WO2013008600A1 - Light guide plate and planar illuminating apparatus - Google Patents

Light guide plate and planar illuminating apparatus Download PDF

Info

Publication number
WO2013008600A1
WO2013008600A1 PCT/JP2012/065859 JP2012065859W WO2013008600A1 WO 2013008600 A1 WO2013008600 A1 WO 2013008600A1 JP 2012065859 W JP2012065859 W JP 2012065859W WO 2013008600 A1 WO2013008600 A1 WO 2013008600A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
layer
light emitting
Prior art date
Application number
PCT/JP2012/065859
Other languages
French (fr)
Japanese (ja)
Inventor
高充 奥村
岩崎 修
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013008600A1 publication Critical patent/WO2013008600A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]

Definitions

  • the present invention provides a light guide plate that can disperse a diffusing material such as diffusing fine particles for emitting planar illumination light and can improve the wavelength unevenness of the emitted light, which is a problem peculiar to the diffusion material, and the wavelength unevenness of the emitted light
  • the present invention relates to a planar illumination device that emits planar illumination light, which is used as a backlight of a liquid crystal display (liquid crystal display device) and an advertising display, an area light source for environmental illumination, and the like.
  • a planar illumination device that irradiates light from the back side of the liquid crystal display panel and illuminates the liquid crystal display panel.
  • the backlight unit is configured by using components such as a light guide plate that diffuses light emitted from a light source for illumination and irradiates the liquid crystal display panel, a prism sheet that diffuses light emitted from the light guide plate, and a diffusion sheet.
  • the backlight for advertising displays and the surface light source for environmental illumination in order to illuminate the display panel or illuminate the environment in a planar shape, the light emitted from the illumination light source is diffused to obtain a planar illumination.
  • a light guide plate for emitting light is used.
  • the backlight unit also has a light guide plate directly above the light source for illumination.
  • a light guide plate is used that scatters or diffuses light into a transparent resin and mixed with scattering particles or diffusion particles, and a light source for illumination is arranged on the side of the light guide plate. Therefore, there is a demand for a method of entering light from the surface and emitting light from the surface.
  • Patent Document 1 discloses a plate-like light scattering light guide element including at least two light scattering light guide block regions having complementary shapes, and at least one light that can be incident from the side thereof.
  • Light scattering means and when the scattering ability of each light scattering light guide block area is represented by an effective scattering irradiation parameter value, at least one of the effective scattering irradiation parameter values is any other effective scattering irradiation parameter.
  • the average value of the effective scattering irradiation parameter on the cross section in the thickness direction of the plate-like light scattering light guide element is relatively small at a portion relatively close to the light incident means, and is not relative to the light incident means.
  • a relatively large light-scattering light-guiding light source device has been proposed in a far part.
  • Patent Document 2 discloses a plate-like body in which at least one non-scattering light guiding region and at least one scattering light guiding region in which particles having different refractive indexes are uniformly dispersed in the same material are overlapped.
  • the light source lamp is mounted on the end surface, and the distribution state of the emission amount from the main surface is controlled by locally adjusting the particle concentration with the plate thickness in both regions.
  • a surface light source device is proposed in which the scattering light guide region is a convex light guide block and the non-scattering light guide region is a concave light guide block corresponding to the convex light guide block. .
  • Patent Document 3 is a light guide plate composed of two layers, and an inclination inclined in a direction approaching the light exit surface as the boundary surface between the first layer and the second layer goes from the end toward the center of the light guide plate.
  • a light guide plate that is a surface is disclosed.
  • the scattering power imparted to the inside of a light scattering light guide in which scatterers are dispersed and kneaded in a base material resin is visible red light (represented at a wavelength of 615 nm) supplied from a light supply means.
  • the emission light from the emission surface represented by the ratio Q (B) / Q (R) of the scattering efficiency Q (R) in blue light (represented by a wavelength of 435 nm).
  • the plate-like light scattering light guiding element is composed of two to three light scattering light guide block regions having different light scattering capabilities, and is relative to the light incident means.
  • the light-scattering light guide block region having high light scattering ability is configured to be thick at the far part, but it is intended to obtain a uniform and bright light exit surface, and plate-like light scattering It has not been considered to adjust the shape of the light scattering light guide block region of the light guide element in order to optimize the emitted light amount distribution required for the backlight unit of the liquid crystal display device.
  • the light guide is composed of a scattering light guide region and a non-scattering light guide region in order to increase the light emission luminance from the light emission surface (main surface) and the uniformity thereof.
  • it has not been considered to adjust the shape of the scattering light guide region in order to optimize the distribution of the emitted light quantity required for the backlight unit of the liquid crystal display device described above.
  • the large light guide plate expands and contracts due to the surrounding temperature and humidity, and repeats expansion and contraction of 5 mm or more for a size of about 50 inches. Therefore, as in the light guide plate (a plate-like light scattering light guide element or light guide) disclosed in Patent Documents 1 and 2, it is not known whether the plate is flat or the light exit surface side or the reflection surface side is warped. When warped to the light emitting surface side, the stretched light guide plate pushes up the liquid crystal panel, and pool-like unevenness occurs in the light emitted from the liquid crystal display device. In order to avoid this, it is conceivable to increase the distance between the liquid crystal panel and the backlight unit in advance, but there is a problem that it is impossible to make the liquid crystal display device thin.
  • the light guide plate described in Patent Document 3 is certainly a light guide plate composed of two layers having different particle concentrations.
  • the light guide plate composed of two layers having different scattering powers as in Patent Document 1 As the boundary surface between the layer and the second layer is directed from the end toward the center of the light guide plate, the cross-sectional shape inclined in the direction approaching the light output surface is a substantially isosceles triangle, but the shape of the second layer It was not taken into account to adjust the light intensity to optimize the amount of emitted light.
  • the backlight unit when the backlight unit is thin and large, it is necessary to reduce the particle concentration of the scattering (diffusion) particles in order to guide the light to the back of the light guide plate, but when the particle concentration of the scattering particles is low, Since the incident light is not sufficiently diffused in the vicinity of the light incident surface, bright lines (dark lines, unevenness) due to the arrangement interval of the light sources may be visually recognized in the emitted light emitted from the vicinity of the light incident surface. is there.
  • the particle concentration of the scattering particles is high in the region near the light incident surface, the light incident from the light incident surface is reflected in the region near the light incident surface and emitted from the light incident surface as return light, or There is a risk that light emitted from a region near the light incident surface that is covered and not used increases.
  • the diffusion particles having a predetermined size (particle diameter) are uniformly dispersed, and therefore, the diffusion type light guide plate is easy to diffuse corresponding to the incident wavelength.
  • the emitted light has wavelength dependency. For this reason, even when the light has the same light intensity, when the blue wavelength component is larger than the red wavelength component, the light becomes bluish white light.
  • the wavelength component ratio of the emitted light at each position in the light guide direction is changed. There is a problem that the color tone is observed differently in (part).
  • An object of the present invention is to solve the above-mentioned problems of the prior art, has a large and thin shape, can emit light with high light utilization efficiency and little luminance unevenness, and is required for a large-screen thin liquid crystal television.
  • the distribution near the center of the screen is brighter than the periphery, so-called medium-high or bell-shaped brightness distribution, that is, the brightness of the light emitted from the light exit surface is such that the brightness at the center is It has a bell-shaped distribution (hereinafter referred to as “medium-high distribution”) higher than the luminance at the peripheral part, and wavelength unevenness (color change) in the light guiding direction (from the incident part to the center part or the other end part)
  • a light guide plate of the present invention is provided with a rectangular light exit surface and light that travels in a direction substantially parallel to the light exit surface and is provided on the edge side of the light exit surface.
  • a light guide plate having at least one light incident surface and a back surface opposite to the light output surface, in which diffusion particles are dispersed, wherein the light guide plate is substantially perpendicular to the light output surface.
  • each of the two or more layers has one or more kinds of the diffusing particles dispersed therein at different particle concentrations, the two or more layers being And at least a first layer located on the light emitting surface side and a second layer located on the back surface side and in contact with the first layer, the second layer being substantially parallel to the light emitting surface.
  • the thickness in a direction substantially perpendicular to the light exit surface changes in a direction away from the light entrance surface.
  • a cross-sectional shape having at least a portion that continuously increases and becomes a local maximum is formed, and is substantially perpendicular to the light exit surface of the two or more layers at a light guide position along a direction substantially parallel to the light exit surface.
  • the diffused particles are dispersed so that the combined scattering cross section S in the direction increases continuously and monotonously as the distance from the light incident surface increases, and the maximum values S max and S min of the combined scattering cross section S are expressed by the following formulas ( 1) and when the main wavelength of the blue component of the incident light incident on the light incident surface is B and the main wavelength of the red component of the incident light is R, it is substantially parallel to the light exit surface.
  • the ratio T (B) between the transmission coefficient T (B) of the main wavelength B of the blue component and the transmission coefficient T (R) of the main wavelength R of the red component at the light guide position that is a half value of the light guide distance along the direction. ) / T (R) satisfies the following formula (2). 1.25 ⁇ S max ⁇ 2.2 0.90 ⁇ S min ⁇ 1.6 (1) 0.85 ⁇ T (B) / T (R) ⁇ 1.15 (2)
  • the second layer has a cross section in which the thickness in a direction substantially perpendicular to the light emitting surface in a direction substantially parallel to the light emitting surface has at least one minimum value and at least one maximum value.
  • the shape is preferably formed.
  • the at least one light incident surface is preferably two light incident surfaces provided on two opposite sides of the light emitting surface.
  • the cross-sectional shape of the second layer preferably includes three arcs or four arcs, and has the minimum value on each side of the two light incident surfaces, and the two light beams It is preferable that the maximum value is at the approximate center between the incident surfaces, and an arc forming the minimum value is provided on each side of the two light incident surfaces, and the approximate center between the two light incident surfaces is provided. It is preferable to have an arc that forms the maximum value.
  • the thickness of the second layer is the thickest in the approximate center of the light emitting surface.
  • the at least one light incident surface is one light incident surface provided on one end side of the light emitting surface
  • the cross-sectional shape of the second layer is that of the one light incident surface. It is preferable to have the minimum value on the side and to have the maximum value on the other end side of the light emitting surface.
  • the cross-sectional shape of the second layer has an arc that forms the minimum value on the one light incident surface side, and an arc that forms the maximum value on the other end side of the light emitting surface. It is preferable to have.
  • the two or more layers preferably further include a third layer located on the back side and in contact with the second layer, and the boundary surface between the second layer and the third layer is It is preferably substantially parallel to the light exit surface.
  • the light use efficiency indicating the ratio of the light incident from the at least one light incident surface being emitted from the light exit surface is 70% or more, and the light emitted from the vicinity of the peripheral portion of the light exit surface
  • the middle portion of the luminance distribution of the light emitting surface indicating the ratio of the luminance of the light emitted from the central portion of the light emitting surface to the luminance is more than 0% and 45% or less, and the central portion of the light emitting surface It is preferable that the luminance distribution is convex.
  • the said back surface is a plane parallel to the said light-projection surface.
  • the planar illumination device of the present invention houses the light guide plate, a light source disposed to face the light incident surface of the light guide plate, the light guide plate and the light source, A housing having an opening smaller than the light exit surface is provided on the light exit surface side of the light guide plate.
  • a large, thin shape, high light utilization efficiency, light with little luminance unevenness can be emitted, and the central portion of the screen required for a large-screen thin liquid crystal television Emission light having a brightness distribution brighter than that of the peripheral part, that is, a so-called medium-high or bell-like brightness distribution can be obtained, and in the light guide direction (from the incident part to the central part or the other end part) Output light with little or no wavelength unevenness (color change) can be obtained.
  • a medium-to-high luminance distribution and a luminance without wavelength unevenness between the incident portion and the central portion or the other end portion. Distribution can be realized simultaneously.
  • FIG. 2 is a sectional view taken along line II-II of the liquid crystal display device shown in FIG.
  • FIG. 3A is a cross-sectional view taken along the line III-III of the planar illumination device shown in FIG. 2
  • FIG. 3B is a cross-sectional view taken along line BB in FIG.
  • A) is a perspective view which shows schematic structure of the light source of the planar illuminating device shown to FIG.1 and FIG.2,
  • (B) is a schematic perspective view which expands and shows one LED of the light source shown to (A).
  • FIG. 1 is a perspective view which shows schematic structure of the light source of the planar illuminating device shown to FIG.1 and FIG.2
  • FIG. 2 is a sectional view taken along line II-II of the liquid crystal display device shown in FIG.
  • FIG. 3A is a cross-sectional view taken along the line III-III of the planar illumination device shown in FIG. 2
  • FIG. 3B is a cross-sectional view taken along
  • FIG. 6 is a cross-sectional view taken along the line VI-VI for explaining the layer structure of the light guide plate shown in FIG. 5.
  • FIG. 5 is a schematic sectional drawing which shows the other example of the light-guide plate which concerns on this invention.
  • It is a flowchart which shows an example of the design method of the light-guide plate of this invention. It is a graph which shows three examples of the cross-sectional shape of the 2nd layer (lower layer) of the light-guide plate designed with the design method of the light-guide plate shown in FIG.
  • FIG. (A) to (D) are schematic sectional views showing other examples of the light guide plate according to the present invention.
  • (A) to (D) are schematic sectional views showing other examples of the light guide plate according to the present invention.
  • (A) to (E) are schematic cross-sectional views showing other examples of the light guide plate according to the present invention.
  • (A) And (B) is a graph which shows an example of the degree of the wavelength nonuniformity of the light guide direction of the light-guide plate of this invention, respectively.
  • FIG. 1 is a perspective view schematically showing a liquid crystal display device including a planar illumination device using a light guide plate according to the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II of the liquid crystal display device shown in FIG. is there.
  • 3A is a view taken in the direction of arrows III-III of the planar illumination device (hereinafter also referred to as “backlight unit”) shown in FIG. 2, and FIG. FIG.
  • the liquid crystal display device 10 includes a backlight unit 20, a liquid crystal display panel 12 disposed on the light emission surface side of the backlight unit 20, and a drive unit 14 that drives the liquid crystal display panel 12.
  • a part of the liquid crystal display panel 12 is not shown in order to show the configuration of the backlight unit 20.
  • the liquid crystal display panel 12 applies a partial electric field to liquid crystal molecules arranged in a specific direction in advance to change the arrangement of the molecules, and uses the change in the refractive index generated in the liquid crystal cell to make a liquid crystal display. Characters, figures, images, etc. are displayed on the surface of the display panel 12.
  • the liquid crystal display panel 12 targeted by the light guide plate of the present invention has a large screen size of 37 inches (37 ") or more, and is used for a large and thin liquid crystal television having such a large screen.
  • As the screen size of the liquid crystal display panel 12 for example, 40 inches (40 "), 42 inches (42"), 46 inches (46 "), 52 inches (52”), 55 inches ( 55 ") and 65 inches (65").
  • the drive unit 14 applies a voltage to the transparent electrode in the liquid crystal display panel 12, changes the direction of the liquid crystal molecules, and controls the transmittance of light transmitted through the liquid crystal display panel 12.
  • the backlight unit 20 is an illuminating device that irradiates light from the back surface of the liquid crystal display panel 12 to the entire surface of the liquid crystal display panel 12, and has a light emission surface 24a having substantially the same shape as the image display surface of the liquid crystal display panel 12.
  • the backlight unit 20 in this embodiment includes two light sources 28, a light guide plate 30 and an optical member unit 32 according to the present invention, as shown in FIGS. 1, 2, 3A, and 3B. And a housing 26 having a lower housing 42, an upper housing 44, a folding member 46, and a support member 48. As shown in FIG. 1, a power storage unit 49 that stores a plurality of power supplies for supplying power to the light source 28 is attached to the back side of the lower housing 42 of the housing 26.
  • each component which comprises the backlight unit 20 is demonstrated.
  • the illumination device main body 24 scatters and diffuses the light source 28 that emits light, the light guide plate 30 that emits light emitted from the light source 28 as planar light, and the light emitted from the light guide plate 30. And an optical member unit 32 for making the light more uniform.
  • FIG. 4A is a schematic perspective view showing a schematic configuration of the light source 28 of the backlight unit 20 shown in FIGS. 1 and 2, and FIG. 4B is one of the light sources 28 shown in FIG. It is a schematic perspective view which expands and shows only one LED chip.
  • the light source 28 includes a plurality of light emitting diode chips (hereinafter referred to as “LED chips”) 50 and a light source support portion 52.
  • LED chips light emitting diode chips
  • the LED chip 50 is a chip in which a fluorescent material is applied to the surface of a light emitting diode that emits blue light.
  • the LED chip 50 has a light emitting surface 58 having a predetermined area, and emits white light from the light emitting surface 58. That is, when the blue light emitted from the surface of the light emitting diode of the LED chip 50 passes through the fluorescent material, the fluorescent material fluoresces. Accordingly, white light is generated and emitted from the LED chip 50 by the blue light emitted from the light emitting diode and the light emitted by the fluorescent substance fluorescent.
  • the LED chip 50 is exemplified by a chip in which a YAG (yttrium / aluminum / garnet) fluorescent material is applied to the surface of a GaN-based light-emitting diode, InGaN-based light-emitting diode, or the like.
  • a YAG yttrium / aluminum / garnet
  • the light source support portion 52 is a plate-like member that is disposed so that one surface thereof faces the light incident surface (30c, 30d) of the light guide plate 30.
  • the light source support 52 supports the plurality of LED chips 50 on a side surface that is a surface facing the light incident surface (30c, 30d) of the light guide plate 30 with a predetermined distance therebetween.
  • the plurality of LED chips 50 constituting the light source 28 are arranged along the longitudinal direction of the first light incident surface 30c or the second light incident surface 30d of the light guide plate 30, which will be described later, in other words, the light emitting surface 30a. Are arranged in an array parallel to the line where the first light incident surface 30c intersects, or parallel to the line where the light emitting surface 30a and the second light incident surface 30d intersect, and are fixed on the light source support 52. ing.
  • the light source support 52 is made of a metal having good thermal conductivity such as copper or aluminum, and also has a function as a heat sink that absorbs heat generated from the LED chip 50 and dissipates it to the outside.
  • the light source support 52 has a heat pipe (not shown) that transfers heat to the heat radiating member even if it is provided with a fin (not shown) that can increase the surface area and enhance the heat dissipation effect. May be provided.
  • the LED chip 50 of the present embodiment has a rectangular shape whose length in the direction orthogonal to the arrangement direction is shorter than the length of the LED chip 50 in the arrangement direction, that is, described later.
  • the light guide plate 30 has a rectangular shape in which the thickness direction (the direction perpendicular to the light emitting surface 30a) is a short side.
  • the LED chip 50 preferably has a shape such that b> a, where a is the length in the direction perpendicular to the light emitting surface 30a of the light guide plate 30 and b is the length in the arrangement direction.
  • the relationship among the length a in the direction perpendicular to the light emitting surface 30a of the light guide plate 30 of the LED chip 50, the length b in the arrangement direction, and the arrangement interval q of the LED chips 50 satisfies q>b> a. It is preferable.
  • the LED chip 50 By making the LED chip 50 into a rectangular shape, a thin light source can be obtained while maintaining a large light output.
  • the backlight unit can be made thinner. In addition, the number of LED chips can be reduced.
  • the LED chip 50 can make the light source 28 thinner, it is preferable that the LED chip 50 has a rectangular shape having a short side in the thickness direction of the light guide plate 30.
  • the present invention is not limited to this, and the square shape and the circular shape are not limited thereto. LED chips having various shapes such as a shape, a polygonal shape, and an elliptical shape can be used.
  • the LED chips are arranged in a single row to form a single layer structure.
  • the present invention is not limited to this, and a plurality of LED arrays having a plurality of LED chips 50 arranged on an array support are provided.
  • a multilayer LED array having a laminated structure can also be used as a light source.
  • the LED chip of the LED array in the layer adjacent to the LED chip of the LED array preferably has the arrangement interval satisfying the above formula as described above.
  • the LED array is preferably laminated with the LED chip and the LED chip of the LED array in the adjacent layer separated by a predetermined distance.
  • the light guide plate 30 is a transparent flat plate having a thin rectangular parallelepiped shape, and is a flat surface having a substantially rectangular shape, for example, a rectangular shape.
  • the two light sources 28 described above are arranged on the first light incident surface 30c and the second light incident surface 30d of the light guide plate 30 so as to face each other.
  • the length of the light emitting surface 58 of the LED chip 50 of the light source 28 and the lengths of the first light incident surface 30c and the second light incident surface 30d are substantially the same in the direction substantially perpendicular to the light emitting surface 30a. The same length is preferred.
  • the two light sources 28 are disposed so as to sandwich the light guide plate 30. That is, the light guide plate 30 is disposed between the two light sources 28 that are disposed to face each other with a predetermined distance therebetween.
  • the two light incident surfaces 30c and 30d are located opposite to the opposite long sides of the light emitting surface 30a, and the two light incident surfaces 30c and 30c are disposed from the two light sources 28 disposed opposite to each other.
  • the light respectively incident on 30d is directed toward the central portion of the light exit surface 30a (the bisector of the short side facing it) and is substantially parallel to the light exit surface 30a and diffused particles in the light guide plate 30 (details will be described later).
  • the light propagates through the light guide plate 30 and is emitted from the light exit surface 30a.
  • the light guide length L through which the light propagates between the first light incident surface 30c and the second light incident surface 30d is 37 inches (37 ") or 40 inches (40"). Since the liquid crystal panel 12 of a size or larger is targeted, it is necessary to be 500 mm or larger, and the liquid crystal panel 12 having a screen size of 65 inches (65 ′′) at the maximum is targeted, so that it is preferably 850 mm or smaller. Includes a light guide length for screen sizes around 40 inches (40 "), for example 37 inches (37"), 40 inches (40 "), 42 inches (42”) and 46 inches (46 ").
  • L is 500 mm or more and 615 mm or less, for example, 540 mm with a screen size of 40 inches (40 ′′), and around 55 inches (55 ′′), for example, 52 inches (52 ′′), 55 inches (5 For screen size ”) and 65 inch (65"), light guiding length L is more than 700mm, 850 mm or less, for example, is good is 700mm in screen size of 52 inch (52 ").
  • the light guide plate 30 has dispersed therein one or more kinds of diffusing particles that scatter and diffuse the light incident from the light incident surfaces 30c and 30d, but each layer is substantially perpendicular to the light emitting surface 30a.
  • the boundary between the first layer 60 and the second layer 62 is a boundary surface z
  • the first light incident surface 30c and the second light incident surface 30d are respectively the first layer 60 side and the second layer 62 at the boundary surface z.
  • the first layer 60 is a layer on the light emitting surface 30a side, is a cross-sectional area surrounded by the light emitting surface 30a and the boundary surface z
  • the second layer 62 is It is a layer on the back surface 30b side with respect to one layer 60, and is a cross-sectional area surrounded by the boundary surface z and the back surface 30b.
  • the boundary surface z between the first layer 60 and the second layer 62 has a light emitting surface 30a in a direction substantially parallel to the light emitting surface 30a when viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 30c.
  • the thickness of the second layer 62 in a direction substantially perpendicular to the maximum becomes a maximum (maximum in the illustrated example) at the central portion (that is, on the bisector ⁇ ) of the light emitting surface 30a. It continuously changes so as to become thinner toward the incident surface 30c and the second light incident surface 30d, and becomes minimum (minimum in the illustrated example) before the first light incident surface 30c and the second light incident surface 30d. From these minimums, the thickness gradually changes toward the first light incident surface 30c and the second light incident surface 30d, respectively.
  • the cross-sectional shape of the boundary surface z which is perpendicular to the longitudinal direction of the light incident surface 30c, is a curve that is convex toward the light emitting surface 30a at the center of the light emitting surface 30a.
  • one arc R1 curvature radius R1
  • two concave curves preferably two arcs R2 (curvature radius) connected smoothly to this convex curve and connected to the light incident surfaces 30c, 30d respectively.
  • the uneven curve is not limited to an arc, and may be a part of a quadratic curve such as an ellipse, a parabola, or a hyperbola, or a part of a cubic or higher order curve, a trigonometric function, or another curve. May be.
  • a straight line portion may be included in a connection portion between the convex curve and the concave curve, or in a connection portion between the concave curve and the light incident surfaces 30c and 30d.
  • the cross-sectional shape of the boundary surface z in the cross section is one arc R1 having a radius of curvature R1 and two arcs R2 having a radius of curvature R2. And three arcs. Therefore, the thickness of the second layer 62 is composed of three extreme values: one maximum value at the central portion of the light emitting surface 30a and two minimum values on the light incident surfaces 30c and 30d sides.
  • the unevenness of the curve is referred to toward the light emitting surface 30a, and the light emitting surface 30a side may be referred to as the upper side, and the back surface 30b side may be referred to as the lower side.
  • the light guide plate 30 shown in FIG. 6 is a two-layer flat light guide plate, but the present invention is not limited to this, and each layer overlapping in a direction substantially perpendicular to the light exit surface 30a is a particle in which one or more kinds of diffusion particles are different from each other.
  • a light guide plate having a multilayer flat plate structure including three or more layers dispersed in a concentration may be used.
  • a light guide plate 30A having a three-layer structure as shown in FIG. 7 can also be preferably used.
  • the first layer 60 of the light guide plate 30A is exactly the same as the first layer 60 of the light guide plate 30 shown in FIG. 6, and therefore, the boundary between the first layer 60 and the second layer 64 is defined as a boundary surface z1.
  • the boundary surface z1 is exactly the same as the boundary surface z between the first layer 60 and the second layer 62 of the light guide plate 30 shown in FIG. That is, the second layer 64 of the light guide plate 30A has the same surface profile as the second layer 62 of the light guide plate 30 shown in FIG.
  • the third layer 66 of the light guide plate 30 ⁇ / b> A is a flat layer located on the back surface 30 d side and in contact with the second layer 64. If the boundary between the second layer 64 and the thirty-second layer 66 is the boundary surface z2, the boundary surface z2 is a plane substantially parallel to the light emitting surface 30a.
  • the first light incident surface 30c and the second light incident surface 30d are respectively separated by the boundary surfaces z1 and z2 on the first layer 60 side, the third layer 66 side, and the second layer 62 side therebetween.
  • the first layer 60 is a layer on the light emitting surface 30a side, is a cross-sectional area surrounded by the light emitting surface 30a and the boundary surface z1
  • the third layer 66 is formed on the first layer 60.
  • it is a flat layer on the back surface 30b side, and is a cross-sectional area surrounded by the boundary surface z2 and the back surface 30b, and the second layer 64 is between the first layer 60 and the third layer 66.
  • each of the fourth to m-th layers is not particularly limited, but is preferably a flat layer like the third layer 66.
  • diffusion particles for scattering and diffusing light are kneaded and dispersed in a transparent resin as a base material.
  • the first layer to the n-th layer (n is an integer of 2 or more), for example, the first layer 60 and the second layer 62, or the first layer 60, the second layer 64, and the second layer.
  • n is an integer of 2 or more
  • the first layer 60 and the second layer 62 or the first layer 60, the second layer 64, and the second layer.
  • one or more kinds of diffusion particles are dispersed at different particle concentrations.
  • Examples of the transparent resin material used for the light guide plate 30 include PET (polyethylene terephthalate), PP (polypropylene), PC (polycarbonate), PMMA (polymethyl methacrylate), benzyl methacrylate, MS resin, or COP (cycloolefin polymer).
  • An optically transparent resin such as As scattering particles to be kneaded and dispersed in the light guide plate 30, fine particles such as Tospearl, silicone, silica, zirconia, and dielectric polymer can be used.
  • the scattering particles are dispersed at different particle concentrations in each of the first layer 60 to the n-th layer, but from the light incident surfaces 30c and 30d, directions substantially parallel to the light emitting surface 30a, respectively.
  • the combined scattering cross section S (x) per unit length in the direction substantially perpendicular to the light exit surface 30a of the first layer 60 to the nth layer at the light guide position x along the light guide position x is the light incident surface 30c and It is necessary to be distributed so as to have at least a portion that continuously and monotonously increases as the distance from 30d increases, that is, as the light guide position (length or distance) x increases.
  • the combined scattering cross section S (x) per unit length continuously increases monotonously from the minimum value or the minimum value according to the light guide distance from the light incident surfaces 30c and 30d. It is necessary to have a portion reaching the maximum value or the maximum value.
  • the maximum value S max and the minimum value S min of the combined scattering cross section S (x) per unit length need to satisfy the following formula (1). 1.25 ⁇ S max ⁇ 2.2 0.90 ⁇ S min ⁇ 1.6 (1)
  • the maximum value S max and the minimum value S min of the combined scattering cross section S (x) per unit length at the light guide position x satisfy the above formula (1). Therefore, even with a large and thin shape, it is possible to emit light with high light use efficiency and little unevenness in brightness, and the central part of the screen required for a large-screen thin LCD TV is the peripheral part. Compared to this, a bright distribution, that is, a so-called medium-high or bell-shaped light-high distribution can be obtained.
  • the combined scattering cross section S (x) [mm 2 ] per unit length can be calculated from the following formulas (3) and (4) as follows.
  • ⁇ x is the unit length [mm]
  • a i is the particle size [mm] of the scattering particles dispersed in the i-th layer
  • t xi is the thickness of the cross-section of the i-th layer at the light guide position x [mm].
  • t max is the light guide plate thickness [mm]
  • N i is the number of cross grain of the i layer in the light-guiding position x
  • Qscai is the scattering efficiency of the scattering particles dispersed in the i layer, scattering It is determined based on the Mie theory from the particle conditions (the refractive index of the scattering particles and the base material and the wavelength of the emitted light).
  • the scattering efficiency Qscai of the scattering particles is emitted from the light source, is incident on the light guide plate, and also depends on the wavelength of the emitted light emitted from the light guide plate, so the combined scattering cross section S (x) per unit length is also incident. Although it depends on the wavelength of the light, since the target is visible light, the scattering efficiency Qscai of the scattering particles and the combined scattering cross section S (x) per unit length are visible of the light emitted from the light source 28.
  • the lower limit of the visible light wavelength of light may be set from 360 to 400 nm, and the upper limit may be set from 760 to 830 nm according to the emitted light of the light source to be used.
  • the combined scattering cross section S (x) per unit length may be obtained by separating the emitted light of the light source to be used into the three primary colors of RGB using the following formula (6) as will be described later.
  • the main wavelengths of the three primary colors of RGB the wavelength of the emitted light of the light source used, that is, the wavelength of the emitted light of each of the RGB colors of the LED, for example, may be used.
  • R: 615 nm may be used as the wavelength.
  • the particle size and particle concentration of the dispersed scattering particles satisfy the following formula (2). It is necessary to select scattering particles. 0.85 ⁇ T (B) / T (R) ⁇ 1.15 (2)
  • T (B) and T (R) are transmission coefficients of the main wavelength B of the blue component at the light guide position x, which is a half value of the light guide distance along the direction substantially parallel to the light exit surface 30a.
  • And R are the transmission coefficients of the main wavelength R of the red component
  • B and R are the main wavelength of the blue component of the incident light incident on the light incident surfaces 30c and 30d and the main wavelength of the red component of the incident light, respectively. is there.
  • the transmission coefficients T (B) and T (R) can be calculated from the following equation (5) as follows.
  • is the transmission wavelength [mm]
  • J ( ⁇ ) is the attenuation coefficient at the wavelength ⁇ (the attenuation constant ⁇ L * in the Lambert-Beer law.
  • L * represents the one-dimensional optical path length).
  • S (x, ⁇ ) is the combined scattering cross section [mm 2 ] at the light guide position x [mm] at the transmission wavelength ⁇ .
  • the combined scattering cross section S (x, ⁇ ) at the light guide position x at the transmission wavelength ⁇ can be calculated from the following equation (6) as follows.
  • Qscai ( ⁇ ) is the scattering efficiency of the scattering particles dispersed in the i-th layer with respect to the light having the wavelength ⁇ , depends on the transmission wavelength ⁇ , and has a particle diameter and a particle refractive index. , Determined by the refractive index of the base material. Since the other variables and constants of the above formula (6) are the same as the above formulas (3) and (4), the description thereof is omitted.
  • the wavelength of the emitted light of the light source used that is, the wavelength of the emitted light of each color of the LED of the LED, for example, may be used.
  • B: 435 nm, G: 550 nm, and R: 615 nm may be used as the main wavelengths of the three primary colors of RGB.
  • L * [mm] of the attenuation constant ⁇ L * represents a one-dimensional optical path length
  • the light guide distance x (at least two layers or more) in the three-dimensional light guide plate space.
  • the combined scattering cross sections S (x) of the first layer 60 to the nth layer per unit length at the light guide position x are moved away from the light incident surfaces 30c and 30d, respectively (light guide position).
  • the scattering particles are dispersed so as to increase continuously and monotonously as the value increases, and the maximum value S max and the minimum value S min of the combined scattering cross section S (x) per unit length satisfy the above formula (1)
  • the scattering particles need to be dispersed at the particle size and particle concentration of the scattering particles in which the ratio of the transmission coefficients T (B) and T (R) of B and R satisfies the above formula (2). It is necessary to satisfy the scattering particle dispersion conditions of the present invention.
  • any particle concentration of the scattering particles dispersed in each of the first layer 60 to the n-th layer of the light guide plate may be used.
  • the particle concentration of the scattering particles in the first layer 60 is Npo and the particle concentration of the scattering particles in the jth layer (j is an integer of 2 or more) is Nprj, the relationship between Npo and Nprj is 0 ⁇ Npo. ⁇ Nprj is preferable.
  • the second layer 62, the second layer 64, and the third layer 66 on the back surface 30b side have the particle concentration of the scattering particles in comparison with the first layer 60 on the light emitting surface 30a side. High is preferred.
  • the particle concentration Npo of the scattering particles in the first layer 60 is 0, that is, the first layer 60 may be a layer made of only a base material transparent resin in which scattering particles are not dispersed.
  • the thickness of the second layer (for example, 62, 64) having a higher particle concentration of scattering particles than that of the first layer 60 is One maximum value that becomes thick at the center of 30a (the maximum value that becomes the thickest in the illustrated example), and two minimum values that become thinner in the vicinity of the light incident surfaces 30c and 30d (the minimum value that becomes the thinnest in the illustrated example)
  • the combined scattering cross section of the scattering particles has a maximum value (maximum value) at the central portion of the exit surface 30a and a minimum value near each of the light incident surfaces 30c and 30d. (Minimum value) is changed.
  • the scattering particles are dispersed at different particle concentrations so that the maximum value S max and the minimum value S min of the above-described combined scattering cross section S satisfy the above formula (1).
  • Each dispersed layer (the first layer 60 to the n-th layer) can be formed, and even with a large and thin shape, light utilization efficiency is high, for example, 70% or more, and light with little unevenness in luminance is emitted. It has a medium-high distribution that is brighter in the vicinity of the central part than the peripheral part, for example, more than 0% and 45% or less, preferably 10% or more and 45% or less, and the light guide direction (from the incident part to the center). Part or the other end part) can be realized simultaneously with little or no wavelength unevenness (color change).
  • the particle concentration of the first layer 60 on the light emitting surface 30a side is lowered, the amount of scattered particles as a whole can be reduced, and the cost can be reduced.
  • the particle size of the scattering particles dispersed in each layer of the light guide plate of the present invention is not particularly limited, but is preferably different in each layer. The reason is that when scattered particles having the same particle diameter are dispersed in each layer of the light guide plate, if the particle diameter is small, for example, if the particle diameter is 4.5 ⁇ m or less, the blue light B is more than the red light R in each cross section. This is because the B component of the emitted light is relatively reduced, reddish, and the color temperature is lowered.
  • the particle size of the scattering particles dispersed in the second to nth layers of the light guide plate of the present invention is more preferably 4.5 ⁇ m or more and 12.0 ⁇ m or less.
  • the reason is that high scattering efficiency can be obtained, the forward scattering property is large, the wavelength dependency is small, and color unevenness can be selected.
  • the particle diameter of the scattering particles is smaller than 4.5 ⁇ m, that is, less than 4.5 ⁇ m, the scattering becomes isotropic, so that the above condition cannot be satisfied.
  • an acrylic resin can be selected as the base material, and a silicone resin can be selected as the scattering particles.
  • the particle size of the scattering particles is larger than 12.0 ⁇ m, that is, more than 12.0 ⁇ m, the forward scattering property of the scattering particles becomes too strong, so that the mean free path in the system increases and the number of scattering decreases. For this reason, luminance unevenness (firefly unevenness) between the light sources (LEDs) appears in the vicinity of the incident end, and therefore, the upper limit value is preferably limited to 12.0 ⁇ m.
  • the particle concentration is too high, the medium-high distribution cannot be realized. If the particle concentration is too low, light penetrates and passes, and the light utilization efficiency does not satisfy 70% or more. It is.
  • the selection of the optimum particle diameter of the scattering particles dispersed in each layer of the light guide plate of the present invention it is preferable to consider the following points in addition to the viewpoint of wavelength dependency.
  • the light guide plate of the present invention is, for example, a light guide plate corresponding to a screen size of 40 inches, and in the case of double-sided incidence, it is at least a distance of 250 mm or more from the light incident surface on both sides of the light guide plate. In this case, it is necessary to guide a distance of at least 500 mm from the light incident surface.
  • the present invention by selecting an optimum particle size (combination of the scattering particle refractive index and the base material refractive index) included in the limited range of the particle diameter of the scattering particles, the outgoing light without wavelength unevenness can be obtained. Obtainable.
  • scattering particles dispersed in each layer of the light guide plate of the present invention it is preferable to use scattering particles having a single particle diameter in each layer, but the present invention is not limited to this. In the present invention, since one or more kinds of diffusing particles need only be dispersed, scattering particles having a plurality of particle sizes may be mixed and used.
  • the same scattering particles having the same particle diameter in each layer as the scattering particles dispersed in each layer of the light guide plate.
  • different scattering particles may be used as long as the above-described scattering particle dispersion conditions of the present invention can be satisfied.
  • the first layer 60 and the second layer 62 are at the boundary surface z
  • the first layer 60 and the second layer 64 are at the boundary surface z1
  • the layer 64 and the third layer 66 are described separately by the boundary surface z2
  • these layers are different in only the same particle size of the scattering particles, or the particle size and the particle concentration, and the same kind of scattering in the same transparent resin. This is a structure in which particles are dispersed, and is integrated in structure.
  • Such a light guide plate can be manufactured using an extrusion molding method or an injection molding method.
  • the light guide plate of the present invention (for example, the light guide plate 30 or 30A), the light emitted from the light source 28 and incident from the first light incident surface 30c and the second light incident surface 30d is reflected on each layer of the light guide plate 30 (for example, The first layer 60 and the second layer 62, or the first layer 60, the second layer 64, and the third layer 66) are scattered by scattering particles (scatterers) included in the interior of the first layer 60, the second layer 64, and the third layer 66.
  • the light guide plate (30 or 30A) travels through and passes through the light guide surface 30a, or directly leaks from the back surface 30b, and is disposed on the back surface 30b side of the light guide plate 30 (for details, see FIG.
  • the light is reflected by a light emitting plate 30a (described later), enters the light guide plate 30 again, and then exits from the light exit surface 30a.
  • each layer (the first layer 60, the second layers 62 and 64, or the third layer 66 to the nth layer) satisfies the above relationship, so that the light guide plate has a low particle concentration.
  • the incident light can be guided to the back (center) of the light guide plate without scattering much, and the second layer (62, 64) having a higher particle concentration as it approaches the center of the light guide plate. It is possible to increase the amount of light that is scattered from the light exit surface 30a. That is, it is possible to make the illuminance distribution medium to high at a suitable ratio while further improving the light utilization efficiency.
  • the particle concentration [wt%] is the ratio of the weight of the scattering particles to the weight of the base material.
  • the thickness of the light guide plate of the present invention is not particularly limited, and may be several mm, for example, about 4 mm as in the case of a conventional printed light guide plate. Since the light guide plate does not cause a problem such as a dot pattern being recognized even if it is thin, it may have a thickness of 1 mm to 3 mm, preferably about 2 mm, or it may be a film having a thickness of 1 mm or less. A so-called light guide sheet may be used.
  • a base film containing scattering particles as a first layer is formed by an extrusion molding method or the like.
  • the monomer resin liquid transparent resin liquid
  • the monomer resin liquid is cured by irradiating with ultraviolet rays or visible light, thereby obtaining a desired
  • the light guide plate is a film-like light guide sheet having a thickness of 1 mm or less, by making it a two-layer light guide plate, it is possible to increase the illuminance distribution at a suitable ratio while increasing the light utilization efficiency. it can.
  • the thickness is too small, the light incident surface becomes smaller, the size of the light source becomes smaller, and the amount of light decreases. Therefore, light incidence from the light source is reduced, and light with sufficient luminance cannot be emitted from the light emission surface.
  • the thickness is too large, the weight is too heavy to be suitable as an optical member such as a liquid crystal display device, and if the diffusing particles are dispersed at a particle concentration that achieves a medium-high luminance distribution, light penetrates through the periphery.
  • the diffusion particles are dispersed at a particle concentration that increases the light utilization efficiency, the medium-high luminance distribution cannot be realized. Therefore, what is necessary is just to select the kind (size) of a light source, and the thickness of a light-guide plate according to the use application of a light-guide plate.
  • a 3 ⁇ 1.4 mm LED having a light emitting portion width in the thickness direction of the light guide plate of about 1 to 1.1 mm may be used as a light source because of its required performance.
  • the thickness and shape of the first layer 60 and the second layers 62 and 64 of the light guide plate 30 and 30A of the present invention are the first layer 60 and the second layer 62, or the second layer. 64 and the dispersion condition of the scattering particles to be dispersed inside the third layer 66, and the thickness satisfying the scattering particle dispersion condition of the present invention including the above formula (1) is required. If satisfied, there is no particular limitation.
  • the thickness and shape of the first layer 60, the second layer 62, 64, and the third layer 66 are easy to manufacture, for example, an extrusion apparatus that melts and extrudes two or more layers simultaneously, What is necessary is just to determine according to restrictions, such as the line speed to extrude.
  • the maximum thickness of the second layer 62 is up to about 1.5 mm, more preferably 0.2 mm to 1.3 mm, and most preferably 0.35 mm to 0.8 mm.
  • the minimum thickness of the second layer 62 is partially up to approximately 0 mm, more preferably 0.05 mm to 0.25 mm, and most preferably 0.1 mm to 0.15 mm.
  • the maximum thickness and the minimum thickness of the second layer 62 may be set to the same ratio as that of the light guide plate 30 of about 2 mm.
  • the ratio of the maximum thickness of the second layer 62 to the thickness of the light guide plate 30 is up to about 75%, more preferably 5% to 65%, and most preferably 17.5% to 40%.
  • the ratio of the minimum thickness of the second layer 62 is partially up to approximately 0%, more preferably 2.5% to 12.5%, and most preferably 5% to 7.5%. It becomes a range.
  • the maximum thickness of the second layer 64 is the difference between the maximum thickness and the minimum thickness of the second layer 62 of the light guide plate 30, and the minimum thickness of the second layer 64.
  • the thickness is partially about 0 mm, and the thickness of the third layer 66 is uniform and may be the minimum thickness of the second layer 62 of the light guide plate 30, but the minimum of the second layer 64 When the thickness is ⁇ mm exceeding 0 mm, the thickness of the third layer 66 may be the minimum thickness ⁇ [mm] of the second layer 62 of the light guide plate 30.
  • the shapes of the second layers 62 and 64 that is, the concave and convex curves, for example, the arcs R1 and R2, are determined according to the size of the light guide plate 30, the maximum thickness and the minimum thickness of the second layers 62 and 64, and the like. Just do it.
  • the radius of curvature R1 of the convex arc R1 that is the maximum thickness of the second layers 62 and 64 described above is The radius of curvature R2 of the concave arc R2 that is 2500 mm ⁇ R1 ⁇ 250,000 mm and the minimum thickness of the second layers 62 and 64 is preferably 2500 mm ⁇ R2 ⁇ 230000 mm, and the light guide length L is 700 mm ⁇ L ⁇
  • the radius of curvature R1 of the convex arc R1 is preferably 5000 mm ⁇ R1 ⁇ 490000 mm
  • the radius of curvature R2 of the concave arc R2 is preferably 5000 mm ⁇ R2 ⁇ 450,000 mm.
  • what is necessary is just to change the said range according to the difference, when the thickness of the light-guide
  • FIG. 8 is a flowchart showing an example of the light guide plate designing method of the present invention.
  • the 1st layer (henceforth upper layer) 60 and 2nd layer which are used for the backlight unit 20 of the liquid crystal display device 10 shown in FIG.1 and FIG.2 and are shown in FIG.2, FIG.3, FIG.5 and FIG.
  • a case where a two-layer light guide plate 30 made of (hereinafter also referred to as a lower layer) is designed will be described as a representative example.
  • a two-layer light guide plate 30 made of hereinafter also referred to as a lower layer
  • step S10 from the screen size (effective screen area of the light emitting surface 30a) of the liquid crystal display device 10 to which the backlight unit 20 using the light guide plate 30 of the present invention is applied, the screen is changed.
  • the light guide length L is determined by adding 10 to 30 mm as the width of the so-called frame as the length (including the mixing zone length) of the portion covered with the upper housing 44 to the short side length of the size. Strictly speaking, the light guide length L is determined in consideration of the installation position of the light source 28 (distance between the light emitting surface of the LED and the light incident surfaces 30c and 30d of the light guide plate 30).
  • step S12 the thickness of the light guide plate 30 is determined from the use of the liquid crystal display device 10 and the screen size.
  • the cross-sectional shape (the cross-sectional shape perpendicular to the screen and parallel to the short side of the screen size) of the lower layer 62 of the light guide plate 30 is determined.
  • the lower layer maximum thickness and the lower layer minimum thickness (upper layer maximum thickness) are determined according to the thickness of the light guide plate 30, and based on them, the maximum value of the lower layer thickness (lower layer maximum thickness) )
  • two concave arcs R2 constituting the minimum value of the lower layer thickness (lower layer minimum thickness) are determined.
  • the cross-sectional shape of the upper layer 60 of the light guide plate 30 is also automatically determined.
  • the cross-sectional shape of the lower layer 62 three lower layer cross sections A, B, and C shown by a solid line, a dotted line, and a one-dot chain line in FIG. Can be determined.
  • Table 1 shows the lower layer maximum thickness, the lower layer minimum thickness, the convex arc R1 that constitutes the maximum value, and the concave arc R2 that constitutes the minimum value.
  • step S16 based on the determined cross-sectional shapes of the lower layer 62 and the upper layer 60, the combined scattering cross section S per unit length at the light guide position x is obtained from the above formulas (3) and (4).
  • the diffusion (scattering) particle dispersion condition is determined so that the obtained combined scattering cross section S satisfies the above formula (1).
  • the scattering particle dispersion condition the base resin of the light guide plate 30, the material and particle size of the scattering particles, the particle concentrations of the upper layer 60 and the lower layer 62, and the like are determined.
  • the cross-sectional shape of the lower layer 62 is different, for example, even in the case of the lower layer cross sections A to C shown in FIG.
  • the combined scattering cross-section distribution can be made.
  • the thickness is 2 mm
  • the cross-sectional shape of the lower layer 62 of the light guide plate is the lower layer cross section B shown in FIG. 5 can be obtained from the above equations (3) and (4).
  • the particle size and particle concentration of the scattering particles in the upper layer 60 of the five design examples 1 to 5 are 4.5 ⁇ m and 0.005 wt%, respectively, and the particles of the scattering particles in the lower layer 62 of the design examples 1 to 5
  • the diameter and particle concentration are 9 ⁇ m and 0.358 wt%, 9 ⁇ m and fine 0.487 wt%, 9 ⁇ m and 0.574 wt%, 9 ⁇ m and 0.195 wt%, and 9 ⁇ m and 0.650 wt%, respectively.
  • Design Examples 1 to 5 are obtained by changing the lower layer particle concentration with respect to the examples of the present invention described later (for example, Example 3 corresponds to Design Example 2).
  • FIG. A specific dispersion state is a state in which scattering particles are kneaded and stirred in a molten base resin pellet.
  • resin in which scattered particles are dispersed at different particle concentrations is extruded from a two-layer extrusion apparatus at the same time by extrusion molding, laminated immediately before extrusion (die part), and sandwiched between rolls. To be molded.
  • the scattering particles are sufficiently kneaded and stirred in the base material resin, the scattering particles are dispersed at substantially equal distances, and the Mie theory can be applied. From the graph of FIG. 10 showing the distribution of the combined scattering cross section S of the five design examples 1 to 5 obtained in this way, the design examples 1 to 3 satisfy the above formula (1), and the design examples 4 to 5 It can be seen that the above formula (1) is not satisfied.
  • step S18 the light guide plate 30 thus designed is subjected to (a) utilization efficiency of incident light, (b) medium to high degree of luminance distribution of light emitted from the light emission surface 30a, and (c) light emission surface.
  • An optical evaluation is performed on four items of the uneven shape at the center of 30a, and (d) wavelength unevenness (wavelength dependence) of light emitted from the light emitting surface 30a, and whether or not the set values of these four items are satisfied. Examine whether or not. For example, as a result of optical evaluation of five design examples 1 to 5 of the light guide plate having the combined scattering cross section distribution shown in FIG. 10, a graph showing the relative illuminance of the emitted light with respect to the light guide position shown in FIG.
  • the design examples 1 to 5 can be obtained.
  • the luminance distribution of the emitted light from the light exit surface 30a shows a medium-high distribution
  • the design examples 1 to 3 that satisfy the above formula (1) Although the luminance distribution is obtained, the design examples 4 to 5 that do not satisfy the expression (1) do not have a desired luminance distribution. That is, in the design examples 1 to 3 satisfying the above formula (1), (a) utilization efficiency, (b) middle altitude, and (c) concavo-convex shape in the center are respectively set values of (a) 70 %, (B) more than 0% and less than 45%, and (c) the convex value of the three items are satisfied.
  • design example 4 in which the maximum value S max and the minimum value S min of the combined scattering cross section S are lower than the lower limit value of the above formula (1) and does not satisfy the above formula (1) is shown in FIG. , (A) utilization efficiency, and (b) medium-to-high degree satisfy the specified values, respectively, but the uneven shape in the central part of (c) has a concave luminance distribution in the central part. The brightness is lowered, and the vicinity of the center is visually recognized as band unevenness. Further, the design example 5 in which the maximum value S max of the combined scattering cross section S is higher than the upper limit value of the above formula (1) and does not satisfy the above formula (1) is shown in FIG. Although the uneven shape in FIG.
  • the wavelength unevenness of the emitted light from the light emitting surface 30a of the light guide plate 30 is the distance from the light source 28 and the color of the emitted light in the vicinity of the incident surface (30c, 30d, 80c) of the light guide plate 30.
  • wavelength variation may be evaluated by converting the wavelength dependency (tristimulus value XYZ) of emitted light into chromaticity (or Lab color space) and calculating a chromaticity change amount (or color difference).
  • the present invention uses the transmission coefficient parameter T ( ⁇ ) defined by the above equation (5) and transmits the outgoing light of B and R wavelengths.
  • the ratio is defined as the ratio of the coefficient T ( ⁇ ), and the evaluation is performed using the above equation (2). That is, in the embodiment that satisfies the above formula (2), the light emitted from the light emitting surface 30a has a luminance distribution with no wavelength unevenness at the central portion and the incident portion with respect to the light guide position. On the other hand, in the comparative example that does not satisfy the above formula (2), the emitted light from the light emitting surface 30a has a luminance distribution with large wavelength unevenness at the central portion and the incident portion of the light guide position.
  • FIG. 13 shows the evaluation results for two items of (a) utilization efficiency and (b) medium to high degree for a large number of light guide plates 30 designed in this way.
  • FIG. 13 is a graph showing incident light utilization efficiency [%] and outgoing light medium altitude [%] with respect to the particle concentration [wt%] of the second layer (lower layer) for a number of designed light guide plates. .
  • An example of a method for determining the particle concentration of the lower layer 62 will be described with reference to FIG. First, parameters other than the particle concentration of the lower layer 62 are set as follows.
  • the particle concentration range of the scattering particles of the lower layer 62 can be determined by the following procedure. First, from the graph of FIG. 13, to determine the extent of particle concentration x 1 comprising (a) and the utilization efficiency of the incident light is 70% or more. As a result, x 1 ⁇ 0.08 [wt%] can be obtained as the particle concentration range. Then, from the graph of FIG. 13, it determines the range of particle concentrations x 2 comprising (b) and the middle-high ratio is less than 0% and 45%. As a result, x 2 ⁇ 0.165 [wt%] can be obtained as the particle concentration range.
  • the range of the particle concentration x 3 in which the uneven shape at the center of the luminance distribution is not concave is determined.
  • x 3 ⁇ 0.285 [wt%] can be obtained as the particle concentration range.
  • the applicable particle concentration range of the lower layer 62 can be determined as 0.165 ⁇ x ⁇ 0.285 [wt%].
  • the light guide plate in which conditions such as the cross-sectional shapes of the first layer (upper layer) 60 and the second layer (lower layer) 62 and the particle concentration of the scattering particles dispersed therein are determined can be used for the scattering particle dispersion conditions of the present invention. Because it satisfies the limited range, even a large screen has a thin shape, high light utilization efficiency, and can emit light with little unevenness in luminance, which is required for a large-screen thin LCD TV It is possible to obtain a lighter distribution in the vicinity of the center of the screen than the peripheral part, that is, a so-called medium-high or bell-shaped brightness distribution. In the case of designing the three-layer light guide plate 30A shown in FIG.
  • the maximum thickness of the second layer 64 is the difference between the maximum thickness and the minimum thickness of the lower layer 62
  • the particle concentration range of each layer may be determined with 0 being the thickness of the third layer 66 and the minimum thickness of the lower layer 62.
  • the light guide plate of the present invention is basically configured as described above.
  • the light source 28 and the light guide plate 30 have an interval of 0.2 mm or more between the light emitting surface of the light source 28, for example, the light emitting surface (front surface) of the LED and the light incident surfaces 30 c and 30 d of the light guide plate 30. It is preferable to dispose them. That is, it is preferable that the light emitting surface (LED surface) of the light source 28 and the light incident surface of the light guide plate 30 have a distance of 0.2 mm or more. The reason for this is that the distance between them is 0.2 mm or more, so that the light-emitting surface of the light source 28 (specifically, the surface of the LED) and the light-guide plate even when the light-guide plate 30 is stretched or warped due to temperature changes.
  • the upper limit of the distance between the two is not particularly limited, but if the distance is too wide, the amount of light from the light source 28 incident on the light incident surfaces 30c and 30d of the light guide plate 30 is reduced. Is preferably 0.5 mm or less. The same applies to the light guide plate of the present invention, including the case of the light guide plate 30A.
  • the optical member unit 32 is for making the illumination light emitted from the light emission surface 30a of the light guide plate 30 light with more uneven brightness and illuminance, and emitting it from the light emission surface 24a of the illumination device body 24.
  • the diffusion sheet 32a that diffuses the illumination light emitted from the light emitting surface 30a of the light guide plate 30 to reduce luminance unevenness and illuminance unevenness, and the light incident surfaces 30c and 30d and the light emitting surface 30a. It has a prism sheet 32b on which microprism rows parallel to the tangent line are formed, and a diffusion sheet 32c that diffuses illumination light emitted from the prism sheet 32b to reduce luminance unevenness and illuminance unevenness.
  • the diffusion sheets 32a and 32c and the prism sheet 32b are not particularly limited, and a known diffusion sheet or prism sheet can be used.
  • a known diffusion sheet or prism sheet can be used.
  • Japanese Patent Application Laid-Open No. 2005-23497 related to the application of the present applicant [ The ones disclosed in [0028] to [0033] can be applied.
  • the optical member unit is composed of the two diffusion sheets 32a and 32c and the prism sheet 32b disposed between the two diffusion sheets.
  • the arrangement order and arrangement of the prism sheets and the diffusion sheets are not limited.
  • the number is not particularly limited, and is not particularly limited as a prism sheet or a diffusion sheet, and it is possible to further reduce unevenness in luminance and unevenness of illumination light emitted from the light exit surface 30a of the light guide plate 30. If there are, various optical members can be used.
  • a transmittance adjusting member in addition to or instead of the above-described diffusion sheet and prism sheet, a transmittance adjusting member in which a large number of transmittance adjusting bodies made of a diffuse reflector are arranged in accordance with luminance unevenness and illuminance unevenness is also used. You can also. Further, the optical member unit may have a two-layer configuration using one prism sheet and one diffusion sheet, or using only two diffusion sheets.
  • the reflection plate 34 is provided to reflect the light leaking from the back surface 30b of the light guide plate 30 and make it incident on the light guide plate 30 again, and can improve the light use efficiency.
  • the reflection plate 34 has a shape corresponding to the back surface 30b of the light guide plate 30 and is formed so as to cover the back surface 30b.
  • the back surface 30 b of the light guide plate 30 is flat, that is, the cross section is formed in a linear shape. Therefore, the reflecting plate 34 is also formed in a shape complementary to this.
  • the reflection plate 34 may be formed of any material as long as it can reflect light leaking from the back surface 30b of the light guide plate 30.
  • the reflection plate 34 may be stretched after a filler is kneaded into PET, PP (polypropylene), or the like.
  • the upper guide reflection plate 36 is disposed between the light guide plate 30 and the diffusion sheet 32a, that is, on the light emission surface 30a side of the light guide plate 30, and at the end of the light emission surface 30a of the light source 28 and the light guide plate 30 (first light incident).
  • the end portion on the surface 30c side and the end portion on the second light incident surface 30d side) are disposed so as to cover each other.
  • the upper guide reflection plate 36 is arranged so as to cover a part of the light emitting surface 30a of the light guide plate 30 to a part of the light source support part 52 of the light source 28 in a direction parallel to the optical axis direction. . That is, the two upper guide reflectors 36 are disposed at both ends of the light guide plate 30, respectively.
  • the upper guide reflection plate 36 By arranging the upper guide reflection plate 36, it is possible to prevent light emitted from the light source 28 from entering the light guide plate 30 and leaking to the light emitting surface 30 a side. Thereby, the light emitted from the light source 28 can be efficiently incident on the first light incident surface 30c and the second light incident surface 30d of the light guide plate 30, and the light utilization efficiency can be improved.
  • the lower guide reflection plate 38 is disposed on the back surface 30 b side of the light guide plate 30 so as to cover a part of the light source 28.
  • the end of the lower guide reflector 38 on the center side of the light guide plate 30 is connected to the reflector 34.
  • various materials used for the reflector 34 described above can be used.
  • the lower guide reflection plate 38 it is possible to prevent light emitted from the light source 28 from entering the light guide plate 30 and leaking to the back surface 30 b side of the light guide plate 30. Thereby, the light emitted from the light source 28 can be efficiently incident on the first light incident surface 30c and the second light incident surface 30d of the light guide plate 30, and the light utilization efficiency can be improved.
  • derivation reflecting plate 38 were connected, it is not limited to this, Each is good also as a separate member.
  • the upper guide reflector 36 and the lower guide reflector 38 reflect the light emitted from the light source 28 toward the first light incident surface 30c or the second light incident surface 30d, and the light emitted from the light source 28 is reflected.
  • the shape and the width are not particularly limited as long as the light can be incident on the first light incident surface 30c or the second light incident surface 30d and the light incident on the light guide plate 30 can be guided to the center side of the light guide plate 30.
  • the upper guide reflector 36 is disposed between the light guide plate 30 and the diffusion sheet 32a.
  • the position of the upper guide reflector 36 is not limited to this, and constitutes the optical member unit 32. You may arrange
  • the housing 26 accommodates and supports the lighting device main body 24, and is sandwiched and fixed from the light emitting surface 24 a side and the back surface 30 b side of the light guide plate 30. It has a body 42, an upper housing 44, a folding member 46, and a support member 48.
  • the lower housing 42 has a shape having an open top surface, a bottom surface portion, and a side surface portion provided on four sides of the bottom surface portion and perpendicular to the bottom surface portion. That is, it is a substantially rectangular parallelepiped box shape with one surface open. As shown in FIG. 2, the lower housing 42 supports the illuminating device main body 24 housed from above with a bottom surface portion and a side surface portion, and also a surface other than the light emitting surface 24 a of the illuminating device main body 24, that is, the illuminating device. The main body 24 covers a surface (back surface) and a side surface opposite to the light emitting surface 24a.
  • the upper housing 44 has a rectangular parallelepiped box shape in which a rectangular opening smaller than the rectangular light emitting surface 24a of the lighting device body 24 serving as an opening is formed on the upper surface, and the lower surface is opened. As shown in FIG. 2, the upper housing 44 includes the lighting device main body 24 and the lower housing 42 in which the lighting device main body 24 and the lower housing 42 are housed from above the lighting device main body 24 and the lower housing 42. The side portion is also placed so as to cover the side portion.
  • the folding member 46 has a concave (U-shaped) shape whose cross-sectional shape is always the same. That is, it is a rod-like member having a U-shaped cross section perpendicular to the extending direction. As shown in FIG. 2, the folding member 46 is inserted between the side surface of the lower housing 42 and the side surface of the upper housing 44, and the outer surface of one U-shaped parallel part is the bottom surface of the lower housing 42. It is connected to the side surface portion, and the outer side surface of the other parallel portion is connected to the side surface of the upper housing 44.
  • various known methods such as a method using bolts and nuts, a method using an adhesive, and the like. Can be used.
  • the rigidity of the housing 26 can be increased, and the light guide plate 30 can be prevented from warping.
  • the warp can be corrected more reliably or guided. It is possible to more reliably prevent the optical plate from being warped, and light with reduced or reduced brightness and illuminance unevenness can be emitted from the light exit surface.
  • various materials such as a metal and resin, can be used for the upper housing
  • a material it is preferable to use a lightweight and high-strength material.
  • the folding member is a separate member, but it may be formed integrally with the upper casing or the lower casing. Moreover, it is good also as a structure which does not provide a folding
  • the support member 48 is a rod-like member having the same cross-sectional shape perpendicular to the extending direction. As shown in FIG. 2, the support member 48 is formed between the reflecting plate 34 and the lower housing 42, more specifically, the end of the rear surface 30 b of the light guide plate 30 on the first light incident surface 30 c side and the second end.
  • the light guide plate 30 and the reflection plate 34 are fixed to and supported by the lower housing 42 and disposed between the reflection plate 34 and the lower housing 42 at a position corresponding to the end on the light incident surface 30d side.
  • the light guide plate 30 and the reflection plate 34 can be brought into close contact with each other by supporting the reflection plate 34 with the support member 48. Further, the light guide plate 30 and the reflection plate 34 can be fixed at predetermined positions of the lower housing 42.
  • the support member 48 is provided as an independent member, but the present invention is not limited to this, and the support member 48 may be formed integrally with the lower housing 42 or the reflection plate 34. That is, even if a protrusion is formed on a part of the lower housing 42 and this protrusion is used as a support member, a protrusion is formed on a part of the reflector 34 and this protrusion is used as a support member. Good.
  • the arrangement position of the support member 48 is not particularly limited, and the support member 48 can be arranged at an arbitrary position between the reflection plate 34 and the lower housing 42. However, in order to stably hold the light guide plate 30, the guide member 48 is guided. In the present embodiment, it is preferable to arrange the optical plate 30 near the first light incident surface 30c and near the second light incident surface 30d.
  • the shape of the support member 48 is not particularly limited, and can be various shapes, and can be made of various materials. For example, a plurality of support members may be provided and arranged at predetermined intervals.
  • the support member has a shape that fills the entire space formed by the reflector and the lower housing, that is, the surface on the reflector side is shaped along the reflector, and the surface on the lower housing side is the lower housing. It is good also as a shape along. As described above, when the entire surface of the reflection plate is supported by the support member, it is possible to reliably prevent the light guide plate and the reflection plate from separating, and uneven brightness and illuminance are caused by the light reflected from the reflection plate. Can be prevented.
  • the backlight unit 20 is basically configured as described above.
  • light emitted from the light sources 28 disposed at both ends of the light guide plate 30 is incident on the light incident surfaces (the first light incident surface 30 c and the second light incident surface 30 d) of the light guide plate 30.
  • Light incident from each surface passes through the light guide plate 30 while being scattered by the scatterers included in the light guide plate 30, and is reflected directly or after being reflected by the back surface 30b, and then exits from the light exit surface 30a. At this time, part of the light leaking from the back surface is reflected by the reflecting plate 34 and enters the light guide plate 30 again.
  • the light emitted from the light emitting surface 30 a of the light guide plate 30 passes through the optical member 32 and is emitted from the light emitting surface 24 a of the illuminating device body 24 to illuminate the liquid crystal display panel 12.
  • the liquid crystal display panel 12 displays characters, figures, images, and the like on the surface of the liquid crystal display panel 12 by controlling the light transmittance according to the position by the drive unit 14.
  • the second layer 62 is composed of three arcs R1, R2, R2 in the cross section.
  • the above scattering particle dispersion condition is satisfied, and the thickness in the direction substantially perpendicular to the light exit surface changes in a direction substantially parallel to the light exit surface, and the thickness continues in a direction away from the light entrance surface.
  • it may have any shape, and may have any cross-sectional shape.
  • the cross-sectional shape of the boundary surface z in the cross section is such that the thickness of the second layer 62 is the central portion of the light emitting surface 30a (that is, the bisector ⁇ ).
  • the thickness of the second layer 62 is connected to the linear portion L1 from the linear portion L1.
  • Each of the second layers 62 has a minimum thickness before the first light incident surface 30c and the second light incident surface 30d, and the first light incident surface 30c and the second light input surface 30c are respectively connected to the curved lines smoothly.
  • the thickness of the second layer 62 increases toward the light incident surface 30d. Continuously changes to the light incident surface 30c in so that, (two arcs R4 radius of curvature R4) two concave curves which are connected to 30d and may be composed of four arcs having.
  • the cross-sectional shape of the boundary surface z in the above cross section is such that the thickness of the second layer 62 is the central portion of the light emitting surface 30a (that is, the bisector ⁇ ).
  • the first convex curve (for example, the arc R5 having a radius of curvature R5) having a local maximum (maximum) in the vicinity, and the first convex curve smoothly connected to the back surface 30b and the light respectively.
  • connection portion may be a shape.
  • a straight line portion is included in the connection portion between the first convex curve and the second convex curve and the connection portion between the second convex curve and the corner portion of the connection portion.
  • the second convex curve may be connected to the connection portion with the light incident surfaces 30c and 30d instead of the corner portion, or connected to the back surface 30b in the vicinity of the light incident surfaces 30c and 30d. Also good.
  • the cross-sectional shape of the boundary surface z in the above cross-section is such that the thickness of the second layer 62 is the central portion of the light emitting surface 30a (that is, the bisector ⁇ A linear portion L2 that is maximal (maximum) in parallel and parallel to the light emitting surface 30a, and is connected to the linear portion L2, and the thickness of the second layer 62 extends from the linear portion L2 to the first light incident surface 30c and the linear portion L2, respectively. 2 having two convex curves (for example, two arcs R7 having a radius of curvature R7) connected continuously to the light incident surfaces 30c and 30d while being thinned toward the second light incident surface 30d.
  • two convex curves for example, two arcs R7 having a radius of curvature R7
  • a straight line portion may be included in the connection portion between the convex curve and the light incident surfaces 30c and 30d.
  • the convex curve may be connected to a connection portion between the back surface 30b and the light incident surfaces 30c and 30d, and not the light incident surfaces 30c and 30d but the back surface 30b in the vicinity of the light incident surfaces 30c and 30d. It may be connected.
  • the cross-sectional shape of the boundary surface z in the cross-section is such that the thickness of the second layer 62 is the central portion of the light emitting surface 30a (that is, the bisector ⁇ ).
  • two circular arcs R8 having a radius of curvature R8) may be a single circular arc (kamaboko shape).
  • a straight line portion may be included in the connection portion between the convex curve and the light incident surfaces 30c and 30d.
  • the convex curve may be connected to a connection portion between the back surface 30b and the light incident surfaces 30c and 30d, and not the light incident surfaces 30c and 30d but the back surface 30b in the vicinity of the light incident surfaces 30c and 30d. It may be connected.
  • the region corresponding to the opening 44a of the upper housing 44 is an effective region (effective screen area E) of the light emitting surface 30a.
  • This is a region contributing to the emission of light as the light unit 20.
  • the regions near the light incident surfaces 30c and 30d of the light guide plate 30 (light emitting surface 30a) are arranged outside the opening 44a of the upper housing 44, that is, in the frame portion forming the opening 44a. Therefore, this is a so-called mixing zone M for diffusing the light incident from the light incident surfaces 30c and 30d, although it does not contribute to the emission of light as the backlight unit 20.
  • the cross-sectional shape of the boundary surface z when viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 30a is excluded from the mixing zone M of the light emitting surface 30a.
  • the effective screen area E it is formed in the same manner as the light guide plate 30 shown in FIGS. 2 and 6, that is, the thickness of the second layer 62 is set so that the first maximum value is taken at the central portion of the light emitting surface 30a.
  • a convex curve (arc R1) is formed, and subsequently the second layer 62 is continuously changed so that the thickness thereof is reduced, and a concave curve is taken so as to take local minimum values in the vicinity of the light incident surfaces 30c and 30d, respectively.
  • (Arc R2) is formed, and further thickened in the vicinity of the first light incident surface 30c and the second light incident surface 30d.
  • the second maximum value is obtained in the mixing zone M on both sides. After that, it changes continuously so as to become thinner again, and a concave curve (for example, a circle) R9) may be formed a.
  • the thickness of the second layer 62 takes the second maximum value at the inner end of each mixing zone M, which is the position of the opening 44a of the upper housing 44, and the outer side of each mixing zone M.
  • the boundary surface z coincides with the corners between the back surface 30b and the light incident surfaces 30c and 30d, and the thickness of the second layer 62 becomes zero.
  • the thickness of the second layer having a higher particle concentration of scattering particles than that of the first layer 60 is set to the first maximum value that is the thickest in the central portion of the light guide plate 31e, and the light incidence.
  • the composite scattering cross-section s of the scattering particles is changed to each mixing zone by continuously changing it so as to have the second maximum value once thickened at the inner end of each mixing zone M in the vicinity of each of the surfaces 30c and 30d. It has a second maximum value at the inner end of M, and changes so as to have a first maximum value larger than the second maximum value at the center of the light exit surface 30a (effective screen area E). ing.
  • the light guide plate 31e even if the light guide plate 31e is a large and thin light guide plate by setting the thickness of the second layer (synthetic scattering cross section s) to the first maximum value that is maximum in the central portion.
  • the light incident from the light incident surfaces 30c and 30d can be delivered to a position farther from the light incident surfaces 30c and 30d, and the luminance distribution of the light emitted from the light emitting surface 30a (effective screen area E) is a medium-high luminance distribution.
  • the second maximum value of the thickness of the second layer in the vicinity of the light incident surfaces 30c and 30d (inner end of the mixing zone M)
  • Light incident from the light incident surfaces 30c and 30d is sufficiently diffused in the mixing zone M
  • the emission light emitted from the effective screen area E in the vicinity of the mixing zone M is a bright line (dark line) caused by the arrangement interval of the light sources 28, etc. ,village) It can be prevented from being visually recognized.
  • the thickness of the second layer having a high particle concentration is set to be thinner than the first maximum value, thereby reducing the particle concentration.
  • the return light scattered from the light incident surface and emitted from the light incident surface, and the light emitted from the region near the light incident surface that is not used because it is covered by the housing (mixing zone M) The utilization efficiency of the light emitted from the effective screen area E of the light emission surface 30a can be improved.
  • the position of the second maximum value of the thickness of the second layer is arranged at the inner end of the mixing zone M (the position of the boundary of the opening 44a of the upper housing 44).
  • the position of the second maximum value of the thickness of the second layer is within the effective screen area E (inside the opening 44a) as long as the position of the second maximum value is in the vicinity of the inner end of the mixing zone M. May be arranged at a position in the mixing zone M.
  • the boundary surface z is a curved surface (arc) that is concave downward in the mixing zone M, that is, in the region from the position of the second maximum value to the light incident surfaces 30c and 30d.
  • the light guide plates 31f, 31g, and 31h shown in FIGS. 15B, 15C, and 15D are the same as those of the first layer 60 and the second layer 62 in the mixing zone M in the light guide plate 31e shown in FIG. Since it has the same configuration except that the thickness, that is, the shape of the boundary surface z from the light incident surfaces 30c, 30d to the position of the second maximum value is changed, the same parts are denoted by the same reference numerals, The description will mainly focus on different parts.
  • the light guide plate 31f shown in FIG. 15B includes a first layer 60 and a second layer 62 having a particle concentration higher than that of the first layer 60.
  • the first layer in the mixing zone M is the same as the first layer 60.
  • the boundary surface z between 60 and the second layer 62 is connected to the position of the second maximum value, is a curved surface (for example, arc R10) convex toward the light exit surface 30a, and the light incident surfaces 30c and 30d The shape is connected to the corner with the back surface 30b.
  • the boundary surface z is in the mixing zone M, which is a region from the position of the second maximum value to the light incident surfaces 30c and 30d.
  • the concave and convex curved surfaces are respectively formed toward the light emitting surface 30a, the present invention is not limited to this, and may be a flat surface or an uneven surface.
  • the light guide plate 31g shown in FIG. 15C is different from the light guide plate 31f shown in FIG. 15B in that the second maximum value of the boundary surface z between the first layer 60 and the second layer 62 in the mixing zone M.
  • the terminal portion from the position toward the light incident surfaces 30c and 30d is connected to the back surface 30b at the approximate center of the mixing zone M.
  • the position at which the terminal portion of the boundary surface z is connected to the back surface 30 b may not be substantially in the center as long as it is within the mixing zone M.
  • the shape of the boundary surface z in the mixing zone M is a curved surface (for example, an arc R11) convex toward the light emitting surface 30a.
  • the present invention is not limited to this, and may be a concave curved surface, a flat surface, or an uneven surface.
  • the light guide plate 31h shown in FIG. 15D is different from any of the light guide plates 31e to 31g shown in FIGS. 15A to 15C, and the boundary surface z between the first layer 60 and the second layer 62 is the first.
  • the boundary surface z has a plane parallel to the light incident surfaces 30c and 30d through the position of the second maximum value, and the terminal end of the boundary surface z is on the back surface 30b at the inner end of the kissing zone M.
  • the shape of the boundary surface z is changed from the position of the first maximum value of the thickness of the second layer 62 toward the light incident surfaces 30c and 30d.
  • the particle concentration in the region (mixing zone M) from the position of the second maximum value to the light incident surface side 30c, 30d is changed to the second maximum value.
  • the light-projection surface 30a was made into the plane, it is not limited to this, A light-projection surface is good also as a concave surface.
  • the back surface 30b is a flat surface.
  • the present invention is not limited to this, and the back surface may be a concave surface, that is, a surface inclined in a direction in which the thickness decreases as the distance from the light incident surface increases.
  • it may be a convex surface, that is, a surface inclined in a direction in which the thickness increases as the distance from the light incident surface increases.
  • a light guide plate having an asymmetric shape of the boundary surface z may be used.
  • the shape of the second layer has one light incident surface, and the thickness of the second layer of the light guide plate is maximized at a position farther from the light incident surface than the bisector of the light output surface.
  • An asymmetrical light guide plate may be used.
  • FIG. 16 is a schematic cross-sectional view showing a part of a backlight unit using another example of the light guide plate of the present invention.
  • the backlight unit 70 shown in FIG. 16 has the single-sided incident light guide plate 80 instead of the light guide plate 30 shown in FIG. Since it has the same configuration as the backlight unit 20 except that it has the same configuration as the unit 20, the same components are denoted by the same reference numerals, detailed description thereof will be omitted, and different components will be described below. The explanation is mainly given.
  • the backlight unit 70 shown in FIG. 16 includes a light guide plate 80 and a light source 28 for making light incident on the light guide plate 80.
  • the light guide plate 80 has a light emitting surface 80a formed of a rectangular flat plane, and a back surface 80b that is located on the opposite side of the light emitting surface 80a, that is, on the back side, and is a flat plane having substantially the same shape as the light emitting surface 80a.
  • a light incident surface 80c that is formed substantially perpendicular to the light exit surface 80a on one end surface on the long side of the light exit surface 80a and the light source 28 is opposed to, and a light incident surface 30c.
  • Side surface 80d located on the opposite side, that is, the back side.
  • the light emitting surface 80a, the back surface 80b, and the light incident surface 80c of the light guide plate 80 correspond to the light emitting surface 30a, the back surface 30b, and the first light incident surface 30c of the light guide plate 30 shown in FIG.
  • the light source 28 is not disposed to face the side surface 80d of the light plate 80, and is different from the second light incident surface 30d of the light guide plate 30.
  • the light guide plate 80 is a two-layer flat light guide plate, and is formed by a first layer 82 on the light emitting surface 80a side and a second layer 82 on the back surface 80b side.
  • the boundary surface z between the first layer 82 and the second layer 84 is once seen from the light incident surface 80c toward the side surface 80d when viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 80c.
  • the second layer 84 is changed to be thicker, and the second layer 84 is continuously changed to be thinner again.
  • the boundary surface z is a curved surface (for example, arc R12) that is concave toward the light exit surface 80a on the light incident surface 80c side, and a curved surface that is convex toward the light exit surface 80a (for example, arc R12) on the side surface 80d side.
  • Arc R13 the thickness of the second layer 84 is a curve that changes so as to have a minimum value on the light incident surface 80c side and a maximum value on the side surface 80d side.
  • the light guide plate 80 in the illustrated example also needs to satisfy the above-described scattering particle dispersion condition of the present invention, similarly to the light guide plate 30 shown in FIG.
  • the scattering particles are dispersed at different particle concentrations in the first layer 82 and the second layer 84, but each extends from the light incident surface 30c in a direction substantially parallel to the light emitting surface 30a.
  • the combined scattering cross section S of the first layer 82 and the second layer 84 at the light guide position in the direction substantially perpendicular to the light exit surface 30a continuously and monotonously increases as the light guide distance increases from the light incident surface 30c.
  • the concave shape is preferably 2500 mm ⁇ R12 ⁇ 450,000 mm, and the radius of curvature R13 of the convex arc 13 is preferably 2500 mm ⁇ R13 ⁇ 490000 mm.
  • the concave and convex curved surfaces forming the boundary surface z of the light guide plate 80 are not limited to arcs in a cross section perpendicular to the longitudinal direction of the light incident surface 80c, but are quadratic curves such as an ellipse, a parabola, and a hyperbola. Of course, it may be a part of the above, a higher-order curve of 3rd order or higher, a curve represented by a polynomial, or a curve combining these.
  • the shape of the boundary surface z is set at a position close to the light incident surface, the thickness of the second layer is minimized, and at a position far from the light incident surface.
  • the asymmetric shape so that the thickness of the second layer is maximized, the light emitted from the light source and incident from the light incident surface can be guided to the back of the light guide plate.
  • the illuminance distribution of the light emitted from the light can be made medium to high, and the light utilization efficiency can be improved.
  • the light incident surface can be made larger than the flat light guide plate having the same average thickness, the light incident efficiency can be increased and the light guide plate can be lightened.
  • the cross-sectional shape of the second layer 62 is not limited to the one formed by the two arcs R12 and 13, and any shape can be used as long as the scattering particle dispersion condition is satisfied. But it ’s okay.
  • the boundary surface z between the first layer 82 and the second layer 84 is viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 80c as in the light guide plate 81a shown in FIG. After changing from the incident surface 80c toward the side surface 80d so that the second layer 84 becomes thinner, the second layer 84 changes to become thicker, and then the thickness of the second layer 84 becomes constant. It may change continuously.
  • the boundary surface z is a curved surface that is concave toward the light exit surface 80a (for example, the cross-section arc R14) on the light incident surface 80c side, and a curved surface that is convex toward the light exit surface 80a at the center of the light guide plate.
  • a cross-section arc R15 may be a plane parallel to the light exit surface 80a (for example, a cross-section straight line L3) from the apex of the convex curved surface to the side surface 80d side.
  • the concave shape is preferably 2500 mm ⁇ R14 ⁇ 450,000 mm, and the radius of curvature R15 of the convex arc R15 is preferably 2500 mm ⁇ R15 ⁇ 490000 mm.
  • the light guide plates 31e to 31h shown in FIGS. 15A to 15D may be changed in the same manner.
  • the light guide plates 81b to 81d shown in FIGS. 17B to 17D are the light guide plate 80 shown in FIG. 16, and the light guide plate 81ed shown in FIG. 17E is the light guide plate shown in FIG.
  • the cross-sectional shape of the boundary surface z in the mixing zone M in the vicinity of the light incident surface 30c is changed to a convex curve (for example, , Arc R16), and a maximum value of the thickness of the second layer 84 is provided at the inner end of the mixing zone M.
  • a convex curve for example, , Arc R16
  • the sectional shape of the boundary surface z in the mixing zone M in the vicinity of the light incident surface 30c is changed to a convex curve (for example, Arc R17), the end of the boundary surface z is connected to the substantially central back surface 80b of the mixing zone M, and the maximum value of the thickness of the second layer 84 is provided at the inner end of the mixing zone M.
  • the second layer 84 is not provided in the mixing zone M near the light incident surface 30c, and the mixing zone M is not provided.
  • the cross-sectional shape of the boundary surface z at the inner end portion of M is a plane that is substantially parallel to the light incident surface 30c, the end portion thereof is connected to the back surface 80b, and the thickness of the second layer 84 at the inner end portion of the mixing zone M. The maximum value is set.
  • the light guide plate 81e shown in FIG. 17E as in the case of the light guide plate 31e shown in FIG.
  • the sectional shape of the boundary surface z in the mixing zone M may be changed to a convex curve, and a concave curve, a plane, or a combination thereof may be used.
  • the backlight unit using the light guide plate of the present invention is not limited to the above-described various embodiments, and in addition to one or two light sources, one of the side surfaces on the short side of the light emission surface of the light guide plate or One or two light sources may be arranged facing both. Increasing the number of light sources can increase the intensity of light emitted by the device.
  • the first layers 60 and 82 are disposed on the light emitting surface 30a side, and the second layers 62 and 84 are disposed on the back surface 30b side.
  • the present invention is not limited to this. Alternatively, they may be arranged in reverse. That is, the first layer may be located on the back side, and the second layer may be located on the light emitting surface side.
  • the present invention is not limited to this, and light is emitted not only from the light emitting surface but also from the back side, that is, from both sides. May be.
  • the light guide plate of the present invention is composed of two layers having different particle concentrations of scattering particles, but is not limited thereto, and has a configuration of three or more layers having different particle concentrations of scattering particles. Also good.
  • Example 1 As Example 1, a two-layer flat light guide plate 30 having a boundary surface z as shown in FIGS. 2, 3, 5 and 6 is emitted from the light exit surface 30 a of the light guide plate 30 by computer simulation. Illuminance distribution and luminance distribution of the emitted light, (a) use efficiency of light incident from the light incident surfaces 30c and 30d of the light guide plate 30, and (b) luminance distribution of the emitted light from the light emitting surface 30a.
  • the transparent resin material of the light guide plate 30 was modeled as PMMA, and the scattering particle material was modeled as silicone. This is the same for all the following embodiments.
  • the light guide plate 30 having a light guide length of 540 mm corresponding to a screen size of 40 inches was used.
  • the thickness of the light guide plate 30 is set to 2.0 mm, and the thickness of the second layer 62 at the position where the thickness of the second layer 62 is the thickest at the bisector ⁇ , that is, the position of the maximum value.
  • the thickness is 0.80 mm, the thickness of the second layer 62 is the thinnest minimum thickness, the thickness of the second layer 62 at the position of the minimum value is 0.15 mm, and from the first maximum value to the light incident surface
  • a light guide plate with a distance of 20 mm was used.
  • the particle size and particle concentration of the scattering particles kneaded and dispersed in each layer of the light guide plate 30 are set to 9 according to the light guide plate design method of the present invention shown in FIG.
  • the light guide plate 30 was designed and manufactured by setting the particle size and particle concentration of the scattering particles of the second layer 62 to 4.5 ⁇ m and 0.23 wt%.
  • the combined scattering cross section S (x) at the light guide position x of the obtained light guide plate 30 of Example 1 is obtained using the above formulas (3) and (4), and the transmission coefficients T (B) and R of B are calculated.
  • the transmission coefficient T (R) was determined using the above formula (5). The obtained results are shown in Tables 3 and 4.
  • Example 2 optical evaluation is performed in the same manner as in Example 1 by computer simulation using a three-layer flat light guide plate 30A having boundary surfaces z1 and z2 as shown in FIG. did.
  • Example 2 as shown in Table 3, the screen size, light guide length, and thickness of the light guide plate 30A are the same as in Example 1, and the thickness of the second layer 64 at the bisector ⁇ is The thickness of the second layer 64 at the maximum thickness, that is, the position of the maximum value is 0.65 mm, and the second layer 64 at the position of the minimum thickness and the minimum value of the second layer 64 is the thinnest.
  • a light guide plate was used in which the thickness of the third layer 66 was 0.15 mm, and the distance from the first maximum value to the light incident surface was 20 mm.
  • Example 2 as in Example 1, the particle size and particle concentration of the scattering particles of the first layer 60 are set to 4.5 ⁇ m and 0.005 wt%, and then the scattering particles of the second layer 64 are set.
  • the light guide plate 30A is designed and manufactured by determining the particle size and particle concentration of the particles to 4.5 ⁇ m and 0.23 wt%, and the particle size and particle concentration of the scattering particles of the third layer 66 to 9.0 ⁇ m and 0.49 wt%. did.
  • the combined scattering cross section S (x) at the light guide position x of the light guide plate 30A of Example 2 obtained is obtained using the above formulas (3) and (4), and the transmission coefficients T (B) and R of B are calculated.
  • the transmission coefficient T (R) was determined using the above formula (5).
  • the light guide plate was designed and manufactured under the conditions shown in Tables 3 and 4 in the same manner as in Example 1 or 2, and the combined scattering cross section S
  • the transmission coefficient T (B) of (x) and B and the transmission coefficient T (R) of R were determined. The obtained results are shown in Tables 3 and 4.
  • Table 3 above shows that the maximum value S max and the minimum value S min of the combined scattering cross section S (x) are the above formula (1)
  • Table 4 shows Examples 1 to 8 in which the ratio of the above satisfies the above formula (2).
  • Table 4 shows that the maximum value S max and the minimum value S min of the combined scattering cross section S do not satisfy the above formula (1) Comparative Examples 1 to 3 in which the ratio of the transmission coefficient T (B) of B and the transmission coefficient T (R) of R does not satisfy the above formula (2) are shown.
  • Examples 1 to 8 and Comparative Examples 1 to 3 shown in Tables 3 and 4 the above (a) light utilization efficiency, (b) medium to high altitude, (c) uneven shape at the center, and (d) light The wavelength unevenness of the light emitted from the emission surface 30a is obtained, and optical evaluation is performed for these three items.
  • the set value (a) of each of these three items is 70% or more, (b) more than 0% and 45% or less, ( It was determined whether or not c) convex shape and (d) wavelength unevenness of emitted light were satisfied.
  • T (B) / T (R) in a state where the color unevenness (wavelength unevenness) is not substantially visually recognized, that is, when T (B) / T (R) is in the range of 0.95 to 1.05, A (excellent), a level that is not practical for a planar illumination device (for example, the backlight unit 20), and in which color unevenness (wavelength unevenness) is hardly visible, that is, T (B) / T (R) Is in the range of 0.85 to 1.15, it is B (good), and although it is white outgoing light, the color unevenness is visually perceived and cannot be allowed, that is, T (B) / T (R ) Is less than 0.85 or greater than 1.15, C (impossible).
  • each of Examples 1 to 8 and Comparative Examples 1 to 3 in this example satisfy all of the criteria (a) to (c), that is, the evaluation is good.
  • Reference numerals 1 to 8 are evaluation criteria (d) in which wavelength irregularity (color irregularity) of emitted light (change between the vicinity of the incident surface and the central part in the case of two-side incidence) cannot be visually recognized (A, B).
  • 1 to 3 are (d) (C) in which the wavelength unevenness (color unevenness) of the emitted light is visually recognized.
  • those that do not satisfy all of the determination criteria (a) to (c) cannot be used as a planar illumination device (for example, the backlight unit 20) in the first place, and whether or not there is wavelength unevenness (color unevenness). This is because there is no need to evaluate.
  • the particle diameters of the scattering particles dispersed in the first layer 60 and the second layer 62 are the same at 9.0 ⁇ m, Since the red light R is more easily diffused than the blue light B in each cross section, the B component of the emitted light is relatively increased and bluish, and the color temperature is high.
  • the transmission coefficients T (B) of the combined scattering cross sections S (x) and B and the transmission coefficient T (R) of R In all of Examples 1 to 8 in which the ratio to the above satisfies the scattering particle dispersion condition of the present invention, (a) the light utilization efficiency is 70% or more, and (b) the medium to altitude of the luminance distribution is more than 0% 45 % Or less, and (c) the shape of the central portion of the luminance distribution is a convex shape, and (d) the wavelength unevenness of the emitted light from the light emitting surface 30a is substantially or hardly visible, and these four items Is determined to be A (excellent) or B (good), but the combined scattering cross section S (x) and the transmission coefficient T (B) of B and the transmission coefficient T (R of R) In Comparative Examples 1 to 3 in which the ratio to R) does not satisfy the scattering particle dispersion condition of the present invention, at

Abstract

A light guide plate (30, 30A, 80) has two or more layers composed of a first layer (60, 82) and a second layer (62, 64, 84), said first layer and second layer having different diffused particle concentrations, respectively. The second layer (62, 64, 84) forms a cross-sectional shape having a portion where a thickness in the direction substantially perpendicular to a light output surface (30a, 80a) continuously increases to be maximum in the direction to be away from a light input surface (30c, 30d, 80c), and diffused particles are dispersed such that a composite scatter cross-sectional area (S) of two or more layers, said area being in the thickness direction of the layers, monotonously increases toward the side away from the light input surface. A maximum value (Smax) and a minimum value (Smin) of the composite scatter cross-sectional area (S) respectively satisfy 1.25≤Smax≤2.2 and 0.90≤Smin≤1.6, and the ratio between a transmission coefficient (T(B)) of a main wavelength (B) of a blue color component and a transmission coefficient (T(R)) of a main wavelength (R) of a red color component satisfies 0.85≤T(B)/T(R)≤1.15.

Description

導光板及び面状照明装置Light guide plate and planar illumination device
 本発明は、面状照明光を出射させるための拡散微粒子等の拡散材料を分散させると共に拡散材料特有の問題である出射光の波長むらを改善することができる導光板、並びに出射光の波長むらを改善した液晶ディスプレイ(液晶表示装置)や広告用ディスプレイのバックライト及び環境照明用面光源等として用いられる、面状照明光を発光させる面状照明装置に関するものである。 The present invention provides a light guide plate that can disperse a diffusing material such as diffusing fine particles for emitting planar illumination light and can improve the wavelength unevenness of the emitted light, which is a problem peculiar to the diffusion material, and the wavelength unevenness of the emitted light The present invention relates to a planar illumination device that emits planar illumination light, which is used as a backlight of a liquid crystal display (liquid crystal display device) and an advertising display, an area light source for environmental illumination, and the like.
 液晶表示装置には、液晶表示パネルの裏面側から光を照射し、液晶表示パネルを照明する面状照明装置(バックライトユニット)が用いられている。バックライトユニットは、照明用の光源が発する光を拡散して液晶表示パネルを照射する導光板、導光板から出射される光を均一化するプリズムシートや拡散シートなどの部品を用いて構成される。
 また、広告用ディスプレイのバックライト及び環境照明用面光源においても、ディスプレイパネルを照明したり、環境を面状に照明したりするために、照明用の光源が発する光を拡散させて面状照明光を出射させるための導光板が用いられている。
As the liquid crystal display device, a planar illumination device (backlight unit) that irradiates light from the back side of the liquid crystal display panel and illuminates the liquid crystal display panel is used. The backlight unit is configured by using components such as a light guide plate that diffuses light emitted from a light source for illumination and irradiates the liquid crystal display panel, a prism sheet that diffuses light emitted from the light guide plate, and a diffusion sheet. .
In addition, in the backlight for advertising displays and the surface light source for environmental illumination, in order to illuminate the display panel or illuminate the environment in a planar shape, the light emitted from the illumination light source is diffused to obtain a planar illumination. A light guide plate for emitting light is used.
 現在、大型の液晶テレビや、大型の広告用ディスプレイや、大型の環境照明用面光源においても薄型化が求められており、そのバックライトユニットも、照明用の光源の直上に導光板を配置した直下型と呼ばれる方式よりも、透明樹脂に光を散乱又は拡散させるための散乱粒子又は拡散粒子を混入させた板状の導光板を用い、照明用の光源を導光板の側面に配置し、側面から光を入射し、表面から光を出射する方式が求められるようになってきている。 Currently, there is a need to reduce the thickness of large LCD TVs, large advertising displays, and large surface light sources for environmental lighting, and the backlight unit also has a light guide plate directly above the light source for illumination. Rather than a method called a direct type, a light guide plate is used that scatters or diffuses light into a transparent resin and mixed with scattering particles or diffusion particles, and a light source for illumination is arranged on the side of the light guide plate. Therefore, there is a demand for a method of entering light from the surface and emitting light from the surface.
 例えば、特許文献1には、相補的な形状を有する少なくとも2つの光散乱導光体ブロック領域を含む板状光散乱導光素子と、その側方より光を入射させることのできる少なくとも1個の光入射手段とを備え、各光散乱導光体ブロック領域の散乱能を有効散乱照射パラメータ値で表わした時、各有効散乱照射パラメータ値の内の少なくとも1つは他のいずれの有効散乱照射パラメータ値とも等しくなく、かつ、板状光散乱導光素子の厚み方向の断面上における有効散乱照射パラメータの平均値が、光入射手段に相対的に近い部分では相対的に小さく、光入射手段に相対的に遠い部分では相対的に大きい光散乱導光光源装置が提案されている。 For example, Patent Document 1 discloses a plate-like light scattering light guide element including at least two light scattering light guide block regions having complementary shapes, and at least one light that can be incident from the side thereof. Light scattering means, and when the scattering ability of each light scattering light guide block area is represented by an effective scattering irradiation parameter value, at least one of the effective scattering irradiation parameter values is any other effective scattering irradiation parameter. The average value of the effective scattering irradiation parameter on the cross section in the thickness direction of the plate-like light scattering light guide element is relatively small at a portion relatively close to the light incident means, and is not relative to the light incident means. A relatively large light-scattering light-guiding light source device has been proposed in a far part.
 また、特許文献2には、少なくとも1つの非散乱導光領域と、これと同じ材料に屈折率が異なる粒子を均一に分散した少なくとも1つの散乱導光領域とが、重なる部分を有する板状体において、端面に光源灯を装着すると共に、両領域の板厚で粒子の濃度を局所的に調整することによって、主面からの出射量の分布状態を制御したことを特徴とする面光源装置であって、散乱導光領域が凸状の導光体ブロックであり、非散乱導光領域が凸状の導光体ブロックに対応する凹状の導光体ブロックである面光源装置が提案されている。
 さらに、特許文献3には、2層からなる導光板であり、第1層と第2層との境界面が端部から導光板の中央に向かうに従って、光出射面に近づく方向に傾斜した傾斜面である導光板(断面形状が、例えば二等辺三角形)が開示されている。
Patent Document 2 discloses a plate-like body in which at least one non-scattering light guiding region and at least one scattering light guiding region in which particles having different refractive indexes are uniformly dispersed in the same material are overlapped. In the surface light source device, the light source lamp is mounted on the end surface, and the distribution state of the emission amount from the main surface is controlled by locally adjusting the particle concentration with the plate thickness in both regions. A surface light source device is proposed in which the scattering light guide region is a convex light guide block and the non-scattering light guide region is a concave light guide block corresponding to the convex light guide block. .
Further, Patent Document 3 is a light guide plate composed of two layers, and an inclination inclined in a direction approaching the light exit surface as the boundary surface between the first layer and the second layer goes from the end toward the center of the light guide plate. A light guide plate that is a surface (the cross-sectional shape is, for example, an isosceles triangle) is disclosed.
 また、特許文献4には、散乱子を母材樹脂に分散混練した光散乱導光体の内部に付与された散乱能が、光供給手段から供給される可視光の赤色光(波長615nmで代表される)における散乱効率Q(R)と青色光(波長435nmで代表される)における散乱効率Q(B)との比Q(B)/Q(R)で表わされる出射面からの出射光の色温度を均一化するための調整比kの値を0.75≦k≦1.25の範囲にすることにより、出射面の側端に入射面を持つサイドライト型の光散乱導光体における出射光の色ムラ、例えば導光距離が長い領域の青味の不足等を減らし、出射光の色合いの均一性を高めて改善する光源装置が提案されている。 Further, in Patent Document 4, the scattering power imparted to the inside of a light scattering light guide in which scatterers are dispersed and kneaded in a base material resin is visible red light (represented at a wavelength of 615 nm) supplied from a light supply means. Of the emission light from the emission surface represented by the ratio Q (B) / Q (R) of the scattering efficiency Q (R) in blue light (represented by a wavelength of 435 nm). By adjusting the value of the adjustment ratio k for making the color temperature uniform within the range of 0.75 ≦ k ≦ 1.25, in the sidelight type light scattering light guide having the incident surface at the side edge of the emission surface There has been proposed a light source device that reduces color unevenness of emitted light, for example, lack of bluishness in a region with a long light guide distance, and improves and improves the uniformity of the hue of emitted light.
特開平06-324330号公報Japanese Patent Laid-Open No. 06-324330 特開平11-345512号公報Japanese Patent Laid-Open No. 11-345512 特開2009-117357号公報JP 2009-117357 A 特開平11-153963号公報Japanese Patent Laid-Open No. 11-153963
 ところで、特許文献1に提案された光散乱導光装置は、板状光散乱導光素子を光散乱能の異なる2つ~3つの光散乱導光体ブロック領域で構成し、光入射手段に相対的に遠い部分では、高い光散乱能を持つ光散乱導光体ブロック領域の厚さが厚くなるように構成するものであるが、均一で明るい光出射面を得るものであり、板状光散乱導光素子の光散乱導光体ブロック領域の形状を、液晶表示装置のバックライトユニットに要求される出射光量分布に最適化するために調整することは考慮されていなかった。
 また、特許文献2に記載の面光源装置においても、出光面(主面)からの出光輝度とその均整度を高めるために、導光体を散乱導光領域と非散乱導光領域とで構成するものであるが、散乱導光領域の形状を上述の液晶表示装置のバックライトユニットに要求される出射光量分布に最適化するために調整することは考慮されていなかった。
By the way, in the light scattering light guiding device proposed in Patent Document 1, the plate-like light scattering light guiding element is composed of two to three light scattering light guide block regions having different light scattering capabilities, and is relative to the light incident means. The light-scattering light guide block region having high light scattering ability is configured to be thick at the far part, but it is intended to obtain a uniform and bright light exit surface, and plate-like light scattering It has not been considered to adjust the shape of the light scattering light guide block region of the light guide element in order to optimize the emitted light amount distribution required for the backlight unit of the liquid crystal display device.
Also in the surface light source device described in Patent Document 2, the light guide is composed of a scattering light guide region and a non-scattering light guide region in order to increase the light emission luminance from the light emission surface (main surface) and the uniformity thereof. However, it has not been considered to adjust the shape of the scattering light guide region in order to optimize the distribution of the emitted light quantity required for the backlight unit of the liquid crystal display device described above.
 また、大型の導光板は、周囲の温度・湿度による伸縮が大きく、50インチ程度のサイズでは、5mm以上の伸縮を繰り返す。そのため、特許文献1及び2に開示の導光板(板状光散乱導光素子や導光体)のように、平板であると、光出射面側と反射面側のどちらに反るかわからず、光出射面側に反った場合、伸縮した導光板が液晶パネルを押し上げ、液晶表示装置から出射される光にプール状のむらが発生する。これを避けるためには、予め液晶パネルとバックライトユニットとの距離を大きくとることが考えられるが、これでは液晶表示装置の薄型化が不可能であるという問題がある。 Also, the large light guide plate expands and contracts due to the surrounding temperature and humidity, and repeats expansion and contraction of 5 mm or more for a size of about 50 inches. Therefore, as in the light guide plate (a plate-like light scattering light guide element or light guide) disclosed in Patent Documents 1 and 2, it is not known whether the plate is flat or the light exit surface side or the reflection surface side is warped. When warped to the light emitting surface side, the stretched light guide plate pushes up the liquid crystal panel, and pool-like unevenness occurs in the light emitted from the liquid crystal display device. In order to avoid this, it is conceivable to increase the distance between the liquid crystal panel and the backlight unit in advance, but there is a problem that it is impossible to make the liquid crystal display device thin.
 特許文献3に記載の導光板は、確かに、粒子濃度の異なる2層からなる導光板であり、その結果、特許文献1と同様に散乱能の異なる2層からなる導光板であり、第1層と第2層との境界面が端部から導光板の中央に向かうに従って、光出射面に近づく方向に傾斜した断面形状が略二等辺三角形である導光板であるが、第2層の形状を出射光量を最適化するために調整することは考慮されていなかった。 The light guide plate described in Patent Document 3 is certainly a light guide plate composed of two layers having different particle concentrations. As a result, the light guide plate composed of two layers having different scattering powers as in Patent Document 1, As the boundary surface between the layer and the second layer is directed from the end toward the center of the light guide plate, the cross-sectional shape inclined in the direction approaching the light output surface is a substantially isosceles triangle, but the shape of the second layer It was not taken into account to adjust the light intensity to optimize the amount of emitted light.
 また、バックライトユニットを薄型、大型化すると、光を導光板の奥まで導光するために、散乱(拡散)粒子の粒子濃度を低くする必要があるが、散乱粒子の粒子濃度が低いと、光入射面近傍では入射した光が十分に拡散されていないため、光入射面近傍から出射される出射光に、光源の配置間隔等に起因する輝線(暗線、ムラ)が視認されてしまうおそれがある。
 一方、光入射面近傍の領域で散乱粒子の粒子濃度が高いと、光入射面から入射した光が、光入射面近傍の領域で反射されて、光入射面から戻り光として出射したり、筺体に覆われていて利用されない光入射面付近の領域からの出射光が増加するおそれがある。
In addition, when the backlight unit is thin and large, it is necessary to reduce the particle concentration of the scattering (diffusion) particles in order to guide the light to the back of the light guide plate, but when the particle concentration of the scattering particles is low, Since the incident light is not sufficiently diffused in the vicinity of the light incident surface, bright lines (dark lines, unevenness) due to the arrangement interval of the light sources may be visually recognized in the emitted light emitted from the vicinity of the light incident surface. is there.
On the other hand, if the particle concentration of the scattering particles is high in the region near the light incident surface, the light incident from the light incident surface is reflected in the region near the light incident surface and emitted from the light incident surface as return light, or There is a risk that light emitted from a region near the light incident surface that is covered and not used increases.
 また、上述した特許文献1~3に開示の拡散方式の導光板は、所定の大きさ(粒径)の拡散粒子が均一に分散しているため、入射波長に対応して拡散しやすさが異なり、結果として出射光が波長依存性を持つという問題がある。このため、同一の光強度の光でも、青色波長の成分が赤色波長の成分よりも大きい場合には、青味を帯びた白色光となる。
 また、導光板側面から光を入射させるため、導光方向の各位置における出射光の波長成分比が変化し、2面光入射の場合、光入射部と画面中央部(最も導光長が長い部分)において色味が異なって観察されてしまうという問題がある。
Further, in the diffusion type light guide plates disclosed in Patent Documents 1 to 3 described above, the diffusion particles having a predetermined size (particle diameter) are uniformly dispersed, and therefore, the diffusion type light guide plate is easy to diffuse corresponding to the incident wavelength. In contrast, as a result, there is a problem that the emitted light has wavelength dependency. For this reason, even when the light has the same light intensity, when the blue wavelength component is larger than the red wavelength component, the light becomes bluish white light.
In addition, since light is incident from the side surface of the light guide plate, the wavelength component ratio of the emitted light at each position in the light guide direction is changed. There is a problem that the color tone is observed differently in (part).
 特許文献1~3に開示の導光板の断面方向に2層構造を有する拡散方式の導光板においても同様であり、拡散粒子の断面粒子濃度が導光板入射部よりも中央部の方が高い構成のため、同一粒径の拡散粒子が分散している場合には、必ず中央部の色味(射出光の波長成分比)が変化してしまうという問題点がある。
 また、特許文献4に開示の光散乱導光体では、母材樹脂に分散混練する散乱粒子を選択することにより、赤色光と青色光の散乱効率の比Q(B)/Q(R)を調整して、導光距離の違いによる出射光の色ムラを低減し、色合いの均一性を改善しているが、散乱粒子は均一分散されているに過ぎず、各層で粒子濃度の異なる多層構造導光板には適用できないという問題があった。
The same applies to the diffusion-type light guide plate having a two-layer structure in the cross-sectional direction of the light guide plate disclosed in Patent Documents 1 to 3, and the cross-sectional particle concentration of the diffused particles is higher in the central portion than in the light guide plate incident portion. Therefore, when diffusing particles having the same particle diameter are dispersed, there is a problem that the color of the central portion (the wavelength component ratio of the emitted light) always changes.
Further, in the light scattering light guide disclosed in Patent Document 4, the ratio of red light to blue light scattering efficiency Q (B) / Q (R) is selected by selecting scattering particles to be dispersed and kneaded in the base resin. Adjusted to reduce the color unevenness of the emitted light due to the difference in the light guide distance and improve the uniformity of the tint, but the scattering particles are only uniformly dispersed, the multilayer structure with different particle concentration in each layer There was a problem that it could not be applied to the light guide plate.
 本発明の目的は、上記従来技術の問題点を解消し、大型かつ薄型な形状であり、光利用効率が高く、輝度むらが少ない光を出射することができ、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高な、あるいは釣鐘状の明るさの分布、すなわち光出射面からの出射光の輝度分布において中央部の輝度が入射部等の周辺部の輝度よりも高い釣鐘状の分布(以下、「中高分布」とする)を有し、かつ、導光方向(入射部から中央部又は他方の端部)における波長むら(色味変化)がない、又は少ない出射光を同時に実現することができる導光板、及びこれを用いる面状照明装置を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, has a large and thin shape, can emit light with high light utilization efficiency and little luminance unevenness, and is required for a large-screen thin liquid crystal television. The distribution near the center of the screen is brighter than the periphery, so-called medium-high or bell-shaped brightness distribution, that is, the brightness of the light emitted from the light exit surface is such that the brightness at the center is It has a bell-shaped distribution (hereinafter referred to as “medium-high distribution”) higher than the luminance at the peripheral part, and wavelength unevenness (color change) in the light guiding direction (from the incident part to the center part or the other end part) It is an object of the present invention to provide a light guide plate that can simultaneously realize less or less emitted light, and a planar illumination device using the same.
 上記課題を解決するために、本発明の導光板は、矩形状の光出射面と、前記光出射面の端辺側に設けられ、前記光出射面に略平行な方向に進行する光を入射する少なくとも1つの光入射面と、前記光出射面とは反対側の背面とを有し、内部に拡散粒子が分散された導光板であって、前記導光板は、前記光出射面に略垂直な方向に重なった2つ以上の層を有し、前記2つ以上の層の各層には、1種類以上の前記拡散粒子が互いに異なる粒子濃度で分散されており、前記2つ以上の層は、少なくとも、前記光出射面側に位置する第1層と、前記背面側に位置し、前記第1層と接する第2層とを有し、前記第2層は、前記光出射面に略平行な方向において、前記光出射面に略垂直な方向の厚さが変化し、その厚さが光入射面から遠ざかる方向において連続して増加して極大となる部分を少なくとも有する断面形状を成し、前記光出射面に略平行な方向に沿った導光位置における前記2つ以上の層の前記光出射面に略垂直な方向の合成散乱断面積Sが前記光入射面から遠ざかるにつれて連続にかつ単調増加するように、前記拡散粒子が分散され、前記合成散乱断面積Sの最大値Smax及びSminは、下記式(1)を満足し、かつ、前記光入射面に入射する入射光の青色成分の主要波長をBとし、前記入射光の赤色成分の主要波長をRとする時、前記光出射面に略平行な方向に沿った導光距離の半値となる導光位置における、青色成分の主要波長Bの透過係数T(B)と、赤色成分の主要波長Rの透過係数T(R)との比T(B)/T(R)が下記式(2)を満足することを特徴とする。
     1.25≦Smax≦2.2
     0.90≦Smin≦1.6            ……(1)
     0.85≦T(B)/T(R)≦1.15    ……(2)
In order to solve the above-described problems, a light guide plate of the present invention is provided with a rectangular light exit surface and light that travels in a direction substantially parallel to the light exit surface and is provided on the edge side of the light exit surface. A light guide plate having at least one light incident surface and a back surface opposite to the light output surface, in which diffusion particles are dispersed, wherein the light guide plate is substantially perpendicular to the light output surface. Two or more layers overlapped in any direction, and each of the two or more layers has one or more kinds of the diffusing particles dispersed therein at different particle concentrations, the two or more layers being And at least a first layer located on the light emitting surface side and a second layer located on the back surface side and in contact with the first layer, the second layer being substantially parallel to the light emitting surface. The thickness in a direction substantially perpendicular to the light exit surface changes in a direction away from the light entrance surface. A cross-sectional shape having at least a portion that continuously increases and becomes a local maximum is formed, and is substantially perpendicular to the light exit surface of the two or more layers at a light guide position along a direction substantially parallel to the light exit surface. The diffused particles are dispersed so that the combined scattering cross section S in the direction increases continuously and monotonously as the distance from the light incident surface increases, and the maximum values S max and S min of the combined scattering cross section S are expressed by the following formulas ( 1) and when the main wavelength of the blue component of the incident light incident on the light incident surface is B and the main wavelength of the red component of the incident light is R, it is substantially parallel to the light exit surface. The ratio T (B) between the transmission coefficient T (B) of the main wavelength B of the blue component and the transmission coefficient T (R) of the main wavelength R of the red component at the light guide position that is a half value of the light guide distance along the direction. ) / T (R) satisfies the following formula (2).
1.25 ≦ S max ≦ 2.2
0.90 ≦ S min ≦ 1.6 (1)
0.85 ≦ T (B) / T (R) ≦ 1.15 (2)
 ここで、前記第2層は、前記光出射面に略平行な方向において、前記光出射面に略垂直な方向の厚さが、少なくとも1つの極小値と、少なくとも1つの極大値とを有する断面形状を成すのが好ましい。
 また、前記少なくとも1つの光入射面が、前記光出射面の対向する2つの端辺側に設けられた2つの光入射面であるのが好ましい。
 また、前記第2層の前記断面形状は、3つの円弧、又は4つの円弧からなるのが好ましく、また、前記2つの光入射面のそれぞれの側に前記極小値を有し、前記2つの光入射面間の略中央に前記極大値を有するのが好ましく、また、前記2つの光入射面のそれぞれの側に前記極小値を形成する円弧を有し、前記2つの光入射面間の略中央に前記極大値を形成する円弧を有するのが好ましい。
 また、前記第2層の厚さが、前記光出射面の略中央で最も厚いのが好ましい。
Here, the second layer has a cross section in which the thickness in a direction substantially perpendicular to the light emitting surface in a direction substantially parallel to the light emitting surface has at least one minimum value and at least one maximum value. The shape is preferably formed.
The at least one light incident surface is preferably two light incident surfaces provided on two opposite sides of the light emitting surface.
The cross-sectional shape of the second layer preferably includes three arcs or four arcs, and has the minimum value on each side of the two light incident surfaces, and the two light beams It is preferable that the maximum value is at the approximate center between the incident surfaces, and an arc forming the minimum value is provided on each side of the two light incident surfaces, and the approximate center between the two light incident surfaces is provided. It is preferable to have an arc that forms the maximum value.
Moreover, it is preferable that the thickness of the second layer is the thickest in the approximate center of the light emitting surface.
 また、前記少なくとも1つの光入射面が、前記光出射面の1つの端辺側に設けられた1つの光入射面であり、前記第2層の前記断面形状は、前記1つの光入射面の側に前記極小値を有し、前記光出射面の他方の端辺側に前記極大値を有するのが好ましい。
 また、前記第2層の前記断面形状は、前記1つの光入射面の側に前記極小値を形成する円弧を有し、前記光出射面の他方の端辺側に前記極大値を形成する円弧を有するのが好ましい。
Further, the at least one light incident surface is one light incident surface provided on one end side of the light emitting surface, and the cross-sectional shape of the second layer is that of the one light incident surface. It is preferable to have the minimum value on the side and to have the maximum value on the other end side of the light emitting surface.
The cross-sectional shape of the second layer has an arc that forms the minimum value on the one light incident surface side, and an arc that forms the maximum value on the other end side of the light emitting surface. It is preferable to have.
 また、前記2つ以上の層は、さらに、前記背面側に位置し、前記第2層と接する第3層とを有するのが好ましく、前記第2層と第3層との境界面は、前記光出射面に略平行であるのが好ましい。
 また、前記少なくとも1つの光入射面から入射した光が前記光出射面から出射された割合を示す光の利用効率が70%以上であり、前記光出射面の前記周辺部近傍から出射する光の輝度に対する前記光出射面の中央部から出射する光の輝度の割合を示す前記光出射面の輝度分布の中高度合が、0%超、45%以下であり、前記光出射面の前記中央部の輝度分布が凸型であるのが好ましい。
 また、前記背面が、前記光出射面に平行な平面であるのが好ましい。
Further, the two or more layers preferably further include a third layer located on the back side and in contact with the second layer, and the boundary surface between the second layer and the third layer is It is preferably substantially parallel to the light exit surface.
Further, the light use efficiency indicating the ratio of the light incident from the at least one light incident surface being emitted from the light exit surface is 70% or more, and the light emitted from the vicinity of the peripheral portion of the light exit surface The middle portion of the luminance distribution of the light emitting surface indicating the ratio of the luminance of the light emitted from the central portion of the light emitting surface to the luminance is more than 0% and 45% or less, and the central portion of the light emitting surface It is preferable that the luminance distribution is convex.
Moreover, it is preferable that the said back surface is a plane parallel to the said light-projection surface.
 上記課題を解決するために、本発明の面状照明装置は、上記導光板と、前記導光板の前記光入射面に対面して配置される光源と、前記導光板及び前記光源を収納し、前記導光板の前記光出射面側に、前記光出射面よりも小さい開口部を有する筐体とを有することを特徴とする。 In order to solve the above problems, the planar illumination device of the present invention houses the light guide plate, a light source disposed to face the light incident surface of the light guide plate, the light guide plate and the light source, A housing having an opening smaller than the light exit surface is provided on the light exit surface side of the light guide plate.
 本発明によれば、大型、薄型な形状であり、かつ光の利用効率が高く、輝度むらが少ない光を出射することができ、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい輝度分布、いわゆる中高または釣鐘状の明るさの中高の輝度分布を持つ出射光を得ることができ、かつ、導光方向(入射部から中央部又は他方の端部)における波長むら(色味変化)がない、又は少ない出射光を得ることができる。特に、本発明によれば、従来の平板導光板では達成できない高い効率(例えば、70%以上)において、中高の輝度分布と、入射部と中央部又は他方の端部との波長むらのない輝度分布とを同時に実現することができる。
 また、本発明によれば、従来の2層平板導光板(合成粒子密度分布)のさらなる高性能化(波長むら改善)に貢献することができる。
According to the present invention, a large, thin shape, high light utilization efficiency, light with little luminance unevenness can be emitted, and the central portion of the screen required for a large-screen thin liquid crystal television Emission light having a brightness distribution brighter than that of the peripheral part, that is, a so-called medium-high or bell-like brightness distribution can be obtained, and in the light guide direction (from the incident part to the central part or the other end part) Output light with little or no wavelength unevenness (color change) can be obtained. In particular, according to the present invention, at a high efficiency (for example, 70% or more) that cannot be achieved by a conventional flat light guide plate, a medium-to-high luminance distribution and a luminance without wavelength unevenness between the incident portion and the central portion or the other end portion. Distribution can be realized simultaneously.
In addition, according to the present invention, it is possible to contribute to further enhancement in performance (improving wavelength unevenness) of a conventional two-layer flat light guide plate (synthetic particle density distribution).
本発明に係る導光板を用いる面状照明装置を備える液晶表示装置の一実施形態を示す概略斜視図である。It is a schematic perspective view which shows one Embodiment of a liquid crystal display device provided with the planar illuminating device using the light-guide plate which concerns on this invention. 図1に示す液晶表示装置のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of the liquid crystal display device shown in FIG. (A)は、図2に示す面状照明装置の、III-III線矢視図であり、(B)は、(A)のB-B線断面図である。FIG. 3A is a cross-sectional view taken along the line III-III of the planar illumination device shown in FIG. 2, and FIG. 3B is a cross-sectional view taken along line BB in FIG. (A)は、図1及び図2に示す面状照明装置の光源の概略構成を示す斜視図であり、(B)は、(A)に示す光源の1つのLEDを拡大して示す概略斜視図である。(A) is a perspective view which shows schematic structure of the light source of the planar illuminating device shown to FIG.1 and FIG.2, (B) is a schematic perspective view which expands and shows one LED of the light source shown to (A). FIG. 図3に示す導光板の形状を示す概略斜視図である。It is a schematic perspective view which shows the shape of the light-guide plate shown in FIG. 図5に示す導光板の層構造を説明するためのVI-VI線断面図である。FIG. 6 is a cross-sectional view taken along the line VI-VI for explaining the layer structure of the light guide plate shown in FIG. 5. 本発明に係る導光板の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the light-guide plate which concerns on this invention. 本発明の導光板の設計方法の一例を示すフローチャートである。It is a flowchart which shows an example of the design method of the light-guide plate of this invention. 図8に示す導光板の設計方法で設計された導光板の第2層(下層)の断面形状の3つの例を示すグラフである。It is a graph which shows three examples of the cross-sectional shape of the 2nd layer (lower layer) of the light-guide plate designed with the design method of the light-guide plate shown in FIG. 図8に示す導光板の設計方法で設計された導光板の5つの設計例についての導光位置に対する単位長さ当たりの合成散乱断面積を示すグラフである。It is a graph which shows the synthetic | combination scattering cross section per unit length with respect to the light guide position about five design examples of the light guide plate designed with the design method of the light guide plate shown in FIG. 図10に示す合成散乱断面積となる導光板の5つの設計例についての導光位置に対する出射光の相対照度を示すグラフである。It is a graph which shows the relative illumination intensity of the emitted light with respect to the light guide position about five design examples of the light-guide plate used as the synthetic | combination scattering cross section shown in FIG. (A)及び(B)は、それぞれ本発明の実施例及び比較例の導光板の導光方向のB及びR波長の照度分布の一例を示すグラフである。(A) And (B) is a graph which shows an example of the illumination intensity distribution of B and R wavelength of the light guide direction of the light guide plate of the Example of this invention, and a comparative example, respectively. 図8に示す導光板の設計方法で設計された導光板の第2層(下層)の粒子濃度に対する入射光の利用効率及び出射光の中高度合を示すグラフである。It is a graph which shows the utilization efficiency of incident light with respect to the particle concentration of the 2nd layer (lower layer) of the light-guide plate designed with the design method of the light-guide plate shown in FIG. (A)~(D)は、それぞれ本発明に係る導光板の他の一例を示す概略断面図である。(A) to (D) are schematic sectional views showing other examples of the light guide plate according to the present invention. (A)~(D)は、それぞれ本発明に係る導光板の他の一例を示す概略断面図である。(A) to (D) are schematic sectional views showing other examples of the light guide plate according to the present invention. 本発明に係る面状照明装置の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the planar illuminating device which concerns on this invention. (A)~(E)は、それぞれ本発明に係る導光板の他の一例を示す概略断面図である。(A) to (E) are schematic cross-sectional views showing other examples of the light guide plate according to the present invention. (A)及び(B)は、それぞれ本発明の導光板の導光方向の波長むらの度合の一例を示すグラフである。(A) And (B) is a graph which shows an example of the degree of the wavelength nonuniformity of the light guide direction of the light-guide plate of this invention, respectively.
 以下に、本発明に係る導光板を用いる面状照明装置を、添付の図面に示す好適実施形態に基づいて詳細に説明する。
 図1は、本発明に係る導光板を用いる面状照明装置を備える液晶表示装置の概略を示す斜視図であり、図2は、図1に示した液晶表示装置のII-II線断面図である。
 また、図3(A)は、図2に示した面状照明装置(以下「バックライトユニット」ともいう。)のIII-III線矢視図であり、図3(B)は、(A)のB-B線断面図である。
Hereinafter, a planar illumination device using a light guide plate according to the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
FIG. 1 is a perspective view schematically showing a liquid crystal display device including a planar illumination device using a light guide plate according to the present invention, and FIG. 2 is a cross-sectional view taken along the line II-II of the liquid crystal display device shown in FIG. is there.
3A is a view taken in the direction of arrows III-III of the planar illumination device (hereinafter also referred to as “backlight unit”) shown in FIG. 2, and FIG. FIG.
 液晶表示装置10は、バックライトユニット20と、バックライトユニット20の光出射面側に配置される液晶表示パネル12と、液晶表示パネル12を駆動する駆動ユニット14とを有する。なお、図1においては、バックライトユニット20の構成を示すため、液晶表示パネル12の一部の図示を省略している。 The liquid crystal display device 10 includes a backlight unit 20, a liquid crystal display panel 12 disposed on the light emission surface side of the backlight unit 20, and a drive unit 14 that drives the liquid crystal display panel 12. In FIG. 1, a part of the liquid crystal display panel 12 is not shown in order to show the configuration of the backlight unit 20.
 液晶表示パネル12は、予め特定の方向に配列してある液晶分子に、部分的に電界を印加してこの分子の配列を変え、液晶セル内に生じた屈折率の変化を利用して、液晶表示パネル12の表面上に文字、図形、画像などを表示する。
 なお、本発明の導光板が対象とする液晶表示パネル12は、その画面サイズが、37インチ(37”)以上の大画面であり、このような大画面を持つ大型かつ薄型液晶テレビに用いられるものである。このような液晶表示パネル12の画面サイズとしては、例えば、40インチ(40”)、42インチ(42”)、46インチ(46”)、52インチ(52”)、55インチ(55”)、65インチ(65”)などの大画面を挙げることができる。
 駆動ユニット14は、液晶表示パネル12内の透明電極に電圧をかけ、液晶分子の向きを変えて液晶表示パネル12を透過する光の透過率を制御する。
The liquid crystal display panel 12 applies a partial electric field to liquid crystal molecules arranged in a specific direction in advance to change the arrangement of the molecules, and uses the change in the refractive index generated in the liquid crystal cell to make a liquid crystal display. Characters, figures, images, etc. are displayed on the surface of the display panel 12.
The liquid crystal display panel 12 targeted by the light guide plate of the present invention has a large screen size of 37 inches (37 ") or more, and is used for a large and thin liquid crystal television having such a large screen. As the screen size of the liquid crystal display panel 12, for example, 40 inches (40 "), 42 inches (42"), 46 inches (46 "), 52 inches (52"), 55 inches ( 55 ") and 65 inches (65").
The drive unit 14 applies a voltage to the transparent electrode in the liquid crystal display panel 12, changes the direction of the liquid crystal molecules, and controls the transmittance of light transmitted through the liquid crystal display panel 12.
 バックライトユニット20は、液晶表示パネル12の背面から、液晶表示パネル12の全面に光を照射する照明装置であり、液晶表示パネル12の画像表示面と略同一形状の光出射面24aを有する。 The backlight unit 20 is an illuminating device that irradiates light from the back surface of the liquid crystal display panel 12 to the entire surface of the liquid crystal display panel 12, and has a light emission surface 24a having substantially the same shape as the image display surface of the liquid crystal display panel 12.
 本実施形態におけるバックライトユニット20は、図1、図2、図3(A)及び図3(B)に示すように、2つの光源28、本発明に係る導光板30及び光学部材ユニット32を有する照明装置本体24と、下部筐体42、上部筐体44、折返部材46及び支持部材48を有する筐体26とを有する。また、図1に示すように筐体26の下部筐体42の裏側には、光源28に電力を供給する複数の電源を収納する電源収納部49が取り付けられている。
 以下、バックライトユニット20を構成する各構成部品について説明する。
The backlight unit 20 in this embodiment includes two light sources 28, a light guide plate 30 and an optical member unit 32 according to the present invention, as shown in FIGS. 1, 2, 3A, and 3B. And a housing 26 having a lower housing 42, an upper housing 44, a folding member 46, and a support member 48. As shown in FIG. 1, a power storage unit 49 that stores a plurality of power supplies for supplying power to the light source 28 is attached to the back side of the lower housing 42 of the housing 26.
Hereinafter, each component which comprises the backlight unit 20 is demonstrated.
 照明装置本体24は、光を出射する光源28と、光源28から出射された光を面状の光として出射する導光板30と、導光板30から出射された光を、散乱させ、拡散させてよりムラのない光とする光学部材ユニット32とを有する。 The illumination device main body 24 scatters and diffuses the light source 28 that emits light, the light guide plate 30 that emits light emitted from the light source 28 as planar light, and the light emitted from the light guide plate 30. And an optical member unit 32 for making the light more uniform.
 まず、光源28について説明する。
 図4(A)は、図1及び図2に示すバックライトユニット20の光源28の概略構成を示す概略斜視図であり、図4(B)は、図4(A)に示す光源28の1つのLEDチップのみを拡大して示す概略斜視図である。
 図4(A)に示すように、光源28は、複数の発光ダイオードのチップ(以下「LEDチップ」という)50と、光源支持部52とを有する。
First, the light source 28 will be described.
4A is a schematic perspective view showing a schematic configuration of the light source 28 of the backlight unit 20 shown in FIGS. 1 and 2, and FIG. 4B is one of the light sources 28 shown in FIG. It is a schematic perspective view which expands and shows only one LED chip.
As shown in FIG. 4A, the light source 28 includes a plurality of light emitting diode chips (hereinafter referred to as “LED chips”) 50 and a light source support portion 52.
 LEDチップ50は、青色光を出射する発光ダイオードの表面に蛍光物質を塗布したチップであり、所定面積の発光面58を有し、この発光面58から白色光を出射する。
 つまり、LEDチップ50の発光ダイオードの表面から出射された青色光が蛍光物質を透過すると、蛍光物質が蛍光する。これにより、LEDチップ50からは、発光ダイオードが出射した青色光と、蛍光物質が蛍光して出射された光とにより白色光が生成され、出射される。
 ここで、LEDチップ50としては、GaN系発光ダイオード、InGaN系発光ダイオード等の表面にYAG(イットリウム・アルミニウム・ガーネット)系蛍光物質を塗布したチップが例示される。
The LED chip 50 is a chip in which a fluorescent material is applied to the surface of a light emitting diode that emits blue light. The LED chip 50 has a light emitting surface 58 having a predetermined area, and emits white light from the light emitting surface 58.
That is, when the blue light emitted from the surface of the light emitting diode of the LED chip 50 passes through the fluorescent material, the fluorescent material fluoresces. Accordingly, white light is generated and emitted from the LED chip 50 by the blue light emitted from the light emitting diode and the light emitted by the fluorescent substance fluorescent.
Here, the LED chip 50 is exemplified by a chip in which a YAG (yttrium / aluminum / garnet) fluorescent material is applied to the surface of a GaN-based light-emitting diode, InGaN-based light-emitting diode, or the like.
 光源支持部52は、一面が導光板30の光入射面(30c、30d)に対向して配置される板状部材である。
 光源支持部52は、導光板30の光入射面(30c、30d)に対向する面となる側面に、複数のLEDチップ50を、互いに所定間隔離間した状態で支持している。具体的には、光源28を構成する複数のLEDチップ50は、後述する導光板30の第1光入射面30cまたは第2光入射面30dの長手方向に沿って、言い換えれば、光出射面30aと第1光入射面30cとが交わる線と平行に、または、光出射面30aと第2光入射面30dとが交わる線と平行に、アレイ状に配列され、光源支持部52上に固定されている。
The light source support portion 52 is a plate-like member that is disposed so that one surface thereof faces the light incident surface (30c, 30d) of the light guide plate 30.
The light source support 52 supports the plurality of LED chips 50 on a side surface that is a surface facing the light incident surface (30c, 30d) of the light guide plate 30 with a predetermined distance therebetween. Specifically, the plurality of LED chips 50 constituting the light source 28 are arranged along the longitudinal direction of the first light incident surface 30c or the second light incident surface 30d of the light guide plate 30, which will be described later, in other words, the light emitting surface 30a. Are arranged in an array parallel to the line where the first light incident surface 30c intersects, or parallel to the line where the light emitting surface 30a and the second light incident surface 30d intersect, and are fixed on the light source support 52. ing.
 光源支持部52は、銅やアルミニウム等の熱伝導性の良い金属で形成されており、LEDチップ50から発生する熱を吸収し、外部に放散させるヒートシンクとしての機能も有する。なお、光源支持部52には、表面積を広くし、かつ、放熱効果を高くすることができるフィン(図示せず)を設けても、熱を放熱部材に伝熱するヒートパイプ(図示せず)を設けてもよい。 The light source support 52 is made of a metal having good thermal conductivity such as copper or aluminum, and also has a function as a heat sink that absorbs heat generated from the LED chip 50 and dissipates it to the outside. The light source support 52 has a heat pipe (not shown) that transfers heat to the heat radiating member even if it is provided with a fin (not shown) that can increase the surface area and enhance the heat dissipation effect. May be provided.
 ここで、図4(B)に示すように、本実施形態のLEDチップ50は、LEDチップ50の配列方向の長さよりも、配列方向に直交する方向の長さが短い長方形形状、つまり、後述する導光板30の厚み方向(光出射面30aに垂直な方向)が短辺となる長方形形状を有する。言い換えれば、LEDチップ50は、導光板30の光出射面30aに垂直な方向の長さをa、配列方向の長さをbとした時に、b>aとなる形状であることが好ましい。また、LEDチップ50の配置間隔をqとするとq>bであることが好ましい。このように、LEDチップ50の導光板30の光出射面30aに垂直な方向の長さa、配列方向の長さb、LEDチップ50の配置間隔qの関係が、q>b>aを満たすことが好ましい。
 LEDチップ50を長方形形状とすることにより、大光量の出力を維持しつつ、薄型な光源とすることができる。光源28を薄型化することにより、バックライトユニットを薄型にすることができる。また、LEDチップの配置個数を少なくすることができる。
Here, as shown in FIG. 4B, the LED chip 50 of the present embodiment has a rectangular shape whose length in the direction orthogonal to the arrangement direction is shorter than the length of the LED chip 50 in the arrangement direction, that is, described later. The light guide plate 30 has a rectangular shape in which the thickness direction (the direction perpendicular to the light emitting surface 30a) is a short side. In other words, the LED chip 50 preferably has a shape such that b> a, where a is the length in the direction perpendicular to the light emitting surface 30a of the light guide plate 30 and b is the length in the arrangement direction. Moreover, it is preferable that q> b when the arrangement interval of the LED chips 50 is q. Thus, the relationship among the length a in the direction perpendicular to the light emitting surface 30a of the light guide plate 30 of the LED chip 50, the length b in the arrangement direction, and the arrangement interval q of the LED chips 50 satisfies q>b> a. It is preferable.
By making the LED chip 50 into a rectangular shape, a thin light source can be obtained while maintaining a large light output. By making the light source 28 thinner, the backlight unit can be made thinner. In addition, the number of LED chips can be reduced.
 なお、LEDチップ50は、光源28をより薄型にできるため、導光板30の厚み方向を短辺とする長方形形状とすることが好ましいが、本発明はこれに限定はされず、正方形形状、円形形状、多角形形状、楕円形形状等種々の形状のLEDチップを用いることができる。
 また、本実施形態では、LEDチップを1列に並べ、単層構造としたが、本発明はこれに限定されず、アレイ支持体に複数のLEDチップ50を配置した構成のLEDアレイを複数個、積層させた構成の多層LEDアレイを光源として用いることもできる。このようにLEDアレイを積層させる場合でもLEDチップ50を長方形形状とし、LEDアレイを薄型にすることで、より多くのLEDアレイを積層させることができる。このように、多層のLEDアレイを積層させ、LEDアレイ(LEDチップ)の充填率を高くすることで、より大光量を出力することができる。また、LEDアレイのLEDチップと隣接する層のLEDアレイのLEDチップも上述と同様に配置間隔が上記式を満たすことが好ましい。つまり、LEDアレイは、LEDチップと隣接する層のLEDアレイのLEDチップとを所定距離離間させて積層させることが好ましい。
In addition, since the LED chip 50 can make the light source 28 thinner, it is preferable that the LED chip 50 has a rectangular shape having a short side in the thickness direction of the light guide plate 30. However, the present invention is not limited to this, and the square shape and the circular shape are not limited thereto. LED chips having various shapes such as a shape, a polygonal shape, and an elliptical shape can be used.
In the present embodiment, the LED chips are arranged in a single row to form a single layer structure. However, the present invention is not limited to this, and a plurality of LED arrays having a plurality of LED chips 50 arranged on an array support are provided. A multilayer LED array having a laminated structure can also be used as a light source. Even when LED arrays are stacked in this manner, more LED arrays can be stacked by making the LED chip 50 rectangular and thinning the LED array. In this way, a larger amount of light can be output by stacking multilayer LED arrays and increasing the filling rate of the LED arrays (LED chips). In addition, the LED chip of the LED array in the layer adjacent to the LED chip of the LED array preferably has the arrangement interval satisfying the above formula as described above. In other words, the LED array is preferably laminated with the LED chip and the LED chip of the LED array in the adjacent layer separated by a predetermined distance.
 次に、図2、図3(A)、(B)、図5及び図6を参照して、本発明に係る導光板30について説明する。
 導光板30は、図2、図3(A)、(B)、図5及び図6に示すように、厚みの薄い直方体を成す透明な平板であり略矩形、例えば長方形形状の平坦な平面である光出射面30aと、この光出射面30aの反対側、つまり、導光板30の背面側に位置し、光出射面30aと略同形状の平坦な平面である背面30bと、光出射面30aの長辺側の両端面に、光出射面30aに対してほぼ垂直に形成された2つの光入射面(第1光入射面30cと第2光入射面30d)とを有している。
Next, the light guide plate 30 according to the present invention will be described with reference to FIGS. 2, 3 </ b> A, 3 </ b> B, 5, and 6.
As shown in FIGS. 2, 3A, 3B, 5 and 6, the light guide plate 30 is a transparent flat plate having a thin rectangular parallelepiped shape, and is a flat surface having a substantially rectangular shape, for example, a rectangular shape. A light emitting surface 30a, a back surface 30b that is located on the opposite side of the light emitting surface 30a, that is, on the back side of the light guide plate 30, and is a flat plane substantially the same shape as the light emitting surface 30a, and the light emitting surface 30a 2 has two light incident surfaces (first light incident surface 30c and second light incident surface 30d) formed substantially perpendicular to the light emitting surface 30a.
 なお、導光板30の第1光入射面30c及び第2光入射面30dには、それぞれに対向するように、上述した2つの光源28が配置されている。ここで、本実施形態では、光出射面30aに略垂直な方向において、光源28のLEDチップ50の発光面58の長さと第1光入射面30c及び第2光入射面30dの長さが略同じ長さであるのが好ましい。
 このように、本実施形態のバックライトユニット20では、2つの光源28が、導光板30をはさみこむように配置されている。つまり、所定間隔離間して向い合って配置された2つの光源28の間に導光板30が配置されている。
The two light sources 28 described above are arranged on the first light incident surface 30c and the second light incident surface 30d of the light guide plate 30 so as to face each other. Here, in the present embodiment, the length of the light emitting surface 58 of the LED chip 50 of the light source 28 and the lengths of the first light incident surface 30c and the second light incident surface 30d are substantially the same in the direction substantially perpendicular to the light emitting surface 30a. The same length is preferred.
Thus, in the backlight unit 20 of the present embodiment, the two light sources 28 are disposed so as to sandwich the light guide plate 30. That is, the light guide plate 30 is disposed between the two light sources 28 that are disposed to face each other with a predetermined distance therebetween.
 したがって、2つの光入射面30c及び30dは、光出射面30aの対向する長辺側に対向して位置しており、それぞれ対向して配置された2つの光源28から2つの光入射面30c及び30dにそれぞれ入射した光は、光出射面30aの中央部(対向する短辺の2等分線)に向かって、光出射面30aに略平行に、導光板30内の拡散粒子(詳細は後述する)によって散乱され拡散されつつ、導光板30の内部を伝播し、光出射面30aから出射する。 Accordingly, the two light incident surfaces 30c and 30d are located opposite to the opposite long sides of the light emitting surface 30a, and the two light incident surfaces 30c and 30c are disposed from the two light sources 28 disposed opposite to each other. The light respectively incident on 30d is directed toward the central portion of the light exit surface 30a (the bisector of the short side facing it) and is substantially parallel to the light exit surface 30a and diffused particles in the light guide plate 30 (details will be described later). The light propagates through the light guide plate 30 and is emitted from the light exit surface 30a.
 ここで、本発明においては、第1光入射面30c及び第2光入射面30dとの間の光が伝播する導光長Lは、37インチ(37”)、40インチ(40”)の画面サイズ以上の液晶パネル12を対象としているので、500mm以上である必要があり、最大65インチ(65”)の画面サイズの液晶パネル12を対象とするので、850mm以下であるのが好ましい。より詳細には、40インチ(40”)付近、例えば37インチ(37”)、40インチ(40”)、42インチ(42”)及び46インチ(46”)の画面サイズに対しては、導光長Lは、500mm以上、615mm以下であり、例えば40インチ(40”)の画面サイズで540mmであり、55インチ(55”)付近、例えば52インチ(52”)、55インチ(55”)及び65インチ(65”)の画面サイズに対しては、導光長Lは、700mm以上、850mm以下、例えば、52インチ(52”)の画面サイズで700mmであるのが良い。 Here, in the present invention, the light guide length L through which the light propagates between the first light incident surface 30c and the second light incident surface 30d is 37 inches (37 ") or 40 inches (40"). Since the liquid crystal panel 12 of a size or larger is targeted, it is necessary to be 500 mm or larger, and the liquid crystal panel 12 having a screen size of 65 inches (65 ″) at the maximum is targeted, so that it is preferably 850 mm or smaller. Includes a light guide length for screen sizes around 40 inches (40 "), for example 37 inches (37"), 40 inches (40 "), 42 inches (42") and 46 inches (46 "). L is 500 mm or more and 615 mm or less, for example, 540 mm with a screen size of 40 inches (40 ″), and around 55 inches (55 ″), for example, 52 inches (52 ″), 55 inches (5 For screen size ") and 65 inch (65"), light guiding length L is more than 700mm, 850 mm or less, for example, is good is 700mm in screen size of 52 inch (52 ").
 ここで、導光板30は、その内部に光入射面30c及び30dから入射した光を散乱して拡散させる1種類以上の拡散粒子を分散させているが、各層が光出射面30aに略垂直な方向に重なり、かつ1種類以上の拡散粒子が互いに異なる粒子濃度を持つ2つの層、即ち光出射面30a側の第1層60と、背面30b側の第2層62とに分かれた2層構造で形成されている。第1層60と第2層62との境界を境界面zとすると、第1光入射面30c及び第2光入射面30dは、それぞれ境界面zで第1層60の側と第2層62の側とに分けられ、第1層60は、光出射面30a側にある層であり、光出射面30aと境界面zとで囲まれた断面の領域であり、第2層62は、第1層60に対して背面30b側にある層であり、境界面zと背面30bとで囲まれた断面の領域である。 Here, the light guide plate 30 has dispersed therein one or more kinds of diffusing particles that scatter and diffuse the light incident from the light incident surfaces 30c and 30d, but each layer is substantially perpendicular to the light emitting surface 30a. A two-layer structure in which two layers having different particle concentrations of one or more kinds of diffusing particles overlap each other, that is, a first layer 60 on the light emitting surface 30a side and a second layer 62 on the back surface 30b side It is formed with. Assuming that the boundary between the first layer 60 and the second layer 62 is a boundary surface z, the first light incident surface 30c and the second light incident surface 30d are respectively the first layer 60 side and the second layer 62 at the boundary surface z. The first layer 60 is a layer on the light emitting surface 30a side, is a cross-sectional area surrounded by the light emitting surface 30a and the boundary surface z, and the second layer 62 is It is a layer on the back surface 30b side with respect to one layer 60, and is a cross-sectional area surrounded by the boundary surface z and the back surface 30b.
 また、第1層60と第2層62との境界面zは、光入射面30cの長手方向に垂直な断面で見た際に、光出射面30aに略平行な方向において、光出射面30aに略垂直な方向における第2層62の厚さが、光出射面30aの中央部(即ち、2等分線α上)において極大(図示例では最大)となり、この極大から、それぞれ第1光入射面30c及び第2光入射面30dに向かって薄くなるように連続的に変化し、さらに、第1光入射面30c及び第2光入射面30dの手前でそれぞれ極小(図示例では最小)となり、これらの極小から、それぞれ第1光入射面30c及び第2光入射面30dに向かって厚くなるように連続的に変化している。 Further, the boundary surface z between the first layer 60 and the second layer 62 has a light emitting surface 30a in a direction substantially parallel to the light emitting surface 30a when viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 30c. The thickness of the second layer 62 in a direction substantially perpendicular to the maximum becomes a maximum (maximum in the illustrated example) at the central portion (that is, on the bisector α) of the light emitting surface 30a. It continuously changes so as to become thinner toward the incident surface 30c and the second light incident surface 30d, and becomes minimum (minimum in the illustrated example) before the first light incident surface 30c and the second light incident surface 30d. From these minimums, the thickness gradually changes toward the first light incident surface 30c and the second light incident surface 30d, respectively.
 具体的には、図6に示すように、光入射面30cの長手方向に垂直な、境界面zの断面形状は、光出射面30aの中央部における、光出射面30aに向かって凸の曲線、好ましくは1つの円弧R1(曲率半径R1)と、この凸の曲線に滑らかに接続され、それぞれ光入射面30c、30dに接続される2つの凹の曲線、好ましくは2つの円弧R2(曲率半径R2)とからなる。
 なお、凹凸の曲線は、円弧に限定されず、楕円、放物線、双曲線等の2次曲線の一部であっても、3次以上の高次曲線や三角関数やその他の曲線の一部であっても良い。また、凸の曲線と凹の曲線との接続部分や、凹の曲線と光入射面30c、30dとの接続部分に直線部分が含まれていても良い。
Specifically, as shown in FIG. 6, the cross-sectional shape of the boundary surface z, which is perpendicular to the longitudinal direction of the light incident surface 30c, is a curve that is convex toward the light emitting surface 30a at the center of the light emitting surface 30a. , Preferably one arc R1 (curvature radius R1) and two concave curves, preferably two arcs R2 (curvature radius) connected smoothly to this convex curve and connected to the light incident surfaces 30c, 30d respectively. R2).
Note that the uneven curve is not limited to an arc, and may be a part of a quadratic curve such as an ellipse, a parabola, or a hyperbola, or a part of a cubic or higher order curve, a trigonometric function, or another curve. May be. In addition, a straight line portion may be included in a connection portion between the convex curve and the concave curve, or in a connection portion between the concave curve and the light incident surfaces 30c and 30d.
 したがって、図6に示す導光板30においては、上記断面における境界面zの断面形状、即ち第2層62の断面形状は、曲率半径R1の1つの円弧R1と、曲率半径R2の2つの円弧R2との3つの円弧からなる。したがって、第2層62の厚さは、光出射面30aの中央部の1つの極大値と、それぞれ光入射面30c及び30dの側の2つの極小値との3つの極値からなる。
 なお、本明細書では、曲線の凹凸は、光出射面30aに向かって言い、光出射面30a側を上側、背面30b側を下側と呼ぶこともある。
Therefore, in the light guide plate 30 shown in FIG. 6, the cross-sectional shape of the boundary surface z in the cross section, that is, the cross-sectional shape of the second layer 62, is one arc R1 having a radius of curvature R1 and two arcs R2 having a radius of curvature R2. And three arcs. Therefore, the thickness of the second layer 62 is composed of three extreme values: one maximum value at the central portion of the light emitting surface 30a and two minimum values on the light incident surfaces 30c and 30d sides.
In the present specification, the unevenness of the curve is referred to toward the light emitting surface 30a, and the light emitting surface 30a side may be referred to as the upper side, and the back surface 30b side may be referred to as the lower side.
 図6に示す導光板30は、2層平板導光板であるが、本発明はこれに限定されず、光出射面30aに略垂直な方向に重なる各層が1種類以上の拡散粒子が互いに異なる粒子濃度で分散された3層以上の層を備える多層平板構造の導光板であっても良い。本発明においては、例えば図7に示すような3層構造の導光板30Aも好ましく用いることができる。
 図7に示す導光板30Aは、光出射面30a側の第1層60と、中側の第2層64と、背面30b側の第3層66とに分かれた3層構造で形成されている。
 ここで、導光板30Aの第1層60は、図6に示す導光板30の第1層60と全く同じであり、したがって、第1層60と第2層64との境界を境界面z1とすると、境界面z1は、図6に示す導光板30の第1層60と第2層62との境界面zと全く同じである。即ち、導光板30Aの第2層64は、光出射面30a側の表面において、図6に示す導光板30の第2層62のと全く同じ表面プロファイルを持つ。
 一方、導光板30Aの第3層66は、背面30dの側に位置し、第2層64と接する平板状の層である。第2層64と第32層66との境界を境界面z2とすると、境界面z2は、光出射面30aに略平行な平面である。
The light guide plate 30 shown in FIG. 6 is a two-layer flat light guide plate, but the present invention is not limited to this, and each layer overlapping in a direction substantially perpendicular to the light exit surface 30a is a particle in which one or more kinds of diffusion particles are different from each other. A light guide plate having a multilayer flat plate structure including three or more layers dispersed in a concentration may be used. In the present invention, for example, a light guide plate 30A having a three-layer structure as shown in FIG. 7 can also be preferably used.
The light guide plate 30A shown in FIG. 7 is formed in a three-layer structure that is divided into a first layer 60 on the light emitting surface 30a side, a second layer 64 on the middle side, and a third layer 66 on the back surface 30b side. .
Here, the first layer 60 of the light guide plate 30A is exactly the same as the first layer 60 of the light guide plate 30 shown in FIG. 6, and therefore, the boundary between the first layer 60 and the second layer 64 is defined as a boundary surface z1. Then, the boundary surface z1 is exactly the same as the boundary surface z between the first layer 60 and the second layer 62 of the light guide plate 30 shown in FIG. That is, the second layer 64 of the light guide plate 30A has the same surface profile as the second layer 62 of the light guide plate 30 shown in FIG.
On the other hand, the third layer 66 of the light guide plate 30 </ b> A is a flat layer located on the back surface 30 d side and in contact with the second layer 64. If the boundary between the second layer 64 and the thirty-second layer 66 is the boundary surface z2, the boundary surface z2 is a plane substantially parallel to the light emitting surface 30a.
 したがって、第1光入射面30c及び第2光入射面30dは、それぞれ境界面z1及びz2によって、第1層60の側と、第3層66側と、その間の第2層62の側とに分けられる。
 その結果、第1層60は、光出射面30a側にある層であり、光出射面30aと境界面z1とで囲まれた断面の領域であり、第3層66は、第1層60に対して背面30b側にある平板状の層であり、境界面z2と背面30bとで囲まれた断面の領域であり、第2層64は、第1層60と第3層66との間に位置し、境界面z1とz2とで囲まれた断面の領域である。
 なお、本発明の導光板が4層以上のm(mは4以上の整数)層で構成される場合には、第4層~第m層は、順次、背面30b側に設けられる。なお、これらの第4層~第m層の各層の断面形状は、特に制限的ではないが、第3層66と同様に、平板状の層であるのが好ましい。
Therefore, the first light incident surface 30c and the second light incident surface 30d are respectively separated by the boundary surfaces z1 and z2 on the first layer 60 side, the third layer 66 side, and the second layer 62 side therebetween. Divided.
As a result, the first layer 60 is a layer on the light emitting surface 30a side, is a cross-sectional area surrounded by the light emitting surface 30a and the boundary surface z1, and the third layer 66 is formed on the first layer 60. On the other hand, it is a flat layer on the back surface 30b side, and is a cross-sectional area surrounded by the boundary surface z2 and the back surface 30b, and the second layer 64 is between the first layer 60 and the third layer 66. It is an area of a cross section located and surrounded by the boundary surfaces z1 and z2.
When the light guide plate of the present invention is composed of four or more m (m is an integer of four or more) layers, the fourth to mth layers are sequentially provided on the back surface 30b side. The cross-sectional shape of each of the fourth to m-th layers is not particularly limited, but is preferably a flat layer like the third layer 66.
 上述したように、本発明の導光板、例えば導光板30及び30Aは、母材となる透明樹脂に、光を散乱して拡散させるための拡散粒子(以下、散乱粒子という)が混錬分散されて形成されているものであり、第1層~第n(nは2以上の整数)層の各層、例えば第1層60及び第2層62、又は第1層60、第2層64及び第3層66の各層には、1種類以上の拡散粒子が互いに異なる粒子濃度で分散されている。
 導光板30に用いられる透明樹脂の材料としては、例えば、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PC(ポリカーボネート)、PMMA(ポリメチルメタクリレート)、ベンジルメタクリレート、MS樹脂、あるいはCOP(シクロオレフィンポリマー)のような光学的に透明な樹脂が挙げられる。
 導光板30に混錬分散させる散乱粒子としては、トスパール、シリコーン、シリカ、ジルコニア、誘電体ポリマなどの微粒子を用いることができる。
As described above, in the light guide plate of the present invention, for example, the light guide plates 30 and 30A, diffusion particles for scattering and diffusing light (hereinafter referred to as scattering particles) are kneaded and dispersed in a transparent resin as a base material. The first layer to the n-th layer (n is an integer of 2 or more), for example, the first layer 60 and the second layer 62, or the first layer 60, the second layer 64, and the second layer. In each layer of the three layers 66, one or more kinds of diffusion particles are dispersed at different particle concentrations.
Examples of the transparent resin material used for the light guide plate 30 include PET (polyethylene terephthalate), PP (polypropylene), PC (polycarbonate), PMMA (polymethyl methacrylate), benzyl methacrylate, MS resin, or COP (cycloolefin polymer). An optically transparent resin such as
As scattering particles to be kneaded and dispersed in the light guide plate 30, fine particles such as Tospearl, silicone, silica, zirconia, and dielectric polymer can be used.
 本発明に係る導光板では、散乱粒子は、第1層60~第n層の各層において異なる粒子濃度で分散されるが、光入射面30c及び30dから、それぞれ光出射面30aに略平行な方向に沿った導光位置xにおける、第1層60~第n層の、光出射面30aに略垂直な方向の、単位長さ当たりの合成散乱断面積S(x)が、光入射面30c及び30dからそれぞれ遠ざかるにつれて、即ち導光位置(長さ又は距離)xが大きくなるにつれて連続にかつ単調増加する部分を少なくとも有するように分散されている必要がある。即ち、導光板30は、単位長さ当たりの合成散乱断面積S(x)が、極小値又は最小値から、光入射面30c及び30dからの導光距離に応じて連続的に単調増加して極大値又は最大値に至る部分を有している必要がある。 In the light guide plate according to the present invention, the scattering particles are dispersed at different particle concentrations in each of the first layer 60 to the n-th layer, but from the light incident surfaces 30c and 30d, directions substantially parallel to the light emitting surface 30a, respectively. The combined scattering cross section S (x) per unit length in the direction substantially perpendicular to the light exit surface 30a of the first layer 60 to the nth layer at the light guide position x along the light guide position x is the light incident surface 30c and It is necessary to be distributed so as to have at least a portion that continuously and monotonously increases as the distance from 30d increases, that is, as the light guide position (length or distance) x increases. That is, in the light guide plate 30, the combined scattering cross section S (x) per unit length continuously increases monotonously from the minimum value or the minimum value according to the light guide distance from the light incident surfaces 30c and 30d. It is necessary to have a portion reaching the maximum value or the maximum value.
 また、この単位長さ当たりの合成散乱断面積S(x)の最大値Smax及び最小値Sminは、下記式(1)を満足する必要がある。
     1.25≦Smax≦2.2
     0.90≦Smin≦1.6            ……(1)
 ここで、本発明の導光板は、導光位置xにおける、単位長さ当たりの合成散乱断面積S(x)の最大値Smax及び最小値Sminは、上記式(1)を満足することにより、大型、薄型な形状であっても、光の利用効率が高く、輝度むらが少ない光を出射することができ、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高または釣鐘状の明るさの中高分布を得ることができる。
Further, the maximum value S max and the minimum value S min of the combined scattering cross section S (x) per unit length need to satisfy the following formula (1).
1.25 ≦ S max ≦ 2.2
0.90 ≦ S min ≦ 1.6 (1)
Here, in the light guide plate of the present invention, the maximum value S max and the minimum value S min of the combined scattering cross section S (x) per unit length at the light guide position x satisfy the above formula (1). Therefore, even with a large and thin shape, it is possible to emit light with high light use efficiency and little unevenness in brightness, and the central part of the screen required for a large-screen thin LCD TV is the peripheral part. Compared to this, a bright distribution, that is, a so-called medium-high or bell-shaped light-high distribution can be obtained.
 ここで、単位長さ当たりの合成散乱断面積S(x)[mm]は、下記式(3)及び(4)から以下のようにして算出することができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-I000002
Here, the combined scattering cross section S (x) [mm 2 ] per unit length can be calculated from the following formulas (3) and (4) as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-I000002
 但し、Δxは単位長さ[mm]、aは第i層に分散している散乱粒子の粒径[mm]、txiは導光位置x[mm]における第i層の断面の厚さ[mm]、tmaxは導光板厚さ[mm]、Nは導光位置xにおける第i層の断面粒子数、Qscaiは第i層に分散している散乱粒子の散乱効率であり、散乱粒子条件(散乱粒子及び母材の屈折率並びに出射光の波長)からMie理論に基づいて求められる。d及びdは散乱粒子及び母材樹脂の比重[g/ml]、Cは第i層に分散している散乱粒子の粒子個数濃度[個/mm]である。
 なお、散乱粒子の散乱効率Qscaiは光源から出射され、導光板に入射し、導光板から出射する出射光の波長にも依存するので、単位長さ当たりの合成散乱断面積S(x)も入射光の波長にも依存するが、対象とするのは可視光であるので、散乱粒子の散乱効率Qscai及び単位長さ当たりの合成散乱断面積S(x)は、光源28からの出射光の可視光波長(例えば、波長λ=380nm~800nm)に対して求める。なお、光の可視光波長の下限は、360~400nmの中から、その上限は、760nm~830nmの中から、使用する光源の出射光に応じて設定すれば良い。
 なお、単位長さ当たりの合成散乱断面積S(x)を、後述するように、下記式(6)を用いて、使用する光源の出射光をRGBの三原色に分解して求めても良い。この場合、RGBの三原色の主要波長としては、使用する光源に応じて、即ち使用する光源の出射光の波長、例えばLEDのRGB各色の出射光の波長を用いれば良いが、RGBの三原色の主要波長として、例えば、B:435nm,G:550nm,R:615nmを用いても良い。
Where Δx is the unit length [mm], a i is the particle size [mm] of the scattering particles dispersed in the i-th layer, and t xi is the thickness of the cross-section of the i-th layer at the light guide position x [mm]. [mm], t max is the light guide plate thickness [mm], N i is the number of cross grain of the i layer in the light-guiding position x, Qscai is the scattering efficiency of the scattering particles dispersed in the i layer, scattering It is determined based on the Mie theory from the particle conditions (the refractive index of the scattering particles and the base material and the wavelength of the emitted light). d m and d p is the scattering particles and the matrix resin density [g / ml], C i is the particle number concentration of the scattering particles dispersed in the i-th layer [pieces / mm 3].
The scattering efficiency Qscai of the scattering particles is emitted from the light source, is incident on the light guide plate, and also depends on the wavelength of the emitted light emitted from the light guide plate, so the combined scattering cross section S (x) per unit length is also incident. Although it depends on the wavelength of the light, since the target is visible light, the scattering efficiency Qscai of the scattering particles and the combined scattering cross section S (x) per unit length are visible of the light emitted from the light source 28. It is determined for the optical wavelength (for example, wavelength λ = 380 nm to 800 nm). The lower limit of the visible light wavelength of light may be set from 360 to 400 nm, and the upper limit may be set from 760 to 830 nm according to the emitted light of the light source to be used.
The combined scattering cross section S (x) per unit length may be obtained by separating the emitted light of the light source to be used into the three primary colors of RGB using the following formula (6) as will be described later. In this case, as the main wavelengths of the three primary colors of RGB, the wavelength of the emitted light of the light source used, that is, the wavelength of the emitted light of each of the RGB colors of the LED, for example, may be used. For example, B: 435 nm, G: 550 nm, R: 615 nm may be used as the wavelength.
 さらに、本発明の導光板のn層、例えば導光板30の2層、又は導光板30Aの3層の断面において、分散させる散乱粒子の粒径および粒子濃度が下記式(2)を満たすような散乱粒子を選択する必要がある。
     0.85≦T(B)/T(R)≦1.15    ……(2)
 ここで、T(B)、及びT(R)は、それぞれ光出射面30aに略平行な方向に沿った導光距離の半値となる導光位置xにおける、青色成分の主要波長Bの透過係数、及び赤色成分の主要波長Rの透過係数であり、B、及びRは、それぞれ光入射面30c、30dに入射する入射光の青色成分の主要波長、及びこの入射光の赤色成分の主要波長である。
Furthermore, in the cross section of the n layer of the light guide plate of the present invention, for example, the two layers of the light guide plate 30 or the three layers of the light guide plate 30A, the particle size and particle concentration of the dispersed scattering particles satisfy the following formula (2). It is necessary to select scattering particles.
0.85 ≦ T (B) / T (R) ≦ 1.15 (2)
Here, T (B) and T (R) are transmission coefficients of the main wavelength B of the blue component at the light guide position x, which is a half value of the light guide distance along the direction substantially parallel to the light exit surface 30a. , And R are the transmission coefficients of the main wavelength R of the red component, and B and R are the main wavelength of the blue component of the incident light incident on the light incident surfaces 30c and 30d and the main wavelength of the red component of the incident light, respectively. is there.
 ここで、透過係数T(B)及びT(R)は、下記式(5)から以下のようにして算出することができる。
Figure JPOXMLDOC01-appb-M000003
但し、λは透過波長[mm]、J(λ)は波長λにおける減衰係数(ランベルト・ベール則における減衰定数σLである。ここで、Lは1次元の光路長を表す。)を意味しており、S(x,λ)は透過波長λのときの導光位置x[mm]における合成散乱断面積[mm]である。
 ここで、透過波長λのときの導光位置xにおける合成散乱断面積S(x,λ)は、下記式(6)から以下のようにして算出することができる。
Here, the transmission coefficients T (B) and T (R) can be calculated from the following equation (5) as follows.
Figure JPOXMLDOC01-appb-M000003
Where λ is the transmission wavelength [mm] and J (λ) is the attenuation coefficient at the wavelength λ (the attenuation constant σL * in the Lambert-Beer law. Here, L * represents the one-dimensional optical path length). S (x, λ) is the combined scattering cross section [mm 2 ] at the light guide position x [mm] at the transmission wavelength λ.
Here, the combined scattering cross section S (x, λ) at the light guide position x at the transmission wavelength λ can be calculated from the following equation (6) as follows.
Figure JPOXMLDOC01-appb-M000004
 ここで、上記式(6)において、Qscai(λ)は第i層に分散している散乱粒子の波長λの光に対する散乱効率であり、透過波長λに依存し、かつ粒径、粒子屈折率、母材屈折率により決定される。上記式(6)のその他の変数及び定数は、上記式(3)及び(4)と同一であるので、説明を省略する。ここで、色むらを評価する際のRGBの三原色の主要波長としては、使用する光源に応じて、即ち使用する光源の出射光の波長、例えばLEDのRGB各色の出射光の波長を用いれば良いが、RGBの三原色の主要波長として、例えば、B:435nm,G:550nm,R:615nmを用いても良い。
 なお、上記減衰定数σLのL[mm]は1次元の光路長を表しているのに対して、本発明においては、3次元の導光板空間における導光距離x(少なくとも2層以上の粒子拡散層が連続的に変化する平板導光板の光入射面からの距離x[mm]における平均散乱断面積)を意味している。
Figure JPOXMLDOC01-appb-M000004
Here, in the above formula (6), Qscai (λ) is the scattering efficiency of the scattering particles dispersed in the i-th layer with respect to the light having the wavelength λ, depends on the transmission wavelength λ, and has a particle diameter and a particle refractive index. , Determined by the refractive index of the base material. Since the other variables and constants of the above formula (6) are the same as the above formulas (3) and (4), the description thereof is omitted. Here, as the main wavelengths of the three primary colors of RGB when evaluating color unevenness, the wavelength of the emitted light of the light source used, that is, the wavelength of the emitted light of each color of the LED of the LED, for example, may be used. However, for example, B: 435 nm, G: 550 nm, and R: 615 nm may be used as the main wavelengths of the three primary colors of RGB.
Note that L * [mm] of the attenuation constant σL * represents a one-dimensional optical path length, whereas in the present invention, the light guide distance x (at least two layers or more) in the three-dimensional light guide plate space. Mean scattering cross-sectional area at a distance x [mm] from the light incident surface of the flat light guide plate in which the particle diffusion layer continuously changes.
 本発明の導光板においては、導光位置xにおける、単位長さ当たりの第1層60~第n層の合成散乱断面積S(x)が光入射面30c及び30dからそれぞれ遠ざかる(導光位置が大きくなる)につれて連続にかつ単調増加するように散乱粒子が分散され、単位長さ当たりの合成散乱断面積S(x)の最大値Smax及び最小値Sminが上記式(1)を満足し、かつ、B及びRの透過係数T(B)及びT(R)の比が上記式(2)を満足する散乱粒子の粒径および粒子濃度で散乱粒子が分散されている必要があるという本発明の散乱粒子分散条件を満足する必要がある。
 ところで、本発明では、この粒子分散条件を満足すれば、導光板の第1層60~第n層の各層に分散される散乱粒子の粒子濃度は異なっていればどのようなものであっても良いが、第1層60の散乱粒子の粒子濃度をNpoとし、第j(jは2以上の整数)層の散乱粒子の粒子濃度をNprjとすると、NpoとNprjとの関係は、0≦Npo<Nprjとするのが好ましい。即ち、導光板30及び30Aでは、光出射面30a側の第1層60よりも、背面30b側の第2層62、及び第2層64、第3層66の方が散乱粒子の粒子濃度が高いのが好ましい。なお、本発明では、第1層60の散乱粒子の粒子濃度Npoは0、即ち、第1層60は、散乱粒子が分散されていない母材透明樹脂のみからなる層であっても良い。
In the light guide plate of the present invention, the combined scattering cross sections S (x) of the first layer 60 to the nth layer per unit length at the light guide position x are moved away from the light incident surfaces 30c and 30d, respectively (light guide position). The scattering particles are dispersed so as to increase continuously and monotonously as the value increases, and the maximum value S max and the minimum value S min of the combined scattering cross section S (x) per unit length satisfy the above formula (1) In addition, the scattering particles need to be dispersed at the particle size and particle concentration of the scattering particles in which the ratio of the transmission coefficients T (B) and T (R) of B and R satisfies the above formula (2). It is necessary to satisfy the scattering particle dispersion conditions of the present invention.
By the way, in the present invention, as long as this particle dispersion condition is satisfied, any particle concentration of the scattering particles dispersed in each of the first layer 60 to the n-th layer of the light guide plate may be used. Although the particle concentration of the scattering particles in the first layer 60 is Npo and the particle concentration of the scattering particles in the jth layer (j is an integer of 2 or more) is Nprj, the relationship between Npo and Nprj is 0 ≦ Npo. <Nprj is preferable. That is, in the light guide plates 30 and 30A, the second layer 62, the second layer 64, and the third layer 66 on the back surface 30b side have the particle concentration of the scattering particles in comparison with the first layer 60 on the light emitting surface 30a side. High is preferred. In the present invention, the particle concentration Npo of the scattering particles in the first layer 60 is 0, that is, the first layer 60 may be a layer made of only a base material transparent resin in which scattering particles are not dispersed.
 上述のように、本実施形態の導光板、例えば導光板30及び30Aでは、第1層60よりも散乱粒子の粒子濃度の高い第2層(例えば、62、64)の厚さが、出射面30aの中央部で厚くなる1つの極大値(図示例では最も厚くなる最大値)と、光入射面30c及び30dの近傍でそれぞれ薄くなる2つの極小値(図示例では最も薄くなる最小値)とを有するように連続的に変化させることにより、散乱粒子の合成散乱断面積を、出射面30aの中央部で極大値(最大値)を取り、光入射面30c及び30dの各近傍でそれぞれ極小値(最小値)を取るように変化させている。
 その結果、本実施形態の導光板においては、上述した合成散乱断面積Sの最大値Smax及び最小値Sminが、上記式(1)を満足するように、互いに異なる粒子濃度で散乱粒子を分散させた各層(第1層60~第n層)を形成することができ、大型、薄型な形状であっても、光の利用効率が高く、例えば70%以上、輝度むらが少ない光を出射することができ、中央部付近が周辺部に比べて明るい中高分布、例えば0%超45%以下、好ましくは10%以上45%以下の中高分布を持ち、かつ、導光方向(入射部から中央部又は他方の端部)における波長むら(色味変化)がない又は少ない出射光を同時に実現することができる。
As described above, in the light guide plate of this embodiment, for example, the light guide plates 30 and 30A, the thickness of the second layer (for example, 62, 64) having a higher particle concentration of scattering particles than that of the first layer 60 is One maximum value that becomes thick at the center of 30a (the maximum value that becomes the thickest in the illustrated example), and two minimum values that become thinner in the vicinity of the light incident surfaces 30c and 30d (the minimum value that becomes the thinnest in the illustrated example) The combined scattering cross section of the scattering particles has a maximum value (maximum value) at the central portion of the exit surface 30a and a minimum value near each of the light incident surfaces 30c and 30d. (Minimum value) is changed.
As a result, in the light guide plate of the present embodiment, the scattering particles are dispersed at different particle concentrations so that the maximum value S max and the minimum value S min of the above-described combined scattering cross section S satisfy the above formula (1). Each dispersed layer (the first layer 60 to the n-th layer) can be formed, and even with a large and thin shape, light utilization efficiency is high, for example, 70% or more, and light with little unevenness in luminance is emitted. It has a medium-high distribution that is brighter in the vicinity of the central part than the peripheral part, for example, more than 0% and 45% or less, preferably 10% or more and 45% or less, and the light guide direction (from the incident part to the center). Part or the other end part) can be realized simultaneously with little or no wavelength unevenness (color change).
 また、境界面z、又は境界面z1及びz2(4層以上のm層の場合には、第i層と第i+1層との境界面をziとすると、境界面zi(i=1-m-1)の形状を調整する場合には、本発明の散乱粒子分散条件を満足する範囲内で、輝度分布(散乱粒子の濃度分布)も任意に設定することができ、効率を最大限に向上できる。
 また、光出射面30a側の第1層60の粒子濃度を低くするものでは、全体での散乱粒子の量を少なくすることができ、コストダウンにもつなげることができる。
Also, the boundary surface z, or the boundary surfaces z1 and z2 (in the case of four or more layers, assuming that the boundary surface between the i-th layer and the (i + 1) th layer is zi, the boundary surface zi (i = 1−m− In the case of adjusting the shape of 1), the luminance distribution (concentration distribution of the scattering particles) can be arbitrarily set within the range satisfying the scattering particle dispersion condition of the present invention, and the efficiency can be improved to the maximum. .
In addition, if the particle concentration of the first layer 60 on the light emitting surface 30a side is lowered, the amount of scattered particles as a whole can be reduced, and the cost can be reduced.
 ここで、本発明の導光板の各層の内部に分散させる散乱粒子の好ましい例について説明する。
 ここで、本発明の導光板の各層に分散させる散乱粒子の粒径は特に制限的ではないが、各層で異なっているのが好ましい。
 その理由は、導光板の各層において同じ粒径の散乱粒子を分散させた場合、粒径が小さいと、例えば粒径4.5μm以下の場合には、各断面において青色光Bが赤色光Rよりも拡散しやすいため、出射光のB成分が相対的に減少し、赤味がかってしまい、色温度が低下してしまうからである。逆に、導光板の各層において同じ大きな粒径の散乱粒子を分散させた場合、例えば粒径9.0μm以上の場合には、各断面において赤色光Rが青色光Bよりも拡散しやすいため、出射光のB成分が相対的に増加し、青味がかってしまい、色温度が高くなってしまうからである。
Here, the preferable example of the scattering particle disperse | distributed inside each layer of the light-guide plate of this invention is demonstrated.
Here, the particle size of the scattering particles dispersed in each layer of the light guide plate of the present invention is not particularly limited, but is preferably different in each layer.
The reason is that when scattered particles having the same particle diameter are dispersed in each layer of the light guide plate, if the particle diameter is small, for example, if the particle diameter is 4.5 μm or less, the blue light B is more than the red light R in each cross section. This is because the B component of the emitted light is relatively reduced, reddish, and the color temperature is lowered. On the contrary, when scattering particles having the same large particle diameter are dispersed in each layer of the light guide plate, for example, when the particle diameter is 9.0 μm or more, the red light R is more easily diffused than the blue light B in each cross section. This is because the B component of the emitted light is relatively increased, bluish, and the color temperature is increased.
 この場合、本発明の導光板の第2層~第n層に分散させる散乱粒子の粒径は、4.5μm以上、かつ12.0μm以下であるのがより好ましい。その理由は、高い散乱効率を得ることができ、前方散乱性が大きくかつ波長依存性が少なく、色むらがないように選択できるからである。
 このため、散乱粒子の粒子径が、4.5μmより小さいと、即ち4.5μm未満では、散乱が等方性となるため、上記条件を満たすことができなくなるからである。その結果、母材としてアクリル樹脂、散乱粒子としてシリコーン樹脂を選択することもできる。
 一方、散乱粒子の粒径が、12.0μmより大きいと、即ち12.0μm超では、散乱粒子の前方散乱性が強くなりすぎるため、系内の平均自由行程が大きくなり、散乱回数が減少することから、入射端付近で光源(LED)間の輝度ムラ(ホタルムラ)が現れてしまうため、上限値は、12.0μmに制限されるのが良い。
 その理由は、粒子濃度が高すぎる場合、中高分布を実現できなくなるからであり、粒子濃度が低すぎる場合、光が突き抜けて透過してしまうために、光利用効率が70%以上を満たさなくなるからである。
In this case, the particle size of the scattering particles dispersed in the second to nth layers of the light guide plate of the present invention is more preferably 4.5 μm or more and 12.0 μm or less. The reason is that high scattering efficiency can be obtained, the forward scattering property is large, the wavelength dependency is small, and color unevenness can be selected.
For this reason, if the particle diameter of the scattering particles is smaller than 4.5 μm, that is, less than 4.5 μm, the scattering becomes isotropic, so that the above condition cannot be satisfied. As a result, an acrylic resin can be selected as the base material, and a silicone resin can be selected as the scattering particles.
On the other hand, if the particle size of the scattering particles is larger than 12.0 μm, that is, more than 12.0 μm, the forward scattering property of the scattering particles becomes too strong, so that the mean free path in the system increases and the number of scattering decreases. For this reason, luminance unevenness (firefly unevenness) between the light sources (LEDs) appears in the vicinity of the incident end, and therefore, the upper limit value is preferably limited to 12.0 μm.
The reason is that if the particle concentration is too high, the medium-high distribution cannot be realized. If the particle concentration is too low, light penetrates and passes, and the light utilization efficiency does not satisfy 70% or more. It is.
 なお、本発明の導光板の各層に分散させる散乱粒子の最適な粒子径選択については、波長依存性の観点に加え、以下の点をも考慮するのが好ましい。
 まず、単一の粒子による散乱光強度分布(角度分布)においては、前方0°~5°に散乱する光が90%以上となる条件を満たすようにするのが好ましい。なぜならば、本発明の導光板は、例えば、40インチの画面サイズに対応する導光板では、両面入射の場合は、導光板の両側面の光入射面から最低でも250mm以上の距離、片面入射の場合は、光入射面から最低500mm以上の距離を導光する必要があるからである。
In addition, regarding the selection of the optimum particle diameter of the scattering particles dispersed in each layer of the light guide plate of the present invention, it is preferable to consider the following points in addition to the viewpoint of wavelength dependency.
First, in the scattered light intensity distribution (angle distribution) by a single particle, it is preferable to satisfy the condition that the light scattered in the forward 0 ° to 5 ° is 90% or more. This is because the light guide plate of the present invention is, for example, a light guide plate corresponding to a screen size of 40 inches, and in the case of double-sided incidence, it is at least a distance of 250 mm or more from the light incident surface on both sides of the light guide plate. In this case, it is necessary to guide a distance of at least 500 mm from the light incident surface.
 このように、本発明では、散乱粒子の粒子径の限定範囲に含まれる最適な粒径(散乱粒子屈折率と母材屈折率との組み合わせ)を選択することにより、波長ムラのない出射光を得ることができる。
 なお、本発明の導光板の各層に分散させる散乱粒子としては、各層内では単一粒径の散乱粒子を用いるのが好ましいが、本発明はこれに限定されない。本発明では、1種類以上の拡散粒子が分散されていればよいので、複数粒径の散乱粒子を混合して用いても良い。
 また、本発明では、上述した例のように、導光板の各層の内部に分散させる散乱粒子として、各層内では同一の粒子径の同一の散乱粒子を用いるのが好ましいが、本発明はこれに限定されず、上述した本発明の散乱粒子分散条件を満足できれば、異なる散乱粒子を用いても良い。
As described above, in the present invention, by selecting an optimum particle size (combination of the scattering particle refractive index and the base material refractive index) included in the limited range of the particle diameter of the scattering particles, the outgoing light without wavelength unevenness can be obtained. Obtainable.
As scattering particles dispersed in each layer of the light guide plate of the present invention, it is preferable to use scattering particles having a single particle diameter in each layer, but the present invention is not limited to this. In the present invention, since one or more kinds of diffusing particles need only be dispersed, scattering particles having a plurality of particle sizes may be mixed and used.
Further, in the present invention, as in the example described above, it is preferable to use the same scattering particles having the same particle diameter in each layer as the scattering particles dispersed in each layer of the light guide plate. Without being limited, different scattering particles may be used as long as the above-described scattering particle dispersion conditions of the present invention can be satisfied.
 ここで、図示例の導光板30では、第1層60と第2層62とは境界面zで、導光板30Aでは、第1層60と第2層64とは境界面z1で、第2層64と第3層66とは境界面z2で分けて記載されているが、これらの各層は、散乱粒子の粒子濃度、又は粒径及び粒子濃度が異なるのみで、同じ透明樹脂に同種の散乱粒子を分散させた構成であり、構造上は一体となっている。つまり、本発明の導光板は、境界面z又はziを基準として分けた場合、それぞれの領域の粒径及び粒子濃度は異なるが、境界面zは、仮想的な線であり、第1層60~第n層の各層は一体となっている。
 このような導光板は、押出成形法や射出成形法を用いて製造することができる。
Here, in the illustrated light guide plate 30, the first layer 60 and the second layer 62 are at the boundary surface z, and in the light guide plate 30A, the first layer 60 and the second layer 64 are at the boundary surface z1, and the second Although the layer 64 and the third layer 66 are described separately by the boundary surface z2, these layers are different in only the same particle size of the scattering particles, or the particle size and the particle concentration, and the same kind of scattering in the same transparent resin. This is a structure in which particles are dispersed, and is integrated in structure. That is, when the light guide plate of the present invention is divided on the basis of the boundary surface z or zi, the particle size and particle concentration of each region are different, but the boundary surface z is a virtual line, and the first layer 60 The layers of the nth layer are integrated.
Such a light guide plate can be manufactured using an extrusion molding method or an injection molding method.
 なお、本発明の導光板(例えば、導光板30又は30A)では、光源28から出射され、第1光入射面30c及び第2光入射面30dから入射した光は、導光板30の各層(例えば、第1層60及び2層62、又は第1層60、第2層64及び第3層66)の内部に含まれる散乱粒子(散乱体)によって散乱されつつ、光出射面30aに略平行に導光板(30又は30A)の内部を進行して通過し、直接光出射面30aから出射され、又は一旦背面30bから漏出し、導光板30の背面30b側に配置された反射板34(詳細は後述する)によって反射され、再び導光板30の内部に入射した後、光出射面30aから出射される。 In the light guide plate of the present invention (for example, the light guide plate 30 or 30A), the light emitted from the light source 28 and incident from the first light incident surface 30c and the second light incident surface 30d is reflected on each layer of the light guide plate 30 (for example, The first layer 60 and the second layer 62, or the first layer 60, the second layer 64, and the third layer 66) are scattered by scattering particles (scatterers) included in the interior of the first layer 60, the second layer 64, and the third layer 66. The light guide plate (30 or 30A) travels through and passes through the light guide surface 30a, or directly leaks from the back surface 30b, and is disposed on the back surface 30b side of the light guide plate 30 (for details, see FIG. The light is reflected by a light emitting plate 30a (described later), enters the light guide plate 30 again, and then exits from the light exit surface 30a.
 本発明の導光板では、各層(第1層60と、第2層62、64と、又は、第3層66~第n層)が上記関係を満たすことで、導光板は、粒子濃度が低い第1層60では入射した光をあまり散乱せずに導光板の奥(中央)まで導光することができ、導光板の中央に近づくにつれて、粒子濃度が高い第2層(62、64)により光を散乱して、光出射面30aから出射する光の量を増やすことができる。つまり、より光の利用効率を高めつつ、好適な割合で照度分布を中高にすることができる。
 ここで、粒子濃度[wt%]とは、母材の重量に対する散乱粒子の重量の割合である。
In the light guide plate of the present invention, each layer (the first layer 60, the second layers 62 and 64, or the third layer 66 to the nth layer) satisfies the above relationship, so that the light guide plate has a low particle concentration. In the first layer 60, the incident light can be guided to the back (center) of the light guide plate without scattering much, and the second layer (62, 64) having a higher particle concentration as it approaches the center of the light guide plate. It is possible to increase the amount of light that is scattered from the light exit surface 30a. That is, it is possible to make the illuminance distribution medium to high at a suitable ratio while further improving the light utilization efficiency.
Here, the particle concentration [wt%] is the ratio of the weight of the scattering particles to the weight of the base material.
 また、本発明の導光板の厚さには、特に限定はなく、厚さ数mm、例えば従来の印刷導光板と同様に、4mm程度の厚さであってもよく、本発明の光拡散方式の導光板では薄くなってもドットパターンが認識される等の問題は生じないので、1mm~3mm、好ましくは2mm程度の厚さであっても良いし、あるいは、厚さ1mm以下のフィルム状の、いわゆる導光シートであってもよい。
 なお、本発明の2層に異なる粒子濃度の散乱粒子を混練分散させた、フィルム状の導光板の作製方法としては、1層目となる、散乱粒子を含有するベースフィルムを押し出し成型法等で作製し、作製したベースフィルム上に、散乱粒子を分散させたモノマー樹脂液体(透明樹脂の液体)を塗布した後、紫外線や可視光を照射して、モノマー樹脂液体を硬化させることで、所望の粒子濃度の2層目を作製して、フィルム状の導光板とする方法のほか、2層押し出し成形法等がある。
 導光板を厚さ1mm以下のフィルム状の導光シートとした場合でも、2層の導光板とすることで、より光の利用効率を高めつつ、好適な割合で照度分布を中高にすることができる。
Further, the thickness of the light guide plate of the present invention is not particularly limited, and may be several mm, for example, about 4 mm as in the case of a conventional printed light guide plate. Since the light guide plate does not cause a problem such as a dot pattern being recognized even if it is thin, it may have a thickness of 1 mm to 3 mm, preferably about 2 mm, or it may be a film having a thickness of 1 mm or less. A so-called light guide sheet may be used.
In addition, as a method for producing a film-shaped light guide plate in which scattering particles having different particle concentrations are kneaded and dispersed in the two layers of the present invention, a base film containing scattering particles as a first layer is formed by an extrusion molding method or the like. After applying the monomer resin liquid (transparent resin liquid) in which the scattering particles are dispersed on the prepared base film, the monomer resin liquid is cured by irradiating with ultraviolet rays or visible light, thereby obtaining a desired In addition to a method of producing a second layer having a particle concentration to form a film-shaped light guide plate, there are a two-layer extrusion molding method and the like.
Even when the light guide plate is a film-like light guide sheet having a thickness of 1 mm or less, by making it a two-layer light guide plate, it is possible to increase the illuminance distribution at a suitable ratio while increasing the light utilization efficiency. it can.
 導光板の厚さを薄くするほど導光板が軽量化し、また材料費が削減できるメリットがあるが、厚さが小さ過ぎると、光入射面が小さくなり、光源のサイズも小さくなり、光量も少なくなるため、光源からの光入射が少なくなり、光出射面から十分な輝度の光を出射することができない。逆に、厚さが大き過ぎると、重量が重すぎて液晶表示装置などの光学部材として適さないし、中高な輝度分布を達成する粒子濃度で拡散粒子を分散させると、周辺部で光が突き抜けて透過してしまうために、光利用効率が低下し、逆に、光利用効率を高くする粒子濃度で拡散粒子を分散させると、中高の輝度分布を実現できない。したがって、導光板の使用用途に合わせて、光源の種類(サイズ)及び導光板の厚さを選択すればよい。なお、TV用途の2mm程度の導光板では、その要求性能から導光板厚さ方向の発光部分幅が1~1.1mm程度の3×1.4mmのLEDを光源として使用すれば良い。なお、少ない光束でも間接照明として使用可能な照明用途ではこのような制約はないので、携帯電話用に用いられるような0.1~0.5mm程度のLEDを用いることができる。したがって、厚さ0.1mm以上1mm以下のフィルム状の導光シートも可能である。 The thinner the light guide plate is, the lighter the light guide plate is, and there is an advantage that the material cost can be reduced. However, if the thickness is too small, the light incident surface becomes smaller, the size of the light source becomes smaller, and the amount of light decreases. Therefore, light incidence from the light source is reduced, and light with sufficient luminance cannot be emitted from the light emission surface. On the other hand, if the thickness is too large, the weight is too heavy to be suitable as an optical member such as a liquid crystal display device, and if the diffusing particles are dispersed at a particle concentration that achieves a medium-high luminance distribution, light penetrates through the periphery. If the diffusion particles are dispersed at a particle concentration that increases the light utilization efficiency, the medium-high luminance distribution cannot be realized. Therefore, what is necessary is just to select the kind (size) of a light source, and the thickness of a light-guide plate according to the use application of a light-guide plate. For a light guide plate of about 2 mm for TV use, a 3 × 1.4 mm LED having a light emitting portion width in the thickness direction of the light guide plate of about 1 to 1.1 mm may be used as a light source because of its required performance. Note that there is no such limitation in illumination applications that can be used as indirect illumination even with a small amount of light, so that an LED of about 0.1 to 0.5 mm that is used for a mobile phone can be used. Therefore, a film-shaped light guide sheet having a thickness of 0.1 mm to 1 mm is also possible.
 また、本発明の導光板30、30Aの第1層60及び第2層62、64の厚さ及びその形状、例えば円弧R1及びR2は、第1層60及び第2層62、又は第2層64及び第3層66の内部に分散させる散乱粒子の分散条件、上記式(1)を含む上記した本発明の散乱粒子分散条件を満足する厚さとする必要があるが、上記散乱粒子分散条件を満足すれば、特に制限的ではない。しかしながら、第1層60、第2層62、64、第3層66の厚さ及びその形状は、製造のし易さ、例えば、2層又は3層以上を同時に溶融押出する押出装置や、溶融押出するライン速度等の制約に応じて決定すればよい。
 例えば、2mm程度の導光板30の場合、第2層62の最大厚さは、1.5mm程度迄であり、0.2mm~1.3mmがより好ましく、0.35mm~0.8mmが最も好ましい範囲であり、第2層62の最小厚さは、部分的には略0mm迄であり、0.05mm~0.25mmがより好ましく、0.1mm~0.15mmが最も好ましい範囲である。なお、例えば導光板30の厚みが、0.1mm~5mmの場合には、第2層62の最大厚さ及び最小厚さは、2mm程度の導光板30の場合と同様の割合とすれば良く、即ち導光板30の厚さに対して、第2層62の最大厚さの割合は、75%程度迄であり、5%~65%がより好ましく、17.5%~40%が最も好ましい範囲であり、第2層62の最小厚さの割合は、部分的には略0%迄であり、2.5%~12.5%がより好ましく、5%~7.5%が最も好ましい範囲となる。
 同程度の厚さの導光板30Aの場合には、第2層64の最大厚さは、導光板30の第2層62の最大厚さと最小厚さの差であり、第2層64の最小厚さは、部分的には略0mmであり、第3層66の厚さは、均一であり、導光板30の第2層62の最小厚さであれば良いが、第2層64の最小厚さが0mm超のβmmである場合には、第3層66の厚さは、導光板30の第2層62の最小厚さ-β[mm]であればよい。
Further, the thickness and shape of the first layer 60 and the second layers 62 and 64 of the light guide plate 30 and 30A of the present invention, for example, the arcs R1 and R2, are the first layer 60 and the second layer 62, or the second layer. 64 and the dispersion condition of the scattering particles to be dispersed inside the third layer 66, and the thickness satisfying the scattering particle dispersion condition of the present invention including the above formula (1) is required. If satisfied, there is no particular limitation. However, the thickness and shape of the first layer 60, the second layer 62, 64, and the third layer 66 are easy to manufacture, for example, an extrusion apparatus that melts and extrudes two or more layers simultaneously, What is necessary is just to determine according to restrictions, such as the line speed to extrude.
For example, in the case of the light guide plate 30 of about 2 mm, the maximum thickness of the second layer 62 is up to about 1.5 mm, more preferably 0.2 mm to 1.3 mm, and most preferably 0.35 mm to 0.8 mm. The minimum thickness of the second layer 62 is partially up to approximately 0 mm, more preferably 0.05 mm to 0.25 mm, and most preferably 0.1 mm to 0.15 mm. For example, when the thickness of the light guide plate 30 is 0.1 mm to 5 mm, the maximum thickness and the minimum thickness of the second layer 62 may be set to the same ratio as that of the light guide plate 30 of about 2 mm. That is, the ratio of the maximum thickness of the second layer 62 to the thickness of the light guide plate 30 is up to about 75%, more preferably 5% to 65%, and most preferably 17.5% to 40%. The ratio of the minimum thickness of the second layer 62 is partially up to approximately 0%, more preferably 2.5% to 12.5%, and most preferably 5% to 7.5%. It becomes a range.
In the case of the light guide plate 30A having the same thickness, the maximum thickness of the second layer 64 is the difference between the maximum thickness and the minimum thickness of the second layer 62 of the light guide plate 30, and the minimum thickness of the second layer 64. The thickness is partially about 0 mm, and the thickness of the third layer 66 is uniform and may be the minimum thickness of the second layer 62 of the light guide plate 30, but the minimum of the second layer 64 When the thickness is β mm exceeding 0 mm, the thickness of the third layer 66 may be the minimum thickness −β [mm] of the second layer 62 of the light guide plate 30.
 なお、第2層62、64の形状、即ち凹凸の曲線、例えば円弧R1及びR2については、導光板30のサイズと、第2層62、64の最大厚さ及び最小厚さ等に応じて決定すれば良い。
 例えば、2mm程度の導光板30、30Aにおいて、導光長Lが500mm≦L≦615mmである場合には、上述した第2層62、64の最大厚さとなる凸の円弧R1の曲率半径R1は、2500mm≦R1≦250000mm、上述した第2層62、64の最小厚さとなる凹の円弧R2の曲率半径R2は、2500mm≦R2≦230000mmであるのが好ましく、導光長Lが700mm≦L≦850mmである場合には、凸の円弧R1の曲率半径R1は、5000mm≦R1≦490000mm、凹の円弧R2の曲率半径R2は、5000mm≦R2≦450000mmであるのが好ましい。なお、導光板30の厚さが2mmと異なる場合には、その違いに応じて、上記範囲を変更すれば良い。
Note that the shapes of the second layers 62 and 64, that is, the concave and convex curves, for example, the arcs R1 and R2, are determined according to the size of the light guide plate 30, the maximum thickness and the minimum thickness of the second layers 62 and 64, and the like. Just do it.
For example, in the light guide plates 30 and 30A of about 2 mm, when the light guide length L is 500 mm ≦ L ≦ 615 mm, the radius of curvature R1 of the convex arc R1 that is the maximum thickness of the second layers 62 and 64 described above is The radius of curvature R2 of the concave arc R2 that is 2500 mm ≦ R1 ≦ 250,000 mm and the minimum thickness of the second layers 62 and 64 is preferably 2500 mm ≦ R2 ≦ 230000 mm, and the light guide length L is 700 mm ≦ L ≦ In the case of 850 mm, the radius of curvature R1 of the convex arc R1 is preferably 5000 mm ≦ R1 ≦ 490000 mm, and the radius of curvature R2 of the concave arc R2 is preferably 5000 mm ≦ R2 ≦ 450,000 mm. In addition, what is necessary is just to change the said range according to the difference, when the thickness of the light-guide plate 30 differs from 2 mm.
 本発明の導光板は、基本的に以上のように構成されるが、以下のようにして設計することができる。
 図8は、本発明の導光板の設計方法の一例を示すフローチャートである。
 以下では、図1及び図2に示す液晶表示装置10のバックライトユニット20に用いられる図2、図3、図5及び図6に示す第1層(以下、上層ともいう)60及び第2層(以下、下層ともいう)からなる2層導光板30を設計する場合を代表例として説明する。
 まず、図8に示すように、ステップS10において、本発明の導光板30を用いるバックライトユニット20が適用される液晶表示装置10の画面サイズ(光出射面30aの有効な画面エリア)から、画面サイズの短辺長さに、上部筺体44で覆われる部分の長さ(ミキシングゾーン長を含む)として、いわゆる額縁の幅として10~30mmを加えて、導光長Lを決定する。厳密には、光源28の設置位置(LEDの発光面と導光板30の光入射面30c、30dとの距離)等も考慮されて導光長Lが決定される。
The light guide plate of the present invention is basically configured as described above, but can be designed as follows.
FIG. 8 is a flowchart showing an example of the light guide plate designing method of the present invention.
Below, the 1st layer (henceforth upper layer) 60 and 2nd layer which are used for the backlight unit 20 of the liquid crystal display device 10 shown in FIG.1 and FIG.2 and are shown in FIG.2, FIG.3, FIG.5 and FIG. A case where a two-layer light guide plate 30 made of (hereinafter also referred to as a lower layer) is designed will be described as a representative example.
First, as shown in FIG. 8, in step S10, from the screen size (effective screen area of the light emitting surface 30a) of the liquid crystal display device 10 to which the backlight unit 20 using the light guide plate 30 of the present invention is applied, the screen is changed. The light guide length L is determined by adding 10 to 30 mm as the width of the so-called frame as the length (including the mixing zone length) of the portion covered with the upper housing 44 to the short side length of the size. Strictly speaking, the light guide length L is determined in consideration of the installation position of the light source 28 (distance between the light emitting surface of the LED and the light incident surfaces 30c and 30d of the light guide plate 30).
 次に、ステップS12において、液晶表示装置10の用途や画面サイズから導光板30の厚さを決定する。
 また、ステップS14において、導光板30の下層62の断面形状(画面に垂直で、画面サイズの短辺に平行な断面の形状)を決定する。具体的には、導光板30の厚さに応じて、下層最大厚さ及び下層最小厚さ(上層最大厚さ)を決定し、それらに基づいて、下層厚さの極大値(下層最大厚さ)を構成する1つの凸の円弧R1及び下層厚さの極小値(下層最小厚さ)を構成する2つの凹の円弧R2を決定する。その結果、導光板30の上層60の断面形状も自動的に決定される。
 例えば、導光板30の導光長Lが540mm、厚さが2mmである時、下層62の断面形状として、図9にそれぞれ実線、点線及び1点鎖線で示す3つの下層断面A、B及びCを決定することができる。
 この時の、下層断面A、B及びCの下層最大厚さ、下層最小厚さ、極大値を構成する凸の円弧R1及び極小値を構成する凹の円弧R2を表1に示す。
Next, in step S12, the thickness of the light guide plate 30 is determined from the use of the liquid crystal display device 10 and the screen size.
In step S14, the cross-sectional shape (the cross-sectional shape perpendicular to the screen and parallel to the short side of the screen size) of the lower layer 62 of the light guide plate 30 is determined. Specifically, the lower layer maximum thickness and the lower layer minimum thickness (upper layer maximum thickness) are determined according to the thickness of the light guide plate 30, and based on them, the maximum value of the lower layer thickness (lower layer maximum thickness) ) And two concave arcs R2 constituting the minimum value of the lower layer thickness (lower layer minimum thickness) are determined. As a result, the cross-sectional shape of the upper layer 60 of the light guide plate 30 is also automatically determined.
For example, when the light guide length L of the light guide plate 30 is 540 mm and the thickness is 2 mm, as the cross-sectional shape of the lower layer 62, three lower layer cross sections A, B, and C shown by a solid line, a dotted line, and a one-dot chain line in FIG. Can be determined.
Table 1 shows the lower layer maximum thickness, the lower layer minimum thickness, the convex arc R1 that constitutes the maximum value, and the concave arc R2 that constitutes the minimum value.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 次に、ステップS16において、決定された下層62及び上層60の断面形状に基づいて、導光位置xにおける単位長さ当たりの合成散乱断面積Sを上記式(3)及び(4)から求め、求められた合成散乱断面積Sが上記式(1)を満たすように拡散(散乱)粒子分散条件を決定する。例えば、具体的には、散乱粒子分散条件として、導光板30の母材樹脂、及び散乱粒子の材質及び粒径、並びに上層60および下層62の粒子濃度等を決定する。
 本発明においては、下層62の断面形状が異なる場合、例えば、図9に示す下層断面A~Cの場合でも、上層60および下層62の粒子濃度等の粒子条件を最適に選択することにより、同様の合成散乱断面積分布を作ることができる。
Next, in step S16, based on the determined cross-sectional shapes of the lower layer 62 and the upper layer 60, the combined scattering cross section S per unit length at the light guide position x is obtained from the above formulas (3) and (4). The diffusion (scattering) particle dispersion condition is determined so that the obtained combined scattering cross section S satisfies the above formula (1). For example, specifically, as the scattering particle dispersion condition, the base resin of the light guide plate 30, the material and particle size of the scattering particles, the particle concentrations of the upper layer 60 and the lower layer 62, and the like are determined.
In the present invention, when the cross-sectional shape of the lower layer 62 is different, for example, even in the case of the lower layer cross sections A to C shown in FIG. The combined scattering cross-section distribution can be made.
 例えば、導光板30の導光長Lが540mmで、厚さが2mmであり、導光板の下層62の断面形状が図9に示す下層断面Bである時、合成散乱断面積Sとして、図10に示す5つの設計例1~5の合成散乱断面積分布を上記式(3)及び(4)から求めることができる。なお、5つの設計例1~5の上層60の散乱粒子の粒子径及び粒子濃度は、いずれも、4.5μm及び0.005wt%であり、設計例1~5の下層62の散乱粒子の粒子径及び粒子濃度は、それぞれ、9μm及び0.358wt%、9μm及微0.487wt%、9μm及び0.574wt%、9μm及び0.195wt%、並びに9μm及び0.650wt%である。ここで、設計例1~5は、後述する本発明の実施例(例えば、実施例3が設計例2に相当)に対して、下層粒子濃度を変更したものである。 For example, when the light guide length L of the light guide plate 30 is 540 mm, the thickness is 2 mm, and the cross-sectional shape of the lower layer 62 of the light guide plate is the lower layer cross section B shown in FIG. 5 can be obtained from the above equations (3) and (4). The particle size and particle concentration of the scattering particles in the upper layer 60 of the five design examples 1 to 5 are 4.5 μm and 0.005 wt%, respectively, and the particles of the scattering particles in the lower layer 62 of the design examples 1 to 5 The diameter and particle concentration are 9 μm and 0.358 wt%, 9 μm and fine 0.487 wt%, 9 μm and 0.574 wt%, 9 μm and 0.195 wt%, and 9 μm and 0.650 wt%, respectively. Here, Design Examples 1 to 5 are obtained by changing the lower layer particle concentration with respect to the examples of the present invention described later (for example, Example 3 corresponds to Design Example 2).
 なお、散乱粒子の分散条件としては、上層60及び下層62とも、各層内では同一粒径の散乱粒子が均一に分散しているものとしている。具体的な分散状態は、溶融した母材樹脂のペレット中に散乱粒子を混錬・攪拌している状態である。このような導光板30は、押出成形にて同時に2層の押出装置から異なる粒子濃度で散乱粒子が分散された樹脂が押し出され、押出直前(ダイ部分)にて積層されてロール間に挟まれて成形される。即ち、散乱粒子は、母材樹脂に十分に混練、攪拌されているので、散乱粒子同士は略等距離に分散しており、Mie理論が適用できるものである。
 こうして得られた5つの設計例1~5の合成散乱断面積Sの分布を示す図10のグラフから、設計例1~3は、上記式(1)を満足し、設計例4~5は、上記式(1)を満足しないことが分かる。
In addition, as a dispersion | distribution condition of scattering particle | grains, the scattering particle | grains of the same particle diameter shall be uniformly disperse | distributed in each layer also in the upper layer 60 and the lower layer 62. FIG. A specific dispersion state is a state in which scattering particles are kneaded and stirred in a molten base resin pellet. In such a light guide plate 30, resin in which scattered particles are dispersed at different particle concentrations is extruded from a two-layer extrusion apparatus at the same time by extrusion molding, laminated immediately before extrusion (die part), and sandwiched between rolls. To be molded. That is, since the scattering particles are sufficiently kneaded and stirred in the base material resin, the scattering particles are dispersed at substantially equal distances, and the Mie theory can be applied.
From the graph of FIG. 10 showing the distribution of the combined scattering cross section S of the five design examples 1 to 5 obtained in this way, the design examples 1 to 3 satisfy the above formula (1), and the design examples 4 to 5 It can be seen that the above formula (1) is not satisfied.
 続いて、ステップS18において、こうして設計された導光板30を、(a)入射光の利用効率、(b)光出射面30aからの出射光の輝度分布の中高度合、(c)光出射面30aの中央部の凹凸形状、(d)光出射面30aからの出射光の波長むら(波長依存性)の4項目について光学評価し、これらの4項目の各項目の設定値を満足するか否かを吟味する。
 例えば、図10に示す合成散乱断面積分布となる導光板の5つの設計例1~5について光学評価した結果、図11に示す導光位置に対する出射光の相対照度を示すグラフを得ることができる。図11から分かるように、設計例1~5のいずれにおいても光出射面30aからの出射光の輝度分布は中高分布を示し、上記式(1)を満足する設計例1~3は、所望の輝度分布となるが、上記式(1)を満足しない設計例4~5は、所望の輝度分布とならない。
 即ち、上記式(1)を満足する設計例1~3は、(a)利用効率、(b)中高度合、及び(c)中央部の凹凸形状が、それぞれの設定値の(a)70%以上、(b)0%超45%未満、及び(c)凸形状の3項目の規定値を満足する。
Subsequently, in step S18, the light guide plate 30 thus designed is subjected to (a) utilization efficiency of incident light, (b) medium to high degree of luminance distribution of light emitted from the light emission surface 30a, and (c) light emission surface. An optical evaluation is performed on four items of the uneven shape at the center of 30a, and (d) wavelength unevenness (wavelength dependence) of light emitted from the light emitting surface 30a, and whether or not the set values of these four items are satisfied. Examine whether or not.
For example, as a result of optical evaluation of five design examples 1 to 5 of the light guide plate having the combined scattering cross section distribution shown in FIG. 10, a graph showing the relative illuminance of the emitted light with respect to the light guide position shown in FIG. 11 can be obtained. . As can be seen from FIG. 11, in any of the design examples 1 to 5, the luminance distribution of the emitted light from the light exit surface 30a shows a medium-high distribution, and the design examples 1 to 3 that satisfy the above formula (1) Although the luminance distribution is obtained, the design examples 4 to 5 that do not satisfy the expression (1) do not have a desired luminance distribution.
That is, in the design examples 1 to 3 satisfying the above formula (1), (a) utilization efficiency, (b) middle altitude, and (c) concavo-convex shape in the center are respectively set values of (a) 70 %, (B) more than 0% and less than 45%, and (c) the convex value of the three items are satisfied.
 これに対し、合成散乱断面積Sの最大値Smax及び最小値Sminが上記式(1)の下限値より低く、上記式(1)を満足しない設計例4は、図11に示すように、(a)の利用効率、及び(b)の中高度合もそれぞれ規定値を満足するが、(c)の中央部の凹凸形状は、中央部の輝度分布が凹形状となるため、中央部輝度が低下し、中央部付近が帯ムラとして視認されてしまう。
 また、合成散乱断面積Sの最大値Smaxが上記式(1)の上限値より高く、上記式(1)を満足しない設計例5は、図11に示すように、(c)の中央部の凹凸形状は凸形状となるものの、中央部の輝度分布が必要以上に中高分布となるため、中央部付近が帯ムラとして視認されてしまうし、(b)の中高度合が設定値を満しなくなる。また、設計例5では、(b)の中高度合の設定値を満たす場合も、(a)の利用効率が70%未満である場合は、利用効率が不足し、光出射面30a(発光面)全体の明るさが足りなくなってしまうため、使用できない。
On the other hand, design example 4 in which the maximum value S max and the minimum value S min of the combined scattering cross section S are lower than the lower limit value of the above formula (1) and does not satisfy the above formula (1) is shown in FIG. , (A) utilization efficiency, and (b) medium-to-high degree satisfy the specified values, respectively, but the uneven shape in the central part of (c) has a concave luminance distribution in the central part. The brightness is lowered, and the vicinity of the center is visually recognized as band unevenness.
Further, the design example 5 in which the maximum value S max of the combined scattering cross section S is higher than the upper limit value of the above formula (1) and does not satisfy the above formula (1) is shown in FIG. Although the uneven shape in FIG. 4 becomes a convex shape, the brightness distribution in the center part becomes a medium-high distribution more than necessary, so that the vicinity of the center part is visually recognized as band unevenness, and the middle height of (b) satisfies the set value. No longer. Further, in Design Example 5, even when the setting value for the intermediate altitude of (b) is satisfied, if the utilization efficiency of (a) is less than 70%, the utilization efficiency is insufficient, and the light emitting surface 30a (light emitting surface) ) Cannot be used because the overall brightness is insufficient.
 さらに、例えば、(d)光出射面30aからの出射光の波長むらに関して、本発明の実施例(例えば、後述する実施例2)及び比較例(例えば、後述する比較例1)について光学評価した結果、図12(A)及び(B)に示す導光板の導光方向のB及びR波長の出射光の相対照度を示すグラフを得ることができる。上記式(2)を満足する実施例では、図12(A)から分かるように、導光方向のいずれの位置(導光位置)でも、B及びR波長の出射光の相対照度のずれが極めて小さく、B及びR波長の出射光が略同じ相対照度分布となるが、上記式(2)を満足しない比較例では、図12(B)から分かるように、B及びR波長の出射光の相対照度のずれが、導光方向の位置(導光位置)の中央部及び両側(入射部)で大きく、B及びR波長の出射光が同様な相対照度分布とならない。 Further, for example, regarding (d) wavelength unevenness of light emitted from the light exit surface 30a, optical evaluation was performed on an example (for example, Example 2 described later) and a comparative example (for example, Comparative Example 1 described later) of the present invention. As a result, it is possible to obtain a graph showing the relative illuminance of the emitted light of the B and R wavelengths in the light guide direction of the light guide plate shown in FIGS. In the example satisfying the above formula (2), as can be seen from FIG. 12A, the relative illuminance shift of the emitted light of B and R wavelengths is extremely large at any position in the light guide direction (light guide position). In the comparative example that is small and the B and R wavelength outgoing lights have substantially the same relative illuminance distribution, but does not satisfy the above formula (2), as can be seen from FIG. The deviation of illuminance is large at the center and both sides (incident part) of the position in the light guide direction (light guide position), and the emitted light of B and R wavelengths does not have the same relative illuminance distribution.
 ここで、(d)導光板30の光出射面30aからの出射光の波長むらとは、導光板30の入射面(30c、30d、80c)近傍の出射光の色味と光源28から最も距離の離れた場所(2辺入射の場合は導光方向中央部、1辺入射の場合は反対側の面80d)の色味の変化具合を意味している。例えば、出射光の波長依存性(3刺激値XYZ)から色度(あるいはLab色空間)に変換し、色度変化量(あるいは色差)を算出して、波長むらを評価しても良いが、現実的に許容できる範囲を明確化するのが困難であるために、本発明では、上記式(5)で定義される透過係数パラメータT(λ)を用い、B及びR波長の出射光の透過係数T(λ)の比として定義して、上記式(2)を用いて評価している。
 即ち、上記式(2)を満足する実施例は、光出射面30aからの出射光は、導光位置に対して中央部と入射部とで波長むらのない輝度分布となる。
 一方、上記式(2)を満足しない比較例では、光出射面30aからの出射光は、導光位置の中央部と入射部とで大きい波長むらのある輝度分布となる。
Here, (d) the wavelength unevenness of the emitted light from the light emitting surface 30a of the light guide plate 30 is the distance from the light source 28 and the color of the emitted light in the vicinity of the incident surface (30c, 30d, 80c) of the light guide plate 30. This means a change in the color of a distant place (the central portion in the light guide direction in the case of two-side incidence and the surface 80d on the opposite side in the case of one-side incidence). For example, wavelength variation may be evaluated by converting the wavelength dependency (tristimulus value XYZ) of emitted light into chromaticity (or Lab color space) and calculating a chromaticity change amount (or color difference). Since it is difficult to clarify a practically acceptable range, the present invention uses the transmission coefficient parameter T (λ) defined by the above equation (5) and transmits the outgoing light of B and R wavelengths. The ratio is defined as the ratio of the coefficient T (λ), and the evaluation is performed using the above equation (2).
That is, in the embodiment that satisfies the above formula (2), the light emitted from the light emitting surface 30a has a luminance distribution with no wavelength unevenness at the central portion and the incident portion with respect to the light guide position.
On the other hand, in the comparative example that does not satisfy the above formula (2), the emitted light from the light emitting surface 30a has a luminance distribution with large wavelength unevenness at the central portion and the incident portion of the light guide position.
 こうして設計された多数の導光板30についての(a)の利用効率、及び(b)の中高度合の2項目についての評価結果を図13に示す。
 図13は、設計された多数の導光板についての第2層(下層)の粒子濃度[wt%]に対する入射光の利用効率[%]及び出射光の中高度合[%]を示すグラフである。
 図13を用いて、下層62の粒子濃度を決定する方法の一例について説明する。
 まず、下層62の粒子濃度以外のパラメータは、以下の通りに設定されているものとする。
FIG. 13 shows the evaluation results for two items of (a) utilization efficiency and (b) medium to high degree for a large number of light guide plates 30 designed in this way.
FIG. 13 is a graph showing incident light utilization efficiency [%] and outgoing light medium altitude [%] with respect to the particle concentration [wt%] of the second layer (lower layer) for a number of designed light guide plates. .
An example of a method for determining the particle concentration of the lower layer 62 will be described with reference to FIG.
First, parameters other than the particle concentration of the lower layer 62 are set as follows.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 次に、下層62の散乱粒子の粒子濃度範囲は、以下のような手順で決定することができる。
 まず、図13のグラフから、(a)入射光の利用効率が70%以上となる粒子濃度xの範囲を決定する。その結果、粒子濃度範囲として、x1≧0.08[wt%]を求めることができる。
 次に、図13のグラフから、(b)中高度合が0%超45%未満となる粒子濃度xの範囲を決定する。その結果、粒子濃度範囲として、x≧0.165[wt%]を求めることができる。
 続いて、(c)輝度分布の中央部の凹凸形状が、凹形状でない粒子濃度xの範囲を決定する。その結果、粒子濃度範囲として、x≦0.285[wt%]を求めることができる。
 こうして得られた粒子濃度範囲x、x、及びxから、適用可能な下層62の粒子濃度範囲は、0.165≦x≦0.285[wt%]と決定することができる。
Next, the particle concentration range of the scattering particles of the lower layer 62 can be determined by the following procedure.
First, from the graph of FIG. 13, to determine the extent of particle concentration x 1 comprising (a) and the utilization efficiency of the incident light is 70% or more. As a result, x 1 ≧ 0.08 [wt%] can be obtained as the particle concentration range.
Then, from the graph of FIG. 13, it determines the range of particle concentrations x 2 comprising (b) and the middle-high ratio is less than 0% and 45%. As a result, x 2 ≧ 0.165 [wt%] can be obtained as the particle concentration range.
Subsequently, (c) the range of the particle concentration x 3 in which the uneven shape at the center of the luminance distribution is not concave is determined. As a result, x 3 ≦ 0.285 [wt%] can be obtained as the particle concentration range.
From the particle concentration ranges x 1 , x 2 , and x 3 thus obtained, the applicable particle concentration range of the lower layer 62 can be determined as 0.165 ≦ x ≦ 0.285 [wt%].
 こうして、第1層(上層)60及び第2層(下層)62の断面形状、それらに分散させる散乱粒子の粒子濃度等の条件が決定された導光板は、本発明の散乱粒子分散条件等の限定範囲を満たすものであるので、大画面であっても、薄型な形状であり、かつ光の利用効率が高く、輝度むらが少ない光を出射することができ、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高なあるいは釣鐘状の明るさの分布を得ることができる。
 なお、図7に示す3層導光板30Aを設計する場合は、第2層64の最大厚さを、下層62の最大厚さと最小厚さとの差とし、第2層64の最小厚さを、0とし、第3層66の厚さを、下層62の最小厚さとして、各層の粒子濃度範囲を決定すれば良い。
 本発明の導光板は、基本的に以上のように構成される。
Thus, the light guide plate in which conditions such as the cross-sectional shapes of the first layer (upper layer) 60 and the second layer (lower layer) 62 and the particle concentration of the scattering particles dispersed therein are determined can be used for the scattering particle dispersion conditions of the present invention. Because it satisfies the limited range, even a large screen has a thin shape, high light utilization efficiency, and can emit light with little unevenness in luminance, which is required for a large-screen thin LCD TV It is possible to obtain a lighter distribution in the vicinity of the center of the screen than the peripheral part, that is, a so-called medium-high or bell-shaped brightness distribution.
In the case of designing the three-layer light guide plate 30A shown in FIG. 7, the maximum thickness of the second layer 64 is the difference between the maximum thickness and the minimum thickness of the lower layer 62, The particle concentration range of each layer may be determined with 0 being the thickness of the third layer 66 and the minimum thickness of the lower layer 62.
The light guide plate of the present invention is basically configured as described above.
 ここで、光源28と導光板30とは、光源28の光発光面、例えば、LEDの発光面(表面)と導光板30の光入射面30c、30dとの間に0.2mm以上の間隔をあけて配置することが好ましい。すなわち、光源28の光発光面(LEDの表面)と導光板30の光入射面とは、0.2mm以上の距離があることが好ましい。その理由は、両者の間隔を0.2mm以上とすることで、導光板30に温度変化による伸びや反りが生じた場合でも光源28の発光面(具体的には、LEDの表面)と導光板30とが接触し、光源28(具体的にはLEDの表面の蛍光体)が損傷することを防止できる。なお、両者の間隔の上限は、特に制限的ではないが、間隔が広すぎると、導光板30の光入射面30c、30dに入射する光源28からの光の光量が低下するので、両者の間隔は、0.5mm以下であるのが好ましい。
 なお、導光板30Aの場合も含め、本発明の導光板でも同様である。
Here, the light source 28 and the light guide plate 30 have an interval of 0.2 mm or more between the light emitting surface of the light source 28, for example, the light emitting surface (front surface) of the LED and the light incident surfaces 30 c and 30 d of the light guide plate 30. It is preferable to dispose them. That is, it is preferable that the light emitting surface (LED surface) of the light source 28 and the light incident surface of the light guide plate 30 have a distance of 0.2 mm or more. The reason for this is that the distance between them is 0.2 mm or more, so that the light-emitting surface of the light source 28 (specifically, the surface of the LED) and the light-guide plate even when the light-guide plate 30 is stretched or warped due to temperature changes. It is possible to prevent the light source 28 (specifically, the phosphor on the surface of the LED) from being damaged. The upper limit of the distance between the two is not particularly limited, but if the distance is too wide, the amount of light from the light source 28 incident on the light incident surfaces 30c and 30d of the light guide plate 30 is reduced. Is preferably 0.5 mm or less.
The same applies to the light guide plate of the present invention, including the case of the light guide plate 30A.
 図1及び図2に示すバックライトユニットの説明を続ける。以下では、2層導光板30をを代表例として説明する。
 次に、本発明において好ましく用いることができる光学部材ユニット32について説明する。
 光学部材ユニット32は、導光板30の光出射面30aから出射された照明光をより輝度むら及び照度むらのない光にして、照明装置本体24の光出射面24aから出射するためのもので、図2に示すように、導光板30の光出射面30aから出射する照明光を拡散して輝度むら及び照度むらを低減する拡散シート32aと、光入射面30c,30dと光出射面30aとの接線と平行なマイクロプリズム列が形成されたプリズムシート32bと、プリズムシート32bから出射する照明光を拡散して輝度むら及び照度むらを低減する拡散シート32cとを有する。
The description of the backlight unit shown in FIGS. 1 and 2 will be continued. Hereinafter, the two-layer light guide plate 30 will be described as a representative example.
Next, the optical member unit 32 that can be preferably used in the present invention will be described.
The optical member unit 32 is for making the illumination light emitted from the light emission surface 30a of the light guide plate 30 light with more uneven brightness and illuminance, and emitting it from the light emission surface 24a of the illumination device body 24. As shown in FIG. 2, the diffusion sheet 32a that diffuses the illumination light emitted from the light emitting surface 30a of the light guide plate 30 to reduce luminance unevenness and illuminance unevenness, and the light incident surfaces 30c and 30d and the light emitting surface 30a. It has a prism sheet 32b on which microprism rows parallel to the tangent line are formed, and a diffusion sheet 32c that diffuses illumination light emitted from the prism sheet 32b to reduce luminance unevenness and illuminance unevenness.
 拡散シート32a及び32c、プリズムシート32bとしては、特に制限的ではなく、公知の拡散シートやプリズムシートを使用することができ、例えば、本出願人の出願に係る特開2005-234397号公報の[0028]~[0033]に開示されているものを適用することができる。 The diffusion sheets 32a and 32c and the prism sheet 32b are not particularly limited, and a known diffusion sheet or prism sheet can be used. For example, Japanese Patent Application Laid-Open No. 2005-23497 related to the application of the present applicant [ The ones disclosed in [0028] to [0033] can be applied.
 なお、本実施形態では、光学部材ユニットを2枚の拡散シート32a及び32cと、2枚の拡散シートの間に配置したプリズムシート32bとで構成したが、プリズムシート及び拡散シートの配置順序や配置数は特に限定されず、また、プリズムシート、拡散シートとしても特に限定されず、導光板30の光出射面30aから出射された照明光の輝度むら及び照度むらをより低減することができるものであれば、種々の光学部材を用いることができる。
 例えば、光学部材として、上述の拡散シート及びプリズムシートに、加えてまたは代えて、拡散反射体からなる多数の透過率調整体を輝度むら及び照度むらに応じて配置した透過率調整部材も用いることもできる。また、光学部材ユニットを、プリズムシート及び拡散シートを各1枚ずつ用いるか、あるいは、拡散シートのみを2枚用いて、2層構成としてもよい。
In the present embodiment, the optical member unit is composed of the two diffusion sheets 32a and 32c and the prism sheet 32b disposed between the two diffusion sheets. However, the arrangement order and arrangement of the prism sheets and the diffusion sheets are not limited. The number is not particularly limited, and is not particularly limited as a prism sheet or a diffusion sheet, and it is possible to further reduce unevenness in luminance and unevenness of illumination light emitted from the light exit surface 30a of the light guide plate 30. If there are, various optical members can be used.
For example, as an optical member, in addition to or instead of the above-described diffusion sheet and prism sheet, a transmittance adjusting member in which a large number of transmittance adjusting bodies made of a diffuse reflector are arranged in accordance with luminance unevenness and illuminance unevenness is also used. You can also. Further, the optical member unit may have a two-layer configuration using one prism sheet and one diffusion sheet, or using only two diffusion sheets.
 次に、照明装置本体24の反射板34について説明する。
 反射板34は、導光板30の背面30bから漏洩する光を反射して、再び導光板30に入射させるために設けられており、光の利用効率を向上させることができる。反射板34は、導光板30の背面30bに対応した形状で、背面30bを覆うように形成される。本実施形態では、図2に示すように、導光板30の背面30bが平面、つまり断面が直線形状に形成されているので、反射板34もこれに補形する形状に形成されている。
Next, the reflecting plate 34 of the lighting device body 24 will be described.
The reflection plate 34 is provided to reflect the light leaking from the back surface 30b of the light guide plate 30 and make it incident on the light guide plate 30 again, and can improve the light use efficiency. The reflection plate 34 has a shape corresponding to the back surface 30b of the light guide plate 30 and is formed so as to cover the back surface 30b. In the present embodiment, as shown in FIG. 2, the back surface 30 b of the light guide plate 30 is flat, that is, the cross section is formed in a linear shape. Therefore, the reflecting plate 34 is also formed in a shape complementary to this.
 反射板34は、導光板30の背面30bから漏洩する光を反射することができれば、どのような材料で形成されてもよく、例えば、PETやPP(ポリプロピレン)等にフィラーを混練後延伸することによりボイドを形成して反射率を高めた樹脂シート、透明もしくは白色の樹脂シート表面にアルミ蒸着などで鏡面を形成したシート、アルミ等の金属箔もしくは金属箔を担持した樹脂シート、あるいは表面に十分な反射性を有する金属薄板により形成することができる。 The reflection plate 34 may be formed of any material as long as it can reflect light leaking from the back surface 30b of the light guide plate 30. For example, the reflection plate 34 may be stretched after a filler is kneaded into PET, PP (polypropylene), or the like. Resin sheet with increased reflectivity by forming voids, a sheet with a mirror surface formed by vapor deposition of aluminum on the surface of a transparent or white resin sheet, a resin sheet carrying a metal foil or metal foil such as aluminum, or sufficient on the surface It can be formed of a thin metal plate having excellent reflectivity.
 上部誘導反射板36は、導光板30と拡散シート32aとの間、つまり、導光板30の光出射面30a側に、光源28及び導光板30の光出射面30aの端部(第1光入射面30c側の端部及び第2光入射面30d側の端部)を覆うようにそれぞれ配置されている。言い換えれば、上部誘導反射板36は、光軸方向に平行な方向において、導光板30の光出射面30aの一部から光源28の光源支持部52の一部までを覆うように配置されている。つまり、2つの上部誘導反射板36が、導光板30の両端部にそれぞれ配置されている。
 このように、上部誘導反射板36を配置することで、光源28から出射された光が導光板30に入射することなく、光出射面30a側に漏れ出すことを防止できる。
 これにより、光源28から出射された光を効率よく導光板30の第1光入射面30c及び第2光入射面30dに入射させることができ、光利用効率を向上させることができる。
The upper guide reflection plate 36 is disposed between the light guide plate 30 and the diffusion sheet 32a, that is, on the light emission surface 30a side of the light guide plate 30, and at the end of the light emission surface 30a of the light source 28 and the light guide plate 30 (first light incident). The end portion on the surface 30c side and the end portion on the second light incident surface 30d side) are disposed so as to cover each other. In other words, the upper guide reflection plate 36 is arranged so as to cover a part of the light emitting surface 30a of the light guide plate 30 to a part of the light source support part 52 of the light source 28 in a direction parallel to the optical axis direction. . That is, the two upper guide reflectors 36 are disposed at both ends of the light guide plate 30, respectively.
As described above, by arranging the upper guide reflection plate 36, it is possible to prevent light emitted from the light source 28 from entering the light guide plate 30 and leaking to the light emitting surface 30 a side.
Thereby, the light emitted from the light source 28 can be efficiently incident on the first light incident surface 30c and the second light incident surface 30d of the light guide plate 30, and the light utilization efficiency can be improved.
 下部誘導反射板38は、導光板30の背面30b側に、光源28の一部を覆うように配置されている。また、下部誘導反射板38の導光板30中心側の端部は、反射板34と連結されている。
 ここで、上部誘導反射板36及び下部誘導反射板38としては、上述した反射板34に用いる各種材料を用いることができる。
 下部誘導反射板38を設けることで、光源28から出射された光が導光板30に入射することなく、導光板30の背面30b側に漏れ出すことを防止できる。
 これにより、光源28から出射された光を効率よく導光板30の第1光入射面30c及び第2光入射面30dに入射させることができ、光利用効率を向上させることができる。
 なお、本実施形態では、反射板34と下部誘導反射板38とを連結させたが、これに限定されず、それぞれを別々の部材としてもよい。
The lower guide reflection plate 38 is disposed on the back surface 30 b side of the light guide plate 30 so as to cover a part of the light source 28. The end of the lower guide reflector 38 on the center side of the light guide plate 30 is connected to the reflector 34.
Here, as the upper guide reflector 36 and the lower guide reflector 38, various materials used for the reflector 34 described above can be used.
By providing the lower guide reflection plate 38, it is possible to prevent light emitted from the light source 28 from entering the light guide plate 30 and leaking to the back surface 30 b side of the light guide plate 30.
Thereby, the light emitted from the light source 28 can be efficiently incident on the first light incident surface 30c and the second light incident surface 30d of the light guide plate 30, and the light utilization efficiency can be improved.
In addition, in this embodiment, although the reflecting plate 34 and the lower induction | guidance | derivation reflecting plate 38 were connected, it is not limited to this, Each is good also as a separate member.
 ここで、上部誘導反射板36及び下部誘導反射板38は、光源28から出射された光を第1光入射面30c又は第2光入射面30d側に反射させ、光源28から出射された光を第1光入射面30c又は第2光入射面30dに入射させることができ、導光板30に入射した光を導光板30中心側に導くことができれば、その形状及び幅は特に限定されない。
 また、本実施形態では、上部誘導反射板36を導光板30と拡散シート32aとの間に配置したが、上部誘導反射板36の配置位置はこれに限定されず、光学部材ユニット32を構成するシート状部材の間に配置してもよく、光学部材ユニット32と上部筐体44との間に配置してもよい。
Here, the upper guide reflector 36 and the lower guide reflector 38 reflect the light emitted from the light source 28 toward the first light incident surface 30c or the second light incident surface 30d, and the light emitted from the light source 28 is reflected. The shape and the width are not particularly limited as long as the light can be incident on the first light incident surface 30c or the second light incident surface 30d and the light incident on the light guide plate 30 can be guided to the center side of the light guide plate 30.
In the present embodiment, the upper guide reflector 36 is disposed between the light guide plate 30 and the diffusion sheet 32a. However, the position of the upper guide reflector 36 is not limited to this, and constitutes the optical member unit 32. You may arrange | position between sheet-like members, and may arrange | position between the optical member unit 32 and the upper housing | casing 44. FIG.
 次に、筐体26について説明する。
 図2に示すように、筐体26は、照明装置本体24を収納して支持し、かつその光出射面24a側と導光板30の背面30b側とから挟み込み、固定するものであり、下部筐体42と上部筐体44と折返部材46と支持部材48とを有する。
Next, the housing 26 will be described.
As shown in FIG. 2, the housing 26 accommodates and supports the lighting device main body 24, and is sandwiched and fixed from the light emitting surface 24 a side and the back surface 30 b side of the light guide plate 30. It has a body 42, an upper housing 44, a folding member 46, and a support member 48.
 下部筐体42は、上面が開放され、底面部と、底面部の4辺に設けられ底面部に垂直な側面部とで構成された形状である。つまり、1面が開放された略直方体の箱型形状である。下部筐体42は、図2に示すように、上方から収納された照明装置本体24を底面部及び側面部で支持すると共に、照明装置本体24の光出射面24a以外の面、つまり、照明装置本体24の光出射面24aとは反対側の面(背面)及び側面を覆っている。 The lower housing 42 has a shape having an open top surface, a bottom surface portion, and a side surface portion provided on four sides of the bottom surface portion and perpendicular to the bottom surface portion. That is, it is a substantially rectangular parallelepiped box shape with one surface open. As shown in FIG. 2, the lower housing 42 supports the illuminating device main body 24 housed from above with a bottom surface portion and a side surface portion, and also a surface other than the light emitting surface 24 a of the illuminating device main body 24, that is, the illuminating device. The main body 24 covers a surface (back surface) and a side surface opposite to the light emitting surface 24a.
 上部筐体44は、上面に開口部となる照明装置本体24の矩形状の光出射面24aより小さい矩形状の開口が形成され、かつ下面が開放された直方体の箱型形状である。
 上部筐体44は、図2に示すように、照明装置本体24及び下部筐体42の上方(光出射面側)から、照明装置本体24及びこれが収納された下部筐体42をその4方の側面部も覆うように被せられて配置されている。
The upper housing 44 has a rectangular parallelepiped box shape in which a rectangular opening smaller than the rectangular light emitting surface 24a of the lighting device body 24 serving as an opening is formed on the upper surface, and the lower surface is opened.
As shown in FIG. 2, the upper housing 44 includes the lighting device main body 24 and the lower housing 42 in which the lighting device main body 24 and the lower housing 42 are housed from above the lighting device main body 24 and the lower housing 42. The side portion is also placed so as to cover the side portion.
 折返部材46は、断面の形状が常に同一の凹(U字)型となる形状である。つまり、延在方向に垂直な断面の形状がU字形状となる棒状部材である。
 折返部材46は、図2に示すように、下部筐体42の側面と上部筐体44の側面との間に嵌挿され、U字形状の一方の平行部の外側面が下部筐体42の側面部と連結され、他方の平行部の外側面が上部筐体44の側面と連結されている。
 ここで、下部筐体42と折返部材46との接合方法、折返部材46と上部筐体44との接合方法としては、ボルト及びナット等を用いる方法、接着剤を用いる方法等種々の公知の方法を用いることができる。
The folding member 46 has a concave (U-shaped) shape whose cross-sectional shape is always the same. That is, it is a rod-like member having a U-shaped cross section perpendicular to the extending direction.
As shown in FIG. 2, the folding member 46 is inserted between the side surface of the lower housing 42 and the side surface of the upper housing 44, and the outer surface of one U-shaped parallel part is the bottom surface of the lower housing 42. It is connected to the side surface portion, and the outer side surface of the other parallel portion is connected to the side surface of the upper housing 44.
Here, as a method for joining the lower housing 42 and the folding member 46, and a method for joining the folding member 46 and the upper housing 44, various known methods such as a method using bolts and nuts, a method using an adhesive, and the like. Can be used.
 このように、下部筐体42と上部筐体44との間に折返部材46を配置することで、筐体26の剛性を高くすることができ、導光板30が反ることを防止できる。これにより、例えば、輝度むら及び照度むらがないまたは少ない光を効率よく出射させることができる反面、反りが生じ易い導光板を用いる場合であっても、反りをより確実に矯正でき、または、導光板に反りが生じることをより確実に防止でき、輝度むら及び照度むら等のない、または低減された光を光出射面から出射させることができる。
 なお、筐体の上部筐体、下部筐体及び折返部材には、金属、樹脂等の種々の材料を用いることができる。なお、材料としては、軽量で高強度の材料を用いることが好ましい。
 また、本実施形態では、折返部材を別部材としたが、上部筐体または下部筐体と一体にして形成してもよい。また、折返部材を設けない構成としてもよい。
Thus, by arranging the folding member 46 between the lower housing 42 and the upper housing 44, the rigidity of the housing 26 can be increased, and the light guide plate 30 can be prevented from warping. As a result, for example, there is no unevenness in brightness and unevenness in illuminance, or a small amount of light can be emitted efficiently, but even when a light guide plate that is likely to warp is used, the warp can be corrected more reliably or guided. It is possible to more reliably prevent the optical plate from being warped, and light with reduced or reduced brightness and illuminance unevenness can be emitted from the light exit surface.
In addition, various materials, such as a metal and resin, can be used for the upper housing | casing of a housing | casing, a lower housing | casing, and a folding member. In addition, as a material, it is preferable to use a lightweight and high-strength material.
In this embodiment, the folding member is a separate member, but it may be formed integrally with the upper casing or the lower casing. Moreover, it is good also as a structure which does not provide a folding | turning member.
 支持部材48は、延在方向に垂直な断面の形状が同一の棒状部材である。
 支持部材48は、図2に示すように、反射板34と下部筐体42との間、より具体的には、導光板30の背面30bの第1光入射面30c側の端部及び第2光入射面30d側の端部に対応する位置の反射板34と下部筐体42との間に配置され、導光板30及び反射板34を下部筐体42に固定し、支持する。
 支持部材48により反射板34を支持することで、導光板30と反射板34とを密着させることができる。さらに、導光板30及び反射板34を、下部筐体42の所定位置に固定することができる。
The support member 48 is a rod-like member having the same cross-sectional shape perpendicular to the extending direction.
As shown in FIG. 2, the support member 48 is formed between the reflecting plate 34 and the lower housing 42, more specifically, the end of the rear surface 30 b of the light guide plate 30 on the first light incident surface 30 c side and the second end. The light guide plate 30 and the reflection plate 34 are fixed to and supported by the lower housing 42 and disposed between the reflection plate 34 and the lower housing 42 at a position corresponding to the end on the light incident surface 30d side.
The light guide plate 30 and the reflection plate 34 can be brought into close contact with each other by supporting the reflection plate 34 with the support member 48. Further, the light guide plate 30 and the reflection plate 34 can be fixed at predetermined positions of the lower housing 42.
 また、本実施形態では、支持部材48を独立した部材として設けたが、これに限定されず、下部筐体42、または反射板34と一体で形成してもよい。つまり、下部筐体42の一部に突起部を形成し、この突起部を支持部材として用いても、反射板34の一部に突起部を形成し、この突起部を支持部材として用いてもよい。
 また、支持部材48の配置位置も特に限定されず、反射板34と下部筐体42との間の任意の位置に配置することができるが、導光板30を安定して保持するために、導光板30の端部側、つまり、本実施形態では、第1光入射面30c近傍、第2光入射面30d近傍に配置することが好ましい。
In the present embodiment, the support member 48 is provided as an independent member, but the present invention is not limited to this, and the support member 48 may be formed integrally with the lower housing 42 or the reflection plate 34. That is, even if a protrusion is formed on a part of the lower housing 42 and this protrusion is used as a support member, a protrusion is formed on a part of the reflector 34 and this protrusion is used as a support member. Good.
Further, the arrangement position of the support member 48 is not particularly limited, and the support member 48 can be arranged at an arbitrary position between the reflection plate 34 and the lower housing 42. However, in order to stably hold the light guide plate 30, the guide member 48 is guided. In the present embodiment, it is preferable to arrange the optical plate 30 near the first light incident surface 30c and near the second light incident surface 30d.
 また、支持部材48の形状は特に限定されず、種々の形状とすることができ、また、種々の材料で作製することもできる。例えば、支持部材を複数設け、所定間隔ごとに配置してもよい。
 また、支持部材を反射板と下部筐体とで形成される空間の全域を埋める形状とし、つまり、反射板側の面を反射板に沿った形状とし、下部筐体側の面を下部筐体に沿った形状としてもよい。このように、支持部材により反射板の全面を支持する場合は、導光板と反射板とが離れることを確実に防止することができ、反射板を反射した光により輝度むら及び照度むらが生じることを防止することができる。
Further, the shape of the support member 48 is not particularly limited, and can be various shapes, and can be made of various materials. For example, a plurality of support members may be provided and arranged at predetermined intervals.
In addition, the support member has a shape that fills the entire space formed by the reflector and the lower housing, that is, the surface on the reflector side is shaped along the reflector, and the surface on the lower housing side is the lower housing. It is good also as a shape along. As described above, when the entire surface of the reflection plate is supported by the support member, it is possible to reliably prevent the light guide plate and the reflection plate from separating, and uneven brightness and illuminance are caused by the light reflected from the reflection plate. Can be prevented.
 バックライトユニット20は、基本的に以上のように構成される。
 バックライトユニット20は、導光板30の両端にそれぞれ配置された光源28から出射された光が導光板30の光入射面(第1光入射面30c及び第2光入射面30d)に入射する。それぞれの面から入射した光は、導光板30の内部に含まれる散乱体によって散乱されつつ、導光板30内部を通過し、直接、または背面30bで反射した後、光出射面30aから出射する。このとき、背面から漏出した一部の光は、反射板34によって反射され再び導光板30の内部に入射する。
 このようにして、導光板30の光出射面30aから出射された光は、光学部材32を透過し、照明装置本体24の光出射面24aから出射され、液晶表示パネル12を照明する。
 液晶表示パネル12は、駆動ユニット14により、位置に応じて光の透過率を制御することで、液晶表示パネル12の表面上に文字、図形、画像などを表示する。
The backlight unit 20 is basically configured as described above.
In the backlight unit 20, light emitted from the light sources 28 disposed at both ends of the light guide plate 30 is incident on the light incident surfaces (the first light incident surface 30 c and the second light incident surface 30 d) of the light guide plate 30. Light incident from each surface passes through the light guide plate 30 while being scattered by the scatterers included in the light guide plate 30, and is reflected directly or after being reflected by the back surface 30b, and then exits from the light exit surface 30a. At this time, part of the light leaking from the back surface is reflected by the reflecting plate 34 and enters the light guide plate 30 again.
In this way, the light emitted from the light emitting surface 30 a of the light guide plate 30 passes through the optical member 32 and is emitted from the light emitting surface 24 a of the illuminating device body 24 to illuminate the liquid crystal display panel 12.
The liquid crystal display panel 12 displays characters, figures, images, and the like on the surface of the liquid crystal display panel 12 by controlling the light transmittance according to the position by the drive unit 14.
 図2、図3、図5及び図6に示す導光板30においては、第2層62は、上記断面における断面形状が3つの円弧R1,R2,R2からなるが、本発明においては、これに限定されず、上記散乱粒子分散条件を満足し、光出射面に略平行な方向において、光出射面に略垂直な方向の厚さが変化し、その厚さが光入射面から遠ざかる方向に連続して増加して極大となる部分を少なくとも持つ断面形状を有していれば、どのような形状でも良く、どのような断面形状を有していても良い。 In the light guide plate 30 shown in FIG. 2, FIG. 3, FIG. 5 and FIG. 6, the second layer 62 is composed of three arcs R1, R2, R2 in the cross section. Without being limited, the above scattering particle dispersion condition is satisfied, and the thickness in the direction substantially perpendicular to the light exit surface changes in a direction substantially parallel to the light exit surface, and the thickness continues in a direction away from the light entrance surface. As long as it has a cross-sectional shape having at least a maximum portion, it may have any shape, and may have any cross-sectional shape.
 例えば、図14(A)に示す導光板31aのように、上記断面における境界面zの断面形状は、第2層62の厚さが光出射面30aの中央部(即ち、2等分線αの近傍)で極大(最大)となる、光出射面30aと平行な直線部L1と、この直線部L1に接続され、第2層62の厚さが直線部L1からそれぞれ第1光入射面30c及び第2光入射面30dに向かって薄くなるように連続的に変化する、光出射面30aに向かって凸の2つの曲線(曲率半径R3の2つの円弧R3)と、これらの2つの凸の曲線にそれぞれ滑らかに接続され、第2層62の厚さが第1光入射面30c及び第2光入射面30dの手前でそれぞれ極小となり、これらの極小からそれぞれ第1光入射面30c及び第2光入射面30dに向かって第2層62の厚さが厚くなるように連続的に変化して光入射面30c、30dに接続される2つの凹の曲線(曲率半径R4の2つの円弧R4)とを有する4つの円弧からなるものであっても良い。 For example, as in the light guide plate 31a shown in FIG. 14A, the cross-sectional shape of the boundary surface z in the cross section is such that the thickness of the second layer 62 is the central portion of the light emitting surface 30a (that is, the bisector α). A linear portion L1 parallel to the light emitting surface 30a and having a maximum (maximum) in the vicinity of the first light incident surface 30c. The thickness of the second layer 62 is connected to the linear portion L1 from the linear portion L1. And two curves convex toward the light exit surface 30a (two arcs R3 having a radius of curvature R3), which continuously change so as to become thinner toward the second light incident surface 30d, and the two convex shapes Each of the second layers 62 has a minimum thickness before the first light incident surface 30c and the second light incident surface 30d, and the first light incident surface 30c and the second light input surface 30c are respectively connected to the curved lines smoothly. The thickness of the second layer 62 increases toward the light incident surface 30d. Continuously changes to the light incident surface 30c in so that, (two arcs R4 radius of curvature R4) two concave curves which are connected to 30d and may be composed of four arcs having.
 例えば、図14(B)に示す導光板31bのように、上記断面における境界面zの断面形状は、第2層62の厚さが光出射面30aの中央部(即ち、2等分線α上)近傍で極大(最大)となる、中央部における第1の凸の曲線(例えば、曲率半径R5の円弧R5)と、この第1の凸の曲線に滑らかに接続され、それぞれ背面30bと光入射面30c、30dとの接続部(角部)に接続される2つの第2の凸の曲線(例えば、異なる曲率半径R6の2つの円弧R6)とを有する3つの円弧からなるもの、いわゆるかまぼこ形状であっても良い。
 なお、この例でも、第1の凸の曲線と第2の凸の曲線との接続部分や、第2の凸の曲線と接続部との角部との接続部分に直線部分が含まれていても良い。また、第2の凸の曲線は、角部ではなく、光入射面30c、30dとの接続部に接続されていても良いし、光入射面30c、30dの近傍において背面30bと接続されていても良い。
For example, as in the light guide plate 31b shown in FIG. 14B, the cross-sectional shape of the boundary surface z in the above cross section is such that the thickness of the second layer 62 is the central portion of the light emitting surface 30a (that is, the bisector α). The first convex curve (for example, the arc R5 having a radius of curvature R5) having a local maximum (maximum) in the vicinity, and the first convex curve smoothly connected to the back surface 30b and the light respectively. A so-called kamaboko having three arcs having two second convex curves (for example, two arcs R6 having different radii of curvature R6) connected to the connection parts (corner parts) with the incident surfaces 30c and 30d. It may be a shape.
In this example as well, a straight line portion is included in the connection portion between the first convex curve and the second convex curve and the connection portion between the second convex curve and the corner portion of the connection portion. Also good. Further, the second convex curve may be connected to the connection portion with the light incident surfaces 30c and 30d instead of the corner portion, or connected to the back surface 30b in the vicinity of the light incident surfaces 30c and 30d. Also good.
 例えば、図14(C)に示す導光板31cのように、上記断面における境界面zの断面形状は、第2層62の厚さが光出射面30aの中央部(即ち、2等分線α上)で極大(最大)となる、光出射面30aと平行な直線部L2と、この直線部L2に接続され、第2層62の厚さが直線部L2からそれぞれ第1光入射面30c及び第2光入射面30dに向かって薄くなるように連続的に変化して光入射面30c、30dに接続される2つの凸の曲線(例えば、曲率半径R7の2つの円弧R7)とを有する2つの円弧からなるもの(かまぼこ形状)であっても良い。
 なお、この例でも、凸の曲線と光入射面30c、30dとの接続部分に直線部分が含まれていても良い。また、凸の曲線は、背面30bと光入射面30c、30dとの接続部に接続されていても良いし、光入射面30c、30dではなく、光入射面30c、30dの近傍において背面30bと接続されていても良い。
For example, as in the light guide plate 31c shown in FIG. 14C, the cross-sectional shape of the boundary surface z in the above cross-section is such that the thickness of the second layer 62 is the central portion of the light emitting surface 30a (that is, the bisector α A linear portion L2 that is maximal (maximum) in parallel and parallel to the light emitting surface 30a, and is connected to the linear portion L2, and the thickness of the second layer 62 extends from the linear portion L2 to the first light incident surface 30c and the linear portion L2, respectively. 2 having two convex curves (for example, two arcs R7 having a radius of curvature R7) connected continuously to the light incident surfaces 30c and 30d while being thinned toward the second light incident surface 30d. It may be composed of two arcs (kamaboko shape).
In this example as well, a straight line portion may be included in the connection portion between the convex curve and the light incident surfaces 30c and 30d. Further, the convex curve may be connected to a connection portion between the back surface 30b and the light incident surfaces 30c and 30d, and not the light incident surfaces 30c and 30d but the back surface 30b in the vicinity of the light incident surfaces 30c and 30d. It may be connected.
 例えば、図14(D)に示す導光板31dのように、上記断面における境界面zの断面形状は、第2層62の厚さが光出射面30aの中央部(即ち、2等分線α上)近傍で極大(最大)となり、それぞれ第1光入射面30c及び第2光入射面30dに向かって薄くなるように連続的に変化して光入射面30c、30dに接続される1つの凸の曲線(例えば、曲率半径R8の2つの円弧R8)を有する1つの円弧からなるもの(かまぼこ形状)であっても良い。
 なお、この例でも、凸の曲線と光入射面30c、30dとの接続部分に直線部分が含まれていても良い。また、凸の曲線は、背面30bと光入射面30c、30dとの接続部に接続されていても良いし、光入射面30c、30dではなく、光入射面30c、30dの近傍において背面30bと接続されていても良い。
For example, as in the light guide plate 31d shown in FIG. 14D, the cross-sectional shape of the boundary surface z in the cross-section is such that the thickness of the second layer 62 is the central portion of the light emitting surface 30a (that is, the bisector α). Top) One convexity connected to the light incident surfaces 30c and 30d by maximizing (maximum) in the vicinity and continuously changing so as to become thinner toward the first light incident surface 30c and the second light incident surface 30d, respectively. (For example, two circular arcs R8 having a radius of curvature R8) may be a single circular arc (kamaboko shape).
In this example as well, a straight line portion may be included in the connection portion between the convex curve and the light incident surfaces 30c and 30d. Further, the convex curve may be connected to a connection portion between the back surface 30b and the light incident surfaces 30c and 30d, and not the light incident surfaces 30c and 30d but the back surface 30b in the vicinity of the light incident surfaces 30c and 30d. It may be connected.
 ところで、図2及び図6に示す導光板30の光出射面30aにおいて、上部筺体44の開口部44aに対応する領域は、光出射面30aの有効な領域(有効画面エリアE)であり、バックライトユニット20としての光の出射に寄与する領域である。これに対し、導光板30(光出射面30a)の光入射面30c、30d近傍の領域は、上部筺体44の開口部44aよりも外側、即ち、開口部44aを形成する額縁部分に配置されているので、バックライトユニット20としての光の出射には寄与しないが、光入射面30c、30dからから入射した光を拡散するための、いわゆるミキシングゾーンMである。 By the way, in the light emitting surface 30a of the light guide plate 30 shown in FIGS. 2 and 6, the region corresponding to the opening 44a of the upper housing 44 is an effective region (effective screen area E) of the light emitting surface 30a. This is a region contributing to the emission of light as the light unit 20. On the other hand, the regions near the light incident surfaces 30c and 30d of the light guide plate 30 (light emitting surface 30a) are arranged outside the opening 44a of the upper housing 44, that is, in the frame portion forming the opening 44a. Therefore, this is a so-called mixing zone M for diffusing the light incident from the light incident surfaces 30c and 30d, although it does not contribute to the emission of light as the backlight unit 20.
 そこで、図15(A)に示す導光板31eのように、光入射面30aの長手方向に垂直な断面で見た際の境界面zの断面形状を、光出射面30aのミキシングゾーンMを除く有効画面エリアEでは、図2及び図6に示す導光板30と同様に形成し、即ち第2層62の厚さが光出射面30aの中央部で第1の極大値を取るように上に凸の曲線(円弧R1)を形成し、続いて第2層62の厚さが薄くなるように連続的に変化してそれぞれ光入射面30c及び30dの近傍で極小値を取るように凹の曲線(円弧R2)を形成し、さらに、第1光入射面30c及び第2光入射面30d付近で、一旦厚くなり、両側のミキシングゾーンMでは導光板30と異なり、第2の極大値を取った後、再び薄くなるように連続的に変化して凹の曲線(例えば、円弧R9)を形成するようにしても良い。導光板31eでは、上部筺体44の開口部44aの境界の位置となる各ミキシングゾーンMの内側端部では、第2層62の厚さが第2の極大値を取り、各ミキシングゾーンMの外側端部では、境界面zが背面30bと光入射面30c、30d上との角部と一致し、第2層62の厚さが0となる。 Therefore, as in the light guide plate 31e shown in FIG. 15A, the cross-sectional shape of the boundary surface z when viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 30a is excluded from the mixing zone M of the light emitting surface 30a. In the effective screen area E, it is formed in the same manner as the light guide plate 30 shown in FIGS. 2 and 6, that is, the thickness of the second layer 62 is set so that the first maximum value is taken at the central portion of the light emitting surface 30a. A convex curve (arc R1) is formed, and subsequently the second layer 62 is continuously changed so that the thickness thereof is reduced, and a concave curve is taken so as to take local minimum values in the vicinity of the light incident surfaces 30c and 30d, respectively. (Arc R2) is formed, and further thickened in the vicinity of the first light incident surface 30c and the second light incident surface 30d. In the mixing zone M on both sides, unlike the light guide plate 30, the second maximum value is obtained. After that, it changes continuously so as to become thinner again, and a concave curve (for example, a circle) R9) may be formed a. In the light guide plate 31e, the thickness of the second layer 62 takes the second maximum value at the inner end of each mixing zone M, which is the position of the opening 44a of the upper housing 44, and the outer side of each mixing zone M. At the end, the boundary surface z coincides with the corners between the back surface 30b and the light incident surfaces 30c and 30d, and the thickness of the second layer 62 becomes zero.
 このように、導光板31eにおいては、第1層60よりも散乱粒子の粒子濃度が高い第2層の厚さを、導光板31eの中央部で最も厚くなる第1の極大値と、光入射面30c及び30dの各近傍の各ミキシングゾーンMの内側端部で一旦厚くなる第2極大値とを有するように連続的に変化させることにより、散乱粒子の合成散乱断面積sが、各ミキシングゾーンMの内側端部で第2の極大値を持ち、光出射面30a(有効画面エリアE)の中央部において、第2の極大値よりも大きい第1の極大値を持つように変化するようにしている。 Thus, in the light guide plate 31e, the thickness of the second layer having a higher particle concentration of scattering particles than that of the first layer 60 is set to the first maximum value that is the thickest in the central portion of the light guide plate 31e, and the light incidence. The composite scattering cross-section s of the scattering particles is changed to each mixing zone by continuously changing it so as to have the second maximum value once thickened at the inner end of each mixing zone M in the vicinity of each of the surfaces 30c and 30d. It has a second maximum value at the inner end of M, and changes so as to have a first maximum value larger than the second maximum value at the center of the light exit surface 30a (effective screen area E). ing.
 その結果、導光板31eでは、その第2層の厚さ(合成散乱断面積s)を、中央部で最大となる第1の極大値とすることによって、大型かつ薄型な導光板であっても、光入射面30c、30dから入射する光を光入射面30c、30dからより遠い位置まで届けることができ、光出射面30a(有効画面エリアE)からの出射光の輝度分布を中高な輝度分布とすることができると共に、光入射面30c、30d近傍(ミキシングゾーンMの内側端部)に、第2層の厚さ(合成散乱断面積s)の第2の極大値を配置することによって、光入射面30c、30dから入射した光を、ミキシングゾーンMで十分に拡散し、ミキシングゾーンM近傍の有効画面エリアEから出射される出射光に、光源28の配置間隔等に起因する輝線(暗線、ムラ)が視認されることを防止することができる。 As a result, in the light guide plate 31e, even if the light guide plate 31e is a large and thin light guide plate by setting the thickness of the second layer (synthetic scattering cross section s) to the first maximum value that is maximum in the central portion. The light incident from the light incident surfaces 30c and 30d can be delivered to a position farther from the light incident surfaces 30c and 30d, and the luminance distribution of the light emitted from the light emitting surface 30a (effective screen area E) is a medium-high luminance distribution. And arranging the second maximum value of the thickness of the second layer (synthetic scattering cross section s) in the vicinity of the light incident surfaces 30c and 30d (inner end of the mixing zone M), Light incident from the light incident surfaces 30c and 30d is sufficiently diffused in the mixing zone M, and the emission light emitted from the effective screen area E in the vicinity of the mixing zone M is a bright line (dark line) caused by the arrangement interval of the light sources 28, etc. ,village) It can be prevented from being visually recognized.
 また、導光板31eでは、ミキシングゾーンMにおいては、粒子濃度の高い第2層の厚さを、その第1の極大値よりも薄い厚さとして、粒子濃度を低減することによって、入射した光が、散乱粒子によって散乱されて、光入射面から出射される戻り光や、筺体に覆われていて利用されない光入射面付近の領域(ミキシングゾーンM)からの出射光となることを低減して、光出射面30aの有効画面エリアEから出射する光の利用効率を向上させることができる。
 また、導光板31eでは、第2層の厚さの第2の極大値となる位置をミキシングゾーンMの内側端部側に配置することにより、筺体に覆われていて利用されないミキシングゾーンMからの出射光を低減し、光出射面30aの有効画面エリアEから出射する光の利用効率を向上させることができる。
In the light guide plate 31e, in the mixing zone M, the thickness of the second layer having a high particle concentration is set to be thinner than the first maximum value, thereby reducing the particle concentration. , The return light scattered from the light incident surface and emitted from the light incident surface, and the light emitted from the region near the light incident surface that is not used because it is covered by the housing (mixing zone M), The utilization efficiency of the light emitted from the effective screen area E of the light emission surface 30a can be improved.
Moreover, in the light guide plate 31e, the position where the second maximum thickness of the second layer is disposed on the inner end side of the mixing zone M, so that the mixing plate M is covered with the casing and is not used. The emitted light can be reduced and the utilization efficiency of the light emitted from the effective screen area E of the light emitting surface 30a can be improved.
 なお、導光板31eにおいては、第2層の厚さの第2の極大値の位置をミキシングゾーンMの内側端部(上部筺体44の開口部44aの境界の位置)に配置したが、本発明は、これに限定はされず、第2層の厚さの第2の極大値の位置は、ミキシングゾーンMの内側端部の近傍であれば、有効画面エリアE内(開口部44aの内側)の位置に配置してもよいし、ミキシングゾーンM内の位置に配置されてもよい。
 また、導光板31eにおいて、境界面zは、ミキシングゾーンM、即ち第2の極大値の位置から光入射面30c、30dまでの領域では、下に凹の曲面(円弧)であり、光入射面30c、30dの背面30b側の端部(光入射面30c、30dと背面30bとの角部)に接続される形状としたが、本発明は、これに限定はされない。
In the light guide plate 31e, the position of the second maximum value of the thickness of the second layer is arranged at the inner end of the mixing zone M (the position of the boundary of the opening 44a of the upper housing 44). However, the position of the second maximum value of the thickness of the second layer is within the effective screen area E (inside the opening 44a) as long as the position of the second maximum value is in the vicinity of the inner end of the mixing zone M. May be arranged at a position in the mixing zone M.
Further, in the light guide plate 31e, the boundary surface z is a curved surface (arc) that is concave downward in the mixing zone M, that is, in the region from the position of the second maximum value to the light incident surfaces 30c and 30d. Although it was set as the shape connected to the edge part (the corner | angular part of the light- incidence surfaces 30c and 30d and the back surface 30b) of 30c and 30d at the back surface 30b side, this invention is not limited to this.
 図15(B)、(C)及び(D)に示す導光板31f、31g及び31hは、図15(A)に示す導光板31eにおいて、ミキシングゾーンMにおける第1層60及び第2層62の厚さ、すなわち、光入射面30c、30dから第2の極大値の位置までの境界面zの形状を変更した以外は、同じ構成を有するので、同じ部位には、同じ符号を付し、以下の説明は異なる部位を主に行なう。 The light guide plates 31f, 31g, and 31h shown in FIGS. 15B, 15C, and 15D are the same as those of the first layer 60 and the second layer 62 in the mixing zone M in the light guide plate 31e shown in FIG. Since it has the same configuration except that the thickness, that is, the shape of the boundary surface z from the light incident surfaces 30c, 30d to the position of the second maximum value is changed, the same parts are denoted by the same reference numerals, The description will mainly focus on different parts.
 図15(B)に示す導光板31fは、同様に、第1層60と、第1層60よりも粒子濃度が高い第2層62とから構成されるが、ミキシングゾーンMにおける、第1層60と第2層62との境界面zは、第2の極大値の位置に接続され、光出射面30aに向かって凸の曲面(例えば、円弧R10)であり、光入射面30c、30dと背面30bとの角部に接続される形状である。
 なお、図15(A)及び(B)に示す導光板31e及び31fでは、境界面zは、第2の極大値の位置から光入射面30c、30dまでの領域であるミキシングゾーンMにおいては、それぞれ光出射面30aに向かって凹及び凸の曲面としたが、本発明は、これに限定はされず、平面としても良いし、凹凸面としても良い。
Similarly, the light guide plate 31f shown in FIG. 15B includes a first layer 60 and a second layer 62 having a particle concentration higher than that of the first layer 60. The first layer in the mixing zone M is the same as the first layer 60. The boundary surface z between 60 and the second layer 62 is connected to the position of the second maximum value, is a curved surface (for example, arc R10) convex toward the light exit surface 30a, and the light incident surfaces 30c and 30d The shape is connected to the corner with the back surface 30b.
In the light guide plates 31e and 31f shown in FIGS. 15A and 15B, the boundary surface z is in the mixing zone M, which is a region from the position of the second maximum value to the light incident surfaces 30c and 30d. Although the concave and convex curved surfaces are respectively formed toward the light emitting surface 30a, the present invention is not limited to this, and may be a flat surface or an uneven surface.
 図15(C)に示す導光板31gは、図15(B)に示す導光板31fと異なり、ミキシングゾーンMにおける第1層60と第2層62との境界面zの、第2の極大値の位置から光入射面30c、30d側に向かう終端部が、ミキシングゾーンMの略中央で背面30bに接続される形状である。ここで、境界面zの終端部が、背面30bに接続される位置は、ミキシングゾーンM内であれば、略中央でなくても良い。
 なお、図15(C)に示す導光板31gでは、ミキシングゾーンM内における境界面zの形状は、光出射面30aに向かって凸の曲面(例えば、円弧R11)としたが、本発明は、これに限定はされず、凹の曲面としても良いし、平面としても良いし、凹凸面としても良い。
The light guide plate 31g shown in FIG. 15C is different from the light guide plate 31f shown in FIG. 15B in that the second maximum value of the boundary surface z between the first layer 60 and the second layer 62 in the mixing zone M. The terminal portion from the position toward the light incident surfaces 30c and 30d is connected to the back surface 30b at the approximate center of the mixing zone M. Here, the position at which the terminal portion of the boundary surface z is connected to the back surface 30 b may not be substantially in the center as long as it is within the mixing zone M.
In the light guide plate 31g shown in FIG. 15C, the shape of the boundary surface z in the mixing zone M is a curved surface (for example, an arc R11) convex toward the light emitting surface 30a. However, the present invention is not limited to this, and may be a concave curved surface, a flat surface, or an uneven surface.
 図15(D)に示す導光板31hでは、図15(A)~(C)に示す導光板31e~31gのいずれとも異なり、第1層60と第2層62との境界面zが、第2の極大値の位置でなくなり、ミキシングゾーンMにおいては、第1層60のみで構成される。即ち、境界面zは、第2の極大値の位置を通り、光入射面30c、30dに平行な平面を有し、境界面zの終端部は、キシングゾーンMの内側端部で背面30bに接続される形状である。 The light guide plate 31h shown in FIG. 15D is different from any of the light guide plates 31e to 31g shown in FIGS. 15A to 15C, and the boundary surface z between the first layer 60 and the second layer 62 is the first. In the mixing zone M, the position of the maximum value of 2 is eliminated, and only the first layer 60 is included. That is, the boundary surface z has a plane parallel to the light incident surfaces 30c and 30d through the position of the second maximum value, and the terminal end of the boundary surface z is on the back surface 30b at the inner end of the kissing zone M. The shape to be connected.
 図15(A)~(D)に示す導光板31e~31hのように、境界面zの形状を、第2層62の厚さの第1極大値の位置から光入射面30c、30dに向かって第2層62の厚さが小さくなるように形成することにより、第2の極大値の位置から光入射面側30c、30dまで領域(ミキシングゾーンM)の粒子濃度を、第2の極大値よりも低い粒子濃度とし、入射した光が光入射面から出射される戻り光や、筺体に覆われていて利用されない光入射面付近の領域(ミキシングゾーンM)からの出射光を低減して、光出射面の有効な領域(有効画面エリアE)から出射する光の利用効率を向上させることができる。 As in the light guide plates 31e to 31h shown in FIGS. 15A to 15D, the shape of the boundary surface z is changed from the position of the first maximum value of the thickness of the second layer 62 toward the light incident surfaces 30c and 30d. By forming the second layer 62 so as to reduce the thickness, the particle concentration in the region (mixing zone M) from the position of the second maximum value to the light incident surface side 30c, 30d is changed to the second maximum value. Lower particle concentration, reducing the return light from which the incident light is emitted from the light incident surface and the light emitted from the region near the light incident surface that is not used because it is covered by the housing (mixing zone M), The utilization efficiency of the light emitted from the effective area (effective screen area E) of the light emission surface can be improved.
 また、上述した例においては、光出射面30aは平面としたが、これに限定はされず、光出射面を凹面としてもよい。光出射面を凹面とすることにより、導光板が熱や湿気によって伸縮した際に、導光板が光出射面側に反ることを防止することができ、導光板が液晶表示装置12に接触することを防止できる。
 また、上述した例においては、背面30bは平面としたが、これに限定はされず、背面を凹面、すなわち、光入射面から離間するに従って、厚さが薄くなる方向に傾斜した面としてもよく、あるいは、凸面、すなわち、光入射面から離間するに従って、厚さが厚くなる方向に傾斜した面としてもよい。
Moreover, in the example mentioned above, although the light-projection surface 30a was made into the plane, it is not limited to this, A light-projection surface is good also as a concave surface. By making the light exit surface concave, the light guide plate can be prevented from warping toward the light exit surface when the light guide plate expands and contracts due to heat or moisture, and the light guide plate contacts the liquid crystal display device 12. Can be prevented.
In the above-described example, the back surface 30b is a flat surface. However, the present invention is not limited to this, and the back surface may be a concave surface, that is, a surface inclined in a direction in which the thickness decreases as the distance from the light incident surface increases. Alternatively, it may be a convex surface, that is, a surface inclined in a direction in which the thickness increases as the distance from the light incident surface increases.
 ここで、上記実施形態では、2つの光源を導光板の2つ光入射面に配置した両側入射であったが、これに限定はされず、1つの光源のみを導光板の1つの光入射面に配置した片側入射としてもよい。光源の数を減らすことで部品点数を削減し、コストダウンできる。
 また、片面入射とする場合には、境界面zの形状が非対称な導光板としてもよい。例えば、1つの光入射面を有し、光出射面の2等分線よりも光入射面から遠い位置で導光板の第2層の厚さが最大になるような、第2層の形状が非対称な導光板でもよい。
Here, in the said embodiment, although it was the both-sides incidence which has arrange | positioned two light sources on the two light-incidence surfaces of a light-guide plate, it is not limited to this, Only one light source is one light-incidence surface of a light-guide plate. It is good also as the one-sided incident arrange | positioned. By reducing the number of light sources, the number of parts can be reduced and the cost can be reduced.
In the case of single-sided incidence, a light guide plate having an asymmetric shape of the boundary surface z may be used. For example, the shape of the second layer has one light incident surface, and the thickness of the second layer of the light guide plate is maximized at a position farther from the light incident surface than the bisector of the light output surface. An asymmetrical light guide plate may be used.
 図16は、それぞれ、本発明の導光板の他の一例を用いるバックライトユニットの一部を示す概略断面図である。なお、図16に示すバックライトユニット70においては、図2に示す導光板30に代えて、片面入射用導光板80を有し、光源28を1つのみ有する以外は、図2に示すバックライトユニット20と同じ構成を有する以外は、バックライトユニット20と同じ構成を有するので、同一の構成要素には同一の参照符号を付し、その詳細な説明は省略し、以下では異なる構成要素についての説明を主に行う。 FIG. 16 is a schematic cross-sectional view showing a part of a backlight unit using another example of the light guide plate of the present invention. The backlight unit 70 shown in FIG. 16 has the single-sided incident light guide plate 80 instead of the light guide plate 30 shown in FIG. Since it has the same configuration as the backlight unit 20 except that it has the same configuration as the unit 20, the same components are denoted by the same reference numerals, detailed description thereof will be omitted, and different components will be described below. The explanation is mainly given.
 図16に示すバックライトユニット70は、導光板80と、導光板80に光を入射するための光源28とを有する。
 導光板80は、矩形状の平坦な平面からなる光出射面80aと、この光出射面80aの反対側、つまり裏側に位置し、光出射面80aと略同形状の平坦な平面である背面80bと、光出射面80aの長辺側の一方の端面に、光出射面80aに対してほぼ垂直に形成され、光源28が対向して配置される1つの光入射面80cと、光入射面30cの反対側、つまり裏側に位置する側面80dとを有する。なお、導光板80の光出射面80a、背面80b及び光入射面80cは、それぞれ図2に示す導光板30の光出射面30a、背面30b及び第1光入射面30cに対応するもので、導光板80の側面80dには、光源28が対向して配置されておらず、導光板30の第2光入射面30dとは異なる。
The backlight unit 70 shown in FIG. 16 includes a light guide plate 80 and a light source 28 for making light incident on the light guide plate 80.
The light guide plate 80 has a light emitting surface 80a formed of a rectangular flat plane, and a back surface 80b that is located on the opposite side of the light emitting surface 80a, that is, on the back side, and is a flat plane having substantially the same shape as the light emitting surface 80a. A light incident surface 80c that is formed substantially perpendicular to the light exit surface 80a on one end surface on the long side of the light exit surface 80a and the light source 28 is opposed to, and a light incident surface 30c. Side surface 80d located on the opposite side, that is, the back side. The light emitting surface 80a, the back surface 80b, and the light incident surface 80c of the light guide plate 80 correspond to the light emitting surface 30a, the back surface 30b, and the first light incident surface 30c of the light guide plate 30 shown in FIG. The light source 28 is not disposed to face the side surface 80d of the light plate 80, and is different from the second light incident surface 30d of the light guide plate 30.
 また、導光板80は、2層平板導光板であり、光出射面80a側の第1層82と背面80b側の第2層82とにより形成されている。
 第1層82と第2層84との境界面zは、光入射面80cの長手方向に垂直な断面で見た際に、光入射面80cから側面80dに向かって、一旦、第2層84が薄くなるように変化した後、第2層84が厚くなるように変化し、再び第2層84が薄くなるように連続的に変化している。即ち、境界面zは、光入射面80c側では、光出射面80aに向かって凹の曲面(例えば、円弧R12)であり、側面80d側では、光出射面80aに向かって凸の曲面(例えば、円弧R13)である。すなわち、第2層84の厚さは、光入射面80c側において極小値を持ち、側面80d側において極大値を持つように変化する曲線である。
The light guide plate 80 is a two-layer flat light guide plate, and is formed by a first layer 82 on the light emitting surface 80a side and a second layer 82 on the back surface 80b side.
The boundary surface z between the first layer 82 and the second layer 84 is once seen from the light incident surface 80c toward the side surface 80d when viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 80c. , The second layer 84 is changed to be thicker, and the second layer 84 is continuously changed to be thinner again. That is, the boundary surface z is a curved surface (for example, arc R12) that is concave toward the light exit surface 80a on the light incident surface 80c side, and a curved surface that is convex toward the light exit surface 80a (for example, arc R12) on the side surface 80d side. , Arc R13). That is, the thickness of the second layer 84 is a curve that changes so as to have a minimum value on the light incident surface 80c side and a maximum value on the side surface 80d side.
 なお、図示例の導光板80においても、図2に示す導光板30と同様に、上述した本発明の散乱粒子分散条件を満足する必要があることは言うまでもない。即ち、導光板80では、散乱粒子は、第1層82と第2層84とにおいて異なる粒子濃度で分散されるが、光入射面30cから、それぞれ光出射面30aに略平行な方向に沿った導光位置における第1層82と第2層84の、光出射面30aに略垂直な方向の合成散乱断面積Sが、光入射面30cから導光距離が大きくなるにつれて連続的かつ単調に増加する部分、例えば、極小値又は最小値から、光入射面30c及び30dからの導光距離に応じて連続的に単調増加して極大値又は最大値に至る部分を有し、合成散乱断面積Sの最大値Smax及び最小値Sminが上記式(1)を満足する必要がある。 Needless to say, the light guide plate 80 in the illustrated example also needs to satisfy the above-described scattering particle dispersion condition of the present invention, similarly to the light guide plate 30 shown in FIG. In other words, in the light guide plate 80, the scattering particles are dispersed at different particle concentrations in the first layer 82 and the second layer 84, but each extends from the light incident surface 30c in a direction substantially parallel to the light emitting surface 30a. The combined scattering cross section S of the first layer 82 and the second layer 84 at the light guide position in the direction substantially perpendicular to the light exit surface 30a continuously and monotonously increases as the light guide distance increases from the light incident surface 30c. For example, from a minimum value or a minimum value to a maximum value or a maximum value continuously increasing monotonously according to the light guide distance from the light incident surfaces 30c and 30d, and the combined scattering cross section S The maximum value S max and the minimum value S min of the lens must satisfy the above formula (1).
 なお、図示例の導光板80において、境界面zの凹形及び凸形の曲面が、光入射面の長手方向に垂直な断面において、円弧で表される曲線である場合には、凹形の円弧R12の曲率半径R12は、2500mm≦R12≦450000mmであるが好ましく、凸形の円弧13の曲率半径R13は、2500mm≦R13≦490000mmであるが好ましい。円弧R12およびR13を上記範囲とすることにより、より好適に光の照度分布を中高にすることができる。
 なお、導光板80の境界面zを形成する凹形及び凸形の曲面は、光入射面80cの長手方向に垂直な断面において、円弧に限定されず、楕円、放物線、双曲線等の2次曲線の一部であってもよいし、3次以上の高次曲線、あるいは多項式で表される曲線であってもよいし、これらを組み合わせた曲線であってもよいのはもちろんである。
In the illustrated light guide plate 80, when the concave and convex curved surfaces of the boundary surface z are curves expressed by arcs in a cross section perpendicular to the longitudinal direction of the light incident surface, the concave shape The radius of curvature R12 of the arc R12 is preferably 2500 mm ≦ R12 ≦ 450,000 mm, and the radius of curvature R13 of the convex arc 13 is preferably 2500 mm ≦ R13 ≦ 490000 mm. By setting the arcs R12 and R13 in the above range, it is possible to make the illuminance distribution of the light more suitably medium-high.
The concave and convex curved surfaces forming the boundary surface z of the light guide plate 80 are not limited to arcs in a cross section perpendicular to the longitudinal direction of the light incident surface 80c, but are quadratic curves such as an ellipse, a parabola, and a hyperbola. Of course, it may be a part of the above, a higher-order curve of 3rd order or higher, a curve represented by a polynomial, or a curve combining these.
 このように、1つの光源のみを用いる片面入射の場合には、境界面zの形状を、光入射面に近い位置で、第2層の厚さが最小になり、光入射面から遠い位置で、第2層の厚さが最大になるような非対称な形状とすることにより、光源から出射され、光入射面から入射した光を、導光板の奥まで導光することができ、光出射面から出射する光の照度分布を中高にすることができ、光の利用効率を向上させることができる。
 また、平均厚さが同じ平板導光板と比べても、光入射面を大きくとることができるため、光の入射効率を高くすることができ、導光板を軽くすることができる。
Thus, in the case of single-sided incidence using only one light source, the shape of the boundary surface z is set at a position close to the light incident surface, the thickness of the second layer is minimized, and at a position far from the light incident surface. By setting the asymmetric shape so that the thickness of the second layer is maximized, the light emitted from the light source and incident from the light incident surface can be guided to the back of the light guide plate. The illuminance distribution of the light emitted from the light can be made medium to high, and the light utilization efficiency can be improved.
In addition, since the light incident surface can be made larger than the flat light guide plate having the same average thickness, the light incident efficiency can be increased and the light guide plate can be lightened.
 なお、本発明に用いられる導光板80においても、第2層62の断面形状は、2つの円弧R12及び13からなるものに限定されず、上記散乱粒子分散条件を満足すれば、どのような形状でも良い。
 例えば、図17(A)に示す導光板81aのように、第1層82と第2層84との境界面zが、光入射面80cの長手方向に垂直な断面で見た際に、光入射面80cから側面80dに向かって、一旦、第2層84が薄くなるように変化した後、第2層84が厚くなるように変化し、その後、第2層84の厚さが一定となるように連続的に変化していても良い。すなわち、境界面zは、光入射面80c側では、光出射面80aに向かって凹の曲面(例えば、断面円弧R14)であり、導光板中央部では、光出射面80aに向かって凸の曲面(例えば、断面円弧R15)であり、凸の曲面の頂点から、側面80d側では、光出射面80aに平行な平面(例えば、断面直線L3)であっても良い。
In the light guide plate 80 used in the present invention, the cross-sectional shape of the second layer 62 is not limited to the one formed by the two arcs R12 and 13, and any shape can be used as long as the scattering particle dispersion condition is satisfied. But it ’s okay.
For example, when the boundary surface z between the first layer 82 and the second layer 84 is viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 80c as in the light guide plate 81a shown in FIG. After changing from the incident surface 80c toward the side surface 80d so that the second layer 84 becomes thinner, the second layer 84 changes to become thicker, and then the thickness of the second layer 84 becomes constant. It may change continuously. That is, the boundary surface z is a curved surface that is concave toward the light exit surface 80a (for example, the cross-section arc R14) on the light incident surface 80c side, and a curved surface that is convex toward the light exit surface 80a at the center of the light guide plate. (For example, a cross-section arc R15), and may be a plane parallel to the light exit surface 80a (for example, a cross-section straight line L3) from the apex of the convex curved surface to the side surface 80d side.
 なお、図示例の導光板81aにおいて、境界面zの凹形及び凸形の曲面が、光入射面の長手方向に垂直な断面において、円弧で表される曲線である場合には、凹形の円弧R14の曲率半径R14は、2500mm≦R14≦450000mmであるが好ましく、凸形の円弧R15の曲率半径R15は、2500mm≦R15≦490000mmであるが好ましい。R14およびR15を上記範囲とすることにより、より好適に光の照度分布を中高にすることができる。 In the illustrated light guide plate 81a, when the concave and convex curved surfaces of the boundary surface z are curves expressed by arcs in a cross section perpendicular to the longitudinal direction of the light incident surface, the concave shape The radius of curvature R14 of the arc R14 is preferably 2500 mm ≦ R14 ≦ 450,000 mm, and the radius of curvature R15 of the convex arc R15 is preferably 2500 mm ≦ R15 ≦ 490000 mm. By setting R14 and R15 in the above range, the illuminance distribution of light can be more suitably made medium to high.
 また、図17(B)~(E)に示す導光板81b~81eのように、光入射面30c近傍のミキシングゾーンMにおける第1層82と第2層84との境界面zの形状を、図15(A)~(D)に示す導光板31e~31hの場合と同様に、変更しても良い。
 なお、図17(B)~(D)に示す導光板81b~81dは、図16に示す導光板80と、図17(E)に示す導光板81edは、図17(A)に示す導光板81aと、光入射面30c近傍のミキシングゾーンMにおける境界面zの形状を除いて、同様の構成を有しているので、同一の構成要素には同一の参照符号を付し、その詳細な説明は省略し、以下では異なる構成要素についての説明を主に行う。
Further, like the light guide plates 81b to 81e shown in FIGS. 17B to 17E, the shape of the boundary surface z between the first layer 82 and the second layer 84 in the mixing zone M in the vicinity of the light incident surface 30c is The light guide plates 31e to 31h shown in FIGS. 15A to 15D may be changed in the same manner.
The light guide plates 81b to 81d shown in FIGS. 17B to 17D are the light guide plate 80 shown in FIG. 16, and the light guide plate 81ed shown in FIG. 17E is the light guide plate shown in FIG. Since 81a and the shape of the boundary surface z in the mixing zone M in the vicinity of the light incident surface 30c are the same, the same components are denoted by the same reference numerals, and detailed description thereof will be given. Is omitted, and the following description will mainly focus on the different components.
 図17(B)に示す導光板81bでは、図15(B)に示す導光板31fの場合と同様に、光入射面30c近傍のミキシングゾーンMにおける境界面zの断面形状を凸の曲線(例えば、円弧R16)で形成し、ミキシングゾーンMの内側端部において第2層84の厚さの極大値を設けている。
 図17(C)に示す導光板81cでは、図15(C)に示す導光板31gの場合と同様に、光入射面30c近傍のミキシングゾーンMにおける境界面zの断面形状を凸の曲線(例えば、円弧R17)で形成し、境界面zの終端部をミキシングゾーンMの略中央の背面80bに接続すると共に、ミキシングゾーンMの内側端部において第2層84の厚さの極大値を設けている。
In the light guide plate 81b shown in FIG. 17B, similarly to the light guide plate 31f shown in FIG. 15B, the cross-sectional shape of the boundary surface z in the mixing zone M in the vicinity of the light incident surface 30c is changed to a convex curve (for example, , Arc R16), and a maximum value of the thickness of the second layer 84 is provided at the inner end of the mixing zone M.
In the light guide plate 81c shown in FIG. 17C, as in the case of the light guide plate 31g shown in FIG. 15C, the sectional shape of the boundary surface z in the mixing zone M in the vicinity of the light incident surface 30c is changed to a convex curve (for example, Arc R17), the end of the boundary surface z is connected to the substantially central back surface 80b of the mixing zone M, and the maximum value of the thickness of the second layer 84 is provided at the inner end of the mixing zone M. Yes.
 図17(D)に示す導光板81dでは、図15(D)に示す導光板31hの場合と同様に、光入射面30c近傍のミキシングゾーンMにおいては、第2層84を設けず、キシングゾーンMの内側端部における境界面zの断面形状を光入射面30cと略平行な平面とし、その終端部を背面80bに接続すると共に、ミキシングゾーンMの内側端部において第2層84の厚さの極大値を設けている。
 図17(E)に示す導光板81eでは、図15(A)に示す導光板31eの場合と同様に、光入射面30c近傍のミキシングゾーンMにおける境界面zの断面形状を凸の曲線(例えば、円弧R18)で形成し、ミキシングゾーンMの内側端部において第2層84の厚さの極大値を設けている。
 なお、上述した例において、ミキシングゾーンMにおける境界面zの断面形状を、凸の曲線に変えて、凹の曲線、平面、又はこれらの組み合わせ等を用いても良い。
In the light guide plate 81d shown in FIG. 17D, as in the case of the light guide plate 31h shown in FIG. 15D, the second layer 84 is not provided in the mixing zone M near the light incident surface 30c, and the mixing zone M is not provided. The cross-sectional shape of the boundary surface z at the inner end portion of M is a plane that is substantially parallel to the light incident surface 30c, the end portion thereof is connected to the back surface 80b, and the thickness of the second layer 84 at the inner end portion of the mixing zone M. The maximum value is set.
In the light guide plate 81e shown in FIG. 17E, as in the case of the light guide plate 31e shown in FIG. , Arc R18), and the maximum value of the thickness of the second layer 84 is provided at the inner end of the mixing zone M.
In the above-described example, the sectional shape of the boundary surface z in the mixing zone M may be changed to a convex curve, and a concave curve, a plane, or a combination thereof may be used.
 なお、本発明の導光板を用いるバックライトユニットは、上記の種々の実施形態に限定されず、1つ又は2つの光源に加えて、導光板の光出射面の短辺側の側面の一方又は両方に対向して1つ又は2つの光源を配置してもよい。光源の数を増やすことで、装置が出射する光の強度を高くすることができる。
 また、上述した実施例においては、第1層60、82を光出射面30a側に配置し、第2層62、84を背面30b側に配置しているが、本発明はこれに限定されず、逆に配置しても良い。即ち、第1層が背面側に位置し、第2層が、光出射面側に位置するようにしても良い。
 さらに、上述した実施例においては、光出射面30aのみから光を出射しているが、本発明はこれに限定されず、光出射面のみならず背面側からも、即ち両面側から光を出射してもよい。
 また、本発明の導光板は、散乱粒子の粒子濃度が異なる2つの層からなるものとしたが、これにも限定はされず、散乱粒子の粒子濃度が異なる3つ以上の層からなる構成としてもよい。
In addition, the backlight unit using the light guide plate of the present invention is not limited to the above-described various embodiments, and in addition to one or two light sources, one of the side surfaces on the short side of the light emission surface of the light guide plate or One or two light sources may be arranged facing both. Increasing the number of light sources can increase the intensity of light emitted by the device.
In the above-described embodiment, the first layers 60 and 82 are disposed on the light emitting surface 30a side, and the second layers 62 and 84 are disposed on the back surface 30b side. However, the present invention is not limited to this. Alternatively, they may be arranged in reverse. That is, the first layer may be located on the back side, and the second layer may be located on the light emitting surface side.
Furthermore, in the embodiment described above, light is emitted only from the light emitting surface 30a, but the present invention is not limited to this, and light is emitted not only from the light emitting surface but also from the back side, that is, from both sides. May be.
In addition, the light guide plate of the present invention is composed of two layers having different particle concentrations of scattering particles, but is not limited thereto, and has a configuration of three or more layers having different particle concentrations of scattering particles. Also good.
 以上、本発明に係る導光板、これを用いる面状照明装置について種々の実施形態を挙げて詳細に説明したが、本発明は、以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行っても良いのはもちろんである。 The light guide plate according to the present invention and the planar lighting device using the same have been described in detail with reference to various embodiments. However, the present invention is not limited to the above embodiments, and the gist of the present invention. It goes without saying that various improvements and changes may be made without departing from the scope of the present invention.
 以下、本発明に係る導光板について実施例を挙げて具体的に説明する。
 [実施例1]
 実施例1として、図2、図3、図5及び図6に示すような境界面zを有する2層平板導光板30を用いて、計算機シミュレーションにより、導光板30の光出射面30aから出射される出射光の照度分布及び輝度分布を求め、(a)導光板30の光入射面30c、30dから入射された光の利用効率、(b)光出射面30aからの出射光の輝度分布の中高度合、(c)光出射面30aの中央部の凹凸形状、及び(d)光出射面30aからの出射光の波長むらを求め、これらの4項目について光学評価し、これらの3項目の各項目の設定値(a)70%以上、(b)0%超45%以下、(c)凸形状、及び(d)波長むらを満足するか否かを判定した。
 なお、シミュレーションにおいては、導光板30の透明樹脂の材料はPMMA、散乱粒子の材料はシリコーンとしてモデル化した。この点については、以下の全ての実施例について同様である。
Hereinafter, the light guide plate according to the present invention will be specifically described with reference to examples.
[Example 1]
As Example 1, a two-layer flat light guide plate 30 having a boundary surface z as shown in FIGS. 2, 3, 5 and 6 is emitted from the light exit surface 30 a of the light guide plate 30 by computer simulation. Illuminance distribution and luminance distribution of the emitted light, (a) use efficiency of light incident from the light incident surfaces 30c and 30d of the light guide plate 30, and (b) luminance distribution of the emitted light from the light emitting surface 30a. The degree of altitude, (c) the uneven shape of the central portion of the light exit surface 30a, and (d) the wavelength unevenness of the light emitted from the light exit surface 30a, optically evaluated for these four items, each of these three items It was determined whether or not the setting value (a) of the item was 70% or more, (b) more than 0% and 45% or less, (c) the convex shape, and (d) the wavelength unevenness.
In the simulation, the transparent resin material of the light guide plate 30 was modeled as PMMA, and the scattering particle material was modeled as silicone. This is the same for all the following embodiments.
 実施例1では、画面サイズが40インチに対応する導光長540mmの導光板30を用いた。具体的には、導光板30の厚みを2.0mmとし、2等分線αにおける、第2層62の厚さが最も厚い最大厚さ、即ち極大値の位置での第2層62の厚さを0.80mmとし、第2層62の厚さが最も薄い最小厚さ、極小値の位置での第2層62の厚さを0.15mmとし、第1極大値から光入射面までの距離を20mmとした導光板を用いた。
 また、導光板30の各層に混練分散させる散乱粒子の粒径及び粒子濃度を、図8に示す本発明の導光板の設計方法に従って、第1層60の散乱粒子の粒径及び粒子濃度を9.0μm及び0.11wt%に設定し、次いで、て第2層62の散乱粒子の粒径及び粒子濃度を4.5μm及び0.23wt%に決定して、導光板30を設計製造した。
 得られた実施例1の導光板30の導光位置xにおける合成散乱断面積S(x)を上記式(3)及び(4)を用いて求め、Bの透過係数T(B)及びRの透過係数T(R)を上記式(5)を用いて求めた。
 得られた結果を表3及び表4に示す。
In Example 1, the light guide plate 30 having a light guide length of 540 mm corresponding to a screen size of 40 inches was used. Specifically, the thickness of the light guide plate 30 is set to 2.0 mm, and the thickness of the second layer 62 at the position where the thickness of the second layer 62 is the thickest at the bisector α, that is, the position of the maximum value. The thickness is 0.80 mm, the thickness of the second layer 62 is the thinnest minimum thickness, the thickness of the second layer 62 at the position of the minimum value is 0.15 mm, and from the first maximum value to the light incident surface A light guide plate with a distance of 20 mm was used.
Further, the particle size and particle concentration of the scattering particles kneaded and dispersed in each layer of the light guide plate 30 are set to 9 according to the light guide plate design method of the present invention shown in FIG. The light guide plate 30 was designed and manufactured by setting the particle size and particle concentration of the scattering particles of the second layer 62 to 4.5 μm and 0.23 wt%.
The combined scattering cross section S (x) at the light guide position x of the obtained light guide plate 30 of Example 1 is obtained using the above formulas (3) and (4), and the transmission coefficients T (B) and R of B are calculated. The transmission coefficient T (R) was determined using the above formula (5).
The obtained results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 また、実施例2として、図7に示すような境界面z1及びz2を有する3層平板導光板30Aを用いて、計算機シミュレーションにより、実施例1と同様にして光学評価して、その結果を判定した。
 実施例2では、表3に示すように、導光板30Aの画面サイズ、導光長、及び厚さは、実施例1と同じにし、2等分線αにおける、第2層64の厚さが最も厚い最大厚さ、即ち極大値の位置での第2層64の厚さを0.65mmとし、第2層64の厚さが最も薄い最小厚さ、極小値の位置での第2層64の厚さを0mmとし、第3層66の厚さを0.15mmとし、第1極大値から光入射面までの距離を20mmとした導光板を用いた。
 また、実施例2では、実施例1と同様にして、第1層60の散乱粒子の粒径及び粒子濃度を4.5μm及び0.005wt%に設定し、次いで、第2層64の散乱粒子の粒径及び粒子濃度を4.5μm及び0.23wt%に、第3層66の散乱粒子の粒径及び粒子濃度を9.0μm及び0.49wt%に決定して、導光板30Aを設計製造した。
Further, as Example 2, optical evaluation is performed in the same manner as in Example 1 by computer simulation using a three-layer flat light guide plate 30A having boundary surfaces z1 and z2 as shown in FIG. did.
In Example 2, as shown in Table 3, the screen size, light guide length, and thickness of the light guide plate 30A are the same as in Example 1, and the thickness of the second layer 64 at the bisector α is The thickness of the second layer 64 at the maximum thickness, that is, the position of the maximum value is 0.65 mm, and the second layer 64 at the position of the minimum thickness and the minimum value of the second layer 64 is the thinnest. A light guide plate was used in which the thickness of the third layer 66 was 0.15 mm, and the distance from the first maximum value to the light incident surface was 20 mm.
Further, in Example 2, as in Example 1, the particle size and particle concentration of the scattering particles of the first layer 60 are set to 4.5 μm and 0.005 wt%, and then the scattering particles of the second layer 64 are set. The light guide plate 30A is designed and manufactured by determining the particle size and particle concentration of the particles to 4.5 μm and 0.23 wt%, and the particle size and particle concentration of the scattering particles of the third layer 66 to 9.0 μm and 0.49 wt%. did.
 得られた実施例2の導光板30Aの導光位置xにおける合成散乱断面積S(x)を上記式(3)及び(4)を用いて求め、Bの透過係数T(B)及びRの透過係数T(R)を上記式(5)を用いて求めた。
 同様にして、実施例3~8及び比較例1~3についても、実施例1又は2と同様して、表3及び表4に示す条件で、導光板を設計製造し、合成散乱断面積S(x)及びBの透過係数T(B)及びRの透過係数T(R)を求めた。
 得られた結果を表3及び表4に示す。
The combined scattering cross section S (x) at the light guide position x of the light guide plate 30A of Example 2 obtained is obtained using the above formulas (3) and (4), and the transmission coefficients T (B) and R of B are calculated. The transmission coefficient T (R) was determined using the above formula (5).
Similarly, in Examples 3 to 8 and Comparative Examples 1 to 3, the light guide plate was designed and manufactured under the conditions shown in Tables 3 and 4 in the same manner as in Example 1 or 2, and the combined scattering cross section S The transmission coefficient T (B) of (x) and B and the transmission coefficient T (R) of R were determined.
The obtained results are shown in Tables 3 and 4.
 上記の表3は、合成散乱断面積S(x)の最大値Smax及び最小値Sminが上記式(1)を、Bの透過係数T(B)とRの透過係数T(R)との比が上記式(2)を満足する実施例1~8を示し、表4は、合成散乱断面積Sの最大値Smax及び最小値Sminが上記式(1)を満足せず、また、Bの透過係数T(B)とRの透過係数T(R)との比が上記式(2)を満足しない比較例1~3を示す。
 表3及び表4に示す実施例1~8及び比較例1~3について、上記(a)光の利用効率、(b)中高度合、(c)中央部の凹凸形状、及び(d)光出射面30aからの出射光の波長むらを求め、これらの3項目について光学評価し、これらの3項目の各項目の設定値(a)70%以上、(b)0%超45%以下、(c)凸形状、及び(d)出射光の波長むらを満足するか否かを判定した。
Table 3 above shows that the maximum value S max and the minimum value S min of the combined scattering cross section S (x) are the above formula (1), the transmission coefficient T (B) of B and the transmission coefficient T (R) of R Table 4 shows Examples 1 to 8 in which the ratio of the above satisfies the above formula (2). Table 4 shows that the maximum value S max and the minimum value S min of the combined scattering cross section S do not satisfy the above formula (1) Comparative Examples 1 to 3 in which the ratio of the transmission coefficient T (B) of B and the transmission coefficient T (R) of R does not satisfy the above formula (2) are shown.
For Examples 1 to 8 and Comparative Examples 1 to 3 shown in Tables 3 and 4, the above (a) light utilization efficiency, (b) medium to high altitude, (c) uneven shape at the center, and (d) light The wavelength unevenness of the light emitted from the emission surface 30a is obtained, and optical evaluation is performed for these three items. The set value (a) of each of these three items is 70% or more, (b) more than 0% and 45% or less, ( It was determined whether or not c) convex shape and (d) wavelength unevenness of emitted light were satisfied.
 ここで、判定においては、目視にて色むら(波長むら)が実質的に視認できない状態、すなわちT(B)/T(R)が0.95~1.05の範囲にある場合には、A(優)とし、面状照明装置(例えば、バックライトユニット20)として実用上もないないレベルであり、ほとんど色むら(波長むら)が視認できない状態、すなわちT(B)/T(R)が0.85~1.15の範囲にあるの場合には、B(良)とし、白色の出射光ではあるが、色むらが視認されて許容できない状態、すなわちT(B)/T(R)が0.85未満あるいは1.15より大きいの場合には、C(不可)とした。
 なお、本実施例における実施例1~8及び比較例1~3は、いずれも、判断基準(a)~(c)を全て満たすもの、即ち、評価は良であり、その中で、実施例1~8は、評価基準(d)出射光の波長むら(色むら)(2辺入射の場合の入射面近傍と中央部との変化)が視認できないもの(A、B)であり、比較例1~3は、(d)出射光の波長むら(色むら)が視認されて容認できないもの(C)である。
 本実施例において、判断基準(a)~(c)を全て満たさないものは、そもそも面状照明装置(例えば、バックライトユニット20)として使用できないものであり、波長むら(色むら)の有無を評価する必要もないものであるからである。
Here, in the determination, in a state where the color unevenness (wavelength unevenness) is not substantially visually recognized, that is, when T (B) / T (R) is in the range of 0.95 to 1.05, A (excellent), a level that is not practical for a planar illumination device (for example, the backlight unit 20), and in which color unevenness (wavelength unevenness) is hardly visible, that is, T (B) / T (R) Is in the range of 0.85 to 1.15, it is B (good), and although it is white outgoing light, the color unevenness is visually perceived and cannot be allowed, that is, T (B) / T (R ) Is less than 0.85 or greater than 1.15, C (impossible).
It should be noted that each of Examples 1 to 8 and Comparative Examples 1 to 3 in this example satisfy all of the criteria (a) to (c), that is, the evaluation is good. Reference numerals 1 to 8 are evaluation criteria (d) in which wavelength irregularity (color irregularity) of emitted light (change between the vicinity of the incident surface and the central part in the case of two-side incidence) cannot be visually recognized (A, B). 1 to 3 are (d) (C) in which the wavelength unevenness (color unevenness) of the emitted light is visually recognized.
In the present embodiment, those that do not satisfy all of the determination criteria (a) to (c) cannot be used as a planar illumination device (for example, the backlight unit 20) in the first place, and whether or not there is wavelength unevenness (color unevenness). This is because there is no need to evaluate.
 また、実施例1、2及び比較例1について、導光板30の2等分線αの位置を0mmとし、光入射面30cの位置を-270mmとする時の導光方向の位置(x[mm])における透過係数T(B)/T(R)の値を上記式(5)を用いて求め、その結果を図18(A)に示した。
 図18(A)から明らかなように、比較例1の場合には、第1層60と第2層62に分散させた散乱粒子の粒径が4.5μmで同じであり、また、比較的小さいため、各断面において青色光Bが赤色光Rよりも拡散しやすいため、出射光のB成分が相対的に減少し、赤味がかってしまい、色温度が低下している。
 一方、また、実施例3、4及び比較例2について、導光板30の2等分線αの位置を0mmとし、光入射面30cの位置を-270mmとする時の導光方向の位置(x[mm])における透過係数T(B)/T(R)の値を上記式(5)を用いて求め、その結果を図18(B)に示した。
 図18(A)から明らかなように、比較例2の場合には、第1層60と第2層62に分散させた散乱粒子の粒径が9.0μmで同じであり、また、比較的大きいため、各断面において赤色光Rが青色光Bよりも拡散しやすいため、出射光のB成分が相対的に増加し、青味がかってしまい、色温度が高くなっている。
In Examples 1 and 2 and Comparative Example 1, the position in the light guide direction (x [mm] when the position of the bisector α of the light guide plate 30 is 0 mm and the position of the light incident surface 30c is −270 mm. ]), The value of the transmission coefficient T (B) / T (R) was determined using the above equation (5), and the result is shown in FIG.
As is clear from FIG. 18A, in the case of Comparative Example 1, the particle size of the scattering particles dispersed in the first layer 60 and the second layer 62 is the same at 4.5 μm, Since it is small, the blue light B is more easily diffused than the red light R in each cross section, so that the B component of the emitted light is relatively reduced, reddish, and the color temperature is lowered.
On the other hand, in Examples 3 and 4 and Comparative Example 2, the position in the light guide direction when the position of the bisector α of the light guide plate 30 is 0 mm and the position of the light incident surface 30c is −270 mm (x The value of transmission coefficient T (B) / T (R) in [mm]) was determined using the above equation (5), and the result is shown in FIG.
As is clear from FIG. 18A, in the case of Comparative Example 2, the particle diameters of the scattering particles dispersed in the first layer 60 and the second layer 62 are the same at 9.0 μm, Since the red light R is more easily diffused than the blue light B in each cross section, the B component of the emitted light is relatively increased and bluish, and the color temperature is high.
 表3及び表4、並びに図18(A)及び(B)の結果から明らかなように、合成散乱断面積S(x)及びBの透過係数T(B)とRの透過係数T(R)との比が本発明の散乱粒子分散条件を満足する実施例1~8は、いずれも、(a)光の利用効率が70%以上、(b)輝度分布の中高度合が0%超45%以下、及び(c)輝度分布の中央部の形状が凸形状であり、(d)光出射面30aからの出射光の波長むらが実質的に又はほとんど視認できないものであり、これらの4項目の規定値を満足し、A(優)、又はB(良)に判定されるものであるが、合成散乱断面積S(x)及びBの透過係数T(B)とRの透過係数T(R)との比が本発明の散乱粒子分散条件を満足しない比較例1~3は、いずれも、上記4項目の内の少なくとも1が規定値から外れ、C(不可)に判定されるものである。
 以上の実施例の結果から、本発明の効果は明らかである。
As is apparent from the results of Tables 3 and 4 and FIGS. 18A and 18B, the transmission coefficients T (B) of the combined scattering cross sections S (x) and B and the transmission coefficient T (R) of R. In all of Examples 1 to 8 in which the ratio to the above satisfies the scattering particle dispersion condition of the present invention, (a) the light utilization efficiency is 70% or more, and (b) the medium to altitude of the luminance distribution is more than 0% 45 % Or less, and (c) the shape of the central portion of the luminance distribution is a convex shape, and (d) the wavelength unevenness of the emitted light from the light emitting surface 30a is substantially or hardly visible, and these four items Is determined to be A (excellent) or B (good), but the combined scattering cross section S (x) and the transmission coefficient T (B) of B and the transmission coefficient T (R of R) In Comparative Examples 1 to 3 in which the ratio to R) does not satisfy the scattering particle dispersion condition of the present invention, at least one of the above four items is regulated. Deviate from values are those determined in C (poor).
The effects of the present invention are evident from the results of the above examples.
  10 液晶表示装置
  12 液晶表示パネル
  14 駆動ユニット
  20、70 バックライトユニット(面状照明装置)
  24 照明装置本体
  24a、30a、80a 光出射面
  26 筐体
  28 光源
  30、31a,31b,31c,31d,31e,31f,31g,31h,80,81a,81b,81c,81d,81e 導光板
  30b、80b 背面
  30c、30d、80c 光入射面
  32 光学部材ユニット
  32a、32c 拡散シート
  32b プリズムシート
  34 反射板
  36 上部誘導反射板
  38 下部誘導反射板
  42 下部筐体
  44 上部筐体
  44a 開口部
  46 折返部材
  48 支持部材
  49 電源収納部
  50 LEDチップ
  52 光源支持部
  58 発光面
  60、82 第1層
  62、64、84 第2層
  66 第3層
  80d 側面
  α  2等分線
  z、z1、z2  境界面
DESCRIPTION OF SYMBOLS 10 Liquid crystal display device 12 Liquid crystal display panel 14 Drive unit 20, 70 Backlight unit (planar illumination device)
24 Illuminating device body 24a, 30a, 80a Light exit surface 26 Housing 28 Light source 30, 31a, 31b, 31c, 31d, 31e, 31f, 31g, 31h, 80, 81a, 81b, 81c, 81d, 81e Light guide plate 30b, 80b Rear surface 30c, 30d, 80c Light incident surface 32 Optical member unit 32a, 32c Diffusing sheet 32b Prism sheet 34 Reflecting plate 36 Upper guiding reflecting plate 38 Lower guiding reflecting plate 42 Lower housing 44 Upper housing 44a Opening portion 46 Folding member 48 Support member 49 Power supply storage unit 50 LED chip 52 Light source support unit 58 Light emitting surface 60, 82 First layer 62, 64, 84 Second layer 66 Third layer 80d Side surface α2 bisector z, z1, z2 Boundary surface

Claims (14)

  1.  矩形状の光出射面と、前記光出射面の端辺側に設けられ、前記光出射面に略平行な方向に進行する光を入射する少なくとも1つの光入射面と、前記光出射面とは反対側の背面とを有し、内部に拡散粒子が分散された導光板であって、
     前記導光板は、前記光出射面に略垂直な方向に重なった2つ以上の層を有し、
     前記2つ以上の層の各層には、1種類以上の前記拡散粒子が互いに異なる粒子濃度で分散されており、
     前記2つ以上の層は、少なくとも、前記光出射面側に位置する第1層と、前記背面側に位置し、前記第1層と接する第2層とを有し、
     前記第2層は、前記光出射面に略平行な方向において、前記光出射面に略垂直な方向の厚さが変化し、その厚さが光入射面から遠ざかる方向において連続して増加して極大となる部分を少なくとも有する断面形状を成し、
     前記光出射面に略平行な方向に沿った導光位置における前記2つ以上の層の前記光出射面に略垂直な方向の合成散乱断面積Sが前記光入射面から遠ざかるにつれて連続にかつ単調増加するように、前記拡散粒子が分散され、
     前記合成散乱断面積Sの最大値Smax及びSminは、下記式(1)を満足し、かつ、
     前記光入射面に入射する入射光の青色成分の主要波長をBとし、前記入射光の赤色成分の主要波長をRとする時、前記光出射面に略平行な方向に沿った導光距離の半値となる導光位置における、青色成分の主要波長Bの透過係数T(B)と、赤色成分の主要波長Rの透過係数T(R)との比T(B)/T(R)が下記式(2)を満足することを特徴とする導光板。
         1.25≦Smax≦2.2
         0.90≦Smin≦1.6           ……(1)
         0.85≦T(B)/T(R)≦1.15   ……(2)
    The light emitting surface having a rectangular shape, at least one light incident surface that is provided on the edge side of the light emitting surface and that enters light traveling in a direction substantially parallel to the light emitting surface, and the light emitting surface A light guide plate having a back surface on the opposite side, in which diffusion particles are dispersed,
    The light guide plate has two or more layers overlapped in a direction substantially perpendicular to the light exit surface,
    In each of the two or more layers, one or more kinds of the diffusing particles are dispersed at different particle concentrations,
    The two or more layers include at least a first layer located on the light emitting surface side, and a second layer located on the back side and in contact with the first layer,
    The thickness of the second layer changes in a direction substantially parallel to the light exit surface, and a thickness in a direction substantially perpendicular to the light exit surface changes, and the thickness continuously increases in a direction away from the light entrance surface. A cross-sectional shape having at least a maximum portion is formed,
    The combined scattering cross section S in the direction substantially perpendicular to the light exit surface of the two or more layers at the light guide position along the direction substantially parallel to the light exit surface is continuously and monotonously as the distance from the light entrance surface increases. The diffusing particles are dispersed to increase,
    The maximum values S max and S min of the combined scattering cross section S satisfy the following formula (1), and
    When the main wavelength of the blue component of the incident light incident on the light incident surface is B and the main wavelength of the red component of the incident light is R, the light guide distance along the direction substantially parallel to the light exit surface is The ratio T (B) / T (R) between the transmission coefficient T (B) of the main wavelength B of the blue component and the transmission coefficient T (R) of the main wavelength R of the red component at the half-value light guide position is as follows. A light guide plate satisfying the formula (2).
    1.25 ≦ S max ≦ 2.2
    0.90 ≦ S min ≦ 1.6 (1)
    0.85 ≦ T (B) / T (R) ≦ 1.15 (2)
  2.  前記第2層は、前記光出射面に略平行な方向において、前記光出射面に略垂直な方向の厚さが、少なくとも1つの極小値と、少なくとも1つの極大値とを有する断面形状を成す請求項1に記載の導光板。 The second layer has a cross-sectional shape in which the thickness in a direction substantially parallel to the light emitting surface is substantially perpendicular to the light emitting surface, and has at least one minimum value and at least one maximum value. The light guide plate according to claim 1.
  3.  前記少なくとも1つの光入射面が、前記光出射面の対向する2つの端辺側に設けられた2つの光入射面である請求項1または2に記載の導光板。 3. The light guide plate according to claim 1, wherein the at least one light incident surface is two light incident surfaces provided on two opposite sides of the light emitting surface.
  4.  前記第2層の前記断面形状は、3つの円弧、又は4つの円弧からなる請求項3に記載の導光板。 The light guide plate according to claim 3, wherein the cross-sectional shape of the second layer includes three arcs or four arcs.
  5.  前記第2層の前記断面形状は、前記2つの光入射面のそれぞれの側に前記極小値を有し、前記2つの光入射面間の略中央に前記極大値を有する請求項3または4に記載の導光板。 5. The cross-sectional shape of the second layer has the local minimum value on each side of the two light incident surfaces, and the local maximum value in the approximate center between the two light incident surfaces. The light guide plate described.
  6.  前記第2層の前記断面形状は、前記2つの光入射面のそれぞれの側に前記極小値を形成する円弧を有し、前記2つの光入射面間の略中央に前記極大値を形成する円弧を有する請求項3~5のいずれか1項に記載の導光板。 The cross-sectional shape of the second layer has an arc that forms the minimum value on each side of the two light incident surfaces, and an arc that forms the maximum value at a substantially center between the two light incident surfaces. The light guide plate according to any one of claims 3 to 5, wherein:
  7.  前記第2層の厚さが、前記光出射面の略中央で最も厚い請求項3~6のいずれか1項に記載の導光板。 The light guide plate according to any one of claims 3 to 6, wherein the thickness of the second layer is the thickest in the approximate center of the light emitting surface.
  8.  前記少なくとも1つの光入射面が、前記光出射面の1つの端辺側に設けられた1つの光入射面であり、
     前記第2層の前記断面形状は、前記1つの光入射面の側に前記極小値を有し、前記光出射面の他方の端辺側に前記極大値を有する請求項1または2に記載の導光板。
    The at least one light incident surface is one light incident surface provided on one end side of the light emitting surface;
    The cross-sectional shape of the second layer has the local minimum value on the one light incident surface side and the local maximum side on the other end side of the light emitting surface. Light guide plate.
  9.  前記第2層の前記断面形状は、前記1つの光入射面の側に前記極小値を形成する円弧を有し、前記光出射面の他方の端辺側に前記極大値を形成する円弧を有する請求項8に記載の導光板。 The cross-sectional shape of the second layer has an arc that forms the minimum value on the one light incident surface side, and an arc that forms the maximum value on the other side of the light emitting surface. The light guide plate according to claim 8.
  10.  前記2つ以上の層は、さらに、前記背面側に位置し、前記第2層と接する第3層とを有する請求項1~9のいずれか1項に記載の導光板。 The light guide plate according to any one of claims 1 to 9, wherein the two or more layers further include a third layer located on the back side and in contact with the second layer.
  11.  前記第2層と第3層との境界面は、前記光出射面に略平行である請求項10に記載の導光板。 The light guide plate according to claim 10, wherein a boundary surface between the second layer and the third layer is substantially parallel to the light emitting surface.
  12.  前記少なくとも1つの光入射面から入射した光が前記光出射面から出射された割合を示す光の利用効率が70%以上であり、
     前記光出射面の前記周辺部近傍から出射する光の輝度に対する前記光出射面の中央部から出射する光の輝度の割合を示す前記光出射面の輝度分布の中高度合が、0%超、45%以下であり、
     前記光出射面の前記中央部の輝度分布が凸型である請求項1~11のいずれか1項に記載の導光板。
    The light utilization efficiency indicating the ratio of the light incident from the at least one light incident surface being emitted from the light exit surface is 70% or more,
    The medium to altitude of the luminance distribution of the light emitting surface indicating the ratio of the luminance of the light emitted from the central portion of the light emitting surface to the luminance of the light emitted from the vicinity of the peripheral portion of the light emitting surface is more than 0%, 45% or less,
    The light guide plate according to any one of claims 1 to 11, wherein a luminance distribution in the central portion of the light emitting surface is convex.
  13.  前記背面が、前記光出射面に平行な平面である請求項1~12のいずれか1項に記載の導光板。 The light guide plate according to any one of claims 1 to 12, wherein the back surface is a plane parallel to the light emitting surface.
  14.  請求項1~13のいずれか1項に記載の導光板と、
     前記導光板の少なくとも1つの前記光入射面に対面して配置される少なくとも1つの光源と、
     前記導光板及び前記少なくとも1つの光源を収納し、前記導光板の前記光出射面側に、前記光出射面よりも小さい開口部を有する筐体とを有することを特徴とする面状照明装置。
    The light guide plate according to any one of claims 1 to 13,
    At least one light source arranged to face at least one light incident surface of the light guide plate;
    A planar lighting device comprising: a housing that houses the light guide plate and the at least one light source and has an opening smaller than the light exit surface on the light exit surface side of the light guide plate.
PCT/JP2012/065859 2011-07-11 2012-06-21 Light guide plate and planar illuminating apparatus WO2013008600A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-152926 2011-07-11
JP2011152926A JP2013020796A (en) 2011-07-11 2011-07-11 Light guide plate and planar lighting device

Publications (1)

Publication Number Publication Date
WO2013008600A1 true WO2013008600A1 (en) 2013-01-17

Family

ID=47505898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065859 WO2013008600A1 (en) 2011-07-11 2012-06-21 Light guide plate and planar illuminating apparatus

Country Status (3)

Country Link
JP (1) JP2013020796A (en)
TW (1) TW201305629A (en)
WO (1) WO2013008600A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3795889A4 (en) * 2018-05-18 2021-06-23 Mitsubishi Electric Corporation Lighting unit and lighting apparatus
CN117377849A (en) * 2021-05-28 2024-01-09 三菱电机株式会社 Diffuser and lighting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117357A (en) * 2007-10-19 2009-05-28 Fujifilm Corp Light guide plate
JP2010114062A (en) * 2008-10-07 2010-05-20 Fujifilm Corp Planar lighting system
JP2010257938A (en) * 2009-03-31 2010-11-11 Fujifilm Corp Light guide plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117357A (en) * 2007-10-19 2009-05-28 Fujifilm Corp Light guide plate
JP2010114062A (en) * 2008-10-07 2010-05-20 Fujifilm Corp Planar lighting system
JP2010257938A (en) * 2009-03-31 2010-11-11 Fujifilm Corp Light guide plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3795889A4 (en) * 2018-05-18 2021-06-23 Mitsubishi Electric Corporation Lighting unit and lighting apparatus
US11313526B2 (en) 2018-05-18 2022-04-26 Mitsubishi Electric Corporation Lighting unit and lighting fixture
CN117377849A (en) * 2021-05-28 2024-01-09 三菱电机株式会社 Diffuser and lighting device

Also Published As

Publication number Publication date
JP2013020796A (en) 2013-01-31
TW201305629A (en) 2013-02-01

Similar Documents

Publication Publication Date Title
JP4996941B2 (en) Liquid crystal display
US7866872B2 (en) Light guide plate, light guide plate unit, and planar lighting device
JP5425026B2 (en) Light guide plate, planar illumination device, and liquid crystal display device
JP5635472B2 (en) Light guide plate
JP4713697B1 (en) Light guide plate, planar illumination device, and liquid crystal display device
JP4851631B1 (en) Light guide plate and planar illumination device
JP4906771B2 (en) Planar illumination device and liquid crystal display device using the same
WO2013001929A1 (en) Light guide plate and planar lighting device
US9116265B2 (en) Planar lighting device
JP5794948B2 (en) Light guide plate
WO2012160940A1 (en) Light guide plate, planar illumination device, and manufacturing method of light guide plate
WO2013008600A1 (en) Light guide plate and planar illuminating apparatus
WO2013099454A1 (en) Sheet-shaped light guide plate, planar illumination device, and planar illumination unit
US9075176B2 (en) Light guide plate and planar lighting device
JP2009245732A (en) Light guide plate and planar lighting device using the same
JP5941129B2 (en) Surface lighting device
JP2009093863A (en) Planar lighting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810943

Country of ref document: EP

Kind code of ref document: A1