WO2013168506A1 - Light-guiding plate and manufacturing method of light-guiding plate - Google Patents

Light-guiding plate and manufacturing method of light-guiding plate Download PDF

Info

Publication number
WO2013168506A1
WO2013168506A1 PCT/JP2013/060745 JP2013060745W WO2013168506A1 WO 2013168506 A1 WO2013168506 A1 WO 2013168506A1 JP 2013060745 W JP2013060745 W JP 2013060745W WO 2013168506 A1 WO2013168506 A1 WO 2013168506A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
guide plate
light guide
light incident
Prior art date
Application number
PCT/JP2013/060745
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎 修
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013168506A1 publication Critical patent/WO2013168506A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0085Means for removing heat created by the light source from the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package

Definitions

  • the present invention relates to a light guide plate used for a liquid crystal display device, an indoor lighting device, and the like, and a method of manufacturing the light guide plate.
  • the liquid crystal display device uses a planar illumination device (backlight unit) that irradiates light from the back side of the liquid crystal display panel to illuminate the liquid crystal display panel.
  • a planar illumination device is configured using components such as a light guide plate that diffuses light emitted from a light source for illumination and irradiates a liquid crystal display panel, and a prism sheet and a diffusion sheet that uniformize light emitted from the light guide plate.
  • a light source is arranged on the side surface of the light guide plate, and the light incident from the side surface is guided in a predetermined direction different from the incident direction, and is emitted from the light emitting surface that is the surface.
  • An edge light type planar illumination device using the above is used.
  • a light guide plate used in such an edge light type planar illumination device in order to guide light incident from the side surface (light incident surface) to the surface side (light exit surface), scattering particles for scattering light are used. It has been proposed to use a plate-shaped light guide plate kneaded and dispersed inside.
  • the inventors of the present invention have a configuration in which the light guide plate includes two layers, a first layer on the light emitting surface side and a second layer having a particle concentration higher than that of the second layer, and is perpendicular to the light incident surface.
  • the light guide plate in which the composite particle concentration in the direction perpendicular to the light incident surface changes is obtained.
  • Patent Document 1 As a result, even when the shape is large and thin, light incident from the side surface can be guided to the back of the light guide plate, and the amount of light emitted from the central portion of the light guide plate can be increased. Therefore, it is possible to emit light with high light use efficiency and little luminance unevenness, and to obtain a medium-high brightness distribution.
  • a planar illumination device using such a light guide plate is used not only as a backlight of a liquid crystal display device but also as an illumination device in a room or the like.
  • the light guide plate used for this is manufactured in small amounts each in various shapes and sizes as compared with the light guide plate for the backlight of the liquid crystal display device. Is required.
  • two-layer light guide plates having different particle concentrations are manufactured by extrusion molding or injection molding (two-color molding).
  • dies (molds) used for extrusion molding and molds used for injection molding are expensive, and cost is high when high-mix low-volume production is required, such as light guide plates for lighting devices in the room. There was a problem of becoming.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, has a large and thin shape, has high light utilization efficiency, can emit light with less luminance unevenness and color unevenness, and has uniform brightness. It is an object of the present invention to provide a light guide plate and a method for manufacturing the light guide plate that can be obtained at low cost and easily.
  • the present invention provides a rectangular light exit surface and at least one light that is provided on the edge side of the light exit surface and that receives light traveling in a direction substantially parallel to the light exit surface.
  • a method of manufacturing a light guide plate in which the thickness in the vertical direction changes to change the concentration of the synthesized particles, and the surface roughness Ra of the surface in contact with the second layer is approximately the same as that of the first layer and is 25 to 125 ⁇ m.
  • the material of the second layer is injected into the mold in which the insert is installed, and the second layer is formed by injection molding. After the two-layer forming step and the second layer forming step, the first layer material is injected into the mold by removing the nest and leaving the formed second layer in the mold.
  • a method for producing a light guide plate comprising: forming a light guide plate by forming one layer by injection molding.
  • the nesting is preferably made by cutting.
  • the base material of the first layer material is preferably a material having a refractive index different from that of the second layer material.
  • the present invention provides a rectangular light exit surface and at least one light incident on the end side of the light exit surface and traveling in a direction substantially parallel to the light exit surface.
  • a light guide plate having two light incident surfaces, a back surface opposite to the light output surface, and scattering particles dispersed therein, and is disposed on the light output surface side, overlapping in a direction perpendicular to the light output surface
  • a first layer disposed on the back side and a second layer having a higher particle concentration of scattering particles than the first layer.
  • the two layers In the direction perpendicular to at least one light incident surface, the two layers The thickness in the direction substantially perpendicular to the light exit surface changes to change the concentration of the synthesized particles, and the interface roughness Ra of the interface between the first layer and the second layer is 25 to 125 ⁇ m.
  • a light guide plate is provided.
  • the boundary surface between the first layer and the second layer is preferably a rough surface formed in one of a stepped shape, a sawtooth shape, and a wave shape.
  • the first layer base material is preferably a material having a refractive index different from that of the second layer base material.
  • the scattering particles are preferably polydisperse particles. Further, it is preferable that the scattering particles are a mixture of two polydispersed particle groups having different average particle diameters. Moreover, it is preferable that the scattering particle contained in a 1st layer and the scattering particle contained in a 2nd layer differ in a particle size distribution.
  • At least one light incident surface is one light incident surface provided at one end of the light emitting surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. It is preferable that after the thickness is reduced to the minimum thickness, the thickness is changed to be thin again after the thickness is increased to the maximum thickness.
  • at least one light incident surface is one light incident surface provided at one end of the light exit surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. It is preferable that after the thickness is reduced to the minimum thickness, the thickness is changed smoothly so that the thickness is increased and becomes constant at the maximum thickness.
  • At least one light incident surface is one light incident surface provided at one end of the light exit surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. It is preferable that the thickness is once changed after being thickened, and then continuously changed so as to become thin after being thickened again to the maximum thickness.
  • at least one light incident surface is one light incident surface provided at one end of the light exit surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. It is preferable that the thickness is once changed and then continuously changed so as to become thicker and constant at the maximum thickness.
  • the boundary surface between the first layer and the second layer is a concave curved surface toward the light emitting surface, and the light emitting surface smoothly connected to the concave curved surface. It is preferable to have a region composed of a convexly curved surface.
  • At least one light incident surface is two light incident surfaces provided on two opposite sides of the light emitting surface, and the second layer is formed at the center in the direction perpendicular to the light incident surface. It is preferable that the thickness becomes the maximum thickness, and gradually changes from the central portion toward the two light incident surfaces so as to become thicker after being reduced to the minimum thickness.
  • at least one light incident surface is two light incident surfaces provided on two opposite sides of the light emitting surface, and the second layer is formed at the center in the direction perpendicular to the light incident surface. It is preferable that the thickness becomes the maximum thickness, and as it goes from the center toward each of the two light incident surfaces, the thickness becomes thinner and then smoothly changes to become thicker and then becomes thinner.
  • the boundary surface between the first layer and the second layer has two curved surfaces between a curved surface that is concave toward the light exit surface on each side of the two light incident surfaces and the two concave curved surfaces. It is preferable to have a region composed of a curved surface convex toward the light exit surface that is smoothly connected.
  • the particle concentration of the first layer is Npo and the particle concentration of the second layer is Npr, it is preferable that 0 wt% ⁇ Npo ⁇ 0.15 wt% and Npo ⁇ Npr ⁇ 0.8 wt% are satisfied.
  • the present invention is a large and thin shape, has high light utilization efficiency, can emit light with less luminance unevenness and color unevenness, and has a uniform brightness distribution or a medium-high brightness distribution. Can be obtained, and the manufacturing can be facilitated, and the increase in cost can be prevented.
  • FIG. 2 is a cross-sectional view of the planar lighting device shown in FIG. 1 taken along the line II-II.
  • FIG. 3A is a cross-sectional view taken along the line III-III of the planar illumination device shown in FIG. 2
  • FIG. 3B is a cross-sectional view taken along line BB in FIG.
  • (A) is a perspective view which shows schematic structure of the light source unit of the planar illuminating device shown to FIG.1 and FIG.2, (B) expands and shows one LED of the light source unit shown to (A). It is a schematic perspective view.
  • FIG. It is a schematic perspective view which shows the shape of the light-guide plate shown in FIG. It is the schematic of another example of the light-guide plate which concerns on this invention. It is the schematic of another example of the light-guide plate which concerns on this invention. (A) And (B) is the schematic of another example of the planar illuminating device using the light-guide plate which concerns on this invention. It is a schematic sectional drawing which shows an example of the metal mold
  • FIG. 1 is a perspective view showing an outline of a planar illumination device using a light guide plate according to the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II of the planar illumination device shown in FIG. 3A is a cross-sectional view taken along the line III-III of the planar illumination device shown in FIG. 2
  • FIG. 3B is a cross-sectional view taken along the line BB in FIG.
  • the planar illumination device 10 is an illumination device that emits planar light from one surface.
  • the planar lighting device 10 in this embodiment includes a light source unit 28, a light guide plate 30, and an optical member unit 32, as shown in FIGS. 1, 2, 3A, and 3B. 24, and a casing 26 having a lower casing 42, an upper casing 44, a folding member 46, and a support member 48.
  • a power storage unit 49 that stores a plurality of power supplies for supplying power to the light source unit 28 is attached to the back side of the lower housing 42 of the housing 26.
  • each component which comprises the planar illuminating device 10 is demonstrated.
  • the illuminating device main body 24 scatters and diffuses the light source unit 28 that emits light, the light guide plate 30 that emits light emitted from the light source unit 28 as planar light, and the light emitted from the light guide plate 30. And an optical member unit 32 for making the light more uniform.
  • FIG. 4A is a schematic perspective view showing a schematic configuration of the light source unit 28 of the planar illumination device 10 shown in FIGS. 1 and 2, and FIG. 4B is a light source unit shown in FIG. 4A. It is a schematic perspective view which expands and shows only one LED chip of 28.
  • the light source unit 28 has a plurality of light emitting diode chips (hereinafter referred to as “LED chips”) 50 and a light source support portion 52.
  • LED chips light emitting diode chips
  • the LED chip 50 is a chip in which a fluorescent material is applied to the surface of a light emitting diode that emits blue light.
  • the LED chip 50 has a light emitting surface 58 having a predetermined area, and emits white light from the light emitting surface 58. That is, when the blue light emitted from the surface of the light emitting diode of the LED chip 50 passes through the fluorescent material, the fluorescent material fluoresces. As a result, white light is generated and emitted from the LED chip 50 by the blue light emitted from the light emitting diode and the light emitted from the fluorescent substance by fluorescence.
  • the LED chip 50 is exemplified by a chip in which a YAG (yttrium / aluminum / garnet) fluorescent material is applied to the surface of a GaN-based light-emitting diode, InGaN-based light-emitting diode, or the like.
  • a YAG yttrium / aluminum / garnet
  • the light source support portion 52 is a plate-like member that is disposed so that one surface thereof faces the first light incident surface 30 c of the light guide plate 30.
  • the light source support 52 supports the plurality of LED chips 50 on a side surface that is a surface facing the first light incident surface 30c of the light guide plate 30 with a predetermined distance therebetween.
  • the plurality of LED chips 50 constituting the light source unit 28 are arranged in an array along the longitudinal direction of the first light incident surface 30 c of the light guide plate 30 to be described later, and are fixed on the light source support portion 52.
  • the light source support 52 is made of a metal having good thermal conductivity such as copper or aluminum, and also has a function as a heat sink that absorbs heat generated from the LED chip 50 and dissipates it to the outside.
  • the LED chip 50 of the present embodiment has a rectangular shape whose length in the direction orthogonal to the arrangement direction is shorter than the length of the LED chip 50 in the arrangement direction, that is, described later.
  • the light guide plate 30 has a rectangular shape in which the thickness direction (the direction perpendicular to the light emitting surface 30a) is a short side.
  • the LED chip 50 can make the light source unit 28 thinner, it is preferable that the LED chip 50 has a rectangular shape with a short side in the thickness direction of the light guide plate 30, but the present invention is not limited to this, and the square shape, LED chips having various shapes such as a circular shape, a polygonal shape, and an elliptical shape can be used.
  • FIG. 5 is a schematic perspective view showing the shape of the light guide plate.
  • the light guide plate 30 has a rectangular light exit surface 30a and one end face on the long side of the light exit surface 30a, and is substantially the same as the light exit surface 30a.
  • the first light incident surface 30c formed vertically, the opposite side surface 30d which is the side surface facing the first light incident surface 30c, and the plane located on the opposite side of the light emitting surface 30a, that is, on the back side of the light guide plate 30 And a back surface 30b.
  • the light source unit 28 described above is disposed to face the first light incident surface 30c of the light guide plate 30. As described above, in the planar illumination device 10, one light source unit 28 is arranged to face one side surface of the light guide plate 30.
  • the light guide plate 30 is formed by kneading and dispersing scattering particles for scattering light in a transparent resin.
  • the transparent resin material used for the light guide plate 30 include PET (polyethylene terephthalate), PP (polypropylene), PC (polycarbonate), PMMA (polymethyl methacrylate), benzyl methacrylate, MS resin, or COP (cycloolefin polymer).
  • An optically transparent resin such as As the scattering particles to be kneaded and dispersed in the light guide plate 30, silicone particles such as Tospearl (registered trademark), particles made of silica, zirconia, dielectric polymer, or the like can be used.
  • the light guide plate 30 is formed in a two-layer structure that is divided into a first layer 60 on the light emitting surface 30a side and a second layer 62 on the back surface 30b side. Assuming that the boundary between the first layer 60 and the second layer 62 is the boundary surface z, the first layer 60 is surrounded by the light emitting surface 30a, the first light incident surface 30c, the opposing side surface 30d, and the boundary surface z. This is a cross-sectional area.
  • the second layer 62 is a layer adjacent to the back surface 30b side of the first layer, and is a cross-sectional area surrounded by the boundary surface z, the first light incident surface 30c and the opposite side surface 30d, and the back surface 30b. is there.
  • the relationship between Npo and Npr is Npo ⁇ Npr. That is, in the light guide plate 30, the second layer 62 on the back surface 30b side has a higher particle concentration of scattered particles than the first layer 60 on the light exit surface 30a side.
  • the relationship between the particle concentration Npo of the scattering particles of the first layer 60 and the particle concentration Npr of the scattering particles of the second layer 62 is 0 wt% ⁇ Npo ⁇ 0.15 wt% and Npo ⁇ Npr ⁇ 0. It is preferable to satisfy 8 wt%.
  • the first layer 60 and the second layer 62 of the light guide plate 30 satisfy the above relationship, the light guide plate 30 does not scatter incident light so much in the first layer 60 having a low particle concentration. Light can be guided to the back (center). Further, as the distance from the center of the light guide plate approaches, the amount of light emitted from the light exit surface 30a can be increased by scattering light by the second layer 62 having a high particle concentration.
  • the particle concentration [wt%] is the ratio of the weight of the scattering particles to the weight of the base material. Even if the first layer 60 and the second layer 62 of the light guide plate 30 satisfy the above relationship, the illuminance distribution can be made to be medium-high at a suitable ratio while further improving the light use efficiency.
  • the boundary surface z between the first layer 60 and the second layer 62 is viewed from the first light incident surface 30c toward the opposite side surface 30d when viewed in a cross section perpendicular to the longitudinal direction of the first light incident surface 30c.
  • the boundary surface z is a curved surface that is concave toward the light exit surface 30a on the first light incident surface 30c side of the light guide plate 30, and the side surface 30d that is smoothly connected to the concave curved surface. Convex curved surface.
  • the thickness of the second layer 62 in which the particle concentration of the scattering particles is higher than that of the first layer 60 has a minimum value at a position close to the first light incident surface 30c, and is closer to the opposite side surface 30d than the center. Therefore, the thickness has a maximum value.
  • the synthetic particle concentration of the scattering particles is changed so as to have a local minimum value near the first light incident surface 30c and a local maximum value near the opposing side surface 30d. That is, the profile of the synthetic particle concentration is a curve that changes so as to have a minimum value on the first light incident surface 30c side and a maximum value on the opposite side surface 30c side.
  • the synthetic particle concentration is the amount of scattered particles added (synthesized) in a direction substantially perpendicular to the light exit surface at a certain position spaced from the light incident surface toward the surface facing the light incident surface.
  • concentration of scattering particles when the light guide plate is regarded as a flat plate having a thickness of the light incident surface That is, at a certain position away from the light incident surface, when the light guide plate is regarded as a flat light guide plate having a thickness of the light incident surface and having one type of concentration, the scattering particles added in a direction substantially perpendicular to the light exit surface
  • the second layer 62 having a high particle concentration changes from the first light incident surface 30c toward the opposing side surface 30d so that the second layer 62 becomes thinner once and becomes the minimum thickness.
  • the second layer 62 is configured to change smoothly so that the second layer 62 is changed to a maximum thickness, and is again changed to be thinner on the opposite side surface 30d side.
  • the concentration of the synthetic particles is smoothly changed from the first light incident surface 30c toward the opposite side surface 30d on the opposite side so that the concentration of the synthesized particles once decreases and then increases and decreases on the opposite side surface side.
  • the light which injects from a light-incidence surface can be delivered to a far position, and the luminance distribution of emitted light can be made into a medium-high luminance distribution.
  • the synthetic particle concentration in the vicinity of the light incident surface higher than the minimum value, the light incident from the light incident surface can be sufficiently diffused in the vicinity of the light incident surface. Therefore, it is possible to prevent a bright line (dark line, unevenness) caused by the arrangement interval of the light sources from being visually recognized in the outgoing light emitted from the vicinity of the light incident surface.
  • the luminance distribution (scattering particle concentration distribution) can be arbitrarily set, and the efficiency can be improved to the maximum. Further, since the particle concentration of the layer on the light exit surface side is lowered, the amount of scattered particles as a whole can be reduced, leading to cost reduction.
  • the light guide plate 30 is divided into a first layer 60 and a second layer 62 at the boundary surface z, but the first layer 60 and the second layer 62 are different from each other only in the particle concentration, and are made of the same transparent resin.
  • the structure is such that the same scattering particles are dispersed, and the structure is united. That is, when the light guide plate 30 is divided on the basis of the boundary surface z, the particle concentration in each region is different, but the boundary surface z is a virtual line, and the first layer 60 and the second layer 62 are integrated. It has become.
  • the interface roughness Ra of the interface z between the first layer 60 and the second layer 62 satisfies the range of 25 to 125 ⁇ m.
  • the interface roughness Ra of the boundary surface z between the first layer 60 and the second layer 62 satisfies the range of 25 to 125 ⁇ m.
  • the insert for making can be manufactured at low cost by cutting or the like. Therefore, even when a small amount of light guide plate is produced, the mold can be manufactured at low cost, and the cost can be reduced. Further, by setting the interface roughness Ra to 125 ⁇ m or less, it is possible to prevent the light use efficiency from being lowered and the occurrence of uneven brightness of the emitted light. This will be described in detail later.
  • the interface roughness Ra of the interface z between the first layer 60 and the second layer 62 satisfies the range of 25 to 125 ⁇ m
  • the adhesion between the first layer 60 and the second layer 62 can be improved. Further, polishing is not required when manufacturing an injection mold, and the cost can be reduced.
  • the boundary surface z between the first layer 60 and the second layer 62 is preferably a stepped, sawtooth, or wavy rough surface.
  • a nest for forming two layers can be produced by milling.
  • the insert can be produced by drill cutting.
  • insert can be produced by a ball end mill process by making the interface surface z into a wavy rough surface.
  • the scattering particles kneaded and dispersed in the light guide plate 30 are preferably polydisperse particles obtained by mixing particles having different particle sizes.
  • the use of monodisperse particles having a uniform particle size is more uniform than the polydisperse particles, and the light scattering inside the light guide plate becomes uniform. This is preferable in that the use efficiency can be improved and color unevenness hardly occurs.
  • a particle group having a monodispersed particle size distribution means that when the standard deviation is ⁇ , the particle size distribution is 3 ⁇ with respect to the center particle size (peak particle size). It satisfies a Gaussian distribution that falls within a range of ⁇ 0.5 ⁇ m.
  • the polydisperse particle group is a particle size distribution in which the 3 ⁇ value exceeds the range of ⁇ 0.5 ⁇ m with respect to the center particle size (peak particle size). Compared to the particle size distribution, the particle group has a gentle distribution.
  • both monodisperse and polydisperse have a single particle size distribution.
  • a scattering particle in which two particle groups are mixed at a predetermined ratio so that the particle size distribution has two peaks.
  • the particle size of the first peak is smaller than 7 ⁇ m and the particle size of the second peak is larger than 7 ⁇ m.
  • the two particle groups to be mixed are preferably polydisperse particle groups.
  • Particles having a scattering particle size of less than 7 ⁇ m are likely to scatter light having a short wavelength and hardly scatter light having a long wavelength.
  • particles having a particle size larger than 7 ⁇ m easily scatter light having a long wavelength and easily scatter light having a short wavelength. Therefore, the particle size distribution of the scattering particles is a distribution having two peaks, a first peak having a particle size smaller than 7 ⁇ m and a second peak having a particle size larger than 7 ⁇ m. And scattering particles having a particle diameter larger than 7 ⁇ m are mixed at a predetermined ratio.
  • the ease of scattering due to the length of the wavelength can be made uniform, and even when the size of the light guide plate is increased, the ratio of the amount of emitted light for each wavelength is kept constant, and the light exiting from the light exit surface 30a. It is possible to reduce the uneven color of the incident light.
  • the light emitted from the light source unit 28 and incident from the first light incident surface 30 c passes through the light guide plate 30 while being scattered by the scattering particles included in the light guide plate 30.
  • the light is emitted from the light exit surface 30a directly or after being reflected by the back surface 30b. At this time, a part of the light may leak from the back surface 30 b, but the leaked light is reflected by the reflecting plate 34 disposed on the back surface 30 b side of the light guide plate 30 and enters the light guide plate 30 again.
  • the reflector 34 will be described in detail later.
  • the scattering particles kneaded and dispersed in the first layer 60 and the second layer 62 are only different in particle concentration and have the same particle size distribution, but this is not limitative. Instead, the first layer 60 and the second layer 62 may use scattering particles having different particle size distributions. By making the particle size distribution of the scattering particles different between the first layer 60 and the second layer 62, it is preferable in that the degree of freedom can be improved in controlling the luminance distribution.
  • the same material is used for the base material of the first layer 60 and the base material of the second layer 62, but the present invention is not limited to this, and the base material of the first layer 60 is not limited thereto.
  • the base material and the base material of the second layer 62 may be made of materials having different refractive indexes.
  • the first layer 60 and the second layer 62 have different refractive indexes, so that the first A lens effect can be given to the boundary surface z between the layer 60 and the second layer 62, and the front luminance of the emitted light emitted from the light emitting surface 30a can be improved.
  • the optical sheet (a diffusion sheet or a prism sheet) for improving the front luminance of the planar illumination device 10 can be reduced.
  • the refractive index of the base material of the first layer 60 on the light emitting surface 30a side is made smaller than the refractive index of the base material of the second layer 62, whereby the first layer 60 and the second layer 62 A condensing effect can be given to the boundary surface z, and the front luminance of the emitted light emitted from the light emitting surface 30a can be improved, which is preferable.
  • the base material of the first layer 60 may be PMMA (polymethyl methacrylate), and the base material of the second layer 62 may be PC (polycarbonate).
  • the interface roughness Ra of the interface z between the first layer 60 and the second layer 62 is 25 to 125 ⁇ m, different materials are used for the first layer 60 and the second layer 62.
  • the adhesion between the first layer 60 and the second layer 62 can be increased.
  • the thickness of the second layer 62 changes from the first light incident surface 30 c toward the opposing side surface 30 d so as to become thinner and then to become thicker.
  • the shape is a thickness that smoothly changes so as to become thinner again in the vicinity of the opposite side surface, but the present invention is not limited to this.
  • FIG. 6 shows a schematic diagram of another example of the light guide plate according to the present invention.
  • the light guide plate 100 shown in FIG. 6 has the same configuration except that the shape of the boundary surface z between the first layer 60 and the second layer 62 is changed in the light guide plate 30 shown in FIG.
  • the light guide plate 100 shown in FIG. 6 is formed by a first layer 102 on the light emitting surface 30a side and a second layer 104 on the back surface 30b side.
  • the boundary surface z between the first layer 102 and the second layer 104 is temporarily extended from the first light incident surface 30c toward the opposing side surface 30d when viewed in a cross section perpendicular to the longitudinal direction of the first light incident surface 30c.
  • the second layer 104 is changed to be thin and has a minimum thickness
  • the second layer 104 is changed to be thick and has a maximum thickness, and thereafter, the thickness is constant up to the opposing side surface 30d. It is changing smoothly.
  • the boundary surface z is a concave curved surface toward the light emitting surface 30a on the first light incident surface 30c side of the light guide plate 100, and a convex portion at the center portion that is smoothly connected to the concave curved surface. And a flat surface on the opposite side surface 30d side that is smoothly connected to the convex curved surface.
  • the brightness distribution of the emitted light can be made a medium-high brightness distribution.
  • the thickness of the second layer is changed so as to become thinner as the distance from the light incident surface increases, but the shape becomes thicker.
  • the present invention is not limited to this.
  • FIG. 7 is a schematic view of another example of the light guide plate according to the present invention.
  • the light guide plate 110 shown in FIG. 7 has the same configuration as that of the light guide plate 30 except that the shape of the boundary surface z is changed in the light guide plate 30. In the following description, different parts are mainly described.
  • the light guide plate 30 shown in FIG. 7 is formed of a first layer 112 on the light emitting surface 30a side and a second layer 114 on the back surface 30b side.
  • the boundary surface z between the first layer 112 and the second layer 114 is viewed from the first light incident surface 30c toward the opposing side surface 30d when viewed in a cross section perpendicular to the longitudinal direction of the first light incident surface 30c.
  • the second layer 114 is changed to be thinner, and then the second layer 114 is smoothly changed to be thicker and becomes the maximum thickness again.
  • the thickness continuously changes so as to be thinner on the opposite side surface 30d side.
  • the boundary surface z is connected to the curved surface convex toward the light emitting surface 30a on the opposite side surface 30d side, the concave curved surface smoothly connected to the convex curved surface, and the concave curved surface. And a concave curved surface connected to the end of the first light incident surface 30c on the back surface 30b side.
  • the thickness of the second layer 114 is zero on the first light incident surface 30c. That is, the synthetic particle concentration (thickness of the second layer) of the scattering particles is set to be greater than the first maximum value near the first light incident surface 30c and the first maximum value on the opposite side surface 30d side from the center of the light guide plate. It is changed so as to have a large second maximum value.
  • the position of the first maximum value of the synthetic particle concentration of the light guide plate 110 is arranged at the position of the boundary of the opening 44a of the housing 26, and the first light incident surface 30c A region up to one maximum value is a so-called mixing zone M for diffusing light incident from the light incident surface.
  • the first maximum value of the synthetic particle concentration in the vicinity of the first light incident surface 30c, the light incident from the first light incident surface 30c is sufficiently diffused in the vicinity of the light incident surface, so that the light It is possible to prevent the bright line (dark line, unevenness) caused by the arrangement interval of the light sources from being visually recognized in the outgoing light emitted from the vicinity of the incident surface.
  • the region closer to the first light incident surface 30c than the position where the synthetic particle concentration becomes the first maximum value is set to a synthetic particle concentration lower than the first maximum value.
  • the shape of the boundary surface z from the first light incident surface 30c to the first maximum value (the shape of the boundary surface in the mixing zone) is concave toward the light emitting surface 30a.
  • the curved surface may be a curved surface that is convex toward the light emitting surface 30a connected to the end of the first light incident surface 30c on the back surface 30b side.
  • the plane which connects the edge part by the side of the back surface 30b of the 1st light-incidence surface 30c and the 1st maximum value may be sufficient.
  • the second layer 114 may not be formed between the first light incident surface 30 c and the first maximum value, and may be all the first layer 112.
  • the concave and convex curved surfaces forming the boundary surface z may be a curve represented by a part of a circle or an ellipse in a cross section perpendicular to the longitudinal direction of the light incident surface, or a quadratic curve.
  • a curve represented by a polynomial may be used, or a curve obtained by combining these may be used.
  • the optical member unit 32 is for making the illumination light emitted from the light emitting surface 30a of the light guide plate 30 light having more uneven brightness and illuminance and emitting it from the light emitting surface 24a of the illuminating device body 24.
  • the optical member unit 32 includes a diffusion sheet 32 a that diffuses illumination light emitted from the light emitting surface 30 a of the light guide plate 30 to reduce luminance unevenness and illuminance unevenness, a light incident surface 30 c, and a light emitting surface.
  • It has a prism sheet 32b formed with a microprism array parallel to a tangent to the surface 30a, and a diffusion sheet 32c that diffuses illumination light emitted from the prism sheet 32b to reduce luminance unevenness and illuminance unevenness.
  • the diffusion sheets 32a and 32c and the prism sheet 32b are not particularly limited, and known diffusion sheets and prism sheets can be used. For example, what is disclosed in [0028] to [0033] of Japanese Patent Application Laid-Open No. 2005-234397 related to the applicant's application can be applied.
  • the optical member unit is constituted by the two diffusion sheets 32a and 32c and the prism sheet 32b disposed between the two diffusion sheets.
  • the arrangement order and arrangement of the prism sheets and the diffusion sheets are not limited.
  • the number is not particularly limited.
  • the prism sheet and the diffusion sheet are not particularly limited, and various optical members can be used as long as the luminance unevenness and the illuminance unevenness of the illumination light emitted from the light emitting surface 30a of the light guide plate 30 can be further reduced. Can be used.
  • a transmittance adjusting member in addition to or instead of the above-described diffusion sheet and prism sheet, a transmittance adjusting member in which a large number of transmittance adjusting bodies made of a diffuse reflector are arranged in accordance with luminance unevenness and illuminance unevenness is also used. You can also. Further, the optical member unit may have a two-layer configuration using one prism sheet and one diffusion sheet, or using only two diffusion sheets.
  • the reflection plate 34 is provided to reflect the light leaking from the back surface 30b of the light guide plate 30 and make it incident on the light guide plate 30 again, and can improve the light use efficiency.
  • the reflection plate 34 is disposed to face the back surface 30 b of the light guide plate 30.
  • the reflection plate 34 may be formed of any material as long as it can reflect light leaking from the back surface 30b of the light guide plate 30.
  • the reflecting plate 34 is a resin sheet in which a void is formed by kneading and stretching a filler in PET, PP (polypropylene) or the like to increase the reflectance, and a mirror surface is formed on the surface of a transparent or white resin sheet by aluminum vapor deposition or the like. It can be formed of a formed sheet, a metal foil such as aluminum or a resin sheet carrying a metal foil, or a metal thin plate having sufficient reflectivity on the surface.
  • the upper guide reflection plate 36 is located between the light guide plate 30 and the diffusion sheet 32a, that is, on the light emission surface 30a side of the light guide plate 30, and the end portions (first light) of the light source unit 28 and the light emission surface 30a of the light guide plate 30. It is arrange
  • the lower guide reflection plate 38 is disposed on the back surface 30 b side of the light guide plate 30 so as to cover a part of the light source unit 28.
  • the end of the lower guide reflector 38 on the center side of the light guide plate 30 is connected to the reflector 34.
  • various materials used for the reflector 34 described above can be used.
  • the lower guide reflection plate 38 it is possible to prevent light emitted from the light source unit 28 from leaking below the light guide plate 30. Thereby, the light radiate
  • derivation reflecting plate 38 were connected, it is not limited to this, Each is good also as a separate member.
  • the upper guide reflector 36 and the lower guide reflector 38 can reflect the light emitted from the light source unit 28 toward the first light incident surface 30 c and enter the light guide plate 30, its shape and The width is not particularly limited.
  • the housing 26 accommodates and supports the lighting device main body 24, and is sandwiched and fixed from the light emitting surface 24 a side and the back surface 30 b side of the light guide plate 30.
  • the housing 26 includes a lower housing 42, an upper housing 44, a folding member 46, and a support member 48.
  • the lower housing 42 has a shape having an open top surface, a bottom surface portion, and a side surface portion provided on four sides of the bottom surface portion and perpendicular to the bottom surface portion. That is, it is a substantially rectangular parallelepiped box shape with one surface open. As shown in FIG. 2, the lower housing 42 supports the illuminating device main body 24 accommodated from above by the bottom surface portion and the side surface portion, and also a surface other than the light emitting surface 24 a of the illuminating device main body 24, that is, the illuminating device. The main body 24 covers the surface (back surface) and the side surface opposite to the light emitting surface 24a.
  • the upper housing 44 has a rectangular parallelepiped box shape in which a rectangular opening smaller than the rectangular light emitting surface 24a of the lighting device body 24 serving as an opening is formed on the upper surface, and the lower surface is opened. As shown in FIG. 2, the upper housing 44 includes the lighting device main body 24 and the lower housing 42 in which the lighting device main body 24 and the lower housing 42 are housed in the four directions from above the lighting device main body 24 and the lower housing 42. The side portion is also placed so as to cover the side portion.
  • the folding member 46 has a concave (U-shaped) shape whose cross-sectional shape is always the same. That is, it is a rod-like member having a U-shaped cross section perpendicular to the extending direction. As shown in FIG. 2, the folding member 46 is inserted between the side surface of the lower housing 42 and the side surface of the upper housing 44, and the outer surface of one U-shaped parallel part is the bottom surface of the lower housing 42. It is connected to the side surface portion, and the outer side surface of the other parallel portion is connected to the side surface of the upper housing 44.
  • various known methods such as a method using bolts and nuts, a method using an adhesive, and the like. Can be used.
  • the folding member 46 By arranging the folding member 46 between the lower housing 42 and the upper housing 44, the rigidity of the housing 26 can be increased, and the light guide plate 30 can be prevented from warping.
  • various materials such as metal and resin can be used for the upper housing 44, the lower housing 42, and the folding member 46 of the housing 26.
  • the folding member 46 is a separate member, but it may be formed integrally with the upper housing 44 or the lower housing 42. Moreover, it is good also as a structure which does not provide the folding
  • the support member 48 is a rod-like member having the same cross-sectional shape perpendicular to the extending direction. As shown in FIG. 2, the support member 48 is disposed between the reflecting plate 34 and the lower housing 42 at positions corresponding to the first light incident surface 30c side and the opposing side surface 30d side. 34 is fixed to the lower housing 42 and supported.
  • the support member 48 is provided as an independent member.
  • the present invention is not limited to this, and the support member 48 may be formed integrally with the lower housing 42 or the reflection plate 34. That is, even if a protrusion is formed on a part of the lower housing 42 and this protrusion is used as the support member 48, a protrusion is formed on a part of the reflector 34 and this protrusion is used as the support member 48. May be.
  • the shape of the support member 48 is not particularly limited, and can be various shapes, and can be made of various materials.
  • a plurality of support members 48 may be provided and arranged at predetermined intervals.
  • the planar lighting device 10 is basically configured as described above.
  • light emitted from the light source unit 28 disposed on one end surface of the light guide plate 30 enters the first light incident surface 30 c of the light guide plate 30.
  • the light incident from the first light incident surface 30c passes through the light guide plate 30 while being scattered by the scatterers included in the light guide plate 30, and directly or after being reflected by the back surface 30b, from the light output surface 30a. Exit.
  • a part of the light leaking from the back surface 30 b is reflected by the reflection plate 34 and enters the light guide plate 30 again.
  • the light emitted from the light emitting surface 30 a of the light guide plate 30 passes through the optical member 32 and is emitted from the light emitting surface 24 a of the lighting device body 24.
  • one light source unit is disposed on one light incident surface, but is not limited to this. Both the two light source units are disposed on two opposing light incident surfaces. It may be incident.
  • FIG. 8A shows a schematic diagram of another example of a planar lighting device using a light guide plate according to the present invention.
  • 8A includes a light guide plate 120 instead of the light guide plate 30, and has two light source units 28 facing the two light incident surfaces of the light guide plate 120, respectively. Since it has the same structure as the planar illumination device 10 except for the same parts, the same reference numerals are given to the same parts, and different parts will be mainly described below. Further, in FIG. 8A, illustration of parts other than the light guide plate 120 and the light source unit 28 is omitted.
  • the planar illumination device 126 includes a light guide plate 120 and two light source units 28 facing the first light incident surface 30c and the second light incident surface 120d of the light guide plate 120, respectively.
  • the light guide plate 120 includes a light emitting surface 30a, two light incident surfaces (first light incident surface 30c and second light incident surface 120d) formed on the two long sides facing the light emitting surface 30a, and light. And a back surface 30b which is a surface opposite to the emission surface 30a.
  • the light guide plate 120 includes a first layer 122 on the light emitting surface 30 a side and a second layer 124 on the back surface 30 b side having a higher particle concentration than the first layer 122.
  • the boundary surface z between the first layer 122 and the second layer 124 of the light guide plate 120 is the second layer at the center of the light emitting surface 30a when viewed in a cross section perpendicular to the longitudinal direction of the first light incident surface 30c.
  • 124 becomes the maximum thickness, and the second layer 124 smoothly changes so as to become thinner toward the first light incident surface 30c and the second light incident surface 120d. It is changing smoothly.
  • the boundary surface z is smoothly connected to the convex curved surface toward the light emitting surface 30a in the center of the light guide plate 120, and connected to the light incident surfaces 30c and 120d, respectively. It consists of two concave curved surfaces.
  • the thickness of the second layer 124 is continuously changed so as to have a maximum value that is the thickest at the center of the light guide plate and a minimum value that is once thinned in the vicinity of the light incident surface.
  • the synthetic particle concentration of the scattering particles is changed so as to have a minimum value in the vicinity of each of the first and second light incident surfaces (30c and 120d) and a maximum value in the central portion of the light guide plate. That is, the profile of the synthetic particle concentration has the second maximum value that is maximum at the center of the light guide plate, and on both sides thereof, in the illustrated example, the minimum value at a position of about 2/3 of the distance from the center to the light incident surface. It is a curve that changes to have
  • the thickness of the second layer 124 of the light guide plate 120 is set to the maximum at the central portion and to the minimum thickness near the light incident surface.
  • the thickness of the second layer 124 of the light guide plate 120 is set to a maximum value that is the thickest at the center of the light guide plate, and once thin in the vicinity of the light incident surface.
  • the present invention is not limited to this.
  • FIG. 8B shows a schematic diagram of another example of a planar lighting device using a light guide plate according to the present invention.
  • the planar illumination device 136 shown in FIG. 8B has the same configuration as the planar illumination device 126 except that it has the light guide plate 130 in which the shape of the boundary surface z is changed instead of the light guide plate 120.
  • the same parts are denoted by the same reference numerals, and the following description mainly deals with different parts.
  • illustration of parts other than the light guide plate 130 and the light source unit 28 is omitted.
  • a light guide plate 130 of the planar lighting device 136 illustrated in FIG. 8B includes a first layer 132 and a second layer 134 having a particle concentration higher than that of the first layer 132.
  • the second layer 134 is maximum at the center of the light emitting surface 30a. The thickness changes smoothly so that the second layer 134 becomes thinner toward the first light incident surface 30c and the second light incident surface 120d, respectively. Further, the first light incident surface 30c and the second light incident surface In the vicinity of 120d, once it becomes thick, it continuously changes so as to become thin again.
  • the boundary surface z includes a curved surface convex toward the light emitting surface 30a in the center of the light guide plate 120, two concave curved surfaces smoothly connected to the convex curved surface, and the concave surface
  • Each of the curved surfaces is connected to a curved surface, and includes two concave curved surfaces respectively connected to the end portions on the back surface 30b side of the light incident surfaces 30c and 120d.
  • the thickness of the second layer 134 is zero on the light incident surfaces 30c and 120d.
  • the thickness of the second layer 134 having a higher particle concentration of scattering particles than that of the first layer 132 is set to a first maximum value that is once thickened in the vicinity of the light incident surface, and a thickness that is thickest at the center of the light guide plate. It is continuously changed so as to have two maximum values.
  • the composite particle concentration of the scattering particles has a first maximum value in the vicinity of each of the first and second light incident surfaces (30c and 120d) and a second maximum value larger than the first maximum value at the center of the light guide plate. Value to be changed.
  • the profile of the synthetic particle concentration has a second maximum value that is maximum at the center of the light guide plate 30, and on both sides thereof, in the illustrated example, about 2 / of the distance from the center to the light incident surface (30 c and 120 d).
  • 3 is a curve that has a minimum value at a position 3 and changes to have a first maximum value on the light incident surface side of the minimum value.
  • the position of the first maximum value of the thickness (synthetic particle concentration) of the second layer 134 is disposed in the vicinity of the position of the boundary of the opening 44a of the upper housing 44 (not shown).
  • the area covered by the frame portion forming the opening 44 a of the upper housing 44 does not contribute to the emission of light as the planar lighting device 10. That is, the region from the light incident surfaces 30c and 120d to the first maximum value is a so-called mixing zone M for diffusing the light incident from the light incident surface.
  • the first maximum value of the synthetic particle concentration is arranged in the vicinity of the light incident surfaces 30c and 120d.
  • the light incident from the light incident surfaces 30c and 120d is sufficiently diffused in the vicinity of the light incident surface, and the emitted light emitted from the vicinity of the light incident surface is irradiated with bright lines (dark lines, unevenness due to the arrangement interval of the light sources). ) Can be prevented from being visually recognized.
  • the shape of the boundary surface z from the light incident surface (30c, 120d) to the first maximum value (the shape of the boundary surface in the mixing zone).
  • the plane which connects the edge part by the side of the back surface 30b of a light-incidence surface, and a 1st maximum value may be sufficient.
  • the second layer 134 may not be formed between the light incident surface and the first maximum value, and may all be the first layer 132.
  • bilateral incidence in which two light source units are arranged tends to increase the amount of light compared to single side incidence.
  • the one-side incidence can reduce the number of parts by reducing the number of light source units, thereby reducing the cost.
  • the planar illumination device using the light guide plate of the present invention is not limited to this, and in addition to the two light source units, the light source unit faces the side surface on the short side of the light emitting surface of the light guide plate. May be arranged. Increasing the number of light source units can increase the intensity of light emitted from the device. Further, light may be emitted not only from the light exit surface but also from the back side.
  • the light guide plate of the present invention is composed of two layers having different particle concentrations of scattering particles, but is not limited thereto, and has a configuration of three or more layers having different particle concentrations of scattering particles. Also good.
  • the light guide plate manufacturing method of the present invention manufactures a light guide plate having two layers having different particle concentrations by injection molding (two-color molding).
  • FIG. 9 is a diagram conceptually showing a molding die 200 for injection molding the light guide plate 30.
  • FIGS. 10A to 10D are views of the present invention implemented using the molding die 200.
  • FIG. It is the schematic for demonstrating a manufacturing method.
  • a molding die 200 shown in FIG. 9 is a die for molding a two-layer light guide plate 30 including a first layer 60 and a second layer 62.
  • the molding die 200 has a substantially rectangular parallelepiped box-shaped lower die 202 whose one surface is open, a plate-like upper die 204 that covers the open surface of the lower die 202, and a lower die of the upper die 204. It has the nest
  • the molding die 200 forms a space (cavity) for injection molding between the lower die 202 and the upper die 204 (the insert 206).
  • the lower housing 202 has a substantially rectangular parallelepiped box shape.
  • the lower casing 202 has a material of the light guide plate 30 (second layer 62) (the material of the second layer 62 is used as a material in a cavity where the insert 206 is installed on the side of the lower housing 202 below the insert 206.
  • Through holes (gates) 202a and 202b for injecting A) are formed. Further, at the position of the nest 206 on the side surface of the lower housing 202, the material (the first layer 60) of the light guide plate 30 (first layer 60) is placed in the cavity where the nest 206 is not installed (see FIG. 9C). Through holes (gates) 202c and 202d for injecting a material (material B) are formed.
  • the cross-sectional shape of the through holes 202c and 202d may be a long and narrow rectangular shape corresponding to the longitudinal direction of the light incident surface, or may have a configuration having a plurality of circular through holes.
  • the upper housing 204 is a rectangular plate-like member that covers the open surface of the lower mold 202.
  • the insert 206 is fixed to a surface of the upper mold 204 facing the lower mold 202, and is disposed in the cavity when the lower mold 202 and the upper mold 204 are closed to form a cavity.
  • the insert 206 has the same shape as the first layer 60 of the light guide plate 30 to be manufactured, and the surface facing the upper mold 204 has the same size as the open surface of the lower mold 202. That is, the upper surface that is the surface on the upper mold 204 side is a flat surface, and the lower surface 206a that is the surface on the lower mold 202 side is that the thickness of the insert 206 is from the side surface corresponding to the light incident surface 30c of the light guide plate 30.
  • the surface is formed in a curved surface so as to change smoothly so as to become thicker again after becoming thicker as it goes to the opposite side surface.
  • the lower surface 206 a is formed by smoothly connecting a convex curved surface and a concave curved surface toward the lower mold 202.
  • FIG. 10A and 10C are diagrams conceptually showing two states (200a, 200b) of the molding die 200 for injection molding the light guide plate 30.
  • FIG. 10A In the molding die 200a shown in FIG. 10A, a space (cavity) for injection molding is formed between the lower die 202 and the insert 206 in the state of the die when the second layer 62 is molded. To do.
  • the second layer 62 is molded by injecting the material A of the second layer 62 into the cavity of the molding die 200a.
  • the molding die 200b shown in FIG. 10C is in a state where the first layer 60 is molded, and the nest 206 is removed from between the lower casing 202 and the upper casing 204. Yes.
  • the first layer 60 is molded by injecting the material B of the first layer 60 in a state where the insert 206 is removed and the second layer 62 is left in the cavity of the molding die 200 b, and the light guide plate 30. Manufacturing.
  • the material A of the first layer 60 and the material B of the second layer are obtained by melting a transparent resin in which scattering particles having a predetermined concentration are kneaded and dispersed. Further, as described above, the first layer 60 and the second layer 62 have a configuration in which the same scattering particles are dispersed in the same transparent resin only in the particle concentration. That is, the material A and the material B are obtained by melting the same transparent resin only having different particle concentrations of the kneaded and dispersed scattering particles.
  • the roughness Ra of the surface including the lower surface 206a of the insert 206 is formed to satisfy the range of 25 to 125 ⁇ m.
  • a mold for injection molding is manufactured by precision polishing, so it becomes very expensive. For this reason, there is a problem in that when a variety of small-quantity production is required, such as a light guide plate for an illumination device in a room or the like, if a mold corresponding to each light guide plate is manufactured, the cost increases.
  • the insert 206 when the surface roughness Ra of the lower surface 206a of the insert 206 is 25 ⁇ m or more, the insert 206 can be manufactured at low cost only by cutting or rough finishing. Therefore, even when a large variety of small-quantity production is required, such as a light guide plate for an illumination device in a room or the like, the insert 206 corresponding to each light guide plate can be manufactured at low cost, and the cost can be reduced. Can do. Further, when the surface roughness Ra of the lower surface 206a of the insert 206 is larger than 125 ⁇ m, the interface roughness of the boundary surface z between the first layer 60 and the second layer 62 of the light guide plate 30 becomes rough, and the light use efficiency decreases.
  • the uniformity of the emitted light is impaired, luminance unevenness occurs, and the appearance quality deteriorates. Therefore, by setting the surface roughness Ra of the lower surface 206a of the insert 206 to 125 ⁇ m or less, problems such as a decrease in light use efficiency of the manufactured light guide plate 30 and uneven brightness of emitted light can be prevented.
  • the light guide plate 30 having various two-layer shapes can be manufactured by exchanging the insert 206, and the manufacturing cost of the molding mold can be reduced. it can.
  • a light guide plate 30 smaller than the size of the cavity may be manufactured by arranging a nest for filling a part of the cavity in the cavity of the molding die 200. Thereby, the production cost of the molding die can be further reduced.
  • the surface of the nest 206 is preferably a stepped, saw-toothed or wavy rough surface.
  • the nest 206 can be manufactured by milling.
  • the nest 206 can be produced by drill cutting.
  • insert 206 can be produced by a ball end mill process by making the nest
  • the manufacturing cost of the nest 206 can be reduced.
  • FIGS. 10 (A) to (D) the manufacturing method of the light guide plate of the present invention will be described in detail with reference to FIGS. 10 (A) to (D).
  • the upper mold 204 and the lower mold 202 are closed to form a cavity.
  • the material A of the second layer 62 is injected from the through holes 202a and 202b into the formed cavity.
  • the cavity is opened (FIG. 10B), and the insert 206 is removed from the upper mold 204.
  • the lower surface 206a of the insert 206 is formed with a surface roughness Ra in the range of 25 to 125 ⁇ m.
  • the upper surface side (surface serving as the boundary surface z) of the formed second layer 62 is formed with a surface roughness Ra in the range of 25 to 125 ⁇ m.
  • the upper mold 204 and the lower mold 202 are closed with the second layer 62 formed in the lower mold 202 left, and the cavity is closed.
  • the material B of the first layer 60 is injected into the formed cavity from the through holes 202c and 202d.
  • the surface roughness Ra is formed in the range of 25 to 125 ⁇ m.
  • the interface roughness Ra of the interface between the first layer 60 and the second layer 62 is formed in the range of 25 to 125 ⁇ m.
  • the cavity is opened (FIG. 10D), and the light guide plate 30 formed in two layers is taken out.
  • the insert is formed.
  • the first layer is formed by injection molding. Accordingly, the inserts can be manufactured at low cost by cutting, rough polishing, etc., and therefore, the inserts 206 corresponding to the respective light guide plates can be manufactured at a low cost when a large variety of light guide plates are produced. Cost can be reduced. Further, the lower mold 202 and the upper mold 204 are common, and the insert 206 can be exchanged. Therefore, various two-layer light guide plates 30 can be manufactured, and the manufacturing cost of the molding die can be reduced.
  • first layer 60 and the second layer 62 are separately formed, even when different base materials are used for the first layer 60 and the second layer 62, they can be easily manufactured.
  • the light guide plate and the method for manufacturing the light guide plate of the present invention have been described in detail.
  • the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the gist of the present invention. May be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

The purpose of the present invention is to provide a light-guiding plate that is large and thin, exhibits high light utilization efficiency, is capable of emitting light with little unevenness in terms of luminance and color, is capable of achieving a uniform luminance distribution or a middle and high luminance distribution, and can be inexpensively and easily manufactured, and a method for manufacturing the light-guiding plate. With this manufacturing method of a light-guiding plate, after a second layer is formed by means of injection molding by injecting a material into a mold (200a, 200b) in which an insert (206), the surface of which in contact with the second layer (62) having a surface roughness (Ra) of 25 - 125 µm, is placed, the insert is removed and a first layer (60) is formed by means of injection molding.

Description

導光板および導光板の製造方法Light guide plate and light guide plate manufacturing method
 本発明は、液晶表示装置や室内の照明装置などに用いられる導光板および導光板の製造方法に関するものである。 The present invention relates to a light guide plate used for a liquid crystal display device, an indoor lighting device, and the like, and a method of manufacturing the light guide plate.
 液晶表示装置には、液晶表示パネルの裏面側から光を照射し、液晶表示パネルを照明する面状照明装置(バックライトユニット)が用いられている。面状照明装置は、照明用の光源が発する光を拡散して液晶表示パネルを照射する導光板、導光板から出射される光を均一化するプリズムシートや拡散シートなどの部品を用いて構成される。 The liquid crystal display device uses a planar illumination device (backlight unit) that irradiates light from the back side of the liquid crystal display panel to illuminate the liquid crystal display panel. A planar illumination device is configured using components such as a light guide plate that diffuses light emitted from a light source for illumination and irradiates a liquid crystal display panel, and a prism sheet and a diffusion sheet that uniformize light emitted from the light guide plate. The
 薄型化が可能な面状照明装置として、導光板の側面に光源を配置して、側面から入射した光を入射した方向とは異なる所定方向に導き、表面である光出射面から出射する導光板を用いるエッジライト型の面状照明装置が用いられている。
 このようなエッジライト型の面状照明装置に用いられる導光板として、側面(光入射面)から入射した光を表面側(光出射面)に導くために、光を散乱させるための散乱粒子を内部に混錬分散させた板状の導光板を用いることが提案されている。
As a planar lighting device that can be made thin, a light source is arranged on the side surface of the light guide plate, and the light incident from the side surface is guided in a predetermined direction different from the incident direction, and is emitted from the light emitting surface that is the surface. An edge light type planar illumination device using the above is used.
As a light guide plate used in such an edge light type planar illumination device, in order to guide light incident from the side surface (light incident surface) to the surface side (light exit surface), scattering particles for scattering light are used. It has been proposed to use a plate-shaped light guide plate kneaded and dispersed inside.
 内部に散乱粒子を混錬分散させた板状の導光板を、大型化・薄型化すると、側面から入射した光を導光板の奥まで導光することが困難になるため、光出射面から出射される出射光の輝度分布(照度分布)が均一、あるいは、中高な分布にならないという問題があった。
 そこで、本発明者らは、導光板を、光出射面側の第1層と、第2層よりも粒子濃度が高い第2層との2つの層を有する構成とし、光入射面に垂直な断面形状において、第1層および第2層の光出射面に略垂直な方向の厚さがそれぞれ変化することで、光入射面に垂直な方向における合成粒子濃度が変化する導光板とすることを提案した(特許文献1)。
 これにより、大型かつ薄型な形状とした場合にも、側面から入射した光を導光板の奥まで導光することができ、導光板の中央部から出射される光の量を増加させることができるので、光の利用効率が高く、輝度むらが少ない光を出射することができ、中高な明るさの分布を得ることができる。
Increasing the size and thickness of a plate-shaped light guide plate in which scattering particles are kneaded and dispersed inside makes it difficult to guide the light incident from the side to the back of the light guide plate. There is a problem that the luminance distribution (illuminance distribution) of the emitted light is not uniform or becomes a medium-high distribution.
Therefore, the inventors of the present invention have a configuration in which the light guide plate includes two layers, a first layer on the light emitting surface side and a second layer having a particle concentration higher than that of the second layer, and is perpendicular to the light incident surface. In the cross-sectional shape, by changing the thickness of the first layer and the second layer in the direction substantially perpendicular to the light exit surface, the light guide plate in which the composite particle concentration in the direction perpendicular to the light incident surface changes is obtained. Proposed (Patent Document 1).
As a result, even when the shape is large and thin, light incident from the side surface can be guided to the back of the light guide plate, and the amount of light emitted from the central portion of the light guide plate can be increased. Therefore, it is possible to emit light with high light use efficiency and little luminance unevenness, and to obtain a medium-high brightness distribution.
特許4713697号公報Japanese Patent No. 4713697
 ところで、このような導光板を用いた面状照明装置は、液晶表示装置のバックライトとしてのみでなく、室内等の照明装置としても用いられる。面状照明装置を室内等の照明装置として用いる場合は、これに用いる導光板は、液晶表示装置のバックライト用の導光板に比べて、種々の形状、大きさの導光板を少量ずつ製造することが求められる。
 通常、粒子濃度が異なる2層の導光板は、押出成型や射出成形(2色成型)により製造される。しかしながら、押出成型に用いるダイス(金型)や、射出成型に用いる金型は高価であり、室内等の照明装置用の導光板のように多品種少量生産が求められる場合には、コストが高くなるという問題があった。
By the way, a planar illumination device using such a light guide plate is used not only as a backlight of a liquid crystal display device but also as an illumination device in a room or the like. When the planar lighting device is used as a lighting device in a room or the like, the light guide plate used for this is manufactured in small amounts each in various shapes and sizes as compared with the light guide plate for the backlight of the liquid crystal display device. Is required.
Usually, two-layer light guide plates having different particle concentrations are manufactured by extrusion molding or injection molding (two-color molding). However, dies (molds) used for extrusion molding and molds used for injection molding are expensive, and cost is high when high-mix low-volume production is required, such as light guide plates for lighting devices in the room. There was a problem of becoming.
 本発明の目的は、上記従来技術の問題点を解消し、大型かつ薄型な形状であり、光の利用効率が高く、輝度むらおよび色むらが少ない光を出射することができ、均一な明るさの分布、あるいは中高な明るさの分布を得ることができ、安価にかつ容易に製造ができる導光板および導光板の製造方法を提供することにある。 The object of the present invention is to solve the above-mentioned problems of the prior art, has a large and thin shape, has high light utilization efficiency, can emit light with less luminance unevenness and color unevenness, and has uniform brightness. It is an object of the present invention to provide a light guide plate and a method for manufacturing the light guide plate that can be obtained at low cost and easily.
 上記課題を解決するために、本発明は、矩形状の光出射面と、光出射面の端辺側に設けられ、光出射面に略平行な方向に進行する光を入射する少なくとも1つの光入射面と、光出射面とは反対側の背面と、内部に分散される散乱粒子とを有し、光出射面に垂直な方向に重なる、光出射面側に配置される第1層と、背面側に配置され第1層よりも散乱粒子の粒子濃度が高い第2層との2つの層からなり、少なくとも1つの光入射面に垂直な方向において、2つの層の、光出射面に略垂直な方向の厚さがそれぞれ変化して合成粒子濃度が変化する導光板の製造方法であって、第1層と略同形状で、第2層と接する面の表面粗さRaが25~125μmである入れ子が設置された金型内に、第2層の材料を射出して第2層を射出成形にて形成する第2層形成工程と、第2層形成工程の後に、入れ子を除去して、形成された第2層を金型内に残した状態で、金型内に第1層の材料を射出して第1層を射出成形にて形成して、導光板を形成する第1層形成工程とを有することを特徴とする導光板の製造方法を提供する。 In order to solve the above-described problems, the present invention provides a rectangular light exit surface and at least one light that is provided on the edge side of the light exit surface and that receives light traveling in a direction substantially parallel to the light exit surface. A first layer disposed on the light emitting surface side, having an incident surface, a back surface opposite to the light emitting surface, and scattering particles dispersed therein, and overlapping in a direction perpendicular to the light emitting surface; It is composed of two layers, a second layer disposed on the back side and a second layer having a particle concentration of scattering particles higher than that of the first layer. In the direction perpendicular to at least one light incident surface, the two layers are substantially on the light emitting surface. A method of manufacturing a light guide plate in which the thickness in the vertical direction changes to change the concentration of the synthesized particles, and the surface roughness Ra of the surface in contact with the second layer is approximately the same as that of the first layer and is 25 to 125 μm. The material of the second layer is injected into the mold in which the insert is installed, and the second layer is formed by injection molding. After the two-layer forming step and the second layer forming step, the first layer material is injected into the mold by removing the nest and leaving the formed second layer in the mold. A method for producing a light guide plate, comprising: forming a light guide plate by forming one layer by injection molding.
 ここで、入れ子は、切削加工で作製されたものであることが好ましい。
 また、第1層の材料の母材は、第2層の材料の母材とは屈折率が異なる材料であることが好ましい。
Here, the nesting is preferably made by cutting.
The base material of the first layer material is preferably a material having a refractive index different from that of the second layer material.
 また、上記課題を解決するために、本発明は、矩形状の光出射面と、光出射面の端辺側に設けられ、光出射面に略平行な方向に進行する光を入射する少なくとも1つの光入射面と、光出射面とは反対側の背面と、内部に分散される散乱粒子とを有する導光板であって、光出射面に垂直な方向に重なる、光出射面側に配置される第1層と、背面側に配置され第1層よりも散乱粒子の粒子濃度が高い第2層との2つの層からなり、少なくとも1つの光入射面に垂直な方向において、2つの層の、光出射面に略垂直な方向の厚さがそれぞれ変化して合成粒子濃度が変化し、第1層と第2層との境界面の界面粗さRaが25~125μmであることを特徴とする導光板を提供する。 In order to solve the above problems, the present invention provides a rectangular light exit surface and at least one light incident on the end side of the light exit surface and traveling in a direction substantially parallel to the light exit surface. A light guide plate having two light incident surfaces, a back surface opposite to the light output surface, and scattering particles dispersed therein, and is disposed on the light output surface side, overlapping in a direction perpendicular to the light output surface A first layer disposed on the back side and a second layer having a higher particle concentration of scattering particles than the first layer. In the direction perpendicular to at least one light incident surface, the two layers The thickness in the direction substantially perpendicular to the light exit surface changes to change the concentration of the synthesized particles, and the interface roughness Ra of the interface between the first layer and the second layer is 25 to 125 μm. A light guide plate is provided.
 ここで、第1層と第2層との境界面が、階段状、鋸刃状、および、波状のいずれかの状態に形成された粗面であることが好ましい。
 また、第1層の母材は、第2層の母材とは屈折率が異なる材料であることが好ましい。
 また、散乱粒子が、多分散粒子であるのが好ましい。
 また、散乱粒子が、平均粒径の異なる2つの多分散の粒子群を混合したものであるのが好ましい。
 また、第1層に含まれる散乱粒子と、第2層に含まれる散乱粒子とは、粒度分布が異なるのが好ましい。
Here, the boundary surface between the first layer and the second layer is preferably a rough surface formed in one of a stepped shape, a sawtooth shape, and a wave shape.
The first layer base material is preferably a material having a refractive index different from that of the second layer base material.
The scattering particles are preferably polydisperse particles.
Further, it is preferable that the scattering particles are a mixture of two polydispersed particle groups having different average particle diameters.
Moreover, it is preferable that the scattering particle contained in a 1st layer and the scattering particle contained in a 2nd layer differ in a particle size distribution.
 また、少なくとも1つの光入射面が、光出射面の1つの端辺に設けられる1つの光入射面であり、第2層が、光入射面に垂直な方向において光入射面から離間するに従って、薄くなって最小厚さとなった後、厚くなり最大厚さとなった後、再び、薄くなるように滑らかに変化しているのが好ましい。
 あるいは、少なくとも1つの光入射面が、光出射面の1つの端辺に設けられる1つの光入射面であり、第2層が、光入射面に垂直な方向において光入射面から離間するに従って、薄くなって最小厚さとなった後、厚くなり最大厚さで一定となるように滑らかに変化しているのが好ましい。
 あるいは、少なくとも1つの光入射面が、光出射面の1つの端辺に設けられる1つの光入射面であり、第2層が、光入射面に垂直な方向において光入射面から離間するに従って、一旦、厚くなった後、薄くなり、再び、厚くなって最大厚さとなった後、薄くなるように連続的に変化しているのが好ましい。
 あるいは、少なくとも1つの光入射面が、光出射面の1つの端辺に設けられる1つの光入射面であり、第2層が、光入射面に垂直な方向において光入射面から離間するに従って、一旦、厚くなった後、薄くなり、再び、厚くなって最大厚さで一定となるように連続的に変化しているのが好ましい。
 さらに、光入射面に垂直な方向において、第1層と第2層との境界面が、光出射面に向かって凹の曲面と、この凹の曲面に滑らかに接続される、光出射面に向かって凸の曲面とからなる領域を有するのが好ましい。
Further, at least one light incident surface is one light incident surface provided at one end of the light emitting surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. It is preferable that after the thickness is reduced to the minimum thickness, the thickness is changed to be thin again after the thickness is increased to the maximum thickness.
Alternatively, at least one light incident surface is one light incident surface provided at one end of the light exit surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. It is preferable that after the thickness is reduced to the minimum thickness, the thickness is changed smoothly so that the thickness is increased and becomes constant at the maximum thickness.
Alternatively, at least one light incident surface is one light incident surface provided at one end of the light exit surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. It is preferable that the thickness is once changed after being thickened, and then continuously changed so as to become thin after being thickened again to the maximum thickness.
Alternatively, at least one light incident surface is one light incident surface provided at one end of the light exit surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. It is preferable that the thickness is once changed and then continuously changed so as to become thicker and constant at the maximum thickness.
Further, in the direction perpendicular to the light incident surface, the boundary surface between the first layer and the second layer is a concave curved surface toward the light emitting surface, and the light emitting surface smoothly connected to the concave curved surface. It is preferable to have a region composed of a convexly curved surface.
 あるいは、少なくとも1つの光入射面が、光出射面の対向する2つの端辺側に設けられた2つの光入射面であり、第2層が、光入射面に垂直な方向において、中央部で最大厚さとなり、中央部から2つの光入射面それぞれに向かうに従って、薄くなって最小厚さとなった後、厚くなるように滑らかに変化しているのが好ましい。
 あるいは、少なくとも1つの光入射面が、光出射面の対向する2つの端辺側に設けられた2つの光入射面であり、第2層が、光入射面に垂直な方向において、中央部で最大厚さとなり、中央部から2つの光入射面それぞれに向かうに従って、薄くなった後、厚くなるように滑らかに変化した後、薄くなるのが好ましい。
 ここで、第1層と第2層との境界面が、2つの光入射面それぞれの側の、光出射面に向かって凹の曲面と、この2つの凹の曲面の間で、2つの曲面に滑らかに接続される、光出射面に向かって凸の曲面とからなる領域を有するのが好ましい。
Alternatively, at least one light incident surface is two light incident surfaces provided on two opposite sides of the light emitting surface, and the second layer is formed at the center in the direction perpendicular to the light incident surface. It is preferable that the thickness becomes the maximum thickness, and gradually changes from the central portion toward the two light incident surfaces so as to become thicker after being reduced to the minimum thickness.
Alternatively, at least one light incident surface is two light incident surfaces provided on two opposite sides of the light emitting surface, and the second layer is formed at the center in the direction perpendicular to the light incident surface. It is preferable that the thickness becomes the maximum thickness, and as it goes from the center toward each of the two light incident surfaces, the thickness becomes thinner and then smoothly changes to become thicker and then becomes thinner.
Here, the boundary surface between the first layer and the second layer has two curved surfaces between a curved surface that is concave toward the light exit surface on each side of the two light incident surfaces and the two concave curved surfaces. It is preferable to have a region composed of a curved surface convex toward the light exit surface that is smoothly connected.
 また、第1層の粒子濃度をNpoとし、第2層の粒子濃度をNprとすると、0wt%≦Npo<0.15wt%、Npo<Npr≦0.8wt%を満たすのが好ましい。 Further, when the particle concentration of the first layer is Npo and the particle concentration of the second layer is Npr, it is preferable that 0 wt% ≦ Npo <0.15 wt% and Npo <Npr ≦ 0.8 wt% are satisfied.
 本発明によれば、大型かつ薄型な形状であり、光の利用効率が高く、輝度むらおよび色むらが少ない光を出射することができ、均一な明るさの分布、あるいは中高な明るさの分布を得ることができると共に、製造が容易になり、かつ、コストアップを防止できる。 According to the present invention, it is a large and thin shape, has high light utilization efficiency, can emit light with less luminance unevenness and color unevenness, and has a uniform brightness distribution or a medium-high brightness distribution. Can be obtained, and the manufacturing can be facilitated, and the increase in cost can be prevented.
本発明に係る導光板を用いる面状照明装置の一実施形態を示す概略斜視図である。It is a schematic perspective view which shows one Embodiment of the planar illuminating device using the light-guide plate which concerns on this invention. 図1に示す面状照明装置のII-II線断面図である。FIG. 2 is a cross-sectional view of the planar lighting device shown in FIG. 1 taken along the line II-II. (A)は、図2に示した面状照明装置の、III-III線矢視図であり、(B)は、(A)のB-B線断面図である。FIG. 3A is a cross-sectional view taken along the line III-III of the planar illumination device shown in FIG. 2, and FIG. 3B is a cross-sectional view taken along line BB in FIG. (A)は、図1及び図2に示す面状照明装置の光源ユニットの概略構成を示す斜視図であり、(B)は、(A)に示す光源ユニットの1つのLEDを拡大して示す概略斜視図である。(A) is a perspective view which shows schematic structure of the light source unit of the planar illuminating device shown to FIG.1 and FIG.2, (B) expands and shows one LED of the light source unit shown to (A). It is a schematic perspective view. 図3に示す導光板の形状を示す概略斜視図である。It is a schematic perspective view which shows the shape of the light-guide plate shown in FIG. 本発明に係る導光板の他の一例の概略図である。It is the schematic of another example of the light-guide plate which concerns on this invention. 本発明に係る導光板の他の一例の概略図である。It is the schematic of another example of the light-guide plate which concerns on this invention. (A)および(B)は、本発明に係る導光板を用いる面状照明装置の他の一例の概略図である。(A) And (B) is the schematic of another example of the planar illuminating device using the light-guide plate which concerns on this invention. 本発明の製造方法を実施する金型の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the metal mold | die which implements the manufacturing method of this invention. 本発明の製造方法を説明するための概略図である。It is the schematic for demonstrating the manufacturing method of this invention.
 本発明に係る導光板を用いる面状照明装置を、添付の図面に示す好適実施形態に基づいて以下に詳細に説明する。
 図1は、本発明に係る導光板を用いる面状照明装置の概略を示す斜視図であり、図2は、図1に示した面状照明装置のII-II線断面図である。
 また、図3(A)は、図2に示した面状照明装置のIII-III線矢視図であり、図3(B)は、(A)のB-B線断面図である。
A planar illumination device using a light guide plate according to the present invention will be described below in detail based on a preferred embodiment shown in the accompanying drawings.
FIG. 1 is a perspective view showing an outline of a planar illumination device using a light guide plate according to the present invention, and FIG. 2 is a cross-sectional view taken along the line II-II of the planar illumination device shown in FIG.
3A is a cross-sectional view taken along the line III-III of the planar illumination device shown in FIG. 2, and FIG. 3B is a cross-sectional view taken along the line BB in FIG.
 面状照明装置10は、一面から面状の光を照射する照明装置である。
 本実施形態における面状照明装置10は、図1、図2、図3(A)および図3(B)に示すように、光源ユニット28、導光板30および光学部材ユニット32を有する照明装置本体24と、下部筐体42、上部筐体44、折返部材46および支持部材48を有する筐体26とを有する。また、図1に示すように筐体26の下部筐体42の裏側には、光源ユニット28に電力を供給する複数の電源を収納する電源収納部49が取り付けられている。
 以下、面状照明装置10を構成する各構成部品について説明する。
The planar illumination device 10 is an illumination device that emits planar light from one surface.
The planar lighting device 10 in this embodiment includes a light source unit 28, a light guide plate 30, and an optical member unit 32, as shown in FIGS. 1, 2, 3A, and 3B. 24, and a casing 26 having a lower casing 42, an upper casing 44, a folding member 46, and a support member 48. Further, as shown in FIG. 1, a power storage unit 49 that stores a plurality of power supplies for supplying power to the light source unit 28 is attached to the back side of the lower housing 42 of the housing 26.
Hereinafter, each component which comprises the planar illuminating device 10 is demonstrated.
 照明装置本体24は、光を出射する光源ユニット28と、光源ユニット28から出射された光を面状の光として出射する導光板30と、導光板30から出射された光を、散乱や拡散させてよりムラのない光とする光学部材ユニット32とを有する。 The illuminating device main body 24 scatters and diffuses the light source unit 28 that emits light, the light guide plate 30 that emits light emitted from the light source unit 28 as planar light, and the light emitted from the light guide plate 30. And an optical member unit 32 for making the light more uniform.
 まず、光源ユニット28について説明する。
 図4(A)は、図1および図2に示す面状照明装置10の光源ユニット28の概略構成を示す概略斜視図であり、図4(B)は、図4(A)に示す光源ユニット28の1つのLEDチップのみを拡大して示す概略斜視図である。
 図4(A)に示すように、光源ユニット28は、複数の発光ダイオードのチップ(以下「LEDチップ」という)50と、光源支持部52とを有する。
First, the light source unit 28 will be described.
4A is a schematic perspective view showing a schematic configuration of the light source unit 28 of the planar illumination device 10 shown in FIGS. 1 and 2, and FIG. 4B is a light source unit shown in FIG. 4A. It is a schematic perspective view which expands and shows only one LED chip of 28.
As shown in FIG. 4A, the light source unit 28 has a plurality of light emitting diode chips (hereinafter referred to as “LED chips”) 50 and a light source support portion 52.
 LEDチップ50は、青色光を出射する発光ダイオードの表面に蛍光物質を塗布したチップであり、所定面積の発光面58を有し、この発光面58から白色光を出射する。
 つまり、LEDチップ50の発光ダイオードの表面から出射された青色光が蛍光物質を透過すると、蛍光物質が蛍光する。これにより、LEDチップ50からは、発光ダイオードが出射した青色光と、蛍光物質が蛍光して出射された光とにより、白色光が生成され、出射される。
 ここで、LEDチップ50としては、GaN系発光ダイオード、InGaN系発光ダイオード等の表面にYAG(イットリウム・アルミニウム・ガーネット)系蛍光物質を塗布したチップが例示される。
The LED chip 50 is a chip in which a fluorescent material is applied to the surface of a light emitting diode that emits blue light. The LED chip 50 has a light emitting surface 58 having a predetermined area, and emits white light from the light emitting surface 58.
That is, when the blue light emitted from the surface of the light emitting diode of the LED chip 50 passes through the fluorescent material, the fluorescent material fluoresces. As a result, white light is generated and emitted from the LED chip 50 by the blue light emitted from the light emitting diode and the light emitted from the fluorescent substance by fluorescence.
Here, the LED chip 50 is exemplified by a chip in which a YAG (yttrium / aluminum / garnet) fluorescent material is applied to the surface of a GaN-based light-emitting diode, InGaN-based light-emitting diode, or the like.
 光源支持部52は、一面が導光板30の第1光入射面30cに対向して配置される板状部材である。
 光源支持部52は、導光板30の第1光入射面30cに対向する面となる側面に、複数のLEDチップ50を、互いに所定間隔離間した状態で支持している。具体的には、光源ユニット28を構成する複数のLEDチップ50は、後述する導光板30の第1光入射面30cの長手方向に沿って、アレイ状に配列され、光源支持部52上に固定されている。
 光源支持部52は、銅やアルミニウム等の熱伝導性の良い金属で形成されており、LEDチップ50から発生する熱を吸収し、外部に放散させるヒートシンクとしての機能も有する。
The light source support portion 52 is a plate-like member that is disposed so that one surface thereof faces the first light incident surface 30 c of the light guide plate 30.
The light source support 52 supports the plurality of LED chips 50 on a side surface that is a surface facing the first light incident surface 30c of the light guide plate 30 with a predetermined distance therebetween. Specifically, the plurality of LED chips 50 constituting the light source unit 28 are arranged in an array along the longitudinal direction of the first light incident surface 30 c of the light guide plate 30 to be described later, and are fixed on the light source support portion 52. Has been.
The light source support 52 is made of a metal having good thermal conductivity such as copper or aluminum, and also has a function as a heat sink that absorbs heat generated from the LED chip 50 and dissipates it to the outside.
 ここで、図4(B)に示すように、本実施形態のLEDチップ50は、LEDチップ50の配列方向の長さよりも、配列方向に直交する方向の長さが短い長方形形状、つまり、後述する導光板30の厚み方向(光出射面30aに垂直な方向)が短辺となる長方形形状を有する。LEDチップ50を長方形形状とすることにより、大光量の出力を維持しつつ、薄型な光源ユニットとすることができる。光源ユニット28を薄型化することにより、面状照明装置を薄型にすることができる。また、LEDチップの配置個数を少なくすることができる。 Here, as shown in FIG. 4B, the LED chip 50 of the present embodiment has a rectangular shape whose length in the direction orthogonal to the arrangement direction is shorter than the length of the LED chip 50 in the arrangement direction, that is, described later. The light guide plate 30 has a rectangular shape in which the thickness direction (the direction perpendicular to the light emitting surface 30a) is a short side. By making the LED chip 50 into a rectangular shape, a thin light source unit can be obtained while maintaining a large light output. By reducing the thickness of the light source unit 28, the planar illumination device can be reduced in thickness. In addition, the number of LED chips can be reduced.
 なお、LEDチップ50は、光源ユニット28をより薄型にできるため、導光板30の厚み方向を短辺とする長方形形状とすることが好ましいが、本発明はこれに限定はされず、正方形形状、円形形状、多角形形状、楕円形形状等種々の形状のLEDチップを用いることができる。 In addition, since the LED chip 50 can make the light source unit 28 thinner, it is preferable that the LED chip 50 has a rectangular shape with a short side in the thickness direction of the light guide plate 30, but the present invention is not limited to this, and the square shape, LED chips having various shapes such as a circular shape, a polygonal shape, and an elliptical shape can be used.
 次に、導光板30について説明する。
 図5は、導光板の形状を示す概略斜視図である。
 導光板30は、図2、図3および図5に示すように、長方形形状の光出射面30aと、この光出射面30aの長辺側の一方の端面に、光出射面30aに対してほぼ垂直に形成された第1光入射面30cと、第1光入射面30cに対向する側面である対向側面30dと、光出射面30aの反対側、つまり、導光板30の背面側に位置する平面である背面30bとを有している。
Next, the light guide plate 30 will be described.
FIG. 5 is a schematic perspective view showing the shape of the light guide plate.
As shown in FIGS. 2, 3 and 5, the light guide plate 30 has a rectangular light exit surface 30a and one end face on the long side of the light exit surface 30a, and is substantially the same as the light exit surface 30a. The first light incident surface 30c formed vertically, the opposite side surface 30d which is the side surface facing the first light incident surface 30c, and the plane located on the opposite side of the light emitting surface 30a, that is, on the back side of the light guide plate 30 And a back surface 30b.
 ここで、上述した光源ユニット28は、導光板30の第1光入射面30cに対向して配置されている。このように面状照明装置10は、1つの光源ユニット28が、導光板30の1つの側面に対面して配置されている。 Here, the light source unit 28 described above is disposed to face the first light incident surface 30c of the light guide plate 30. As described above, in the planar illumination device 10, one light source unit 28 is arranged to face one side surface of the light guide plate 30.
 導光板30は、透明樹脂に、光を散乱させるための散乱粒子が混錬分散されて形成されている。導光板30に用いられる透明樹脂の材料としては、例えば、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PC(ポリカーボネート)、PMMA(ポリメチルメタクリレート)、ベンジルメタクリレート、MS樹脂、あるいはCOP(シクロオレフィンポリマー)のような光学的に透明な樹脂が挙げられる。導光板30に混錬分散させる散乱粒子としては、トスパール(登録商標)等のシリコーン粒子や、シリカ、ジルコニア、誘電体ポリマ等からなる粒子を用いることができる。 The light guide plate 30 is formed by kneading and dispersing scattering particles for scattering light in a transparent resin. Examples of the transparent resin material used for the light guide plate 30 include PET (polyethylene terephthalate), PP (polypropylene), PC (polycarbonate), PMMA (polymethyl methacrylate), benzyl methacrylate, MS resin, or COP (cycloolefin polymer). An optically transparent resin such as As the scattering particles to be kneaded and dispersed in the light guide plate 30, silicone particles such as Tospearl (registered trademark), particles made of silica, zirconia, dielectric polymer, or the like can be used.
 また、導光板30は、光出射面30a側の第1層60と、背面30b側の第2層62とに分かれた2層構造で形成されている。第1層60と第2層62との境界を境界面zとすると、第1層60は、光出射面30aと、第1光入射面30cおよび対向側面30dと、境界面zとで囲まれた断面の領域である。また、第2層62は、第1層の背面30b側に隣接する層であり、境界面zと、第1光入射面30cおよび対向側面30dと、背面30bとで囲まれた断面の領域である。 The light guide plate 30 is formed in a two-layer structure that is divided into a first layer 60 on the light emitting surface 30a side and a second layer 62 on the back surface 30b side. Assuming that the boundary between the first layer 60 and the second layer 62 is the boundary surface z, the first layer 60 is surrounded by the light emitting surface 30a, the first light incident surface 30c, the opposing side surface 30d, and the boundary surface z. This is a cross-sectional area. The second layer 62 is a layer adjacent to the back surface 30b side of the first layer, and is a cross-sectional area surrounded by the boundary surface z, the first light incident surface 30c and the opposite side surface 30d, and the back surface 30b. is there.
 第1層60の散乱粒子の粒子濃度をNpoとし、第2層62の散乱粒子の粒子濃度をNprとすると、NpoとNprとの関係は、Npo<Nprとなる。つまり、導光板30は、光出射面30a側の第1層60よりも、背面30b側の第2層62の方が散乱粒子の粒子濃度が高い。 When the particle concentration of the scattering particles in the first layer 60 is Npo and the particle concentration of the scattering particles in the second layer 62 is Npr, the relationship between Npo and Npr is Npo <Npr. That is, in the light guide plate 30, the second layer 62 on the back surface 30b side has a higher particle concentration of scattered particles than the first layer 60 on the light exit surface 30a side.
 ここで、第1層60の散乱粒子の粒子濃度Npoと、第2層62の散乱粒子の粒子濃度Nprとの関係は、0wt%≦Npo<0.15wt%、かつ、Npo<Npr<0.8wt%を満たすことが好ましい。
 導光板30の第1層60と第2層62とが上記関係を満たすことで、導光板30は、粒子濃度が低い第1層60では、入射した光をあまり散乱せずに導光板30の奥(中央)まで導光することができる。また、導光板の中央に近づくにつれて、粒子濃度が高い第2層62により光を散乱して、光出射面30aから出射する光の量を増やすことができる。つまり、より光の利用効率を高めつつ、好適な割合で照度分布を中高にすることができる。
 ここで、粒子濃度[wt%]とは、母材の重量に対する散乱粒子の重量の割合である。
 導光板30の第1層60と第2層62とが上記関係を満たすことでも、より光の利用効率を高めつつ、好適な割合で照度分布を中高にすることができる。
Here, the relationship between the particle concentration Npo of the scattering particles of the first layer 60 and the particle concentration Npr of the scattering particles of the second layer 62 is 0 wt% ≦ Npo <0.15 wt% and Npo <Npr <0. It is preferable to satisfy 8 wt%.
When the first layer 60 and the second layer 62 of the light guide plate 30 satisfy the above relationship, the light guide plate 30 does not scatter incident light so much in the first layer 60 having a low particle concentration. Light can be guided to the back (center). Further, as the distance from the center of the light guide plate approaches, the amount of light emitted from the light exit surface 30a can be increased by scattering light by the second layer 62 having a high particle concentration. That is, it is possible to make the illuminance distribution medium to high at a suitable ratio while further improving the light utilization efficiency.
Here, the particle concentration [wt%] is the ratio of the weight of the scattering particles to the weight of the base material.
Even if the first layer 60 and the second layer 62 of the light guide plate 30 satisfy the above relationship, the illuminance distribution can be made to be medium-high at a suitable ratio while further improving the light use efficiency.
 また、第1層60と第2層62との境界面zは、第1光入射面30cの長手方向に垂直な断面で見た際に、第1光入射面30cから対向側面30dに向かって、一旦、第2層62が薄くなるように変化し最小厚さとなった後、第2層62が厚くなるように変化して最大厚さとなり、再び、対向側面30d側で薄くなるように、滑らかに変化している。
 具体的には、境界面zは、導光板30の第1光入射面30c側の、光出射面30aに向かって凹の曲面と、この凹の曲面に滑らかに接続される、対向側面30d側の凸の曲面とからなる。
Further, the boundary surface z between the first layer 60 and the second layer 62 is viewed from the first light incident surface 30c toward the opposite side surface 30d when viewed in a cross section perpendicular to the longitudinal direction of the first light incident surface 30c. Once the second layer 62 is changed to be thin and has a minimum thickness, the second layer 62 is changed to be thick and has a maximum thickness. It is changing smoothly.
Specifically, the boundary surface z is a curved surface that is concave toward the light exit surface 30a on the first light incident surface 30c side of the light guide plate 30, and the side surface 30d that is smoothly connected to the concave curved surface. Convex curved surface.
 このように、第1層60よりも散乱粒子の粒子濃度が高い第2層62の厚さを、第1光入射面30cに近い位置で極小値を有し、中央部よりも対向側面30d側で、極大値を有する厚さとする。これにより、散乱粒子の合成粒子濃度を、第1光入射面30cの近傍の極小値と、対向側面30d近傍の極大値とを有するように変化させている。
 すなわち、合成粒子濃度のプロファイルは、第1光入射面30c側で極小値を持ち、対向側面30c側で極大値を持つように変化する曲線である。
As described above, the thickness of the second layer 62 in which the particle concentration of the scattering particles is higher than that of the first layer 60 has a minimum value at a position close to the first light incident surface 30c, and is closer to the opposite side surface 30d than the center. Therefore, the thickness has a maximum value. Thereby, the synthetic particle concentration of the scattering particles is changed so as to have a local minimum value near the first light incident surface 30c and a local maximum value near the opposing side surface 30d.
That is, the profile of the synthetic particle concentration is a curve that changes so as to have a minimum value on the first light incident surface 30c side and a maximum value on the opposite side surface 30c side.
 なお、本発明において、合成粒子濃度とは、光入射面からこれに対向する面に向けて離間した或る位置において、光出射面と略垂直方向に加算(合成)した散乱粒子量を用いて、導光板を光入射面の厚みの平板と見なした際における散乱粒子の濃度である。すなわち、光入射面から離間した或る位置において、該導光板を光入射面の厚みの、一種類の濃度の平板導光板とみなした場合に、光出射面と略垂直方向に加算した散乱粒子の単位体積あたりの数量または、母材に対する重量百分率である。 In the present invention, the synthetic particle concentration is the amount of scattered particles added (synthesized) in a direction substantially perpendicular to the light exit surface at a certain position spaced from the light incident surface toward the surface facing the light incident surface. The concentration of scattering particles when the light guide plate is regarded as a flat plate having a thickness of the light incident surface. That is, at a certain position away from the light incident surface, when the light guide plate is regarded as a flat light guide plate having a thickness of the light incident surface and having one type of concentration, the scattering particles added in a direction substantially perpendicular to the light exit surface The quantity per unit volume or the weight percentage with respect to the base material.
 このように、粒子濃度が高い第2層62の厚さが、第1光入射面30cから対向側面30dに向かって、一旦、第2層62が薄くなるように変化し最小厚さとなった後、第2層62が厚くなるように変化して最大厚さとなり、再び、対向側面30d側で薄くなるように、滑らかに変化する構成とする。これにより、第1光入射面30cから反対側の対向側面30dに向かうに従って、合成粒子濃度を、一旦低くなった後、高くなり、対向側面側で低くなるように滑らかに変化させる。これにより、大型かつ薄型な導光板であっても、光入射面から入射する光を、より遠い位置まで届けることができ、出射光の輝度分布を中高な輝度分布とすることができる。
 また、光入射面近傍の合成粒子濃度を極小値よりも高くすることによって、光入射面から入射した光を、光入射面近傍で十分に拡散することができる。従って、光入射面近傍から出射される出射光に、光源の配置間隔等に起因する輝線(暗線、ムラ)が視認されることを防止することができる。
As described above, after the thickness of the second layer 62 having a high particle concentration changes from the first light incident surface 30c toward the opposing side surface 30d so that the second layer 62 becomes thinner once and becomes the minimum thickness. The second layer 62 is configured to change smoothly so that the second layer 62 is changed to a maximum thickness, and is again changed to be thinner on the opposite side surface 30d side. As a result, the concentration of the synthetic particles is smoothly changed from the first light incident surface 30c toward the opposite side surface 30d on the opposite side so that the concentration of the synthesized particles once decreases and then increases and decreases on the opposite side surface side. Thereby, even if it is a large-sized and thin light-guide plate, the light which injects from a light-incidence surface can be delivered to a far position, and the luminance distribution of emitted light can be made into a medium-high luminance distribution.
Moreover, by making the synthetic particle concentration in the vicinity of the light incident surface higher than the minimum value, the light incident from the light incident surface can be sufficiently diffused in the vicinity of the light incident surface. Therefore, it is possible to prevent a bright line (dark line, unevenness) caused by the arrangement interval of the light sources from being visually recognized in the outgoing light emitted from the vicinity of the light incident surface.
 また、境界面zの形状を調整することで、輝度分布(散乱粒子の濃度分布)も任意に設定することができ、効率を最大限に向上できる。
 また、光出射面側の層の粒子濃度を低くするので、全体での散乱粒子の量を少なくすることができ、コストダウンにもつながる。
Further, by adjusting the shape of the boundary surface z, the luminance distribution (scattering particle concentration distribution) can be arbitrarily set, and the efficiency can be improved to the maximum.
Further, since the particle concentration of the layer on the light exit surface side is lowered, the amount of scattered particles as a whole can be reduced, leading to cost reduction.
 なお、導光板30は、境界面zで第1層60と第2層62とに分かれているが、第1層60と第2層62とは、粒子濃度が異なるのみで、同じ透明樹脂に同じ散乱粒子を分散させた構成であり、構造上は一体となっている。つまり、導光板30は、境界面zを基準として分けた場合、それぞれの領域の粒子濃度は異なるが、境界面zは、仮想的な線であり、第1層60および第2層62は一体となっている。 The light guide plate 30 is divided into a first layer 60 and a second layer 62 at the boundary surface z, but the first layer 60 and the second layer 62 are different from each other only in the particle concentration, and are made of the same transparent resin. The structure is such that the same scattering particles are dispersed, and the structure is united. That is, when the light guide plate 30 is divided on the basis of the boundary surface z, the particle concentration in each region is different, but the boundary surface z is a virtual line, and the first layer 60 and the second layer 62 are integrated. It has become.
 ここで、本発明において、第1層60と第2層62との境界面zの界面粗さRaは、25~125μmの範囲を満たす。
 第1層60と第2層62との境界面zの界面粗さRaが、25~125μmの範囲を満たす粗さとすることにより、導光板を射出成形にて製造する際に、2層を形成するための入れ子を切削加工等によって、安価に製造することができる。そのため、少量の導光板を生産する場合であっても、金型を安価に製作することができ、コストを削減することができる。また、界面粗さRaを125μm以下とすることにより、光利用効率の低下や、出射光の輝度むら等の発生を防止することができる。
 この点については、後に詳述する。
Here, in the present invention, the interface roughness Ra of the interface z between the first layer 60 and the second layer 62 satisfies the range of 25 to 125 μm.
When the interface roughness Ra of the boundary surface z between the first layer 60 and the second layer 62 satisfies the range of 25 to 125 μm, two layers are formed when the light guide plate is manufactured by injection molding. The insert for making can be manufactured at low cost by cutting or the like. Therefore, even when a small amount of light guide plate is produced, the mold can be manufactured at low cost, and the cost can be reduced. Further, by setting the interface roughness Ra to 125 μm or less, it is possible to prevent the light use efficiency from being lowered and the occurrence of uneven brightness of the emitted light.
This will be described in detail later.
 また、第1層60と第2層62との境界面zの界面粗さRaが、25~125μmの範囲を満たすことにより、2色射出成形で、2層の導光板を作製した際に、第1層60と第2層62との密着性をよくすることができる。また、射出成型の金型を製作する際に研磨を不要にし、コストダウンを可能にすることができる。 Further, when the interface roughness Ra of the interface z between the first layer 60 and the second layer 62 satisfies the range of 25 to 125 μm, when a two-layer light guide plate is produced by two-color injection molding, The adhesion between the first layer 60 and the second layer 62 can be improved. Further, polishing is not required when manufacturing an injection mold, and the cost can be reduced.
 また、第1層60と第2層62との境界面zは、階段状、鋸刃状、あるいは、波状の粗面であることが好ましい。
 境界面zを階段状の粗面とすることにより、2層を形成するための入れ子をフライス切削の加工で作製することができる。また、境界面zを鋸刃状の粗面とすることにより、入れ子をドリル切削の加工で作製することができる。また、境界面zを波状の粗面とすることで、入れ子をボールエンドミル加工で作製することができる。
In addition, the boundary surface z between the first layer 60 and the second layer 62 is preferably a stepped, sawtooth, or wavy rough surface.
By making the boundary surface z into a stepped rough surface, a nest for forming two layers can be produced by milling. Further, by making the boundary surface z a saw-toothed rough surface, the insert can be produced by drill cutting. Moreover, the nest | insert can be produced by a ball end mill process by making the interface surface z into a wavy rough surface.
 ここで、導光板30内に混錬分散される散乱粒子は、粒径が異なる粒子を混合したものである多分散粒子を用いるのが好ましい。
 通常、導光板30に混錬分散させる散乱粒子としては、多分散粒子を用いるよりも、粒径が均一な単分散粒子を用いる方が、導光板内部での光の散乱が均一になり、光の利用効率が向上できる点や色むらが発生しにくい点で好ましい。しかしながら、単分散粒子を得るためには、粒子を分級する必要があり、コストアップの要因となる。
 これに対して、本発明においては、導光板30の内部の領域ごとに異なる粒子濃度で散乱粒子を含有させることによって、粒径が異なる粒子を混合した多分散粒子を用いた場合であっても、光の利用効率が低下することを防止できる。そのため、散乱粒子を分級する必要がなく、さらにコストの低減を図ることができる。
Here, the scattering particles kneaded and dispersed in the light guide plate 30 are preferably polydisperse particles obtained by mixing particles having different particle sizes.
Usually, as the scattering particles to be kneaded and dispersed in the light guide plate 30, the use of monodisperse particles having a uniform particle size is more uniform than the polydisperse particles, and the light scattering inside the light guide plate becomes uniform. This is preferable in that the use efficiency can be improved and color unevenness hardly occurs. However, in order to obtain monodisperse particles, it is necessary to classify the particles, which increases the cost.
On the other hand, in the present invention, even when polydisperse particles in which particles having different particle diameters are mixed by containing scattering particles at different particle concentrations for each region inside the light guide plate 30 are used. It is possible to prevent the light utilization efficiency from being lowered. Therefore, there is no need to classify the scattering particles, and the cost can be further reduced.
 ここで、本発明において、粒径の分布が単分散の粒子群とは、標準偏差をσとしたとき、粒径の分布が、中心粒径(ピークの粒径)に対し、3σ値が、±0.5μmの範囲内に収まるガウス型の分布を満たすものである。また、多分散の粒子群とは、粒径の分布が、中心粒径(ピークの粒径)に対し、3σ値が、±0.5μmの範囲を超えるものであり、単分散の粒子群の粒径分布と比べて、なだらかな分布の粒子群である。
 なお、単分散および多分散ともに、その粒径分布は1つのピークを有するものである。
Here, in the present invention, a particle group having a monodispersed particle size distribution means that when the standard deviation is σ, the particle size distribution is 3σ with respect to the center particle size (peak particle size). It satisfies a Gaussian distribution that falls within a range of ± 0.5 μm. Further, the polydisperse particle group is a particle size distribution in which the 3σ value exceeds the range of ± 0.5 μm with respect to the center particle size (peak particle size). Compared to the particle size distribution, the particle group has a gentle distribution.
In addition, both monodisperse and polydisperse have a single particle size distribution.
 また、散乱粒子として、粒径の分布が2つのピークを有するように、2つの粒子群を所定の割合で混合したものを用いるのが好ましい。特に、第1のピークの粒径が7μmよりも小さい粒径であり、第2のピークの粒径が7μmよりも大きい粒径とすることが好ましい。
 また、混合する2つの粒子群はそれぞれ多分散の粒子群であることが好ましい。
In addition, it is preferable to use a scattering particle in which two particle groups are mixed at a predetermined ratio so that the particle size distribution has two peaks. In particular, it is preferable that the particle size of the first peak is smaller than 7 μm and the particle size of the second peak is larger than 7 μm.
The two particle groups to be mixed are preferably polydisperse particle groups.
 散乱粒子の粒径が7μmより小さい粒子は、波長の短い光を散乱しやすく波長の長い光を散乱しにくい。一方、粒径が7μmより大きい粒子は、波長の長い光を散乱しやすく波長の短い光を散乱しやすい。
 従って、散乱粒子の粒径の分布を、7μmよりも小さい粒径の第1のピークと、7μmよりも大きい粒径の第2のピークとの2つのピークを有する分布として、7μmより小さい粒径の散乱粒子と、7μmより大きい粒径の散乱粒子とを所定の比率で混合する。これにより、波長の長さに起因する散乱しやすさを均一化することができ、導光板を大型化した場合でも、波長ごとの出射光量の比率を一定にして、光出射面30aからの出射光の色むらを低減することができる。
Particles having a scattering particle size of less than 7 μm are likely to scatter light having a short wavelength and hardly scatter light having a long wavelength. On the other hand, particles having a particle size larger than 7 μm easily scatter light having a long wavelength and easily scatter light having a short wavelength.
Therefore, the particle size distribution of the scattering particles is a distribution having two peaks, a first peak having a particle size smaller than 7 μm and a second peak having a particle size larger than 7 μm. And scattering particles having a particle diameter larger than 7 μm are mixed at a predetermined ratio. As a result, the ease of scattering due to the length of the wavelength can be made uniform, and even when the size of the light guide plate is increased, the ratio of the amount of emitted light for each wavelength is kept constant, and the light exiting from the light exit surface 30a. It is possible to reduce the uneven color of the incident light.
 図2に示す導光板30では、光源ユニット28から出射され第1光入射面30cから入射した光は、導光板30の内部に含まれる散乱粒子によって散乱されつつ、導光板30内部を通過し、直接、または背面30bで反射した後、光出射面30aから出射される。このとき、背面30bから一部の光が漏出する場合もあるが、漏出した光は導光板30の背面30b側に配置された反射板34によって反射され再び導光板30の内部に入射する。反射板34については後ほど詳細に説明する。 In the light guide plate 30 shown in FIG. 2, the light emitted from the light source unit 28 and incident from the first light incident surface 30 c passes through the light guide plate 30 while being scattered by the scattering particles included in the light guide plate 30. The light is emitted from the light exit surface 30a directly or after being reflected by the back surface 30b. At this time, a part of the light may leak from the back surface 30 b, but the leaked light is reflected by the reflecting plate 34 disposed on the back surface 30 b side of the light guide plate 30 and enters the light guide plate 30 again. The reflector 34 will be described in detail later.
 ここで、図示例においては、第1層60および第2層62に混錬分散される散乱粒子は、粒子濃度が異なるのみで、粒径の分布は同じものとしたが、これに限定はされず、第1層60と第2層62とで、異なる粒径分布の散乱粒子を用いてもよい。
 第1層60と第2層62との散乱粒子の粒径の分布を異なるものとすることにより、輝度分布をコントロールする上でより自由度が向上することができる点で好ましい。
Here, in the illustrated example, the scattering particles kneaded and dispersed in the first layer 60 and the second layer 62 are only different in particle concentration and have the same particle size distribution, but this is not limitative. Instead, the first layer 60 and the second layer 62 may use scattering particles having different particle size distributions.
By making the particle size distribution of the scattering particles different between the first layer 60 and the second layer 62, it is preferable in that the degree of freedom can be improved in controlling the luminance distribution.
 また、図示例においては、第1層60の母材と、第2層62の母材とは、同じ材料を用いるものとしたが、本発明はこれに限定はされず、第1層60の母材と第2層62の母材とを屈折率が異なる材料としてもよい。
 第1層60と第2層62との境界面zの界面粗さRaが、25~125μmの導光板において、第1層60と第2層62とを異なる屈折率とすることで、第1層60と第2層62との境界面zにレンズ効果を持たせることができ、光出射面30aから出射される出射光の正面輝度を向上させることができる。これにより、面状照明装置10の正面輝度を向上させるための光学シート(拡散シートやプリズムシート)を削減することができる。
 なお、光出射面30a側である第1層60の母材の屈折率を、第2層の62の母材の屈折率よりも小さくすることにより、第1層60と第2層62との境界面zに集光効果を持たせることができ、光出射面30aから出射される出射光の正面輝度を向上させることができ好ましい。例えば、第1層60の母材をPMMA(ポリメチルメタクリレート)とし、第2層62の母材をPC(ポリカーボネート)とすればよい。
 また、第1層60と第2層62との境界面zの界面粗さRaが、25~125μmであるので、第1層60と第2層62とで異なる材料を用いた場合であっても、第1層60と第2層62との密着性を高くすることができる。
In the illustrated example, the same material is used for the base material of the first layer 60 and the base material of the second layer 62, but the present invention is not limited to this, and the base material of the first layer 60 is not limited thereto. The base material and the base material of the second layer 62 may be made of materials having different refractive indexes.
In the light guide plate having an interface roughness Ra of the boundary surface z between the first layer 60 and the second layer 62 of 25 to 125 μm, the first layer 60 and the second layer 62 have different refractive indexes, so that the first A lens effect can be given to the boundary surface z between the layer 60 and the second layer 62, and the front luminance of the emitted light emitted from the light emitting surface 30a can be improved. Thereby, the optical sheet (a diffusion sheet or a prism sheet) for improving the front luminance of the planar illumination device 10 can be reduced.
In addition, the refractive index of the base material of the first layer 60 on the light emitting surface 30a side is made smaller than the refractive index of the base material of the second layer 62, whereby the first layer 60 and the second layer 62 A condensing effect can be given to the boundary surface z, and the front luminance of the emitted light emitted from the light emitting surface 30a can be improved, which is preferable. For example, the base material of the first layer 60 may be PMMA (polymethyl methacrylate), and the base material of the second layer 62 may be PC (polycarbonate).
Further, since the interface roughness Ra of the interface z between the first layer 60 and the second layer 62 is 25 to 125 μm, different materials are used for the first layer 60 and the second layer 62. In addition, the adhesion between the first layer 60 and the second layer 62 can be increased.
 また、図示例の導光板30においては、第2層62の厚さは、第1光入射面30cから対向側面30dに向かうに従って、薄くなるように変化した後、厚くなるように変化して最大厚さとなり、対向側面近傍で再び薄くなるように滑らかに変化する形状としたが、本発明は、これに限定はされない。 In the illustrated light guide plate 30, the thickness of the second layer 62 changes from the first light incident surface 30 c toward the opposing side surface 30 d so as to become thinner and then to become thicker. The shape is a thickness that smoothly changes so as to become thinner again in the vicinity of the opposite side surface, but the present invention is not limited to this.
 図6に、本発明に係る導光板の他の一例の概略図を示す。
 なお、図6に示す導光板100は、図3に示す導光板30において、第1層60と第2層62との境界面zの形状を変更した以外は、同じ構成を有するので、同じ部位には、同じ符号を付し、以下の説明は異なる部位を主に行う。
FIG. 6 shows a schematic diagram of another example of the light guide plate according to the present invention.
The light guide plate 100 shown in FIG. 6 has the same configuration except that the shape of the boundary surface z between the first layer 60 and the second layer 62 is changed in the light guide plate 30 shown in FIG. Are denoted by the same reference numerals, and the following description mainly focuses on different parts.
 図6に示す導光板100は、光出射面30a側の第1層102と背面30b側の第2層104とにより形成されている。第1層102と第2層104との境界面zは、第1光入射面30cの長手方向に垂直な断面で見た際に、第1光入射面30cから対向側面30dに向かって、一旦、第2層104が薄くなるように変化し最小厚さとなった後、第2層104が厚くなるように変化して最大厚さとなり、その後、対向側面30dまで一定の厚さとなるように、滑らかに変化している。
 具体的には、境界面zは、導光板100の第1光入射面30c側の、光出射面30aに向かって凹の曲面と、この凹の曲面に滑らかに接続される、中央部分の凸の曲面と、この凸の曲面に滑らかに接続される、対向側面30d側の平面とからなる。
The light guide plate 100 shown in FIG. 6 is formed by a first layer 102 on the light emitting surface 30a side and a second layer 104 on the back surface 30b side. The boundary surface z between the first layer 102 and the second layer 104 is temporarily extended from the first light incident surface 30c toward the opposing side surface 30d when viewed in a cross section perpendicular to the longitudinal direction of the first light incident surface 30c. After the second layer 104 is changed to be thin and has a minimum thickness, the second layer 104 is changed to be thick and has a maximum thickness, and thereafter, the thickness is constant up to the opposing side surface 30d. It is changing smoothly.
Specifically, the boundary surface z is a concave curved surface toward the light emitting surface 30a on the first light incident surface 30c side of the light guide plate 100, and a convex portion at the center portion that is smoothly connected to the concave curved surface. And a flat surface on the opposite side surface 30d side that is smoothly connected to the convex curved surface.
 このように、第2層の厚さを、対向側面側で一定とした場合にも、大型かつ薄型な導光板であっても、光入射面から入射する光を光入射面からより遠い位置まで届けることができ、出射光の輝度分布を中高な輝度分布とすることができる。 As described above, even when the thickness of the second layer is constant on the opposite side surface side, even if the light guide plate is large and thin, the light incident from the light incident surface is further distant from the light incident surface. The brightness distribution of the emitted light can be made a medium-high brightness distribution.
 図3に示す導光板においては、第2層の厚さが光入射面から離れるに従って、薄くなるように変化した後、厚くなる形状としたが、これに限定はされない。 In the light guide plate shown in FIG. 3, the thickness of the second layer is changed so as to become thinner as the distance from the light incident surface increases, but the shape becomes thicker. However, the present invention is not limited to this.
 図7は、本発明に係る導光板の他の一例の概略図である。
 図7に示す導光板110は、導光板30において、境界面zの形状を変更した以外は、導光板30と同様の構成を有するので、以下の説明においては、同じ部位には同じ符号を付し、以下の説明は異なる部位を主に行う。
FIG. 7 is a schematic view of another example of the light guide plate according to the present invention.
The light guide plate 110 shown in FIG. 7 has the same configuration as that of the light guide plate 30 except that the shape of the boundary surface z is changed in the light guide plate 30. In the following description, different parts are mainly described.
 図7に示す導光板30は、光出射面30a側の第1層112と背面30b側の第2層114とにより形成されている。第1層112と第2層114との境界面zは、第1光入射面30cの長手方向に垂直な断面で見た際に、第1光入射面30cから対向側面30dに向かって、第2層114が厚くなるように変化した後、一旦、第2層114が薄くなるように変化した後、再び、第2層114が厚くなるように滑らかに変化して最大厚さとなって、再び、対向側面30d側で薄くなるように、連続的に変化している。 The light guide plate 30 shown in FIG. 7 is formed of a first layer 112 on the light emitting surface 30a side and a second layer 114 on the back surface 30b side. The boundary surface z between the first layer 112 and the second layer 114 is viewed from the first light incident surface 30c toward the opposing side surface 30d when viewed in a cross section perpendicular to the longitudinal direction of the first light incident surface 30c. After the thickness of the second layer 114 is changed to be thicker, the second layer 114 is changed to be thinner, and then the second layer 114 is smoothly changed to be thicker and becomes the maximum thickness again. The thickness continuously changes so as to be thinner on the opposite side surface 30d side.
 具体的には、境界面zは、対向側面30d側の、光出射面30aに向かって凸の曲面と、この凸の曲面に滑らかに接続された凹の曲面と、この凹の曲面と接続され、第1光入射面30cの背面30b側の端部に接続する凹の曲面とからなる。また、第1光入射面30c上では、第2層114の厚さが0となる。
 すなわち、散乱粒子の合成粒子濃度(第2層の厚さ)を、第1光入射面30c近傍の第1極大値と、導光板中央部よりも対向側面30d側で、第1極大値よりも大きい第2極大値を有するように変化させている。
Specifically, the boundary surface z is connected to the curved surface convex toward the light emitting surface 30a on the opposite side surface 30d side, the concave curved surface smoothly connected to the convex curved surface, and the concave curved surface. And a concave curved surface connected to the end of the first light incident surface 30c on the back surface 30b side. Further, the thickness of the second layer 114 is zero on the first light incident surface 30c.
That is, the synthetic particle concentration (thickness of the second layer) of the scattering particles is set to be greater than the first maximum value near the first light incident surface 30c and the first maximum value on the opposite side surface 30d side from the center of the light guide plate. It is changed so as to have a large second maximum value.
 また、図示は省略しているが、導光板110の合成粒子濃度の第1極大値の位置は、筺体26の開口部44aの境界の位置に配置されており、第1光入射面30cから第1極大値までの領域は、光入射面から入射した光を拡散するための、いわゆるミキシングゾーンMである。 Although not shown, the position of the first maximum value of the synthetic particle concentration of the light guide plate 110 is arranged at the position of the boundary of the opening 44a of the housing 26, and the first light incident surface 30c A region up to one maximum value is a so-called mixing zone M for diffusing light incident from the light incident surface.
 このように、第1光入射面30c近傍に、合成粒子濃度の第1極大値を配置することによって、第1光入射面30cから入射した光を、光入射面近傍で十分に拡散し、光入射面近傍から出射される出射光に、光源の配置間隔等に起因する輝線(暗線、ムラ)が視認されることを防止することができる。
 また、合成粒子濃度の第1極大値となる位置よりも第1光入射面30c側の領域を、第1極大値よりも低い合成粒子濃度とする。これにより、入射した光が光入射面から出射される戻り光や、筺体に覆われていて利用されない光入射面付近の領域(ミキシングゾーンM)からの出射光を低減し、光出射面の有効な領域(有効画面エリアE)から出射する光の利用効率を向上させることができる。
As described above, by arranging the first maximum value of the synthetic particle concentration in the vicinity of the first light incident surface 30c, the light incident from the first light incident surface 30c is sufficiently diffused in the vicinity of the light incident surface, so that the light It is possible to prevent the bright line (dark line, unevenness) caused by the arrangement interval of the light sources from being visually recognized in the outgoing light emitted from the vicinity of the incident surface.
In addition, the region closer to the first light incident surface 30c than the position where the synthetic particle concentration becomes the first maximum value is set to a synthetic particle concentration lower than the first maximum value. This reduces the return light from which the incident light is emitted from the light incident surface and the light emitted from the region near the light incident surface that is not used because it is covered by the housing (mixing zone M), thereby improving the effectiveness of the light emission surface. Utilization efficiency of light emitted from a large area (effective screen area E) can be improved.
 また、図7に示す導光板110においては、第1光入射面30cから第1極大値までの境界面zの形状(ミキシングゾーンでの境界面の形状)は、光出射面30aに向かって凹の曲面とした。しかしながら、これに限定はされず、第1光入射面30cの背面30b側の端部に接続する、光出射面30aに向かって凸の曲面であってもよい。また、第1光入射面30cの背面30b側の端部と第1極大値とを結ぶ平面であってもよい。あるいは、第1光入射面30cから第1極大値までの間は、第2層114は形成されず、全て第1層112であってもよい。 In the light guide plate 110 shown in FIG. 7, the shape of the boundary surface z from the first light incident surface 30c to the first maximum value (the shape of the boundary surface in the mixing zone) is concave toward the light emitting surface 30a. The curved surface. However, the present invention is not limited to this, and may be a curved surface that is convex toward the light emitting surface 30a connected to the end of the first light incident surface 30c on the back surface 30b side. Moreover, the plane which connects the edge part by the side of the back surface 30b of the 1st light-incidence surface 30c and the 1st maximum value may be sufficient. Alternatively, the second layer 114 may not be formed between the first light incident surface 30 c and the first maximum value, and may be all the first layer 112.
 また、境界面zを形成する凹形および凸形の曲面は、光入射面の長手方向に垂直な断面において、円または楕円の一部で表される曲線であってもよいし、2次曲線、あるいは、多項式で表される曲線であってもよいし、これらを組み合わせた曲線であってもよい。 Further, the concave and convex curved surfaces forming the boundary surface z may be a curve represented by a part of a circle or an ellipse in a cross section perpendicular to the longitudinal direction of the light incident surface, or a quadratic curve. Alternatively, a curve represented by a polynomial may be used, or a curve obtained by combining these may be used.
 次に、光学部材ユニット32について説明する。
 光学部材ユニット32は、導光板30の光出射面30aから出射された照明光をより輝度むら及び照度むらのない光にして、照明装置本体24の光出射面24aから出射するためのものである。図2に示すように、光学部材ユニット32は、導光板30の光出射面30aから出射する照明光を拡散して輝度むら及び照度むらを低減する拡散シート32aと、光入射面30cと光出射面30aとの接線と平行なマイクロプリズム列が形成されたプリズムシート32bと、プリズムシート32bから出射する照明光を拡散して輝度むら及び照度むらを低減する拡散シート32cとを有する。
Next, the optical member unit 32 will be described.
The optical member unit 32 is for making the illumination light emitted from the light emitting surface 30a of the light guide plate 30 light having more uneven brightness and illuminance and emitting it from the light emitting surface 24a of the illuminating device body 24. . As shown in FIG. 2, the optical member unit 32 includes a diffusion sheet 32 a that diffuses illumination light emitted from the light emitting surface 30 a of the light guide plate 30 to reduce luminance unevenness and illuminance unevenness, a light incident surface 30 c, and a light emitting surface. It has a prism sheet 32b formed with a microprism array parallel to a tangent to the surface 30a, and a diffusion sheet 32c that diffuses illumination light emitted from the prism sheet 32b to reduce luminance unevenness and illuminance unevenness.
 拡散シート32aおよび32c、プリズムシート32bとしては、特に制限的ではなく、公知の拡散シートやプリズムシートを使用することができる。例えば、本出願人の出願に係る特開2005-234397号公報の[0028]~[0033]に開示されているものを適用することができる。 The diffusion sheets 32a and 32c and the prism sheet 32b are not particularly limited, and known diffusion sheets and prism sheets can be used. For example, what is disclosed in [0028] to [0033] of Japanese Patent Application Laid-Open No. 2005-234397 related to the applicant's application can be applied.
 なお、本実施形態では、光学部材ユニットを2枚の拡散シート32aおよび32cと、2枚の拡散シートの間に配置したプリズムシート32bとで構成したが、プリズムシートおよび拡散シートの配置順序や配置数は特に限定されない。また、プリズムシート、拡散シートとしても特に限定されず、導光板30の光出射面30aから出射された照明光の輝度むら及び照度むらをより低減することができるものであれば、種々の光学部材を用いることができる。
 例えば、光学部材として、上述の拡散シート及びプリズムシートに、加えてまたは代えて、拡散反射体からなる多数の透過率調整体を輝度むら及び照度むらに応じて配置した透過率調整部材も用いることもできる。また、光学部材ユニットを、プリズムシートおよび拡散シートを各1枚ずつ用いるか、あるいは、拡散シートのみを2枚用いて、2層構成としてもよい。
In the present embodiment, the optical member unit is constituted by the two diffusion sheets 32a and 32c and the prism sheet 32b disposed between the two diffusion sheets. However, the arrangement order and arrangement of the prism sheets and the diffusion sheets are not limited. The number is not particularly limited. Also, the prism sheet and the diffusion sheet are not particularly limited, and various optical members can be used as long as the luminance unevenness and the illuminance unevenness of the illumination light emitted from the light emitting surface 30a of the light guide plate 30 can be further reduced. Can be used.
For example, as an optical member, in addition to or instead of the above-described diffusion sheet and prism sheet, a transmittance adjusting member in which a large number of transmittance adjusting bodies made of a diffuse reflector are arranged in accordance with luminance unevenness and illuminance unevenness is also used. You can also. Further, the optical member unit may have a two-layer configuration using one prism sheet and one diffusion sheet, or using only two diffusion sheets.
 次に、照明装置本体24の反射板34について説明する。
 反射板34は、導光板30の背面30bから漏洩する光を反射して、再び導光板30に入射させるために設けられており、光の利用効率を向上させることができる。反射板34は、導光板30の背面30bに対面して配置される。
Next, the reflecting plate 34 of the lighting device body 24 will be described.
The reflection plate 34 is provided to reflect the light leaking from the back surface 30b of the light guide plate 30 and make it incident on the light guide plate 30 again, and can improve the light use efficiency. The reflection plate 34 is disposed to face the back surface 30 b of the light guide plate 30.
 反射板34は、導光板30の背面30bから漏洩する光を反射することができれば、どのような材料で形成されてもよい。例えば、反射板34は、PETやPP(ポリプロピレン)等にフィラーを混練後延伸することによりボイドを形成して反射率を高めた樹脂シート、透明もしくは白色の樹脂シート表面にアルミ蒸着などで鏡面を形成したシート、アルミ等の金属箔もしくは金属箔を担持した樹脂シート、あるいは表面に十分な反射性を有する金属薄板により形成することができる。 The reflection plate 34 may be formed of any material as long as it can reflect light leaking from the back surface 30b of the light guide plate 30. For example, the reflecting plate 34 is a resin sheet in which a void is formed by kneading and stretching a filler in PET, PP (polypropylene) or the like to increase the reflectance, and a mirror surface is formed on the surface of a transparent or white resin sheet by aluminum vapor deposition or the like. It can be formed of a formed sheet, a metal foil such as aluminum or a resin sheet carrying a metal foil, or a metal thin plate having sufficient reflectivity on the surface.
 上部誘導反射板36は、導光板30と拡散シート32aとの間、つまり、導光板30の光出射面30a側に、光源ユニット28および導光板30の光出射面30aの端部(第1光入射面30c側の端部)を覆うように配置されている。
 このように、上部誘導反射板36を配置することで、光源ユニット28から出射された光が導光板30の上方に漏れ出すことを防止できる。
 これにより、光源ユニット28から出射された光を効率よく導光板30内に入射させることができ、光利用効率を向上させることができる。
The upper guide reflection plate 36 is located between the light guide plate 30 and the diffusion sheet 32a, that is, on the light emission surface 30a side of the light guide plate 30, and the end portions (first light) of the light source unit 28 and the light emission surface 30a of the light guide plate 30. It is arrange | positioned so that the incident surface 30c side edge part) may be covered.
As described above, by arranging the upper guide reflection plate 36, it is possible to prevent light emitted from the light source unit 28 from leaking above the light guide plate 30.
Thereby, the light radiate | emitted from the light source unit 28 can be efficiently entered in the light-guide plate 30, and the light utilization efficiency can be improved.
 下部誘導反射板38は、導光板30の背面30b側に、光源ユニット28の一部を覆うように配置されている。また、下部誘導反射板38の導光板30中心側の端部は、反射板34と連結されている。
 ここで、上部誘導反射板36および下部誘導反射板38としては、上述した反射板34に用いる各種材料を用いることができる。
 下部誘導反射板38を設けることで、光源ユニット28から出射された光が導光板30の下方に漏れ出すことを防止できる。
 これにより、光源ユニット28から出射された光を効率よく導光板30の第1光入射面30cに入射させることができ、光利用効率を向上させることができる。
 なお、本実施形態では、反射板34と下部誘導反射板38とを連結させたが、これに限定されず、それぞれを別々の部材としてもよい。
The lower guide reflection plate 38 is disposed on the back surface 30 b side of the light guide plate 30 so as to cover a part of the light source unit 28. The end of the lower guide reflector 38 on the center side of the light guide plate 30 is connected to the reflector 34.
Here, as the upper guide reflector 36 and the lower guide reflector 38, various materials used for the reflector 34 described above can be used.
By providing the lower guide reflection plate 38, it is possible to prevent light emitted from the light source unit 28 from leaking below the light guide plate 30.
Thereby, the light radiate | emitted from the light source unit 28 can be efficiently entered in the 1st light-incidence surface 30c of the light-guide plate 30, and light utilization efficiency can be improved.
In addition, in this embodiment, although the reflecting plate 34 and the lower induction | guidance | derivation reflecting plate 38 were connected, it is not limited to this, Each is good also as a separate member.
 ここで、上部誘導反射板36および下部誘導反射板38は、光源ユニット28から出射された光を第1光入射面30c側に反射させ、導光板30内に入射させることができれば、その形状および幅は特に限定されない。 Here, if the upper guide reflector 36 and the lower guide reflector 38 can reflect the light emitted from the light source unit 28 toward the first light incident surface 30 c and enter the light guide plate 30, its shape and The width is not particularly limited.
 次に、筐体26について説明する。
 図2に示すように、筐体26は、照明装置本体24を収納して支持し、かつその光出射面24a側と導光板30の背面30b側とから挟み込み、固定するものである。筐体26は、下部筐体42と上部筐体44と折返部材46と支持部材48とを有する。
Next, the housing 26 will be described.
As shown in FIG. 2, the housing 26 accommodates and supports the lighting device main body 24, and is sandwiched and fixed from the light emitting surface 24 a side and the back surface 30 b side of the light guide plate 30. The housing 26 includes a lower housing 42, an upper housing 44, a folding member 46, and a support member 48.
 下部筐体42は、上面が開放され、底面部と、底面部の4辺に設けられ底面部に垂直な側面部とで構成された形状である。つまり、1面が開放された略直方体の箱型形状である。下部筐体42は、図2に示すように、上方から収納された照明装置本体24を底面部および側面部で支持すると共に、照明装置本体24の光出射面24a以外の面、つまり、照明装置本体24の光出射面24aとは反対側の面(背面)および側面を覆っている。 The lower housing 42 has a shape having an open top surface, a bottom surface portion, and a side surface portion provided on four sides of the bottom surface portion and perpendicular to the bottom surface portion. That is, it is a substantially rectangular parallelepiped box shape with one surface open. As shown in FIG. 2, the lower housing 42 supports the illuminating device main body 24 accommodated from above by the bottom surface portion and the side surface portion, and also a surface other than the light emitting surface 24 a of the illuminating device main body 24, that is, the illuminating device. The main body 24 covers the surface (back surface) and the side surface opposite to the light emitting surface 24a.
 上部筐体44は、上面に開口部となる照明装置本体24の矩形状の光出射面24aより小さい矩形状の開口が形成され、かつ下面が開放された直方体の箱型形状である。
 上部筐体44は、図2に示すように、照明装置本体24及び下部筐体42の上方(光出射面側)から、照明装置本体24およびこれが収納された下部筐体42をその4方の側面部も覆うように被せられて配置されている。
The upper housing 44 has a rectangular parallelepiped box shape in which a rectangular opening smaller than the rectangular light emitting surface 24a of the lighting device body 24 serving as an opening is formed on the upper surface, and the lower surface is opened.
As shown in FIG. 2, the upper housing 44 includes the lighting device main body 24 and the lower housing 42 in which the lighting device main body 24 and the lower housing 42 are housed in the four directions from above the lighting device main body 24 and the lower housing 42. The side portion is also placed so as to cover the side portion.
 折返部材46は、断面の形状が常に同一の凹(U字)型となる形状である。つまり、延在方向に垂直な断面の形状がU字形状となる棒状部材である。
 折返部材46は、図2に示すように、下部筐体42の側面と上部筐体44の側面との間に嵌挿され、U字形状の一方の平行部の外側面が下部筐体42の側面部と連結され、他方の平行部の外側面が上部筐体44の側面と連結されている。
 ここで、下部筐体42と折返部材46との接合方法、折返部材46と上部筐体44との接合方法としては、ボルトおよびナット等を用いる方法、接着剤を用いる方法等種々の公知の方法を用いることができる。
The folding member 46 has a concave (U-shaped) shape whose cross-sectional shape is always the same. That is, it is a rod-like member having a U-shaped cross section perpendicular to the extending direction.
As shown in FIG. 2, the folding member 46 is inserted between the side surface of the lower housing 42 and the side surface of the upper housing 44, and the outer surface of one U-shaped parallel part is the bottom surface of the lower housing 42. It is connected to the side surface portion, and the outer side surface of the other parallel portion is connected to the side surface of the upper housing 44.
Here, as a method for joining the lower housing 42 and the folding member 46, and a method for joining the folding member 46 and the upper housing 44, various known methods such as a method using bolts and nuts, a method using an adhesive, and the like. Can be used.
 このように、下部筐体42と上部筐体44との間に折返部材46を配置することで、筐体26の剛性を高くすることができ、導光板30が反ることを防止できる。
 なお、筐体26の上部筐体44、下部筐体42及び折返部材46には、金属、樹脂等の種々の材料を用いることができる。なお、材料としては、軽量で高強度の材料を用いることが好ましい。
 また、本実施形態では、折返部材46を別部材としたが、上部筐体44または下部筐体42と一体にして形成してもよい。また、折返部材46を設けない構成としてもよい。
Thus, by arranging the folding member 46 between the lower housing 42 and the upper housing 44, the rigidity of the housing 26 can be increased, and the light guide plate 30 can be prevented from warping.
Note that various materials such as metal and resin can be used for the upper housing 44, the lower housing 42, and the folding member 46 of the housing 26. In addition, as a material, it is preferable to use a lightweight and high-strength material.
In the present embodiment, the folding member 46 is a separate member, but it may be formed integrally with the upper housing 44 or the lower housing 42. Moreover, it is good also as a structure which does not provide the folding | turning member 46. FIG.
 支持部材48は、延在方向に垂直な断面の形状が同一の棒状部材である。
 支持部材48は、図2に示すように、第1光入射面30c側および対向側面30d側に対応する位置の反射板34と下部筐体42との間に配置され、導光板30及び反射板34を下部筐体42に固定し、支持する。
The support member 48 is a rod-like member having the same cross-sectional shape perpendicular to the extending direction.
As shown in FIG. 2, the support member 48 is disposed between the reflecting plate 34 and the lower housing 42 at positions corresponding to the first light incident surface 30c side and the opposing side surface 30d side. 34 is fixed to the lower housing 42 and supported.
 なお、本実施形態では、支持部材48を独立した部材として設けたが、これに限定されず、下部筐体42、または反射板34と一体で形成してもよい。つまり、下部筐体42の一部に突起部を形成し、この突起部を支持部材48として用いても、反射板34の一部に突起部を形成し、この突起部を支持部材48として用いてもよい。 In this embodiment, the support member 48 is provided as an independent member. However, the present invention is not limited to this, and the support member 48 may be formed integrally with the lower housing 42 or the reflection plate 34. That is, even if a protrusion is formed on a part of the lower housing 42 and this protrusion is used as the support member 48, a protrusion is formed on a part of the reflector 34 and this protrusion is used as the support member 48. May be.
 また、支持部材48の形状は特に限定されず、種々の形状とすることができ、また、種々の材料で作製することもできる。例えば、支持部材48を複数設け、所定間隔ごとに配置してもよい。 Further, the shape of the support member 48 is not particularly limited, and can be various shapes, and can be made of various materials. For example, a plurality of support members 48 may be provided and arranged at predetermined intervals.
 面状照明装置10は、基本的に以上のように構成される。
 面状照明装置10は、導光板30の一方の端面に配置された光源ユニット28から出射された光が導光板30の第1光入射面30cに入射する。第1光入射面30cから入射した光は、導光板30の内部に含まれる散乱体によって散乱されつつ、導光板30内部を通過し、直接、または背面30bで反射した後、光出射面30aから出射する。このとき、背面30bから漏出した一部の光は、反射板34によって反射され再び導光板30の内部に入射する。
 このようにして、導光板30の光出射面30aから出射された光は、光学部材32を透過し、照明装置本体24の光出射面24aから出射される。
The planar lighting device 10 is basically configured as described above.
In the planar illumination device 10, light emitted from the light source unit 28 disposed on one end surface of the light guide plate 30 enters the first light incident surface 30 c of the light guide plate 30. The light incident from the first light incident surface 30c passes through the light guide plate 30 while being scattered by the scatterers included in the light guide plate 30, and directly or after being reflected by the back surface 30b, from the light output surface 30a. Exit. At this time, a part of the light leaking from the back surface 30 b is reflected by the reflection plate 34 and enters the light guide plate 30 again.
In this way, the light emitted from the light emitting surface 30 a of the light guide plate 30 passes through the optical member 32 and is emitted from the light emitting surface 24 a of the lighting device body 24.
 ここで、上記実施形態では、1つの光源ユニットを1つの光入射面に配置した片側入射としたが、これに限定はされず、2つの光源ユニットを対向する2つ光入射面に配置した両側入射であってもよい。 Here, in the above-described embodiment, one light source unit is disposed on one light incident surface, but is not limited to this. Both the two light source units are disposed on two opposing light incident surfaces. It may be incident.
 図8(A)に本発明に係る導光板を用いる面状照明装置の他の一例の概略図を示す。
 なお、図8(A)に示す面状照明装置126は、導光板30に代えて、導光板120を有し、導光板120の2つの光入射面にそれぞれ対面する2つの光源ユニット28を有する以外は、面状照明装置10と同じ構成を有するので、同じ部位には、同じ符号を付し、以下の説明は異なる部位を主に行う。また、図8(A)においては、導光板120および光源ユニット28以外の部位の図示を省略している。
FIG. 8A shows a schematic diagram of another example of a planar lighting device using a light guide plate according to the present invention.
8A includes a light guide plate 120 instead of the light guide plate 30, and has two light source units 28 facing the two light incident surfaces of the light guide plate 120, respectively. Since it has the same structure as the planar illumination device 10 except for the same parts, the same reference numerals are given to the same parts, and different parts will be mainly described below. Further, in FIG. 8A, illustration of parts other than the light guide plate 120 and the light source unit 28 is omitted.
 面状照明装置126は、導光板120と、導光板120の第1光入射面30cおよび第2光入射面120dにそれぞれ対面する2つの光源ユニット28とを有する。
 導光板120は、光出射面30aと、光出射面30aの対向する2つの長辺側に形成される2つの光入射面(第1光入射面30c、第2光入射面120d)と、光出射面30aの反対側の面である背面30bとを有する。
The planar illumination device 126 includes a light guide plate 120 and two light source units 28 facing the first light incident surface 30c and the second light incident surface 120d of the light guide plate 120, respectively.
The light guide plate 120 includes a light emitting surface 30a, two light incident surfaces (first light incident surface 30c and second light incident surface 120d) formed on the two long sides facing the light emitting surface 30a, and light. And a back surface 30b which is a surface opposite to the emission surface 30a.
 また、導光板120は、光出射面30a側の第1層122と、第1層122よりも粒子濃度が高い背面30b側の第2層124とから構成される。
 導光板120の第1層122と第2層124との境界面zは、第1光入射面30cの長手方向に垂直な断面で見た際に、光出射面30aの中央部で第2層124が最大厚さとなり、第1光入射面30cおよび第2光入射面120dに向かって、第2層124が薄くなるように滑らかに変化して最小厚さになった後、厚くなるように滑らかに変化している。
 具体的には、境界面zは、導光板120の中央部の、光出射面30aに向かって凸の曲面と、この凸の曲面に滑らかに接続され、光入射面30c、120dにそれぞれ接続する2つの凹の曲面とからなる。
The light guide plate 120 includes a first layer 122 on the light emitting surface 30 a side and a second layer 124 on the back surface 30 b side having a higher particle concentration than the first layer 122.
The boundary surface z between the first layer 122 and the second layer 124 of the light guide plate 120 is the second layer at the center of the light emitting surface 30a when viewed in a cross section perpendicular to the longitudinal direction of the first light incident surface 30c. 124 becomes the maximum thickness, and the second layer 124 smoothly changes so as to become thinner toward the first light incident surface 30c and the second light incident surface 120d. It is changing smoothly.
Specifically, the boundary surface z is smoothly connected to the convex curved surface toward the light emitting surface 30a in the center of the light guide plate 120, and connected to the light incident surfaces 30c and 120d, respectively. It consists of two concave curved surfaces.
 第2層124の厚さを、導光板の中央部で最も厚くなる極大値と、光入射面近傍で一旦、薄くなる極小値とを有するように連続的に変化させる。これにより、散乱粒子の合成粒子濃度を、第1および第2光入射面(30cおよび120d)それぞれの近傍の極小値と、導光板中央部の極大値とを有するように変化させている。
 すなわち、合成粒子濃度のプロファイルは、導光板の中央で最大となる第2極大値を持ち、その両側に、図示例では、中央から光入射面までの距離の約2/3の位置で極小値を持つように変化する曲線である。
The thickness of the second layer 124 is continuously changed so as to have a maximum value that is the thickest at the center of the light guide plate and a minimum value that is once thinned in the vicinity of the light incident surface. Thereby, the synthetic particle concentration of the scattering particles is changed so as to have a minimum value in the vicinity of each of the first and second light incident surfaces (30c and 120d) and a maximum value in the central portion of the light guide plate.
That is, the profile of the synthetic particle concentration has the second maximum value that is maximum at the center of the light guide plate, and on both sides thereof, in the illustrated example, the minimum value at a position of about 2/3 of the distance from the center to the light incident surface. It is a curve that changes to have
 このように、導光板120の第2層124の厚さを、中央部で最大とし、光入射面近傍で最小厚さとする。これにより、大型かつ薄型な導光板であっても、光入射面30c、120dから入射する光を光入射面30c、120dからより遠い位置まで届けることができ、出射光の輝度分布を中高な輝度分布とすることができる。 Thus, the thickness of the second layer 124 of the light guide plate 120 is set to the maximum at the central portion and to the minimum thickness near the light incident surface. Thereby, even if it is a large-sized and thin light-guide plate, the light which injects from the light- incidence surfaces 30c and 120d can be delivered to a position farther from the light- incidence surfaces 30c and 120d. It can be a distribution.
 また、図8(A)に示す面状照明装置126では、導光板120の第2層124の厚さを、導光板の中央部で最も厚くなる極大値と、光入射面近傍で一旦、薄くなる極小値とを有するように滑らかに変化する構成としたが、これに限定はされない。 In the planar illumination device 126 shown in FIG. 8A, the thickness of the second layer 124 of the light guide plate 120 is set to a maximum value that is the thickest at the center of the light guide plate, and once thin in the vicinity of the light incident surface. However, the present invention is not limited to this.
 図8(B)に本発明に係る導光板を用いる面状照明装置の他の一例の概略図を示す。
 図8(B)に示す面状照明装置136は、導光板120に代えて、境界面zの形状を変更した導光板130を有する以外は、面状照明装置126と同様の構成を有するので、以下の説明においては、同じ部位には同じ符号を付し、以下の説明は異なる部位を主に行う。なお、図8(B)においては、導光板130および光源ユニット28以外の部位の図示を省略している。
FIG. 8B shows a schematic diagram of another example of a planar lighting device using a light guide plate according to the present invention.
The planar illumination device 136 shown in FIG. 8B has the same configuration as the planar illumination device 126 except that it has the light guide plate 130 in which the shape of the boundary surface z is changed instead of the light guide plate 120. In the following description, the same parts are denoted by the same reference numerals, and the following description mainly deals with different parts. In FIG. 8B, illustration of parts other than the light guide plate 130 and the light source unit 28 is omitted.
 図8(B)に示す面状照明装置136の導光板130は、第1層132と、第1層132よりも粒子濃度が高い第2層134とから構成される。導光板130の第1層132と第2層134との境界面zは、光入射面の長手方向に垂直な断面で見た際に、光出射面30aの中央部で第2層134が最大厚さとなり、第1光入射面30cおよび第2光入射面120dそれぞれに向かって第2層134が薄くなるように滑らかに変化して、さらに、第1光入射面30cおよび第2光入射面120d付近で、一旦、厚くなった後、再び薄くなるように連続的に変化している。
 具体的には、境界面zは、導光板120の中央部の、光出射面30aに向かって凸の曲面と、この凸の曲面に滑らかに接続された2つの凹の曲面と、この凹の曲面とそれぞれ接続され、光入射面30c、120dの背面30b側の端部にそれぞれ接続する2つの凹の曲面とからなる。また、光入射面30c、120d上では、第2層134の厚さが0となる。
A light guide plate 130 of the planar lighting device 136 illustrated in FIG. 8B includes a first layer 132 and a second layer 134 having a particle concentration higher than that of the first layer 132. When the interface z between the first layer 132 and the second layer 134 of the light guide plate 130 is viewed in a cross section perpendicular to the longitudinal direction of the light incident surface, the second layer 134 is maximum at the center of the light emitting surface 30a. The thickness changes smoothly so that the second layer 134 becomes thinner toward the first light incident surface 30c and the second light incident surface 120d, respectively. Further, the first light incident surface 30c and the second light incident surface In the vicinity of 120d, once it becomes thick, it continuously changes so as to become thin again.
Specifically, the boundary surface z includes a curved surface convex toward the light emitting surface 30a in the center of the light guide plate 120, two concave curved surfaces smoothly connected to the convex curved surface, and the concave surface Each of the curved surfaces is connected to a curved surface, and includes two concave curved surfaces respectively connected to the end portions on the back surface 30b side of the light incident surfaces 30c and 120d. Further, the thickness of the second layer 134 is zero on the light incident surfaces 30c and 120d.
 このように、第1層132よりも散乱粒子の粒子濃度が高い第2層134の厚さを、光入射面近傍で一旦、厚くなる第1極大値と、導光板中央部で最も厚くなる第2極大値とを有するように連続的に変化させる。これにより、散乱粒子の合成粒子濃度を、第1および第2光入射面(30cおよび120d)それぞれの近傍の第1極大値と、導光板中央部の、第1極大値よりも大きい第2極大値とを有するように変化させている。
 すなわち、合成粒子濃度のプロファイルは、導光板30の中央で最大となる第2極大値を持ち、その両側に、図示例では、中央から光入射面(30cおよび120d)までの距離の約2/3の位置で極小値を持ち、さらに極小値よりも光入射面側に第1極大値を持つように変化する曲線である。
Thus, the thickness of the second layer 134 having a higher particle concentration of scattering particles than that of the first layer 132 is set to a first maximum value that is once thickened in the vicinity of the light incident surface, and a thickness that is thickest at the center of the light guide plate. It is continuously changed so as to have two maximum values. As a result, the composite particle concentration of the scattering particles has a first maximum value in the vicinity of each of the first and second light incident surfaces (30c and 120d) and a second maximum value larger than the first maximum value at the center of the light guide plate. Value to be changed.
That is, the profile of the synthetic particle concentration has a second maximum value that is maximum at the center of the light guide plate 30, and on both sides thereof, in the illustrated example, about 2 / of the distance from the center to the light incident surface (30 c and 120 d). 3 is a curve that has a minimum value at a position 3 and changes to have a first maximum value on the light incident surface side of the minimum value.
 ここで、第2層134の厚さ(合成粒子濃度)の第1極大値の位置は、上部筺体44の開口部44aの境界の位置近傍に配置される(図示せず)。上部筐体44の開口部44aを形成する額縁部分に覆われる領域は、面状照明装置10としての光の出射には寄与しない。
 つまり、光入射面30c、120dから第1極大値までの領域は、光入射面から入射した光を拡散するための、いわゆるミキシングゾーンMである。
Here, the position of the first maximum value of the thickness (synthetic particle concentration) of the second layer 134 is disposed in the vicinity of the position of the boundary of the opening 44a of the upper housing 44 (not shown). The area covered by the frame portion forming the opening 44 a of the upper housing 44 does not contribute to the emission of light as the planar lighting device 10.
That is, the region from the light incident surfaces 30c and 120d to the first maximum value is a so-called mixing zone M for diffusing the light incident from the light incident surface.
 このように、光入射面30c、120d近傍に、合成粒子濃度の第1極大値を配置する。これにより、光入射面30c、120dから入射した光を、光入射面近傍で十分に拡散し、光入射面近傍から出射される出射光に、光源の配置間隔等に起因する輝線(暗線、ムラ)が視認されることを防止することができる。
 また、合成粒子濃度の第1極大値となる位置よりも光入射面30c、120d側の領域を、第1極大値よりも低い合成粒子濃度とする。これにより、入射した光が光入射面から出射される戻り光や、筺体に覆われていて利用されない光入射面付近の領域(ミキシングゾーンM)からの出射光を低減し、光出射面の有効な領域(有効画面エリアE)から出射する光の利用効率を向上させることができる。
Thus, the first maximum value of the synthetic particle concentration is arranged in the vicinity of the light incident surfaces 30c and 120d. As a result, the light incident from the light incident surfaces 30c and 120d is sufficiently diffused in the vicinity of the light incident surface, and the emitted light emitted from the vicinity of the light incident surface is irradiated with bright lines (dark lines, unevenness due to the arrangement interval of the light sources). ) Can be prevented from being visually recognized.
Further, the region on the light incident surface 30c, 120d side from the position where the first maximum value of the synthetic particle concentration is set to a synthetic particle concentration lower than the first maximum value. This reduces the return light from which the incident light is emitted from the light incident surface and the light emitted from the region near the light incident surface that is not used because it is covered by the housing (mixing zone M), thereby improving the effectiveness of the light emission surface. Utilization efficiency of light emitted from a large area (effective screen area E) can be improved.
 また、図8(B)に示す面状照明装置136の導光板130においては、光入射面(30c、120d)から第1極大値までの境界面zの形状(ミキシングゾーンでの境界面の形状)は、光出射面30aに向かって凹の曲面としたが、これに限定はされず、光入射面の背面30b側の端部に接続する、光出射面に向かって凸の曲面であってもよい。また、光入射面の背面30b側の端部と第1極大値とを結ぶ平面であってもよい。あるいは、光入射面から第1極大値までの間は、第2層134は形成されず、全て第1層132であってもよい。 In the light guide plate 130 of the planar illumination device 136 shown in FIG. 8B, the shape of the boundary surface z from the light incident surface (30c, 120d) to the first maximum value (the shape of the boundary surface in the mixing zone). ) Is a curved surface that is concave toward the light exit surface 30a, but is not limited to this, and is a curved surface that is convex toward the light exit surface, connected to the end of the light incident surface on the back surface 30b side. Also good. Moreover, the plane which connects the edge part by the side of the back surface 30b of a light-incidence surface, and a 1st maximum value may be sufficient. Alternatively, the second layer 134 may not be formed between the light incident surface and the first maximum value, and may all be the first layer 132.
 なお、2つの光源ユニットを配置する両側入射は、片側入射と比較して、光量を増加させやすい。一方、片側入射は、光源ユニットの数を減らすことで部品点数を削減し、コストダウンできる。 It should be noted that bilateral incidence in which two light source units are arranged tends to increase the amount of light compared to single side incidence. On the other hand, the one-side incidence can reduce the number of parts by reducing the number of light source units, thereby reducing the cost.
 また、本発明の導光板を用いる面状照明装置は、これにも限定はされず、2つの光源ユニットに加えて、導光板の光出射面の短辺側の側面にも対向して光源ユニットを配置してもよい。光源ユニットの数を増やすことで、装置が出射する光の強度を高くすることができる。
 また、光出射面のみならず背面側から光を出射してもよい。
Further, the planar illumination device using the light guide plate of the present invention is not limited to this, and in addition to the two light source units, the light source unit faces the side surface on the short side of the light emitting surface of the light guide plate. May be arranged. Increasing the number of light source units can increase the intensity of light emitted from the device.
Further, light may be emitted not only from the light exit surface but also from the back side.
 また、本発明の導光板は、散乱粒子の粒子濃度が異なる2つの層からなるものとしたが、これにも限定はされず、散乱粒子の粒子濃度が異なる3つ以上の層からなる構成としてもよい。 In addition, the light guide plate of the present invention is composed of two layers having different particle concentrations of scattering particles, but is not limited thereto, and has a configuration of three or more layers having different particle concentrations of scattering particles. Also good.
 次に、本発明の導光板の製造方法について、図9を参照して詳しく説明する。
 本発明の導光板の製造方法は、射出成形(2色成型)によって、粒子濃度が異なる2層からなる導光板を製造するものである。
Next, the manufacturing method of the light-guide plate of this invention is demonstrated in detail with reference to FIG.
The light guide plate manufacturing method of the present invention manufactures a light guide plate having two layers having different particle concentrations by injection molding (two-color molding).
 まず、導光板30の射出成形に用いる成形金型について説明する。
 なお、本発明の製造方法を実施する射出成形装置において、成形金型以外の構成は、種々の公知の射出成形装置の構成を用いることができる。
First, a molding die used for injection molding of the light guide plate 30 will be described.
In addition, in the injection molding apparatus which implements the manufacturing method of the present invention, various known injection molding apparatus configurations can be used as the configuration other than the molding die.
 図9は、導光板30を射出成型するための成形金型200を概念的に表した図であり、図10(A)~(D)は、成形金型200を用いて実施する本発明の製造方法を説明するための概略図である。
 図9に示す成形金型200は、第1層60と第2層62とからなる2層の導光板30を成形するための金型である。成形金型200は、1面が開放された略直方体の箱型形状の下部金型202と、下部金型202の開放面を覆う板状の上部金型204と、上部金型204の下部金型202と対面する面に設置される入れ子206とを有する。また、成形金型200は、下部金型202と上部金型204(入れ子206)との間に射出成形のための空間(キャビティ)を形成する。
FIG. 9 is a diagram conceptually showing a molding die 200 for injection molding the light guide plate 30. FIGS. 10A to 10D are views of the present invention implemented using the molding die 200. FIG. It is the schematic for demonstrating a manufacturing method.
A molding die 200 shown in FIG. 9 is a die for molding a two-layer light guide plate 30 including a first layer 60 and a second layer 62. The molding die 200 has a substantially rectangular parallelepiped box-shaped lower die 202 whose one surface is open, a plate-like upper die 204 that covers the open surface of the lower die 202, and a lower die of the upper die 204. It has the nest | insert 206 installed in the surface facing the type | mold 202. FIG. The molding die 200 forms a space (cavity) for injection molding between the lower die 202 and the upper die 204 (the insert 206).
 下部筐体202は、略直方体の箱型形状である。また、下部筐体202は、その側面の、入れ子206よりも下側には、入れ子206が設置されたキャビティ内に導光板30(第2層62)の材料(第2層62の材料を材料Aとする)を注入するための貫通孔(ゲート)202a、202bがそれぞれ形成されている。また、下部筐体202の側面の、入れ子206の位置には、入れ子206が設置されないキャビティ内(図9(C)参照)に導光板30(第1層60)の材料(第1層60の材料を材料Bとする)を注入するための貫通孔(ゲート)202c、202dがそれぞれ形成されている。
 なお、貫通孔202c、202dの断面形状は、光入射面の長手方向に対応して細長い矩形状であってもよいし、円形の貫通孔を複数有する構成であってもよい。
 上部筐体204は、下部金型202の開放面を覆う矩形の板状の部材である。
The lower housing 202 has a substantially rectangular parallelepiped box shape. The lower casing 202 has a material of the light guide plate 30 (second layer 62) (the material of the second layer 62 is used as a material in a cavity where the insert 206 is installed on the side of the lower housing 202 below the insert 206. Through holes (gates) 202a and 202b for injecting A) are formed. Further, at the position of the nest 206 on the side surface of the lower housing 202, the material (the first layer 60) of the light guide plate 30 (first layer 60) is placed in the cavity where the nest 206 is not installed (see FIG. 9C). Through holes (gates) 202c and 202d for injecting a material (material B) are formed.
The cross-sectional shape of the through holes 202c and 202d may be a long and narrow rectangular shape corresponding to the longitudinal direction of the light incident surface, or may have a configuration having a plurality of circular through holes.
The upper housing 204 is a rectangular plate-like member that covers the open surface of the lower mold 202.
 入れ子206は、上部金型204の下部金型202に対面する面に固定され、下部金型202と上部金型204とを閉じてキャビティを形成した際に、キャビティ内に配置される。
 入れ子206は、製造する導光板30の第1層60と同一形状を有し、上部金型204に対面する面は、下部金型202の開放面と同じ大きさを有する。すなわち、上部金型204側の面である上面は平面であり、下部金型202側の面である下面206aは、入れ子206の厚さが、導光板30の光入射面30cに対応する側面から、対向する側面に向かうに従って、一旦、厚くなった後、薄くなり、再度厚くなるように滑らかに変化するように、曲面に形成されている。具体的には、下面206aは、下部金型202に向かって凸の曲面と凹の曲面とが滑らかに接続されて形成されている。
The insert 206 is fixed to a surface of the upper mold 204 facing the lower mold 202, and is disposed in the cavity when the lower mold 202 and the upper mold 204 are closed to form a cavity.
The insert 206 has the same shape as the first layer 60 of the light guide plate 30 to be manufactured, and the surface facing the upper mold 204 has the same size as the open surface of the lower mold 202. That is, the upper surface that is the surface on the upper mold 204 side is a flat surface, and the lower surface 206a that is the surface on the lower mold 202 side is that the thickness of the insert 206 is from the side surface corresponding to the light incident surface 30c of the light guide plate 30. The surface is formed in a curved surface so as to change smoothly so as to become thicker again after becoming thicker as it goes to the opposite side surface. Specifically, the lower surface 206 a is formed by smoothly connecting a convex curved surface and a concave curved surface toward the lower mold 202.
 また、入れ子は、第2層62を形成する際に、金型内に配置され、その後、第1層60を形成する際には、除去されるものである。
 図10(A)および(C)は、導光板30を射出成型するための成形金型200の2つの状態(200a、200b)を概念的に表した図である。
 図10(A)に示す成形金型200aは、第2層62を成形する際の金型の状態で、下部金型202と入れ子206との間に射出成形のための空間(キャビティ)を形成する。この成形金型200aのキャビティ内に第2層62の材料Aを注入することにより、第2層62を成形する。
Further, the nest is disposed in the mold when the second layer 62 is formed, and then removed when the first layer 60 is formed.
10A and 10C are diagrams conceptually showing two states (200a, 200b) of the molding die 200 for injection molding the light guide plate 30. FIG.
In the molding die 200a shown in FIG. 10A, a space (cavity) for injection molding is formed between the lower die 202 and the insert 206 in the state of the die when the second layer 62 is molded. To do. The second layer 62 is molded by injecting the material A of the second layer 62 into the cavity of the molding die 200a.
 一方、図10(C)に示す成形金型200bは、第1層60を成形する際の金型の状態で、入れ子206は、下部筐体202と上部筐体204との間から除去されている。
 入れ子206を除去して、成形金型200bのキャビティ内に第2層62を残した状態で、第1層60の材料Bを注入することにより、第1層60を成形して、導光板30を製造する。
On the other hand, the molding die 200b shown in FIG. 10C is in a state where the first layer 60 is molded, and the nest 206 is removed from between the lower casing 202 and the upper casing 204. Yes.
The first layer 60 is molded by injecting the material B of the first layer 60 in a state where the insert 206 is removed and the second layer 62 is left in the cavity of the molding die 200 b, and the light guide plate 30. Manufacturing.
 なお、第1層60の材料Aおよび第2層の材料Bは、それぞれ、所定濃度の散乱粒子を混錬分散させた透明樹脂を溶融させたものである。
 また、前述のとおり、第1層60と第2層62とは、粒子濃度が異なるのみで、同じ透明樹脂に同じ散乱粒子を分散させた構成である。すなわち、材料Aと材料Bとは、混錬分散された散乱粒子の粒子濃度が異なるのみの同じ透明樹脂を溶融させたものである。
The material A of the first layer 60 and the material B of the second layer are obtained by melting a transparent resin in which scattering particles having a predetermined concentration are kneaded and dispersed.
Further, as described above, the first layer 60 and the second layer 62 have a configuration in which the same scattering particles are dispersed in the same transparent resin only in the particle concentration. That is, the material A and the material B are obtained by melting the same transparent resin only having different particle concentrations of the kneaded and dispersed scattering particles.
 ここで、入れ子206の、下面206aを含む表面の粗さRaは、25~125μmの範囲を満たすように形成される。 Here, the roughness Ra of the surface including the lower surface 206a of the insert 206 is formed to satisfy the range of 25 to 125 μm.
 通常、射出成形のための金型は、精密研磨によって作製するため、非常に高価になる。そのため、室内等の照明装置用の導光板のように多品種少量生産が求められる場合に、それぞれの導光板に対応する金型を作製すると、コストが高くなるという問題があった。 Usually, a mold for injection molding is manufactured by precision polishing, so it becomes very expensive. For this reason, there is a problem in that when a variety of small-quantity production is required, such as a light guide plate for an illumination device in a room or the like, if a mold corresponding to each light guide plate is manufactured, the cost increases.
 これに対して、入れ子206の下面206aの表面粗さRaを25μm以上とすることにより、入れ子206を切削加工や粗仕上げのみ等によって安価に製造することができる。従って、室内等の照明装置用の導光板のように多品種少量生産が求められる場合であっても、それぞれの導光板に対応する入れ子206を安価に製作することができ、コストを低減することができる。
 また、入れ子206の下面206aの表面粗さRaを125μmより大きくすると、導光板30の第1層60と第2層62との境界面zの界面粗さが粗くなり、光の利用効率の低下や、出射光の均一性等が損なわれ、輝度むらが生じる、外観品質の低下という問題が発生する。したがって、入れ子206の下面206aの表面粗さRaを125μm以下とすることにより、製造した導光板30の光利用効率の低下や、出射光の輝度むら、等の問題を防止することができる。
On the other hand, when the surface roughness Ra of the lower surface 206a of the insert 206 is 25 μm or more, the insert 206 can be manufactured at low cost only by cutting or rough finishing. Therefore, even when a large variety of small-quantity production is required, such as a light guide plate for an illumination device in a room or the like, the insert 206 corresponding to each light guide plate can be manufactured at low cost, and the cost can be reduced. Can do.
Further, when the surface roughness Ra of the lower surface 206a of the insert 206 is larger than 125 μm, the interface roughness of the boundary surface z between the first layer 60 and the second layer 62 of the light guide plate 30 becomes rough, and the light use efficiency decreases. In addition, the uniformity of the emitted light is impaired, luminance unevenness occurs, and the appearance quality deteriorates. Therefore, by setting the surface roughness Ra of the lower surface 206a of the insert 206 to 125 μm or less, problems such as a decrease in light use efficiency of the manufactured light guide plate 30 and uneven brightness of emitted light can be prevented.
 また、下部金型202および上部金型204は共通として、入れ子206を交換することで、種々の2層形状の導光板30を製造することができ、成形金型の作製コストを低減することができる。
 さらに、成形金型200のキャビティ内に、キャビティの一部を埋める入れ子を配置して、キャビティの大きさよりも小さい導光板30を製造してもよい。これにより、さらに成形金型の作製コストを低減することができる。
In addition, by sharing the lower mold 202 and the upper mold 204, the light guide plate 30 having various two-layer shapes can be manufactured by exchanging the insert 206, and the manufacturing cost of the molding mold can be reduced. it can.
Further, a light guide plate 30 smaller than the size of the cavity may be manufactured by arranging a nest for filling a part of the cavity in the cavity of the molding die 200. Thereby, the production cost of the molding die can be further reduced.
 また、入れ子206の表面は、階段状、鋸刃状、あるいは、波状の粗面であることが好ましい。
 入れ子206を階段状の粗面とすることにより、入れ子206をフライス切削の加工で作製することができる。また、入れ子206を鋸刃状の粗面とすることにより、入れ子206をドリル切削の加工で作製することができる。また、入れ子206を波状の粗面とすることで、入れ子206をボールエンドミル加工で作製することができる。
 これらにより、入れ子206の作製コストを低減することができる。
The surface of the nest 206 is preferably a stepped, saw-toothed or wavy rough surface.
By making the nest 206 into a stepped rough surface, the nest 206 can be manufactured by milling. Further, by making the nest 206 into a saw-toothed rough surface, the nest 206 can be produced by drill cutting. Moreover, the nest | insert 206 can be produced by a ball end mill process by making the nest | insert 206 into a wavy rough surface.
Thus, the manufacturing cost of the nest 206 can be reduced.
 次に、本発明の導光板の製造方法について、図10(A)~(D)を用いて詳しく説明する。
 図10(A)に示すように、上部金型204に入れ子206を固定した状態で、上部金型204と下部金型202を閉じてキャビティを形成する。形成したキャビティ内に、貫通孔202a、202bから、第2層62の材料Aを注入する。
Next, the manufacturing method of the light guide plate of the present invention will be described in detail with reference to FIGS. 10 (A) to (D).
As shown in FIG. 10A, in a state where the insert 206 is fixed to the upper mold 204, the upper mold 204 and the lower mold 202 are closed to form a cavity. The material A of the second layer 62 is injected from the through holes 202a and 202b into the formed cavity.
 注入した材料Aが硬化して第2層62が形成されると、キャビティが開放され(図10(B))、入れ子206が上部金型204から取り外される。
 ここで、入れ子206の下面206aは、表面粗さRaが25~125μmの範囲に形成されている。従って、形成された第2層62の上面側(境界面zとなる面)は、表面粗さRaが25~125μmの範囲に形成される。
When the injected material A is cured to form the second layer 62, the cavity is opened (FIG. 10B), and the insert 206 is removed from the upper mold 204.
Here, the lower surface 206a of the insert 206 is formed with a surface roughness Ra in the range of 25 to 125 μm. Accordingly, the upper surface side (surface serving as the boundary surface z) of the formed second layer 62 is formed with a surface roughness Ra in the range of 25 to 125 μm.
 図10(C)に示すように、入れ子206を取り外した後に、下部金型202内に形成された第2層62を残した状態で、上部金型204と下部金型202とを閉じてキャビティを形成する。形成したキャビティ内に、貫通孔202c、202dから、第1層60の材料Bを注入する。
 ここで、先に形成された第2層62の上面側は、表面粗さRaが25~125μmの範囲に形成されている。従って、第1層60と第2層62の境界面の界面粗さRaは、25~125μmの範囲に形成される。
As shown in FIG. 10C, after the insert 206 is removed, the upper mold 204 and the lower mold 202 are closed with the second layer 62 formed in the lower mold 202 left, and the cavity is closed. Form. The material B of the first layer 60 is injected into the formed cavity from the through holes 202c and 202d.
Here, on the upper surface side of the second layer 62 formed in advance, the surface roughness Ra is formed in the range of 25 to 125 μm. Accordingly, the interface roughness Ra of the interface between the first layer 60 and the second layer 62 is formed in the range of 25 to 125 μm.
 注入した材料Bが硬化して第1層60が形成されると、キャビティが開放され(図10(D))、2層に形成された導光板30が取り出される。 When the injected material B is cured to form the first layer 60, the cavity is opened (FIG. 10D), and the light guide plate 30 formed in two layers is taken out.
 このように、第2層と接する下面206aの表面粗さRaが25~125μmである入れ子206が設置されたキャビティ内に、材料を注入して射出成形にて第2層を形成した後に、入れ子を除去して、射出成形にて第1層を形成する。これにより、入れ子を切削加工、粗研磨等で安価に作製することができるので、導光板の多品種少量生産を行う場合に、それぞれの導光板に対応する入れ子206を安価に製作することができ、コストを低減することができる。
 また、下部金型202および上部金型204は共通として、入れ子206を交換することができる。従って、種々の2層形状の導光板30を製造することができ、成形金型の作製コストを低減することができる。
In this way, after the material is injected into the cavity in which the insert 206 whose surface roughness Ra of the lower surface 206a in contact with the second layer is 25 to 125 μm is installed and the second layer is formed by injection molding, the insert is formed. The first layer is formed by injection molding. Accordingly, the inserts can be manufactured at low cost by cutting, rough polishing, etc., and therefore, the inserts 206 corresponding to the respective light guide plates can be manufactured at a low cost when a large variety of light guide plates are produced. Cost can be reduced.
Further, the lower mold 202 and the upper mold 204 are common, and the insert 206 can be exchanged. Therefore, various two-layer light guide plates 30 can be manufactured, and the manufacturing cost of the molding die can be reduced.
 また、第1層60と第2層62とを別々に成形するので、第1層60と第2層62とで異なる母材を用いる場合であっても、容易に製造することができる。 Moreover, since the first layer 60 and the second layer 62 are separately formed, even when different base materials are used for the first layer 60 and the second layer 62, they can be easily manufactured.
 以上、本発明の導光板および導光板の製造方法について詳細に説明したが、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよい。 As described above, the light guide plate and the method for manufacturing the light guide plate of the present invention have been described in detail. However, the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the gist of the present invention. May be performed.
  10、126、136  面状照明装置
  24  照明装置本体
  24a、30a 光出射面
  26  筐体
  28  光源ユニット
  30、100、110、120、130 導光板
  30b 背面
  30c 第1光入射面
  30d 対向側面
  32  光学部材ユニット
  32a、32c 拡散シート
  32b プリズムシート
  34  反射板
  36  上部誘導反射板
  38  下部誘導反射板
  42  下部筐体
  44  上部筐体
  46  折返部材
  48  支持部材
  49  電源収納部
  50  LEDチップ
  52  光源支持部
  58  発光面
  60、102、112、122、132 第1層
  62、104、114、124、134 第2層
 120d 第2光入射面
 200a、200b 成形金型
 202  下部金型
 202a、202b、202c、202d 貫通孔
 204  上部金型
 206  入れ子
 206a 下面
   α  2等分線
   z  境界面
DESCRIPTION OF SYMBOLS 10, 126, 136 Planar illuminating device 24 Illuminating device main body 24a, 30a Light emission surface 26 Case 28 Light source unit 30, 100, 110, 120, 130 Light guide plate 30b Back surface 30c 1st light incident surface 30d Opposite side surface 32 Optical member Units 32a and 32c Diffusion sheet 32b Prism sheet 34 Reflector plate 36 Upper guide reflector 38 Lower guide reflector 42 Lower housing 44 Upper housing 46 Folding member 48 Support member 49 Power supply housing 50 LED chip 52 Light source support 58 Light emitting surface 60, 102, 112, 122, 132 First layer 62, 104, 114, 124, 134 Second layer 120d Second light incident surface 200a, 200b Molding mold 202 Lower mold 202a, 202b, 202c, 202d Through hole 204 Upper mold 206 Nested 206a Lower surface α bisector z Boundary surface

Claims (18)

  1.  矩形状の光出射面と、前記光出射面の端辺側に設けられ、前記光出射面に略平行な方向に進行する光を入射する少なくとも1つの光入射面と、前記光出射面とは反対側の背面と、内部に分散される散乱粒子とを有し、前記光出射面に垂直な方向に重なる、前記光出射面側に配置される第1層と、前記背面側に配置され前記第1層よりも前記散乱粒子の粒子濃度が高い第2層との2つの層からなり、前記少なくとも1つの光入射面に垂直な方向において、前記2つの層の、前記光出射面に略垂直な方向の厚さがそれぞれ変化して合成粒子濃度が変化する導光板の製造方法であって、
     前記第1層と略同形状で、前記第2層と接する面の表面粗さRaが25~125μmである入れ子が設置された金型内に、前記第2層の材料を射出して前記第2層を射出成形にて形成する第2層形成工程と、
     前記第2層形成工程の後に、前記入れ子を除去して、形成された前記第2層を前記金型内に残した状態で、前記金型内に前記第1層の材料を射出して前記第1層を射出成形にて形成して、前記導光板を形成する第1層形成工程とを有することを特徴とする導光板の製造方法。
    A light emitting surface having a rectangular shape, at least one light incident surface that is provided on an end side of the light emitting surface and that travels in a direction substantially parallel to the light emitting surface, and the light emitting surface A first layer disposed on the light exit surface side, having a back surface on the opposite side and scattering particles dispersed therein, and overlapping in a direction perpendicular to the light exit surface; It consists of two layers, the second layer having a higher particle concentration of the scattering particles than the first layer, and is substantially perpendicular to the light exit surface of the two layers in a direction perpendicular to the at least one light entrance surface. A method of manufacturing a light guide plate in which the thickness of each direction changes and the synthetic particle concentration changes,
    The material of the second layer is injected into a mold in which a nest with a surface roughness Ra of 25 to 125 μm is provided, which is substantially the same shape as the first layer and has a surface roughness Ra of 25 to 125 μm. A second layer forming step of forming two layers by injection molding;
    After the second layer forming step, the material of the first layer is injected into the mold by removing the nest and leaving the formed second layer in the mold. A method of manufacturing a light guide plate, comprising: forming a first layer by injection molding, and forming a first layer of the light guide plate.
  2.  前記入れ子は、切削加工で作製されたものである請求項1に記載の導光板の製造方法。 The method for manufacturing a light guide plate according to claim 1, wherein the insert is manufactured by cutting.
  3.  前記第1層の材料の母材は、前記第2層の材料の母材とは屈折率が異なる材料である請求項1または2に記載の導光板の製造方法。 3. The light guide plate manufacturing method according to claim 1, wherein the base material of the first layer material is a material having a refractive index different from that of the base material of the second layer material.
  4.  矩形状の光出射面と、前記光出射面の端辺側に設けられ、前記光出射面に略平行な方向に進行する光を入射する少なくとも1つの光入射面と、前記光出射面とは反対側の背面と、内部に分散される散乱粒子とを有する導光板であって、
     前記光出射面に垂直な方向に重なる、前記光出射面側に配置される第1層と、前記背面側に配置され前記第1層よりも前記散乱粒子の粒子濃度が高い第2層との2つの層からなり、
     前記少なくとも1つの光入射面に垂直な方向において、前記2つの層の、前記光出射面に略垂直な方向の厚さがそれぞれ変化して合成粒子濃度が変化し、
     前記第1層と前記第2層との境界面の界面粗さRaが25~125μmであることを特徴とする導光板。
    The light emitting surface having a rectangular shape, at least one light incident surface that is provided on the edge side of the light emitting surface and that enters light traveling in a direction substantially parallel to the light emitting surface, and the light emitting surface A light guide plate having a back surface on the opposite side and scattering particles dispersed therein,
    A first layer disposed on the light emitting surface side and overlapping in a direction perpendicular to the light emitting surface; and a second layer disposed on the back surface side and having a higher particle concentration of the scattering particles than the first layer. It consists of two layers
    In the direction perpendicular to the at least one light incident surface, the thicknesses of the two layers in the direction substantially perpendicular to the light exit surface are respectively changed to change the synthetic particle concentration,
    A light guide plate, wherein an interface roughness Ra of an interface between the first layer and the second layer is 25 to 125 μm.
  5.  前記第1層と前記第2層との境界面が、階段状、鋸刃状、および、波状のいずれかの状態に形成された粗面である請求項4に記載の導光板。 The light guide plate according to claim 4, wherein a boundary surface between the first layer and the second layer is a rough surface formed in any one of a stepped shape, a saw blade shape, and a wave shape.
  6.  前記第1層の母材は、前記第2層の母材とは屈折率が異なる材料である請求項4または5に記載の導光板。 The light guide plate according to claim 4 or 5, wherein the base material of the first layer is a material having a refractive index different from that of the base material of the second layer.
  7.  前記散乱粒子が、多分散粒子である請求項4~6のいずれか1項に記載の導光板。 The light guide plate according to any one of claims 4 to 6, wherein the scattering particles are polydisperse particles.
  8.  前記散乱粒子が、平均粒径の異なる2つの多分散の粒子群を混合したものである請求項4~7のいずれか1項に記載の導光板。 The light guide plate according to any one of claims 4 to 7, wherein the scattering particles are a mixture of two polydisperse particle groups having different average particle diameters.
  9.  前記第1層に含まれる散乱粒子と、前記第2層に含まれる散乱粒子とは、粒度分布が異なる請求項4~8のいずれか1項に記載の導光板。 The light guide plate according to any one of claims 4 to 8, wherein the scattering particles contained in the first layer and the scattering particles contained in the second layer have different particle size distributions.
  10.  前記少なくとも1つの光入射面が、前記光出射面の1つの端辺に設けられる1つの光入射面であり、前記第2層が、前記光入射面に垂直な方向において前記光入射面から離間するに従って、薄くなって最小厚さとなった後、厚くなり最大厚さとなった後、再び、薄くなるように滑らかに変化している請求項4~9のいずれか1項に記載の導光板。 The at least one light incident surface is one light incident surface provided at one end of the light emitting surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. The light guide plate according to any one of claims 4 to 9, wherein the light guide plate is smoothly changed so as to become thin again after being thinned and having a minimum thickness, and after being thickened and have a maximum thickness.
  11.  前記少なくとも1つの光入射面が、前記光出射面の1つの端辺に設けられる1つの光入射面であり、前記第2層が、前記光入射面に垂直な方向において前記光入射面から離間するに従って、薄くなって最小厚さとなった後、厚くなり最大厚さで一定となるように滑らかに変化している請求項4~9のいずれか1項に記載の導光板。 The at least one light incident surface is one light incident surface provided at one end of the light emitting surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. The light guide plate according to any one of claims 4 to 9, wherein the light guide plate is smoothly changed so as to become thicker and constant at the maximum thickness after being thinned to the minimum thickness.
  12.  前記少なくとも1つの光入射面が、前記光出射面の1つの端辺に設けられる1つの光入射面であり、前記第2層が、前記光入射面に垂直な方向において前記光入射面から離間するに従って、一旦、厚くなった後、薄くなり、再び、厚くなって最大厚さとなった後、薄くなるように連続的に変化している請求項4~9のいずれか1項に記載の導光板。 The at least one light incident surface is one light incident surface provided at one end of the light emitting surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. The guide according to any one of claims 4 to 9, wherein the thickness is once changed after being thickened, and then continuously changed so as to become thin after being thickened again to the maximum thickness. Light board.
  13.  前記少なくとも1つの光入射面が、前記光出射面の1つの端辺に設けられる1つの光入射面であり、前記第2層が、前記光入射面に垂直な方向において前記光入射面から離間するに従って、一旦、厚くなった後、薄くなり、再び、厚くなって最大厚さで一定となるように連続的に変化している請求項4~9のいずれか1項に記載の導光板。 The at least one light incident surface is one light incident surface provided at one end of the light emitting surface, and the second layer is separated from the light incident surface in a direction perpendicular to the light incident surface. The light guide plate according to any one of claims 4 to 9, wherein the light guide plate is continuously changed so as to be once thickened, then thinned, and again thickened to be constant at the maximum thickness.
  14.  前記光入射面に垂直な方向において、前記第1層と前記第2層との境界面が、前記光出射面に向かって凹の曲面と、この凹の曲面に滑らかに接続される、前記光出射面に向かって凸の曲面とからなる領域を有する請求項10~13のいずれか1項に記載の導光板。 In the direction perpendicular to the light incident surface, a boundary surface between the first layer and the second layer is smoothly connected to the concave curved surface toward the light emitting surface and the concave curved surface. The light guide plate according to any one of claims 10 to 13, wherein the light guide plate has a region formed of a curved surface convex toward the emission surface.
  15.  前記少なくとも1つの光入射面が、前記光出射面の対向する2つの端辺側に設けられた2つの光入射面であり、前記第2層が、前記光入射面に垂直な方向において、中央部で最大厚さとなり、中央部から2つの前記光入射面それぞれに向かうに従って、薄くなって最小厚さとなった後、厚くなるように滑らかに変化している請求項4~9のいずれか1項に記載の導光板。 The at least one light incident surface is two light incident surfaces provided on two opposite sides of the light emitting surface, and the second layer is centered in a direction perpendicular to the light incident surface. 10. The maximum thickness at the portion, and as it goes from the central portion toward each of the two light incident surfaces, the thickness is reduced to the minimum thickness, and then smoothly changes to become thicker. The light guide plate according to item.
  16.  前記少なくとも1つの光入射面が、前記光出射面の対向する2つの端辺側に設けられた2つの光入射面であり、前記第2層が、前記光入射面に垂直な方向において、中央部で最大厚さとなり、中央部から2つの前記光入射面それぞれに向かうに従って、薄くなった後、厚くなるように滑らかに変化した後、薄くなる請求項4~9のいずれか1項に記載の導光板。 The at least one light incident surface is two light incident surfaces provided on two opposite sides of the light emitting surface, and the second layer is centered in a direction perpendicular to the light incident surface. The thin film according to any one of claims 4 to 9, wherein the thickness becomes maximum at a portion, and after becoming thinner and smoothly changing to become thicker as it goes from the central portion toward each of the two light incident surfaces. Light guide plate.
  17.  前記第1層と前記第2層との境界面が、2つの前記光入射面それぞれの側の、前記光出射面に向かって凹の曲面と、この2つの凹の曲面の間で、2つの曲面に滑らかに接続される、前記光出射面に向かって凸の曲面とからなる領域を有する請求項15または16に記載の導光板。 The boundary surface between the first layer and the second layer has a curved surface that is concave toward the light exit surface on each of the two light incident surfaces, and two curved surfaces between the two concave curved surfaces. The light guide plate according to claim 15 or 16, wherein the light guide plate has a region that is smoothly connected to a curved surface and includes a curved surface convex toward the light exit surface.
  18.  前記第1層の粒子濃度をNpoとし、前記第2層の粒子濃度をNprとすると、0wt%≦Npo<0.15wt%、Npo<Npr≦0.8wt%を満たす請求項4~17のいずれか1項に記載の導光板。 18. Any one of claims 4 to 17, wherein the particle concentration of the first layer is Npo and the particle concentration of the second layer is Npr, and satisfies 0 wt% ≦ Npo <0.15 wt% and Npo <Npr ≦ 0.8 wt%. The light guide plate according to claim 1.
PCT/JP2013/060745 2012-05-11 2013-04-09 Light-guiding plate and manufacturing method of light-guiding plate WO2013168506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012109469A JP2013239246A (en) 2012-05-11 2012-05-11 Light guide plate and manufacturing method of the same
JP2012-109469 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013168506A1 true WO2013168506A1 (en) 2013-11-14

Family

ID=49550559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060745 WO2013168506A1 (en) 2012-05-11 2013-04-09 Light-guiding plate and manufacturing method of light-guiding plate

Country Status (2)

Country Link
JP (1) JP2013239246A (en)
WO (1) WO2013168506A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868119A (en) * 2018-03-30 2020-10-30 日本瑞翁株式会社 Hollow resin particles and sheet
CN112051637A (en) * 2019-06-05 2020-12-08 元太科技工业股份有限公司 Cover plate structure and display device
US11042070B2 (en) * 2019-06-05 2021-06-22 E Ink Holdings Inc. Cover plate structure and display apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230081059A (en) * 2021-11-30 2023-06-07 코닝 인코포레이티드 A light guide plate, a lighting apparatus including the same, and a method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014938A (en) * 2001-04-12 2003-01-15 Mitsubishi Engineering Plastics Corp Light transmission plate composed of transparent resin, method for molding the same, bushing, metallic mold assembling body and surface light source device
JP2005258023A (en) * 2004-03-11 2005-09-22 Mitsubishi Electric Corp Light source apparatus and liquid crystal display device provided with same
JP2009224253A (en) * 2008-03-18 2009-10-01 Seiko Epson Corp Light guide, display device, and method of molding light guide
JP2011503771A (en) * 2007-07-05 2011-01-27 カナデ,ウダヤン Light source with variable thickness
JP2012058480A (en) * 2010-09-08 2012-03-22 Fujifilm Corp Light guide plate, planar lighting device and liquid crystal display
WO2012049952A1 (en) * 2010-10-12 2012-04-19 富士フイルム株式会社 Light guiding plate and planar lighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014938A (en) * 2001-04-12 2003-01-15 Mitsubishi Engineering Plastics Corp Light transmission plate composed of transparent resin, method for molding the same, bushing, metallic mold assembling body and surface light source device
JP2005258023A (en) * 2004-03-11 2005-09-22 Mitsubishi Electric Corp Light source apparatus and liquid crystal display device provided with same
JP2011503771A (en) * 2007-07-05 2011-01-27 カナデ,ウダヤン Light source with variable thickness
JP2009224253A (en) * 2008-03-18 2009-10-01 Seiko Epson Corp Light guide, display device, and method of molding light guide
JP2012058480A (en) * 2010-09-08 2012-03-22 Fujifilm Corp Light guide plate, planar lighting device and liquid crystal display
WO2012049952A1 (en) * 2010-10-12 2012-04-19 富士フイルム株式会社 Light guiding plate and planar lighting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868119A (en) * 2018-03-30 2020-10-30 日本瑞翁株式会社 Hollow resin particles and sheet
CN112051637A (en) * 2019-06-05 2020-12-08 元太科技工业股份有限公司 Cover plate structure and display device
US11042070B2 (en) * 2019-06-05 2021-06-22 E Ink Holdings Inc. Cover plate structure and display apparatus
CN112051637B (en) * 2019-06-05 2023-03-31 元太科技工业股份有限公司 Cover plate structure and display device

Also Published As

Publication number Publication date
JP2013239246A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
US8926160B2 (en) Light guide plate, planar lighting device, and liquid crystal display device
EP1574780B1 (en) Light guide plate, illuminating device using same, area light source and display
JP5635472B2 (en) Light guide plate
JP4713697B1 (en) Light guide plate, planar illumination device, and liquid crystal display device
US8622602B2 (en) Light guide plate and planar lighting device
WO2013168506A1 (en) Light-guiding plate and manufacturing method of light-guiding plate
WO2012132510A1 (en) Planar illumination device
JP5794948B2 (en) Light guide plate
US20140063852A1 (en) Light guide plate, planar lighting device and method of manufacturing light guide plate
WO2010007822A1 (en) Lighting device, plane light source device, and liquid crystal display device
WO2013001929A1 (en) Light guide plate and planar lighting device
JP5670794B2 (en) Surface lighting device
US9075176B2 (en) Light guide plate and planar lighting device
TW201326930A (en) Sheet type light guide plate, planar illumination device, and planar illumination unit
WO2013008600A1 (en) Light guide plate and planar illuminating apparatus
JP2009245732A (en) Light guide plate and planar lighting device using the same
JP5941129B2 (en) Surface lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13786948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13786948

Country of ref document: EP

Kind code of ref document: A1