WO2013170712A1 - 一种数据调度方法及装置 - Google Patents

一种数据调度方法及装置 Download PDF

Info

Publication number
WO2013170712A1
WO2013170712A1 PCT/CN2013/075241 CN2013075241W WO2013170712A1 WO 2013170712 A1 WO2013170712 A1 WO 2013170712A1 CN 2013075241 W CN2013075241 W CN 2013075241W WO 2013170712 A1 WO2013170712 A1 WO 2013170712A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
user equipment
delay tolerance
delay
arrived
Prior art date
Application number
PCT/CN2013/075241
Other languages
English (en)
French (fr)
Inventor
戴谦
许英奇
程锦葵
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13790087.4A priority Critical patent/EP2838304B1/en
Priority to US14/400,605 priority patent/US9674857B2/en
Publication of WO2013170712A1 publication Critical patent/WO2013170712A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a data scheduling method and apparatus. Background technique
  • the data packets generated by various services may be sent according to their directions and UEs.
  • the UE will initiate a random access procedure to enable the UE to enter the RRC-CONNECTED (Radio Resource Control CONNECTED: Radio Resource) Control connection) status;
  • the UE If the UE is in the RRC-CONNECTED state and the uplink data arrives, the UE sends an SR (Schedule Request) to the network side to apply for the uplink resource.
  • SR Service Request
  • the core network will instruct the base station to send a paging message to the UE, and the UE will receive the message after receiving the message. Initiating a random access procedure, and then entering an RRC-CONNECTED state;
  • the base station will add the data to the scheduling sequence, and then send the data to the UE.
  • the UE or the network side will follow the priority of the data to be sent.
  • Data is carried by using different logical channels, and data is transmitted through different DRBs (Data Radio Bearers).
  • DRBs Data Radio Bearers
  • the various configurations related to the transmission are performed by the network side through S1 signaling (control plane data transmission channel between the core network and the base station), RRC signaling (control plane signaling transmission channel between the base station and the UE), or MAC.
  • CE Media Access Control Layer Control Element
  • the QoS (Quality of Service) function also includes some parameters regarding the packet delay requirement.
  • the present invention provides a data scheduling method and apparatus to reduce the pressure applied by an application to a network and a UE.
  • the present invention discloses a data scheduling method, including: when a device has data arriving, the device determines whether the arrived data has a delay tolerance characteristic, and if the arrived data has a delay tolerance characteristic, The device delays scheduling and sending of the arrived data, and if the arrived data does not have a delay tolerance feature, the device immediately initiates a call flow or immediately initiates a data transmission process;
  • the device is a user equipment or a base station.
  • the arrived data is uplink data.
  • the arrived data is downlink data corresponding to the user equipment.
  • the delay tolerance feature refers to: delaying data during data scheduling and delivery.
  • the device determines that the arrived data has a delay tolerance characteristic: the delay tolerance of the arrived data exceeds a first preset threshold; the arrived data belongs to a service a service having a delay tolerance characteristic; the arrived data is included in a logical channel having a delay tolerance characteristic; the arrived data is included in a delay tolerance characteristic The data radio bearer; and the user equipment corresponding to the arrived data has a delay tolerance characteristic.
  • the delay tolerance of the arrived data is: a delay indicator included in the quality of service level corresponding to the arrived data.
  • the delay tolerance of the arrived data exceeds the first preset threshold: the delay indicator included in the quality of service level corresponding to the arrived data exceeds the first preset threshold.
  • the first preset threshold is set by using any one of the following methods: the user equipment and the network side agree in advance; the network side adopts S1 dedicated signaling, radio resource control (RRC) dedicated signaling, or media access control layer control element (MAC CE ) is configured for the user equipment; and is set by the network side and configured on the core network and/or the base station.
  • the step of delaying the scheduling and sending of the arrived data by the device includes: when the user equipment is in a radio resource control idle state, the user equipment delays initiating a random access procedure, and schedules and sends the arrived data, or the base station Scheduling and transmitting the arrived data after the paging process is delayed; when the user equipment is in the RRC connection state, the user equipment delays triggering the scheduling request, scheduling and transmitting the arrived data, or delaying the scheduling request
  • the scheduling request is sent to reschedule and send the arrived data.
  • the method further includes: the device scheduling and transmitting the arrived data with delay tolerance characteristics when one or more of the following conditions are met: an uplink data transmission buffer or a downlink data transmission buffer corresponding to the user equipment
  • the total amount of data to be sent reaches or exceeds a second preset threshold
  • the total amount of data in the buffer area corresponding to the logical channel of the user equipment including the uplink arrival data or the downlink arrival data arrives or exceeds the third pre- A threshold is set
  • the time at which the arrived data is delayed reaches an upper limit of the delay tolerance time.
  • the second preset threshold and the third preset threshold are preset by using any one of the following methods: the user equipment and the network side agree in advance; the network side configures the user equipment by using S1 dedicated signaling, RRC dedicated signaling, or MAC CE; And the network side set itself, and is configured in the core network and/or the base station.
  • the upper limit of the delay tolerance time is preset by any one of the following methods: using the delay indicator included in the quality of service level corresponding to the arrived data as the upper limit of the delay tolerance time; The delay tolerance time corresponding to the service corresponding to the arrived data is agreed by the network side and the user equipment as the upper limit of the delay tolerance time; the network side and the user equipment agree in advance, and the network side and the user equipment are agreed in advance.
  • the delay tolerance time corresponding to the radio bearer containing the arrived data is the upper limit of the delay tolerance time; the upper limit of the user equipment with the network side and the delay tolerance; and the network side through the S1 dedicated signaling, the RRC dedicated signaling Or MAC CE is configured for the user equipment.
  • the time when the arrived data is delayed reaches the upper limit of the delay tolerance time: the time when the data is delayed is greater than or equal to the upper limit of the delay tolerance time; or the time when the data is delayed plus the preset time offset is greater than or equal to The upper limit of the time to delay tolerance.
  • the preset time offset is preset by any one of the following methods: the network side and the user equipment agree in advance; and the network side configures the user equipment by using S1 dedicated signaling, RRC dedicated signaling, or MAC CE.
  • the invention also discloses a device for data scheduling, comprising:
  • a first module configured to determine whether the arrived data has a delay tolerance characteristic when the device has data arriving
  • a second module configured to: delay scheduling and transmitting of the arrived data when the arrived data has a delay tolerance characteristic, and initiate a call flow immediately when the arrived data does not have a delay tolerance characteristic Or initiate a data transmission process immediately;
  • the device is a user equipment or a base station.
  • the arrived data is uplink data.
  • the arrived data is downlink data corresponding to the user equipment.
  • the delay tolerance feature refers to: delaying data during data scheduling and delivery.
  • the first module is configured to determine that the arrived data has a delay tolerance characteristic when the arrived data meets one or more conditions: the delay tolerance of the arrived data exceeds a first preset threshold;
  • the service to which the arrived data belongs is a service with delay tolerance characteristics;
  • the arriving data is included in a logical channel having a delay tolerant characteristic; the arriving data is included in a data radio bearer having a delay tolerant characteristic; and the user equipment corresponding to the arrived data has a delay tolerant characteristic.
  • the delay tolerance of the arrived data is: a delay indicator included in the quality of service level corresponding to the arrived data.
  • the delay tolerance of the arrived data exceeds the first preset threshold: the delay indicator included in the quality of service level corresponding to the arrived data exceeds the first preset threshold.
  • the first preset threshold is set by using any one of the following methods: the user equipment and the network side agree in advance; the network side adopts S1 dedicated signaling, radio resource control (RRC) dedicated signaling, or media access control layer control element (MAC CE ) is configured for the user equipment; and is set by the network side and configured on the core network and/or the base station.
  • the second module is configured to delay scheduling and sending of the arrived data by: scheduling, and transmitting, after the user equipment is in a radio resource control idle state, delaying the user equipment to initiate a random access procedure Arriving data, or causing the base station to postpone the sending of the paging data after the paging process is delayed; and when the user equipment is in the RRC connection state, delaying the triggering of the scheduling request by the user equipment, scheduling and transmitting the arriving Data, or causing the user equipment to delay sending the scheduling request, and then scheduling and transmitting the arrived data after triggering the scheduling request.
  • the second module is further configured to schedule and transmit the arrived data with delay tolerance characteristics when one or more of the following conditions are met: an uplink data transmission buffer area or a downlink data transmission buffer area corresponding to the user equipment
  • the total amount of data to be sent reaches or exceeds a second preset threshold; the total amount of data in the buffer area corresponding to the logical channel of the user equipment including the uplink arrival data or the downlink arrival data arrives or exceeds the third pre- A threshold is set; and the time at which the arrived data is delayed reaches an upper limit of the delay tolerance time.
  • the second preset threshold and the third preset threshold are preset by using any one of the following methods: the user equipment and the network side pre-arrange; the network side configures the user equipment by using S1 dedicated signaling, RRC dedicated signaling, or MAC CE; And the network side set itself, and is configured in the core network and/or the base station.
  • the upper limit of the delay tolerance time is preset by any one of the following methods: the delay indicator included in the quality of service level corresponding to the arrived data is used as an upper limit of the delay tolerance time; and the network side and the user equipment agree in advance
  • the delay tolerance time corresponding to the service corresponding to the arrived data is used as the upper limit of the delay tolerance time; the network side and the user equipment are agreed in advance, and are included in the network side and the user equipment, and are included in the arrival.
  • the delay tolerance time corresponding to the radio bearer of the data is taken as the upper limit of the delay tolerance time; the upper limit of the user equipment time of the network side and the delay tolerant; and the network side is configured for the user equipment by using S1 dedicated signaling, RRC dedicated signaling or MAC CE.
  • the time when the arrived data is delayed reaches the upper limit of the delay tolerance time the time when the data is delayed is greater than or equal to the upper limit of the delay tolerance time; or the time when the data is delayed plus the preset time offset is greater than or equal to The upper limit of the time to delay tolerance.
  • the preset time offset is preset by any one of the following methods: the network side and the user equipment agree in advance; and the network side configures the user equipment by using S1 dedicated signaling, RRC dedicated signaling, or MAC CE.
  • the technical solution of the present application delays scheduling of service data with delay tolerance characteristics, thereby alleviating the resource pressure of PUSCH and PDSCH, and optimizing system efficiency.
  • FIG. 1 is a schematic flowchart of a data scheduling method according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of an uplink data scheduling method according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic flowchart of an uplink data scheduling method according to Embodiment 3 of the present invention
  • FIG. 5 is a schematic flowchart of a downlink data scheduling method according to Embodiment 4 of the present invention
  • Is a schematic flowchart of a downlink data scheduling method according to Embodiment 5 of the present invention
  • FIG. 7 is a schematic flowchart of an uplink data scheduling method according to Embodiment 6 of the present invention
  • FIG. 8 is a schematic flowchart of a downlink data scheduling method according to Embodiment 7 of the present invention
  • FIG. 9 is a schematic flowchart of an uplink data scheduling method according to Embodiment 8 of the present invention
  • FIG. 11 is a schematic flowchart of a downlink data scheduling method according to Embodiment 10 of the present invention.
  • the applicant analyzes the packet transmission characteristics of the service applicable to the smart phone, and finds that the data packets involved in these services are not very demanding in real time, that is, the data packets of these services can tolerate a certain time delay. That is, if the sending of the data packet is delayed, it will not affect or obviously affect the user's experience. Therefore, in order to solve the new pressure on the network and the UE caused by the application of similar services, the applicant proposes that the data packet can be reasonably scheduled according to the delay requirement of the data packet involved in the specific service, thereby alleviating or solving the service. Apply pressure on the network and the UE.
  • the device determines whether the arrived data has a delay tolerance characteristic, and if the arrived data has a delay tolerance characteristic, the device delays scheduling and sending of the arrived data, if the arrived data does not have The delay tolerance feature, the device immediately initiates a call procedure (ie, initiates a call flow when the UE is in the RRC idle state) or immediately initiates a data transmission procedure (ie, initiates a data transmission procedure when the UE is in the RRC connected state).
  • a call procedure ie, initiates a call flow when the UE is in the RRC idle state
  • a data transmission procedure ie, initiates a data transmission procedure when the UE is in the RRC connected state.
  • the device is a UE (user equipment) or a base station.
  • the user equipment has uplink data arrival.
  • the base station has downlink data corresponding to the user equipment.
  • the delay tolerance feature involved in this embodiment refers to: delaying data during data scheduling and delivery. Implementation process.
  • FIG. 1 is a specific process of data scheduling provided by the present embodiment, and the process includes the following steps 101 to 105. Specific steps are as follows:
  • Step 101 The UE has uplink data arrives and waits for transmission or the base station has downlink data arrives and waits for transmission;
  • Step 102 The UE or the base station determines whether the arrival data has a delay tolerance characteristic. If the data has a delay tolerance characteristic, step 103 is performed; otherwise, step 105 is performed;
  • the device determines that the arrived data has a delay tolerance characteristic:
  • the incoming data belongs to a service with delay tolerance characteristics
  • the arriving data (uplink or downlink data) is included in the data radio bearer with delay tolerance characteristics;
  • the UE corresponding to the arrived data is a device with a delay tolerance feature.
  • the delay tolerance of the arriving data (uplink arrival data/downlink arrival data) described in the above steps refers to: the delay indicator included in the Quality of Service (QoS) corresponding to the arrived data.
  • QoS Quality of Service
  • the first preset threshold corresponding to the delay tolerance of the arrived data may be agreed by the network side and the UE in advance, or may be performed by the network side through S1 dedicated signaling or radio resource control (RRC) dedicated signaling or media.
  • RRC radio resource control
  • the access control layer control element (MAC CE) is configured for the UE, and can also be set by the network side and configured in the core network and/or the base station.
  • Step 103 The UE or the base station buffers the data with delay tolerance characteristics. If the UE is in the radio resource control idle state, the UE delays initiating a random access procedure, or the base station delays initiating a paging procedure. If the UE is in the RRC connection state, the UE delays triggering the scheduling request, or delays sending the scheduling request after triggering the scheduling request.
  • Step 104 The UE or the base station determines whether to schedule the data with delay tolerance characteristics, and if so, step 105 is performed, and if not, step 103 is performed;
  • Data with delay tolerance characteristics are delayed by the time to reach or exceed the upper limit of the delay tolerance time.
  • the second preset threshold and the third preset threshold may be set by using one of the following methods:
  • the UE and the network side agree in advance;
  • the network side configures the UE through S1 dedicated signaling, RRC dedicated signaling, or MAC CE; the network side sets itself and is configured in the core network and/or the base station.
  • the upper limit of the delay tolerance time can be set using one of the following methods:
  • the delay indicator included in the QoS (Quality of Service) corresponding to the arrived data is used as the upper limit of the delay tolerance time;
  • the delay tolerance time corresponding to the service corresponding to the arrived data agreed by the network side and the UE in advance is taken as The upper limit of the delay tolerance time;
  • the delay tolerance time corresponding to the logical channel including the arrived data is agreed by the network side and the user equipment in advance as the upper limit of the delay tolerance time;
  • the delay tolerance time corresponding to the radio bearer containing the arrived data is agreed by the network side and the user equipment as an upper limit of the delay tolerance time;
  • a device pair with a delay-tolerant feature that is pre-agreed by the network side and the delay-tolerant UE The network side configures the UE by using SI dedicated signaling, RRC dedicated signaling, or MAC CE.
  • the time the data is delayed is greater than or equal to the upper limit of the delay tolerance time
  • the time the data is delayed plus the preset time offset which is greater than or equal to the upper limit of the delay tolerance.
  • the preset time offset can be set by any of the following methods:
  • the network side and the UE agree in advance;
  • the network side configures the UE through S1 dedicated signaling, RRC dedicated signaling, or MAC CE.
  • Step 105 The UE or the base station sends the arrived data.
  • the UE If the UE is in the RRC idle state, the UE initiates a random access procedure to establish an RRC connection, and then sends the received uplink data, or the base station sends a paging message, and notifies the UE to send a random access procedure to establish an RRC connection, and then sends the arrived.
  • Downstream data If the UE is in the RRC idle state, the UE initiates a random access procedure to establish an RRC connection, and then sends the received uplink data, or the base station sends a paging message, and notifies the UE to send a random access procedure to establish an RRC connection, and then sends the arrived.
  • Downstream data If the UE is in the RRC idle state, the UE initiates a random access procedure to establish an RRC connection, and then sends the received uplink data, or the base station sends a paging message, and notifies the UE to send a random access procedure to establish an RRC connection, and then sends the arrived.
  • the UE sends the SR to apply for the uplink resource, and then sends the received uplink data, or the base station adds the arrived downlink data to the scheduling sequence, and then sends the downlink data;
  • Scenario 1 Assume that the UE is in the RRC idle state and has uplink data arriving and waiting to be sent.
  • the specific process of data scheduling is as shown in Figure 2, including steps 201 to 205. The steps are as follows:
  • Step 201 The UE in the RRC idle state has uplink data arriving and waiting to be sent.
  • the UE determines whether the data has a delay tolerance characteristic according to whether the delay tolerance of the received uplink data exceeds a preset threshold of delay tolerance.
  • the preset threshold of the delay tolerance of the uplink arrival data may be previously agreed by the network side and the UE, or may be configured by the network side by using the S1 dedicated signaling, the RRC dedicated signaling, or the MAC CE.
  • the delay indicator included in the QoS parameter corresponding to the uplink arrival data of the UE exceeds the preset threshold of the delay tolerance. Therefore, in this embodiment, the uplink is Data reaches latency tolerance.
  • Step 203 The UE buffers the uplink arrival data with delay tolerance characteristics, and delays initiating a random access procedure.
  • the UE caches the uplink arrival data with delay tolerance characteristics in the uplink data transmission buffer.
  • Step 204 The UE determines whether the total amount of data to be sent in the uplink data transmission buffer area reaches or exceeds a preset threshold. If the preset threshold is met or exceeded, step 205 is performed; otherwise, step 203 is performed;
  • the preset threshold is a preset threshold of the amount of buffered data, and the threshold is pre-agreed by the UE and the network side.
  • the total amount of data arriving in the uplink exceeds the preset threshold of the amount of buffered data. Therefore, the UE should send the uplink arrival data.
  • Step 205 The UE sends the uplink arriving data.
  • the UE is in the RRC idle state, so the UE first initiates a random access procedure and establishes an RRC connection, and then establishes a corresponding DRB (Data Radio Bearer), and then transmits the arrived uplink data.
  • DRB Data Radio Bearer
  • Scenario 2 Assuming that the UE is in the RRC idle state and there is uplink data arriving and waiting to be sent, the data scheduling process is as shown in FIG. 3, including steps 301 to 305. Specific steps are as follows:
  • Step 301 The UE is in an RRC idle state, and at this time, there is an uplink data arrival corresponding to the UE, and waiting for transmission;
  • Step 302 The UE determines that the uplink arrival data has a delay tolerance characteristic. In this embodiment, the UE determines whether the uplink arrival data has delay tolerance characteristics according to whether the logical channel including the uplink arrival data is a delay tolerant logical channel. .
  • the logical channel including the uplink arrival data is a delay tolerant logical channel, so the uplink arriving data has a delay tolerance characteristic.
  • Step 303 The UE buffers the uplink arrival number of the logical channel included in the delay tolerance. According to, and postponed the initiation of the random access process;
  • the UE caches the uplink arrival data with delay tolerance characteristics in an uplink data transmission buffer corresponding to the logical channel.
  • Step 304 The UE determines whether the total amount of data in the uplink data transmission buffer corresponding to the logical channel including the uplink arrival data meets or exceeds a preset threshold. If the preset threshold is met or exceeded, step 305 is performed. Otherwise, the execution is performed. Step 303;
  • the preset threshold is a preset threshold of the buffered data volume, and the threshold is previously agreed by the UE and the network side.
  • the total amount of data arriving in the uplink exceeds a preset threshold of the amount of buffered data, so the UE should next send the uplink arrival data.
  • Step 305 The UE sends uplink arrival data.
  • the UE because the UE is in the RRC idle state, the UE first initiates a random access procedure to establish an RRC connection, and then establishes a corresponding DRB (Data Radio Bearer), and then sends the arrived uplink data.
  • DRB Data Radio Bearer
  • Scenario 3 Assume that the UE is in the RRC idle state and the base station has downlink data corresponding to the UE arriving and waiting for transmission. At this time, the data scheduling process includes steps 401 to 405 as shown in FIG. Specific steps are as follows:
  • Step 401 The UE is in an RRC idle state, and the base station has downlink data corresponding to the UE and waits for transmission;
  • Step 402 The base station determines that the arrived downlink data has a delay tolerance characteristic. In this embodiment, the base station determines whether the data has a delay tolerance characteristic according to whether the arrived downlink data belongs to the delay tolerant service.
  • the service to which the downlink arrival data of the base station belongs is a delay tolerant service. Therefore, in this embodiment, the downlink arrival data has a delay tolerance characteristic.
  • Step 403 The base station buffers the downlink arrival data of the service that belongs to the delay tolerance, and delays sending the paging message.
  • Step 404 The base station determines whether the time when the downlink arrival data of the delay-tolerant service is delayed reaches or exceeds the upper limit of the delay tolerance time of the data. If the upper limit of the delay tolerance time is reached or exceeded, the step is performed. 405, otherwise, performing step 403;
  • the upper limit of the delay tolerance time is a delay indicator included in the QoS parameter corresponding to the downlink arrival data, or is a delay tolerance that is agreed between the UE and the network side and corresponds to the service to which the downlink arrival data belongs.
  • the delay time of the downlink arrival data has reached the upper limit of the delay tolerance time, so the base station will send the downlink arrival data next.
  • Step 405 The base station sends the arrived downlink data.
  • the UE is in the RRC idle state, so the base station sends a paging message to notify the UE that downlink data arrives, and then the UE initiates a random access procedure to establish an RRC connection, and establishes a corresponding DRB (Data Radio Bearer: data wireless Bearer), and then receive downlink data sent by the base station.
  • DRB Data Radio Bearer: data wireless Bearer
  • Scenario 4 Assume that the UE is in the RRC idle state and the base station has downlink data corresponding to the UE arriving and waiting for transmission. At this time, the data scheduling process is as shown in FIG. 5, including steps 501 to 505. Specific steps are as follows:
  • Step 501 The UE is in an RRC idle state, and at this time, the base station has downlink data corresponding to the UE, and waits to be sent to the UE;
  • Step 502 The base station determines that the downlink data that arrives has a delay tolerance characteristic. In this embodiment, the base station determines whether the downlink arrival data has a delay tolerance characteristic according to whether the UE corresponding to the downlink arrival data is a delay tolerant user equipment.
  • the base station learns that the UE is a delay tolerant user equipment according to the information about the UE stored by the device such as the core network. Therefore, the downlink arrival data has a delay tolerance characteristic.
  • Step 503 The base station buffers the downlink arrival data corresponding to the delay tolerant UE, and delays initiating the paging process.
  • Step 504 The base station determines that the downlink arrival data corresponding to the delay tolerant device is delayed. Whether the time reaches or exceeds the upper limit of the delay tolerance time of the data, if the upper limit of the delay tolerance time is reached or exceeded, step 505 is performed, otherwise, step 503 is performed;
  • the upper limit of the delay tolerance time is the sum of the network side and the delay tolerant UE, wherein the time offset is also a specific value agreed upon by the network side and the UE;
  • the delay time of the downlink arrival data has reached the upper limit of the delay tolerance time, so the base station will send the uplink arrival data.
  • Step 505 The base station sends the arrived downlink data.
  • the UE is in the RRC idle state, so the base station sends a paging message to notify the UE that downlink data arrives, and then the UE initiates a random access procedure to establish an RRC connection, and establishes a corresponding DRB (Data Radio Bearer: data wireless Bearer), and then receive downlink data sent by the base station.
  • DRB Data Radio Bearer: data wireless Bearer
  • Scenario 5 Assume that the UE is in the RRC connected state and the base station has downlink data corresponding to the UE arriving and waiting for transmission. At this time, the data scheduling process includes steps 601 to 605 as shown in FIG. 6. Specific steps are as follows:
  • Step 601 The UE is in an RRC connected state, and at this time, the base station has downlink data corresponding to the UE, and waits to be sent to the UE;
  • Step 602 The base station determines that the arrived downlink data has a delay tolerance characteristic.
  • the base station determines whether the data has delay tolerance according to whether the delay tolerance of the arrived downlink data exceeds a preset threshold of delay tolerance. characteristic.
  • the preset threshold of the delay tolerance of the downlink arrival data is set by the network side according to network performance and the like.
  • the delay indicator included in the QoS parameter corresponding to the downlink arrival data exceeds the preset threshold of the delay tolerance. Therefore, in this embodiment, the downlink arrival data has a delay tolerance characteristic.
  • Step 603 The base station buffers the downlink arrival data with delay tolerance characteristics, and delays sending downlink arrival data.
  • the base station caches the downlink arrival data with delay tolerance characteristics under The line data is sent in the buffer area.
  • Step 604 The base station determines whether the total amount of data to be sent corresponding to the buffer area corresponding to the downlink data of the UE meets or exceeds a preset threshold. If the preset threshold is met or exceeded, step 605 is performed. Otherwise, , performing step 603;
  • the preset threshold is a preset threshold of the buffered data amount, and the threshold is set by the network side according to the network performance requirement, and is configured in the core network and/or the base station.
  • the total amount of data arriving in the downlink exceeds a preset threshold of the amount of buffered data, so the base station should next transmit the downlink arrival data.
  • Step 605 The base station sends the arrived data.
  • the UE is in an RRC connection, so the base station adds the arrived downlink data to the scheduling sequence, and then sends the downlink data.
  • Scenario 6 Assume that the UE is in the RRC connected state and has uplink data arriving and waiting for transmission. At this time, the data scheduling process includes steps 701 to 705 as shown in FIG. Specific steps are as follows:
  • Step 701 The UE in the RRC connected state has uplink data arrives and waits for transmission.
  • the UE determines whether the uplink arrival data has a delay tolerance characteristic according to whether the logical channel including the uplink arrival data is a delay tolerant logical channel.
  • the logical channel including the uplink arrival data is a delay tolerant logical channel, so the uplink arriving data has a delay tolerance characteristic.
  • Step 703 The UE buffers the uplink arrival data of the logical channel included in the delay tolerance, and delays triggering the SR.
  • the UE caches the uplink arrival data with delay tolerance characteristics in an uplink data transmission buffer corresponding to the logical channel.
  • Step 704 The UE determines whether the total amount of data in the uplink data transmission buffer area corresponding to the logical channel including the uplink arrival data reaches or exceeds a preset threshold. If the preset threshold is reached or exceeded, step 705 is performed. Otherwise, the execution is performed. Step 703; In this embodiment, the preset threshold is a preset threshold of the buffered data amount, and the threshold is configured by the network side for the UE by using S1 dedicated signaling, RRC dedicated signaling, or MAC CE.
  • the total amount of data arriving in the uplink exceeds a preset threshold of the amount of buffered data, so the UE should next send the uplink arrival data.
  • Step 705 The UE sends the arrived uplink data.
  • the UE is in the RRC connected state, so the UE first sends an SR (Schedule Request) to apply for an uplink resource, and the network side (base station) allocates a UL Grant (Uplink Grant) to the UE.
  • the uplink resource indicated by the UL Grant transmits the uplink data that arrives.
  • Scenario 7 Assume that the UE is in the RRC connected state and the base station has downlink data corresponding to the UE arriving and waiting to be sent to the UE.
  • the data scheduling process includes steps 801 to 805 as shown in FIG. 8. Specific steps are as follows:
  • Step 801 The UE is in an RRC connected state, and at this time, the base station has downlink data corresponding to the UE, and waits to be sent to the UE.
  • Step 802 The base station determines that the downlink arrival data has a delay tolerance characteristic.
  • the base station determines whether the downlink arrival data has a delay tolerance characteristic according to a characteristic of a data radio bearer for carrying downlink arrival data, that is, whether the data radio bearer is delay tolerant.
  • the data radio bearer for carrying the downlink arrival data is delay tolerant, so the downlink arrival data has a delay tolerance characteristic.
  • Step 803 The base station buffers the downlink arrival data included in the data bearer of the delay tolerance, and delays the operation of adding the downlink arrival data to the scheduling sequence.
  • Step 804 The base station determines whether the delayed time of the downlink arrival data included in the delay tolerated data radio bearer reaches or exceeds an upper limit of the delay tolerance time of the data, if the upper limit of the delay tolerance time of the data is reached or exceeded. , step 805 is performed, otherwise, step 803 is performed;
  • the upper limit of the delay tolerance time is agreed by the UE and the network side in advance.
  • Step 805 The base station sends the arrived data.
  • the UE is in the RRC connected state, so the base station adds the arrived downlink data to the scheduling sequence, and then sends the downlink data.
  • Scenario 8 Assume that the UE is in the RRC connected state, and the UE has uplink data arriving and waiting for transmission. At this time, the data scheduling process includes steps 901 to 905 as shown in FIG. The specific steps are as follows: Step 901: The UE is in an RRC connected state and has uplink data arriving and waiting to be sent;
  • Step 902 The UE determines that the uplink arrival data has a delay tolerance characteristic.
  • the UE determines whether the uplink arrival data has a delay tolerance characteristic according to whether the logical channel including the uplink arrival data is a delay tolerant logical channel.
  • the logical channel including the uplink arrival data is a delay tolerant logical channel, and therefore, the uplink arrival data has a delay tolerance characteristic.
  • Step 903 The uplink arrival data triggered by the delay tolerant logical channel triggers the SR, the UE buffers the data, and delays sending the SR;
  • Step 904 The UE determines whether the time when the uplink arrival data of the logical channel included in the delay tolerance is delayed reaches or exceeds the upper limit of the delay tolerance time of the data. If the upper limit of the delay tolerance time is reached or exceeded, step 905 is performed. Otherwise, step 903 is performed, that is, the data is cached, and the SR is postponed;
  • the upper limit of the delay tolerance time is configured by the network side for the UE by using S1 dedicated signaling, RRC dedicated signaling, or MAC CE, or a logical channel agreed by the network side and the UE in advance and delay tolerant.
  • the delay time of the uplink arrival data has reached the delay tolerance time.
  • the upper limit therefore, the UE will send the uplink arrival data next.
  • Step 905 The UE sends uplink arrival data.
  • the UE is in the RRC connected state, so the UE first sends an SR (Schedule Request) to apply for an uplink resource, and the network side (base station) allocates a UL Grant (Uplink Grant) to the UE.
  • the uplink resource indicated by the UL Grant transmits the uplink data that arrives.
  • Scenario 9 Assume that the UE is in the RRC idle state and has uplink data arriving and waiting for transmission. At this time, the data scheduling process includes steps 1001 to 1003 as shown in FIG. Specific steps are as follows:
  • Step 1001 The UE in the RRC idle state has uplink data arriving and waiting for transmission.
  • the preset threshold of the delay tolerance of the uplink arrival data may be previously agreed by the network side and the UE, or may be configured by the network side by using the S1 dedicated signaling, the RRC dedicated signaling, or the MAC CE.
  • the delay indicator included in the QoS parameter corresponding to the uplink arrival data of the UE does not exceed the preset threshold of the delay tolerance. Therefore, in this embodiment, the uplink arrival data does not have a delay. Tolerance characteristics.
  • Step 1003 The UE sends the uplink arriving data.
  • the UE is in the RRC idle state, so the UE first initiates a random access procedure and establishes an RRC connection, and then establishes a corresponding DRB (Data Radio Bearer), and then sends the arrived uplink data.
  • DRB Data Radio Bearer
  • Scenario 10 It is assumed that the UE is in the RRC connected state and the base station has downlink data corresponding to the UE arriving and waiting for transmission. At this time, the data scheduling process includes steps 1101 to 1103 as shown in FIG. Specific steps are as follows:
  • Step 1101 The UE is in an RRC connected state, and at this time, the base station has a downlink number corresponding to the UE. According to arrival, and waiting to be sent to the UE;
  • Step 1102 The base station determines that the downlink arrival data does not have a delay tolerance characteristic. In this embodiment, the base station determines whether the downlink arrival data has delay tolerance according to whether the logical channel including the downlink arrival data is a delay tolerant logical channel. characteristic.
  • the logical channel including the downlink arrival data is not the delay tolerant logical channel, so the data arriving in the downlink does not have the delay tolerance characteristic.
  • Step 1103 The base station sends downlink arrival data.
  • the UE is in an RRC connection, so the base station adds the arrived downlink data to the scheduling sequence, and then sends the downlink data.
  • the embodiment provides a device for data scheduling, and the device may be a base station or a user equipment.
  • the device includes at least a first module and a second module.
  • the first module is configured to determine whether the arrived data has a delay tolerance characteristic when the device has data arriving.
  • the delay tolerance feature refers to: delaying data during data scheduling and delivery.
  • the second module is configured to: delay the arrival and transmission of the arrived data when the arrived data has a delay tolerance characteristic, and immediately initiate a call flow or immediately initiate a data transmission process when the arrived data does not have a delay tolerance characteristic.
  • the device when the device is a user equipment, the device has data arrival means that the user equipment has uplink data arrives.
  • the device is a base station, the device has data arrival means that the base station has downlink data corresponding to the user equipment.
  • the first module can determine that the arrived data has a delay tolerance characteristic:
  • the delay tolerance of the arrived data exceeds the first preset threshold (the delay tolerance of the data arriving in this embodiment is: the delay indicator included in the quality of service QOS level corresponding to the arrived data); a service with delay tolerance characteristics;
  • the arriving data is included in a logical channel with delay tolerance characteristics;
  • the arriving data is included in the data radio bearer with delay tolerance characteristics
  • the user equipment corresponding to the arrived data has a delay tolerance characteristic.
  • the first preset threshold may be set by any of the following methods:
  • the user equipment and the network side agree in advance;
  • the network side configures the user equipment by using S1 dedicated signaling, radio resource control (RRC) dedicated signaling, or media access control layer control element (MAC CE);
  • RRC radio resource control
  • MAC CE media access control layer control element
  • the network side sets itself and configures it on the core network and/or base station.
  • the second module delays the scheduling and sending of the data.
  • the user equipment delays scheduling and sending the arrived data after initiating the random access procedure, or the base station delays the scheduling after the paging process is initiated. And send the arrived data.
  • the user equipment delays scheduling and sending the arrived data after triggering the scheduling request, or delays sending the scheduling request to reschedule and send the arrived data after triggering the scheduling request.
  • the second module schedules and sends the arrived data: the total amount of data to be sent in the uplink data transmission buffer area or the downlink data transmission buffer area corresponding to the user equipment is or Exceeding the second preset threshold;
  • the arriving data is delayed until the upper limit of the delay tolerance time is reached.
  • the time when the arrived data is delayed reaches the upper limit of the delay tolerance time: the time when the data is delayed is greater than or equal to the upper limit of the delay tolerance time; or the time when the data is delayed plus the preset time offset is greater than or equal to the delay
  • the preset time offset may be previously agreed with the user equipment through the network side, or the network side may be configured for the user equipment by using S1 dedicated signaling, RRC dedicated signaling, or MAC CE.
  • the second preset threshold and the third preset threshold may be preset by any one of the following methods:
  • the user equipment and the network side agree in advance;
  • the network side configures the user equipment through SI dedicated signaling, RRC dedicated signaling, or MAC CE;
  • the network side sets itself and is configured in the core network and/or the base station.
  • the upper limit of the delay tolerance time is preset by any of the following methods:
  • the delay indicator included in the quality of service level corresponding to the arrived data is used as an upper limit of the delay tolerance time
  • the network side configures the user equipment through S1 dedicated signaling, RRC dedicated signaling, or MAC CE.
  • the technical solution of the present application delays scheduling of service data with delay tolerance characteristics, thereby alleviating the resource pressure of PUSCH and PDSCH, and optimizing system efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据调度方法及装置,该方法包括:当设备有数据到达,所述设备判断到达的数据是否具有延迟容忍特性,如果所述到达的数据具有延迟容忍特性,则所述设备延迟所述到达的数据的调度和发送,如果所述到达的数据不具有延迟容忍特性,则所述设备立即发起呼叫流程或者立即发起数据发送流程;其中,所述设备为用户设备或者基站,当所述设备为用户设备时,所述到达的数据为上行数据,所述设备为基站时,所述到达的数据为对应于用户设备的下行数据。本申请技术方案对具有延迟容忍特性的业务数据的延迟调度,从而缓解了PUSCH、PDSCH的资源压力,优化了系统效率。

Description

一种数据调度方法及装置
技术领域
本发明涉及无线通信领域, 尤其涉及一种数据调度方法及装置。 背景技术
近年来, 随着通信技术的飞速发展, 智能手机逐渐成为了手机市场的主 流。 与这一趋势相适应的是各种适用于智能手机的应用程序如雨后春笋般的 涌现, 这极大地丰富了人们的生活, 甚至改变了人们传统的生活和娱乐的方 式。
但是, 这样的发展也导致了新的问题。 各种应用于智能手机的应用程序 会产生各种各样业务, 这些业务的特性各不相同, 其数据包的发送特性也大 相径庭,其中,最具有代表性的就是即时通信业务( IM Traffic: Instant Message Traffic )和背景业务(BG Traffic: Background Traffic ) 。
在现有的技术中, 各种业务产生的数据包的发送可以根据其方向和 UE
( user equipment, 用户设备) 所处状态进行划分, 分别对应于不同方法:
1. 若 UE处于 RRC— IDLE ( Radio Resource Control IDLE: 无线资源控制 空闲)状态, 并且有上行数据到达, 则 UE将发起随机接入过程, 使 UE进 入 RRC— CONNECTED ( Radio Resource Control CONNECTED: 无线资源控 制连接)状态;
2. 若 UE处于 RRC— CONNECTED状态, 并且有上行数据到达, 则 UE 将向网络侧发送 SR ( Schedule Request: 调度请求) 申请上行资源;
3. 若 UE处于 RRC— IDLE状态, 并且网络侧有对应于该 UE的下行数据 到达, 则核心网将会指示基站向 UE发送寻呼(Paging )消息, 而 UE在收到 该消息后将会发起随机接入过程, 进而进入 RRC— CONNECTED状态;
4. 若 UE处于 RRC— CONNECTED状态, 并且网络侧有对应于该 UE的 下行数据到达, 则基站将会把该数据加入调度序列, 进而发送给 UE。
在上述发送方法的基础上, UE 或网络侧会按照待发送数据的优先级, 使用不同的逻辑信道承载数据, 并且通过不同的 DRB ( Data Radio Bearer: 数据无线承载)进行数据的发送。 而与发送相关的各种配置则由网络侧通过 S1 信令(核心网与基站之间的控制面数据传送渠道) 、 RRC信令(基站与 UE之间的控制面信令传送渠道)或者 MAC CE ( Media Access Control Layer Control Element: MAC层控制元素 )进行配置。
同时, 在现有技术中, QoS ( Quality of Service: 服务质量)功能中也已 经包含了部分关于数据包延迟要求的参数。
由于适用于智能手机的业务所产生的数据包的发送往往毫无规律可循, 而且, 数据包的 Size往往不大, 所以, 基于现行的数据包的发送的方法, 类 似业务的应用会给网络和 UE带来新的压力, 譬如: 信令开销增大、 网络资 源利用率低、 UE耗电量增大等等, 这些都是亟待解决的问题。
发明内容
本发明提供一种数据调度方法及装置, 以减少应用给网络和 UE带来的 压力。
为了解决上述技术问题, 本发明公开了一种数据调度的方法, 包括: 当设备有数据到达, 所述设备判断到达的数据是否具有延迟容忍特性, 如果所述到达的数据具有延迟容忍特性, 则所述设备延迟所述到达的数据的 调度和发送, 如果所述到达的数据不具有延迟容忍特性, 则所述设备立即发 起呼叫流程或者立即发起数据发送流程;
其中, 所述设备为用户设备或者基站, 当所述设备为用户设备时, 所述 到达的数据为上行数据, 当所述设备为基站时, 所述到达的数据为对应于用 户设备的下行数据。 所述延迟容忍特性是指: 在数据的调度和传递过程中对数据进行延时。 当所述到达的数据符合如下一个或多个条件时, 所述设备判断到达的数 据具有延迟容忍特性: 所述到达的数据的延迟容忍度超过第一预设门限; 所 述到达的数据所属业务为具有延迟容忍特性的业务; 所述到达的数据包含于 具有延迟容忍特性的逻辑信道; 所述到达的数据包含于具有延迟容忍特性的 数据无线承载; 以及 所述到达的数据对应的用户设备具有延迟容忍特性。 所述到达的数据的延迟容忍度为: 所述到达的数据所对应的服务质量等 级中包含的延迟指标。 所述到达的数据的延迟容忍度超过第一预设门限指: 所述到达的数据所 对应的服务质量等级中包含的延迟指标超过第一预设门限。 所述第一预设门限通过以下任一种方法进行设置: 用户设备与网络侧事 先约定; 网络侧通过 S1 专用信令、 无线资源控制 (RRC ) 专用信令或媒体 接入控制层控制元素 (MAC CE ) 为用户设备配置; 以及网络侧自行设定, 并配置在核心网和 /或基站。 所述设备延迟所述到达的数据的调度和发送的步骤包括: 在用户设备处 于无线资源控制空闲状态时, 所述用户设备推迟发起随机接入过程后调度和 发送所述到达的数据, 或者基站推迟发起寻呼过程后调度和发送所述到达的 数据; 在用户设备处于无线资源控制连接状态时, 所述用户设备推迟触发调 度请求后调度和发送所述到达的数据, 或者触发调度请求后延迟发送该调度 请求再调度和发送所述到达的数据。 该方法还包括: 在满足如下一个或多个条件时, 所述设备调度并且发送 具有延迟容忍特性的所述到达的数据: 对应于所述用户设备的上行数据发送 緩存区或者下行数据发送緩存区内的待发送数据的总量达到或超过第二预设 门限; 对应于所述用户设备的、 包含上行到达数据或者下行到达数据的逻辑 信道的緩存区内的数据总量到达或者超过第三预设门限; 以及所述到达的数 据被延迟的时间达到延迟容忍时间的上限。 所述第二预设门限和第三预设门限通过以下任一种方法预先设置: 用户 设备与网络侧事先约定; 网络侧通过 S1专用信令、 RRC专用信令或 MAC CE 为用户设备配置; 以及 网络侧自行设定, 并配置在核心网和 /或基站。 所述延迟容忍时间的上限通过以下任一种方法预先设置: 将所述到达的 数据对应的服务质量等级中包含的延迟指标作为延迟容忍时间的上限; 将网 络侧和用户设备事先约定的、 与所述到达的数据对应的业务对应的延迟容忍 时间作为延迟容忍时间的上限; 将网络侧和用户设备事先约定的、 与包含所 网络侧和用户设备事先约定的、 与包含所述到达的数据的无线承载对应的延 迟容忍时间作为延迟容忍时间的上限; 将网络侧与延迟容忍的用户设备事先 的上限; 以及网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为用户设 备配置。 所述到达的数据被延迟的时间达到延迟容忍时间的上限指: 所述数据被 延迟的时间大于等于延迟容忍时间的上限; 或者所述数据被延迟的时间加上 预设的时间偏置大于等于延迟容忍的时间的上限。 所述预设的时间偏置通过以下任一种方法预先设置: 网络侧与用户设备 事先约定; 以及 网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为用 户设备配置。 本发明还公开了一种数据调度的装置, 包括:
第一模块, 其设置成当设备有数据到达, 判断到达的数据是否具有延迟 容忍特性; 以及
第二模块, 其设置成: 在所述到达的数据具有延迟容忍特性时, 延迟所 述到达的数据的调度和发送, 以及, 在所述到达的数据不具有延迟容忍特性 时, 立即发起呼叫流程或者立即发起数据发送流程;
其中, 所述设备为用户设备或者基站, 当所述设备为用户设备时, 所述 到达的数据为上行数据, 当所述设备为基站时, 所述到达的数据为对应于用 户设备的下行数据。 所述延迟容忍特性是指: 在数据的调度和传递过程中对数据进行延时。 所述第一模块是设置成在所述到达的数据符合如下一个或多个条件时, 判断所述到达的数据具有延迟容忍特性: 所述到达的数据的延迟容忍度超过 第一预设门限; 所述到达的数据所属业务为具有延迟容忍特性的业务; 所述 到达的数据包含于具有延迟容忍特性的逻辑信道; 所述到达的数据包含于具 有延迟容忍特性的数据无线承载; 以及所述到达的数据对应的用户设备具有 延迟容忍特性。 所述到达的数据的延迟容忍度为: 所述到达的数据所对应的服务质量等 级中包含的延迟指标。 所述到达的数据的延迟容忍度超过第一预设门限指: 所述到达的数据所 对应的服务质量等级中包含的延迟指标超过第一预设门限。 所述第一预设门限通过以下任一种方法进行设置: 用户设备与网络侧事 先约定; 网络侧通过 S1 专用信令、 无线资源控制 (RRC ) 专用信令或媒体 接入控制层控制元素 (MAC CE ) 为用户设备配置; 以及网络侧自行设定, 并配置在核心网和 /或基站。 所述第二模块是设置成通过以下方式延迟所述到达的数据的调度和发 送: 在用户设备处于无线资源控制空闲状态时, 使所述用户设备推迟发起随 机接入过程后调度和发送所述到达的数据, 或者使基站推迟发起寻呼过程后 调度和发送所述到达的数据; 在用户设备处于无线资源控制连接状态时, 使 所述用户设备推迟触发调度请求后调度和发送所述到达的数据, 或者使所述 用户设备触发调度请求后延迟发送该调度请求再调度和发送所述到达的数 据。 所述第二模块还设置成在满足如下一个或多个条件时, 调度和发送具有 延迟容忍特性的所述到达的数据: 对应于所述用户设备的上行数据发送緩存 区或者下行数据发送緩存区内的待发送数据的总量达到或超过第二预设门 限; 对应于所述用户设备的、 包含上行到达数据或者下行到达数据的逻辑信 道的緩存区内的数据总量到达或者超过第三预设门限; 以及所述到达的数据 被延迟的时间达到延迟容忍时间的上限。 所述第二预设门限和第三预设门限通过以下任一种方法预先设置: 用户 设备与网络侧事先约定;网络侧通过 S1专用信令、 RRC专用信令或 MAC CE 为用户设备配置; 以及网络侧自行设定, 并配置在核心网和 /或基站。 所述延迟容忍时间的上限通过以下任一种方法预先设置: 将所述到达的 数据对应的服务质量等级中包含的延迟指标作为延迟容忍时间的上限; 将网 络侧和用户设备事先约定的、 与所述到达的数据对应的业务对应的延迟容忍 时间作为延迟容忍时间的上限; 将网络侧和用户设备事先约定的、 与包含于 将网络侧和用户设备事先约定的、 与包含于所述到达的数据的无线承载对应 的延迟容忍时间作为延迟容忍时间的上限; 将网络侧与延迟容忍的用户设备 时间的上限; 以及网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为用 户设备配置。 所述到达的数据被延迟的时间达到延迟容忍时间的上限指: 所述数据被 延迟的时间大于等于延迟容忍时间的上限; 或者所述数据被延迟的时间加上 预设的时间偏置大于等于延迟容忍的时间的上限。 所述预设的时间偏置通过以下任一种方法预先设置: 网络侧与用户设备 事先约定; 以及网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为用户 设备配置。
本申请技术方案对具有延迟容忍特性的业务数据的延迟调度, 从而緩解 了 PUSCH、 PDSCH的资源压力, 优化了系统效率。
附图概述
图 1是本发明实施方式提供的一种数据调度方法的流程示意图; 图 2是本发明实施例 1提供的一种上行数据调度方法的流程示意图; 图 3是本发明实施例 2提供的一种下行数据调度方法的流程示意图; 图 4是本发明实施例 3提供的一种上行数据调度方法的流程示意图; 图 5是本发明实施例 4提供的一种下行数据调度方法的流程示意图; 图 6是本发明实施例 5提供的一种下行数据调度方法的流程示意图; 图 7是本发明实施例 6提供的一种上行数据调度方法的流程示意图; 图 8是本发明实施例 7提供的一种下行数据调度方法的流程示意图; 图 9是本发明实施例 8提供的一种上行数据调度方法的流程示意图; 图 10是本发明实施例 9提供的一种上行数据调度方法的流程示意图; 图 11是本发明实施例 10提供的一种下行数据调度方法的流程示意图。
本发明的较佳实施方式
下文将结合附图对本发明技术方案作进一步详细说明。 需要说明的是, 在不冲突的情况下, 本申请的实施例和实施例中的特征可以任意相互组合。
实施例 1
申请人对适用于智能手机的业务的数据包发送特性进行分析, 发现这些 业务涉及到的数据包对实时性的要求往往不是很高, 也就是说, 这些业务的 数据包可以容忍一定时间的延迟, 即如果将数据包的发送延后, 也不会影响 或者很明显的影响用户的体验。 因此, 为解决类似业务的应用对网络和 UE 所造成的新的压力, 申请人提出可以根据具体业务涉及的数据包对延迟的要 求对数据包釆取合理的调度措施, 从而緩解或解决业务的应用对网络和 UE 所造成的压力。
具体地, 当设备有数据到达, 所述设备判断到达的数据是否具有延迟容 忍特性, 如果到达的数据具有延迟容忍特性, 则设备延迟所述到达的数据的 调度和发送, 如果到达的数据不具有延迟容忍特性, 则设备立即发起呼叫流 程(即当 UE处于 RRC空闲态时发起呼叫流程 )或者立即发起数据发送流程 (即当 UE处于 RRC 连接态时发起数据发送流程 ) 。
其中, 设备为 UE ( user equipment, 用户设备 )或者基站。 当设备为 UE 时, 指用户设备有上行数据到达, 所述设备为基站时, 指基站有对应于用户 设备的下行数据到达。
而本实施例中所涉及的延迟容忍特性是指: 在数据的调度和传递过程中 对数据进行延时。 实现过程。
图 1是本实施所提供的数据调度的具体过程, 该过程包括如下步骤 101 至步骤 105。 具体步骤如下:
步骤 101 : UE有上行数据到达并等待发送或者基站有下行数据到达并等 待发送;
步骤 102: UE或基站判断所述到达数据是否具有延迟容忍特性, 若数据 具有延迟容忍特性, 则执行步骤 103 , 否则, 则执行步骤 105;
其中, 当到达的数据符合如下一个或多个条件时, 所述设备判断到达的 数据具有延迟容忍特性:
1 )到达的数据(上行到达数据 /下行到达数据) 的延迟容忍度超过第一 预设门限;
2 )到达的数据(上行或下行数据)所属业务为具有延迟容忍特性的业务;
4 )到达的数据 (上行或下行数据 )包含于具有延迟容忍特性的数据无线 承载;
5 )到达的数据对应的 UE是具有延迟容忍特征的设备。
上述步骤所述的到达的数据 (上行到达数据 /下行到达数据 )的延迟容忍 度指: 到达的数据所对应的服务质量等级 (QoS: Quality of Service) 中包含的 延迟指标。
而到达的数据(上行到达数据) 的延迟容忍度对应的第一预设门限可以 由网络侧和 UE事先约定, 也可由网络侧通过 S1 专用信令或无线资源控制 ( RRC ) 专用信令或媒体接入控制层控制元素 (MAC CE ) 为 UE配置, 还 可以由网络侧自行设定, 并配置在核心网和 /或基站。
步骤 103: 所述 UE或基站緩存所述具有延迟容忍特性的数据; 若此时 UE处于无线资源控制空闲状态, 所述 UE推迟发起随机接入过 程, 或者基站推迟发起寻呼过程; 若此时 UE处于无线资源控制连接状态时, 所述 UE推迟触发调度请求, 或者触发调度请求后延迟发送该调度请求。
步骤 104: 所述 UE或基站判断是否调度所述具有延迟容忍特性的数据, 若是, 则执行步骤 105, 若否, 则执行步骤 103;
下条件之一或组合:
对应于该 UE 的上行发送数据緩存区或者下行数据发送緩存区内的待 发送数据的总量达到或超过第二预设门限;
对应于该 UE的、包含上行到达数据或者下行到达数据的逻辑信道的緩 存区内的数据总量到达或超过第三预设门限时;
具有延迟容忍特性的数据被延迟的时间达到或超过延迟容忍时间的上 限。
其中, 第二预设门限和第三预设门限可以釆用如下方法之一进行设置:
UE与网络侧事先约定;
网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为 UE配置; 网络侧自行设定, 并配置在核心网和 /或基站。
延迟容忍时间的上限可以釆用如下方法之一进行设置:
将到达的数据对应的服务质量等级 (QoS: Quality of Service)中包含的延 迟指标作为延迟容忍时间的上限; 将网络侧和 UE事先约定的、 与到达的数据对应的业务对应的延迟容忍 时间作为延迟容忍时间的上限;
将网络侧和用户设备事先约定的、 与包含到达的数据的逻辑信道对应的 延迟容忍时间作为延迟容忍时间的上限;
将网络侧和用户设备事先约定的、 与包含所述到达的数据的无线承载对 应的延迟容忍时间作为延迟容忍时间的上限;
将网络侧与延迟容忍的 UE事先约定的、 与具有延迟容忍特性的设备对 网络侧通过 SI专用信令、 RRC专用信令或 MAC CE为 UE配置。
而具有延迟容忍特性的到达的数据被延迟的时间到达延迟容忍时间的上 限指:
数据被延迟的时间大于等于延迟容忍时间的上限;
数据被延迟的时间加上预设的时间偏置, 大于等于延迟容忍的时间的上 限。
其中, 预设的时间偏置, 可以通过如下任一方式设定:
网络侧与 UE事先约定;
网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为 UE配置。
步骤 105: UE或基站发送到达的数据;
其中,若 UE处于 RRC空闲态, 则 UE主动发起随机接入过程建立 RRC 连接, 进而发送到达的上行数据, 或者基站发送寻呼消息, 通知 UE发送随 机接入过程建立 RRC连接, 进而发送到达的下行数据;
若 UE处于 RRC 连接态, 则 UE发送 SR申请上行资源, 进而发送到达 的上行数据,或者基站将到达的下行数据加入调度序列,进而发送下行数据;
下面再结合具体应用场景详细说明上述该方法。
场景一: 假设 UE处于 RRC 空闲态且有上行数据到达并等待发送时, 数据调度的具体过程如图 2所示, 包括步骤 201至 205, 步骤如下:
步骤 201 : 处于 RRC 空闲态的 UE有上行数据到达并等待发送; 步骤 202: UE判断出所述到达的上行数据具有延迟容忍特性;
在本实施例中, UE根据到达的上行数据的延迟容忍度是否超过延迟容 忍度的预设门限来判断该数据是否具有延迟容忍特性。 其中, 所述上行到达 数据的延迟容忍度的预设门限可以由网络侧和 UE事先约定, 也可由网络侧 通过 S1专用信令、 RRC专用信令或 MAC CE为 UE配置。
在本实施例中, 该 UE的上行到达数据对应的 QoS参数中所包含的延迟 指标超过了所述延迟容忍度的预设门限, 所以, 在本实施例中, 所述上行到 达数据具有延迟容忍特性。
步骤 203: UE緩存所述具有延迟容忍特性的上行到达数据, 推迟发起随 机接入过程;
在本实施例中, UE 将所述具有延迟容忍特性的上行到达数据緩存在上 行数据发送緩存区当中。
步骤 204: 所述 UE判断上行数据发送緩存区内的待发送数据的总量是 否达到或超过预设门限, 如果达到或超过预设门限, 则执行步骤 205 , 否则, 执行步骤 203;
其中, 预设门限为緩存数据量的预设门限, 该门限由 UE和网络侧预先 约定。
上行到达的数据的总量超过了緩存数据量的预设门限, 所以, UE接下 来应当发送所述上行到达数据。
步骤 205: UE发送所述上行到达的数据;
此种场景中, UE处于 RRC空闲态, 所以 UE首先主动发起随机接入过 程并且建立 RRC连接, 进而建立相应的 DRB (Data Radio Bearer: 数据无线 承载), 而后发送到达的上行数据。
场景二: 假设 UE处于 RRC空闲态且有上行数据到达并等待发送时, 数据调度过程如图 3所示, 包括步骤 301至 305。 具体步骤如下:
步骤 301 : UE处于 RRC 空闲态, 且此时有对应于该 UE的上行数据到 达, 并等待发送;
步骤 302: 所述 UE判断出所述上行到达数据具有延迟容忍特性; 在本实施例中, UE根据包含上行到达数据的逻辑信道是否是延迟容忍 的逻辑信道, 判断上行到达数据是否具有延迟容忍特性。
在本实施例中, 包含上行到达数据的逻辑信道是延迟容忍的逻辑信道, 所以, 上行到达的数据是具有延迟容忍特性的。
步骤 303: 所述 UE緩存所述包含于延迟容忍的逻辑信道的上行到达数 据, 并且推迟发起随机接入过程;
在本实施例中, UE 将所述具有延迟容忍特性的上行到达数据緩存在所 述逻辑信道对应的上行数据发送緩存区当中。
步骤 304: 所述 UE判断包含上行到达数据的逻辑信道对应的上行数据 发送緩存区内的数据总量是否达到或超过预设门限, 如果达到或超过预设门 限, 则执行步骤 305 , 否则, 执行步骤 303;
本实施例中, 所述预设门限为緩存数据量的预设门限, 该门限为 UE与 网络侧事先约定的。
在本实施例中, 上行到达的数据的总量超过了緩存数据量的预设门限, 所以, UE接下来应当发送所述上行到达数据。
步骤 305: UE发送上行到达数据;
此场景中, 由于 UE处于 RRC空闲态, 所以, UE首先主动发起随机 接入过程建立 RRC连接, 进而建立相应的 DRB (Data Radio Bearer: 数据无 线承载), 而后发送到达的上行数据。
场景三: 假设, UE处于 RRC空闲态且基站有对应于该 UE的下行数据 到达并等待发送, 此时数据调度过程如图 4所示包括步骤 401至 405。 具体 步骤如下:
步骤 401 : UE处于 RRC 空闲态, 且基站有对应于该 UE的下行数据到 达并等待发送;
步骤 402: 基站判断出所述到达的下行数据具有延迟容忍特性; 本实施例中, 基站根据到达的下行数据的是否属于延迟容忍的业务来判 断该数据是否具有延迟容忍特性。
在本实施例中, 该基站的下行到达数据所属的业务是延迟容忍的业务, 所以, 在本实施例中, 所述下行到达数据具有延迟容忍特性。
步骤 403: 基站緩存所述属于延迟容忍的业务的下行到达数据, 并且推 迟发送寻呼消息; 步骤 404: 基站判断所述属于延迟容忍的业务的下行到达数据被延迟的 时间是否达到或超过所述数据的延迟容忍时间的上限, 如果达到或超过所述 延迟容忍的时间的上限, 则执行步骤 405, 否则, 执行步骤 403;
在本实施例中, 所述延迟容忍时间的上限为该下行到达数据对应的 QoS 参数中包含的延迟指标, 或者, 为 UE与网络侧事先约定的、 与该下行到达 数据所属业务对应的延迟容忍时间的具体值, 或者由网络侧根据网络性能要 求自行设定, 并配置在核心网和 /或基站。
在本实施例中, 所述下行到达数据的延迟时间已经到达延迟容忍时间的 上限, 所以, 接下来基站将会发送该下行到达数据。
步骤 405: 基站发送到达的下行数据;
本实施例中, 由于 UE处于 RRC空闲态, 所以, 基站发送寻呼消息, 通知 UE有下行数据到达, 进而 UE发起随机接入过程建立 RRC连接, 并且 建立相应的 DRB (Data Radio Bearer: 数据无线承载), 而后接收基站发送的 下行数据。
场景四: 假设, UE处于 RRC空闲态且基站有对应于该 UE的下行数据 到达并等待发送, 此时数据调度过程如图 5所示, 包括步骤 501至 505。 具 体步骤如下:
步骤 501 : UE处于 RRC空闲态且此时基站有对应于该 UE的下行数据 到达, 并等待发送给该 UE;
步骤 502: 基站判断出所述到达的下行数据具有延迟容忍特性; 本实施例中, 基站根据下行到达数据对应的 UE是否是延迟容忍的用户 设备来判断该下行到达数据是否具有延迟容忍特性。
在本实施例中, 基站根据核心网等设备保存的关于该 UE的信息, 获知 该 UE是延迟容忍的用户设备, 所以, 所述下行到达数据具有延迟容忍特性。
步骤 503: 基站緩存所述对应于该延迟容忍 UE的下行到达数据, 并且 推迟发起寻呼过程;
步骤 504: 基站判断所述对应于延迟容忍设备的下行到达数据被延迟的 时间是否达到或超过所述数据的延迟容忍时间的上限, 如果达到或超过延迟 容忍时间的上限, 则执行步骤 505 , 否则, 执行步骤 503;
在本实施例中, 所述延迟容忍时间的上限为网络侧与延迟容忍的 UE事 的和, 其中, 所述时间偏置也是网络侧与 UE实现约定的具体值;
在本实施例中, 所述下行到达数据的延迟时间已经到达延迟容忍时间的 上限, 所以, 接下来基站将会发送该上行到达数据。 步骤 505: 基站发送到达的下行数据;
本实施例中, 由于 UE处于 RRC空闲态, 所以, 基站发送寻呼消息, 通知 UE有下行数据到达, 进而 UE发起随机接入过程建立 RRC连接, 并且 建立相应的 DRB (Data Radio Bearer: 数据无线承载), 而后接收基站发送的 下行数据。
场景五: 假设, UE处于 RRC 连接态且基站有对应于该 UE的下行数据 到达并等待发送, 此时数据调度过程如图 6所示包括步骤 601至 605。 具体 步骤如下:
步骤 601 : UE处于 RRC 连接态且此时基站有对应于该 UE的下行数据 到达, 并等待发送给该 UE;
步骤 602: 基站判断出所述到达的下行数据具有延迟容忍特性; 在本实施例中, 基站根据到达的下行数据的延迟容忍度是否超过延迟容 忍度的预设门限来判断该数据是否具有延迟容忍特性。 其中, 所述下行到达 数据的延迟容忍度的预设门限由网络侧根据网络性能等要求自行设定。
在本实施例中,该下行到达数据对应的 QoS参数中所包含的延迟指标超 过了所述延迟容忍度的预设门限, 所以, 在本实施例中, 所述下行到达数据 具有延迟容忍特性。
步骤 603: 基站緩存所述具有延迟容忍特性的下行到达数据, 并且推迟 发送下行到达数据;
在本实施例中, 基站将所述具有延迟容忍特性的下行到达数据緩存在下 行数据发送緩存区当中。
步骤 604: 所述基站判断对应于该 UE的、 包含下行发送数据的緩存区 对应的待发送数据的总量是否达到或超过预设门限, 如果达到或超过预设门 限, 则执行步骤 605 , 否则, 执行步骤 603;
本实施例中, 所述预设门限为緩存数据量的预设门限, 该门限由网络侧 根据网络性能要求自行设定, 并配置在核心网和 /或基站。
在本实施例中, 下行到达的数据的总量超过了緩存数据量的预设门限, 所以, 基站接下来应当发送所述下行到达数据。
步骤 605: 基站发送到达的数据;
本实施例中, UE处于 RRC 连接, 所以基站将到达的下行数据加入调度 序列, 进而发送下行数据。
场景六: 假设, UE处于 RRC 连接态且有上行数据到达并等待发送, 此 时数据调度过程如图 7所示包括步骤 701至 705。 具体步骤如下:
步骤 701 : 处于 RRC 连接态的 UE有上行数据到达并等待发送; 步骤 702: UE判断出所述上行到达数据具有延迟容忍特性;
在本实施例中, UE根据包含上行到达数据的逻辑信道是否是延迟容忍 的逻辑信道, 判断上行到达数据是否具有延迟容忍特性。
在本实施例中, 包含上行到达数据的逻辑信道是延迟容忍的逻辑信道, 所以, 上行到达的数据是具有延迟容忍特性的。
步骤 703: UE緩存所述包含于延迟容忍的逻辑信道的上行到达数据, 并 且推迟触发 SR;
在本实施例中, UE 将所述具有延迟容忍特性的上行到达数据緩存在所 述逻辑信道对应的上行数据发送緩存区当中。
步骤 704: 所述 UE判断包含上行到达数据的逻辑信道对应的上行数据 发送緩存区内的数据总量是否到达或超过预设门限, 如果达到或者超过预设 门限, 则执行步骤 705, 否则, 执行步骤 703; 在本实施例中, 所述预设门限为緩存数据量的预设门限, 该门限由网络 侧通过 S1专用信令、 RRC专用信令或 MAC CE为 UE配置。
在本实施例中, 上行到达的数据的总量超过了緩存数据量的预设门限, 所以, UE接下来应当发送所述上行到达数据。
步骤 705: UE发送到达的上行数据;
本实施例中, 由于 UE处于 RRC连接态,所以, UE首先发送 SR (Schedule Request:调度请求)申请上行资源,在网络侧 (基站)为其分配 UL Grant (Uplink Grant: 上行授权), UE利用 UL Grant所指示的上行资源发送到达的上行数 据。
场景七: 假设, UE处于 RRC 连接态且此时基站有对应于该 UE的下行 数据到达并等待发送给该 UE, 此时数据调度过程如图 8所示包括步骤 801 至 805。 具体步骤如下:
步骤 801 : UE处于 RRC 连接态且此时基站有对应于该 UE的下行数据 到达, 并等待发送给该 UE;
步骤 802: 基站判断出所述下行到达数据具有延迟容忍特性;
在本实施例中,基站根据用于承载下行到达数据的数据无线承载的特性, 即该数据无线承载是否是延迟容忍的, 来判断所述下行到达数据是否具有延 迟容忍特性。
在本实施例中, 用于承载下行到达数据的数据无线承载是延迟容忍的, 所以, 所述下行到达数据具有延迟容忍特性。
步骤 803: 基站緩存所述包含于延迟容忍的数据无线承载的下行到达数 据, 推迟将下行到达数据添加到调度序列的操作;
步骤 804: 基站判断所述包含于延迟容忍的数据无线承载的下行到达数 据的被延迟时间是否达到或超过所述数据的延迟容忍时间的上限, 如果达到 或超过所述数据的延迟容忍时间的上限, 则执行步骤 805, 否则, 执行步骤 803;
在本实施例中, 所述延迟容忍时间的上限为 UE与网络侧事先约定的、 与承载该下行到达数据的数据无线承载对应的延迟容忍时间的具体值。
在本实施例中, 所述下行到达数据的延迟时间已经到达延迟容忍时间的 上限, 所以, 接下来基站将会发送该上行到达数据。 步骤 805: 基站发送到达的数据;
本实施例中, UE处于 RRC连接态, 所以基站将到达的下行数据加入 调度序列, 进而发送下行数据。
场景八: 假设, UE处于 RRC 连接态, 并且该 UE有上行数据到达并等 待发送, 此时数据调度过程如图 9所示包括步骤 901至 905。 具体步骤如下: 步骤 901 : UE处于 RRC连接态且有上行数据到达等待发送;
步骤 902: UE判断出所述上行到达数据具有延迟容忍特性;
在本实施例中, UE根据包含上行到达数据的逻辑信道是否是延迟容忍 的逻辑信道, 判断上行到达数据是否具有延迟容忍特性。
在本实施例中, 包含上行到达数据的逻辑信道是延迟容忍的逻辑信道, 所以, 上行到达数据是具有延迟容忍特性的。
步骤 903: 包含于延迟容忍的逻辑信道的上行到达数据触发 SR, UE緩 存所述数据, 并且推迟发送该 SR;
步骤 904: UE判断所述包含于延迟容忍的逻辑信道的上行到达数据被延 迟的时间是否达到或超过所述数据的延迟容忍时间的上限, 如果达到或超过 延迟容忍时间的上限, 则执行步骤 905 , 否则, 执行步骤 903 , 即緩存数据, 推迟发送 SR;
在本实施例中, 所述延迟容忍时间的上限为网络侧通过 S1 专用信令、 RRC专用信令或 MAC CE为 UE配置的, 或者, 网络侧与 UE事先约定的、 与延迟容忍的逻辑信道对应的延迟容忍时间上限的具体值与时间偏置的和, 其中,所述时间偏置也是网络侧通过 S 1专用信令、 RRC专用信令或 MAC CE 为 UE配置的;
在本实施例中, 所述上行到达数据的延迟时间已经到达延迟容忍时间的 上限, 所以, 接下来 UE将会发送该上行到达数据。
步骤 905: UE发送上行到达数据;
本实施例中, 由于 UE处于 RRC连接态,所以, UE首先发送 SR (Schedule Request:调度请求)申请上行资源,在网络侧 (基站)为其分配 UL Grant (Uplink Grant: 上行授权), UE利用 UL Grant所指示的上行资源发送到达的上行数 据。
场景九: 假设, UE处于 RRC空闲态且有上行数据到达并等待发送, 此 时数据调度过程如图 10所示包括步骤 1001至 1003。 具体步骤如下:
步骤 1001 : 处于 RRC空闲态的 UE有上行数据到达并等待发送; 步骤 1002: UE判断出所述到达的上行数据不具有延迟容忍特性; 在本实施例中, UE根据到达的上行数据的延迟容忍度是否超过延迟容 忍度的预设门限来判断该数据是否具有延迟容忍特性。 其中, 所述上行到达 数据的延迟容忍度的预设门限可以由网络侧和 UE事先约定, 也可由网络侧 通过 S1专用信令、 RRC专用信令或 MAC CE为 UE配置。
在本实施例中, 该 UE的上行到达数据对应的 QoS参数中所包含的延迟 指标未超过所述延迟容忍度的预设门限, 所以, 在本实施例中, 所述上行到 达数据不具有延迟容忍特性。
步骤 1003: UE发送所述上行到达的数据;
本实施例中, UE处于 RRC空闲态, 所以 UE首先主动发起随机接入过 程并且建立 RRC连接, 进而建立相应的 DRB (Data Radio Bearer: 数据无线 承载), 而后发送到达的上行数据。
场景十: 假设, UE处于 RRC 连接态且基站有对应于该 UE的下行数据 到达并等待发送, 此时数据调度过程如图 11所示包括步骤 1101至 1103。 具 体步骤如下:
步骤 1101 : UE处于 RRC 连接态,且此时基站有对应于该 UE的下行数 据到达, 并等待发送给该 UE;
步骤 1102: 所述基站判断出所述下行到达数据不具有延迟容忍特性; 在本实施例中, 基站根据包含下行到达数据的逻辑信道是否是延迟容忍 的逻辑信道, 判断下行到达数据是否具有延迟容忍特性。
在本实施例中,包含下行到达数据的逻辑信道不是延迟容忍的逻辑信道, 所以, 下行到达的数据是不具有延迟容忍特性的。
步骤 1103: 基站发送下行到达数据;
本实施例中, UE处于 RRC 连接, 所以基站将到达的下行数据加入调度 序列, 进而发送下行数据。
实施例 2
本实施例提供一种数据调度的装置, 该装置可以是基站或者用户设备。 具体地, 该装置至少包括第一模块和第二模块。
第一模块, 其设置成在本设备有数据到达时, 判断到达的数据是否具有 延迟容忍特性。 其中, 延迟容忍特性是指: 在数据的调度和传递过程中对数 据进行延时。
第二模块, 其设置成: 在到达的数据具有延迟容忍特性时, 延迟到达的 数据的调度和发送, 在到达的数据不具有延迟容忍特性时, 立即发起呼叫流 程或者立即发起数据发送流程。
需要说明的是, 当设备为用户设备时, 本设备有数据到达指用户设备有 上行数据到达。 而当设备为基站时, 本设备有数据到达指基站有对应于用户 设备的下行数据到达。
具体地, 当所述到达的数据符合如下一个或多个条件时, 第一模块即可 判断到达的数据具有延迟容忍特性:
到达的数据的延迟容忍度超过第一预设门限 (本实施例中到达的数据的 延迟容忍度为:到达的数据所对应的服务质量 QOS等级中包含的延迟指标); 到达的数据所属业务为具有延迟容忍特性的业务; 到达的数据包含于具有延迟容忍特性的逻辑信道;
到达的数据包含于具有延迟容忍特性的数据无线承载;
到达的数据对应的用户设备具有延迟容忍特性。
上述第一预设门限可以通过以下任一种方法进行设置:
用户设备与网络侧事先约定;
网络侧通过 S1 专用信令、 无线资源控制 (RRC ) 专用信令或媒体接入 控制层控制元素 (MAC CE )为用户设备配置;
网络侧自行设定, 并配置在核心网和 /或基站。
而第二模块延迟到达的数据的调度和发送指, 当用户设备处于无线资源 控制空闲状态时,用户设备推迟发起随机接入过程后调度和发送到达的数据, 或者基站推迟发起寻呼过程后调度和发送到达的数据。 当用户设备处于无线 资源控制连接状态时,用户设备推迟触发调度请求后调度和发送到达的数据 , 或者触发调度请求后延迟发送该调度请求再调度和发送到达的数据。
具体地,满足如下一个或多个条件时,第二模块调度和发送到达的数据: 对应于所述用户设备的上行数据发送緩存区或者下行数据发送緩存区内 的待发送数据的总量达到或超过第二预设门限;
对应于所述用户设备的、 包含上行到达数据或者下行到达数据的逻辑信 道的緩存区内的数据总量到达或者超过第三预设门限;
到达的数据被延迟的时间达到延迟容忍时间的上限。
要说明的是, 到达的数据被延迟的时间达到延迟容忍时间的上限指: 数 据被延迟的时间大于等于延迟容忍时间的上限; 或者数据被延迟的时间加上 预设的时间偏置大于等于延迟容忍的时间的上限。 其中, 预设的时间偏置可 以通过网络侧与用户设备事先约定, 或者网络侧通过 S1专用信令、 RRC专 用信令或 MAC CE为用户设备配置。
其中, 上述第二预设门限和第三预设门限均可以通过以下任一种方法预 先设置:
用户设备与网络侧事先约定; 网络侧通过 SI专用信令、 RRC专用信令或 MAC CE为用户设备配置; 网络侧自行设定, 并配置在核心网和 /或基站。
延迟容忍时间的上限通过以下任一种方法预先设置:
将所述到达的数据对应的服务质量等级中包含的延迟指标作为延迟容忍 时间的上限;
将网络侧和用户设备事先约定的、 与所述到达的数据对应的业务对应的 延迟容忍时间作为延迟容忍时间的上限;
将网络侧和用户设备事先约定的、 与包含于所述到达的数据的逻辑信道
将网络侧和用户设备事先约定的、 与包含于所述到达的数据的无线承载
将网络侧与延迟容忍的用户设备事先约定的、 与具有延迟容忍特性的设
网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为用户设备配置。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本申请不限制于任 何特定形式的硬件和软件的结合。
以上所述, 仅为本发明的较佳实例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性
与现有技术相比, 本申请技术方案对具有延迟容忍特性的业务数据的延 迟调度, 从而緩解了 PUSCH、 PDSCH的资源压力, 优化了系统效率。

Claims

权 利 要 求 书
1、 一种数据调度的方法, 包括:
当设备有数据到达, 所述设备判断到达的数据是否具有延迟容忍特性, 如果所述到达的数据具有延迟容忍特性, 则所述设备延迟所述到达的数据的 调度和发送, 如果所述到达的数据不具有延迟容忍特性, 则所述设备立即发 起呼叫流程或者立即发起数据发送流程;
其中, 所述设备为用户设备或者基站, 当所述设备为用户设备时, 所述 到达的数据为上行数据, 当所述设备为基站时, 所述到达的数据为对应于用 户设备的下行数据。
2、 如权利要求 1所述的方法, 其中, 所述延迟容忍特性是指: 在数据的 调度和传递过程中对数据进行延时。
3、如权利要求 1所述的方法, 其中, 当所述到达的数据符合如下一个或 多个条件时, 所述设备判断到达的数据具有延迟容忍特性:
所述到达的数据的延迟容忍度超过第一预设门限;
所述到达的数据所属业务为具有延迟容忍特性的业务;
所述到达的数据包含于具有延迟容忍特性的逻辑信道;
所述到达的数据包含于具有延迟容忍特性的数据无线承载; 以及 所述到达的数据对应的用户设备具有延迟容忍特性。
4、 如权利要求 3所述的方法, 其中, 所述到达的数据的延迟容忍度为: 所述到达的数据所对应的服务质量等级中包含的延迟指标。
5、如权利要求 3或 4所述的方法, 其中, 所述到达的数据的延迟容忍度 超过第一预设门限指:
所述到达的数据所对应的服务质量等级中包含的延迟指标超过第一预设 门限。
6、如权利要求 5所述的方法, 其中, 所述第一预设门限通过以下任一种 方法进行设置:
用户设备与网络侧事先约定;
网络侧通过 S1 专用信令、 无线资源控制 (RRC ) 专用信令或媒体接入 控制层控制元素 (MAC CE )为用户设备配置; 以及
网络侧自行设定, 并配置在核心网和 /或基站。
7、如权利要求 1至 3任一项所述的方法, 其中, 所述设备延迟所述到达 的数据的调度和发送的步骤包括:
在用户设备处于无线资源控制空闲状态时, 所述用户设备推迟发起随机 接入过程后调度和发送所述到达的数据, 或者基站推迟发起寻呼过程后调度 和发送所述到达的数据;
在用户设备处于无线资源控制连接状态时, 所述用户设备推迟触发调度 请求后调度和发送所述到达的数据, 或者触发调度请求后延迟发送该调度请 求再调度和发送所述到达的数据。
8、 如权利要求 7所述的方法, 还包括: 在满足如下一个或多个条件时, 对应于所述用户设备的上行数据发送緩存区或者下行数据发送緩存区内 的待发送数据的总量达到或超过第二预设门限;
对应于所述用户设备的、 包含上行到达数据或者下行到达数据的逻辑信 道的緩存区内的数据总量到达或者超过第三预设门限; 以及
所述到达的数据被延迟的时间达到延迟容忍时间的上限。
9、如权利要求 8所述的方法, 其中, 所述第二预设门限和第三预设门限 通过以下任一种方法预先设置:
用户设备与网络侧事先约定;
网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为用户设备配置; 以及
网络侧自行设定, 并配置在核心网和 /或基站。
10、 如权利要求 8所述的方法, 其中, 所述延迟容忍时间的上限通过以 下任一种方法预先设置:
将所述到达的数据对应的服务质量等级中包含的延迟指标作为延迟容忍 时间的上限;
将网络侧和用户设备事先约定的、 与所述到达的数据对应的业务对应的 延迟容忍时间作为延迟容忍时间的上限;
将网络侧和用户设备事先约定的、 与包含所述到达的数据的逻辑信道对 应的延迟容忍时间作为延迟容忍时间的上限;
将网络侧和用户设备事先约定的、 与包含所述到达的数据的无线承载对 应的延迟容忍时间作为延迟容忍时间的上限;
将网络侧与延迟容忍的用户设备事先约定的、 与具有延迟容忍特性的设 网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为用户设备配置。
11、 如权利要求 7所述的方法, 其中, 所述到达的数据被延迟的时间达 到延迟容忍时间的上限指:
所述数据被延迟的时间大于等于延迟容忍时间的上限; 或者
所述数据被延迟的时间加上预设的时间偏置大于等于延迟容忍的时间的 上限。
12、如权利要求 11所述的方法, 其中, 所述预设的时间偏置通过以下任 一种方法预先设置:
网络侧与用户设备事先约定; 以及
网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为用户设备配置。
13、 一种数据调度的装置, 包括:
第一模块, 其设置成当设备有数据到达, 判断到达的数据是否具有延迟 容忍特性; 以及
第二模块, 其设置成: 在所述到达的数据具有延迟容忍特性时, 延迟所 述到达的数据的调度和发送, 以及, 在所述到达的数据不具有延迟容忍特性 时, 立即发起呼叫流程或者立即发起数据发送流程;
其中, 所述设备为用户设备或者基站, 当所述设备为用户设备时, 所述 到达的数据为上行数据, 当所述设备为基站时, 所述到达的数据为对应于用 户设备的下行数据。
14、 如权利要求 13所述的装置, 其中, 所述延迟容忍特性是指: 在数据 的调度和传递过程中对数据进行延时。
15、如权利要求 13所述的装置, 其中, 所述第一模块是设置成在所述到 达的数据符合如下一个或多个条件时, 判断所述到达的数据具有延迟容忍特 性:
所述到达的数据的延迟容忍度超过第一预设门限;
所述到达的数据所属业务为具有延迟容忍特性的业务;
所述到达的数据包含于具有延迟容忍特性的逻辑信道;
所述到达的数据包含于具有延迟容忍特性的数据无线承载; 以及 所述到达的数据对应的用户设备具有延迟容忍特性。
16、如权利要求 15所述的装置,其中,所述到达的数据的延迟容忍度为: 所述到达的数据所对应的服务质量等级中包含的延迟指标。
17、 如权利要求 15或 16所述的装置, 其中, 所述到达的数据的延迟容 忍度超过第一预设门限指:
所述到达的数据所对应的服务质量等级中包含的延迟指标超过第一预设 门限。
18、如权利要求 17所述的装置, 其中, 所述第一预设门限通过以下任一 种方法进行设置:
用户设备与网络侧事先约定;
网络侧通过 S1 专用信令、 无线资源控制 (RRC ) 专用信令或媒体接入 控制层控制元素 (MAC CE )为用户设备配置; 以及 网络侧自行设定, 并配置在核心网和 /或基站。
19、 如权利要求 13至 15任一项所述的装置, 其中, 所述第二模块是设 置成通过以下方式延迟所述到达的数据的调度和发送:
在用户设备处于无线资源控制空闲状态时, 使所述用户设备推迟发起随 机接入过程后调度和发送所述到达的数据, 或者使基站推迟发起寻呼过程后 调度和发送所述到达的数据;
在用户设备处于无线资源控制连接状态时, 使所述用户设备推迟触发调 度请求后调度和发送所述到达的数据, 或者使所述用户设备触发调度请求后 延迟发送该调度请求再调度和发送所述到达的数据。
20、如权利要求 19所述的装置, 其中, 所述第二模块还设置成在满足如 下一个或多个条件时, 调度和发送具有延迟容忍特性的所述到达的数据: 对应于所述用户设备的上行数据发送緩存区或者下行数据发送緩存区内 的待发送数据的总量达到或超过第二预设门限;
对应于所述用户设备的、 包含上行到达数据或者下行到达数据的逻辑信 道的緩存区内的数据总量到达或者超过第三预设门限; 以及
所述到达的数据被延迟的时间达到延迟容忍时间的上限。
21、如权利要求 20所述的装置, 其中, 所述第二预设门限和第三预设门 限通过以下任一种方法预先设置:
用户设备与网络侧事先约定;
网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为用户设备配置; 以及
网络侧自行设定, 并配置在核心网和 /或基站。
22、如权利要求 20所述的装置, 其中, 所述延迟容忍时间的上限通过以 下任一种方法预先设置:
将所述到达的数据对应的服务质量等级中包含的延迟指标作为延迟容忍 时间的上限; 将网络侧和用户设备事先约定的、 与所述到达的数据对应的业务对应的 延迟容忍时间作为延迟容忍时间的上限;
将网络侧和用户设备事先约定的、 与包含于所述到达的数据的逻辑信道 将网络侧和用户设备事先约定的、 与包含于所述到达的数据的无线承载 将网络侧与延迟容忍的用户设备事先约定的、 与具有延迟容忍特性的设 网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为用户设备配置。
23、如权利要求 20所述的装置, 其中, 所述到达的数据被延迟的时间达 到延迟容忍时间的上限指:
所述数据被延迟的时间大于等于延迟容忍时间的上限; 或者
所述数据被延迟的时间加上预设的时间偏置大于等于延迟容忍的时间的 上限。
24、如权利要求 23所述的装置, 其中, 所述预设的时间偏置通过以下任 一种方法预先设置:
网络侧与用户设备事先约定; 以及
网络侧通过 S1专用信令、 RRC专用信令或 MAC CE为用户设备配置。
PCT/CN2013/075241 2012-05-14 2013-05-07 一种数据调度方法及装置 WO2013170712A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13790087.4A EP2838304B1 (en) 2012-05-14 2013-05-07 Method and device for data scheduling
US14/400,605 US9674857B2 (en) 2012-05-14 2013-05-07 Method and device for data scheduling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210148451.0A CN103428874B (zh) 2012-05-14 2012-05-14 一种数据调度方法及装置
CN201210148451.0 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013170712A1 true WO2013170712A1 (zh) 2013-11-21

Family

ID=49583115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075241 WO2013170712A1 (zh) 2012-05-14 2013-05-07 一种数据调度方法及装置

Country Status (4)

Country Link
US (1) US9674857B2 (zh)
EP (1) EP2838304B1 (zh)
CN (1) CN103428874B (zh)
WO (1) WO2013170712A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160261509A1 (en) * 2015-03-06 2016-09-08 Mediatek Inc. Method for performing uplink traffic shaping of an electronic device with aid of alarm-aware mechanism, and associated apparatus
WO2019091227A1 (zh) * 2017-11-09 2019-05-16 中国移动通信有限公司研究院 寻呼消息发送方法、基站、网络设备及通信设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6239280B2 (ja) * 2013-06-27 2017-11-29 京セラ株式会社 ユーザ端末、プロセッサ及び移動通信システム
WO2015019043A1 (en) * 2013-08-06 2015-02-12 Sony Corporation Infrastructure equipment, wireless communications network and method
US10114672B2 (en) * 2013-12-31 2018-10-30 Thomson Licensing User-centered task scheduling for multi-screen viewing in cloud computing environment
EP3282789B1 (en) * 2015-04-06 2020-12-02 Fujitsu Limited Base station, terminal, wireless communication system and base station control method
US10149343B2 (en) 2015-05-11 2018-12-04 Apple Inc. Use of baseband triggers to coalesce application data activity
EP3809751B1 (en) * 2015-05-19 2023-08-16 Telefonaktiebolaget LM Ericsson (publ) Inactivity handling of devices with delay-tolerant traffic
WO2017063129A1 (zh) * 2015-10-12 2017-04-20 华为技术有限公司 一种资源请求方法及设备
DE112017000016T5 (de) 2016-03-15 2017-11-30 Sony Corporation Infrastruktureinrichtung, kommunikationsgeräte und verfahren
CN107295679A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 资源的调度方法及装置
CN113056023B (zh) 2016-04-28 2023-11-21 华为技术有限公司 通信方法和装置
CN106961699B (zh) * 2017-03-06 2020-03-20 展讯通信(上海)有限公司 一种用户设备的调配方法、网络侧设备及用户设备
CN109275174A (zh) * 2017-07-17 2019-01-25 中国移动通信有限公司研究院 一种终端的接入控制方法及基站
CN110022595B (zh) * 2018-01-08 2022-06-07 中国移动通信有限公司研究院 下行数据发送方法、网络设备和计算机存储介质
CN113170412A (zh) * 2018-11-21 2021-07-23 索尼集团公司 基于传播信道特性延迟网络中用户设备寻呼操作的系统、方法和计算机程序产品
CN111225443B (zh) * 2018-11-27 2021-08-10 华硕电脑股份有限公司 释放无线通信中预配置的上行链路资源配置的方法和设备
US11109344B2 (en) * 2019-05-01 2021-08-31 Lg Electronics Inc. Start and stop of reception of downlink transmission based on paging
CN113497671B (zh) * 2020-04-02 2023-07-18 成都鼎桥通信技术有限公司 数据处理方法、装置、设备、存储介质及终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111819A (zh) * 2011-03-04 2011-06-29 清华大学 一种延迟容忍网络
CN102164359A (zh) * 2011-05-23 2011-08-24 清华大学 一种无线网络中延迟容忍业务的计费系统及计费方法
WO2011134553A1 (en) * 2010-04-30 2011-11-03 Telefonaktiebolaget L M Ericsson (Publ) A device for low priority traffic scheduling

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2447883A (en) * 2007-03-02 2008-10-01 Fujitsu Ltd Bandwidth allocation in multi-hop wireless communication systems
WO2008132685A2 (en) * 2007-04-26 2008-11-06 Nokia Corporation System and method for requesting uplink resources in a communication system
FI20085676A0 (fi) * 2008-06-30 2008-06-30 Nokia Corp Viivesietoisen datan lähetys
EP2761950A1 (en) * 2011-09-30 2014-08-06 Intel Mobile Communications GmbH Communication terminal, network component, base station and method for communicating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134553A1 (en) * 2010-04-30 2011-11-03 Telefonaktiebolaget L M Ericsson (Publ) A device for low priority traffic scheduling
CN102111819A (zh) * 2011-03-04 2011-06-29 清华大学 一种延迟容忍网络
CN102164359A (zh) * 2011-05-23 2011-08-24 清华大学 一种无线网络中延迟容忍业务的计费系统及计费方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2838304A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160261509A1 (en) * 2015-03-06 2016-09-08 Mediatek Inc. Method for performing uplink traffic shaping of an electronic device with aid of alarm-aware mechanism, and associated apparatus
WO2019091227A1 (zh) * 2017-11-09 2019-05-16 中国移动通信有限公司研究院 寻呼消息发送方法、基站、网络设备及通信设备

Also Published As

Publication number Publication date
EP2838304A4 (en) 2015-04-08
US9674857B2 (en) 2017-06-06
EP2838304A1 (en) 2015-02-18
CN103428874B (zh) 2018-07-13
CN103428874A (zh) 2013-12-04
US20150156793A1 (en) 2015-06-04
EP2838304B1 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
WO2013170712A1 (zh) 一种数据调度方法及装置
JP6925345B2 (ja) ProSe通信における自律的なリソース割当ての場合に優先順位に基づいて最適化されるサイドリンクデータ伝送
TWI482523B (zh) 處理觸發暫存器狀態報告之計時器的方法及通訊裝置
US9439209B2 (en) Selection between random access and dedicated scheduling request resources
WO2017181779A1 (zh) 一种无线接入网切片的生成方法、无线接入网及切片管理器
CN106992846B (zh) 一种数据发送方法、数据接收方法和装置
WO2019057154A1 (zh) 数据传输方法、终端设备和网络设备
WO2012041203A1 (zh) 一种数据的传输方法和设备
WO2013026374A1 (zh) 数据传输方法和设备
WO2018036420A1 (zh) 通信方法、终端设备和网络设备
WO2015012077A1 (ja) 無線通信システム、基地局装置、端末装置、無線通信方法および集積回路
WO2011160522A1 (zh) 一种无线资源调度方法、接入网网元及终端
WO2012136101A1 (zh) 一种混合自动重传的处理方法、系统及装置
WO2021022508A1 (zh) 边链路调度请求的触发方法、装置和系统
WO2012136087A1 (zh) 一种资源调度的方法及系统及一种终端
WO2016191943A1 (zh) 一种资源调度方法、基站以及用户设备
WO2013166670A1 (zh) 上行信道资源配置方法和设备
WO2009132557A1 (zh) 缓冲区状态报告的处理方法及装置
TWI387276B (zh) 無線通信之方法及系統
WO2016044981A1 (zh) 一种上行业务数据传输的方法、装置
CN113923712A (zh) 数据处理的方法及装置
WO2019128892A1 (zh) 信息指示方法、终端设备及网络设备
WO2014198023A1 (zh) 一种调度方法及基站
WO2007048328A1 (fr) Méthode et équipement d’accès en liaison amont
WO2011023036A1 (zh) 一种半静态调度上行激活及重激活的方法、系统及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790087

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14400605

Country of ref document: US

Ref document number: 2013790087

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE