、O1の最大装入角度(度)、O1中のコークス比率(質量%)、O2の質量比率(%)、O2の平均装入角度(度)、O2中のコークス比率(質量%)は、いずれも表1に示したとおりである。
また、それぞれの場合における操業結果を、表1に比較して併記する。 Comparative Example 1 in which coke was not mixed with the ore layer at all, Comparative Example 2 in which coke was mixed with the ore layer in an amount of 34 to 84% by mass, and this mixed layer was disposed as a single layer as shown in FIG. In the ore layer, the ratio WO2 / WO1 of the mass WO1 of O1 and the mass WO2 of O2 is about 1.2, the same ratio: Invention Example 1 of about 1.1, the same ratio: about 0.9 Inventive Example 2 of the present invention, Invention Example 3 of the same ratio: about 0.5, and Invention Example 6 of the same ratio: 1.0 were respectively operated at a high pulverized coal ratio operation at a pulverized coal ratio of 148 kg / t. Further, Invention Example 4 in which the average charging angle of O1 was changed, Invention Example 5 in which the average charging angle of O2 was changed, and Invention Examples 7 and 8 in which the coke ratio in O1 was changed were carried out.
It should be noted that the output ratio (t / d) per day of the blast furnace divided by the furnace volume (m 3 ), the output ratio, the mass ratio (%) of O1, and the average charging angle (degrees) of O1 ), O1 maximum charging angle (degree), coke ratio in O1 (mass%), O2 mass ratio (%), O2 average charging angle (degree), coke ratio in O2 (mass%) These are as shown in Table 1.
In addition, the operation results in each case are shown in comparison with Table 1.
この表1で、コークス比および微粉炭比は、溶銑1tを製造する際に使用したコークス量および微粉炭量(kg)である。
還元材比は、コークス比と微粉炭比の総和である。
ガス利用率は、炉頂におけるCO2とCOとの濃度の比であり、次式により算出する。
ガス利用率=CO2/(CO2+CO)×100
ここで、CO2は炉頂CO2濃度[%]
COは炉頂CO濃度[%]
また、ΔP/Vは高炉内での通気抵抗を指数化した指標であり、次式により算出する。
ΔP/V=(BP-TP)/BGV
ここで、BPは送風圧力[Pa]
TPは炉頂圧力[Pa]
BGVはボッシュガス量[m3(標準状態)/min] In Table 1, the coke ratio and the pulverized coal ratio are the amount of coke and the amount of pulverized coal (kg) used when producing hot metal 1t.
The reducing material ratio is the sum of the coke ratio and pulverized coal ratio.
The gas utilization rate is a ratio of the concentration of CO 2 and CO at the top of the furnace, and is calculated by the following equation.
Gas utilization rate = CO 2 / (CO 2 + CO) × 100
Here, CO 2 is the furnace top CO 2 concentration [%]
CO is furnace top CO concentration [%]
ΔP / V is an index obtained by indexing the ventilation resistance in the blast furnace, and is calculated by the following equation.
ΔP / V = (BP-TP) / BGV
Here, BP is the blowing pressure [Pa].
TP is the furnace top pressure [Pa]
BGV is Bosch gas amount [m 3 (standard state) / min]
還元材比は、コークス比と微粉炭比の総和である。
ガス利用率は、炉頂におけるCO2とCOとの濃度の比であり、次式により算出する。
ガス利用率=CO2/(CO2+CO)×100
ここで、CO2は炉頂CO2濃度[%]
COは炉頂CO濃度[%]
また、ΔP/Vは高炉内での通気抵抗を指数化した指標であり、次式により算出する。
ΔP/V=(BP-TP)/BGV
ここで、BPは送風圧力[Pa]
TPは炉頂圧力[Pa]
BGVはボッシュガス量[m3(標準状態)/min] In Table 1, the coke ratio and the pulverized coal ratio are the amount of coke and the amount of pulverized coal (kg) used when producing hot metal 1t.
The reducing material ratio is the sum of the coke ratio and pulverized coal ratio.
The gas utilization rate is a ratio of the concentration of CO 2 and CO at the top of the furnace, and is calculated by the following equation.
Gas utilization rate = CO 2 / (CO 2 + CO) × 100
Here, CO 2 is the furnace top CO 2 concentration [%]
CO is furnace top CO concentration [%]
ΔP / V is an index obtained by indexing the ventilation resistance in the blast furnace, and is calculated by the following equation.
ΔP / V = (BP-TP) / BGV
Here, BP is the blowing pressure [Pa].
TP is the furnace top pressure [Pa]
BGV is Bosch gas amount [m 3 (standard state) / min]
表1に示したように、発明例1~8は、ともにコークス比を332~340kg/tの範囲としているため、比較例1~3のコークス比362~350kg/tに比較して低コークス比となっている。しかしながら、この場合でも、通気抵抗の指標であるΔP/Vを、比較例1~3における22.7~20.8の範囲より、さらに低い20.0~18.5の範囲に抑制することができている。しかも、出銑比を2.5まで上昇させた場合(発明例3)であっても、比較例1~3より低いコークス比で通気抵抗を低減することができた。
また、同表に示したように、コークスの混合率を前述した14質量%以上に設定することによって、低コークス比とした低還元材比においても、通気抵抗を低滅できることが実証された。 As shown in Table 1, since the inventive examples 1 to 8 both have a coke ratio in the range of 332 to 340 kg / t, the coke ratio is lower than that of the comparative examples 1 to 3 of 362 to 350 kg / t. It has become. However, even in this case, ΔP / V, which is an index of ventilation resistance, can be suppressed to a range of 20.0 to 18.5, which is lower than the range of 22.7 to 20.8 in Comparative Examples 1 to 3. is made of. Moreover, even when the output ratio was increased to 2.5 (Invention Example 3), the ventilation resistance could be reduced with a coke ratio lower than that of Comparative Examples 1 to 3.
Further, as shown in the table, it was proved that the airflow resistance can be reduced even at a low reducing material ratio with a low coke ratio by setting the mixing ratio of coke to 14% by mass or more as described above.
また、同表に示したように、コークスの混合率を前述した14質量%以上に設定することによって、低コークス比とした低還元材比においても、通気抵抗を低滅できることが実証された。 As shown in Table 1, since the inventive examples 1 to 8 both have a coke ratio in the range of 332 to 340 kg / t, the coke ratio is lower than that of the comparative examples 1 to 3 of 362 to 350 kg / t. It has become. However, even in this case, ΔP / V, which is an index of ventilation resistance, can be suppressed to a range of 20.0 to 18.5, which is lower than the range of 22.7 to 20.8 in Comparative Examples 1 to 3. is made of. Moreover, even when the output ratio was increased to 2.5 (Invention Example 3), the ventilation resistance could be reduced with a coke ratio lower than that of Comparative Examples 1 to 3.
Further, as shown in the table, it was proved that the airflow resistance can be reduced even at a low reducing material ratio with a low coke ratio by setting the mixing ratio of coke to 14% by mass or more as described above.
なお、上記実施形態において説明しているように、本発明は、高炉内の旋回シュートを、軸心部から外周壁側に順次傾動させる逆傾動制御が好ましい。
As described in the above embodiment, the present invention preferably uses reverse tilt control in which the turning chute in the blast furnace is sequentially tilted from the axial center to the outer peripheral wall side.
また、上記実施形態においては、旋回シュートの傾動と、炉項バンカーの流量調整ゲートの開閉制御によって、中心コークス層および混合層を形成する場合について説明したが、これに限定されるものではなく、高炉の軸心部に直接するコークスを投入するコークス専用シュートを、旋回シュートと干渉しない位置に配置し、このコークス専用シュートによって高炉の軸心部に直接コークスを装入して中心コークス層を形成するようにしてもよい。
Further, in the above embodiment, the case where the central coke layer and the mixed layer are formed by tilting the turning chute and opening / closing control of the flow rate adjustment gate of the furnace term bunker has been described, but the present invention is not limited thereto. A dedicated coke chute that feeds coke directly into the blast furnace shaft center is placed at a position where it does not interfere with the swivel chute, and the coke is charged directly into the blast furnace shaft core to form a central coke layer. You may make it do.
さらに、上記実施例は、炉頂バンカーから装入された原料を、混合層O1およびO2で構成される層としたが、混合層O1、O2およびO3で構成される層としても、O1およびO2の関係並びにO2およびO3の関係が、それぞれ本発明に従う限り、本発明の効果を得られる。
Furthermore, although the said Example made the raw material charged from the furnace top bunker into the layer comprised by mixed layer O1 and O2, O1 and O2 are also comprised as a layer comprised by mixed layer O1, O2, and O3. As long as the relationship of O 2 and O 2 and O 3 are in accordance with the present invention, the effects of the present invention can be obtained.
10 高炉
12a~12c 炉頂バンカー
13 流量調整ゲート
14 集合ホッパー
15 ベルレス式装入装置
16 旋回シュート
31 炉体
32 炉芯管
33 加熱用ヒーター
34 円筒体
35 黒鉛製るつぼ
36 装入原料
37 パンチ棒
38 荷重負荷装置
39 滴下物サンプリング装置
40 ガス混合装置
41 ガス分析装置
42 熱電対 DESCRIPTION OFSYMBOLS 10 Blast furnace 12a-12c Top bunker 13 Flow control gate 14 Collective hopper 15 Bellless type charging device 16 Turning chute 31 Furnace body 32 Furnace core tube 33 Heater 34 Cylindrical body 35 Graphite crucible 36 Charging raw material 37 Punch rod 38 Load loading device 39 Dropped material sampling device 40 Gas mixing device 41 Gas analyzer 42 Thermocouple
12a~12c 炉頂バンカー
13 流量調整ゲート
14 集合ホッパー
15 ベルレス式装入装置
16 旋回シュート
31 炉体
32 炉芯管
33 加熱用ヒーター
34 円筒体
35 黒鉛製るつぼ
36 装入原料
37 パンチ棒
38 荷重負荷装置
39 滴下物サンプリング装置
40 ガス混合装置
41 ガス分析装置
42 熱電対 DESCRIPTION OF
Claims (6)
- 焼結鉱、ペレット、塊状鉱石などの鉱石類原料およびコークスの高炉装入原料を、高炉の炉頂に配設した少なくとも2つの炉頂バンカーと、該炉頂バンカーの排出口に配設されて該炉頂バンカーから排出される原料を混合して旋回シュートに供給する集合ホッパーと、該旋回シュートとを用いて、高炉内へ装入するに際し、
最初に原料を装入する炉頂バンカーから装入された原料をO1、続いて原料を装入する他の炉頂バンカーから装入された原料をO2としたとき、該O2の質量が該O1の質量の1.1倍以下とする高炉への原料装入方法。 Ore raw materials such as sintered ore, pellets, massive ore and blast furnace charging raw materials for coke are disposed at at least two furnace top bunkers arranged at the top of the blast furnace and at the outlet of the top bunker. When charging into the blast furnace using the collective hopper that mixes the raw material discharged from the furnace top bunker and supplies the swirl chute and the swirl chute,
When the raw material initially charged from the furnace top bunker charged with the raw material is O1, and then the raw material charged from another furnace top bunker charged with the raw material is O2, the mass of O2 is O1. The raw material charging method to the blast furnace which is 1.1 times or less of the mass of. - 前記O2の質量をWO2(t)とし、前記O1の質量をWO1(t)としたとき、WO2/WO1が0.5~1.1の範囲を満足する請求項1に記載の高炉への原料装入方法。 The raw material for a blast furnace according to claim 1, wherein WO2 / WO1 satisfies the range of 0.5 to 1.1 when the mass of O2 is WO2 (t) and the mass of O1 is WO1 (t). The charging method.
- 前記O2を装入する際の前記旋回シュートの垂直方向に対する平均角度をθO2(度)とし、前記O1を装入する際の前記旋回シュートの垂直方向に対する平均角度をθO1(度)としたとき、θO1≦θO2の関係を満足する請求項1または2に記載の高炉への原料装入方法。 When the average angle with respect to the vertical direction of the turning chute when charging the O2 is θO2 (degrees), and the average angle with respect to the vertical direction of the turning chute when charging the O1 is θO1 (degrees), The method of charging a raw material into a blast furnace according to claim 1 or 2, wherein a relationship of θO1 ≦ θO2 is satisfied.
- 前記O1を装入する際の前記旋回シュートの垂直方向に対する最大の旋回角度をθO1MAX(度)としたとき、前記θO2と、θO1MAX≦θO2の関係を満足する請求項3に記載の高炉への原料装入方法。 4. The raw material for a blast furnace according to claim 3, wherein θO1 and θO1MAX ≦ θO2 are satisfied, where θO1MAX (degrees) is the maximum turning angle with respect to the vertical direction of the turning chute when the O1 is charged. The charging method.
- 前記O2に対して混合されるコークスの比率をO2CK(質量%)とし、前記O1に対して混合されるコークスの比率をO1CK(質量%)としたとき、O1CK≦O2CKの関係を満足する請求項1~4のいずれかに記載の高炉への原料装入方法。 The relation of O1CK ≦ O2CK is satisfied, where the ratio of coke mixed with O2 is O2CK (mass%) and the ratio of coke mixed with O1 is O1CK (mass%). 5. The raw material charging method to the blast furnace according to any one of 1 to 4.
- 前記O2CKと前記O1CKとの比、O2CK/O1CKが1.0~2.0の範囲を満足する請求項5に記載の高炉への原料装入方法。 The method of charging a blast furnace with a raw material according to claim 5, wherein the ratio of O2CK to O1CK and O2CK / O1CK satisfies a range of 1.0 to 2.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014515503A JP5871062B2 (en) | 2012-05-18 | 2013-05-16 | Raw material charging method to blast furnace |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-114965 | 2012-05-18 | ||
JP2012114965 | 2012-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013172036A1 true WO2013172036A1 (en) | 2013-11-21 |
Family
ID=49583464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/003133 WO2013172036A1 (en) | 2012-05-18 | 2013-05-16 | Method for loading raw material into blast furnace |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5871062B2 (en) |
WO (1) | WO2013172036A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170128554A (en) * | 2015-03-30 | 2017-11-22 | 제이에프이 스틸 가부시키가이샤 | Method for charging feedstock into blast furnace |
JP2018070953A (en) * | 2016-10-29 | 2018-05-10 | Jfeスチール株式会社 | Method for loading raw materials into blast furnace |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111349734B (en) * | 2020-03-31 | 2021-01-08 | 北京科技大学 | Blast furnace distributing device with movable feed opening |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06271908A (en) * | 1993-03-19 | 1994-09-27 | Kawasaki Steel Corp | Method for charging raw material in multi-batches into bell-less blast furnace |
JP2000204407A (en) * | 1998-01-23 | 2000-07-25 | Nippon Steel Corp | Charging of charging material into center part of blast furnace |
JP2011058091A (en) * | 2009-08-10 | 2011-03-24 | Jfe Steel Corp | Blast-furnace operation method using ferrocoke |
-
2013
- 2013-05-16 JP JP2014515503A patent/JP5871062B2/en active Active
- 2013-05-16 WO PCT/JP2013/003133 patent/WO2013172036A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06271908A (en) * | 1993-03-19 | 1994-09-27 | Kawasaki Steel Corp | Method for charging raw material in multi-batches into bell-less blast furnace |
JP2000204407A (en) * | 1998-01-23 | 2000-07-25 | Nippon Steel Corp | Charging of charging material into center part of blast furnace |
JP2011058091A (en) * | 2009-08-10 | 2011-03-24 | Jfe Steel Corp | Blast-furnace operation method using ferrocoke |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170128554A (en) * | 2015-03-30 | 2017-11-22 | 제이에프이 스틸 가부시키가이샤 | Method for charging feedstock into blast furnace |
KR102058834B1 (en) * | 2015-03-30 | 2019-12-24 | 제이에프이 스틸 가부시키가이샤 | Method of charging raw material into blast furnace |
JP2018070953A (en) * | 2016-10-29 | 2018-05-10 | Jfeスチール株式会社 | Method for loading raw materials into blast furnace |
Also Published As
Publication number | Publication date |
---|---|
JP5871062B2 (en) | 2016-03-01 |
JPWO2013172036A1 (en) | 2016-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522331B2 (en) | Raw material charging method to blast furnace | |
JP5574064B2 (en) | Raw material charging method to blast furnace | |
US9976806B2 (en) | Burning apparatus and method for manufacturing reduced iron using the same | |
WO2016125487A1 (en) | Method for introducing feed into blast furnace | |
JP5910735B2 (en) | Raw material charging method to blast furnace | |
JP5871062B2 (en) | Raw material charging method to blast furnace | |
JP5754109B2 (en) | Raw material charging method to blast furnace | |
JP5534118B2 (en) | Raw material charging method to blast furnace | |
CN106967877A (en) | Carbon-bearing lump ore deposit, the manufacture method and its manufacture device of carbon-bearing lump ore deposit | |
WO2013172046A1 (en) | Method for loading raw material into blast furnace | |
JP5966608B2 (en) | Raw material charging method to blast furnace | |
JP6260751B2 (en) | Raw material charging method to blast furnace | |
JP2008240028A (en) | Method for operating blast furnace | |
JP7339222B2 (en) | Pig iron manufacturing method | |
JP2008111145A (en) | Method for suppressing reduction in temperature at top of blast furnace in use of ferrocoke | |
JP6041073B1 (en) | Raw material charging method to blast furnace | |
JP5884208B1 (en) | Raw material charging method to blast furnace | |
CN104789725B (en) | Apparatus and method for the reduction of coal base pelletizing | |
JP2022054397A (en) | Blast furnace operation method | |
WO2016051773A1 (en) | Method for charging raw material into blast furnace | |
CN104789727A (en) | Device and method for producing iron beads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13791460 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014515503 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13791460 Country of ref document: EP Kind code of ref document: A1 |