TWI533097B - Parameter tuning method and computer program product - Google Patents

Parameter tuning method and computer program product Download PDF

Info

Publication number
TWI533097B
TWI533097B TW104108151A TW104108151A TWI533097B TW I533097 B TWI533097 B TW I533097B TW 104108151 A TW104108151 A TW 104108151A TW 104108151 A TW104108151 A TW 104108151A TW I533097 B TWI533097 B TW I533097B
Authority
TW
Taiwan
Prior art keywords
parameter
output
set point
transfer function
controller
Prior art date
Application number
TW104108151A
Other languages
Chinese (zh)
Other versions
TW201633022A (en
Inventor
李銘偉
陳丁碩
鄭智成
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW104108151A priority Critical patent/TWI533097B/en
Application granted granted Critical
Publication of TWI533097B publication Critical patent/TWI533097B/en
Publication of TW201633022A publication Critical patent/TW201633022A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Feedback Control In General (AREA)

Description

參數調諧方法與電腦程式產品 Parameter tuning method and computer program product

本發明是有關於一參數調諧方法,特別是有關於一種串級控制(cascade control)系統之參數調諧方法與電腦程式產品。 The present invention relates to a parameter tuning method, and more particularly to a parameter tuning method and computer program product for a cascade control system.

比例-積分-微分(Proportional Integral Derivative,PID)控制器是一種閉迴路控制器,其具有結構簡單、可靠性佳、調整方便等優點。因此,在一般的工業製程中,經常使用PID控制器來控制製程,而PID控制器的設計方法對於工業製程相當重要。在習知的PID控制器設計方法中,通常需要先建立模型才能獲得PID控制器的參數來控制製程。例如,先識別製程的低階經驗模型,然後再應用特定的調諧演算法來設計PID控制器。當低階模型足以合理地代表製程動態時,可以獲得良好的PID設計。然而,當應用於高階製程動態時,因為有不可避免的模型誤差,而使得PID控制器的效能降低。此外,雖然PID調諧演算法含有可調參數,此可調參數可以在控制性能與系統穩定韌性(為了應付模型誤差)之間進行適當的交易權衡,因此通常可以達到較佳的控制性能。然而,此可調參數之最佳 值往往缺乏明確的設定準則,通常需要藉由額外的製程測試或在已知製程動態前提下之閉環路模擬以試誤法決定。 The Proportional Integral Derivative (PID) controller is a closed loop controller with the advantages of simple structure, good reliability and convenient adjustment. Therefore, in the general industrial process, the PID controller is often used to control the process, and the design method of the PID controller is very important for the industrial process. In the conventional PID controller design method, it is usually necessary to establish a model to obtain parameters of the PID controller to control the process. For example, first identify the low-order empirical model of the process, and then apply a specific tuning algorithm to design the PID controller. A good PID design can be obtained when the low-order model is sufficient to reasonably represent process dynamics. However, when applied to high-order process dynamics, the performance of the PID controller is degraded because of inevitable model errors. In addition, although the PID tuning algorithm contains tunable parameters, this tunable parameter can be traded appropriately between control performance and system stability resilience (to cope with model errors), so that better control performance is usually achieved. However, the best of this tunable Values often lack clear criteria for setting, and are usually determined by trial and error by additional process testing or closed-loop simulations under known process dynamics.

對於一個運作中的控制系統而言,習知的PID 控制器設計方法要利用閉環路測試來收集製程資料以進行模型識別通常較不可行。再者,就任何基於製程模型之PID設計方法而言,製程模型對於製程動態是否有足夠的代表性,實為影響控制器性能的關鍵因素。為了獲得更精準的製程模型,則必須利用較複雜的製程測試以及計算流程來進行模型識別,導致模型製程識別耗時費力,大幅了降低設計方法之實用性。 For a working control system, the conventional PID Controller design methods are often less feasible to use closed-loop test to collect process data for model identification. Furthermore, for any PID design method based on the process model, whether the process model is sufficiently representative of the process dynamics is a key factor affecting the performance of the controller. In order to obtain a more accurate process model, it is necessary to use more complicated process testing and calculation process to identify the model, which makes the process process identification time-consuming and laborious, and greatly reduces the practicability of the design method.

此外,PID控制器也常應用在串級控制的架構 中。串級控制系統具有外環路與內環路,外環路具有主控制器與主程序,內環路具有次控制器與次程序。當內環路有干擾發生時,次控制器可以即時進行控制補償,使得回應干擾的速度會比單一環路的架構更快。一般來說,在設計串級控制時是先設計次控制器再設計主控制器,因此通常需要兩次程式測試。作法是在外環路開環的情形下先進行第一次測試來設計次控制器,然後將內環路閉環後再進行第二次開環測試以設計主控制器。然而,在一些應用中上述兩次的開環測試並不允許。因此,如何提出一個有效的參數調諧方法來設計串級控制中的參數,為此領域技術人員所關心的議題。 In addition, PID controllers are also commonly used in the architecture of cascade control. in. The cascade control system has an outer loop and an inner loop, the outer loop has a main controller and a main program, and the inner loop has a secondary controller and a secondary program. When there is interference in the inner loop, the secondary controller can immediately perform control compensation, so that the response to the interference will be faster than the architecture of the single loop. In general, when designing cascade control, the secondary controller is designed first and then the primary controller is designed, so usually two program tests are required. In the case of the open loop of the outer loop, the first test is first performed to design the secondary controller, and then the inner loop is closed and then the second open loop test is performed to design the main controller. However, in some applications the above two open loop tests are not allowed. Therefore, how to propose an effective parameter tuning method to design parameters in cascade control is a topic of interest to those skilled in the art.

本發明提出一種參數調協方法與電腦程式產品,可以快速地設計串級控制系統中的控制器。 The invention provides a parameter tuning method and a computer program product, which can quickly design a controller in a cascade control system.

本發明的實施例提供一種參數調諧方法,適用於串級控制系統。此串級控制系統包括外環路與內環路,外環路包括主控制器與主程序,內環路包括次控制器與次程序。主控制器根據第一設定點與第一輸出之間的差輸出第二設定點,次控制器根據第二設定點與第二輸出之間的差輸出製程資料,次程序根據製程資料與第二干擾輸出第二輸出,主程序根據第二輸出與第一干擾來輸出第一輸出。此參數調諧方法包括:對控制系統執行測試以取得製程資料、第一輸出與第二輸出;給定次程序的時延參數,並根據次程序的時延參數、製程資料、第二輸出與次控制器的次轉移函數來執行最佳化演算法以取得最佳內時延參數;根據最佳內時延參數取得次轉移函數的比例參數與積分參數的至少其中之一,並據此計算第二設定點;給定主程序的時延參數,並根據主程序的時延參數、所計算出的第二設定點、第一輸出、與主控制器的主轉移函數來執行最佳化演算法以取得最佳外時延參數;以及根據最佳外時延參數取得主轉移函數的比例參數、積分參數與微分參數的至少其中之一。 Embodiments of the present invention provide a parameter tuning method suitable for use in a cascade control system. The cascade control system includes an outer loop including an main controller and a main loop, and an inner loop including a secondary controller and a secondary program. The main controller outputs the second set point according to the difference between the first set point and the first output, and the secondary controller outputs the process data according to the difference between the second set point and the second output, and the secondary program is based on the process data and the second The interference outputs a second output, and the main program outputs the first output according to the second output and the first interference. The parameter tuning method comprises: performing a test on the control system to obtain the process data, the first output and the second output; determining the delay parameter of the secondary program, and according to the delay parameter of the secondary program, the process data, the second output and the second a secondary transfer function of the controller to perform an optimization algorithm to obtain an optimal internal delay parameter; at least one of a proportional parameter and an integral parameter of the secondary transfer function is obtained according to the optimal internal delay parameter, and the first calculation is performed according to the Second set point; given the delay parameter of the main program, and performing the optimization algorithm according to the delay parameter of the main program, the calculated second set point, the first output, and the main transfer function of the main controller Obtaining an optimal outer delay parameter; and obtaining at least one of a proportional parameter, an integral parameter, and a differential parameter of the primary transfer function according to the optimal outer delay parameter.

在一實施例中,上述的次控制器為比例-積分控制器,並且根據次程序的時延參數、製程資料、第二輸出與次控制器的次轉移函數來執行最佳化演算法的步驟包括以下步驟。設定第二設定點表示為以下方程式(1),次轉 移函數表示為以下方程式(2),而內環路對於第二干擾的第二閉環路轉移函數表示為以下方程式(3)。 In an embodiment, the secondary controller is a proportional-integral controller, and the step of performing the optimization algorithm is performed according to the delay parameter of the secondary program, the process data, the secondary output function of the second output and the secondary controller. Includes the following steps. Setting the second set point is expressed as the following equation (1), the second turn The shift function is expressed as the following equation (2), and the second closed loop transfer function of the inner loop for the second disturbance is expressed as the following equation (3).

其中Y2(s)為第二輸出,KP2為比例參數,I2為積分參數,λ2為可調參數,θ2為次程序的時延參數。接下來,根據第二閉環路轉移函數、第二輸出與次轉移函數計算出預期製程資料。並且,將預期製程資料與製程資料之間的差設定為第一目標函數以執行最佳化演算法。第一目標函數最小時所對應的時延參數θ2即為上述的最佳內時延參數。 Where Y 2 (s) is the second output, KP 2 is the proportional parameter, I 2 is the integral parameter, λ 2 is the adjustable parameter, and θ 2 is the delay parameter of the secondary program. Next, the expected process data is calculated according to the second closed loop transfer function, the second output, and the secondary transfer function. And, the difference between the expected process data and the process data is set as the first objective function to perform the optimization algorithm. The delay parameter θ 2 corresponding to the minimum of the first objective function is the optimal internal delay parameter described above.

在一實施例中,上述的預期製程資料表示為以下方程式(4): In one embodiment, the expected process data described above is expressed as equation (4) below:

在一實施例中,上述的第一目標函數表示為以下方程式(5)與(6)。其中ωM2為內環路的靈敏度函數產生最大值的頻率。 In an embodiment, the first objective function described above is expressed by the following equations (5) and (6). Where ω M2 is the frequency at which the sensitivity function of the inner loop produces the maximum value.

在一實施例中,上述的頻率ωM2表示為以下 方程式(7),其中內環路的補靈敏度函數表示為以下方程式(8)。 In an embodiment, the above-described frequency ω M2 is expressed by the following equation (7), wherein the complementary sensitivity function of the inner loop is expressed as the following equation (8).

在一實施例中,上述的計算第二設定點的步驟是根據以下方程式(9)來執行。 In an embodiment, the step of calculating the second set point is performed according to the following equation (9).

在一實施例中,上述根據主程序的時延參數、所計算出的第二設定點、第一輸出、與主控制器的主轉移函數來執行最佳化演算法的步驟包括以下步驟。首先,設定第一設定點表示為以下方程式(10),外環路對於第一設定點的第一閉環路轉移函數為以下方程式(11),而主轉移函數表示為以下方程式(12)。 In an embodiment, the step of performing the optimization algorithm according to the delay parameter of the main program, the calculated second set point, the first output, and the main transfer function of the main controller includes the following steps. First, the first set point is set to be expressed as the following equation (10), the first closed loop transfer function of the outer loop for the first set point is the following equation (11), and the main transfer function is expressed as the following equation (12).

R1(s)=T 1(s)-1 Y 1(s)...(10) R 1 ( s )= T 1 ( s ) -1 Y 1 ( s )...(10)

其中Y1(s)為第一輸出,λ1為可調參數,θ1為主程序的時延參數,I1為積分參數,KP1為比例參數,D1為微分參數。接下來,根據第一閉環路轉移函數、主轉移函數與第一輸出計算出一預期第二設定點。並且,將上述方程式(9)所計算出的第二設定點與預期第二設定點之 間的差設定為第二目標函數以執行最佳化演算法。第二目標函數最小時所對應的時延參數θ1為最佳外時延參數。 Where Y 1 (s) is the first output, λ 1 is the adjustable parameter, θ 1 is the delay parameter of the main program, I 1 is the integral parameter, KP 1 is the proportional parameter, and D 1 is the differential parameter. Next, an expected second set point is calculated according to the first closed loop transfer function, the primary transfer function, and the first output. And, the difference between the second set point calculated by the above equation (9) and the expected second set point is set as the second objective function to perform the optimization algorithm. The delay parameter θ 1 corresponding to the second objective function is the best outer delay parameter.

在一實施例中,上述的第二目標函數表示為以下方程式(13)與(14),其中ωM1為外環路的靈敏度函數產生最大值的頻率。 In one embodiment, the second objective function described above is expressed as equations (13) and (14) below, where ω M1 is the frequency at which the sensitivity function of the outer loop produces a maximum value.

在一實施例中,上述的頻率ωM1是根據以下 方程式(15)所計算。 In an embodiment, the above-mentioned frequency ω M1 is calculated according to the following equation (15).

本發明的實施例亦提出一種電腦程式產品, 經由載入電腦系統並由處理器執行以執行上述的參數調諧方法。 Embodiments of the present invention also propose a computer program product, The parameter tuning method described above is performed by loading a computer system and being executed by a processor.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧串級控制系統 100‧‧‧ Cascade Control System

110‧‧‧外環路 110‧‧‧Outer loop

120‧‧‧內環路 120‧‧‧ Inner Ring Road

101‧‧‧主控制器 101‧‧‧Master Controller

102‧‧‧次控制器 102‧‧‧ controllers

103‧‧‧次程序 103‧‧‧ procedures

104‧‧‧主程序 104‧‧‧ main program

R1(s)‧‧‧第一設定點 R 1 (s)‧‧‧ first set point

R2(s)‧‧‧第二設定點 R 2 (s)‧‧‧second set point

U(s)‧‧‧製程資料 U(s)‧‧‧ process data

D2(s)‧‧‧第二干擾 D 2 (s)‧‧‧second interference

Y2(s)‧‧‧第二輸出 Y 2 (s)‧‧‧ second output

D1(s)‧‧‧第一干擾 D 1 (s)‧‧‧First interference

Y1(s)‧‧‧第一輸出 Y 1 (s)‧‧‧ first output

Gc1(s)‧‧‧主轉移函數 G c1 (s)‧‧‧ primary transfer function

Gc2(s)‧‧‧次轉移函數 G c2 (s)‧‧‧ transfer function

G2(s)、G1(s)、G1a(s)‧‧‧函數 G 2 (s), G 1 (s), G 1a (s)‧‧‧ function

Td2(s)‧‧‧第二閉環路轉移函數 T d2 (s)‧‧‧second closed loop transfer function

T1(s)‧‧‧第一閉環路轉移函數 T 1 (s)‧‧‧First closed loop transfer function

S501~S510‧‧‧步驟 S501~S510‧‧‧Steps

圖1是根據一實施例繪示串級控制系統的示意圖。 1 is a schematic diagram showing a cascade control system in accordance with an embodiment.

圖2是根據一實施例繪示內環路參考模式的示意圖;圖3是根據一實施例繪示串級控制系統的等效方塊示意圖; 圖4是根據一實施例繪示外環路的參考模式示意圖;以及圖5是根據一實施例繪示參數調諧方法的流程圖。 2 is a schematic diagram showing an inner loop reference mode according to an embodiment; FIG. 3 is an equivalent block diagram showing a cascade control system according to an embodiment; 4 is a schematic diagram showing a reference mode of an outer loop according to an embodiment; and FIG. 5 is a flowchart illustrating a parameter tuning method according to an embodiment.

圖1是根據一實施例繪示串級控制系統的示意圖。請參照圖1,串級控制系統100包括外環路110與內環路120。外環路包括主控制器101與主程序104,內環路120包括次控制器102與次程序103。主控制器101具有主轉移函數Gc1(s),會根據第一設定點R1(s)與第一輸出Y1(s)之間的差輸出第二設定點R2(s)。次控制器102具有次轉移函數Gc2(s),會根據第二設定點R2(s)與第二輸出Y2(s)之間的差輸出製程資料U(s)。次程序103可以表示為函數G2(s),會根據製程資料U(s)與第二干擾D2(s)來輸出第二輸出Y2(s)。主程序104可以表示為函數G1(s),會根據第二輸出Y2(s)與第一干擾D1(s)來輸出第一輸出Y1(s)。 1 is a schematic diagram showing a cascade control system in accordance with an embodiment. Referring to FIG. 1, the cascade control system 100 includes an outer loop 110 and an inner loop 120. The outer loop includes a main controller 101 and a main routine 104, and the inner loop 120 includes a secondary controller 102 and a secondary program 103. The main controller 101 has a main transfer function G c1 (s) that outputs a second set point R 2 (s) according to the difference between the first set point R 1 (s) and the first output Y 1 (s). The secondary controller 102 has a secondary transfer function G c2 (s) that outputs process data U(s) based on the difference between the second set point R 2 (s) and the second output Y 2 (s). Subroutine 103 can be represented as a function G 2 (s), will come second output Y 2 (s) according to process data U (s) and a second interference D 2 (s). The main program 104 may be represented as a function G 1 (s), will be the first output Y 1 (s) according to the second output Y 2 (s) and the first interference D 1 (s).

在一實施例中,串級控制系統100是用以控制氧濃度,其中主控制器101用以控制濃度而次控制器102用以控制流量。然而,串級控制系統100可以應用在任意的製程工場,本發明並不在此限。另外,在此實施例中主控制器101為PID控制器,而次控制器102為PI控制器,但在其他實施例中主控制器101也可以為PI控制器,而次控制器102也可以為P控制器。以下將說明如何設計主轉移函數Gc1(s)與次轉移函數Gc2(s)中的參數。 In one embodiment, the cascade control system 100 is used to control the oxygen concentration, wherein the primary controller 101 is used to control the concentration and the secondary controller 102 is used to control the flow. However, the cascade control system 100 can be applied to any process plant, and the present invention is not limited thereto. In addition, in this embodiment, the main controller 101 is a PID controller, and the secondary controller 102 is a PI controller. However, in other embodiments, the main controller 101 may also be a PI controller, and the secondary controller 102 may also For the P controller. How to design the parameters in the primary transfer function G c1 (s) and the secondary transfer function G c2 (s) will be explained below.

首先,對控制系統100執行測試(可為閉環測 試或是開環測試)以取得製程資料U(s)、第一輸出Y1(s)與第二輸出Y2(s)。接下來,給定次程序103的時延參數,並根據次程序103的時延參數、製程資料U(s)、第二輸出Y2(s)與次轉移函數Gc2(s)來執行最佳化演算法以取得最佳內時延參數。上述的最佳化演算法是要最小化製程資料U(s)與一個經過計算所得到的預期製程資料之間的差,藉此可以決定次轉移函數Gc2(s)中的比例參數與積分參數的至少其中之一。 First, a test (which may be a closed loop test or an open loop test) is performed on the control system 100 to obtain process data U(s), a first output Y 1 (s), and a second output Y 2 (s). Next, the delay parameter of the secondary program 103 is given, and the most performed according to the delay parameter of the secondary program 103, the process data U(s), the second output Y 2 (s), and the secondary transfer function G c2 (s) The algorithm is optimized to achieve the best internal delay parameters. The above optimization algorithm is to minimize the difference between the process data U(s) and a calculated expected process data, thereby determining the proportional parameter and integral in the secondary transfer function G c2 (s). At least one of the parameters.

具體來說,內環路120本身是一個單環路系 統,目的是在於快速將第二干擾D2(s)排除,因此次控制器102的設計方法應針對干擾排除性能來設計。在此實施例中,內環路120的參考模式架構如圖2所示,其中Td2(s)為代表內環路120對於第二干擾D2(s)所期望的第二閉環路轉移函數。根據圖2,第二設定點可以表示為以下方程式(1)。 Specifically, the inner loop 120 itself is a single loop system for the purpose of quickly eliminating the second disturbance D 2 (s), so the design method of the secondary controller 102 should be designed for interference rejection performance. In this embodiment, the reference mode architecture of inner loop 120 is as shown in FIG. 2, where T d2 (s) is the second closed loop transfer function that is expected for inner loop 120 for second interference D 2 (s). . According to Fig. 2, the second set point can be expressed as the following equation (1).

在本實施例中,次控制器102為PI控制器,所 以次轉移函數可以寫為以下方程式(2)。 In this embodiment, the secondary controller 102 is a PI controller. The subtransfer function can be written as the following equation (2).

其中I2為積分參數,KP2為比例參數。為了能 夠追蹤第二設定點而不產生偏差(offset),可以將上述的第二閉環路轉移函數Td2(s)設定為以下方程式(3)。 Where I 2 is the integral parameter and KP 2 is the proportional parameter. In order to be able to track the second set point without generating an offset, the second closed loop transfer function T d2 (s) described above may be set to the following equation (3).

其中λ2為可調參數,設計者可以在內環路 120的控制效能與穩定韌性之間做一個適當的取捨。θ2為次程序的時延參數。 Where λ 2 is an adjustable parameter, the designer can make an appropriate trade-off between the control efficiency and the stability and toughness of the inner loop 120. θ 2 is the delay parameter of the secondary program.

接下來,根據第二閉環路轉移函數Td2(s)、第 二輸出Y2(s)與次轉移函數Gc2(s)計算出一個預期製程資料。具體來說,此時次控制器102所輸出的預期製程資料可以表示為以下方程式(4)。 Next, an expected process data is calculated based on the second closed loop transfer function T d2 (s), the second output Y 2 (s), and the secondary transfer function G c2 (s). Specifically, the expected process data output by the secondary controller 102 at this time It can be expressed as the following equation (4).

由於製程資料U(s)可以經由測試而得到,因 此預期製程資料與製程資料U(s)之間的差可以被設定為目標函數(亦稱第一目標函數)以執行最佳化演算法。此第一目標函數可表示為以下方程式(5)與(6)。 Since the process data U(s) can be obtained through testing, it is expected that the process data The difference from the process data U(s) can be set as an objective function (also known as a first objective function) to perform an optimization algorithm. This first objective function can be expressed as the following equations (5) and (6).

其中ωM2為內環路的靈敏度函數(sensitivity function)產生最大值的頻率,可以表示為以下方程式(7),而此時內環路的補靈敏度函數(complementary sensitivity function)可以表示為以下方程式(8)。 Where ω M2 is the frequency at which the sensitivity function of the inner loop produces a maximum value, which can be expressed as the following equation (7), and at this time, the complementary sensitivity function of the inner loop can be expressed as the following equation ( 8).

在上述的最佳化演算法中,是事先給定時延 參數θ2一個範圍(可由設計者自訂),根據給定的時延參數θ2可以產生對應的積分參數I2與比例參數KP2。接下來可用黃金分搜尋法來更新時延參數θ2,而新的時延參數θ2可用來產生新的積分參數I2與比例參數KP2。當目標函數J2,PI 2)最小時所對應的時延參數θ2稱為最佳內時延參數,此最佳內時延參數所對應的積分參數I2與比例參數KP2便是所調諧出的參數。然而,在其他實施例中也可以使用牛頓法或其他搜尋法來取代上述的黃金搜尋法,本發明並不在此限。 In the optimization algorithm, the parameters of the given delay in advance a range of 2 [theta] (by custom designer), may generate a corresponding 2 I 2 ratio of the integral parameter KP 2 The parameters given delay parameters [theta] . Next, the golden parameter search method can be used to update the delay parameter θ 2 , and the new delay parameter θ 2 can be used to generate a new integral parameter I 2 and a proportional parameter KP 2 . When the objective function J 2, PI 2 ) is the smallest, the corresponding delay parameter θ 2 is called the optimal internal delay parameter, and the integral parameter I 2 and the proportional parameter KP 2 corresponding to the optimal internal delay parameter are Is the parameter that is tuned. However, in other embodiments, the Newton method or other search methods may be used instead of the above-described gold search method, and the present invention is not limited thereto.

請參照回圖1,在次控制器102設計完成以 後,主控制器101在設計時必須將次控制器102所產生的內環路動態納入考量。因此,可以根據所設計出的次轉移函數Gc2(s)的參數來重新計算第二設定點R2(s)。接著,類似於內環路120的設計方法,給定主程序104的時延參數,並根據主程序120的時延參數、所計算出的第二設定點R2(s)、第一輸出Y1(s)、與主轉移函數Gc1(s)來執行最佳化演算法以取得最佳外時延參數。在外環路110的設計中,最佳化演算法是要最小化所計算出的第二設定點R2(s)與一個預期第二設定點之間的差,藉此決定主轉移函數Gc1(s)的比例參數、積分參數與微分參數的至少其中之一。 Referring back to FIG. 1, after the design of the secondary controller 102 is completed, the main controller 101 must be designed to take into account the inner loop dynamics generated by the secondary controller 102. Therefore, the second set point R 2 (s) can be recalculated according to the parameters of the designed secondary transfer function G c2 (s). Next, similar to the design method of the inner loop 120, the delay parameter of the main program 104 is given, and according to the delay parameter of the main program 120, the calculated second set point R 2 (s), the first output Y 1 (s), and the main transfer function G c1 (s) to perform an optimization algorithm to obtain the optimal outer delay parameter. In the design of the outer loop 110, the optimization algorithm is to minimize the difference between the calculated second set point R 2 (s) and an expected second set point, thereby determining the primary transfer function G. At least one of a proportional parameter, an integral parameter, and a differential parameter of c1 (s).

具體來說,此時串級控制系統100的等效圖塊如圖3所示,其中函數G1a(s)代表主控制器101所面對的等 效程序,表示為以下方程式(9)。而次控制器102所輸出的製程資料可以表示為以下方程式(10)。 Specifically, the equivalent block of the cascade control system 100 at this time is as shown in FIG. 3, wherein the function G 1a (s) represents an equivalent program faced by the main controller 101, expressed as the following equation (9). The process data output by the secondary controller 102 can be expressed as the following equation (10).

因此,根據上述設計出的積分參數I2與比例參 數KP2可以決定次轉移函數Gc2(s),再根據第二輸出Y2(s)與製程資料U(s)便可以計算第二設定點R2(s),表示為以下方程式(11)。 Therefore, the integral parameter I 2 and the proportional parameter KP 2 designed according to the above can determine the secondary transfer function G c2 (s), and then the second setting can be calculated according to the second output Y 2 (s) and the process data U(s). Point R 2 (s) is expressed as the following equation (11).

當第二設定點R2(s)與第二輸出Y2(s)為已知 時,主控制器的設計考慮到外環路必須要應付系統的設定點變化,因此這裡的主控制器101是針對伺服控制來設計。外環路的參考模式架構如圖4所示,其中T1(s)表示外環路對於第一設定點所期望的第一閉環路轉移函數。第一設定點可以表示為以下方程式(12)。 When the second set point R 2 (s) and the second output Y 2 (s) are known, the design of the main controller takes into account that the outer loop must cope with the set point change of the system, so the main controller 101 here It is designed for servo control. The reference mode architecture of the outer loop is shown in Figure 4, where T 1 (s) represents the first closed loop transfer function expected by the outer loop for the first set point. The first set point can be expressed as the following equation (12).

R1(s)=T 1(s)-1 Y 1(s)...(12) R 1 ( s )= T 1 ( s ) -1 Y 1 ( s )...(12)

當控制目標在於設定點追蹤時,第一閉環路轉移函數T1(s)可以選擇為以下方程式(13)。 When the control target is set point tracking, the first closed loop transfer function T 1 (s) can be selected as the following equation (13).

其中θ1為主轉移函數Gc1(s)的時延參數θ 1,λ1為可調參數。另一方面,在此實施例中主控制器101為PID控制器,因此主轉移函數可以寫為以下方程式(14)。 The delay parameter θ 1 , λ 1 where θ 1 is the main transfer function G c1 (s) is an adjustable parameter. On the other hand, in this embodiment, the main controller 101 is a PID controller, and thus the main transfer function can be written as the following equation (14).

其中KP1為比例參數,I1為積分參數,而D1 為微分參數。接下來,根據第一閉環路轉移函數T1(s)、主轉移函數Gc1(s)與第一輸出Y1(s)便可以計算主控制器101輸出的預期第二設定點,表示為以下方程式(15)。 Where KP 1 is the proportional parameter, I 1 is the integral parameter, and D 1 is the differential parameter. Next, according to the first closed loop transfer function T 1 (s), the main transfer function G c1 (s) and the first output Y 1 (s), the expected second set point output by the main controller 101 can be calculated, expressed as The following equation (15).

由於第二設定點R2(s)為已知,主控制器設計 的問題便等於最小化上述方程式(15)與(11)之間的差,此誤差可以被設定為第二目標函數以執行最佳化演算法。第二目標函數可表示為以下方程式(16)與(17)。 Since the second set point R 2 (s) is known, the problem of the main controller design is to minimize the difference between equations (15) and (11) above, which can be set as the second objective function to perform Optimize the algorithm. The second objective function can be expressed as the following equations (16) and (17).

其中ωM1為外環路的靈敏度函數產生最大值 的頻率,可表示為以下方程式(18)。 Where ω M1 is the frequency at which the sensitivity function of the outer loop produces a maximum value, which can be expressed as the following equation (18).

在一實施例中,上述的最佳化演算法所使用 的是黃金分割搜尋法,在給定時延參數θ1一個範圍以後便可以透過黃金分割搜尋法不斷地更新時延參數θ1,而目標函數J1, PID 1)最小時所對應的時延參數θ1被稱為最佳外時延參數。此最佳外時延參數θ1所對應的比例參數KP1、積分參數I1與微分參數D1便是調諧出的PID參數。 In one embodiment, the above-described optimization algorithm used is a golden section search method, the parameters given delay range θ 1 after a split search method will be continuously updated delay parameter θ 1 through gold, and the target The delay parameter θ 1 corresponding to the function J 1 and the minimum PID 1 ) is called the optimal outer delay parameter. The proportional parameter KP 1 , the integral parameter I 1 and the differential parameter D 1 corresponding to the optimal outer delay parameter θ 1 are the tuned PID parameters.

圖5是根據一實施例繪示參數調諧方法的流 程圖。請參照圖5,在步驟S501中,對控制系統執行測試以取得製程資料U(s)、第一輸出Y1(s)與第二輸出Y2(s)。 在步驟S502中,給定次程序的時延參數θ2。在步驟S503中,根據時延參數θ2、製程資料U(s)、第二輸出Y2(s)與次轉移函數Gc2(s)來執行最佳化演算法。若最佳化演算法還未停止,進行步驟S504,更新時延參數θ2並計算新的PI參數。若最佳化演算法已經停止,進行步驟S505,取得最佳內時延參數,並且計算對應的積分參數I2與比例參數KP2FIG. 5 is a flow chart illustrating a method of parameter tuning in accordance with an embodiment. Referring to FIG 5, in step S501, a test of the control system to obtain process data U (s), a first output Y 1 (s) and the second output Y 2 (s). In step S502, the delay parameter θ 2 of the secondary program is given. In step S503, the optimization algorithm is executed based on the delay parameter θ 2 , the process data U(s), the second output Y 2 (s), and the secondary transfer function G c2 (s). If the optimization algorithm has not stopped, step S504 is performed to update the delay parameter θ 2 and calculate a new PI parameter. If the optimization algorithm has stopped, step S505 is performed to obtain the optimal internal delay parameter, and the corresponding integration parameter I 2 and the proportional parameter KP 2 are calculated.

在步驟S506中,計算第二設定點R2(s)。在步 驟S507中,給定時延參數θ1。在步驟S508中,根據時延參數θ1、所計算出的第二設定點、第一輸出Y1(s)、與主轉移函數Gc1(s)來執行最佳化演算法。若最佳化演算法還沒停止,進行步驟S509,更新時延參數θ1並計算新的PID參數。若最佳化演算法已經停止,進行在步驟S510,取得最佳外時延參數,並且計算對應的比例參數KP1、積分參數I1與微分參數D1In step S506, the second set point R 2 (s) is calculated. In step S507, a given delay parameter θ 1. In step S508, the optimization algorithm is executed based on the delay parameter θ 1 , the calculated second set point, the first output Y 1 (s), and the main transfer function G c1 (s). If the optimization algorithm has not stopped, step S509 is performed to update the delay parameter θ 1 and calculate a new PID parameter. If the optimization algorithm has stopped, proceeding to step S510, the optimal outer delay parameter is obtained, and the corresponding proportional parameter KP 1 , integral parameter I 1 and differential parameter D 1 are calculated.

然而,圖5中各步驟已經詳細說明如上,在此 不再贅述。值得注意的是,圖5中各步驟可以實作為多個程式碼或是電路,本發明並不在此限。此外,圖7的方法可以搭配以上實施例使用,也可以單獨使用。另一方面,在本發明的一些實施例亦提出一種電腦程式產品,此電腦程式產品可以被儲存在任意形式的記憶體,也可以透過網路傳 輸。此電腦程式產品可被下載至一電腦系統,由電腦系統中的處理器執行來實施上述的參數調諧方法。 However, the steps in Figure 5 have been described in detail above, here No longer. It should be noted that the steps in FIG. 5 can be implemented as multiple code codes or circuits, and the present invention is not limited thereto. In addition, the method of FIG. 7 can be used in conjunction with the above embodiments, or can be used alone. In another aspect, some embodiments of the present invention also provide a computer program product that can be stored in any form of memory or transmitted over a network. lose. The computer program product can be downloaded to a computer system that is executed by a processor in the computer system to implement the parameter tuning method described above.

綜上所述,在本發明實施例所提出的參數調諧方法與電腦程式產品中,只需要一次測試便可以設計串級控制系統中的兩個控制器。 In summary, in the parameter tuning method and the computer program product proposed by the embodiment of the present invention, two controllers in the cascade control system can be designed only once with one test.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

S501~S510‧‧‧步驟 S501~S510‧‧‧Steps

Claims (10)

一種參數調諧方法,適用於一串級控制系統,其中該串級控制系統包括一外環路與一內環路,該外環路包括一主控制器與一主程序,該內環路包括一次控制器與一次程序,該主控制器根據一第一設定點與一第一輸出之間的差輸出一第二設定點,該次控制器根據該第二設定點與一第二輸出之間的差輸出一製程資料,該次程序根據該製程資料與一第二干擾輸出該第二輸出,該主程序根據該第二輸出與一第一干擾來輸出該第一輸出,該參數調諧方法包括:對該串級控制系統執行一測試以取得該製程資料、該第一輸出與該第二輸出;給定該次程序的一時延參數,並根據該次程序的該時延參數、該製程資料、該第二輸出與該次控制器的一次轉移函數來執行一最佳化演算法以取得一最佳內時延參數;根據該最佳內時延參數取得該次轉移函數的比例參數與積分參數的至少其中之一,並據此計算該第二設定點;給定該主程序的一時延參數,並根據該主程序的該時延參數、所計算出的該第二設定點、該第一輸出、與該主控制器的一主轉移函數來執行該最佳化演算法以取得一最佳外時延參數;以及根據該最佳外時延參數取得該主轉移函數的比例參數、積分參數與微分參數的至少其中之一。 A parameter tuning method is applicable to a cascade control system, wherein the cascade control system includes an outer loop and an inner loop, the outer loop includes a main controller and a main program, and the inner loop includes one time a controller and a program, the main controller outputs a second set point according to a difference between a first set point and a first output, wherein the controller is based on the second set point and a second output The difference output is a process data, the program outputs the second output according to the process data and a second interference, and the main program outputs the first output according to the second output and a first interference, the parameter tuning method includes: Performing a test on the cascade control system to obtain the process data, the first output and the second output; giving a delay parameter of the program, and according to the delay parameter of the program, the process data, The second output and the primary transfer function of the secondary controller perform an optimization algorithm to obtain an optimal internal delay parameter; and obtain a proportional parameter and an integral parameter of the secondary transfer function according to the optimal internal delay parameter At least one of the second set point is calculated accordingly; a delay parameter of the main program is given, and the second set point is calculated according to the delay parameter of the main program, the first Outputting, a primary transfer function with the primary controller to perform the optimization algorithm to obtain an optimal outer delay parameter; and obtaining a proportional parameter and an integral parameter of the primary transfer function according to the optimal outer delay parameter And at least one of the differential parameters. 如申請專利範圍第1項所述之參數調諧方法,其中該次控制器為比例-積分控制器,並且根據該次程序的該時延參數、該製程資料、該第二輸出與該次控制器的該次轉移函數來執行該最佳化演算法的步驟包括:設定該第二設定點表示為以下方程式(1),該次轉移函數表示為以下方程式(2),而該內環路對於該第二干擾的第二閉環路轉移函數表示為以下方程式(3): 其中Y2(s)為該第二輸出,KP2為比例參數,I2為積分參數,λ2為可調參數,θ2為該次程序的該時延參數;根據該第二閉環路轉移函數、該第二輸出與該次轉移函數計算出一預期製程資料;以及將該預期製程資料與該製程資料之間的差設定為一第一目標函數以執行該最佳化演算法,其中該第一目標函數最小時所對應的該時延參數θ2為該最佳內時延參數。 The parameter tuning method of claim 1, wherein the secondary controller is a proportional-integral controller, and according to the delay parameter of the secondary program, the process data, the second output, and the secondary controller The step of performing the optimization algorithm to perform the optimization algorithm includes: setting the second set point to be expressed as the following equation (1), the secondary transfer function being expressed as the following equation (2), and the inner loop is for the The second closed loop transfer function of the second disturbance is expressed as the following equation (3): Where Y 2 (s) is the second output, KP 2 is the proportional parameter, I 2 is the integral parameter, λ 2 is the adjustable parameter, and θ 2 is the delay parameter of the subroutine; according to the second closed loop transfer a function, the second output and the secondary transfer function calculate an expected process data; and set a difference between the expected process data and the process data as a first objective function to perform the optimization algorithm, wherein the The delay parameter θ 2 corresponding to the minimum of the first objective function is the optimal internal delay parameter. 如申請專利範圍第2項所述之參數調諧方法,其中該預期製程資料表示為以下方程式(4): The parameter tuning method as described in claim 2, wherein the expected process data is expressed as the following equation (4): 如申請專利範圍第3項所述之參數調諧方法,其中該第一目標函數表示為以下方程式(5)與(6): 其中ωM2為該內環路的靈敏度函數產生最大值的頻率。 The parameter tuning method of claim 3, wherein the first objective function is expressed as the following equations (5) and (6): Where ω M2 is the frequency at which the sensitivity function of the inner loop produces a maximum value. 如申請專利範圍第4項所述之參數調諧方法,其中該頻率ωM2表示為以下方程式(7): 其中該內環路的補靈敏度函數表示為以下方程式(8): The parameter tuning method of claim 4, wherein the frequency ω M2 is expressed by the following equation (7): The complementary sensitivity function of the inner loop is expressed as the following equation (8): 如申請專利範圍第5項所述之參數調諧方法,其中計算該第二設定點的步驟包括:根據以下方程式(9)計算該第二設定點: The parameter tuning method of claim 5, wherein the calculating the second set point comprises: calculating the second set point according to the following equation (9): 如申請專利範圍第6項所述之參數調諧方法,其中根據該主程序的該時延參數、所計算出的該第二設定點、該第一輸出、與該主控制器的該主轉移函數來執行該最佳化演算法的步驟包括:設定該第一設定點表示為以下方程式(10),該外環路對於該第一設定點的第一閉環路轉移函數為以下方程式(11),而該主轉移函數表示為以下方程式(12):R1(s)=T 1(s)-1 Y 1(s)...(10) 其中Y1(s)為該第一輸出,λ1為可調參數,θ1為該主程序的該時延參數,I1為積分參數,KP1為比例參數,D1為微分參數;根據該第一閉環路轉移函數、該主轉移函數與該第一輸出計算出一預期第二設定點;以及將上述方程式(9)所計算出的該第二設定點與該預期第二設定點之間的差設定為一第二目標函數以執行該最佳化演算法,其中該第二目標函數最小時所對應的該時延參數θ1為該最佳外時延參數。 The parameter tuning method of claim 6, wherein the delay parameter according to the main program, the calculated second set point, the first output, and the main transfer function of the main controller are The step of performing the optimization algorithm includes: setting the first set point to be expressed as the following equation (10), and the first closed loop transfer function of the outer loop for the first set point is the following equation (11), And the main transfer function is expressed as the following equation (12): R 1 ( s ) = T 1 ( s ) -1 Y 1 ( s ) (10) Where Y 1 (s) is the first output, λ 1 is an adjustable parameter, θ 1 is the delay parameter of the main program, I 1 is an integral parameter, KP 1 is a proportional parameter, and D 1 is a differential parameter; The first closed loop transfer function, the primary transfer function and the first output calculate an expected second set point; and the second set point calculated by the above equation (9) and the expected second set point The difference between the two is set to a second objective function to perform the optimization algorithm, wherein the delay parameter θ 1 corresponding to the second objective function is the optimal outer delay parameter. 如申請專利範圍第7項所述之參數調諧方法,其中該第二目標函數表示為以下方程式(13)與(14): 其中ωM1為該外環路的靈敏度函數產生最大值的頻率。 The parameter tuning method of claim 7, wherein the second objective function is expressed by the following equations (13) and (14): Where ω M1 is the frequency at which the sensitivity function of the outer loop produces a maximum value. 如申請專利範圍第8項所述之參數調諧方法,其中該頻率ωM1是根據以下方程式(15)所計算: The parameter tuning method of claim 8, wherein the frequency ω M1 is calculated according to the following equation (15): 一種電腦程式產品,經由載入一電腦系統並由一處理器執行以執行一參數調諧方法,其中該參數調諧方法用於一串級控制系統,該串級控制系統包括一外環路與一內環路,該外環路包括一主控制器與一主程序,該內環路包括一次控制器與一次程序,該主控制器根據一第一設定點與一第一輸出之間的差輸出一第二設定點,該次控制器根據該第二設定點與一第二輸出之間的差輸出一製程資料,該次程序根據該製成資料與一第二干擾輸出該第二輸出,該主程序根據該第二輸出與一第一干擾來輸出該第一輸出,該參數調諧方法包括:對該串級控制系統執行一測試以取得該製程資料、該第一輸出與該第二輸出; 給定該次程序的一時延參數,並根據該次程序的該時延參數、該製程資料、該第二輸出與該次控制器的一次轉移函數來執行一最佳化演算法以取得一最佳內時延參數;根據該最佳內時延參數取得該次轉移函數的比例參數與積分參數的至少其中之一,並據此計算該第二設定點;給定該主程序的一時延參數,並根據該主程序的該時延參數、所計算出的該第二設定點、該第一輸出、與該主控制器的一主轉移函數來執行該最佳化演算法以取得一最佳外時延參數;以及根據該最佳外時延參數取得該主轉移函數的比例參數、積分參數與微分參數的至少其中之一。 A computer program product for performing a parameter tuning method by loading a computer system and executing by a processor, wherein the parameter tuning method is used for a cascade control system including an outer loop and an inner loop a loop, the outer loop includes a main controller and a main program, the inner loop includes a primary controller and a program, and the main controller outputs a difference according to a difference between a first set point and a first output. a second set point, the controller outputs a process data according to a difference between the second set point and a second output, the program outputs the second output according to the made data and a second interference, the main The program outputs the first output according to the second output and a first interference, the parameter tuning method includes: performing a test on the cascade control system to obtain the process data, the first output and the second output; Given a delay parameter of the program, and performing an optimization algorithm according to the delay parameter of the program, the process data, the second output, and the transfer function of the secondary controller to obtain one of the most a good internal delay parameter; obtaining at least one of a proportional parameter and an integral parameter of the transfer function according to the optimal internal delay parameter, and calculating the second set point according to the second set point; given a delay parameter of the main program And performing the optimization algorithm according to the delay parameter of the main program, the calculated second set point, the first output, and a main transfer function of the main controller to obtain an optimal An outer delay parameter; and obtaining at least one of a proportional parameter, an integral parameter, and a differential parameter of the primary transfer function according to the optimal outer delay parameter.
TW104108151A 2015-03-13 2015-03-13 Parameter tuning method and computer program product TWI533097B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104108151A TWI533097B (en) 2015-03-13 2015-03-13 Parameter tuning method and computer program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104108151A TWI533097B (en) 2015-03-13 2015-03-13 Parameter tuning method and computer program product

Publications (2)

Publication Number Publication Date
TWI533097B true TWI533097B (en) 2016-05-11
TW201633022A TW201633022A (en) 2016-09-16

Family

ID=56509256

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104108151A TWI533097B (en) 2015-03-13 2015-03-13 Parameter tuning method and computer program product

Country Status (1)

Country Link
TW (1) TWI533097B (en)

Also Published As

Publication number Publication date
TW201633022A (en) 2016-09-16

Similar Documents

Publication Publication Date Title
JP4223894B2 (en) PID parameter adjustment device
TWI770821B (en) Matching process controllers, computer-implemented method, system, and non-transitory machine-readable storage medium for improved matching of process
Freyberger Asymptotic theory for differentiated products demand models with many markets
JP5227254B2 (en) Real-time calculation method and simulator of state quantity of process model
Zaidner et al. Non Linear PID and its application in Process Control
US10699969B2 (en) Quick adjustment of metrology measurement parameters according to process variation
JP6569497B2 (en) Prediction device, method and program
EP3062175B1 (en) Control system design assist device, control system design assist program, control system design assist method, operation change amount calculation device, and control device
JPWO2022044191A5 (en)
Jia et al. Self‐correcting modifier‐adaptation strategy for batch‐to‐batch optimization based on batch‐wise unfolded PLS model
JP6686338B2 (en) Control system, control system design method, and program
Xu et al. Convergence analysis of a synchronous gradient estimation scheme for time-varying parameter systems
TWI533097B (en) Parameter tuning method and computer program product
Kwon et al. Extended root-locus technique applied to pole-placement for PI controller design
Yin et al. Cascade control based on minimum sensitivity in outer loop for processes with time delay
Zhmud et al. The use of bypass channel for feedback control of oscillatory object well-known as difficult one for control
US11086277B2 (en) System and method for determining the parameters of a controller
TWI546637B (en) Process control method
JP2020099982A (en) Machine tool thermal displacement correction method, thermal displacement correction program, thermal displacement correction device
JPH04266101A (en) Estimation controller for multivariable model
Yin et al. Dual backstepping variable structure switching control of bounded uncertain nonlinear system
JP5846303B2 (en) Learning apparatus and learning method for setting calculation system
JP2005258717A (en) Parameter-setting method, device and program for controller
Tchamna et al. Constraint handling optimal PI controller design for integrating processes: optimization-based approach for analytical design
WO2024080142A1 (en) Simulation model construction method and simulation method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees