WO2013168655A1 - Slag heat recovery device - Google Patents

Slag heat recovery device Download PDF

Info

Publication number
WO2013168655A1
WO2013168655A1 PCT/JP2013/062701 JP2013062701W WO2013168655A1 WO 2013168655 A1 WO2013168655 A1 WO 2013168655A1 JP 2013062701 W JP2013062701 W JP 2013062701W WO 2013168655 A1 WO2013168655 A1 WO 2013168655A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
steam
water
chamber
heat recovery
Prior art date
Application number
PCT/JP2013/062701
Other languages
French (fr)
Japanese (ja)
Inventor
徹 池▲崎▼
大平 尚
悦郎 野田
裕信 石川
勉 大木
Original Assignee
新日鉄住金エンジニアリング株式会社
Nsプラント設計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金エンジニアリング株式会社, Nsプラント設計株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Publication of WO2013168655A1 publication Critical patent/WO2013168655A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/04Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot slag, hot residues, or heated blocks, e.g. iron blocks
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/06Conveyors on which slag is cooled
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/066Receptacle features where the slag is treated
    • C21B2400/072Tanks to collect the slag, e.g. water tank
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a slag heat recovery apparatus that recovers heat of slag generated in a blast furnace or a converter and generates steam.
  • This application claims priority based on Japanese Patent Application No. 2012-105933 for which it applied to Japan on May 7, 2012, and uses the content here.
  • patent document 1 The thing of patent document 1 is known as a conventional slag heat recovery apparatus.
  • This slag heat recovery device pours molten slag into a sealed tank through a gate, scatters the molten slag by a rotating body in the tank, and contacts the water in the tank, thereby cooling the slag and granulating it At the same time, steam is generated and the turbine is rotated by the energy of the steam to generate electricity.
  • the granulated slag is taken out by opening and closing a two-stage gate at the bottom of the sealed tank.
  • a two-stage gate is provided at the lower part of the sealed tank to prevent the pressure in the tank from escaping. Due to reliability problems, the steam pressure in the tank had to be kept as low as about 1.5 atm. Therefore, when power was generated with the generated steam, the power generation efficiency could not be increased. Moreover, since the granular slag is clogged in the gap between the gates, the gate may not be completely closed, resulting in a decrease in pressure in the tank.
  • an object of the present invention is to provide a slag heat recovery device that can increase the efficiency of heat recovery from slag and generate high-pressure steam.
  • the present invention includes a pool in which water is stored, a cylindrical container that is erected in the pool, the upper end opening is closed, and the lower end opening is submerged in an open state in water, and an upper part of the cylindrical container.
  • the molten slag inlet provided and the inside of the cylindrical container are defined, the upper part is a steam chamber in which steam stays, and the lower part seals out the steam from the steam chamber by retaining water.
  • a slag heat recovery chamber that is a water-sealed chamber and that generates water by bringing water into contact with the molten slag flowing from the inflow port to produce solidified slag by cooling and settling in the water in the water-sealed chamber.
  • a spray nozzle that sprays spray water on the molten slag flowing from the inlet and slags the slag and generates steam may be provided on the upper part of the cylindrical container.
  • water in the water-sealed chamber may be taken out and supplied to the spray nozzle.
  • the water in the water seal chamber becomes hot water by immersing the slag, and since the hot water is used as spray water, the steam generation efficiency can be increased.
  • the slag transport mechanism may continuously discharge the slag that has settled and stayed in the water-sealed chamber from its lower layer while maintaining the laminated state of the slag.
  • the slag transport mechanism continuously discharges the slag from the lower layer while maintaining the laminated state of the slag accumulated in the water in the water sealed chamber, so that stable operation without breaking the stable state in the water sealed chamber is possible. Can proceed.
  • the inflow port is formed in a ceiling wall that closes the upper end opening of the cylindrical container, and a slag pot housing chamber that can be sealed by a lid is disposed on the upper side of the ceiling wall.
  • a double wall nozzle comprising an outer tube and an inner tube is provided on a ceiling wall that closes an upper end opening of the cylindrical container, and an inlet of the molten slag is provided by an inner tube passage of the double tube nozzle.
  • a spray water injection port configured to spray the spray water onto the molten slag flowing from the inflow port to slag the slag and generate steam, and is configured by an outer tube passage of the double tube nozzle. Also good. Thereby, since spray water is injected together with molten slag using a double tube nozzle, the slag can be rapidly cooled and steam can be generated efficiently.
  • the spray of steam from the steam chamber through the inflow port to the outside of the cylindrical container may be sealed by spraying spray water from the spray water spray port.
  • a double wall nozzle comprising an outer tube and an inner tube is provided on a ceiling wall that closes an upper end opening of the cylindrical container, and an inlet of the molten slag is provided by a passage in the outer tube of the double tube nozzle.
  • spray water is sprayed on the molten slag flowing from the inlet formed by the passage in the outer pipe of the double pipe nozzle on the upper part of the cylindrical container to slag the slag and generate steam.
  • a spray nozzle may be provided, and the spray of steam from the steam chamber through the inlet to the outside of the cylindrical container may be sealed by spraying spray water from the spray nozzle.
  • a crusher for mechanically crushing the settled slag may be provided in the water seal chamber.
  • the crusher since the crusher is provided in the water-sealed chamber, the slag falling into the water can be finely pulverized. Therefore, the transfer of heat from the slag to water can be promoted by increasing the surface area of the slag immersed in water.
  • the present invention may be provided with a power generation device that rotates a turbine with the energy of the steam taken out from the steam outlet and generates power.
  • a power generation device that rotates a turbine with the energy of the steam taken out from the steam outlet and generates power.
  • the steam taken out from the steam outlet may be directly introduced into the turbine via a cleaning means and a pressure equalizing tank.
  • the steam energy taken out from the steam outlet may be converted into air energy and introduced into the turbine.
  • a slag heat recovery device capable of increasing the efficiency of heat recovery from slag and generating high-pressure steam.
  • FIG. 1 is a configuration diagram of a slag heat recovery apparatus according to the first embodiment.
  • This slag heat recovery device includes a pool 1 in which water is stored, and a cylindrical container which is erected in the pool 1 and whose upper end opening is closed by a ceiling wall 8 and whose lower end opening 3 is immersed in water in an open state. 2, the inlet 12 of the molten slag S1 provided on the ceiling wall 8, the slag pot accommodating chamber 20 installed on the upper side of the ceiling wall 8 of the cylindrical container 2, and the steam generated in the cylindrical container 2 are used. And a power generation device 50 for generating power. In the slag pot accommodating chamber 20, the slag pot 10 containing the molten slag S1 is set.
  • the inside of the cylindrical container 2 is a slag heat recovery chamber 2A.
  • the upper portion of the slag heat recovery chamber 2A is a steam chamber 4 where the steam W2 stays, and the lower portion of the steam chamber 4 is due to the retention of water.
  • a water-sealed chamber 5 is provided to seal the vapor from the lower end opening 3.
  • water is brought into contact with the molten slag S1 flowing in from the inlet 12, thereby cooling the molten slag S1, thereby generating solidified slag S2, So that the slag S2 is allowed to settle.
  • steam is generated by water in contact with the hot slag.
  • a spray nozzle 6 that generates steam is provided.
  • the water supplied to the spray nozzle 6 may be taken in from the pool 1, the power generation device, or outside the system, but in this embodiment, the water (hot water) in the water seal chamber 5 taken out from the outlet 9 is removed by the pump 60. It is used in circulation.
  • the pool 1 is provided with a slag transfer conveyor (slag transfer mechanism) 30.
  • the slag transport conveyor 30 receives the granular slag S2 that has flowed from the inlet 12 and solidified and settled in the water in the water-sealed chamber 5 from the lower end opening 3 of the cylindrical container 2 to the pit 40 outside the pool 1. Transport.
  • the slag conveyor 30 is configured so that the granular slag S2 that has settled and stayed in the water in the water seal chamber 5 can be continuously discharged from its lower layer while maintaining the laminated state of the slag S2. ing.
  • the slag transfer conveyor 30 is located immediately below the lower end opening 3 of the cylindrical container 2 and receives the slag S2 discharged from the lower end opening 3, and the slag received by the first horizontal transfer unit 31 It has the vertical conveyance part 32 which lifts S2 upward, and the 2nd horizontal conveyance part 33 which drops the lifted slag S2 to the pit 40.
  • the first horizontal conveyance unit 31 is arranged immediately below the lower end opening 3 of the cylindrical container 2 at an appropriate interval, so that the laminated state of the slag S2 is maintained and the first horizontal conveyance unit 31 continues from the lower layer portion. In particular, the slag S2 is conveyed.
  • the slag pot storage chamber 20 installed on the upper side of the ceiling wall 8 of the cylindrical container 2 has a storage chamber main body 21 whose upper surface is opened so that the slag pot 10 can be taken in and out from above, and a lid 22 that closes the upper surface and seals the inside. And have. Thereby, the slag pan 10 containing the molten slag S ⁇ b> 1 can be set inside the cylindrical container 2.
  • the outlet at the lower part of the slag pot 10 and the inlet 12 are communicated.
  • An inflow path 11 that guides the molten slag S1 in the slag pan 10 to the inlet 12 is provided.
  • the inflow path 11 is provided with a gate 11G.
  • the slag pot accommodating chamber 20 is connected to the slag pot accommodating chamber 20 with the same pressure as that of the steam chamber 4 by introducing the pressure of the steam chamber 4 into the slag pot accommodating chamber 20 with the lid 22 in place. 23 is connected.
  • An open / close valve 24 is provided in the communication path 23.
  • a crusher (not shown) for mechanically crushing the settled slag S2 is provided in the water seal chamber 5 as necessary. By finely pulverizing the slag S2 with this crusher, the surface area of the slag can be increased and the transfer of heat from the slag S2 to water can be promoted.
  • the power generation device 50 is configured to generate power with the generator 54 by turning the turbine 53 with the energy of the steam W2 taken out from the steam outlet 7.
  • the steam W ⁇ b> 2 taken out from the steam outlet 7 is introduced into the turbine 53 through the dust catcher (cleaning means) 51 and the pressure equalizing tank 52.
  • the steam used in the turbine 53 is stored in the tank 55 in the form of water, and is supplied to the pool 1 as necessary. Further, in order to keep the water in the pool 1 constant, makeup water is supplied to the tank 55 as necessary.
  • the steam chamber 4 is already filled with high-pressure steam, and a state in which granular slag S2 is accumulated to some extent in the water in the water-sealed chamber 5 will be described.
  • the lower gate 11G of the slag pot accommodating chamber 20 is closed, and the slag pot 10 containing the molten slag S1 is set in the slag pot accommodating chamber 20.
  • the lid 22 is closed, the open / close valve 24 of the communication passage 23 is operated, the pressure of the steam chamber 4 is introduced into the slag pot accommodating chamber 20, and the inside of the slag pot accommodating chamber 20 is the same as the steam chamber 4. Pressure.
  • the gate 11G is opened, and the molten slag S1 in the slag pan 10 is caused to flow into the cylindrical container 2 from the inlet 12. Then, the molten slag S1 that has flowed is rapidly cooled by spraying the spray water Ws, crushed, dropped into the water in the water seal chamber 5, and further cooled by being immersed in water. Steam W2 is generated in the course of this cooling, and the steam W2 is led from the steam outlet 7 to the power generation device 50 and used for power generation.
  • the granular slag S2 that has fallen into the water in the water-sealed chamber 5 settles in the water, and is transported to the pit 40 by the slag conveyor 30 in order from the slag S2 accumulated in the lower layer.
  • the heat held by the molten slag S1 can be efficiently recovered and the high-pressure steam W2 can be generated. That is, the cylindrical container 2 erected in the pool 1 is water-sealed although the lower end is open, so that there is no possibility that steam will escape with the discharge of the slag S2 through the lower end opening 3. Accordingly, the pressure of the steam in the steam chamber 4 can be increased, and the high-pressure steam W2 can be taken out. For example, high-pressure steam corresponding to the height L from the water surface around the cylindrical container 2 submerged in water to the water surface in the water-sealed chamber 5 can be held. Therefore, power generation efficiency can be increased by using the energy of the steam for power generation. Moreover, since the lower end of the cylindrical container 2 which is the discharge port of the slag S2 is always open, the slag S2 is not clogged.
  • the slag S2 falls and dipped from above into the water sealed chamber 5 of the cylindrical container 2 and gradually settles and accumulates, the accumulated slag S2 is transferred from the lower layer to the cylindrical container 2. It can be discharged by the slag conveyor 30 through the lower end opening 3. As described above, the retained slag S2 can be continuously discharged from the lower layer portion in accordance with the sedimentation of the slag S2 from above while maintaining the stacked state of the slag S2 retained in the water in the water seal chamber 5. Therefore, without destroying the stable state in the water-sealed chamber 5, the generation of slag S2 and the generation of steam can be performed continuously, and stable operation can be promoted.
  • heat recovery from the molten slag S1 can be performed by spraying spray water on the molten slag S1 and immersing the molten slag S1 in water.
  • the recovery rate can be improved. That is, a large amount of water vapor can be generated by recovering the sensible heat and latent heat of the molten slag S1 to the maximum extent.
  • the high quality granulated slag S2 can be made by rapidly cooling the molten slag S1 with spray water. In particular, since the hot water in the water-sealed chamber 5 is used as spray water, the steam generation efficiency can be increased.
  • the pressure in the slag pot accommodating chamber 20 is set to the same as that of the steam chamber 4 via the communication path 23 before opening the gate 11G at the lower part of the slag pot accommodating chamber 20.
  • the steam W2 taken out from the steam outlet 7 is introduced into the turbine 53 via the dust catcher 51 and the pressure equalizing tank 52, the phenomenon that the turbine blade and the bearing are damaged by dust or the like can be reduced. Further, since the steam W2 passes through the pressure equalizing tank 52, the turbine 53 can be stably operated.
  • FIG. 2 shows a configuration of a vapor pressure-air pressure conversion device 70 that converts the vapor pressure into air pressure.
  • the vapor pressure-air pressure conversion device 70 has a plurality of conversion containers 71A to 71C for converting the pressure of high-pressure steam into air pressure as a main component.
  • the conversion containers 71A to 71C are divided into a vapor chamber 74 and an air chamber 75 by a movable partition wall (diaphragm or the like) 72.
  • a steam inlet line 83 and a steam outlet line 84 are connected in parallel to the steam chambers 74 as valves 81 on the steam side via valves 87 and 88, respectively.
  • an air introduction line 85 and an air lead-out line 86 are connected in parallel to the air chambers 75 as valves 82 on the air side through the valves 87 and 88, respectively.
  • the valves 87 and 88 are operated in order to introduce high-pressure steam into the respective steam chambers 74 from the steam introduction line 83 and discharge it from the steam outlet line 84. Is introduced into each air chamber 75 from the air introduction line 85 and discharged from the air outlet line 86, whereby the pressure of the vapor can be transmitted to the air via the movable partition wall 72. Then, by introducing the high-pressure air taken out from the air lead-out line 86 to the turbine 53, the turbine 53 can be rotated to generate electric power without bringing the steam into direct contact with the turbine 53.
  • FIG. 3 is a configuration diagram of a main part of the slag heat recovery device of the second embodiment.
  • the double wall nozzle N1 composed of the outer tube 102 and the inner tube 110 is provided on the ceiling wall 8 that closes the upper end opening of the cylindrical container 2, and the inlet 114 of the molten slag S1 is It is constituted by a lower end opening of a passage in the inner pipe 110 of the double pipe nozzle N1.
  • a spray water injection port 104 for spraying spray water Ws to the molten slag S1 flowing from the inflow port 114 to break up the slag and generate steam is provided in the passage 103 in the outer tube 102 of the double tube nozzle N1. It is configured by an annular opening (a gap between the outer tube 102 and the inner tube 110).
  • the spray water injection port 104 communicates with an annular water injection chamber 101 secured between the ceiling wall 8 of the cylindrical container 2 and a partition wall 100 formed on the lower side thereof.
  • the water injection chamber 101 When water is introduced into the water injection chamber 101 from the water conduit 106, the water passes through the passage between the outer tube 102 and the inner tube 110 (passage 103 in the outer tube 102), and is a spray water injection port.
  • the molten slag S1 is cooled as it hits the molten slag S1 that is sprayed downward as spray water Ws 104 from the inlet 114 and flows into the cylindrical container 2 through the passage in the inner pipe 110.
  • a molten slag pit 120 for storing the molten slag S1 flowing down the slag trough 122 is provided on the upper side of the ceiling wall 8, and an inflow passage 121 extending from the lower end of the molten slag pit 120 is provided in two. It communicates with a passage in the inner pipe 110 of the heavy pipe nozzle N1.
  • the molten slag S1 flows from the molten slag pit 120 through the passage in the inner pipe 110 of the double pipe nozzle N1 into the cylindrical container 2 from the inlet 114.
  • water introduced into the water jet chamber 101 from the water conduit 106 is sprayed downward from the spray water jet port 104 through the gap between the outer pipe 102 and the inner pipe 110 (the passage 103 in the outer pipe 102). Sprayed as water Ws.
  • the molten slag S1 flowing into the cylindrical container 2 from the inlet 114 is rapidly cooled by the spray water Ws, and granular granulated slag is generated and steam is generated.
  • the granular slag is immersed in the water in the water-sealed chamber 5 so that the remaining heat further generates steam.
  • the spray water Ws seals the blowing of steam from the steam chamber 4 through the inlet 114 to the outside of the cylindrical container 2.
  • the molten slag S1 can be rapidly cooled and steam is efficiently generated. Can be made. Further, the spray of the spray water Ws from the passage in the outer tube 102 of the double tube nozzle N1 seals the steam blowout through the inflow port 114, so that the steam chamber 4 can be maintained at a high pressure. Moreover, since the negative pressure can be generated on the outlet side of the inflow port 114 by the spray of the spray water Ws, the inflow of the molten slag S1 can be promoted.
  • FIG. 4A to 4D show another embodiment of the double tube nozzles NA to ND.
  • Lm1 about 150 mm
  • the lower end of the outer tube 102 having a diameter of 150 mm is narrowed to the spray water injection port 104 having a diameter of 140 mm.
  • the inner tube 110 has a diameter of 60 mm.
  • the lower end 102a of the outer tube 102 and the lower end 110a of the inner tube 110 are set to the same length.
  • FIG. 5 is a configuration diagram of a main part of the slag heat recovery device of the third embodiment.
  • the passage in the inner pipe 110 of the double pipe nozzle N1 is a slag passage
  • the passage in the outer pipe 102 is a spray water passage.
  • the slag heat recovery apparatus of the third embodiment although a similar double pipe nozzle N2 is provided on the ceiling wall 8 of the cylindrical container 2, contrary to the second embodiment, the passage in the inner pipe 142 of the double pipe nozzle N2 is used as a passage for the spray water Ws.
  • the passage in the outer pipe 141 (the annular gap 143 between the outer pipe 141 and the inner pipe 142) is used as the passage for the molten slag S1.
  • the inflow port of molten slag S1 is comprised by the lower end of the channel
  • the spray water injection port is comprised by the lower end of the channel
  • the inner pipe 142 is inserted from the molten slag pit 120.
  • spray water Ws is injected into the inner pipe 142 of the double pipe nozzle N2 with respect to the molten slag S1 flowing from the inlet formed by the passage in the outer pipe 141 of the double pipe nozzle N2 in the upper part of the cylindrical container 2.
  • spray water Ws is sprayed from the spray nozzle 6 installed in the steam chamber 4 to slag the slag and generate steam.
  • the spraying of the spray water Ws from the passage in the inner pipe 142 of the double pipe nozzle N2 seals the blowout of steam through the passage in the outer pipe 141 that is the inflow port, so that the steam chamber 4 can be maintained at a high pressure.
  • the negative pressure can be generated on the outlet side of the passage portion in the outer pipe 141 by the spraying of the spray water Ws, the inflow of the molten slag S1 can be promoted.
  • the molten slag S1 can be rapidly cooled and steam can be generated efficiently.

Abstract

The present invention is equipped with: a pool (1) in which water is stored; a cylindrical container (2) which is erected in the pool and an upper-end opening of which is covered, while a lower-end aperture (3) is submerged in the open state in the water; a molten slag (S1) inflow port (12) provided in the ceiling wall (8) of the cylindrical container; a slag heat recovery chamber (2A), which is defined within the cylindrical container and the upper part of which forms a steam chamber (4) that accumulates steam while the lower part forms a water seal chamber (5) that holds water, thereby preventing the escape of the steam in the steam chamber, and which brings the water into contact with the molten slag flowing in from the inflow port, thereby producing solidified slag through cooling and causing the solidified slag to settle in the water in the water seal chamber, and generating steam; a steam extraction port (7) that extracts the steam in the steam chamber to the outside; a slag transfer conveyor (30) that receives and transfers the slag that has settled in the water in the water seal chamber; and a spray nozzle (6) that sprays water (W) onto the molten slag flowing in from the inflow port, thereby water-granulating the slag.

Description

スラグ熱回収装置Slag heat recovery device
 本発明は、高炉や転炉などで生成されるスラグの熱を回収して蒸気を発生させるスラグ熱回収装置に関するものである。
 本願は、2012年5月7日に日本に出願された特願2012-105933号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a slag heat recovery apparatus that recovers heat of slag generated in a blast furnace or a converter and generates steam.
This application claims priority based on Japanese Patent Application No. 2012-105933 for which it applied to Japan on May 7, 2012, and uses the content here.
 従来のスラグ熱回収装置として、特許文献1に記載のものが知られている。
 このスラグ熱回収装置は、密閉槽の中にゲートを介して溶融スラグを注ぎ込み、槽内の回転体により溶融スラグを飛散させて槽内の水に接触させ、それによりスラグを冷却して粒状化すると共に蒸気を発生させ、この蒸気のエネルギーでタービンを回して発電するというものである。粒状化されたスラグは、密閉槽の下部の2段式ゲートの開閉によって外部に取り出される。
The thing of patent document 1 is known as a conventional slag heat recovery apparatus.
This slag heat recovery device pours molten slag into a sealed tank through a gate, scatters the molten slag by a rotating body in the tank, and contacts the water in the tank, thereby cooling the slag and granulating it At the same time, steam is generated and the turbine is rotated by the energy of the steam to generate electricity. The granulated slag is taken out by opening and closing a two-stage gate at the bottom of the sealed tank.
日本国特公昭62-1200号公報Japanese Patent Publication No.62-1200
 特許文献1に記載のスラグ熱回収装置では、密閉槽の下部に、槽内の圧力が逃げないようにするための2段式ゲートを設けているが、2段式ゲートの構造上の問題や信頼性の問題などから、槽内の蒸気圧力を1.5気圧程度と低く抑えざるを得ず、従って発生した蒸気で発電する場合に、発電効率を高くできなかった。また、粒状スラグがゲートの隙間に詰まることにより、ゲートを完全に閉じることができないこともあり、結果的に槽内の圧力低下を招くことがあった。 In the slag heat recovery device described in Patent Document 1, a two-stage gate is provided at the lower part of the sealed tank to prevent the pressure in the tank from escaping. Due to reliability problems, the steam pressure in the tank had to be kept as low as about 1.5 atm. Therefore, when power was generated with the generated steam, the power generation efficiency could not be increased. Moreover, since the granular slag is clogged in the gap between the gates, the gate may not be completely closed, resulting in a decrease in pressure in the tank.
 本発明は、上記事情を考慮し、スラグからの熱回収効率をアップすることができ、高圧蒸気を発生することのできるスラグ熱回収装置を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a slag heat recovery device that can increase the efficiency of heat recovery from slag and generate high-pressure steam.
 
 本発明は、水を蓄えたプールと、前記プール内に立設され、上端開口が塞がれ、下端開口が水中に開放状態のまま没入された筒状容器と、前記筒状容器の上部に設けられた溶融スラグの流入口と、前記筒状容器の内部に画成され、上部が蒸気の留まる蒸気室とされるとともに、下部が水を滞留させることで前記蒸気室の蒸気の抜けを封じる水封室とされ、前記流入口から流入する溶融スラグに水を接触させることで、冷却により固形化したスラグを生成して前記水封室の水中に沈降させると共に蒸気を発生するスラグ熱回収室と、前記蒸気室内の蒸気を外部に取り出す蒸気取出口と、前記流入口から流入し固形化して前記水封室の水中に沈降したスラグを、前記筒状容器の下端開口から受け取って他の場所へ搬送するスラグ搬送機構と、を備える。
 これにより、プール内に立設された筒状容器は、下端が開放しているものの水封されているので、下端開口を通してのスラグの排出に伴って蒸気が抜けるおそれがない。従って蒸気室内の蒸気の圧力を高めることができ、高圧蒸気を外部に取り出すことができる。そのため、その蒸気のエネルギーを発電に利用することにより、発電効率を高めることができる。また、スラグの排出口である筒状容器の下端は常時開放であるから、スラグが詰まることもない。また、筒状容器の水封室の水中には、上からスラグが落下して浸漬し、徐々に沈降堆積していくので、その堆積したスラグを下層部から筒状容器の下端開口を通してスラグ搬送機構により排出することができる。このように、上からのスラグの沈降堆積に合わせて、下からスラグを排出することができるので、固形化スラグの生成と蒸気の生成とを連続的に行うことができ、安定操業が可能となる。

The present invention includes a pool in which water is stored, a cylindrical container that is erected in the pool, the upper end opening is closed, and the lower end opening is submerged in an open state in water, and an upper part of the cylindrical container. The molten slag inlet provided and the inside of the cylindrical container are defined, the upper part is a steam chamber in which steam stays, and the lower part seals out the steam from the steam chamber by retaining water. A slag heat recovery chamber that is a water-sealed chamber and that generates water by bringing water into contact with the molten slag flowing from the inflow port to produce solidified slag by cooling and settling in the water in the water-sealed chamber. A steam outlet for taking out the steam in the steam chamber to the outside, and receiving the slag that has flowed in from the inlet and solidified and settled in the water in the water sealed chamber from the lower end opening of the cylindrical container, and other places And a slag transfer mechanism That.
Thereby, since the cylindrical container standing in the pool is water-sealed although the lower end is open, there is no possibility that the steam escapes with the discharge of the slag through the lower end opening. Accordingly, the pressure of the steam in the steam chamber can be increased, and high-pressure steam can be taken out to the outside. Therefore, power generation efficiency can be increased by using the energy of the steam for power generation. Moreover, since the lower end of the cylindrical container which is a discharge port of slag is always open, slag is not clogged. In addition, slag falls into the water in the watertight chamber of the cylindrical container, soaks and gradually settles and accumulates, so that the accumulated slag is transported from the lower layer through the lower end opening of the cylindrical container. It can be discharged by the mechanism. In this way, slag can be discharged from the bottom in accordance with the sedimentation of slag from above, so that solid slag and steam can be generated continuously and stable operation is possible. Become.
 本発明は、前記筒状容器の上部に、前記流入口から流入する溶融スラグに対しスプレー水を噴射してスラグを水砕すると共に蒸気を発生させるスプレーノズルが設けられていてもよい。
 これにより、溶融スラグからの熱回収を、スプレー水の噴射と水中への浸漬とで行うことができるので、熱回収率の向上を図ることができる。つまり、溶融スラグの顕熱および潜熱を最大限に回収して、多くの水蒸気を発生させることができる。また、スプレー水で溶融スラグを急冷することで、良質な水砕スラグを作ることができる。
In the present invention, a spray nozzle that sprays spray water on the molten slag flowing from the inlet and slags the slag and generates steam may be provided on the upper part of the cylindrical container.
Thereby, since heat recovery from the molten slag can be performed by spraying spray water and immersing in water, it is possible to improve the heat recovery rate. That is, the sensible heat and latent heat of the molten slag can be recovered to the maximum to generate a large amount of water vapor. Moreover, a high quality granulated slag can be made by rapidly cooling the molten slag with spray water.
 本発明は、前記水封室内の水を取り出して前記スプレーノズルに供給してもよい。
 これにより、水封室内の水はスラグの浸漬により熱水となっており、その熱水をスプレー水として利用するので、蒸気発生効率をアップさせることができる。
In the present invention, water in the water-sealed chamber may be taken out and supplied to the spray nozzle.
Thereby, the water in the water seal chamber becomes hot water by immersing the slag, and since the hot water is used as spray water, the steam generation efficiency can be increased.
 本発明は、前記スラグ搬送機構が、前記水封室の水中に沈降し滞留したスラグを、該スラグの積層状態を維持しながら、その下層部から連続的に排出してもよい。
 これにより、スラグ搬送機構が、水封室の水中に滞留したスラグの積層状態を維持しながら、その下層部分から連続的にスラグを排出するので、水封室内の安定状態を崩さずに安定操業を進めることができる。
In the present invention, the slag transport mechanism may continuously discharge the slag that has settled and stayed in the water-sealed chamber from its lower layer while maintaining the laminated state of the slag.
As a result, the slag transport mechanism continuously discharges the slag from the lower layer while maintaining the laminated state of the slag accumulated in the water in the water sealed chamber, so that stable operation without breaking the stable state in the water sealed chamber is possible. Can proceed.
 本発明は、前記流入口が、前記筒状容器の上端開口を塞ぐ天井壁に形成され、その天井壁の上側に、蓋をすることで密閉可能なスラグ鍋収容室が配置され、このスラグ鍋収容室の下部に、該スラグ鍋収容室の内部に溶融スラグの入ったスラグ鍋をセットしたとき、該スラグ鍋の下部の排出口と前記流入口とを連通して、スラグ鍋内の溶融スラグを前記流入口に導くスラグ流入路と該スラグ流入路を開閉するゲートとが設けられ、一方、前記スラグ鍋収容室に、前記蓋をした状態でスラグ鍋収容室に前記蒸気室の圧力を導入することで、スラグ鍋収容室内を前記蒸気室と同圧にする連通路が接続され、前記連通路に開閉バルブが設けられていてもよい。
 これにより、スラグ鍋収容室の下部のゲートを開ける前に、スラグ鍋収容室内の圧力を蒸気室と同圧にすることにより、ゲートを開けた際の蒸気の吹き上げを防止することができる。従って、蒸気室内を高圧に保つことができると共に、安全な操業を進めることができる。
In the present invention, the inflow port is formed in a ceiling wall that closes the upper end opening of the cylindrical container, and a slag pot housing chamber that can be sealed by a lid is disposed on the upper side of the ceiling wall. When a slag pot containing molten slag is set inside the slag pot accommodating chamber at the lower part of the container chamber, the discharge port at the lower part of the slag pot communicates with the inlet, and the molten slag in the slag pot A slag inflow passage leading to the inlet and a gate for opening and closing the slag inflow passage, while introducing the pressure of the steam chamber into the slag pan housing chamber with the lid on the slag pan housing chamber By doing so, the communicating path which makes the slag pot accommodation chamber the same pressure as the said steam chamber may be connected, and the on-off valve may be provided in the said communicating path.
Thereby, before opening the gate of the lower part of a slag pot accommodating chamber, the blowing of the vapor | steam at the time of opening a gate can be prevented by making the pressure in a slag pot accommodating chamber the same pressure as a steam chamber. Therefore, the steam chamber can be maintained at a high pressure and safe operation can be promoted.
 本発明は、前記筒状容器の上端開口を塞ぐ天井壁に、外管と内管よりなる二重管ノズルが設けられ、前記溶融スラグの流入口が、前記二重管ノズルの内管内通路により構成され、前記該流入口から流入する溶融スラグに対しスプレー水を噴射してスラグを水砕すると共に蒸気を発生させるスプレー水噴射口が、前記二重管ノズルの外管内通路により構成されていてもよい。
 これにより、二重管ノズルを用いて溶融スラグと一緒にスプレー水を噴射するので、スラグを急冷することができると共に、効率良く蒸気を発生させることができる。
In the present invention, a double wall nozzle comprising an outer tube and an inner tube is provided on a ceiling wall that closes an upper end opening of the cylindrical container, and an inlet of the molten slag is provided by an inner tube passage of the double tube nozzle. A spray water injection port configured to spray the spray water onto the molten slag flowing from the inflow port to slag the slag and generate steam, and is configured by an outer tube passage of the double tube nozzle. Also good.
Thereby, since spray water is injected together with molten slag using a double tube nozzle, the slag can be rapidly cooled and steam can be generated efficiently.
 本発明は、前記スプレー水噴射口からスプレー水を噴射することにより、前記流入口を通しての前記蒸気室から筒状容器外部への蒸気の吹出しを封止してもよい。
 これにより、二重管ノズルの外菅内通路からのスプレー水の噴射により、流入口を通しての蒸気の吹出しを封じるので、蒸気室を高圧に維持することができる。また、スプレー水の噴射により、流入口の出側に負圧を発生させることができるので、溶融スラグの流入の促進を図ることができる。
In the present invention, the spray of steam from the steam chamber through the inflow port to the outside of the cylindrical container may be sealed by spraying spray water from the spray water spray port.
Thereby, since the spray of the steam through the inflow port is sealed by the spray of the spray water from the outer tube inner passage of the double tube nozzle, the steam chamber can be maintained at a high pressure. Moreover, since the negative pressure can be generated on the outlet side of the inlet by spraying the spray water, the inflow of the molten slag can be promoted.
 本発明は、前記筒状容器の上端開口を塞ぐ天井壁に、外管と内管よりなる二重管ノズルが設けられ、前記溶融スラグの流入口が、前記二重管ノズルの外管内通路により構成され、前記流入口から流入する溶融スラグに対しスプレー水を噴射してスラグを水砕すると共に蒸気を発生させるスプレー水噴射口が、前記二重管ノズルの内管内通路により構成されていてもよい。
 これにより、二重管ノズルを用いて溶融スラグと一緒にスプレー水を噴射するので、スラグを急冷することができると共に、効率良く蒸気を発生させることができる。
In the present invention, a double wall nozzle comprising an outer tube and an inner tube is provided on a ceiling wall that closes an upper end opening of the cylindrical container, and an inlet of the molten slag is provided by a passage in the outer tube of the double tube nozzle. Even if the spray water injection port configured to spray the spray water to the molten slag flowing from the inflow port to slag the slag and generate the steam is constituted by the inner tube passage of the double tube nozzle Good.
Thereby, since spray water is injected together with molten slag using a double tube nozzle, the slag can be rapidly cooled and steam can be generated efficiently.
 本発明は、前記筒状容器の上部に、前記二重管ノズルの外管内通路により構成された流入口から流入する溶融スラグに対しスプレー水を噴射してスラグを水砕すると共に蒸気を発生させるスプレーノズルが設けられており、該スプレーノズルからスプレー水を噴射することにより、前記流入口を通しての前記蒸気室から筒状容器外部への蒸気の吹出しを封止してもよい。
 これにより、流入口から流入する溶融スラグに対して、スプレーノズルからのスプレー水を噴射することにより、流入口を通しての蒸気の吹出しを封じるので、蒸気室を高圧に維持することができる。
In the present invention, spray water is sprayed on the molten slag flowing from the inlet formed by the passage in the outer pipe of the double pipe nozzle on the upper part of the cylindrical container to slag the slag and generate steam. A spray nozzle may be provided, and the spray of steam from the steam chamber through the inlet to the outside of the cylindrical container may be sealed by spraying spray water from the spray nozzle.
As a result, by spraying the spray water from the spray nozzle to the molten slag flowing from the inlet, the steam blowout through the inlet is sealed, so that the steam chamber can be maintained at a high pressure.
 本発明は、前記水封室内に、沈降したスラグを機械破砕するクラッシャが設けられていてもよい。
 これにより、水封室の中にクラッシャが設けられているので、水中に落下したスラグを細かく粉砕することができる。従って、水中に浸漬したスラグの表面積が増えることにより、スラグから水への熱の移行を促進させることができる。
In the present invention, a crusher for mechanically crushing the settled slag may be provided in the water seal chamber.
Thereby, since the crusher is provided in the water-sealed chamber, the slag falling into the water can be finely pulverized. Therefore, the transfer of heat from the slag to water can be promoted by increasing the surface area of the slag immersed in water.
 本発明は、前記蒸気取出口から取り出した蒸気のエネルギーによりタービンを回して発電する発電装置が付設されていてもよい。
 これにより、発生した高圧蒸気を発電に利用するので、スラグの保有する熱を有効利用することができる。
The present invention may be provided with a power generation device that rotates a turbine with the energy of the steam taken out from the steam outlet and generates power.
Thereby, since the generated high-pressure steam is used for power generation, the heat held by the slag can be effectively used.
 本発明は、前記蒸気取出口から取り出した蒸気を、清浄化手段および均圧タンクを介して直接前記タービンに導入してもよい。
 これにより、粉塵などによってタービンブレードや軸受などが傷められる現象を減らせる。また、均圧タンクを経由するので、タービンを安定して運転することができる。
In the present invention, the steam taken out from the steam outlet may be directly introduced into the turbine via a cleaning means and a pressure equalizing tank.
Thereby, the phenomenon that a turbine blade, a bearing, etc. are damaged by dust etc. can be reduced. Moreover, since it goes through the pressure equalizing tank, the turbine can be operated stably.
 本発明は、前記蒸気取出口から取り出した蒸気のエネルギーを空気のエネルギーに変換して前記タービンに導入してもよい。
 これにより、蒸気取出口から取り出した蒸気のエネルギーを空気のエネルギーに変換してタービンに導入するので、蒸気に含まれる粉塵などによってタービンブレードや軸受などが傷められる現象を減らせる。
In the present invention, the steam energy taken out from the steam outlet may be converted into air energy and introduced into the turbine.
Thereby, since the energy of the steam taken out from the steam outlet is converted into air energy and introduced into the turbine, the phenomenon that the turbine blades and the bearings are damaged by the dust contained in the steam can be reduced.
 本発明によれば、スラグからの熱回収効率をアップすることができ、高圧蒸気を発生することのできるスラグ熱回収装置を提供することができる。 According to the present invention, it is possible to provide a slag heat recovery device capable of increasing the efficiency of heat recovery from slag and generating high-pressure steam.
本発明の第1実施形態のスラグ熱回収装置の構成図である。It is a block diagram of the slag heat recovery apparatus of 1st Embodiment of this invention. 同装置の変形例に使用する蒸気圧-空圧変換装置の構成図である。It is a block diagram of the vapor | steam pressure-pneumatic pressure conversion apparatus used for the modification of the apparatus. 本発明の第2実施形態のスラグ熱回収装置の要部構成図である。It is a principal part block diagram of the slag heat recovery apparatus of 2nd Embodiment of this invention. 同装置に使用する二重菅ノズルのバリエーションを示す図である。It is a figure which shows the variation of the double rod nozzle used for the same apparatus. 同装置に使用する二重菅ノズルのバリエーションを示す図である。It is a figure which shows the variation of the double rod nozzle used for the same apparatus. 同装置に使用する二重菅ノズルのバリエーションを示す図である。It is a figure which shows the variation of the double rod nozzle used for the same apparatus. 同装置に使用する二重菅ノズルのバリエーションを示す図である。It is a figure which shows the variation of the double rod nozzle used for the same apparatus. 本発明の第3実施形態のスラグ熱回収装置の要部構成図である。It is a principal part block diagram of the slag heat recovery apparatus of 3rd Embodiment of this invention. 前記各実施形態のスラグ熱回収装置の共通部分の概略構成図である。It is a schematic block diagram of the common part of the slag heat recovery apparatus of each said embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。
<第1実施形態>
 図1は第1実施形態のスラグ熱回収装置の構成図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is a configuration diagram of a slag heat recovery apparatus according to the first embodiment.
 このスラグ熱回収装置は、水を蓄えたプール1と、プール1内に立設され、上端開口が天井壁8で塞がれ、下端開口3が水中に開放状態のまま没入された筒状容器2と、天井壁8に設けられた溶融スラグS1の流入口12と、筒状容器2の天井壁8の上側に設置されたスラグ鍋収容室20と、筒状容器2で発生した蒸気を用いて発電する発電装置50と、を備えている。スラグ鍋収容室20の中には、溶融スラグS1の入ったスラグ鍋10がセットされる。 This slag heat recovery device includes a pool 1 in which water is stored, and a cylindrical container which is erected in the pool 1 and whose upper end opening is closed by a ceiling wall 8 and whose lower end opening 3 is immersed in water in an open state. 2, the inlet 12 of the molten slag S1 provided on the ceiling wall 8, the slag pot accommodating chamber 20 installed on the upper side of the ceiling wall 8 of the cylindrical container 2, and the steam generated in the cylindrical container 2 are used. And a power generation device 50 for generating power. In the slag pot accommodating chamber 20, the slag pot 10 containing the molten slag S1 is set.
 筒状容器2の内部は、スラグ熱回収室2Aとなっており、スラグ熱回収室2Aの上部は、蒸気W2の留まる蒸気室4とされ、下部は、水が滞留することで蒸気室4の蒸気の下端開口3からの抜けを封じる水封室5とされている。このスラグ熱回収室2Aでは、流入口12から流入する溶融スラグS1に水を接触させることで、溶融スラグS1を冷却し、それにより固形化したスラグS2を生成して、水封室5の水中に浸漬させてスラグS2を沈降させる。また、同時に、高温のスラグに接した水により、蒸気を発生させる。 The inside of the cylindrical container 2 is a slag heat recovery chamber 2A. The upper portion of the slag heat recovery chamber 2A is a steam chamber 4 where the steam W2 stays, and the lower portion of the steam chamber 4 is due to the retention of water. A water-sealed chamber 5 is provided to seal the vapor from the lower end opening 3. In the slag heat recovery chamber 2A, water is brought into contact with the molten slag S1 flowing in from the inlet 12, thereby cooling the molten slag S1, thereby generating solidified slag S2, So that the slag S2 is allowed to settle. At the same time, steam is generated by water in contact with the hot slag.
 筒状容器2の上部には、蒸気室4内の蒸気W2を外部に取り出す蒸気取出口7と、流入口12から流入する溶融スラグS1に対しスプレー水Wsを噴射して溶融スラグS1を水砕すると共に蒸気を発生させるスプレーノズル6が設けられている。スプレーノズル6に供給する水は、プール1や発電装置や系外から取り込んでもよいが、この実施形態では、取出口9から取り出した水封室5内の水(熱水)を、ポンプ60で循環させて使用している。 In the upper part of the cylindrical container 2, a steam outlet 7 for taking out the steam W2 in the steam chamber 4 to the outside, and spray water Ws is sprayed on the molten slag S1 flowing in from the inlet 12, and the molten slag S1 is granulated. In addition, a spray nozzle 6 that generates steam is provided. The water supplied to the spray nozzle 6 may be taken in from the pool 1, the power generation device, or outside the system, but in this embodiment, the water (hot water) in the water seal chamber 5 taken out from the outlet 9 is removed by the pump 60. It is used in circulation.
 また、プール1には、スラグ搬送コンベア(スラグ搬送機構)30が設けられている。このスラグ搬送コンベア30は、流入口12から流入し固形化して水封室5の水中に沈降した粒状のスラグS2を、筒状容器2の下端開口3から受け取って、プール1外のピット40へ搬送する。 Also, the pool 1 is provided with a slag transfer conveyor (slag transfer mechanism) 30. The slag transport conveyor 30 receives the granular slag S2 that has flowed from the inlet 12 and solidified and settled in the water in the water-sealed chamber 5 from the lower end opening 3 of the cylindrical container 2 to the pit 40 outside the pool 1. Transport.
 このスラグ搬送コンベア30は、水封室5の水中に沈降し滞留した粒状のスラグS2を、スラグS2の積層状態を維持しながら、その下層部から連続的に排出することができるように構成されている。スラグ搬送コンベア30は、筒状容器2の下端開口3の直下に位置して下端開口3から排出されるスラグS2を受ける第1水平搬送部31と、この第1水平搬送部31で受けたスラグS2を上方に持ち上げる垂直搬送部32と、持ち上げたスラグS2をピット40に落下させる第2水平搬送部33とを有している。ここでは、第1水平搬送部31が、筒状容器2の下端開口3の直下に適当な間隔を保って配置されていることで、スラグS2の積層状態を維持しながら、その下層部から連続的にスラグS2を搬送する。 The slag conveyor 30 is configured so that the granular slag S2 that has settled and stayed in the water in the water seal chamber 5 can be continuously discharged from its lower layer while maintaining the laminated state of the slag S2. ing. The slag transfer conveyor 30 is located immediately below the lower end opening 3 of the cylindrical container 2 and receives the slag S2 discharged from the lower end opening 3, and the slag received by the first horizontal transfer unit 31 It has the vertical conveyance part 32 which lifts S2 upward, and the 2nd horizontal conveyance part 33 which drops the lifted slag S2 to the pit 40. Here, the first horizontal conveyance unit 31 is arranged immediately below the lower end opening 3 of the cylindrical container 2 at an appropriate interval, so that the laminated state of the slag S2 is maintained and the first horizontal conveyance unit 31 continues from the lower layer portion. In particular, the slag S2 is conveyed.
 筒状容器2の天井壁8の上側に設置したスラグ鍋収容室20は、上方からスラグ鍋10を出し入れできるように上面が開口した収容室本体21と、上面を塞いで内部を密閉する蓋22とを有している。これにより、筒状容器2の内部に、溶融スラグS1の入ったスラグ鍋10をセットできる。 The slag pot storage chamber 20 installed on the upper side of the ceiling wall 8 of the cylindrical container 2 has a storage chamber main body 21 whose upper surface is opened so that the slag pot 10 can be taken in and out from above, and a lid 22 that closes the upper surface and seals the inside. And have. Thereby, the slag pan 10 containing the molten slag S <b> 1 can be set inside the cylindrical container 2.
 このスラグ鍋収容室20の下部には、スラグ鍋収容室20の内部に溶融スラグS1の入ったスラグ鍋10をセットしたとき、スラグ鍋10の下部の排出口と流入口12とを連通して、スラグ鍋10内の溶融スラグS1を流入口12に導く流入路11が設けられている。この流入路11には、ゲート11Gが設けられている。また、スラグ鍋収容室20には、蓋22をした状態でスラグ鍋収容室20に蒸気室4の圧力を導入することで、スラグ鍋収容室20内を蒸気室4と同圧にする連通路23が接続されている。この連通路23には、開閉バルブ24が設けられている。 When the slag pot 10 containing the molten slag S1 is set in the slag pot accommodating chamber 20 at the lower part of the slag pot accommodating chamber 20, the outlet at the lower part of the slag pot 10 and the inlet 12 are communicated. An inflow path 11 that guides the molten slag S1 in the slag pan 10 to the inlet 12 is provided. The inflow path 11 is provided with a gate 11G. The slag pot accommodating chamber 20 is connected to the slag pot accommodating chamber 20 with the same pressure as that of the steam chamber 4 by introducing the pressure of the steam chamber 4 into the slag pot accommodating chamber 20 with the lid 22 in place. 23 is connected. An open / close valve 24 is provided in the communication path 23.
 また、水封室5内には、必要に応じて、沈降したスラグS2を機械破砕するクラッシャ(図示せず)が設けられている。このクラッシャでスラグS2を細かく粉砕することにより、スラグの表面積を増やして、スラグS2から水への熱の移行を促進させることができる。 Further, a crusher (not shown) for mechanically crushing the settled slag S2 is provided in the water seal chamber 5 as necessary. By finely pulverizing the slag S2 with this crusher, the surface area of the slag can be increased and the transfer of heat from the slag S2 to water can be promoted.
 一方、発電装置50は、蒸気取出口7から取り出した蒸気W2のエネルギーによりタービン53を回して発電機54で発電するよう構成されている。ここでは、蒸気取出口7から取り出した蒸気W2を、ダストキャッチャー(清浄化手段)51および均圧タンク52を介して、タービン53に導入する。なお、タービン53で使用した蒸気は、水となった状態でタンク55に貯留され、必要に応じてプール1に供給される。また、プール1の水を一定に保つために、必要に応じてタンク55には補給水が供給される。 On the other hand, the power generation device 50 is configured to generate power with the generator 54 by turning the turbine 53 with the energy of the steam W2 taken out from the steam outlet 7. Here, the steam W <b> 2 taken out from the steam outlet 7 is introduced into the turbine 53 through the dust catcher (cleaning means) 51 and the pressure equalizing tank 52. Note that the steam used in the turbine 53 is stored in the tank 55 in the form of water, and is supplied to the pool 1 as necessary. Further, in order to keep the water in the pool 1 constant, makeup water is supplied to the tank 55 as necessary.
 次に作用を説明する。
 ここでは、蒸気室4に高圧蒸気が既に充満しており、水封室5内の水中に粒状のスラグS2がある程度溜まっている状態から説明する。この状態から新たなスラグ鍋10をセットする場合は、スラグ鍋収容室20の下側のゲート11Gを閉めた状態にし、スラグ鍋収容室20の中に溶融スラグS1の入ったスラグ鍋10をセットする。次に蓋22をして、連通路23の開閉バルブ24を操作し、蒸気室4の圧力をスラグ鍋収容室20の中に導き入れて、スラグ鍋収容室20の中を蒸気室4と同圧にする。
Next, the operation will be described.
Here, the steam chamber 4 is already filled with high-pressure steam, and a state in which granular slag S2 is accumulated to some extent in the water in the water-sealed chamber 5 will be described. When setting a new slag pot 10 from this state, the lower gate 11G of the slag pot accommodating chamber 20 is closed, and the slag pot 10 containing the molten slag S1 is set in the slag pot accommodating chamber 20. To do. Next, the lid 22 is closed, the open / close valve 24 of the communication passage 23 is operated, the pressure of the steam chamber 4 is introduced into the slag pot accommodating chamber 20, and the inside of the slag pot accommodating chamber 20 is the same as the steam chamber 4. Pressure.
 その状態で、ゲート11Gを開いて、スラグ鍋10の中の溶融スラグS1を流入口12から筒状容器2の中に流入させる。そうすると、流入した溶融スラグS1は、スプレー水Wsの噴射により急冷され、水砕されて水封室5内の水中に落下し、水に浸漬することで更に冷却される。この冷却の過程で蒸気W2が発生し、蒸気W2は蒸気取出口7から発電装置50に導かれて発電に供される。 In this state, the gate 11G is opened, and the molten slag S1 in the slag pan 10 is caused to flow into the cylindrical container 2 from the inlet 12. Then, the molten slag S1 that has flowed is rapidly cooled by spraying the spray water Ws, crushed, dropped into the water in the water seal chamber 5, and further cooled by being immersed in water. Steam W2 is generated in the course of this cooling, and the steam W2 is led from the steam outlet 7 to the power generation device 50 and used for power generation.
 一方、水封室5の水中に落下した粒状のスラグS2は、水中を沈降していき、下層に溜まったスラグS2から順にスラグ搬送コンベア30でピット40まで運ばれる。 On the other hand, the granular slag S2 that has fallen into the water in the water-sealed chamber 5 settles in the water, and is transported to the pit 40 by the slag conveyor 30 in order from the slag S2 accumulated in the lower layer.
 以上の流れで操業される実施形態のスラグ熱回収装置によれば、溶融スラグS1の保有する熱を効率良く回収して高圧の蒸気W2を発生させることができる。すなわち、プール1内に立設された筒状容器2は、下端が開放しているものの水封されているので、下端開口3を通してのスラグS2の排出に伴って蒸気が抜けるおそれがない。従って、蒸気室4内の蒸気の圧力を高めることができ、高圧の蒸気W2を外部に取り出すことができる。例えば、水中に没している筒状容器2の周囲の水面から水封室5内の水面までの高さLに相当する高圧の蒸気を保持することができる。そのため、その蒸気のエネルギーを発電に利用することにより、発電効率を高めることができる。また、スラグS2の排出口である筒状容器2の下端は常時開放されているため、スラグS2が詰まることもない。 According to the slag heat recovery apparatus of the embodiment operated in the above flow, the heat held by the molten slag S1 can be efficiently recovered and the high-pressure steam W2 can be generated. That is, the cylindrical container 2 erected in the pool 1 is water-sealed although the lower end is open, so that there is no possibility that steam will escape with the discharge of the slag S2 through the lower end opening 3. Accordingly, the pressure of the steam in the steam chamber 4 can be increased, and the high-pressure steam W2 can be taken out. For example, high-pressure steam corresponding to the height L from the water surface around the cylindrical container 2 submerged in water to the water surface in the water-sealed chamber 5 can be held. Therefore, power generation efficiency can be increased by using the energy of the steam for power generation. Moreover, since the lower end of the cylindrical container 2 which is the discharge port of the slag S2 is always open, the slag S2 is not clogged.
 また、筒状容器2の水封室5の水中には、上からスラグS2が落下して浸漬し、徐々に沈降堆積していくので、その堆積したスラグS2を下層部から筒状容器2の下端開口3を通してスラグ搬送コンベア30により排出することができる。このように、水封室5の水中に滞留したスラグS2の積層状態を維持しながら、上からのスラグS2の沈降堆積に合わせて、滞留したスラグS2を下層部から連続的に排出することができるので、水封室5内の安定状態を崩さずに、スラグS2の生成と蒸気の生成とを連続的に行うことができ、安定操業を進めることができる。 Moreover, since the slag S2 falls and dipped from above into the water sealed chamber 5 of the cylindrical container 2 and gradually settles and accumulates, the accumulated slag S2 is transferred from the lower layer to the cylindrical container 2. It can be discharged by the slag conveyor 30 through the lower end opening 3. As described above, the retained slag S2 can be continuously discharged from the lower layer portion in accordance with the sedimentation of the slag S2 from above while maintaining the stacked state of the slag S2 retained in the water in the water seal chamber 5. Therefore, without destroying the stable state in the water-sealed chamber 5, the generation of slag S2 and the generation of steam can be performed continuously, and stable operation can be promoted.
 また、この実施形態のスラグ熱回収装置によれば、溶融スラグS1からの熱回収を、溶融スラグS1に対するスプレー水の噴射と、溶融スラグS1の水中への浸漬とで行うことができるので、熱回収率の向上を図ることができる。つまり、溶融スラグS1の顕熱および潜熱を最大限に回収して、多くの水蒸気を発生させることができる。また、スプレー水で溶融スラグS1を急冷することで、良質な水砕スラグS2を作ることができる。特に、水封室5内の熱水をスプレー水として利用するので、蒸気発生効率をアップさせることができる。 Further, according to the slag heat recovery device of this embodiment, heat recovery from the molten slag S1 can be performed by spraying spray water on the molten slag S1 and immersing the molten slag S1 in water. The recovery rate can be improved. That is, a large amount of water vapor can be generated by recovering the sensible heat and latent heat of the molten slag S1 to the maximum extent. Moreover, the high quality granulated slag S2 can be made by rapidly cooling the molten slag S1 with spray water. In particular, since the hot water in the water-sealed chamber 5 is used as spray water, the steam generation efficiency can be increased.
 また、この実施形態のスラグ熱回収装置によれば、スラグ鍋収容室20の下部のゲート11Gを開ける前に、連通路23を介して、スラグ鍋収容室20内の圧力を蒸気室4と同圧にするにより、ゲート11Gを開けた際の蒸気の吹き上げを防止することができる。従って、蒸気室4内を高圧に保つことができると共に、安全な操業を進めることができる。 Further, according to the slag heat recovery device of this embodiment, the pressure in the slag pot accommodating chamber 20 is set to the same as that of the steam chamber 4 via the communication path 23 before opening the gate 11G at the lower part of the slag pot accommodating chamber 20. By using the pressure, it is possible to prevent the steam from being blown up when the gate 11G is opened. Therefore, the inside of the steam chamber 4 can be maintained at a high pressure, and safe operation can be promoted.
 また、蒸気取出口7から取り出した蒸気W2をダストキャッチャー51および均圧タンク52を介してタービン53に導入するので、粉塵などによってタービンブレードや軸受が傷められる現象を減らすことができる。また、蒸気W2が均圧タンク52を経由するので、タービン53を安定して運転することができる。 Further, since the steam W2 taken out from the steam outlet 7 is introduced into the turbine 53 via the dust catcher 51 and the pressure equalizing tank 52, the phenomenon that the turbine blade and the bearing are damaged by dust or the like can be reduced. Further, since the steam W2 passes through the pressure equalizing tank 52, the turbine 53 can be stably operated.
 なお、この実施形態のスラグ熱回収装置では、発電装置50のタービン53に直接、清浄化した蒸気W2を導入する場合を示したが、蒸気のエネルギーを空気に伝達して、エネルギーをもらった空気をタービン53に供給することもできる。 In the slag heat recovery apparatus of this embodiment, the case where the purified steam W2 is directly introduced into the turbine 53 of the power generation apparatus 50 has been shown. However, the steam energy is transmitted to the air, and the air receives the energy. Can also be supplied to the turbine 53.
<変形例>
 図2は蒸気圧を空圧に変換する蒸気圧-空圧変換装置70の構成を示している。
 この蒸気圧-空圧変換装置70は、高圧蒸気の圧力を空圧に変換するための複数の変換容器71A~71Cを主要構成として有している。変換容器71A~71Cの中は可動隔壁(ダイヤフラム等)72により蒸気室74と空気室75に画成されている。各蒸気室74に、蒸気側のライン81として、それぞれバルブ87、88を介して蒸気導入ライン83と蒸気導出ライン84とが並列に接続されている。また、各空気室75に、空気側のライン82として、それぞれバルブ87、88を介して空気導入ラインと85と空気導出ライン86とが並列に接続されている。
<Modification>
FIG. 2 shows a configuration of a vapor pressure-air pressure conversion device 70 that converts the vapor pressure into air pressure.
The vapor pressure-air pressure conversion device 70 has a plurality of conversion containers 71A to 71C for converting the pressure of high-pressure steam into air pressure as a main component. The conversion containers 71A to 71C are divided into a vapor chamber 74 and an air chamber 75 by a movable partition wall (diaphragm or the like) 72. A steam inlet line 83 and a steam outlet line 84 are connected in parallel to the steam chambers 74 as valves 81 on the steam side via valves 87 and 88, respectively. In addition, an air introduction line 85 and an air lead-out line 86 are connected in parallel to the air chambers 75 as valves 82 on the air side through the valves 87 and 88, respectively.
 この蒸気圧-空圧変換装置70によれば、バルブ87、88を順番に操作して、高圧蒸気を蒸気導入ライン83から各蒸気室74に導入して蒸気導出ライン84から排出すると共に、空気を空気導入ライン85から各空気室75に導入して空気導出ライン86から排出することにより、可動隔壁72を介して、蒸気の圧力を空気に伝えることができる。そして、この空気導出ライン86から取り出した高圧空気をタービン53に導くことにより、蒸気をタービン53に直接触させずに、タービン53を回して発電することができる。 According to this vapor pressure-pneumatic pressure conversion device 70, the valves 87 and 88 are operated in order to introduce high-pressure steam into the respective steam chambers 74 from the steam introduction line 83 and discharge it from the steam outlet line 84. Is introduced into each air chamber 75 from the air introduction line 85 and discharged from the air outlet line 86, whereby the pressure of the vapor can be transmitted to the air via the movable partition wall 72. Then, by introducing the high-pressure air taken out from the air lead-out line 86 to the turbine 53, the turbine 53 can be rotated to generate electric power without bringing the steam into direct contact with the turbine 53.
<第2実施形態>
 図3は第2実施形態のスラグ熱回収装置の要部構成図である。
 このスラグ熱回収装置では、筒状容器2の上端開口を塞ぐ天井壁8に、外管102と内管110よりなる二重管ノズルN1が設けられており、溶融スラグS1の流入口114が、二重管ノズルN1の内管110内の通路の下端開口により構成されている。また、流入口114から流入する溶融スラグS1に対しスプレー水Wsを噴射してスラグを水砕すると共に蒸気を発生させるスプレー水噴射口104が、二重管ノズルN1の外管102内の通路103(外管102と内管110の隙間)の環状開口により構成されている。
<Second Embodiment>
FIG. 3 is a configuration diagram of a main part of the slag heat recovery device of the second embodiment.
In this slag heat recovery device, the double wall nozzle N1 composed of the outer tube 102 and the inner tube 110 is provided on the ceiling wall 8 that closes the upper end opening of the cylindrical container 2, and the inlet 114 of the molten slag S1 is It is constituted by a lower end opening of a passage in the inner pipe 110 of the double pipe nozzle N1. Further, a spray water injection port 104 for spraying spray water Ws to the molten slag S1 flowing from the inflow port 114 to break up the slag and generate steam is provided in the passage 103 in the outer tube 102 of the double tube nozzle N1. It is configured by an annular opening (a gap between the outer tube 102 and the inner tube 110).
 この場合、スプレー水噴射口104は、筒状容器2の天井壁8とその下側に形成された隔壁100との間に確保された環状の水噴射室101に連通している。この水噴射室101に導水路106から水が導入されることにより、その水が、外管102と内管110の間の通路(外管102内の通路103)を通って、スプレー水噴射口104から下向きにスプレー水Wsとして噴射され、内管110内の通路を通って流入口114から筒状容器2内に流入する溶融スラグS1に当たって、溶融スラグS1を冷却する。 In this case, the spray water injection port 104 communicates with an annular water injection chamber 101 secured between the ceiling wall 8 of the cylindrical container 2 and a partition wall 100 formed on the lower side thereof. When water is introduced into the water injection chamber 101 from the water conduit 106, the water passes through the passage between the outer tube 102 and the inner tube 110 (passage 103 in the outer tube 102), and is a spray water injection port. The molten slag S1 is cooled as it hits the molten slag S1 that is sprayed downward as spray water Ws 104 from the inlet 114 and flows into the cylindrical container 2 through the passage in the inner pipe 110.
 また、天井壁8の上側には、スラグ樋122を流れ下って来た溶融スラグS1を貯留する溶融スラグピット120が設けられており、この溶融スラグピット120の下端から延びる流入路121が、二重管ノズルN1の内管110内の通路に連通している。 In addition, a molten slag pit 120 for storing the molten slag S1 flowing down the slag trough 122 is provided on the upper side of the ceiling wall 8, and an inflow passage 121 extending from the lower end of the molten slag pit 120 is provided in two. It communicates with a passage in the inner pipe 110 of the heavy pipe nozzle N1.
 このスラグ熱回収装置では、溶融スラグS1が、溶融スラグピット120から二重管ノズルN1の内管110内の通路を通って、流入口114から筒状容器2内に流入する。一方、導水路106から水噴射室101に導入された水が、外管102と内管110の間の隙間(外管102内の通路103)を通って、スプレー水噴射口104から下向きにスプレー水Wsとして噴射される。それにより、流入口114から筒状容器2内に流入する溶融スラグS1がスプレー水Wsにより急冷されて、粒状の水砕スラグが生成されると共に蒸気が発生する。また、粒状のスラグは水封室5の水中に浸漬することで、残った熱がさらに蒸気を発生する。このように流入する溶融スラグS1がスプレー水Wsにより水砕される際に、流入口114を通しての蒸気室4から筒状容器2外部への蒸気の吹出しをスプレー水Wsが封止する。 In this slag heat recovery device, the molten slag S1 flows from the molten slag pit 120 through the passage in the inner pipe 110 of the double pipe nozzle N1 into the cylindrical container 2 from the inlet 114. On the other hand, water introduced into the water jet chamber 101 from the water conduit 106 is sprayed downward from the spray water jet port 104 through the gap between the outer pipe 102 and the inner pipe 110 (the passage 103 in the outer pipe 102). Sprayed as water Ws. As a result, the molten slag S1 flowing into the cylindrical container 2 from the inlet 114 is rapidly cooled by the spray water Ws, and granular granulated slag is generated and steam is generated. The granular slag is immersed in the water in the water-sealed chamber 5 so that the remaining heat further generates steam. When the molten slag S1 flowing in in this way is crushed by the spray water Ws, the spray water Ws seals the blowing of steam from the steam chamber 4 through the inlet 114 to the outside of the cylindrical container 2.
 この実施形態のスラグ熱回収装置によれば、二重管ノズルN1を用いて溶融スラグS1と一緒にスプレー水Wsを噴射するので、溶融スラグS1を急冷することができると共に、効率良く蒸気を発生させることができる。また、二重管ノズルN1の外管102内の通路からのスプレー水Wsの噴射により、流入口114を通しての蒸気の吹出しを封じるので、蒸気室4を高圧に維持することができる。また、スプレー水Wsの噴射により、流入口114の出側に負圧を発生させることができるので、溶融スラグS1の流入の促進を図ることができる。 According to the slag heat recovery device of this embodiment, since the spray water Ws is injected together with the molten slag S1 using the double pipe nozzle N1, the molten slag S1 can be rapidly cooled and steam is efficiently generated. Can be made. Further, the spray of the spray water Ws from the passage in the outer tube 102 of the double tube nozzle N1 seals the steam blowout through the inflow port 114, so that the steam chamber 4 can be maintained at a high pressure. Moreover, since the negative pressure can be generated on the outlet side of the inflow port 114 by the spray of the spray water Ws, the inflow of the molten slag S1 can be promoted.
 図4A~図4Dは、他の実施形態の二重管ノズルNA~NDを示している。
 図4Aの二重管ノズルNAでは、外管102の下端102aが、内管110の下端より所定寸法Lm1(=約150mm)だけ下方に長く延びており、その延長部分が、下方に行くほど窄まったテーパ状(テーパ角θ1=約1.9°)に形成されている。150mmΦの外管102の下端は140mmΦのスプレー水噴射口104まで窄まっている。
内管110は、60mmΦである。
4A to 4D show another embodiment of the double tube nozzles NA to ND.
In the double tube nozzle NA of FIG. 4A, the lower end 102a of the outer tube 102 extends downward from the lower end of the inner tube 110 by a predetermined dimension Lm1 (= about 150 mm), and the extended portion becomes narrower as it goes downward. A tapered shape (taper angle θ1 = about 1.9 °) is formed. The lower end of the outer tube 102 having a diameter of 150 mm is narrowed to the spray water injection port 104 having a diameter of 140 mm.
The inner tube 110 has a diameter of 60 mm.
 図4Bの二重管ノズルNBでは、図4Aの内管110の下端110aが所定寸法Lm2(=約50mm)だけ下方に長く延びており、その延長部分が、下方に行くほど窄まったテーパ状(テーパ角θ2=約1.9°)に形成されている。従って、60mmΦの内管110の下端は、50mmΦの流入口114となっている。 In the double tube nozzle NB of FIG. 4B, the lower end 110a of the inner tube 110 of FIG. 4A extends long downward by a predetermined dimension Lm2 (= about 50 mm), and the extended portion is tapered so as to go downward. (Taper angle θ2 = about 1.9 °). Therefore, the lower end of the inner pipe 110 having a diameter of 60 mm is an inlet 114 having a diameter of 50 mm.
 図4Aおよび図4Bの二重管ノズルNA、NBのように、外管102の下端102aを内管110の下端110aより下方に延ばした場合、流入口114から流入する溶融スラグS1にスプレー水を確実に多く接触させることができる。 When the lower end 102a of the outer pipe 102 is extended below the lower end 110a of the inner pipe 110 as in the double pipe nozzles NA and NB of FIGS. 4A and 4B, spray water is supplied to the molten slag S1 flowing from the inlet 114. It is possible to reliably make many contacts.
 図4Cの二重管ノズルNCでは、外管102の下端102aと内管110の下端110aを同じ長さに設定している。そして、それら下端102a、110aを、同じ所定寸法Lm3(=約50mm)だけ、下方に行くほど窄まったテーパ状(テーパ角θ3=約1.9°)に形成している。 4C, the lower end 102a of the outer tube 102 and the lower end 110a of the inner tube 110 are set to the same length. The lower ends 102a and 110a are formed in a tapered shape (taper angle θ3 = about 1.9 °) that is narrowed downward by the same predetermined dimension Lm3 (= about 50 mm).
 図4Dの二重管ノズルNDでは、図4Cの外管102の下端102aのテーパ(テーパ角θ4=約1.9°)の向きを外向きにしている。 In the double tube nozzle ND of FIG. 4D, the taper (taper angle θ4 = about 1.9 °) of the lower end 102a of the outer tube 102 of FIG. 4C is outward.
 これらの二重管ノズルNA~NDを使用することにより、溶融スラグS1の吸い出し効果を期待することができる。また、スプレー水Wsによる水封効果を期待することができる。 By using these double tube nozzles NA to ND, it is possible to expect the suction effect of the molten slag S1. Moreover, the water sealing effect by the spray water Ws can be expected.
<第3実施形態>
 図5は第3実施形態のスラグ熱回収装置の要部構成図である。
 前記第2実施形態では、二重管ノズルN1の内管110内の通路をスラグの通路とし、外管102内の通路をスプレー水の通路としていたが、この第3実施形態のスラグ熱回収装置では、類似の二重管ノズルN2を筒状容器2の天井壁8に設けるものの、第2実施形態とは逆に、二重管ノズルN2の内管142内の通路をスプレー水Wsの通路とし、外管141内の通路(外管141と内管142の間の環状の隙間143)を溶融スラグS1の通路としている。そして、溶融スラグS1の流入口を、二重管ノズルN2の外管141内の通路(外管141と内管142の間の環状の隙間143)の下端で構成している。また、スプレー水噴射口を、二重管ノズルN2の内管142内の通路の下端で構成している。なお、内管142は、溶融スラグピット120から挿入している。
<Third Embodiment>
FIG. 5 is a configuration diagram of a main part of the slag heat recovery device of the third embodiment.
In the second embodiment, the passage in the inner pipe 110 of the double pipe nozzle N1 is a slag passage, and the passage in the outer pipe 102 is a spray water passage. The slag heat recovery apparatus of the third embodiment Then, although a similar double pipe nozzle N2 is provided on the ceiling wall 8 of the cylindrical container 2, contrary to the second embodiment, the passage in the inner pipe 142 of the double pipe nozzle N2 is used as a passage for the spray water Ws. The passage in the outer pipe 141 (the annular gap 143 between the outer pipe 141 and the inner pipe 142) is used as the passage for the molten slag S1. And the inflow port of molten slag S1 is comprised by the lower end of the channel | path (The cyclic | annular space | gap 143 between the outer pipe | tube 141 and the inner pipe | tube 142) in the outer pipe | tube 141 of the double pipe nozzle N2. Moreover, the spray water injection port is comprised by the lower end of the channel | path in the inner tube 142 of the double tube nozzle N2. The inner pipe 142 is inserted from the molten slag pit 120.
 また、筒状容器2の上部に、二重管ノズルN2の外管141内通路により構成された流入口から流入する溶融スラグS1に対し、スプレー水Wsを二重管ノズルN2の内管142内通路から噴射するとともに、蒸気室4内に設置したスプレーノズル6からもスプレー水Wsを噴射してスラグを水砕するとともに蒸気を発生させる。二重管ノズルN2の内管142内通路からのスプレー水Wsの噴射により、流入口である外管141内通路を通しての蒸気の吹き出しを封じるので、蒸気室4を高圧に維持することができる。また、スプレー水Wsの噴射により、外管141内通路部の出側に負圧を発生させることができるので、溶融スラグS1の流入の促進を図ることができる。 In addition, spray water Ws is injected into the inner pipe 142 of the double pipe nozzle N2 with respect to the molten slag S1 flowing from the inlet formed by the passage in the outer pipe 141 of the double pipe nozzle N2 in the upper part of the cylindrical container 2. In addition to spraying from the passage, spray water Ws is sprayed from the spray nozzle 6 installed in the steam chamber 4 to slag the slag and generate steam. The spraying of the spray water Ws from the passage in the inner pipe 142 of the double pipe nozzle N2 seals the blowout of steam through the passage in the outer pipe 141 that is the inflow port, so that the steam chamber 4 can be maintained at a high pressure. Moreover, since the negative pressure can be generated on the outlet side of the passage portion in the outer pipe 141 by the spraying of the spray water Ws, the inflow of the molten slag S1 can be promoted.
 この実施形態のスラグ熱回収装置によれば、二重管ノズルN2の外管141内の通路から流入する溶融スラグS1に対して、内外面のいずれからもスプレー水Wsを噴射するので、溶融スラグS1を急冷することができると共に、効率良く蒸気を発生させることができる。 According to the slag heat recovery device of this embodiment, since the spray water Ws is injected from both the inner and outer surfaces to the molten slag S1 flowing from the passage in the outer tube 141 of the double tube nozzle N2, the molten slag S1 can be rapidly cooled and steam can be generated efficiently.
1 プール
2 筒状容器
2A スラグ熱回収室
3 下端開口
4 蒸気室
5 水封室
6 スプレーノズル
7 蒸気取出口
8 天井壁
9 取出口
10 スラグ鍋
11 流入路
11G ゲート
12 流入口
20 スラグ鍋収容室
21 収容室本体
22 蓋
23 連通路
24 開閉バルブ
30 スラグ搬送コンベア(スラグ搬送機構)
 30A、30B スラグ搬送コンベア
31 第1水平搬送部
32 垂直搬送部
33 第2水平搬送部
40 ピット
50 発電装置
51 ダストキャッチャー(清浄化手段)
52 均圧タンク
53 タービン
54 発電機
55 タンク
60 ポンプ
70 蒸気圧-空圧変換装置
71A~71C 変換容器
72 可動隔壁
74 蒸気室
75 空気室
81 蒸気側のライン
82 空気側のライン
83 蒸気導入ライン
84 蒸気導出ライン
85 空気導入ライン
86 空気導出ライン
87、88 バルブ
100 隔壁
101 水噴射室
102 外管
102a 下端
103 通路
104 スプレー水噴射口
106 導水路
110 内管
110a 下端
114 流入口
120 溶融スラグピット
121 流入路
122 スラグ樋
141 外管
142 内管
143 隙間
200 容器
H 蒸気圧力
2H 蒸気圧力
W 水
W2 蒸気
Ws スプレー水
S1 溶融スラグ
S2 スラグ
N1、N2、NA~ND 二重管ノズル
DESCRIPTION OF SYMBOLS 1 Pool 2 Cylindrical container 2A Slag heat recovery chamber 3 Lower end opening 4 Steam chamber 5 Water seal chamber 6 Spray nozzle 7 Steam outlet 8 Ceiling wall 9 Outlet 10 Slag pot 11 Inflow path 11G Gate 12 Inlet 20 Slag pot storage chamber 21 Containment chamber body 22 Lid 23 Communication path 24 Open / close valve 30 Slag conveyor (slag conveyor mechanism)
30A, 30B Slag conveyor 31 First horizontal conveyor 32 Vertical conveyor 33 Second horizontal conveyor 40 Pit 50 Power generator 51 Dust catcher (cleaning means)
52 Pressure equalizing tank 53 Turbine 54 Generator 55 Tank 60 Pump 70 Vapor pressure-air pressure conversion devices 71A to 71C Conversion vessel 72 Movable partition wall 74 Steam chamber 75 Air chamber 81 Steam side line 82 Air side line 83 Steam introduction line 84 Steam outlet line 85 Air inlet line 86 Air outlet lines 87 and 88 Valve 100 Partition wall 101 Water injection chamber 102 Outer pipe 102a Lower end 103 Passage 104 Spray water injection port 106 Water conduit 110 Inner pipe 110a Lower end 114 Inlet 120 Melting slag pit 121 Inflow Path 122 slag rod 141 outer pipe 142 inner pipe 143 gap 200 container H steam pressure 2H steam pressure W water W2 steam Ws spray water S1 molten slag S2 slag N1, N2, NA to ND double pipe nozzle

Claims (13)

  1.  水を蓄えたプールと、
     前記プール内に立設され、上端開口が塞がれ、下端開口が水中に開放状態のまま没入された筒状容器と、
     前記筒状容器の上部に設けられた溶融スラグの流入口と、
     前記筒状容器の内部に画成され、上部が蒸気の留まる蒸気室とされるとともに、下部が水を滞留させることで前記蒸気室の蒸気の抜けを封じる水封室とされ、前記流入口から流入する溶融スラグに水を接触させることで、冷却により固形化したスラグを生成して前記水封室の水中に沈降させると共に蒸気を発生するスラグ熱回収室と、
     前記蒸気室内の蒸気を外部に取り出す蒸気取出口と、
     前記流入口から流入し固形化して前記水封室の水中に沈降したスラグを、前記筒状容器の下端開口から受け取って他の場所へ搬送するスラグ搬送機構と、
     を備えるスラグ熱回収装置。
    A pool of water,
    A cylindrical container which is erected in the pool, the upper end opening is closed, and the lower end opening is immersed in water in an open state;
    An inlet for molten slag provided at the top of the cylindrical container;
    The inside of the cylindrical container is defined, and the upper part is a steam chamber in which steam stays, and the lower part is a water sealed chamber that seals out the steam from the steam chamber by retaining water, from the inlet A slag heat recovery chamber for generating steam by generating solidified slag by cooling and bringing it into the water in the water sealed chamber by bringing water into contact with the inflowing molten slag;
    A steam outlet for taking out the steam in the steam chamber to the outside;
    A slag transport mechanism that receives the slag that has flowed from the inlet and solidified and settled in the water in the water-sealed chamber from the lower end opening of the cylindrical container, and transports the slag to another place;
    A slag heat recovery device comprising:
  2.  前記筒状容器の上部に、前記流入口から流入する溶融スラグに対しスプレー水を噴射してスラグを水砕すると共に蒸気を発生させるスプレーノズルが設けられている請求項1に記載のスラグ熱回収装置。 The slag heat recovery according to claim 1, wherein a spray nozzle that sprays spray water on the molten slag flowing from the inlet and slags the slag and generates steam is provided at an upper portion of the cylindrical container. apparatus.
  3.  前記水封室内の水を取り出して前記スプレーノズルに供給する請求項2に記載のスラグ熱回収装置。 The slag heat recovery device according to claim 2, wherein water in the water seal chamber is taken out and supplied to the spray nozzle.
  4.  前記スラグ搬送機構が、前記水封室の水中に沈降し滞留したスラグを、該スラグの積層状態を維持しながら、その下層部から連続的に排出する請求項1~3のいずれか1項に記載のスラグ熱回収装置。 4. The slag transport mechanism according to any one of claims 1 to 3, wherein the slag transport mechanism continuously discharges the slag that has settled and stayed in the water-sealed chamber from its lower layer while maintaining the laminated state of the slag. The slag heat recovery device described.
  5.  前記流入口が、前記筒状容器の上端開口を塞ぐ天井壁に形成され、
     その天井壁の上側に、蓋をすることで密閉可能なスラグ鍋収容室が配置され、
     このスラグ鍋収容室の下部に、該スラグ鍋収容室の内部に溶融スラグの入ったスラグ鍋をセットしたとき、該スラグ鍋の下部の排出口と前記流入口とを連通して、スラグ鍋内の溶融スラグを前記流入口に導くスラグ流入路と該スラグ流入路を開閉するゲートとが設けられ、
     一方、前記スラグ鍋収容室に、前記蓋をした状態でスラグ鍋収容室に前記蒸気室の圧力を導入することで、スラグ鍋収容室内を前記蒸気室と同圧にする連通路が接続され、前記連通路に開閉バルブが設けられている
     請求項1~4のいずれか1項に記載のスラグ熱回収装置。
    The inflow port is formed in a ceiling wall that closes an upper end opening of the cylindrical container;
    On the upper side of the ceiling wall, a slag pot storage room that can be sealed by placing a lid is arranged,
    When a slag pot containing molten slag is set inside the slag pot accommodating chamber at the lower part of the slag pot accommodating chamber, the discharge port at the lower part of the slag pot and the inflow port are communicated with each other. A slag inflow passage for guiding the molten slag to the inlet and a gate for opening and closing the slag inflow passage,
    On the other hand, by introducing the pressure of the steam chamber into the slag pot accommodating chamber with the lid on the slag pot accommodating chamber, a communication path that connects the slag pot accommodating chamber to the same pressure as the steam chamber is connected, The slag heat recovery device according to any one of claims 1 to 4, wherein an open / close valve is provided in the communication path.
  6.  前記筒状容器の上端開口を塞ぐ天井壁に、外管と内管よりなる二重管ノズルが設けられ、
     前記溶融スラグの流入口が、前記二重管ノズルの内管内通路により構成され、
     前記該流入口から流入する溶融スラグに対しスプレー水を噴射してスラグを水砕すると共に蒸気を発生させるスプレー水噴射口が、前記二重管ノズルの外管内通路により構成されている請求項1~4のいずれか1項に記載のスラグ熱回収装置。
    On the ceiling wall that closes the upper end opening of the cylindrical container, a double tube nozzle consisting of an outer tube and an inner tube is provided,
    The inlet of the molten slag is constituted by an inner pipe passage of the double pipe nozzle;
    The spray water injection port for spraying spray water onto the molten slag flowing from the inlet to slag the slag and generating steam is constituted by a passage in the outer tube of the double tube nozzle. The slag heat recovery device according to any one of 1 to 4.
  7.  前記スプレー水噴射口からスプレー水を噴射することにより、前記流入口を通しての前記蒸気室から筒状容器外部への蒸気の吹出しを封止する請求項6に記載のスラグ熱回収装置。 The slag heat recovery apparatus according to claim 6, wherein spraying of steam from the steam chamber through the inflow port to the outside of the cylindrical container is sealed by spraying spray water from the spray water spray port.
  8.  前記筒状容器の上端開口を塞ぐ天井壁に、外管と内管よりなる二重管ノズルが設けられ、
     前記溶融スラグの流入口が、前記二重管ノズルの外管内通路により構成され、
     前記流入口から流入する溶融スラグに対しスプレー水を噴射してスラグを水砕すると共に蒸気を発生させるスプレー水噴射口が、前記二重管ノズルの内管内通路により構成されている請求項1~4のいずれか1項に記載のスラグ熱回収装置。
    On the ceiling wall that closes the upper end opening of the cylindrical container, a double tube nozzle consisting of an outer tube and an inner tube is provided,
    The inflow port of the molten slag is constituted by a passage in the outer pipe of the double pipe nozzle;
    The spray water injection port for spraying spray water to the molten slag flowing from the inflow port to smash the slag and generate steam is constituted by a passage in the inner pipe of the double pipe nozzle. The slag heat recovery device according to any one of 4.
  9.  前記筒状容器の上部に、前記二重管ノズルの外管内通路により構成された流入口から流入する溶融スラグに対しスプレー水を噴射してスラグを水砕すると共に蒸気を発生させるスプレーノズルが設けられており、該スプレーノズルからスプレー水を噴射することにより、前記流入口を通しての前記蒸気室から筒状容器外部への蒸気の吹出しを封止する請求項8に記載のスラグ熱回収装置。 A spray nozzle that sprays spray water on the molten slag flowing from the inlet formed by the outer pipe passage of the double tube nozzle to slag the slag and generate steam is provided on the upper part of the cylindrical container. The slag heat recovery apparatus according to claim 8, wherein spraying of steam from the steam chamber to the outside of the cylindrical container through the inflow port is sealed by spraying spray water from the spray nozzle.
  10.  前記水封室内に、沈降したスラグを機械破砕するクラッシャが設けられている請求項1~9のいずれか1項に記載のスラグ熱回収装置。 The slag heat recovery device according to any one of claims 1 to 9, wherein a crusher for mechanically crushing the settled slag is provided in the water seal chamber.
  11.  前記蒸気取出口から取り出した蒸気のエネルギーによりタービンを回して発電する発電装置が付設されている請求項1~10のいずれか1項に記載のスラグ熱回収装置。 The slag heat recovery device according to any one of claims 1 to 10, further comprising a power generation device that generates electricity by turning a turbine with energy of steam taken out from the steam outlet.
  12.  前記蒸気取出口から取り出した蒸気を、清浄化手段および均圧タンクを介して直接前記タービンに導入する請求項11に記載のスラグ熱回収装置。 The slag heat recovery device according to claim 11, wherein the steam taken out from the steam outlet is directly introduced into the turbine via a cleaning means and a pressure equalizing tank.
  13.  前記蒸気取出口から取り出した蒸気のエネルギーを空気のエネルギーに変換して前記タービンに導入する請求項11に記載のスラグ熱回収装置。 The slag heat recovery device according to claim 11, wherein the steam energy taken out from the steam outlet is converted into air energy and introduced into the turbine.
PCT/JP2013/062701 2012-05-07 2013-05-01 Slag heat recovery device WO2013168655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012105933A JP2013234774A (en) 2012-05-07 2012-05-07 Slag heat recovery device
JP2012-105933 2012-05-07

Publications (1)

Publication Number Publication Date
WO2013168655A1 true WO2013168655A1 (en) 2013-11-14

Family

ID=49550695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062701 WO2013168655A1 (en) 2012-05-07 2013-05-01 Slag heat recovery device

Country Status (2)

Country Link
JP (1) JP2013234774A (en)
WO (1) WO2013168655A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104533557A (en) * 2014-11-19 2015-04-22 鞍山钢铁集团公司矿渣开发公司 Method for generating electricity through recovering metallurgical slag afterheat
CN105927305A (en) * 2016-05-04 2016-09-07 上海宝钢节能环保技术有限公司 Heat, power and cooling multi-generation system adopting sintering low-temperature waste heat
CN110964866A (en) * 2019-12-30 2020-04-07 中冶赛迪上海工程技术有限公司 Recovery device and recovery method for steam heat and moisture of blast furnace granulated slag
CN110975499A (en) * 2019-12-25 2020-04-10 中冶京诚工程技术有限公司 Environment-friendly white-removing device for blast furnace granulated slag
CN112280912A (en) * 2020-09-23 2021-01-29 鞍钢集团工程技术有限公司 Pit cover tipping device
CN112880420A (en) * 2021-01-12 2021-06-01 黄秋霞 Energy-concerving and environment-protective steel smelting processingequipment
CN113736931A (en) * 2021-08-06 2021-12-03 中钢(石家庄)工程技术有限公司 Reverse water immersion method normal pressure hot disintegrating steel slag and waste heat recovery system and method
CN115216600A (en) * 2022-07-19 2022-10-21 南京青述节能技术有限公司 High-temperature high-pressure water quenching molten slag waste heat recovery device
CN115490443A (en) * 2022-09-20 2022-12-20 西安交通大学 Zero-drainage smelting slag chilling heat recovery device and process
CN117663082A (en) * 2023-12-28 2024-03-08 江苏新方圆电气设备制造有限公司 Slag cooler for producing saturated water for waste heat recovery
CN117663082B (en) * 2023-12-28 2024-05-14 江苏新方圆电气设备制造有限公司 Slag cooler for producing saturated water for waste heat recovery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102156711B1 (en) * 2018-11-14 2020-09-16 주식회사 포스코 Equipment for treating slag and Method for treating slag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148499A (en) * 1976-06-05 1977-12-09 Hitachi Zosen Corp Recovery of heat of slag from blast furnace or like
JPS56142301A (en) * 1980-04-03 1981-11-06 Mitsubishi Heavy Ind Ltd Recovery of sensible heat of heat source
JPS56168085A (en) * 1980-05-30 1981-12-24 Mitsubishi Heavy Ind Ltd System for retrieving sensible heat of heat source body
JPH06137541A (en) * 1992-10-23 1994-05-17 Mitsubishi Heavy Ind Ltd Slag discharger for burning apparatus
JP2001147009A (en) * 1999-11-19 2001-05-29 Kobe Steel Ltd Method for discharging slag of waste melting furnace and waste melting furnace
WO2003085322A1 (en) * 2002-04-10 2003-10-16 Ebara Corporation Ash fusing system, method of operating the system, and gasification fusing system for waste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148499A (en) * 1976-06-05 1977-12-09 Hitachi Zosen Corp Recovery of heat of slag from blast furnace or like
JPS56142301A (en) * 1980-04-03 1981-11-06 Mitsubishi Heavy Ind Ltd Recovery of sensible heat of heat source
JPS56168085A (en) * 1980-05-30 1981-12-24 Mitsubishi Heavy Ind Ltd System for retrieving sensible heat of heat source body
JPH06137541A (en) * 1992-10-23 1994-05-17 Mitsubishi Heavy Ind Ltd Slag discharger for burning apparatus
JP2001147009A (en) * 1999-11-19 2001-05-29 Kobe Steel Ltd Method for discharging slag of waste melting furnace and waste melting furnace
WO2003085322A1 (en) * 2002-04-10 2003-10-16 Ebara Corporation Ash fusing system, method of operating the system, and gasification fusing system for waste

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104533557A (en) * 2014-11-19 2015-04-22 鞍山钢铁集团公司矿渣开发公司 Method for generating electricity through recovering metallurgical slag afterheat
CN105927305A (en) * 2016-05-04 2016-09-07 上海宝钢节能环保技术有限公司 Heat, power and cooling multi-generation system adopting sintering low-temperature waste heat
CN110975499B (en) * 2019-12-25 2024-02-02 中冶京诚工程技术有限公司 Environment-friendly white removing device for granulated slag of blast furnace
CN110975499A (en) * 2019-12-25 2020-04-10 中冶京诚工程技术有限公司 Environment-friendly white-removing device for blast furnace granulated slag
CN110964866A (en) * 2019-12-30 2020-04-07 中冶赛迪上海工程技术有限公司 Recovery device and recovery method for steam heat and moisture of blast furnace granulated slag
CN110964866B (en) * 2019-12-30 2024-02-06 中冶赛迪上海工程技术有限公司 Recovery device and recovery method for steam heat and moisture of blast furnace slag
CN112280912A (en) * 2020-09-23 2021-01-29 鞍钢集团工程技术有限公司 Pit cover tipping device
CN112880420A (en) * 2021-01-12 2021-06-01 黄秋霞 Energy-concerving and environment-protective steel smelting processingequipment
CN113736931A (en) * 2021-08-06 2021-12-03 中钢(石家庄)工程技术有限公司 Reverse water immersion method normal pressure hot disintegrating steel slag and waste heat recovery system and method
CN115216600A (en) * 2022-07-19 2022-10-21 南京青述节能技术有限公司 High-temperature high-pressure water quenching molten slag waste heat recovery device
CN115216600B (en) * 2022-07-19 2024-04-26 南京青述节能技术有限公司 High-temperature high-pressure water quenching molten slag waste heat recovery device
CN115490443A (en) * 2022-09-20 2022-12-20 西安交通大学 Zero-drainage smelting slag chilling heat recovery device and process
CN117663082A (en) * 2023-12-28 2024-03-08 江苏新方圆电气设备制造有限公司 Slag cooler for producing saturated water for waste heat recovery
CN117663082B (en) * 2023-12-28 2024-05-14 江苏新方圆电气设备制造有限公司 Slag cooler for producing saturated water for waste heat recovery

Also Published As

Publication number Publication date
JP2013234774A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
WO2013168655A1 (en) Slag heat recovery device
CN102131900A (en) Device for the removal of clinker from a coal gasification reactor
ES2607816T3 (en) Steam condensing system for a granulation installation
CN104078085A (en) Containment built-in refueling water tank with washing function
US11890601B2 (en) Reaction chamber for supercritical water oxidation reactor
ES2528387T3 (en) Procedure and installation for slag removal, which accumulates during the recovery of synthesis gas, from a slag bath
CN109609712B (en) Method for carrying out hot stuffy treatment on steel slag by utilizing vertical steel slag stuffy pot
CN104087346A (en) Novel dry coal powder entrained-flow bed deslagging system
CN209210837U (en) A kind of blast-furnace slag processing system
CN105244064A (en) Liquid-heavy-metal cooling reactor coolant evacuation system and evacuation method
CN211585860U (en) Environment-friendly white-removing system for blast furnace granulated slag
CN204973148U (en) Gas -liquid separation tower
CN202315672U (en) Efficient wet type sulfur-removing dust catcher
CN201006843Y (en) Mixing and agglutinating settling waste water treating equipment
CN104372119B (en) Aerosol type steel slag hot is stewing covers explosion-proof equipment for steam treatment
CN202823154U (en) High temperature smoke resistant glass fiber reinforced plastic desulfurizing tower
CN203586178U (en) Drain and blowdown water recovery device
CN106492610A (en) A kind of water bath dust-removing desulfurization and dirt mud processing method
CN203200290U (en) Gas cooling device for dry dust removing system of converter gas
CN104373928A (en) Thermal deaerator
CN205119018U (en) A deoxidization equipment for coal -fired power unit of thermal power plant
CN205269137U (en) Slag pot
JP6390111B2 (en) Melting furnace system
JP2011208714A (en) Drain discharging device
CN209130853U (en) A kind of waste heat boiler oxygen-eliminating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788545

Country of ref document: EP

Kind code of ref document: A1