WO2013171862A1 - Setting calculation system learning device and learning method - Google Patents

Setting calculation system learning device and learning method Download PDF

Info

Publication number
WO2013171862A1
WO2013171862A1 PCT/JP2012/062535 JP2012062535W WO2013171862A1 WO 2013171862 A1 WO2013171862 A1 WO 2013171862A1 JP 2012062535 W JP2012062535 W JP 2012062535W WO 2013171862 A1 WO2013171862 A1 WO 2013171862A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
function
value
calculation
downstream
Prior art date
Application number
PCT/JP2012/062535
Other languages
French (fr)
Japanese (ja)
Inventor
治樹 井波
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to KR1020147031254A priority Critical patent/KR101622068B1/en
Priority to CN201280073247.5A priority patent/CN104303114B/en
Priority to PCT/JP2012/062535 priority patent/WO2013171862A1/en
Priority to JP2014515412A priority patent/JP5846303B2/en
Publication of WO2013171862A1 publication Critical patent/WO2013171862A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B21/00Systems involving sampling of the variable controlled
    • G05B21/02Systems involving sampling of the variable controlled electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a learning apparatus and learning method for a setting calculation system.
  • a mathematical model that represents and reproduces a physical phenomenon that occurs in an environment including the controlled object by a mathematical formula is constructed.
  • a method for determining a setting value by obtaining a setting value that can achieve the target result is known.
  • the actual value calculated by the mathematical model is compared with the actual value obtained from the actual value actually measured with a measuring instrument, etc.
  • a method of updating the learning term of the mathematical model is often adopted so that the difference between the two becomes small.
  • the factor that causes the difference between the actual calculation value by the mathematical model and the actual actual value is processed by the process line and the time-series fluctuation of the process line due to the change of equipment and environment. It is known that the calculation value of the mathematical formula model is corrected based on the learning coefficient calculated for each of these two types of variations after roughly dividing into two types of variations due to the types of materials and processing patterns. (For example, refer to Patent Document 1).
  • the problem that the mathematical model learning cannot be completed due to a deficiency in a part of the actual values necessary for learning, and the prediction accuracy of the mathematical model temporarily decreases is the conventional setting. It exists in a learning apparatus and a learning method of a calculation system. In addition, in the situation immediately after starting learning, if the learning of the mathematical model cannot be completed due to a deficiency in a part of the actual values necessary for learning, the mathematical model is expected to have the expected accuracy. There is also a problem that the time required until the prediction can be performed becomes long.
  • the present invention has been made to solve such a problem, and even when a part of the actual value necessary for learning the mathematical model is not obtained, the actual value for the obtained amount is used.
  • a learning apparatus and learning method for a setting calculation system capable of appropriately updating learning terms of each function constituting a mathematical model by performing learning and suppressing a decrease in accuracy of the mathematical model Is.
  • the learning device updates the learning term of the mathematical model using the actual measurement value.
  • the learning term calculation unit that calculates the learning term of each of the upstream function and the downstream function constituting the mathematical model using the actual measurement value
  • the actual measurement value determination unit that determines whether the first actual measurement value is abnormal, or the first actual measurement value is abnormal
  • An actual calculation value calculation unit that inputs an output from the upstream function to the downstream function and calculates an actual calculation value output from the downstream function, and the actual measurement corresponding to the output from the downstream function Value
  • the learning method of the setting calculation system in the setting calculation system for calculating the setting value of the mechanical equipment using the mathematical model, the learning method of updating the learning term of the mathematical model using the actual measurement value.
  • Fruit Comprising an error of the actual calculated value for the second measured value is a value
  • the learning device and the learning method of the setting calculation system according to the present invention even when a part of the actual value necessary for learning the mathematical model is not obtained, the learning using the actual value for the obtained amount is performed. It is possible to appropriately update the learning term of each function constituting the mathematical model, and it is possible to suppress a decrease in accuracy of the mathematical model.
  • FIG. FIGS. 1 to 3 relate to Embodiment 1 of the present invention
  • FIG. 1 is a diagram for explaining the overall configuration of the setting calculation system
  • FIG. 2 is a flowchart for explaining the operation of the learning device of the setting calculation system
  • FIG. 3 is a diagram illustrating a detailed configuration centering on a learning device provided in the setting calculation system.
  • FIG. 1 shows an overall configuration of a setting calculation system 2 that calculates set values of mechanical equipment 1 constituting a process line of a rolling plant, for example.
  • the setting calculation system 2 includes a setting calculation device 3, an actual measurement value collection device 4, and a learning device 5.
  • the setting calculation device 3 a mathematical model in which a physical phenomenon generated by the operation of the machine facility 1 is modeled by a mathematical formula is registered in advance.
  • the setting calculation device 3 uses the mathematical model to simulate the result of the operation of the machine facility 1, thereby calculating the set value of the machine facility 1 so that the operation result of the machine facility 1 is closer to the target value.
  • the set value calculated by the setting calculation device 3 is output to the machine facility 1.
  • the mechanical equipment 1 operates according to the set value calculated by the setting calculation system 2.
  • the measured value collection device 4 collects measured values of predetermined types of physical quantities necessary for learning the mathematical model in the learning device 5 among the physical quantities in the machine equipment 1 and the environment in which the machine equipment 1 operates. It is. In the environment in which the mechanical equipment 1 or the mechanical equipment 1 is installed, a measuring instrument or the like for measuring the physical quantity is installed in advance. The actual measurement value collection device 4 collects the actual measurement values of the physical quantities measured by a measuring instrument or the like.
  • the learning device 5 performs learning of the mathematical model used by the setting calculation device 3 based on the actual measurement values collected by the actual measurement value collection device 4.
  • the learning device 5 includes a mathematical model learning calculation unit 6, an actual value determination unit 7, and a complementary learning calculation unit 8.
  • the formula model learning calculation unit 6 calculates the actual calculation value using the same formula model as that used in the setting calculation device 3.
  • the actual calculation value is an output from the mathematical model when the actual measurement value collected by the actual measurement value collection device 4 is input.
  • the mathematical model learning calculation unit 6 compares the actual calculation value calculated from the mathematical model with the actual value obtained directly from the actual measurement value collected by the actual measurement value collection device 4, and the difference between these values is reduced.
  • the learning term of the mathematical model is calculated as follows.
  • the actual measurement value determination unit 7 determines whether the actual measurement value collected by the actual measurement value collection device 4 is normal or abnormal.
  • the state where the actual measurement value is abnormal is a state where the actual measurement value deviates from the normal range (this range is determined in advance for each measurement target), and the actual measurement value itself does not exist. State is also included.
  • the learning device 5 replaces the actual measurement value when the actual calculation value corresponding to the actual measurement value determined to be abnormal exists.
  • the learning term is calculated using the actual calculation value.
  • a mathematical model that reproduces the physical phenomenon may be configured by combining a plurality of simpler functions.
  • upstream function an output from a certain function
  • downstream function another function
  • the update of the learning term in the downstream function is normally performed by inputting the actual value collected by the actual value collection device 4 to the downstream function. This is done using the actual calculation value output from the downstream function.
  • the actual measurement value to be input to the downstream function is abnormal, the actual measurement value cannot be input to the downstream function, so that the downstream function cannot be learned.
  • the downstream function learns in the downstream function by inputting the actual calculation value output from the upstream function to the downstream function instead of the actual measurement value. That is, the above-mentioned “actual calculation value corresponding to the actual measurement value” is the actual calculation value of the upstream function used as the input of the downstream function in the mathematical model.
  • the complementary learning calculation unit 8 When the actual value to be input to the downstream function is determined by the actual value determination unit 7 to be abnormal, the complementary learning calculation unit 8 outputs the downstream function and the actual value corresponding to this output. First, the error is calculated. Then, this error is distributed to the learning terms of both the upstream function and the downstream function with the distribution ratio obtained by a predetermined procedure.
  • the procedure for obtaining the error distribution ratio will be explained.
  • the error between the output of the mathematical model and the actual value becomes smaller as the learning of the mathematical model progresses. Therefore, in a state where learning of the mathematical model is sufficiently advanced, a change when the learning term is updated becomes small.
  • the relative size of the learning term of each function can be evaluated using the size of each function as a guide.
  • the size of a function is the size of an output from the function based on the input to the function.
  • the complementary learning calculation unit 8 obtains the magnitude of the output from the function based on the input to the function for each of the upstream function and the downstream function. Then, the ratio between the magnitude of the upstream function and the magnitude of the downstream function thus obtained is set as the distribution ratio.
  • the measured value collected by the measured value collecting device 4 is used in principle. However, when the actual measurement value to be input is abnormal and cannot be used, another value such as a result calculation value may be substituted.
  • the complementary learning calculation unit 8 distributes the error to the learning terms of both the upstream function and the downstream function with the distribution ratio thus obtained. Then, the mathematical model learning calculation unit 6 updates each learning term of the upstream function and the downstream function based on the error distributed by the complementary learning calculation unit 8.
  • the setting calculation device 3 and the learning device 5 will be described in more detail with reference to FIG.
  • the mathematical model is composed of two functions, that is, an upstream function and a downstream function, and as shown in FIG.
  • the downstream function is further composed of a model expression 2a and a model expression 2b.
  • the setting calculation device 3 calculates the set value of the machine facility 1 so that the output of the mathematical model representing the result of the operation of the machine facility 1 is closer to the target value.
  • the calculation of the output of the mathematical model will be described step by step.
  • the function of the model formula 1a is f
  • the input physical quantity is V 0
  • the intermediate result output Y 1 from the model equation 1a is expressed by the following equation (1).
  • Equation (2) H is an error correction function
  • Z 1 is a coefficient of a learning term
  • Equation (3) g is a function of model equation 1b
  • W 1 l (l 1, 2). ,... Are other variable inputs
  • V 1 output from the upstream function is input to the downstream function, and the calculation of the mathematical model proceeds.
  • the function of the model formula 2a is f
  • the intermediate result output Y 2 from the model equation 2a is expressed by the following equation (4).
  • Equation (6) is input with Y 2 Z obtained as a result of correcting the intermediate result output Y 2 by the learning term expressed by the following equation (5) as the input of the model equation 2b.
  • V 2 that is an output from the downstream function is obtained.
  • the V 2 is the final result output from the mathematical model.
  • H is an error correction function
  • Z 2 is a coefficient of a learning term
  • g is a function of model equation 2b
  • W 2 l (l 1, 2). ,... Are other variable inputs
  • the setting calculation device 3 determines the set value of the mechanical equipment 1 by obtaining X 1 i and X 2 i such that the final result output V 2 obtained in this way is equal to the target value V AIM . That is, X 1 i and X 2 i satisfying the expressions (Expression 1) to (Expression 7) are obtained after placing them as the following Expression (7).
  • the mathematical model learning calculation unit 6 included in the learning device 5 includes an actual calculation value calculation unit 6a and a learning term calculation unit 6b.
  • the actual calculation value calculation unit 6 a calculates the actual calculation value using the same mathematical model as that used in the setting calculation device 3.
  • the learning term calculation unit 6b compares the actual calculation value calculated by the actual calculation value calculation unit 6a with the actual value obtained by the actual measurement value collected by the actual measurement value collection device 4 so that the difference between these values is reduced. Calculate the learning term of the mathematical model.
  • the calculation of the actual calculation value in the actual calculation value calculation unit 6a will be described first. Since the calculation of the actual calculation value is basically the same for the upstream function and the downstream function, the subscripts “1” and “2” representing the upstream function and the downstream function are omitted.
  • the function of the model formula a is f
  • the actual value of the input physical quantity is V ACT
  • the intermediate result output (actual calculation value) Y ACAL from the model equation a is expressed by the following equation (8).
  • Equation 10 Y ACAL Z , which is the result of correcting the halfway result output Y ACAL by the learning term expressed by the following equation (9), is obtained. Then, using the obtained Y ACAL Z as an input of the model formula b, the following formula (Equation 10) is calculated to obtain the actual calculated value V ACAL .
  • H is an error correction function
  • Z is a coefficient of a learning term
  • Equation (10) g is a function of model equation b
  • the learning term calculation is the same for the upstream function and the downstream function in principle, as in the case of the actual calculation value.
  • the learning term is applied to the intermediate result output from the model equation a. Therefore, the comparison between the actual calculation value and the actual value for learning is performed in the intermediate result output from the model formula a.
  • the actual value Y ACT corresponding to intermediate results output from the model formula a is calculated by the following equation (11).
  • the error Z CUR is calculated by the following equation (12) from the actual value Y ACT thus obtained and Y ACAL obtained by the equation (8).
  • h is an error calculation function.
  • the specific form of the error correction function H in the expressions (Equation 2), (Equation 5), and (Equation 9) changes. That is, when the error calculation function h takes the difference of the input variables, the error correction function H takes the sum of the input variables, and when the error calculation function h takes the ratio of the input variables, The error correction function H is a product of input variables.
  • this error is smoothed by the following equation (13) and reflected in the learning term to calculate a new learning term Z NEW .
  • Z NEW is a learning term used in the next setting calculation in the setting calculation device 3
  • Z OLD is a learning term used in the previous setting calculation in the setting calculation device 3
  • is a smoothing. It is a coefficient.
  • the above is the calculation method of the learning term when the actual measurement value necessary for the calculation of the learning term can be normally obtained.
  • the actual measurement value input to the downstream function is abnormal in the calculation of the learning term of the downstream function
  • the actual calculation value output from the upstream function is converted to the downstream function.
  • the actual calculation value necessary for learning in the downstream function is obtained.
  • calculation of the actual calculation value necessary for learning in the downstream function when the actual measurement value input to the downstream function is abnormal in the calculation of the learning term of the downstream function will be described.
  • the complementary learning calculation unit 8 converts the error (Y ACT ⁇ Y 2 ACAL ) into the upstream function. And to the learning terms of both the downstream function.
  • the calculation method of the error distribution ratio in the complementary learning calculation unit 8 varies depending on the form of the error calculation function h in the equation (12). Specifically, when the error calculation function h takes the difference of the input variables, the error distribution in the complementary learning calculation unit 8 is proportional distribution based on the following equations (15) and (16). Is done.
  • the error distribution in the complementary learning calculation unit 8 is performed by proportional distribution based on the following equations (17) and (18). .
  • Z 1CUR is an error distributed to the learning term of the upstream function
  • Z 2CUR is an error distributed to the learning term of the upstream function
  • f is It is a function of the model formula a.
  • the error is proportionally distributed to the learning terms of the upstream function and the downstream function in this way, the error distributed to each learning term of the upstream function and the downstream function is smoothed by the equation (13). And then reflected in the learning terms.
  • the updated new learning term is used for setting value calculation in the setting calculation device 3 at the next setting timing.
  • step S1 the actual measurement value collection device 4 collects actual measurement values.
  • step S2 the measured value determination part 7 confirms whether V2ACT is abnormal among the measured values which the measured value collection device 4 collected. If V2ACT is not abnormal, the process proceeds to step S3.
  • step S ⁇ b> 3 the actual measurement value determination unit 7 confirms whether or not V 1ACT is abnormal among the actual measurement values collected by the actual measurement value collection device 4. If V 1ACT is not abnormal, the process proceeds to step S4.
  • step S4 the result calculation value calculation unit 6a calculates the result calculation value Y1ACAL of the upstream function using the equation (8).
  • step S5 the learning term calculation unit 6b calculates the actual value Y1ACT of the upstream function using the equation (11).
  • step S6 the learning term calculation unit 6b calculates the error Z1CUR of the upstream function using the equation (12).
  • step S6 the process proceeds to step S7.
  • step S7 the actual calculated value calculating section 6a calculates the actual calculated value Y 2ACAL downstream function by substituting the measured values V 1ACT the V ACT of (number 8).
  • step S8 the learning term calculation unit 6b calculates the actual value Y2ACT of the downstream function using the equation (11).
  • step S9 the learning term calculation unit 6b calculates the error Z 2CUR of the downstream function using the equation (12).
  • step S10 the learning term calculation unit 6b (number 13) of the by substituting Z 1CUR and Z 2CUR respectively Z CUR, the learning term of learning term Z 1 NEW and downstream function of the upstream function Z 2NEW Calculate Then, the process proceeds to step S11, and updates the learning term of the calculated learning term Z 1 NEW and mathematical models of setting calculation device 3 in Z 2NEW, a series of learning term updating process ends.
  • step S20 the actual calculation value calculation unit 6a calculates the actual calculation value Y1ACAL of the upstream function using the equation (8).
  • step S21 the actual calculation value calculation unit 6a calculates the actual function calculation value V1ACAL of the upstream function using Equation (9) and Equation (10).
  • step S21 the process proceeds to step S22.
  • step S22 actual calculated value calculating section 6a calculates the actual calculated value Y 2ACAL downstream functions using V 1ACAL by equation (14) below.
  • step S23 the learning term calculation unit 6b calculates the actual value Y2ACT of the downstream function using the equation (11).
  • step S24 the complementary learning calculation unit 8 (number 15) and (Expression 16), or by using the equation (17) and (Equation 18), calculates the Z 1CUR and Z 2CUR To do.
  • step S24 the process proceeds to step S10 described above.
  • step S2 if V2ACT is abnormal, the process proceeds to step S30.
  • the actual measurement value determination unit 7 confirms whether or not V1ACT is abnormal among the actual measurement values collected by the actual measurement value collection device 4. If V 1ACT is also abnormal, the learning term is not updated in both the upstream function and the downstream function.
  • step S31 the actual calculation value calculation unit 6a calculates the actual function calculation value Y1ACAL of the upstream function using the equation (8).
  • step S32 the learning term calculation unit 6b calculates the actual value Y1ACT of the upstream function using the equation (11).
  • step S33 the learning term calculation unit 6b calculates the error Z 1CUR of the upstream function using the equation (12).
  • step S34 the learning term calculation unit 6b calculates the learning term Z1NEW of the upstream function using the equation (13). And it progresses to step S35, the learning term of the numerical formula model of the setting calculation apparatus 3 is updated by the calculated learning term Z1NEW , and a series of learning term update processes are complete
  • the learning device of the setting calculation system configured as described above includes a learning term calculation unit that calculates the learning terms of the upstream function and the downstream function that constitute the mathematical model using actual measurement values, and a learning term calculation unit.
  • a learning term calculation unit that calculates the learning terms of the upstream function and the downstream function that constitute the mathematical model using actual measurement values
  • a learning term calculation unit In the calculation of the learning term of the downstream function, an actual value determination unit that determines whether or not the first actual value input to the downstream function is abnormal is determined, and the first actual value is determined to be abnormal
  • the actual calculation value calculation unit for calculating the actual calculation value output from the downstream function, and the second corresponding to the output from the downstream function
  • a complementary learning calculation unit that distributes an error of the actual calculation value with respect to the actual measurement value to the learning term of the upstream function and the learning term of the downstream function.
  • the actual measurement value to be input to the downstream function for learning is not obtained, the actual calculation value output from the upstream function is input to the downstream function instead of the actual measurement value.
  • the accumulated error is distributed to the learning term of the upstream function, thereby realizing appropriate learning in both the upstream function and the downstream function.
  • the learning device of the setting calculation system configured as described above includes, for example, functions performed by each unit of the mathematical model learning calculation unit, the actual calculation value calculation unit, the learning term calculation unit, the actual measurement value determination unit, and the complementary learning calculation unit. It is also possible to construct information processing for realizing the above by causing a hardware resource having a central processing unit, a storage device, and the like to execute.
  • the present invention can be used in a learning apparatus and a learning method for updating a learning term of a mathematical model using an actual measurement value in a setting calculation system that calculates a setting value of a mechanical facility using a mathematical model.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Mechanical Engineering (AREA)
  • Feedback Control In General (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Provided is a setting calculation system learning device with which, even if a portion of actual measured values which are necessary for mathematical model learning can not be obtained, it is possible to appropriately update learning terms of each function which configures the mathematical model. To this end, a learning device, which, using an actual measured value, updates a learning term of a mathematical model with a setting calculation system which, using the mathematical model, calculates a setting value of mechanical equipment, comprises: a learning term calculation unit which respectively calculates, using actual measured values, learning terms of upstream-side and downstream-side functions which configure a mathematical model; an actual measured value determination unit which, in the calculation of the learning term of the downstream-side function, determines whether a first actual measured value which is inputted into the downstream-side function is anomalous; a performance calculation value calculation unit which, when it is determined that the first actual measured value is anomalous, inputs an output from the upstream-side function into the downstream-side function and calculates a performance calculation value which is outputted from the downstream-side function; and a complementary learning calculation unit which allocates to each learning term of the upstream-side and the downstream-side function an error of the performance calculation value with respect to the second actual measured value which corresponds to the output from the downstream-side function.

Description

設定計算システムの学習装置及び学習方法Learning apparatus and learning method for setting calculation system
 この発明は、設定計算システムの学習装置及び学習方法に関するものである。 The present invention relates to a learning apparatus and learning method for a setting calculation system.
 一般に、例えば圧延プラントのプロセスライン等における機械設備を制御するための設定値の決定方法として、制御対象を含む環境で生起する物理現象を数式により表現・再現した数式モデルを構築し、この数式モデル上で目的とする結果が得られるような設定値を求めることで設定値を決定する方法が知られている。 In general, for example, as a method of determining set values for controlling machine equipment in a process line of a rolling plant, a mathematical model that represents and reproduces a physical phenomenon that occurs in an environment including the controlled object by a mathematical formula is constructed. There is known a method for determining a setting value by obtaining a setting value that can achieve the target result.
 数式モデルを用いた設定値の決定においては、使用する数式モデルにおける対象物理現象の再現精度を高めることが、よりよい設定値の決定に繋がる。そこで、数式モデルの精度を向上するため、数式モデル内に学習項を組み入れて、実績値による数式モデルの修正を実施することも従来において行われている。 In determining the set value using the mathematical model, increasing the reproduction accuracy of the target physical phenomenon in the mathematical model to be used leads to a better set value. Thus, in order to improve the accuracy of the mathematical model, it has been conventionally performed to incorporate a learning term in the mathematical model and to correct the mathematical model based on the actual value.
 このような数式モデルの学習方法としては、数式モデルにより計算した実績値の計算値(実績計算値)を、計測器等で実際に計測した実測値から得られる実績値と比較し、これらの値の違いが小さくなるように数式モデルの学習項を更新していく方法がよく採用される。 As a learning method of such a mathematical model, the actual value calculated by the mathematical model (actual calculated value) is compared with the actual value obtained from the actual value actually measured with a measuring instrument, etc. A method of updating the learning term of the mathematical model is often adopted so that the difference between the two becomes small.
 そして、従来における学習方法においては、数式モデルによる実績計算値と実際の実績値とで違いが生じる要因を、設備や環境の変化によるプロセスラインの時系列的な変動と、プロセスラインで処理される材料の種類、処理パターンの違いに起因するロット別の変動の2種類に大別した上で、これら2種類の変動毎に算出した学習係数に基づいて数式モデルの計算値を修正するものが知られている(例えば、特許文献1参照)。 And in the conventional learning method, the factor that causes the difference between the actual calculation value by the mathematical model and the actual actual value is processed by the process line and the time-series fluctuation of the process line due to the change of equipment and environment. It is known that the calculation value of the mathematical formula model is corrected based on the learning coefficient calculated for each of these two types of variations after roughly dividing into two types of variations due to the types of materials and processing patterns. (For example, refer to Patent Document 1).
日本特許第2839746号公報Japanese Patent No. 2839746
 ところで、数式モデルで再現しようとする物理現象(すなわち、制御対象で起こる物理現象)が複雑なものである場合、より単純な複数の関数を合成した合成関数により当該物理現象を再現する数式モデルを構成することがある。そして、そのような場合には、合成関数を構成する個々の関数毎に学習項を設けて個々の関数毎に学習を実施することが、数式モデルの再現精度向上の観点からしても好ましい。 By the way, when a physical phenomenon to be reproduced by a mathematical model (ie, a physical phenomenon that occurs in a controlled object) is complicated, a mathematical model that reproduces the physical phenomenon by a composite function obtained by synthesizing a plurality of simpler functions. May be configured. In such a case, it is also preferable from the viewpoint of improving the reproducibility of the mathematical model to provide a learning term for each function constituting the composite function and perform learning for each function.
 ところが、計測器周辺の環境等の問題により実測値が得られなかった場合、数式モデルを構成する関数のうちの一部について学習に必要な実績値を得ることができないことがあり得る。数式モデルを構成する合成関数がより多くの関数から合成されており、学習に必要な実績値の種類が多いほど、(一部の)実績値の欠損が生じる可能性は高くなる。 However, when actual measurement values cannot be obtained due to problems such as the environment around the measuring instrument, it may be impossible to obtain actual values necessary for learning for some of the functions constituting the mathematical model. As the synthesis function constituting the mathematical model is synthesized from a larger number of functions, the more types of actual values necessary for learning, the higher the possibility that (partial) actual values will be lost.
 そして、学習に必要な実績値の一部で欠損が生じたことで数式モデルの学習を完了することができず、一時的に数式モデルの予測精度が低下してしまうという課題が、従来の設定計算システムの学習装置及び学習方法には存在する。また、学習を開始した直後の状況においては、学習に必要な実績値の一部で欠損が生じたことで数式モデルの学習を完了することができない場合には、数式モデルが本来期待される精度で予測を行うことができるようになるまでに必要な時間が長くなってしまうという課題もある。 Then, the problem that the mathematical model learning cannot be completed due to a deficiency in a part of the actual values necessary for learning, and the prediction accuracy of the mathematical model temporarily decreases is the conventional setting. It exists in a learning apparatus and a learning method of a calculation system. In addition, in the situation immediately after starting learning, if the learning of the mathematical model cannot be completed due to a deficiency in a part of the actual values necessary for learning, the mathematical model is expected to have the expected accuracy. There is also a problem that the time required until the prediction can be performed becomes long.
 この発明は、このような課題を解決するためになされたもので、数式モデルの学習に必要な実績値の一部が得られない場合であっても、得られた分の実績値を用いた学習を実施して数式モデルを構成する各関数の学習項を適切に更新することが可能であって、数式モデルの精度の低下を抑制することができる設定計算システムの学習装置及び学習方法を得るものである。 The present invention has been made to solve such a problem, and even when a part of the actual value necessary for learning the mathematical model is not obtained, the actual value for the obtained amount is used. A learning apparatus and learning method for a setting calculation system capable of appropriately updating learning terms of each function constituting a mathematical model by performing learning and suppressing a decrease in accuracy of the mathematical model Is.
 この発明に係る設定計算システムの学習装置においては、機械設備の設定値を数式モデルを用いて計算する設定計算システムにおいて、前記数式モデルの学習項を実測値を用いて更新する学習装置であって、前記数式モデルを構成する上流側関数及び下流側関数それぞれの学習項を前記実測値を用いて計算する学習項計算部と、前記学習項計算部での前記下流側関数の学習項の計算において前記下流側関数に入力される前記実測値である第1の実測値が異常であるか否かを判定する実測値判定部と、前記第1の実測値が異常であると判定された場合に、前記上流側関数からの出力を前記下流側関数に入力して前記下流側関数から出力される実績計算値を計算する実績計算値計算部と、前記下流側関数からの出力に対応する前記実測値である第2の実測値に対する前記実績計算値の誤差を、前記上流側関数の学習項及び前記下流側関数の学習項に分配する補完学習計算部と、を備える。 In the learning apparatus of the setting calculation system according to the present invention, in the setting calculation system that calculates the setting value of the mechanical facility using the mathematical model, the learning device updates the learning term of the mathematical model using the actual measurement value. In the calculation of the learning term of the downstream function in the learning term calculation unit, the learning term calculation unit that calculates the learning term of each of the upstream function and the downstream function constituting the mathematical model using the actual measurement value When it is determined that the first actual measurement value input to the downstream function is abnormal, the actual measurement value determination unit that determines whether the first actual measurement value is abnormal, or the first actual measurement value is abnormal , An actual calculation value calculation unit that inputs an output from the upstream function to the downstream function and calculates an actual calculation value output from the downstream function, and the actual measurement corresponding to the output from the downstream function Value The error of the actual calculated values for the second measured value, and a complementary learning calculation section for distributing the learning section learning term and the downstream function of the upstream function.
 また、この発明に係る設定計算システムの学習方法においては、機械設備の設定値を数式モデルを用いて計算する設定計算システムにおいて、前記数式モデルの学習項を実測値を用いて更新する学習方法であって、前記数式モデルを構成する上流側関数及び下流側関数それぞれの学習項を前記実測値を用いて計算する第1のステップと、前記第1のステップでの前記下流側関数の学習項の計算において前記下流側関数に入力される前記実測値である第1の実測値が異常であるか否かを判定する第2のステップと、前記第1の実測値が異常であると判定された場合に、前記上流側関数からの出力を前記下流側関数に入力して前記下流側関数から出力される実績計算値を計算する第3のステップと、前記下流側関数からの出力に対応する前記実測値である第2の実測値に対する前記実績計算値の誤差を、前記上流側関数の学習項及び前記下流側関数の学習項に分配する第4のステップと、を備える。 Further, in the learning method of the setting calculation system according to the present invention, in the setting calculation system for calculating the setting value of the mechanical equipment using the mathematical model, the learning method of updating the learning term of the mathematical model using the actual measurement value. A first step of calculating learning terms of each of the upstream function and the downstream function constituting the mathematical model using the actual measurement value, and a learning term of the downstream function in the first step. A second step of determining whether or not the first actual measurement value that is the actual measurement value input to the downstream function in the calculation is abnormal; and the first actual measurement value is determined to be abnormal A third step of inputting an output from the upstream function to the downstream function and calculating an actual calculation value output from the downstream function, and the output corresponding to the output from the downstream function Fruit Comprising an error of the actual calculated value for the second measured value is a value, a fourth step of distributing the learning section learning term and the downstream function of the upstream functions, the.
 この発明に係る設定計算システムの学習装置及び学習方法においては、数式モデルの学習に必要な実績値の一部が得られない場合であっても、得られた分の実績値を用いた学習を実施して数式モデルを構成する各関数の学習項を適切に更新することが可能であって、数式モデルの精度の低下を抑制することができるという効果を奏する。 In the learning device and the learning method of the setting calculation system according to the present invention, even when a part of the actual value necessary for learning the mathematical model is not obtained, the learning using the actual value for the obtained amount is performed. It is possible to appropriately update the learning term of each function constituting the mathematical model, and it is possible to suppress a decrease in accuracy of the mathematical model.
この発明の実施の形態1に係る設定計算システムの全体構成を説明する図である。It is a figure explaining the whole structure of the setting calculation system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る設定計算システムの学習装置の動作を説明するフロー図である。It is a flowchart explaining operation | movement of the learning apparatus of the setting calculation system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る設定計算システムが備える学習装置を中心とする詳細な構成を説明する図である。It is a figure explaining the detailed structure centering on the learning apparatus with which the setting calculation system which concerns on Embodiment 1 of this invention is provided.
 この発明を添付の図面に従い説明する。各図を通じて同符号は同一部分又は相当部分を示しており、その重複説明は適宜に簡略化又は省略する。 The present invention will be described with reference to the accompanying drawings. Throughout the drawings, the same reference numerals indicate the same or corresponding parts, and redundant description thereof will be simplified or omitted as appropriate.
実施の形態1.
 図1から図3は、この発明の実施の形態1に係るもので、図1は設定計算システムの全体構成を説明する図、図2は設定計算システムの学習装置の動作を説明するフロー図、図3は設定計算システムが備える学習装置を中心とする詳細な構成を説明する図である。
Embodiment 1 FIG.
FIGS. 1 to 3 relate to Embodiment 1 of the present invention, FIG. 1 is a diagram for explaining the overall configuration of the setting calculation system, and FIG. 2 is a flowchart for explaining the operation of the learning device of the setting calculation system. FIG. 3 is a diagram illustrating a detailed configuration centering on a learning device provided in the setting calculation system.
 図1に示すのは、例えば圧延プラントのプロセスライン等を構成する機械設備1の設定値を計算する設定計算システム2の全体構成である。この設定計算システム2は、設定計算装置3、実測値収集装置4及び学習装置5を備えている。 FIG. 1 shows an overall configuration of a setting calculation system 2 that calculates set values of mechanical equipment 1 constituting a process line of a rolling plant, for example. The setting calculation system 2 includes a setting calculation device 3, an actual measurement value collection device 4, and a learning device 5.
 設定計算装置3には、機械設備1が動作することにより生じる物理現象を数式によりモデル化した数式モデルが予め登録されている。設定計算装置3は、この数式モデルを用いて機械設備1が動作した結果をシミュレートすることにより、機械設備1の動作した結果が目標値により近くなるように機械設備1の設定値を計算する。設定計算装置3により計算された設定値は、機械設備1へと出力される。そして、機械設備1は、設定計算システム2より計算された設定値に従って動作する。 In the setting calculation device 3, a mathematical model in which a physical phenomenon generated by the operation of the machine facility 1 is modeled by a mathematical formula is registered in advance. The setting calculation device 3 uses the mathematical model to simulate the result of the operation of the machine facility 1, thereby calculating the set value of the machine facility 1 so that the operation result of the machine facility 1 is closer to the target value. . The set value calculated by the setting calculation device 3 is output to the machine facility 1. The mechanical equipment 1 operates according to the set value calculated by the setting calculation system 2.
 実測値収集装置4は、機械設備1や機械設備1が動作する環境中の物理量のうち、学習装置5における数式モデルの学習に必要な、予め定められた種類の物理量の実測値を収集するものである。機械設備1や機械設備1が設置された環境中には、前記物理量を計測するための計測器等が予め設置されている。そして、実測値収集装置4は計測器等により計測された前記物理量の実測値を収集する。 The measured value collection device 4 collects measured values of predetermined types of physical quantities necessary for learning the mathematical model in the learning device 5 among the physical quantities in the machine equipment 1 and the environment in which the machine equipment 1 operates. It is. In the environment in which the mechanical equipment 1 or the mechanical equipment 1 is installed, a measuring instrument or the like for measuring the physical quantity is installed in advance. The actual measurement value collection device 4 collects the actual measurement values of the physical quantities measured by a measuring instrument or the like.
 学習装置5は、実測値収集装置4により収集された実測値に基づいて、設定計算装置3で用いられる数式モデルの学習を実施するものである。学習装置5は、数式モデル学習計算部6、実測値判定部7及び補完学習計算部8を備えている。 The learning device 5 performs learning of the mathematical model used by the setting calculation device 3 based on the actual measurement values collected by the actual measurement value collection device 4. The learning device 5 includes a mathematical model learning calculation unit 6, an actual value determination unit 7, and a complementary learning calculation unit 8.
 数式モデル学習計算部6は、設定計算装置3で用いられるものと同じ数式モデルを用いて実績計算値を計算する。ここで、実績計算値とは、実測値収集装置4により収集された実測値を入力とした場合の数式モデルからの出力である。そして、数式モデル学習計算部6は数式モデルから計算した実績計算値と、実測値収集装置4により収集された実測値から直接に求めた実績値とを比較し、これらの値の違いが小さくなるように数式モデルの学習項を計算する。 The formula model learning calculation unit 6 calculates the actual calculation value using the same formula model as that used in the setting calculation device 3. Here, the actual calculation value is an output from the mathematical model when the actual measurement value collected by the actual measurement value collection device 4 is input. Then, the mathematical model learning calculation unit 6 compares the actual calculation value calculated from the mathematical model with the actual value obtained directly from the actual measurement value collected by the actual measurement value collection device 4, and the difference between these values is reduced. The learning term of the mathematical model is calculated as follows.
 実測値判定部7は、実測値収集装置4により収集された実測値が正常であるか異常であるかを判定するものである。ここで、実測値が異常である状態とは、実測値の値が正常である範囲(この範囲は計測対象毎に予め定められる)から逸脱した状態に加え、実測値そのものが存在しない欠測の状態も含まれる。 The actual measurement value determination unit 7 determines whether the actual measurement value collected by the actual measurement value collection device 4 is normal or abnormal. Here, the state where the actual measurement value is abnormal is a state where the actual measurement value deviates from the normal range (this range is determined in advance for each measurement target), and the actual measurement value itself does not exist. State is also included.
 実測値判定部7により実測値が異常であると判定された場合、学習装置5は、この異常であると判定された実測値に相当する実績計算値が存在するときには、当該実測値に代えてこの実績計算値を用いて学習項の計算を進める。 When the actual measurement value is determined to be abnormal by the actual measurement value determination unit 7, the learning device 5 replaces the actual measurement value when the actual calculation value corresponding to the actual measurement value determined to be abnormal exists. The learning term is calculated using the actual calculation value.
 ここで、「実測値に相当する実績計算値」について、さらに説明する。まず、前にも述べたように、数式モデルで再現しようとする物理現象が複雑なものである場合、より単純な関数を複数組み合わせることにより当該物理現象を再現する数式モデルを構成することがある。このような場合には、ある関数(以下「上流側関数」という)からの出力が、他の関数(以下「下流側関数」という)の入力となって数式モデルの計算が進められる。 Here, “the actual calculation value corresponding to the actual measurement value” will be further described. First, as described above, when a physical phenomenon to be reproduced with a mathematical model is complicated, a mathematical model that reproduces the physical phenomenon may be configured by combining a plurality of simpler functions. . In such a case, an output from a certain function (hereinafter referred to as “upstream function”) is input to another function (hereinafter referred to as “downstream function”), and calculation of the mathematical model proceeds.
 このような関係にある上流側関数と下流側関数が存在する場合、下流側関数における学習項の更新は、通常であれば、実測値収集装置4により収集された実測値を下流側関数に入力したときに下流側関数から出力される実績計算値を用いて行う。しかし、下流側関数に入力されるべき実測値が異常であった場合、下流側関数に実測値を入力することができないため、下流側関数の学習を行うことができなくなってしまう。 When there is an upstream function and a downstream function having such a relationship, the update of the learning term in the downstream function is normally performed by inputting the actual value collected by the actual value collection device 4 to the downstream function. This is done using the actual calculation value output from the downstream function. However, if the actual measurement value to be input to the downstream function is abnormal, the actual measurement value cannot be input to the downstream function, so that the downstream function cannot be learned.
 そこで、上流側関数から出力された実績計算値を実測値の代わりに下流側関数に入力することで、下流側関数における学習を進める。すなわち、上でいう「実測値に相当する実績計算値」とは、数式モデルにおいて下流側関数の入力として用いられる上流側関数の実績計算値のことである。 Therefore, learning in the downstream function is advanced by inputting the actual calculation value output from the upstream function to the downstream function instead of the actual measurement value. That is, the above-mentioned “actual calculation value corresponding to the actual measurement value” is the actual calculation value of the upstream function used as the input of the downstream function in the mathematical model.
 このように、上流側関数から出力された実績計算値を実測値の代わりに下流側関数に入力することで下流側関数における学習を進めた場合、本来であれば(すなわち、下流側関数に入力すべき正常な実測値が得られていたのであれば)、上流側関数の学習項で吸収すべきである誤差についても、下流側の学習項で吸収されることになる。そうすると、その後に下流側関数の入力に用いる実測値として正しいものが得られるようになった場合に、上流側関数と下流側関数のそれぞれでの学習を再開したときに、かえって上流側関数及び下流側関数の個々の学習項での学習精度が低下してしまうという事態に落ち入ってしまう。 In this way, when learning in the downstream function is advanced by inputting the actual calculation value output from the upstream function to the downstream function instead of the actual measurement value, if it is natural (that is, input to the downstream function) If a normal actual measurement value to be obtained has been obtained), errors that should be absorbed by the upstream function learning term are also absorbed by the downstream learning term. Then, when the correct measured value used for the input of the downstream function can be obtained after that, when the learning in the upstream function and the downstream function is resumed, the upstream function and the downstream function are The situation that the learning accuracy in each learning term of the side function is lowered falls into the situation.
 そこで、この発明に係る学習装置5には、実測値に代えて上流側関数から出力された実績計算値を入力として用いて計算された下流側関数の出力と、この出力に対応する実績値との誤差を、所定の手続きで求めた分配比でもって上流側関数及び下流側関数の双方の学習項に分配する補完学習計算部8が備えられている。 Therefore, in the learning device 5 according to the present invention, the downstream function output calculated using the actual calculation value output from the upstream function instead of the actual measurement value as an input, and the actual value corresponding to this output, Is provided to the learning term of both the upstream function and the downstream function with the distribution ratio obtained by a predetermined procedure.
 この補完学習計算部8は、下流側関数に入力されるべき実測値が異常であると実測値判定部7により判定された場合に、下流側関数の出力と、この出力に対応する実績値との誤差をまず計算する。そして、この誤差を、所定の手続きで求めた分配比でもって上流側関数及び下流側関数の双方の学習項に分配する。 When the actual value to be input to the downstream function is determined by the actual value determination unit 7 to be abnormal, the complementary learning calculation unit 8 outputs the downstream function and the actual value corresponding to this output. First, the error is calculated. Then, this error is distributed to the learning terms of both the upstream function and the downstream function with the distribution ratio obtained by a predetermined procedure.
 この際の誤差の分配比を求める手続きについて説明する。まず、数式モデルの学習が進行するほど数式モデルの出力と実績値との誤差は小さくなる。したがって、数式モデルの学習が十分に進行した状態においては、学習項が更新された際の変化は小さくなる。そして、このように学習項が安定した状態においては、各関数の学習項の相対的な大きさを、それぞれの関数の大きさを目安として評価することができる。ここで、関数の大きさとは、関数への入力を基準とする当該関数からの出力の大きさのことである。 The procedure for obtaining the error distribution ratio will be explained. First, the error between the output of the mathematical model and the actual value becomes smaller as the learning of the mathematical model progresses. Therefore, in a state where learning of the mathematical model is sufficiently advanced, a change when the learning term is updated becomes small. In such a state where the learning term is stable, the relative size of the learning term of each function can be evaluated using the size of each function as a guide. Here, the size of a function is the size of an output from the function based on the input to the function.
 そこで、補完学習計算部8は、上流側関数及び下流側関数のそれぞれについて、関数への入力を基準とする関数からの出力の大きさを求める。そして、こうして求めた上流側関数の大きさと下流側関数の大きさとの比を、前記分配比とする。ここで、各関数の大きさを求める際に関数に入力する値には、原則として実測値収集装置4により収集された実測値を用いる。ただし、入力しようとする実測値が異常であって利用できない場合には、実績計算値等の他の値で代用してもよい。 Therefore, the complementary learning calculation unit 8 obtains the magnitude of the output from the function based on the input to the function for each of the upstream function and the downstream function. Then, the ratio between the magnitude of the upstream function and the magnitude of the downstream function thus obtained is set as the distribution ratio. Here, as a value input to the function when obtaining the size of each function, the measured value collected by the measured value collecting device 4 is used in principle. However, when the actual measurement value to be input is abnormal and cannot be used, another value such as a result calculation value may be substituted.
 このようにして求めた分配比でもって、補完学習計算部8は、前記誤差を上流側関数及び下流側関数の双方の学習項に分配する。そして、数式モデル学習計算部6は、補完学習計算部8により分配された誤差に基づいて、上流側関数及び下流側関数のそれぞれの学習項を更新する。 The complementary learning calculation unit 8 distributes the error to the learning terms of both the upstream function and the downstream function with the distribution ratio thus obtained. Then, the mathematical model learning calculation unit 6 updates each learning term of the upstream function and the downstream function based on the error distributed by the complementary learning calculation unit 8.
 次に、図2を参照しながら、設定計算装置3及び学習装置5についてさらに詳しく説明する。なお、ここでは、説明上の便宜のため、数式モデルは上流側関数と下流側関数の2つから構成されているとし、図2に示すように、上流側関数はさらにモデル式1a及びモデル式1bから構成され、下流側関数はさらにモデル式2a及びモデル式2bから構成されているとする。 Next, the setting calculation device 3 and the learning device 5 will be described in more detail with reference to FIG. Here, for convenience of explanation, it is assumed that the mathematical model is composed of two functions, that is, an upstream function and a downstream function, and as shown in FIG. It is assumed that the downstream function is further composed of a model expression 2a and a model expression 2b.
 設定計算装置3は、機械設備1の動作した結果を表す数式モデルの出力が目標値により近くなるように機械設備1の設定値を計算する。この数式モデルの出力の計算について順を追って説明する。まず、数式モデルの上流側関数について、モデル式1aの関数をf、入力する物理量をV、機械設備1の設定値をX (i=1,2,…)、その他の条件入力をa (j=1,2,…)とすると、モデル式1aからの途中結果出力Yは次の(数1)式で表される。 The setting calculation device 3 calculates the set value of the machine facility 1 so that the output of the mathematical model representing the result of the operation of the machine facility 1 is closer to the target value. The calculation of the output of the mathematical model will be described step by step. First, regarding the upstream function of the mathematical model, the function of the model formula 1a is f, the input physical quantity is V 0 , the set value of the mechanical equipment 1 is X 1 i (i = 1, 2,...), And other condition inputs Assuming that a 1 j (j = 1, 2,...), the intermediate result output Y 1 from the model equation 1a is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この途中結果出力Yに対して次の(数2)式で表される学習項による補正を施した結果であるY を求める。そして、求めたY をモデル式1bの入力として、次の(数3)式を計算することで、上流側関数からの出力であるVが得られる。ここで、(数2)式において、Hは誤差補正関数、Zは学習項の係数であり、(数3)式において、gはモデル式1bの関数、W (l=1,2,…)はその他の変数入力、b (k=1,2,…)はその他の条件入力である。 Y 1 Z , which is the result of correcting the halfway result output Y 1 by the learning term expressed by the following equation (2), is obtained. Then, V 1 that is an output from the upstream function is obtained by calculating the following equation (3) using the obtained Y 1 Z as input of the model equation 1b. Here, in Equation (2), H is an error correction function, Z 1 is a coefficient of a learning term, and in Equation (3), g is a function of model equation 1b, W 1 l (l = 1, 2). ,... Are other variable inputs, and b 1 k (k = 1, 2,...) Are other condition inputs.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 こうして上流側関数から出力されたVを下流側関数へと入力して数式モデルの計算が進められる。数式モデルの下流側関数について、モデル式2aの関数をf、機械設備1の設定値をX (i=1,2,…)、その他の条件入力をa (j=1,2,…)とすると、モデル式2aからの途中結果出力Yは次の(数4)式で表される。 Thus, V 1 output from the upstream function is input to the downstream function, and the calculation of the mathematical model proceeds. For the downstream function of the mathematical model, the function of the model formula 2a is f, the set value of the mechanical equipment 1 is X 2 i (i = 1, 2,...), And other condition inputs are a 2 j (j = 1, 2). ,..., The intermediate result output Y 2 from the model equation 2a is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 そして、この途中結果出力Yに対して次の(数5)式で表される学習項による補正を施した結果のY をモデル式2bの入力とする次の(数6)式を計算することで、下流側関数からの出力であるVが得られる。このVが数式モデルからの最終結果出力である。ここで、(数5)式において、Hは誤差補正関数、Zは学習項の係数であり、(数6)式において、gはモデル式2bの関数、W (l=1,2,…)はその他の変数入力、b (k=1,2,…)はその他の条件入力である。 Then, the following equation (6) is input with Y 2 Z obtained as a result of correcting the intermediate result output Y 2 by the learning term expressed by the following equation (5) as the input of the model equation 2b. By calculating, V 2 that is an output from the downstream function is obtained. The V 2 is the final result output from the mathematical model. Here, in equation (5), H is an error correction function, Z 2 is a coefficient of a learning term, and in equation (6), g is a function of model equation 2b, W 2 l (l = 1, 2). ,... Are other variable inputs, and b 2 k (k = 1, 2,...) Are other condition inputs.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 設定計算装置3は、こうして得られた最終結果出力Vを目標値であるVAIMと等しくなるようなX 及びX を求めることで、機械設備1の設定値を決定する。すなわち、次の(数7)式のように置いた上で、(数1)~(数7)式を満たすようなX 及びX を求める。 The setting calculation device 3 determines the set value of the mechanical equipment 1 by obtaining X 1 i and X 2 i such that the final result output V 2 obtained in this way is equal to the target value V AIM . That is, X 1 i and X 2 i satisfying the expressions (Expression 1) to (Expression 7) are obtained after placing them as the following Expression (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 学習装置5が備える数式モデル学習計算部6は、実績計算値計算部6aと学習項計算部6bとから構成されている。実績計算値計算部6aは、設定計算装置3で用いられるものと同じ数式モデルを用いて実績計算値を計算する。学習項計算部6bは、実績計算値計算部6aにより計算した実績計算値と、実測値収集装置4により収集された実測値による実績値とを比較し、これらの値の違いが小さくなるように数式モデルの学習項を計算する。 The mathematical model learning calculation unit 6 included in the learning device 5 includes an actual calculation value calculation unit 6a and a learning term calculation unit 6b. The actual calculation value calculation unit 6 a calculates the actual calculation value using the same mathematical model as that used in the setting calculation device 3. The learning term calculation unit 6b compares the actual calculation value calculated by the actual calculation value calculation unit 6a with the actual value obtained by the actual measurement value collected by the actual measurement value collection device 4 so that the difference between these values is reduced. Calculate the learning term of the mathematical model.
 この数式モデル学習計算部6における学習項の計算に関し、まず、実績計算値計算部6aにおける実績計算値の計算について説明する。この実績計算値の計算は、原則として上流側関数及び下流側関数で同じであるため上流側関数及び下流側関数をそれぞれ表す添字である「1」及び「2」を省略する。モデル式aの関数をf、入力する物理量の実測値をVACT、機械設備1の設定値の実際の値をXACT (i=1,2,…)、その他の条件入力をa(j=1,2,…)とすると、モデル式aからの途中結果出力(実績計算値)YACALは次の(数8)式で表される。 Regarding calculation of the learning term in the mathematical model learning calculation unit 6, the calculation of the actual calculation value in the actual calculation value calculation unit 6a will be described first. Since the calculation of the actual calculation value is basically the same for the upstream function and the downstream function, the subscripts “1” and “2” representing the upstream function and the downstream function are omitted. The function of the model formula a is f, the actual value of the input physical quantity is V ACT , the actual value of the set value of the mechanical equipment 1 is X ACT i (i = 1, 2,...), And other condition inputs are a j ( j = 1, 2,...), the intermediate result output (actual calculation value) Y ACAL from the model equation a is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 この途中結果出力YACALに対して次の(数9)式で表される学習項による補正を施した結果であるYACAL を求める。そして、求めたYACAL をモデル式bの入力として、次の(数10)式を計算することで実績計算値VACALが得られる。ここで、(数9)式において、Hは誤差補正関数、Zは学習項の係数であり、(数10)式において、gはモデル式bの関数、W(l=1,2,…)はその他の変数入力、b(k=1,2,…)はその他の条件入力である。 Y ACAL Z , which is the result of correcting the halfway result output Y ACAL by the learning term expressed by the following equation (9), is obtained. Then, using the obtained Y ACAL Z as an input of the model formula b, the following formula (Equation 10) is calculated to obtain the actual calculated value V ACAL . Here, in Equation (9), H is an error correction function, Z is a coefficient of a learning term, and in Equation (10), g is a function of model equation b, W l (l = 1, 2,... ) Are other variable inputs, and b k (k = 1, 2,...) Are other condition inputs.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 次に、学習項計算部6bにおける学習項の計算について説明する。この学習項の計算も、実績計算値の場合と同様、原則として上流側関数及び下流側関数で同じである。ここで説明する例においては、学習項はモデル式aからの途中結果出力に対して施される。したがって、学習のための実績計算値と実績値との比較は、モデル式aからの途中結果出力において行われる。 Next, calculation of learning terms in the learning term calculation unit 6b will be described. The learning term calculation is the same for the upstream function and the downstream function in principle, as in the case of the actual calculation value. In the example described here, the learning term is applied to the intermediate result output from the model equation a. Therefore, the comparison between the actual calculation value and the actual value for learning is performed in the intermediate result output from the model formula a.
 このため、まず、実測値VACTに基づいて、モデル式aからの途中結果出力に対応する実績値YACTを次の(数11)式により計算する。この(数11)式において、g-1はモデル式bの逆関数、WACT (l=1,2,…)はその他の変数入力の実測値、b(k=1,2,…)はその他の条件入力である。 Therefore, first, on the basis of the measured values V ACT, the actual value Y ACT corresponding to intermediate results output from the model formula a is calculated by the following equation (11). In the equation (11), g −1 is an inverse function of the model equation b, W ACT l (l = 1, 2,...) Is an actual measurement value of other variable inputs, b k (k = 1, 2,. ) Is another condition input.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 こうして求めた実績値YACTと(数8)式により求めたYACALとから、誤差ZCURを次の(数12)式により計算する。この(数12)式において、hは誤差計算関数である。 The error Z CUR is calculated by the following equation (12) from the actual value Y ACT thus obtained and Y ACAL obtained by the equation (8). In the equation (12), h is an error calculation function.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 なお、この誤差計算関数hの具体的な形については、例えば、YACTとYACALとの差をとるものとしてもよいし(すなわち、ZCUR=YACT-YACAL)、YACTとYACALとの比をとるものとしてもよい(すなわち、ZCUR=YACT/YACAL)。そして、この誤差計算関数hの具体的な形に応じて(数2)、(数5)、(数9)式の誤差補正関数Hの具体的な形も変わってくる。すなわち、誤差計算関数hが入力変数の差をとるものであった場合、誤差補正関数Hは入力変数の和をとるものとなり、誤差計算関数hが入力変数の比をとるものであった場合、誤差補正関数Hは入力変数の積をとるものとなる。 The specific form of the error calculation function h may be, for example, as taking the difference between the Y ACT and Y ACAL (i.e., Z CUR = Y ACT -Y ACAL ), Y ACT and Y ACAL (Ie, Z CUR = Y ACT / Y ACAL ). Depending on the specific form of the error calculation function h, the specific form of the error correction function H in the expressions (Equation 2), (Equation 5), and (Equation 9) changes. That is, when the error calculation function h takes the difference of the input variables, the error correction function H takes the sum of the input variables, and when the error calculation function h takes the ratio of the input variables, The error correction function H is a product of input variables.
 そして、次の(数13)式により、この誤差を平滑化した上で学習項へと反映して新しい学習項ZNEWを計算する。この(数13)式において、ZNEWは次回の設定計算装置3での設定計算で使用する学習項、ZOLDは前回の設定計算装置3での設定計算で使用した学習項、βは平滑化係数である。 Then, this error is smoothed by the following equation (13) and reflected in the learning term to calculate a new learning term Z NEW . In this equation (13), Z NEW is a learning term used in the next setting calculation in the setting calculation device 3, Z OLD is a learning term used in the previous setting calculation in the setting calculation device 3, and β is a smoothing. It is a coefficient.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 以上が、学習項の計算に必要な実測値を正常に得ることができた場合における学習項の計算方法である。一方、前述したように、下流側関数の学習項の計算において下流側関数に入力される実測値が異常であった場合には、上流側関数からの出力された実績計算値を下流側関数に入力して計算を進めることで、下流側関数での学習に必要な実績計算値を得る。以下においては、この下流側関数の学習項の計算において下流側関数に入力される実測値が異常であった場合における下流側関数での学習に必要な実績計算値の計算について説明する。 The above is the calculation method of the learning term when the actual measurement value necessary for the calculation of the learning term can be normally obtained. On the other hand, as described above, when the actual measurement value input to the downstream function is abnormal in the calculation of the learning term of the downstream function, the actual calculation value output from the upstream function is converted to the downstream function. By inputting and proceeding with the calculation, the actual calculation value necessary for learning in the downstream function is obtained. In the following, calculation of the actual calculation value necessary for learning in the downstream function when the actual measurement value input to the downstream function is abnormal in the calculation of the learning term of the downstream function will be described.
 この場合、下流側関数のモデル式2aに入力されるのは、上流側関数において(数10)式を用いて計算されたVACALである。したがって、下流側関数のモデル式2aの関数をf、機械設備1の設定値の実測値をX2ACT (i=1,2,…)、その他の条件入力をa (j=1,2,…)とすると、モデル式2aからの途中結果出力Y2ACALは次の(数14)式で表される。この(数14)式において、V1ACALは上流側関数において(数10)式を用いて計算された実績計算値である。 In this case, the input to the downstream function model equation 2a is the V ACAL calculated using the equation (10) in the upstream function. Therefore, the function of the model function 2a of the downstream function is f, the measured value of the set value of the mechanical equipment 1 is X 2ACT i (i = 1, 2,...), And other condition inputs are a 2 j (j = 1, 2), the intermediate result output Y 2ACAL from the model equation 2a is expressed by the following equation (14). In the equation (14), V 1ACAL is a result calculation value calculated using the equation (10) in the upstream function.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 そして、こうして計算したY2ACALと、(数11)式において実測値VACT=V2ACTを代入して得られた実績値Y2ACTとから、学習項の計算を行う。ただし、ここで、前述したようにY2ACALには上流側関数と下流側関数の双方の誤差が含まれているため、補完学習計算部8により、誤差(YACT-Y2ACAL)を上流側関数及び下流側関数の双方の学習項に分配する。 Then, thus performing the calculated Y 2ACAL, from the equation (11) actual values obtained by substituting the measured value V ACT = V 2ACT in formula Y 2ACT, the calculation of the learning term. However, as described above, since Y 2 ACAL includes errors of both the upstream function and the downstream function, the complementary learning calculation unit 8 converts the error (Y ACT −Y 2 ACAL ) into the upstream function. And to the learning terms of both the downstream function.
 この補完学習計算部8における誤差の分配比の計算方法は、(数12)式における誤差計算関数hの形によって変わってくる。具体的には、誤差計算関数hが入力変数の差をとるものであった場合、補完学習計算部8における誤差の分配は、次の(数15)式及び(数16)式に基づく比例配分により行われる。 The calculation method of the error distribution ratio in the complementary learning calculation unit 8 varies depending on the form of the error calculation function h in the equation (12). Specifically, when the error calculation function h takes the difference of the input variables, the error distribution in the complementary learning calculation unit 8 is proportional distribution based on the following equations (15) and (16). Is done.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 また、誤差計算関数hが入力変数の比をとるものであった場合、補完学習計算部8における誤差の分配は、次の(数17)式及び(数18)式に基づく比例配分により行われる。 Further, when the error calculation function h takes a ratio of input variables, the error distribution in the complementary learning calculation unit 8 is performed by proportional distribution based on the following equations (17) and (18). .
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 なお、これらの(数15)~(数18)式において、Z1CURは上流側関数の学習項へと分配される誤差、Z2CURは上流側関数の学習項へと分配される誤差、fはモデル式aの関数である。 In these equations (15) to (18), Z 1CUR is an error distributed to the learning term of the upstream function, Z 2CUR is an error distributed to the learning term of the upstream function, and f is It is a function of the model formula a.
 こうして上流側関数及び下流側関数の各学習項へと誤差を比例配分した後は、上流側関数と下流側関数のそれぞれの学習項について、(数13)式によりそれぞれに分配された誤差を平滑化した上で学習項へと反映される。更新された新たな学習項は、次の設定タイミングにおける設定計算装置3での設定値計算に使用される。 After the error is proportionally distributed to the learning terms of the upstream function and the downstream function in this way, the error distributed to each learning term of the upstream function and the downstream function is smoothed by the equation (13). And then reflected in the learning terms. The updated new learning term is used for setting value calculation in the setting calculation device 3 at the next setting timing.
 このように構成された学習装置5における動作の流れを、図3を参照しながら今一度説明する。まず、ステップS1において、実測値収集装置4が実測値を収集する。次に、ステップS2へと進み、実測値判定部7は実測値収集装置4が収集した実測値のうち、V2ACTが異常であるか否かを確認する。V2ACTが異常でなければステップS3へと進む。このステップS3においては、実測値判定部7は実測値収集装置4が収集した実測値のうち、V1ACTが異常であるか否かを確認する。V1ACTが異常でなければステップS4へと進む。 The flow of the operation in the learning device 5 configured as described above will be described once again with reference to FIG. First, in step S1, the actual measurement value collection device 4 collects actual measurement values. Next, it progresses to step S2, and the measured value determination part 7 confirms whether V2ACT is abnormal among the measured values which the measured value collection device 4 collected. If V2ACT is not abnormal, the process proceeds to step S3. In step S <b> 3, the actual measurement value determination unit 7 confirms whether or not V 1ACT is abnormal among the actual measurement values collected by the actual measurement value collection device 4. If V 1ACT is not abnormal, the process proceeds to step S4.
 このステップS4においては、実績計算値計算部6aは、(数8)式を用いて上流側関数の実績計算値Y1ACALを計算する。続くステップS5において、学習項計算部6bは、(数11)式を用いて上流側関数の実績値Y1ACTを計算する。次にステップS6へと進み、学習項計算部6bは、(数12)式を用いて上流側関数の誤差Z1CURを計算する。 In step S4, the result calculation value calculation unit 6a calculates the result calculation value Y1ACAL of the upstream function using the equation (8). In subsequent step S5, the learning term calculation unit 6b calculates the actual value Y1ACT of the upstream function using the equation (11). Next, the process proceeds to step S6, where the learning term calculation unit 6b calculates the error Z1CUR of the upstream function using the equation (12).
 ステップS6の後はステップS7へと進む。このステップS7においては、実績計算値計算部6aは、(数8)式のVACTに実測値V1ACTを代入して下流側関数の実績計算値Y2ACALを計算する。続くステップS8において、学習項計算部6bは、(数11)式を用いて下流側関数の実績値Y2ACTを計算する。次にステップS9へと進み、学習項計算部6bは、(数12)式を用いて下流側関数の誤差Z2CURを計算する。 After step S6, the process proceeds to step S7. In this step S7, the actual calculated value calculating section 6a calculates the actual calculated value Y 2ACAL downstream function by substituting the measured values V 1ACT the V ACT of (number 8). In subsequent step S8, the learning term calculation unit 6b calculates the actual value Y2ACT of the downstream function using the equation (11). Next, the process proceeds to step S9, where the learning term calculation unit 6b calculates the error Z 2CUR of the downstream function using the equation (12).
 ステップS9の後はステップS10へと進む。このステップS10においては、学習項計算部6bは、(数13)式のZCURにZ1CUR及びZ2CURをそれぞれ代入して、上流側関数の学習項Z1NEW及び下流側関数の学習項Z2NEWを計算する。そして、ステップS11へと進み、計算した学習項Z1NEW及びZ2NEWで設定計算装置3の数式モデルの学習項を更新し、一連の学習項更新処理は終了する。 After step S9, the process proceeds to step S10. In this step S10, the learning term calculation unit 6b (number 13) of the by substituting Z 1CUR and Z 2CUR respectively Z CUR, the learning term of learning term Z 1 NEW and downstream function of the upstream function Z 2NEW Calculate Then, the process proceeds to step S11, and updates the learning term of the calculated learning term Z 1 NEW and mathematical models of setting calculation device 3 in Z 2NEW, a series of learning term updating process ends.
 一方、ステップS3において、V1ACTが異常であった場合にはステップS20へと進む。このステップS20においては、実績計算値計算部6aは、(数8)式を用いて上流側関数の実績計算値Y1ACALを計算する。続くステップS21において、実績計算値計算部6aは、(数9)式及び(数10)式を用いて上流側関数の実績計算値V1ACALを計算する。 On the other hand, if V1ACT is abnormal in step S3, the process proceeds to step S20. In step S20, the actual calculation value calculation unit 6a calculates the actual calculation value Y1ACAL of the upstream function using the equation (8). In subsequent step S21, the actual calculation value calculation unit 6a calculates the actual function calculation value V1ACAL of the upstream function using Equation (9) and Equation (10).
 ステップS21の後はステップS22へと進む。このステップS22においては、実績計算値計算部6aは、(数14)式によりV1ACALを使用した下流側関数の実績計算値Y2ACALを計算する。続くステップS23において、学習項計算部6bは、(数11)式を用いて下流側関数の実績値Y2ACTを計算する。 After step S21, the process proceeds to step S22. In this step S22, actual calculated value calculating section 6a calculates the actual calculated value Y 2ACAL downstream functions using V 1ACAL by equation (14) below. In subsequent step S23, the learning term calculation unit 6b calculates the actual value Y2ACT of the downstream function using the equation (11).
 そして、ステップS24へと進み、補完学習計算部8は、(数15)式及び(数16)式、又は、(数17)式及び(数18)を用いて、Z1CUR及びZ2CURを計算する。ステップS24の後は、前述したステップS10へと移行する。 Then, the process proceeds to step S24, the complementary learning calculation unit 8 (number 15) and (Expression 16), or by using the equation (17) and (Equation 18), calculates the Z 1CUR and Z 2CUR To do. After step S24, the process proceeds to step S10 described above.
 また、ステップS2において、V2ACTが異常であった場合にはステップS30へと進む。このステップS30においては、実測値判定部7は実測値収集装置4が収集した実測値のうち、V1ACTが異常であるか否かを確認する。V1ACTも異常であった場合には、上流側関数及び下流側関数の両方ともにおいて学習項の更新は行わない。 In step S2, if V2ACT is abnormal, the process proceeds to step S30. In step S30, the actual measurement value determination unit 7 confirms whether or not V1ACT is abnormal among the actual measurement values collected by the actual measurement value collection device 4. If V 1ACT is also abnormal, the learning term is not updated in both the upstream function and the downstream function.
 一方、ステップS30においてV1ACTが異常でない場合はステップS31へと進む。このステップS31においては、実績計算値計算部6aは、(数8)式を用いて上流側関数の実績計算値Y1ACALを計算する。続くステップS32において、学習項計算部6bは、(数11)式を用いて上流側関数の実績値Y1ACTを計算する。次にステップS33へと進み、学習項計算部6bは、(数12)式を用いて上流側関数の誤差Z1CURを計算する。 On the other hand, if V 1ACT is not abnormal in step S30, the process proceeds to step S31. In step S31, the actual calculation value calculation unit 6a calculates the actual function calculation value Y1ACAL of the upstream function using the equation (8). In subsequent step S32, the learning term calculation unit 6b calculates the actual value Y1ACT of the upstream function using the equation (11). Next, the process proceeds to step S33, where the learning term calculation unit 6b calculates the error Z 1CUR of the upstream function using the equation (12).
 ステップS33の後はステップS34へと進む。このステップS34においては、学習項計算部6bは、(数13)式を用いて上流側関数の学習項Z1NEWを計算する。そして、ステップS35へと進み、計算した学習項Z1NEWで設定計算装置3の数式モデルの学習項を更新し、一連の学習項更新処理は終了する。 After step S33, the process proceeds to step S34. In step S34, the learning term calculation unit 6b calculates the learning term Z1NEW of the upstream function using the equation (13). And it progresses to step S35, the learning term of the numerical formula model of the setting calculation apparatus 3 is updated by the calculated learning term Z1NEW , and a series of learning term update processes are complete | finished.
 以上のように構成された設定計算システムの学習装置は、数式モデルを構成する上流側関数及び下流側関数それぞれの学習項を実測値を用いて計算する学習項計算部と、学習項計算部での下流側関数の学習項の計算において下流側関数に入力される第1の実測値が異常であるか否かを判定する実測値判定部と、第1の実測値が異常であると判定された場合に、上流側関数からの出力を下流側関数に入力して下流側関数から出力される実績計算値を計算する実績計算値計算部と、下流側関数からの出力に対応する第2の実測値に対する実績計算値の誤差を、上流側関数の学習項及び下流側関数の学習項に分配する補完学習計算部と、を備えている。 The learning device of the setting calculation system configured as described above includes a learning term calculation unit that calculates the learning terms of the upstream function and the downstream function that constitute the mathematical model using actual measurement values, and a learning term calculation unit. In the calculation of the learning term of the downstream function, an actual value determination unit that determines whether or not the first actual value input to the downstream function is abnormal is determined, and the first actual value is determined to be abnormal In the case where the output from the upstream function is input to the downstream function, the actual calculation value calculation unit for calculating the actual calculation value output from the downstream function, and the second corresponding to the output from the downstream function A complementary learning calculation unit that distributes an error of the actual calculation value with respect to the actual measurement value to the learning term of the upstream function and the learning term of the downstream function.
 したがって、学習のために下流側関数に入力する実測値が得られなかった場合でも、上流側関数から出力された実績計算値を実測値の代わりに下流側関数に入力することで下流側関数における学習を進めるとともに、蓄積される誤差を上流側関数の学習項へと配分して、上流側関数と下流側関数の双方における適切な学習を実現する。 Therefore, even if the actual measurement value to be input to the downstream function for learning is not obtained, the actual calculation value output from the upstream function is input to the downstream function instead of the actual measurement value. As the learning proceeds, the accumulated error is distributed to the learning term of the upstream function, thereby realizing appropriate learning in both the upstream function and the downstream function.
 すなわち、数式モデルの学習に必要な実績値の一部が得られない場合であっても、得られた分の実績値を用いた学習を実施して数式モデルを構成する各関数の学習項を適切に更新することが可能であって、数式モデルの精度の低下を抑制することができる。そして、このため、機械設備の設定値の計算精度向上に貢献し得る。 That is, even if some of the actual values necessary for learning the mathematical model are not obtained, learning using the actual values for the obtained amount is performed, and the learning terms of each function constituting the mathematical model are set. It is possible to update appropriately, and it is possible to suppress a decrease in accuracy of the mathematical model. For this reason, it can contribute to the improvement of the calculation accuracy of the set value of the mechanical equipment.
 なお、以上のように構成された設定計算システムの学習装置は、例えば、数式モデル学習計算部、実績計算値計算部、学習項計算部、実測値判定部及び補完学習計算部の各部の果たす機能を実現するための情報処理を、中央処理装置や記憶装置等を有するハードウェア資源に実行させることで構築することも可能である。 Note that the learning device of the setting calculation system configured as described above includes, for example, functions performed by each unit of the mathematical model learning calculation unit, the actual calculation value calculation unit, the learning term calculation unit, the actual measurement value determination unit, and the complementary learning calculation unit. It is also possible to construct information processing for realizing the above by causing a hardware resource having a central processing unit, a storage device, and the like to execute.
 この発明は、機械設備の設定値を数式モデルを用いて計算する設定計算システムにおいて、数式モデルの学習項を実測値を用いて更新する学習装置及び学習方法に利用できる。 The present invention can be used in a learning apparatus and a learning method for updating a learning term of a mathematical model using an actual measurement value in a setting calculation system that calculates a setting value of a mechanical facility using a mathematical model.
  1  機械設備
  2  設定計算システム
  3  設定計算装置
  4  実測値収集装置
  5  学習装置
  6  数式モデル学習計算部
  6a 実績計算値計算部
  6b 学習項計算部
  7  実測値判定部
  8  補完学習計算部
DESCRIPTION OF SYMBOLS 1 Mechanical equipment 2 Setting calculation system 3 Setting calculation apparatus 4 Actual value collection apparatus 5 Learning apparatus 6 Formula model learning calculation part 6a Actual calculation value calculation part 6b Learning term calculation part 7 Actual value determination part 8 Complementary learning calculation part

Claims (5)

  1.  機械設備の設定値を数式モデルを用いて計算する設定計算システムにおいて、前記数式モデルの学習項を実測値を用いて更新する学習装置であって、
     前記数式モデルを構成する上流側関数及び下流側関数それぞれの学習項を前記実測値を用いて計算する学習項計算部と、
     前記学習項計算部での前記下流側関数の学習項の計算において前記下流側関数に入力される前記実測値である第1の実測値が異常であるか否かを判定する実測値判定部と、
     前記第1の実測値が異常であると判定された場合に、前記上流側関数からの出力を前記下流側関数に入力して前記下流側関数から出力される実績計算値を計算する実績計算値計算部と、
     前記下流側関数からの出力に対応する前記実測値である第2の実測値に対する前記実績計算値の誤差を、前記上流側関数の学習項及び前記下流側関数の学習項に分配する補完学習計算部と、を備えたことを特徴とする設定計算システムの学習装置。
    In a setting calculation system that calculates a setting value of a mechanical facility using a mathematical model, a learning device that updates a learning term of the mathematical model using an actual measurement value,
    A learning term calculation unit that calculates learning terms for each of the upstream function and the downstream function constituting the mathematical model using the measured values;
    An actual value determination unit that determines whether or not the first actual measurement value that is the actual measurement value input to the downstream function in the learning term calculation of the downstream function in the learning term calculation unit is abnormal; ,
    When it is determined that the first actual measurement value is abnormal, the actual calculation value for calculating the actual calculation value output from the downstream function by inputting the output from the upstream function to the downstream function A calculation unit;
    Complementary learning calculation that distributes the error of the actual calculation value with respect to the second actual measurement value corresponding to the output from the downstream function to the learning term of the upstream function and the learning term of the downstream function And a learning device for a setting calculation system.
  2.  前記補完学習部は、前記上流側関数への入力を基準とした前記上流側関数からの出力の大きさと前記下流側関数への入力を基準とした前記下流側関数からの出力の大きさとの比に基づいて、前記誤差を前記上流側関数の学習項及び前記下流側関数の学習項に分配することを特徴とする請求項1に記載の設定計算システムの学習装置。 The complementary learning unit is a ratio of an output magnitude from the upstream function based on an input to the upstream function and an output magnitude from the downstream function based on an input to the downstream function. The learning apparatus of the setting calculation system according to claim 1, wherein the error is distributed to the learning term of the upstream function and the learning term of the downstream function based on the equation.
  3.  前記補完学習部は、
     前記誤差を、前記第2の実測値と前記実績計算値との差により求めるとともに、
     求めた前記誤差を、前記上流側関数の学習項及び前記下流側関数の学習項に、前記上流側関数への入力と前記上流側関数からの出力との差の絶対値と、前記下流側関数への入力と前記下流側関数からの出力との差の絶対値とに基づき比例配分することを特徴とする請求項2に記載の設定計算システムの学習装置。
    The complementary learning unit
    The error is obtained from the difference between the second actual measurement value and the actual calculation value,
    The obtained error is stored in the upstream function learning term and the downstream function learning term, the absolute value of the difference between the input to the upstream function and the output from the upstream function, and the downstream function. 3. The learning apparatus for a setting calculation system according to claim 2, wherein proportional distribution is performed based on an absolute value of a difference between an input to the output and an output from the downstream function.
  4.  前記補完学習部は、
     前記誤差を、前記第2の実測値と前記実績計算値との比により求めるとともに、
     求めた前記誤差を、前記上流側関数の学習項及び前記下流側関数の学習項に、前記上流側関数への入力と前記上流側関数からの出力との比の絶対値と、前記下流側関数への入力と前記下流側関数からの出力との比の絶対値とに基づき比例配分することを特徴とする請求項2に記載の設定計算システムの学習装置。
    The complementary learning unit
    While obtaining the error by the ratio of the second actual measurement value and the actual calculation value,
    The obtained error is stored in the upstream function learning term and the downstream function learning term, the absolute value of the ratio between the input to the upstream function and the output from the upstream function, and the downstream function. 3. The learning apparatus for a setting calculation system according to claim 2, wherein proportional distribution is performed based on an absolute value of a ratio between an input to the output and an output from the downstream function.
  5.  機械設備の設定値を数式モデルを用いて計算する設定計算システムにおいて、前記数式モデルの学習項を実測値を用いて更新する学習方法であって、
     前記数式モデルを構成する上流側関数及び下流側関数それぞれの学習項を前記実測値を用いて計算する第1のステップと、
     前記第1のステップでの前記下流側関数の学習項の計算において前記下流側関数に入力される前記実測値である第1の実測値が異常であるか否かを判定する第2のステップと、
     前記第1の実測値が異常であると判定された場合に、前記上流側関数からの出力を前記下流側関数に入力して前記下流側関数から出力される実績計算値を計算する第3のステップと、
     前記下流側関数からの出力に対応する前記実測値である第2の実測値に対する前記実績計算値の誤差を、前記上流側関数の学習項及び前記下流側関数の学習項に分配する第4のステップと、を備えたことを特徴とする設定計算システムの学習方法。
    In a setting calculation system for calculating a setting value of mechanical equipment using a mathematical model, a learning method for updating a learning term of the mathematical model using an actual measurement value,
    A first step of calculating a learning term of each of the upstream function and the downstream function constituting the mathematical model using the measured value;
    A second step of determining whether or not the first actual measurement value that is the actual measurement value input to the downstream function in the calculation of the learning term of the downstream function in the first step is abnormal; ,
    When it is determined that the first actually measured value is abnormal, the output from the upstream function is input to the downstream function, and the actual calculation value output from the downstream function is calculated. Steps,
    An error of the actual calculation value with respect to the second actual measurement value that is the actual measurement value corresponding to the output from the downstream function is distributed to the learning term of the upstream function and the learning term of the downstream function. And a learning method for the setting calculation system.
PCT/JP2012/062535 2012-05-16 2012-05-16 Setting calculation system learning device and learning method WO2013171862A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147031254A KR101622068B1 (en) 2012-05-16 2012-05-16 Setting calculation system learning device and learning method
CN201280073247.5A CN104303114B (en) 2012-05-16 2012-05-16 The learning device and learning method of setup algorithm system
PCT/JP2012/062535 WO2013171862A1 (en) 2012-05-16 2012-05-16 Setting calculation system learning device and learning method
JP2014515412A JP5846303B2 (en) 2012-05-16 2012-05-16 Learning apparatus and learning method for setting calculation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062535 WO2013171862A1 (en) 2012-05-16 2012-05-16 Setting calculation system learning device and learning method

Publications (1)

Publication Number Publication Date
WO2013171862A1 true WO2013171862A1 (en) 2013-11-21

Family

ID=49583306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062535 WO2013171862A1 (en) 2012-05-16 2012-05-16 Setting calculation system learning device and learning method

Country Status (4)

Country Link
JP (1) JP5846303B2 (en)
KR (1) KR101622068B1 (en)
CN (1) CN104303114B (en)
WO (1) WO2013171862A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015122010A1 (en) * 2014-02-17 2017-03-30 東芝三菱電機産業システム株式会社 Learning control device for rolling process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214970A (en) * 1989-02-15 1990-08-27 Toshiba Corp System modeling method
JPH07200005A (en) * 1993-12-28 1995-08-04 Mitsubishi Electric Corp Learning control method
JP2002091505A (en) * 2000-09-14 2002-03-29 Toshiba Corp Model identifying device
JP2003340508A (en) * 2002-05-27 2003-12-02 Toshiba Ge Automation Systems Corp Learning control apparatus for device of calculating setting of rolling mill
JP2004050211A (en) * 2002-07-18 2004-02-19 Toshiba Mitsubishi-Electric Industrial System Corp Model learning device for rolling process
JP2012043235A (en) * 2010-08-20 2012-03-01 Hitachi Ltd Plant model construction support system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839746B2 (en) * 1991-06-17 1998-12-16 株式会社神戸製鋼所 Learning control method in process line
US5566275A (en) * 1991-08-14 1996-10-15 Kabushiki Kaisha Toshiba Control method and apparatus using two neural networks
JPH06342422A (en) * 1993-05-31 1994-12-13 Kawasaki Steel Corp Signal processing method
JPH09265302A (en) * 1996-03-28 1997-10-07 Kawasaki Steel Corp Process model identification method
US5764509A (en) * 1996-06-19 1998-06-09 The University Of Chicago Industrial process surveillance system
JP2000242323A (en) * 1999-02-24 2000-09-08 Hitachi Ltd Plant operation guidance system
US7720641B2 (en) * 2006-04-21 2010-05-18 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to delayed coking unit
JP5069608B2 (en) * 2008-05-26 2012-11-07 株式会社日立製作所 Sheet width control device and control method for hot rolling mill
CN101966535B (en) * 2009-07-28 2012-11-14 宝山钢铁股份有限公司 Cold rolling strip shape forward control setting method based on incoming material plate profile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214970A (en) * 1989-02-15 1990-08-27 Toshiba Corp System modeling method
JPH07200005A (en) * 1993-12-28 1995-08-04 Mitsubishi Electric Corp Learning control method
JP2002091505A (en) * 2000-09-14 2002-03-29 Toshiba Corp Model identifying device
JP2003340508A (en) * 2002-05-27 2003-12-02 Toshiba Ge Automation Systems Corp Learning control apparatus for device of calculating setting of rolling mill
JP2004050211A (en) * 2002-07-18 2004-02-19 Toshiba Mitsubishi-Electric Industrial System Corp Model learning device for rolling process
JP2012043235A (en) * 2010-08-20 2012-03-01 Hitachi Ltd Plant model construction support system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015122010A1 (en) * 2014-02-17 2017-03-30 東芝三菱電機産業システム株式会社 Learning control device for rolling process

Also Published As

Publication number Publication date
JP5846303B2 (en) 2016-01-20
CN104303114A (en) 2015-01-21
KR20140143225A (en) 2014-12-15
KR101622068B1 (en) 2016-05-17
JPWO2013171862A1 (en) 2016-01-07
CN104303114B (en) 2017-06-16

Similar Documents

Publication Publication Date Title
KR101832653B1 (en) Rolling process learning control device
CN102998973B (en) The multi-model Adaptive Control device of a kind of nonlinear system and control method
JP2002049409A (en) Adaptive inference model in process control system
JP5915342B2 (en) Power system state estimation method
JP2009277226A (en) Method for real time calculation of process model and simulator therefor
JP5288271B2 (en) A method to optimize multiple model parameters defining rolling torque function in rolling process
CN114264865B (en) Online self-calibration method for current collection device
JP5846303B2 (en) Learning apparatus and learning method for setting calculation system
CN109807183A (en) Method for control steel plate thickness and device
JP4485896B2 (en) PID controller
CN113937783B (en) Wind power plant reactive voltage coordination control method and device based on model prediction control
JP4529964B2 (en) Simulation device, simulation method, and simulation program
CN114440866A (en) Sensor data calibration method and calibration system
JP7019982B2 (en) Adjustment factor estimator, model learning device, and method
TWI533097B (en) Parameter tuning method and computer program product
CN106776291B (en) A kind of system structure complexity calculating method
JP2006195542A (en) Model identification device, and model identification program
JP3681283B2 (en) Rolling mill setup equipment
JP4379698B2 (en) Method for manufacturing sheet product and sheet product manufacturing apparatus
JP4379717B2 (en) Method for manufacturing sheet product and sheet product manufacturing apparatus
JP2000126809A (en) Set up device of rolling mill
US11609555B2 (en) Device and method for automatic calculation of measurement confidence in flexible modular plants and machines
CN110309472B (en) Offline data-based policy evaluation method and device
JP5865138B2 (en) Method and apparatus for determining control parameters
JP4470855B2 (en) Model identification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515412

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147031254

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876817

Country of ref document: EP

Kind code of ref document: A1