WO2013168212A1 - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
WO2013168212A1
WO2013168212A1 PCT/JP2012/061665 JP2012061665W WO2013168212A1 WO 2013168212 A1 WO2013168212 A1 WO 2013168212A1 JP 2012061665 W JP2012061665 W JP 2012061665W WO 2013168212 A1 WO2013168212 A1 WO 2013168212A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
organic
layer
electrode layer
substrate
Prior art date
Application number
PCT/JP2012/061665
Other languages
French (fr)
Japanese (ja)
Inventor
崇人 小山田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/061665 priority Critical patent/WO2013168212A1/en
Publication of WO2013168212A1 publication Critical patent/WO2013168212A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths

Definitions

  • the present invention relates to an organic electroluminescence device including a plurality of light emitting portions.
  • An organic electroluminescent element is formed by, for example, sequentially laminating an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode on a glass substrate, and the organic layers of the hole transport layer, the light emitting layer, and the electron transport layer are formed. It is an organic light emitting diode that exhibits electroluminescence (hereinafter referred to as EL) by current injection between the sandwiched anode and cathode.
  • EL organic light emitting diode that exhibits electroluminescence
  • the organic EL element is a self-luminous surface emitting device and is put into practical use in a display device or a lighting device.
  • a so-called tandem organic light-emitting diode device is known as an organic EL device (see Patent Document 1).
  • a tandem organic light-emitting diode device is composed of a plurality of EL units arranged between an anode and a cathode, and an intermediate connection layer arranged between adjacent EL units, and the plurality of EL units are connected in series. It is a connected organic EL device.
  • an intermediate connection layer is formed on a green EL unit, a red EL unit is formed thereon, an intermediate connection layer is formed thereon, and a blue EL unit is formed thereon.
  • the EL unit stacked above In order to prevent the EL unit stacked below from being altered, the EL unit stacked above must be formed under severe process conditions in which the temperature, solvent, and the like are more limited. Therefore, there is a problem that materials that can be used for each color EL unit of the tandem organic light emitting diode device are extremely limited.
  • an object of the present invention is to provide an organic EL device that can be toned and that can be manufactured under relaxed process conditions and can stabilize the color of the emitted light for a long time.
  • the organic EL device of the present invention includes a first electrode layer formed on a light-transmitting first substrate, a second electrode layer facing the first electrode layer, and a first electrode sandwiched between these electrode layers.
  • An organic layer, and the first organic layer emits light in a first emission band according to an applied voltage between the first and second electrode layers and passes through the first electrode layer and the first substrate.
  • a translucent second EL element formed on the main surface of the first substrate opposite to the first electrode layer, The second EL element is sandwiched between two translucent electrode layers facing each other and the translucent electrode layer, and is different from the first light-emitting band according to the applied voltage between the two translucent electrode layers.
  • a light-transmitting second organic layer that emits light in two light-emitting bands and emits light emitted in the second light-emitting band through the two light-transmitting electrode layers, and the first organic layer and the second organic layer A part or all of the layers are arranged so as to form an overlapping region in which the layers overlap in the thickness direction of the first substrate.
  • the organic EL device having the above-described configuration, it is possible to perform color adjustment by changing the luminance for each of the first and second EL elements, the color of the emission color can be stabilized, and the manufacturing process conditions for each element are reduced. The effect of expanding the selection range of materials that can be used in the entire organic EL device is obtained.
  • FIG. 1 is a schematic sectional view schematically showing a configuration of an organic EL device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view schematically showing the configuration of the first EL element of the organic EL device shown in FIG.
  • FIG. 3 is a schematic cross-sectional view schematically showing the configuration of an organic EL device according to the second embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view schematically showing the configuration of an organic EL device according to the third embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view schematically showing the configuration of an organic EL device which is a modification of the third embodiment of the present invention.
  • FIG. 1 is a schematic sectional view schematically showing a configuration of an organic EL device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view schematically showing the configuration of the first EL element of the organic EL device shown in FIG.
  • FIG. 3 is
  • FIG. 6 is a schematic sectional view schematically showing a configuration of an organic EL device according to the fourth embodiment of the present invention.
  • FIG. 7 is a block diagram showing a schematic configuration of a light emitting apparatus including an organic EL device according to a fifth embodiment of the present invention.
  • FIG. 8A shows an example of the spectral intensity distribution of the light emission regions of the three primary colors of the blue light emission region B of the first EL element and the red light emission region R and the green light emission region G of the second EL element 1t of the organic EL device of the embodiment.
  • FIG. 8B is a graph, and FIG.
  • FIG. 1 shows the configuration of an organic EL device that is an embodiment of the present invention.
  • the organic EL device is a unit in which a first EL element 1 which is a bottom emission type organic EL panel and a light-transmitting second EL element 1t are stacked in parallel and integrated.
  • a first organic layer 4 is formed on a first electrode layer 3 formed on a translucent first substrate 2, and a second electrode layer 5 that is a reflective electrode is formed thereon.
  • the first organic layer 4 sandwiched between the first electrode layer 3 and the second electrode layer 5 facing each other has a first voltage corresponding to the applied voltage between the first and second electrode layers 3 and 5.
  • Light is emitted in the light emission band, and the emitted light is emitted through the first electrode layer 3 and the first substrate 2.
  • the first light emitting portion 6 in the first light emission band including the first electrode layer 3, the first organic layer 4, and the second electrode layer 5 is formed on the translucent substrate 2.
  • a sealing substrate 7 such as a glass plate is used as a sealing structure for the purpose of protecting the first light emitting unit 6 from oxygen and moisture in the air after the second electrode layer 5 is formed.
  • the first light emitting unit 6 is hermetically protected by disposing a sealing unit 8 such as an adhesive around the first light emitting unit 6 between the first substrate 2 and the sealing substrate 7.
  • a sealing unit 8 such as an adhesive around the first light emitting unit 6 between the first substrate 2 and the sealing substrate 7.
  • the sealing process is performed in a glove box substituted with nitrogen.
  • sealing is performed by bonding a sealing material such as a cap made of metal, glass, or the like that covers the first light emitting unit 6 separately as a sealing structure. May be.
  • a desiccant (not shown) may be attached to the inner wall of the cap.
  • a so-called solid sealing may be performed by forming a sealing film (not shown) made of an organic compound or an inorganic compound so as to cover the first light emitting portion 6.
  • the second EL element 1t is formed on the translucent electrode layer 3t formed on the main surface on the opposite side of the first electrode layer 3 of the first substrate 2 of the first EL element 1, that is, the main surface on the light extraction side.
  • Two organic layers 4t are formed, and a translucent electrode layer 5t is formed thereon.
  • the second organic layer 4t sandwiched between the translucent electrode layers 3t and 5t facing each other emits light in the second emission band according to the applied voltage between the translucent electrode layers 3t and 5t. The emitted light is radiated through the translucent electrode layers 3t and 5t.
  • the second light emitting unit 6t in the second light emission band including the translucent electrode layer 3t, the second organic layer 4t, and the translucent electrode layer 5t is formed on the first substrate 2. Is formed. Spectral components of the first light emission band of the first EL element 1 and the second light emission band of the second EL element 1t may overlap, but each light emitting portion has a different light emitting material so that the spectral distributions are different from each other. It is formed as a light emitting region containing
  • a transparent sealing substrate 7t such as a glass plate is used for the purpose of protecting the second light emitting unit 6t from oxygen and moisture in the atmosphere after the transparent electrode layer 5t is formed.
  • the second light emitting unit 6t is hermetically protected by disposing the second sealing unit 8t such as an adhesive around the second light emitting unit 6t between the first substrate 2 and the sealing substrate 7t.
  • the second EL element 1t can also be hermetically sealed with an inert gas.
  • liquid sealing using a light diffusing material such as oil that diffuses light by dispersing a plurality of fine particles in a liquid phase is also possible. That is, at least one of the first EL element 1 and the second EL element 1t shown in FIG. 1 is filled with the light diffusing material around the first organic layer 4 and the second organic layer 4t in the space Sp inside the sealing structure. It may be a structure.
  • the first EL element 1 and the second EL element 1t are arranged such that their light emitting regions overlap, that is, the first organic layer 4 of the first EL element 1 and the second organic layer of the second EL element 1t. Both elements are overlapped so as to form an overlapping region OVL in which part or all of 4t overlaps in the thickness direction of the first substrate.
  • the organic layer of the first EL element 1 typically has positive and negative electrodes in order from the anode to the cathode when the first electrode layer 3 is an anode and the second electrode layer 5 is a cathode.
  • the hole injection layer 4a, the hole transport layer 4b, the light emitting layer 4c, the electron transport layer 4d, and the electron injection layer 4e are laminated.
  • the laminated structure of the 1st organic layer 4 it is also possible to laminate
  • the first organic layer 4 is not limited to these laminated structures, and at least emits light, for example, by adding a hole blocking layer (not shown) between the light emitting layer 4c and the electron transport layer 4d.
  • a layered structure including a charge transport layer that includes or can also be used as a layer is also included in the present invention.
  • the first organic layer 4 may be configured by omitting the hole transport layer 4b, the hole injection layer 4a, or the hole injection layer 4a and the electron transport layer 4d from the stacked structure. It may be configured. Further, similarly to the first organic layer 4 of the first EL element 1, the second organic layer 4t of the second EL element 1t can also be configured by stacking each functional layer.
  • the material for the charge transport layer of the organic layer can be appropriately selected from known materials in the right place.
  • the organic EL material of the light emitting layer 4c for example, any known material such as a fluorescent material or a phosphorescent material can be applied.
  • Examples of fluorescent materials that emit blue light include naphthalene, perylene, and pyrene.
  • fluorescent materials that give green light emission include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of fluorescent materials that give yellow light include rubrene and perimidone derivatives.
  • Examples of fluorescent materials that give red light emission include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, and the like.
  • Examples of the phosphorescent material include ruthenium, rhodium, and palladium. Specific examples of the phosphorescent material include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, and the like.
  • the material of the second electrode layer 5 that is the reflective electrode of the first EL element 1 shown in FIG. 1 for example, a metal such as aluminum or silver is used.
  • the thickness of the second electrode layer 5 is not limited as long as it maintains the reflective action of the second electrode layer 5.
  • Each of the first electrode layer 3 of the first EL element 1 and the translucent electrode layers 3t and 5t of the second EL element 1t have light transmissivity.
  • ITO Indium-tin-oxide
  • FTO fluorine-tin-oxide
  • oxide materials such as ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 —ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2, etc. It can also be used.
  • a metal having a low work function is preferable in order to perform electron injection efficiently, for example, a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof. Is used.
  • Each of the first electrode layer 3 and the translucent electrode layers 3t and 5t is made of an electric conductor having an electric conductivity of 10 6 S / m or more, and is about 360 nm or less of the shortest wavelength of visible light, that is, ultra soft X
  • a thin film having a film thickness in the range from the line to the ultraviolet wavelength can be used by being stacked on the oxide material film.
  • the material of the laminated thin film includes carbon such as metal, graphite, and graphene.
  • the 20 nm-thick silver thin film as the laminated thin film has a transmittance of about 50%.
  • an Al film having a thickness of 10 nm as the thin film has a transmittance of 50%.
  • the 20 nm-thick MgAg alloy film as the thin film has a transmittance of 50%.
  • the translucent conductive thin film has a thickness of a thin film made of an electrical conductor and having a thickness in the range of ultra-soft X-ray to ultraviolet wavelength, and has a transmittance of at least 50% or a thickness of 20 nm or less. It is preferable to employ a thin film having
  • the first substrate 2 common to the first EL element 1 and the second EL element 1t shown in FIG. 1 is made of a highly light-transmitting material such as a resin film such as glass, polyester, polymethacrylate, polycarbonate, or polysulfone.
  • the light emitted from the first light emitting unit 6 and the second light emitting unit 6t is reflected inside the first EL element 1 and the second EL element 1t, but is output to the outside through the first substrate 2 and the sealing substrate 7t. .
  • a light extraction film 9 is attached to the outer surface of the second EL element 1t shown in FIG. 1 so as to cover the overlapping region OVL.
  • the first EL element 1 and the second EL element 1t are overlapped and integrated.
  • the present invention is not limited to this, and the space between the external surface of the second EL element 1t and the light extraction film 9 is not limited thereto.
  • One or more translucent second EL elements 1t may be stacked. That is, each of the second EL elements 1t has a second light emission different from the first light emission band depending on the applied voltage between the two light transmissive electrode layers sandwiched between the two light transmissive electrode layers 3t and 5t facing each other.
  • the second light-emitting portion 6t including the light-transmitting second organic layer 4t that emits light in the band and emits light in the second light-emitting band through the two light-transmissive electrode layers 3t and 5t. .
  • the second EL element 1t is formed using the main surface of the first EL element 1 on the light extraction side of the first substrate 2, but in the second embodiment, the first substrate 2 is used. After the second EL element 1t is manufactured individually, the first EL element 1 and the second EL element 1t are bonded together to achieve the integration of both elements.
  • the second EL element 1t uses a translucent second substrate 2t such as a glass plate equivalent to the first substrate 2, and a translucent electrode layer 3t formed on the second substrate 2t.
  • a second organic layer 4t is formed thereon, and a translucent electrode layer 5t is formed thereon.
  • the second light emitting unit 6t is hermetically protected by disposing the second sealing unit 8t such as an adhesive around the second light emitting unit 6t between the sealing substrate 7t and the second substrate 2t.
  • the first substrate 2 of the first EL element 1 and the second substrate 2t of the second EL element 1t are bonded to each other with a light-transmitting optical adhesive layer 10 interposed therebetween.
  • a light diffusing material such as fine particles can be uniformly mixed and dispersed in the translucent optical adhesive layer 10 to enhance the light extraction effect. That is, when the second substrate 2t is considered as an integral body with the first substrate 2, it is preferable that the first substrate 2 has a light-transmitting adhesive layer 10 containing a light diffusing material.
  • the organic layers of the light emitting regions of both the first EL element 1 and the second EL element are uniformly laminated in a predetermined area.
  • the organic layer of at least one EL element is formed as a light emitting region divided so as to include a plurality of light emitting layers juxtaposed in a stripe shape, for example.
  • a light emitting region B including a blue light emitting layer is formed over the first organic layer 4 of the first EL element 1, and red light is formed in the second organic layer 4t of the second EL element 1t.
  • the light emitting regions R and G each including a green light emitting layer and a green light emitting layer are juxtaposed in a state of being separated from each other by an insulating film BK.
  • a bus line for supplying current may be formed along the insulating film BK between the insulating film BK and the translucent electrode layer 3t.
  • the first EL element 1 and the second EL element 1t are electrically connected to the driving portions by predetermined wirings (not shown) so that they can be driven independently for each light emitting region.
  • a plurality of insulating films BK (banks extending in parallel with the normal direction to the paper surface) that partition the stripe-like light emitting layers R and G of the second EL element 1t are previously formed on the second substrate 2t.
  • an insulating film (bank) is not necessarily required, and so-called pins of the ink droplets applied to the ink jet are themselves.
  • the stopping phenomenon can be used.
  • a light emitting layer is individually formed by ink-jet coating on each of the translucent electrode layers 3t arranged in a stripe shape, and as shown in FIG.
  • An organic EL device including the second EL element 1t having the stripe-shaped light emitting regions R and G without a bank) can also be manufactured.
  • the light emitting region of the second organic layer 4t of the second EL element 1t is subdivided into stripes for each color, but the divided light emitting region is also formed in the first organic layer 4 of the first EL element 1.
  • the second electrode layer 5 (FIG. 3), which is a reflective electrode, is formed on the first organic layer 4 on the translucent first substrate 2.
  • a translucent electrode layer 5t is formed on the first organic layer 4, and the reflective film 5A such as Al is sealed. It is formed in the inner wall facing the 1st light emission part 6 of sealing structures, such as the board
  • the reflective film 5A not only emits the light from the first organic layer 4, but also the second light emission. All the light from the part 6t is also reflected toward the second substrate 2t.
  • the reflective film 5A spaced from the translucent electrode layer 5t of the second electrode layer of the first EL element 1 the same light extraction effect as that of the above embodiment can be obtained.
  • FIG. 7 is a block diagram showing a schematic configuration of such a light emitting device.
  • This light emitting device includes a drive unit 12 connected to the control unit 11 and an organic EL device shown in FIG. 4 connected to the drive unit. Further, the light emitting device includes an operation unit 13 connected to the control unit 11.
  • Such an organic EL device includes a blue light emitting region B of the first EL element 1 and a plurality of sets of a red light emitting region R and a green light emitting region G of the second EL element 1t as shown in FIG.
  • the control unit 11 includes a microcomputer including a CPU, a ROM, a RAM, an internal timer, and the like that execute program codes such as processing procedures for generating various signals including a luminance designation signal, and the luminance of each light emitting area of the organic EL device. And a lighting control routine for controlling lighting / extinguishing.
  • the control unit 11 generates a luminance designation signal for each color for driving each light emitting area and supplies it to the driving unit 12.
  • the driving unit 12 includes a red driving unit 12R, a green driving unit 12G, and a blue driving unit 12B, which are driving circuits for RGB light emission connected to the light emitting regions R, G, and B, respectively.
  • the red driving unit 12R, the green driving unit 12G, and the blue driving unit 12B are driven individually to the light emitting regions R, G, and B or for each of the R group, the G group, and the B group. Power is supplied and each emits light at a specified brightness.
  • the drive unit 12 is a light source color (light color) such as white by mixing light emission of a predetermined luminance in the light emitting regions R, G, and B in various lighting modes of the organic EL device according to the luminance designation signal of each color from the control unit 11. Toning.
  • the light color white light is “color temperature” when the chromaticity is on the black body radiation locus indicated by the XYZ color system of the CIE chromaticity diagram, and “correlated color temperature” when the chromaticity is not within that range. (Unit: K (Kelvin)).
  • the operation unit 13 is a device such as a remote controller including an open / close switch or a wired module attached in the room.
  • the operation unit 13 supplies the control unit 11 with an operation command such as a command for turning on or off the light emitting device by the user, and a command for switching to a lighting mode such as normal lighting or night light.
  • the color temperature luminance data includes a red driving unit 12R, a green driving unit 12G, and a green driving unit 12G for emitting white light of various color temperatures of the organic EL device by mixing the light emitting regions R, G, and B with a specific luminance. It is table
  • FIG. 8A shows an example of the spectral intensity distribution of the light emission regions of the three primary colors of the blue light emission region B of the first EL element 1 and the red light emission region R and the green light emission region G of the second EL element 1t.
  • FIG. 8B shows the color temperature of the white light and the individual luminance R (k) of the light emitting region when the white light luminance is controlled under a constant condition in the light emission color mixture of the entire organic EL device composed of the light emitting region group of the three primary colors.
  • G (k) and B (k) An example of the relationship with changes in G (k) and B (k) is shown.
  • the device In order to emit light with constant white light brightness, the light emitting regions R (k), G (k), B for the color temperature (1500K to 5000K) range of white light as shown in FIG. A set of individual luminances (k) is required.
  • luminance designation signals color temperature luminance curves R (k), G (k) for each light emitting region R, G, B for each color temperature 100K. , B (k) and the luminance value at the intersection point) are prepared in advance.
  • the control unit 11 Based on the acquired color temperature luminance data, the control unit 11 changes the light emission regions R, G, and B at a predetermined timing for compensating for the user's operation timing or the secular change of the light emission region from the lower one to the higher one of the color temperature steps.
  • the luminance value for each is sent to the red drive unit 12R, the green drive unit 12G, and the blue drive unit 12B as luminance designation signals R (t), G (t), and B (t).
  • the control unit 11 transmits the luminance designation signals R (t), G (t), and B (t) that define white light having a desired color temperature to the red drive unit 12R, the green drive unit 12G, and the blue drive, respectively.
  • the control unit 11 controls the light color and color temperature of the organic EL device by individually adjusting the light emission intensity (luminance) of each light emitting region of the organic EL device, for example, according to the operation of the user.
  • white light such as a light bulb color and daylight color can be emitted, or white light can be corrected at a predetermined timing for compensating for secular change in a light emitting area stored in a ROM or the like.
  • two color gradations can be obtained by driving two panels by sticking together two organic EL panels that are formed on the entire surface (solid).
  • white (W) emission color of the RG / B stack and the B emission color, it is possible to adjust the warm white to cool white.
  • three organic EL panels of R, G, and B emission colors are stacked, color matching equivalent to the juxtaposed stripe is possible.
  • two W light emitting color panels are bonded together and driven in series, the voltage is improved and the efficiency is improved as in the tandem type. If the light extraction is optimized, in principle, the efficiency is doubled at twice the driving voltage.
  • a translucent organic EL panel and a bottom emission type organic EL panel were each formed by a coating method, and both organic EL panels were bonded together to produce an organic EL device.
  • an anode (ITO: film thickness 112 nm) is formed into a pattern within a specified range, and a photolithography process is performed on them.
  • a bus line (AlNd: film thickness of 200 nm) was formed into a pattern in a stripe shape (discontinuous).
  • an insulating film was formed in a pattern by a photolithography process so as to cover the AlNd bus line on the glass substrate and expose the ITO anode.
  • the insulating film defines a light emitting area.
  • the surface of the ITO anode is treated with ultraviolet light / ozone, and then PEDOT: PSS (Poly (3,4-ethylenedioxythiophene) (poly (styrenesulfonate)) with a solid content concentration of 1 wt% is applied with an inkjet device. Then, it was vacuum-dried at 0.1 Pa to 50 Pa for 2 minutes and fired at 230 ° C. for 1 hour to form a hole injection layer.
  • PSS Poly (3,4-ethylenedioxythiophene) (poly (styrenesulfonate)
  • 1 wt% -Hex-Ir (phq) 3 Tris (2-phenylquinoline) iridium of a red dopant having a solid content concentration of 2 wt% in a xylene solvent on the fired PEDOT: PSS hole injection layer.
  • DCIII 4,4'-Bis (N-carbazolyl)-containing (III)) and 9% of the green dopant-Ir (mppy) 3 (Tris (3-methyl-2-phenylpyridine) iridium (III)) 1,1′-biphenyl) ink was applied, vacuum dried at 0.1 Pa to 50 Pa for 2 minutes, and fired at 130 ° C. for 10 minutes to form a red-green light emitting layer.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • a hole blocking layer by vacuum deposition on the fired red and green light emitting layer having a thickness of 40 nm.
  • an Ag cathode having a thickness of 10 nm was formed, and liquid-sealed to produce a light-transmitting organic EL panel.
  • the translucent cathode is preferably made of Ag or Al and has a thickness of 20 nm or less. Furthermore, since the resistance increases when the translucent electrode is oxidized, it is preferable to provide an antioxidant film.
  • the fifth step was carried out in the same manner, and a BCP film having a thickness of 15 nm was formed as a hole blocking layer on the fired blue light-emitting layer by vacuum deposition. Further, an Alq3 film having a thickness of 30 nm, which is an electron transport layer, is formed by vacuum vapor deposition. Next, LiF film having a thickness of 1 nm is formed as an electron injection layer, and finally an Ag cathode having a thickness of 80 nm is formed. A bottom emission type organic EL panel was produced by liquid sealing.
  • the glass substrate sides of the two produced organic EL panels were bonded to each other using a light-transmitting organic EL panel and a light-transmitting adhesive containing a diffusing material.
  • the thickness of the light-transmitting adhesive layer including the thickness of the light-transmitting adhesive layer is 1 mm or less, and both glass substrates are 1 mm or less in thickness.
  • the material is preferably transparent, thin and excellent in light transmission. As a result, the toning was possible with a slight loss of light.
  • a translucent organic EL panel having a translucent cathode transmits light of a bottom emission type organic EL panel having a reflective electrode, and therefore a structure that uses oil that diffuses light is used. It was.
  • a light extraction film (trade name STE manufactured by Kimoto Co., Ltd.) was attached to the translucent organic EL panel side of the produced organic EL device to improve the light extraction efficiency. Since the light extraction film has a variety of microlenses, pyramid structures, and the like, it is not limited to any one.

Abstract

An organic EL device having: a bottom-emission first EL element including a light-transmissive first substrate; and a light-transmissive second EL element formed upon the main surface on the opposite side to a first electrode layer of the first substrate. The second EL element includes a light-transmissive second organic layer that emits light in a second light-emitting band different from a first light-emitting band for a first organic layer of the first EL element, and is arranged such that all or part of the first and second organic layers form an overlapping area that overlaps in the thickness direction of the first substrate.

Description

有機エレクトロルミネッセンスデバイスOrganic electroluminescence device
 本発明は、複数の発光部を含む有機エレクトロルミネッセンスデバイスに関する。 The present invention relates to an organic electroluminescence device including a plurality of light emitting portions.
 有機エレクトロルミネッセンス素子は、例えば、ガラス基板上に陽極、正孔輸送層、発光層、電子輸送層、陰極を順次積層して構成され、正孔輸送層、発光層及び電子輸送層の有機層を挟む陽極及び陰極間への電流注入により、エレクトロルミネッセンス(以下、ELと称する)を発現する有機発光ダイオードである。有機EL素子は、自己発光型の面発光デバイスであり、表示装置や照明装置に実用化されている。 An organic electroluminescent element is formed by, for example, sequentially laminating an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode on a glass substrate, and the organic layers of the hole transport layer, the light emitting layer, and the electron transport layer are formed. It is an organic light emitting diode that exhibits electroluminescence (hereinafter referred to as EL) by current injection between the sandwiched anode and cathode. The organic EL element is a self-luminous surface emitting device and is put into practical use in a display device or a lighting device.
 有機ELデバイスとして、いわゆるタンデム式有機発光ダイオードデバイスが知られている(特許文献1、参照)。タンデム式有機発光ダイオードデバイスは、陽極と陰極の間に重ねて配置された複数のELユニットと、隣接ELユニットの間に各々配置された中間接続層と、から構成され、複数のELユニットが直列接続された有機ELデバイスである。 A so-called tandem organic light-emitting diode device is known as an organic EL device (see Patent Document 1). A tandem organic light-emitting diode device is composed of a plurality of EL units arranged between an anode and a cathode, and an intermediate connection layer arranged between adjacent EL units, and the plurality of EL units are connected in series. It is a connected organic EL device.
特表2009-506513号公報Special table 2009-506513
 特許文献1に記載の有機ELデバイスでは、直列接続されたELユニットを流れる電流が等しいので、全てのELユニットに流れる共通の電流密度に対する各ELユニットの電流輝度効率によって、全体のELユニットから出力された混色発光の色度が決定される。しかしながら、この有機ELデバイスを例えば、R(赤),G(緑),B(青)の3色混色の白色光源として使用し続けた場合、RGB各色の発光材料の経時変化により電流輝度効率がそれぞれ異なって変化する結果、各発光パネルの混色として所望の白色を長く維持できないという問題がある。 In the organic EL device described in Patent Document 1, since the currents flowing through the EL units connected in series are equal, the output from the entire EL unit depends on the current luminance efficiency of each EL unit with respect to the common current density flowing through all the EL units. The chromaticity of the mixed color emission is determined. However, when this organic EL device is continuously used as a white light source of mixed colors of R (red), G (green), and B (blue), for example, the current luminance efficiency is increased due to the aging of the light emitting materials of each color of RGB. As a result of different changes, there is a problem that a desired white color cannot be maintained for a long time as a color mixture of each light emitting panel.
 また、当該有機ELデバイスの製造において、例えば緑ELユニット上に中間接続層を形成し、その上に赤ELユニットを形成し、その上に中間接続層を形成し、その上に青ELユニットを形成しているので、下に積んだELユニットを変質させない為に、上に積むELユニットほど温度や溶剤などがより制限される厳しいプロセス条件で成膜しなければならない。よって、タンデム式有機発光ダイオードデバイスの各色ELユニットに使用できる材料が極めて限定されてしまうという問題がある。 In the production of the organic EL device, for example, an intermediate connection layer is formed on a green EL unit, a red EL unit is formed thereon, an intermediate connection layer is formed thereon, and a blue EL unit is formed thereon. In order to prevent the EL unit stacked below from being altered, the EL unit stacked above must be formed under severe process conditions in which the temperature, solvent, and the like are more limited. Therefore, there is a problem that materials that can be used for each color EL unit of the tandem organic light emitting diode device are extremely limited.
 そこで、本発明は、緩和されたプロセス条件で製造可能で、長く発光色の色味を安定化できる調色可能な有機ELデバイスを提供することを課題の一例とするものである。 Accordingly, an object of the present invention is to provide an organic EL device that can be toned and that can be manufactured under relaxed process conditions and can stabilize the color of the emitted light for a long time.
 本発明の有機ELデバイスは、透光性の第1基板上に形成された第1電極層と前記第1電極層に対向する前記第2電極層とこれら電極層の間に挟持された第1有機層とを含み、前記第1有機層が前記第1及び第2電極層間の印加電圧に応じて第1発光帯域で発光して前記第1電極層及び前記第1基板を介して前記第1発光帯域の発光を放射する第1EL素子と、
 前記第1基板の前記第1電極層の反対側の主面上に形成された透光性の第2EL素子と、を有し、
 前記第2EL素子は、互いに対向する2つの透光性電極層とこれら透光性電極層の間に挟持され前記2つの透光性電極層間の印加電圧に応じて前記第1発光帯域と異なる第2発光帯域で発光して前記2つの透光性電極層を介して前記第2発光帯域の発光を放射する透光性の第2有機層とを含み、前記第1有機層及び前記第2有機層の一部又は全部が前記第1基板の厚さ方向において重なった重畳領域を形成するように配置されたことを特徴とする。
The organic EL device of the present invention includes a first electrode layer formed on a light-transmitting first substrate, a second electrode layer facing the first electrode layer, and a first electrode sandwiched between these electrode layers. An organic layer, and the first organic layer emits light in a first emission band according to an applied voltage between the first and second electrode layers and passes through the first electrode layer and the first substrate. A first EL element that emits light of an emission band;
A translucent second EL element formed on the main surface of the first substrate opposite to the first electrode layer,
The second EL element is sandwiched between two translucent electrode layers facing each other and the translucent electrode layer, and is different from the first light-emitting band according to the applied voltage between the two translucent electrode layers. A light-transmitting second organic layer that emits light in two light-emitting bands and emits light emitted in the second light-emitting band through the two light-transmitting electrode layers, and the first organic layer and the second organic layer A part or all of the layers are arranged so as to form an overlapping region in which the layers overlap in the thickness direction of the first substrate.
 以上の構成の有機ELデバイスによれば、第1及び第2EL素子毎の輝度を変化させて調色が可能となり、発光色の色味を安定化できるとともに、素子毎の製造プロセス条件が低くなり、有機ELデバイス全体で使用できる材料の選択幅が拡大する効果が得られる。 According to the organic EL device having the above-described configuration, it is possible to perform color adjustment by changing the luminance for each of the first and second EL elements, the color of the emission color can be stabilized, and the manufacturing process conditions for each element are reduced. The effect of expanding the selection range of materials that can be used in the entire organic EL device is obtained.
図1は本発明の第1の実施例である有機ELデバイスの構成を模式的に示す概略断面図である。FIG. 1 is a schematic sectional view schematically showing a configuration of an organic EL device according to a first embodiment of the present invention. 図2は図1に示す有機ELデバイスの第1EL素子の構成を模式的に示す概略断面図である。FIG. 2 is a schematic cross-sectional view schematically showing the configuration of the first EL element of the organic EL device shown in FIG. 図3は本発明の第2の実施例である有機ELデバイスの構成を模式的に示す概略断面図である。FIG. 3 is a schematic cross-sectional view schematically showing the configuration of an organic EL device according to the second embodiment of the present invention. 図4は本発明の第3の実施例である有機ELデバイスの構成を模式的に示す概略断面図である。FIG. 4 is a schematic cross-sectional view schematically showing the configuration of an organic EL device according to the third embodiment of the present invention. 図5は本発明の第3の実施例の変形例である有機ELデバイスの構成を模式的に示す概略断面図である。FIG. 5 is a schematic cross-sectional view schematically showing the configuration of an organic EL device which is a modification of the third embodiment of the present invention. 図6は本発明の第4の実施例である有機ELデバイスの構成を模式的に示す概略断面図である。FIG. 6 is a schematic sectional view schematically showing a configuration of an organic EL device according to the fourth embodiment of the present invention. 図7は本発明の第5の実施例である有機ELデバイスを含む発光装置の概略構成を示すブロック図である。FIG. 7 is a block diagram showing a schematic configuration of a light emitting apparatus including an organic EL device according to a fifth embodiment of the present invention. 図8(A)は実施例である有機ELデバイスの第1EL素子の青発光領域Bと第2EL素子1tの赤発光領域R及び緑発光領域Gの三原色の発光領域のスペクトル強度分布の一例を示すグラフであり、図8(B)は当該三原色の発光領域群からなる有機ELデバイス全体の発光混色おける白色光の輝度一定の条件で制御した時の白色光の色温度と発光領域の個別輝度R(k),G(k),B(k)の変化との関係の一例を示すグラフである。FIG. 8A shows an example of the spectral intensity distribution of the light emission regions of the three primary colors of the blue light emission region B of the first EL element and the red light emission region R and the green light emission region G of the second EL element 1t of the organic EL device of the embodiment. FIG. 8B is a graph, and FIG. 8B shows the color temperature of white light and the individual luminance R of the light emitting area when the white light is controlled under a constant luminance condition in the light emission color mixture of the whole organic EL device composed of the light emitting area groups of the three primary colors. It is a graph which shows an example of the relationship with the change of (k), G (k), B (k).
 以下、本発明に係る実施例について添付の図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 <第1の実施例>
 図1には、本発明の実施例である有機ELデバイスの構成が示されている。
<First embodiment>
FIG. 1 shows the configuration of an organic EL device that is an embodiment of the present invention.
 有機ELデバイスは、ボトムエミッション型の有機ELパネルである第1EL素子1と透光性の第2EL素子1tとが平行に重ねられ一体化したものである。 The organic EL device is a unit in which a first EL element 1 which is a bottom emission type organic EL panel and a light-transmitting second EL element 1t are stacked in parallel and integrated.
 第1EL素子1においては、透光性の第1基板2上に形成された第1電極層3上に第1有機層4が形成され、その上に反射電極である第2電極層5が形成されている。かかる構成により、互いに対向する第1電極層3及び第2電極層5の間に挟持された第1有機層4は、第1及び第2電極層3,5間の印加電圧に応じて第1発光帯域で発光して第1電極層3及び第1基板2を介して斯かる発光を放射する。このように、第1EL素子1において、透光性基板2上に、第1電極層3、第1有機層4及び第2電極層5とからなる第1発光帯域の第1発光部6が形成されている。 In the first EL element 1, a first organic layer 4 is formed on a first electrode layer 3 formed on a translucent first substrate 2, and a second electrode layer 5 that is a reflective electrode is formed thereon. Has been. With such a configuration, the first organic layer 4 sandwiched between the first electrode layer 3 and the second electrode layer 5 facing each other has a first voltage corresponding to the applied voltage between the first and second electrode layers 3 and 5. Light is emitted in the light emission band, and the emitted light is emitted through the first electrode layer 3 and the first substrate 2. As described above, in the first EL element 1, the first light emitting portion 6 in the first light emission band including the first electrode layer 3, the first organic layer 4, and the second electrode layer 5 is formed on the translucent substrate 2. Has been.
 第1EL素子1においては、第2電極層5の成膜後に、第1発光部6を大気中の酸素や水分から保護する目的で、封止構造体としてガラス板などの封止基板7を用い、第1基板2と封止基板7の間の第1発光部6の周囲に接着剤などの封止部8を配置することにより第1発光部6が密閉保護されている。例えば、密閉工程は窒素置換されたグローブボックス内で行われる。 In the first EL element 1, a sealing substrate 7 such as a glass plate is used as a sealing structure for the purpose of protecting the first light emitting unit 6 from oxygen and moisture in the air after the second electrode layer 5 is formed. The first light emitting unit 6 is hermetically protected by disposing a sealing unit 8 such as an adhesive around the first light emitting unit 6 between the first substrate 2 and the sealing substrate 7. For example, the sealing process is performed in a glove box substituted with nitrogen.
 なお、封止基板の代わりに、封止構造体として第1発光部6を離間して覆う金属やガラスなどからなるキャップなどの封缶材(図示せず)を接着して封止が施されてもよい。この時、キャップ内壁に乾燥剤(図示せず)を取り付けてもよい。また、第1発光部6を被覆するように有機化合物もしくは無機化合物からなる封止膜(図示せず)を形成して、所謂固体封止を施してもよい。 Instead of the sealing substrate, sealing is performed by bonding a sealing material such as a cap made of metal, glass, or the like that covers the first light emitting unit 6 separately as a sealing structure. May be. At this time, a desiccant (not shown) may be attached to the inner wall of the cap. Further, a so-called solid sealing may be performed by forming a sealing film (not shown) made of an organic compound or an inorganic compound so as to cover the first light emitting portion 6.
 図1に示す第2EL素子1tにおいては、第1EL素子1の第1基板2の第1電極層3の反対側すなわち光取り出し側の主面上に形成された透光性電極層3t上に第2有機層4tが形成され、その上に透光性電極層5tが形成されている。かかる構成により、互いに対向する透光性電極層3t,5tの間に挟持された第2有機層4tは、透光性電極層3t,5t間の印加電圧に応じて第2発光帯域で発光して透光性電極層3t,5tを介して斯かる発光を放射する。このように、第2EL素子1tにおいて、第1基板2上に、透光性電極層3t、第2有機層4t及び透光性電極層5tとからなる第2発光帯域の第2発光部6tが形成されている。第1EL素子1の第1発光帯域と第2EL素子1tの第2発光帯域のスペクトル成分が重複していてもよいが、スペクトル分布が互いに異なるものとなるように、各発光部は、異なる発光材料を含む発光領域として形成されている。 In the second EL element 1t shown in FIG. 1, the second EL element 1t is formed on the translucent electrode layer 3t formed on the main surface on the opposite side of the first electrode layer 3 of the first substrate 2 of the first EL element 1, that is, the main surface on the light extraction side. Two organic layers 4t are formed, and a translucent electrode layer 5t is formed thereon. With this configuration, the second organic layer 4t sandwiched between the translucent electrode layers 3t and 5t facing each other emits light in the second emission band according to the applied voltage between the translucent electrode layers 3t and 5t. The emitted light is radiated through the translucent electrode layers 3t and 5t. As described above, in the second EL element 1t, the second light emitting unit 6t in the second light emission band including the translucent electrode layer 3t, the second organic layer 4t, and the translucent electrode layer 5t is formed on the first substrate 2. Is formed. Spectral components of the first light emission band of the first EL element 1 and the second light emission band of the second EL element 1t may overlap, but each light emitting portion has a different light emitting material so that the spectral distributions are different from each other. It is formed as a light emitting region containing
 第2EL素子1tにおいても、透光性電極層5tの成膜後に、第2発光部6tを大気中の酸素や水分から保護する目的で、ガラス板などの透光性の封止基板7tを用い、第1基板2と封止基板7tの間の第2発光部6tの周囲に接着剤などの第2封止部8tを配置することにより第2発光部6tが密閉保護されている。第2EL素子1tにおいても、不活性ガスによる気密封止が可能である。また、不活性ガスによる封止に代えて、液相に複数微粒子を分散させて光を拡散させるオイルなどの光拡散材を用いた液体封止も可能である。すなわち、図1に示す第1EL素子1及び第2EL素子1tの少なくとも一方において封止構造体の内部の空間Spの第1有機層4及び第2有機層4tの周りに光拡散材が充填されている構造であっても良い。 Also in the second EL element 1t, a transparent sealing substrate 7t such as a glass plate is used for the purpose of protecting the second light emitting unit 6t from oxygen and moisture in the atmosphere after the transparent electrode layer 5t is formed. The second light emitting unit 6t is hermetically protected by disposing the second sealing unit 8t such as an adhesive around the second light emitting unit 6t between the first substrate 2 and the sealing substrate 7t. The second EL element 1t can also be hermetically sealed with an inert gas. Further, instead of sealing with an inert gas, liquid sealing using a light diffusing material such as oil that diffuses light by dispersing a plurality of fine particles in a liquid phase is also possible. That is, at least one of the first EL element 1 and the second EL element 1t shown in FIG. 1 is filled with the light diffusing material around the first organic layer 4 and the second organic layer 4t in the space Sp inside the sealing structure. It may be a structure.
 図1に示すように、第1EL素子1及び第2EL素子1tはそれらの発光領域が重畳されるように、すなわち、第1EL素子1の第1有機層4と第2EL素子1tの第2有機層4tの一部又は全部が第1基板の厚さ方向において重なった重畳領域OVLを形成するように、両素子は一体となるように重ねられている。 As shown in FIG. 1, the first EL element 1 and the second EL element 1t are arranged such that their light emitting regions overlap, that is, the first organic layer 4 of the first EL element 1 and the second organic layer of the second EL element 1t. Both elements are overlapped so as to form an overlapping region OVL in which part or all of 4t overlaps in the thickness direction of the first substrate.
 図2に示されるように、第1EL素子1の有機層は、典型的には、第1電極層3が陽極で、第2電極層5が陰極とした場合、陽極から陰極まで、順に、正孔注入層4a、正孔輸送層4b、発光層4c、電子輸送層4d、及び電子注入層4eが積層されて構成される。なお、第1有機層4の積層構成において、基板以外の構成要素を逆の順に積層することも可能である。いずれにしても、第1有機層4は、これら積層構成に限定されることなく、例えば発光層4cと電子輸送層4dの間に正孔阻止層(図示せず)を追加するなど、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む積層構成も本発明に含まれる。第1有機層4は、上記積層構造から正孔輸送層4bを省いて構成しても、正孔注入層4aを省いて構成しても、正孔注入層4aと電子輸送層4dを省いて構成してもよい。また、第1EL素子1の第1有機層4と同様に、第2EL素子1tの第2有機層4tも各機能層を積層構成できる。有機層の電荷輸送層の材料は適材適所の公知材料から適宜選択され得る。 As shown in FIG. 2, the organic layer of the first EL element 1 typically has positive and negative electrodes in order from the anode to the cathode when the first electrode layer 3 is an anode and the second electrode layer 5 is a cathode. The hole injection layer 4a, the hole transport layer 4b, the light emitting layer 4c, the electron transport layer 4d, and the electron injection layer 4e are laminated. In addition, in the laminated structure of the 1st organic layer 4, it is also possible to laminate | stack components other than a board | substrate in reverse order. In any case, the first organic layer 4 is not limited to these laminated structures, and at least emits light, for example, by adding a hole blocking layer (not shown) between the light emitting layer 4c and the electron transport layer 4d. A layered structure including a charge transport layer that includes or can also be used as a layer is also included in the present invention. The first organic layer 4 may be configured by omitting the hole transport layer 4b, the hole injection layer 4a, or the hole injection layer 4a and the electron transport layer 4d from the stacked structure. It may be configured. Further, similarly to the first organic layer 4 of the first EL element 1, the second organic layer 4t of the second EL element 1t can also be configured by stacking each functional layer. The material for the charge transport layer of the organic layer can be appropriately selected from known materials in the right place.
 例えば、発光層4cの有機EL材料としては、例えば、蛍光材料や燐光材料などの任意の公知の材料が適用可能である。 For example, as the organic EL material of the light emitting layer 4c, for example, any known material such as a fluorescent material or a phosphorescent material can be applied.
 青色発光を与える蛍光材料としては、例えば、ナフタレン、ペリレン、ピレンなどが挙げられる。緑色発光を与える蛍光材料としては、例えば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。黄色発光を与える蛍光材料としては、例えば、ルブレン、ペリミドン誘導体などが挙げられる。赤色発光を与える蛍光材料としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体などが挙げられる。燐光材料としては、例えば、ルテニウム、ロジウム、パラジウムなどが挙げられる。燐光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(所謂、Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウム、などが挙げられる。 Examples of fluorescent materials that emit blue light include naphthalene, perylene, and pyrene. Examples of fluorescent materials that give green light emission include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum). Examples of fluorescent materials that give yellow light include rubrene and perimidone derivatives. Examples of fluorescent materials that give red light emission include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, and the like. Examples of the phosphorescent material include ruthenium, rhodium, and palladium. Specific examples of the phosphorescent material include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, and the like.
 図1に示す第1EL素子1の反射電極である第2電極層5の材料としては、例えばアルミニウムや銀などの金属が用いられる。なお、第2電極層5の反射作用を維持する厚さであれば膜厚は限定されない。 As the material of the second electrode layer 5 that is the reflective electrode of the first EL element 1 shown in FIG. 1, for example, a metal such as aluminum or silver is used. The thickness of the second electrode layer 5 is not limited as long as it maintains the reflective action of the second electrode layer 5.
 第1EL素子1の第1電極層3及び第2EL素子1tの透光性電極層3t,5tの各々は、光透過性を有する。これらには、例えばITO(Indium-tin-oxide)やFTO(fluorine-tin-oxide)が光透過性電極材料として用いられる。また、ZnO、ZnO-Al23(所謂、AZO)、In23-ZnO(所謂、IZO)、SnO2-Sb23(所謂、ATO)、RuO2などの酸化物系材料を用いることもできる。 Each of the first electrode layer 3 of the first EL element 1 and the translucent electrode layers 3t and 5t of the second EL element 1t have light transmissivity. For these, for example, ITO (Indium-tin-oxide) or FTO (fluorine-tin-oxide) is used as a light transmissive electrode material. Also, oxide materials such as ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 —ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2, etc. It can also be used.
 なお、電子を供給する陰極の材料としては、効率良く電子注入を行う為に仕事関数の低い金属が好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属又はそれらの合金が用いられる。 In addition, as a material for the cathode for supplying electrons, a metal having a low work function is preferable in order to perform electron injection efficiently, for example, a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof. Is used.
 第1電極層3及び透光性電極層3t,5tの各々は、106S/m以上の電気伝導率を有する電気伝導体からなり、可視光の最短波長の略360nm以下すなわち、超軟X線から紫外線の波長の範囲の膜厚を有する薄膜を、上記酸化物系材料の膜に積層して用いることができる。当該積層する薄膜の材料には、金属やグラファイト、グラフェン(graphene)などの炭素が含まれる。当該積層する薄膜としての膜厚20nmの銀薄膜は透過率50%程度を有する。例えば、同薄膜としての膜厚10nmのAl膜は透過率50%を有する。同薄膜としての膜厚20nmのMgAg合金膜は透過率50%を有する。透光性導電薄膜は、電気伝導体からなり且つ超軟X線から紫外線の波長の範囲の膜厚を有する薄膜の膜厚を有し且つ少なくとも50%の透過率又は膜厚20nm以下の膜厚を有する薄膜を採用することが好ましい。 Each of the first electrode layer 3 and the translucent electrode layers 3t and 5t is made of an electric conductor having an electric conductivity of 10 6 S / m or more, and is about 360 nm or less of the shortest wavelength of visible light, that is, ultra soft X A thin film having a film thickness in the range from the line to the ultraviolet wavelength can be used by being stacked on the oxide material film. The material of the laminated thin film includes carbon such as metal, graphite, and graphene. The 20 nm-thick silver thin film as the laminated thin film has a transmittance of about 50%. For example, an Al film having a thickness of 10 nm as the thin film has a transmittance of 50%. The 20 nm-thick MgAg alloy film as the thin film has a transmittance of 50%. The translucent conductive thin film has a thickness of a thin film made of an electrical conductor and having a thickness in the range of ultra-soft X-ray to ultraviolet wavelength, and has a transmittance of at least 50% or a thickness of 20 nm or less. It is preferable to employ a thin film having
 図1に示す第1EL素子1と第2EL素子1tに共通の第1基板2は、例えばガラスやポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの樹脂フィルムなどの高い光透過性材料からなる。第1発光部6及び第2発光部6tから発せられた光は第1EL素子1及び第2EL素子1tの内部で反射するが、第1基板2及び封止基板7tを介して外部へ出力される。 The first substrate 2 common to the first EL element 1 and the second EL element 1t shown in FIG. 1 is made of a highly light-transmitting material such as a resin film such as glass, polyester, polymethacrylate, polycarbonate, or polysulfone. The light emitted from the first light emitting unit 6 and the second light emitting unit 6t is reflected inside the first EL element 1 and the second EL element 1t, but is output to the outside through the first substrate 2 and the sealing substrate 7t. .
 出力光の取り出し効率を上げるために、図1に示す第2EL素子1tの外部面に、重畳領域OVLを覆うように、これを超える面積で光取り出しフィルム9が貼り付けられている。 In order to increase the output light extraction efficiency, a light extraction film 9 is attached to the outer surface of the second EL element 1t shown in FIG. 1 so as to cover the overlapping region OVL.
 図1に示す有機ELデバイスは、第1EL素子1と第2EL素子1tの2つが重ねられ一体化しているが、これに限定されず、第2EL素子1tの外部面と光取り出しフィルム9の間に1以上の透光性の第2EL素子1tを積層してもよい。すなわち、第2EL素子1tの各々には、互いに対向する2つの透光性電極層3t,5tの間に挟持され両透光性電極層間の印加電圧に応じて第1発光帯域と異なる第2発光帯域で発光して2つの透光性電極層3t,5tを介して第2発光帯域の発光を放射する透光性の第2有機層4tを含む第2発光部6tが形成されていればよい。 In the organic EL device shown in FIG. 1, the first EL element 1 and the second EL element 1t are overlapped and integrated. However, the present invention is not limited to this, and the space between the external surface of the second EL element 1t and the light extraction film 9 is not limited thereto. One or more translucent second EL elements 1t may be stacked. That is, each of the second EL elements 1t has a second light emission different from the first light emission band depending on the applied voltage between the two light transmissive electrode layers sandwiched between the two light transmissive electrode layers 3t and 5t facing each other. It is only necessary to form the second light-emitting portion 6t including the light-transmitting second organic layer 4t that emits light in the band and emits light in the second light-emitting band through the two light- transmissive electrode layers 3t and 5t. .
 <第2の実施例>
 以下、第2の実施例について第1の実施例と異なる部分について主に説明する。第1の実施例と同一の参照符号で示す要素は同様であるのでそれらの説明を省略する。
<Second embodiment>
In the following, the differences between the second embodiment and the first embodiment will be mainly described. Elements indicated by the same reference numerals as those in the first embodiment are the same, and thus description thereof is omitted.
 第1の実施例では、第1EL素子1の第1基板2の光取り出し側の主面を用いて第2EL素子1tを形成しているが、第2の実施例では、第1基板2を用いずに第2EL素子1tを個別に作製した後に、第1EL素子1と第2EL素子1tを張り合わせることで両素子の一体化を達成している。 In the first embodiment, the second EL element 1t is formed using the main surface of the first EL element 1 on the light extraction side of the first substrate 2, but in the second embodiment, the first substrate 2 is used. After the second EL element 1t is manufactured individually, the first EL element 1 and the second EL element 1t are bonded together to achieve the integration of both elements.
 図3に示すように、第2EL素子1tは、第1基板2と同等のガラス板などの透光性の第2基板2tを用い、第2基板2t上に形成された透光性電極層3t上に第2有機層4tが形成され、その上に透光性電極層5tが形成されている。封止基板7tと第2基板2tの間の第2発光部6tの周囲に接着剤などの第2封止部8tを配置することにより第2発光部6tが密閉保護されている。そして、第1EL素子1の第1基板2と第2EL素子1tの第2基板2tは透光性の光学接着剤層10を介して張り合わされている。別々に作製し第1EL素子1と第2EL素子1tを張り合わせる場合、透光性の光学接着剤層10に微細粒子などの拡散材を一様に混合分散し光取り出し効果を高めることができる。すなわち、第2基板2tを第1基板2との一体物と考えると、第1基板2は光拡散材を含有する透光性接着剤層10を有することが好ましい。 As shown in FIG. 3, the second EL element 1t uses a translucent second substrate 2t such as a glass plate equivalent to the first substrate 2, and a translucent electrode layer 3t formed on the second substrate 2t. A second organic layer 4t is formed thereon, and a translucent electrode layer 5t is formed thereon. The second light emitting unit 6t is hermetically protected by disposing the second sealing unit 8t such as an adhesive around the second light emitting unit 6t between the sealing substrate 7t and the second substrate 2t. The first substrate 2 of the first EL element 1 and the second substrate 2t of the second EL element 1t are bonded to each other with a light-transmitting optical adhesive layer 10 interposed therebetween. When the first EL element 1 and the second EL element 1t are separately manufactured and bonded together, a light diffusing material such as fine particles can be uniformly mixed and dispersed in the translucent optical adhesive layer 10 to enhance the light extraction effect. That is, when the second substrate 2t is considered as an integral body with the first substrate 2, it is preferable that the first substrate 2 has a light-transmitting adhesive layer 10 containing a light diffusing material.
 <第3の実施例>
 以下、第3の実施例について第2の実施例と異なる部分について主に説明する。第2の実施例と同一の参照符号で示す要素は同様であるのでそれらの説明を省略する。
<Third embodiment>
In the following, the difference between the third embodiment and the second embodiment will be mainly described. Elements indicated by the same reference numerals as those in the second embodiment are the same, and thus description thereof is omitted.
 第2の実施例では第1EL素子1及び第2EL素子の両発光領域の有機層が所定面積に一様に積層されているが、第3の実施例のデバイスでは少なくとも1つのEL素子の有機層が例えばストライプ状に並置された複数の発光層を含むように分割された発光領域として形成される。 In the second embodiment, the organic layers of the light emitting regions of both the first EL element 1 and the second EL element are uniformly laminated in a predetermined area. However, in the device of the third embodiment, the organic layer of at least one EL element. Is formed as a light emitting region divided so as to include a plurality of light emitting layers juxtaposed in a stripe shape, for example.
 図4に示すように、第1EL素子1の第1有機層4には青色発光の発光層を含む発光領域Bが全体に亘って形成され、第2EL素子1tの第2有機層4tでは、赤色及び緑色発光の発光層をそれぞれ含む発光領域R,Gが絶縁膜BKによって互いに隔てられた状態で並置されている。これら発光領域R,G,Bにより、デバイスの発光時には混色がなされ、例えば白色発光が達成できる。なお、絶縁膜BK及び透光性電極層3tの間には図示しないが電流供給の為のバスラインが絶縁膜BKに沿って形成されていてもよい。もちろん、第1EL素子1及び第2EL素子1tは、それぞれの発光領域毎に独立に駆動できるように、それぞれ駆動部に所定配線(図示せず)により電気的に接続されている。 As shown in FIG. 4, a light emitting region B including a blue light emitting layer is formed over the first organic layer 4 of the first EL element 1, and red light is formed in the second organic layer 4t of the second EL element 1t. The light emitting regions R and G each including a green light emitting layer and a green light emitting layer are juxtaposed in a state of being separated from each other by an insulating film BK. By these light emitting regions R, G, and B, color mixing is performed when the device emits light, and, for example, white light emission can be achieved. Although not shown, a bus line for supplying current may be formed along the insulating film BK between the insulating film BK and the translucent electrode layer 3t. Needless to say, the first EL element 1 and the second EL element 1t are electrically connected to the driving portions by predetermined wirings (not shown) so that they can be driven independently for each light emitting region.
 図4に示すように、第2EL素子1tのストライプ状発光層R,Gを区画する複数の絶縁膜BK(紙面法線方向に平行に伸長するバンク)を予め第2基板2t上に形成することで、インクジョット塗布法などを用いて、隣接バンクBKの間ごとへの所定有機材料の塗布を確実に達成することができる。 As shown in FIG. 4, a plurality of insulating films BK (banks extending in parallel with the normal direction to the paper surface) that partition the stripe-like light emitting layers R and G of the second EL element 1t are previously formed on the second substrate 2t. Thus, it is possible to reliably achieve application of the predetermined organic material between the adjacent banks BK using an ink jet application method or the like.
 なお、インクジョット塗布法などを用いて複数の発光層を含むように細分化された発光領域を形成する場合、必ずしも絶縁膜(バンク)を必要とせず、インクジョットの塗布液滴自体の所謂ピン止め現象を利用することができる。例えば、第2EL素子の製造工程において、ストライプ状に並置された透光性電極層3tの各々の上に個別に発光層をインクジョット塗布して形成し、図5に示すように、絶縁膜(バンク)なしのストライプ状発光領域R,Gを有する第2EL素子1tを含む有機ELデバイスを作製することもできる。 In the case of forming a light emitting region that is subdivided so as to include a plurality of light emitting layers by using an ink jet coating method or the like, an insulating film (bank) is not necessarily required, and so-called pins of the ink droplets applied to the ink jet are themselves. The stopping phenomenon can be used. For example, in the manufacturing process of the second EL element, a light emitting layer is individually formed by ink-jet coating on each of the translucent electrode layers 3t arranged in a stripe shape, and as shown in FIG. An organic EL device including the second EL element 1t having the stripe-shaped light emitting regions R and G without a bank) can also be manufactured.
 本実施例では、第2EL素子1tの第2有機層4tの発光領域を色毎にストライプ状に細分化しているが、分割された発光領域は第1EL素子1の第1有機層4にも形成することもできる。すなわち、第1EL素子1の第1有機層4及び第2EL素子1tの第2有機層4tの少なくとも1つはストライプ状に並置された複数の発光層を有するように構成できる。 In this embodiment, the light emitting region of the second organic layer 4t of the second EL element 1t is subdivided into stripes for each color, but the divided light emitting region is also formed in the first organic layer 4 of the first EL element 1. You can also That is, at least one of the first organic layer 4 of the first EL element 1 and the second organic layer 4t of the second EL element 1t can be configured to have a plurality of light emitting layers juxtaposed in a stripe shape.
 <第4の実施例>
 以下、第4の実施例について第2の実施例と異なる部分について主に説明する。第2の実施例と同一の参照符号で示す要素は同様であるのでそれらの説明を省略する。
<Fourth embodiment>
In the following, the difference between the fourth embodiment and the second embodiment will be mainly described. Elements indicated by the same reference numerals as those in the second embodiment are the same, and thus description thereof is omitted.
 第2の実施例の第1EL素子1においては、透光性の第1基板2上の第1有機層4の上に反射電極である第2電極層5(図3)が形成されているが、第4の実施例のデバイスでは、図6に示すように、反射電極に代えて、当該第1有機層4上に透光性電極層5tが形成され、Alなどの反射膜5Aが封止基板7などの封止構造体の第1発光部6に対向する内壁に重畳領域OVLを超える面積で形成される。これにより、第1有機層4の所定発光帯域の発光の一部が透光性電極層5tを介して放射されるが、反射膜5Aが第1有機層4からの光だけでなく第2発光部6tからの光もすべて第2基板2tの方へ反射する。このように、第1EL素子1の第2電極層の透光性電極層5tから離間した反射膜5Aを更に備えることにより、上記実施例と同様以上の光取り出し効果が得られる。 In the first EL element 1 of the second embodiment, the second electrode layer 5 (FIG. 3), which is a reflective electrode, is formed on the first organic layer 4 on the translucent first substrate 2. In the device of the fourth embodiment, as shown in FIG. 6, instead of the reflective electrode, a translucent electrode layer 5t is formed on the first organic layer 4, and the reflective film 5A such as Al is sealed. It is formed in the inner wall facing the 1st light emission part 6 of sealing structures, such as the board | substrate 7, with the area exceeding the superimposition area | region OVL. Thereby, a part of the light emission in the predetermined light emission band of the first organic layer 4 is radiated through the translucent electrode layer 5t, but the reflective film 5A not only emits the light from the first organic layer 4, but also the second light emission. All the light from the part 6t is also reflected toward the second substrate 2t. As described above, by further including the reflective film 5A spaced from the translucent electrode layer 5t of the second electrode layer of the first EL element 1, the same light extraction effect as that of the above embodiment can be obtained.
 <第5の実施例>
 以下、本発明の実施例として、例えば、有機ELデバイスを用いた発光装置を説明する。
<Fifth embodiment>
Hereinafter, as an example of the present invention, for example, a light emitting device using an organic EL device will be described.
 図7はかかる発光装置の概略構成を示すブロック図である。この発光装置は、制御部11に接続された駆動部12と該駆動部に接続された例えば図4に示す有機ELデバイスとを含む。さらに、発光装置は、制御部11に接続された操作部13を含む。 FIG. 7 is a block diagram showing a schematic configuration of such a light emitting device. This light emitting device includes a drive unit 12 connected to the control unit 11 and an organic EL device shown in FIG. 4 connected to the drive unit. Further, the light emitting device includes an operation unit 13 connected to the control unit 11.
 かかる有機ELデバイスは、図4に示すように第1EL素子1の青発光領域Bと、第2EL素子1tの赤発光領域R及び緑発光領域Gの組の複数と、を備えている。 Such an organic EL device includes a blue light emitting region B of the first EL element 1 and a plurality of sets of a red light emitting region R and a green light emitting region G of the second EL element 1t as shown in FIG.
 制御部11は輝度指定信号を含む各種信号を生成する処理手順などのプログラムコードを実行するCPU、ROM、RAM、内部タイマなどから構成されるマイクロコンピュータを備え、有機ELデバイスの各発光領域の輝度及び点灯/消灯の制御を司る点灯制御ルーティンを実行する。制御部11は各発光領域の駆動のための各色の輝度指定信号を生成し駆動部12へ供給する。 The control unit 11 includes a microcomputer including a CPU, a ROM, a RAM, an internal timer, and the like that execute program codes such as processing procedures for generating various signals including a luminance designation signal, and the luminance of each light emitting area of the organic EL device. And a lighting control routine for controlling lighting / extinguishing. The control unit 11 generates a luminance designation signal for each color for driving each light emitting area and supplies it to the driving unit 12.
 駆動部12は、それぞれ発光領域R,G,Bに接続されたRGB発光用の駆動回路である赤駆動部12R、緑駆動部12G及び青駆動部12Bを含む。制御部11から供給される輝度指定信号に応じて、赤駆動部12R、緑駆動部12G及び青駆動部12Bは発光領域R,G,Bへ個別に若しくはR群、G群、Bごとに駆動電力を供給し、それぞれ指定輝度で発光させる。駆動部12は、制御部11からの各色の輝度指定信号に応じて有機ELデバイスの各種点灯モードの発光領域R,G,Bの所定輝度の発光の混色により白色などの光源色(光色)を調色する。なお、光色の白色光は、その色度がCIE色度図のXYZ表色系で示される黒体放射軌跡上にある場合には「色温度」で、それから外れる場合には「相関色温度」で表される(単位:K(ケルビン))。 The driving unit 12 includes a red driving unit 12R, a green driving unit 12G, and a blue driving unit 12B, which are driving circuits for RGB light emission connected to the light emitting regions R, G, and B, respectively. In response to the luminance designation signal supplied from the control unit 11, the red driving unit 12R, the green driving unit 12G, and the blue driving unit 12B are driven individually to the light emitting regions R, G, and B or for each of the R group, the G group, and the B group. Power is supplied and each emits light at a specified brightness. The drive unit 12 is a light source color (light color) such as white by mixing light emission of a predetermined luminance in the light emitting regions R, G, and B in various lighting modes of the organic EL device according to the luminance designation signal of each color from the control unit 11. Toning. The light color white light is “color temperature” when the chromaticity is on the black body radiation locus indicated by the XYZ color system of the CIE chromaticity diagram, and “correlated color temperature” when the chromaticity is not within that range. (Unit: K (Kelvin)).
 操作部13は、開閉スイッチを含むリモコンや部屋内に取り付けられる有線モジュールなどの装置である。操作部13は、使用者による発光装置の点灯又は消灯指令などの操作指令や、通常照明や常夜灯などの点灯モードへ切り替え指令を制御部11へ供給する。 The operation unit 13 is a device such as a remote controller including an open / close switch or a wired module attached in the room. The operation unit 13 supplies the control unit 11 with an operation command such as a command for turning on or off the light emitting device by the user, and a command for switching to a lighting mode such as normal lighting or night light.
 次に、一例として、R,G,B有機EL素子群の発光混色により有機ELデバイス全体の通常点灯輝度が一定であっても白色光の色温度のみが変化する場合の有機ELデバイスの発光領域毎の輝度値の色温度輝度データを用いた場合の調色の一例を説明する。 Next, as an example, the light emitting region of the organic EL device in which only the color temperature of white light changes due to the light emission color mixture of the R, G, B organic EL element group even if the normal lighting brightness of the entire organic EL device is constant An example of toning when color temperature luminance data of each luminance value is used will be described.
 色温度輝度データは、発光領域R,G,Bをそれぞれの特定の輝度で発光させて有機ELデバイスの様々な色温度の白色光を混色で得るための赤駆動部12R、緑駆動部12G及び青駆動部12Bへ送る発光領域毎の輝度値(輝度指定信号)の表データである。 The color temperature luminance data includes a red driving unit 12R, a green driving unit 12G, and a green driving unit 12G for emitting white light of various color temperatures of the organic EL device by mixing the light emitting regions R, G, and B with a specific luminance. It is table | surface data of the luminance value (luminance designation | designated signal) for every light emission area | region sent to the blue drive part 12B.
 図8(A)は、第1EL素子1の青発光領域Bと、第2EL素子1tの赤発光領域R及び緑発光領域Gの三原色の発光領域のスペクトル強度分布の例を示す。図8(B)は当該三原色の発光領域群からなる有機ELデバイス全体の発光混色おける白色光の輝度一定の条件で制御した時の白色光の色温度と発光領域の個別輝度R(k),G(k),B(k)の変化との関係の例を示す。使用される三原色(RGB)の発光領域R,G,Bが図8(A)に示すスペクトル強度分布(各スペクトル強度の最大値を1に正規化して計算した例)を採用した場合、当該デバイス全体の白色光の輝度を一定として発光させるためには図8(B)に示すように白色光の色温度(1500K~5000K)範囲に対して発光領域R(k),G(k),B(k)の個別輝度の組が必要となる。 FIG. 8A shows an example of the spectral intensity distribution of the light emission regions of the three primary colors of the blue light emission region B of the first EL element 1 and the red light emission region R and the green light emission region G of the second EL element 1t. FIG. 8B shows the color temperature of the white light and the individual luminance R (k) of the light emitting region when the white light luminance is controlled under a constant condition in the light emission color mixture of the entire organic EL device composed of the light emitting region group of the three primary colors. An example of the relationship with changes in G (k) and B (k) is shown. When the three primary color (RGB) light emitting regions R, G, and B used adopt the spectral intensity distribution shown in FIG. 8A (an example calculated by normalizing the maximum value of each spectral intensity to 1), the device In order to emit light with constant white light brightness, the light emitting regions R (k), G (k), B for the color temperature (1500K to 5000K) range of white light as shown in FIG. A set of individual luminances (k) is required.
 図8(B)の発光領域R,G,Bの色温度輝度曲線R(k),G(k),B(k)から明らかなように、例えば2000Kの白色光を得るためには発光領域R,G,Bの個別輝度出力が7000cd/m2、3000cd/m2、10cd/m2が必要であり、また、4500Kの白色光を得るためには3500cd/m2、5000cd/m2、2000cd/m2が必要であることを示す。よって、図8(B)の発光領域R,G,Bの色温度輝度曲線R(k),G(k),B(k)に基づいて、有機ELデバイス全体の白色光の色温度を低い方から高い方へ例えば100Kごとに順に複数の色温度段階に分けて、色温度100Kごとの発光領域R,G,B毎の輝度指定信号(色温度輝度曲線R(k),G(k),B(k)との交点における輝度値)の色温度輝度データを予め作成する。 As is clear from the color temperature luminance curves R (k), G (k), and B (k) of the light emitting regions R, G, and B in FIG. 8B, for example, to obtain white light of 2000K, the light emitting region. R, G, separate luminance output of B is required 7000cd / m 2, 3000cd / m 2, 10cd / m 2, in order to obtain white light 4500K is 3500cd / m 2, 5000cd / m 2, Indicates that 2000 cd / m 2 is required. Therefore, based on the color temperature luminance curves R (k), G (k), and B (k) of the light emitting regions R, G, and B in FIG. From one to the other, for example, every 100K, it is divided into a plurality of color temperature steps in order, and luminance designation signals (color temperature luminance curves R (k), G (k) for each light emitting region R, G, B for each color temperature 100K. , B (k) and the luminance value at the intersection point) are prepared in advance.
 制御部11は、取り込んだ色温度輝度データに基づいて、色温度段階の低い方から高い方へ、使用者の操作タイミング或いは発光領域の経年変化の補償の所定タイミングで発光領域R,G,B毎の輝度値を輝度指定信号R(t),G(t),B(t)として赤駆動部12R、緑駆動部12G及び青駆動部12Bのそれぞれへ送る。このように、制御部11は、所望の色温度の白色光を規定する輝度指定信号R(t),G(t),B(t)をそれぞれ赤駆動部12R、緑駆動部12G及び青駆動部12Bへ送り、発光領域R,G,Bの輝度を制御して、有機ELデバイスの光色を調色する。すなわち、制御部11は、有機ELデバイスの各発光領域の発光強度(輝度)を個別に調整することにより、有機ELデバイスの光色、色温度を制御して、例えば、使用者の操作に応じて電球色、昼光色などの白色光を発光させたり、ROMなどの記憶されている発光領域の経年変化の補償の所定タイミングで白色光を補正することができる。 Based on the acquired color temperature luminance data, the control unit 11 changes the light emission regions R, G, and B at a predetermined timing for compensating for the user's operation timing or the secular change of the light emission region from the lower one to the higher one of the color temperature steps. The luminance value for each is sent to the red drive unit 12R, the green drive unit 12G, and the blue drive unit 12B as luminance designation signals R (t), G (t), and B (t). As described above, the control unit 11 transmits the luminance designation signals R (t), G (t), and B (t) that define white light having a desired color temperature to the red drive unit 12R, the green drive unit 12G, and the blue drive, respectively. This is sent to the unit 12B, and the luminance of the light emitting regions R, G, B is controlled to adjust the light color of the organic EL device. That is, the control unit 11 controls the light color and color temperature of the organic EL device by individually adjusting the light emission intensity (luminance) of each light emitting region of the organic EL device, for example, according to the operation of the user. Thus, white light such as a light bulb color and daylight color can be emitted, or white light can be corrected at a predetermined timing for compensating for secular change in a light emitting area stored in a ROM or the like.
 以上の構成の有機ELデバイスによれば、例えば、2つ全面成膜(ベタ)の有機ELパネルを張り合わせることで、パネル毎に駆動したら2色階調が可能であり、RG発光色とB発光色、RG/B積層の白色(W)発光色とB発光色を組み合わせることで、ウォームホワイトからクールホワイトの調色が可能となる。また、R,G,B発光色の3枚の有機ELパネルを重ねられれば、並置ストライプと同等の調色が可能となる。さらに、W発光色パネルを2枚張り合わせ、直列に駆動させれば、タンデム型と同様に電圧は向上し、効率が向上する。光取り出しを最適化すれば、原理的に2倍の駆動電圧で2倍の効率となる。 According to the organic EL device having the above-described configuration, for example, two color gradations can be obtained by driving two panels by sticking together two organic EL panels that are formed on the entire surface (solid). By combining the emission color, white (W) emission color of the RG / B stack and the B emission color, it is possible to adjust the warm white to cool white. In addition, if three organic EL panels of R, G, and B emission colors are stacked, color matching equivalent to the juxtaposed stripe is possible. Furthermore, if two W light emitting color panels are bonded together and driven in series, the voltage is improved and the efficiency is improved as in the tandem type. If the light extraction is optimized, in principle, the efficiency is doubled at twice the driving voltage.
 透光性の有機ELパネルとボトムエミッション型の有機ELパネルをそれぞれ塗布方式で形成し、両有機ELパネルを貼り合わせて有機ELデバイスを作製した。 A translucent organic EL panel and a bottom emission type organic EL panel were each formed by a coating method, and both organic EL panels were bonded together to produce an organic EL device.
 まず、第1工程で、ガラス基板(板厚:0.7mm)上にて、規定された範囲内に陽極(ITO:膜厚112nm)がパターン成膜され、フォトリソグラフィプロセスにより、それらの上にバスライン(AlNd:膜厚200nm)がストライプ状(不連続)にパターン成膜された。 First, in the first step, on the glass substrate (plate thickness: 0.7 mm), an anode (ITO: film thickness 112 nm) is formed into a pattern within a specified range, and a photolithography process is performed on them. A bus line (AlNd: film thickness of 200 nm) was formed into a pattern in a stripe shape (discontinuous).
 次に、第2工程で、フォトリソグラフィプロセスにより、ガラス基板上のAlNdバスラインを覆いITO陽極を露出させるように、絶縁膜がパターン成膜された。絶縁膜は発光エリアを規定する。 Next, in the second step, an insulating film was formed in a pattern by a photolithography process so as to cover the AlNd bus line on the glass substrate and expose the ITO anode. The insulating film defines a light emitting area.
 次に、第3工程で、紫外線/オゾンにてITO陽極表面を処理した後、インクジェット装置にて固形分濃度1wt%のPEDOT:PSS(Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate))を塗布し、0.1Pa~50Paにて2分間真空乾燥、そして、1時間、230℃で焼成して正孔注入層を形成した。 Next, in the third step, the surface of the ITO anode is treated with ultraviolet light / ozone, and then PEDOT: PSS (Poly (3,4-ethylenedioxythiophene) (poly (styrenesulfonate)) with a solid content concentration of 1 wt% is applied with an inkjet device. Then, it was vacuum-dried at 0.1 Pa to 50 Pa for 2 minutes and fired at 230 ° C. for 1 hour to form a hole injection layer.
 次に、第4工程で、焼成したPEDOT:PSS正孔注入層上にキシレン溶媒中の固形分濃度2wt%の赤ドーパントの1wt%-Hex-Ir(phq)3(Tris(2-phenylquinoline)iridium(III))及び緑ドーパントの9%-Ir(mppy)3(Tris(3-methyl-2-phenylpyridine)iridium(III))を含むホストのDCBP(4,4'-Bis(N-carbazolyl)-1,1'-biphenyl)のインクを塗布し0.1Pa~50Paにて2分間真空乾燥、そして、10分、130℃で焼成して赤緑発光層を形成した。 Next, in the fourth step, 1 wt% -Hex-Ir (phq) 3 (Tris (2-phenylquinoline) iridium of a red dopant having a solid content concentration of 2 wt% in a xylene solvent on the fired PEDOT: PSS hole injection layer. DCIII (4,4'-Bis (N-carbazolyl)-containing (III)) and 9% of the green dopant-Ir (mppy) 3 (Tris (3-methyl-2-phenylpyridine) iridium (III)) 1,1′-biphenyl) ink was applied, vacuum dried at 0.1 Pa to 50 Pa for 2 minutes, and fired at 130 ° C. for 10 minutes to form a red-green light emitting layer.
 次に、第5工程で、焼成した膜厚40nmの赤緑発光層上に、真空蒸着にて正孔阻止層としてBCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)を厚さ15nmの膜厚になるように成膜した。さらに、真空蒸着にて、正孔阻止層上に電子輸送層である厚さ30nmのAlq3(tris(8-hydroxyquinolite)aluminum)を成膜し、次に電子注入層を厚さ1nmのLiFを成膜し、最後に厚さ10nmのAg陰極を成膜し、液体封止して透光性の有機ELパネルを作製した。なお、半透明陰極はAgやAlの材質で厚さ20nm以下とすることが好ましい。さらに、半透明電極は酸化させると抵抗が増すため、酸化防止膜を設けることが好ましい。 Next, in the fifth step, BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) is used as a hole blocking layer by vacuum deposition on the fired red and green light emitting layer having a thickness of 40 nm. Was formed to a thickness of 15 nm. Furthermore, 30 nm thick Alq3 (tris (8-hydroxyquinolite) aluminum), which is an electron transport layer, is formed on the hole blocking layer by vacuum deposition, and then LiF with a thickness of 1 nm is formed on the electron injection layer. Finally, an Ag cathode having a thickness of 10 nm was formed, and liquid-sealed to produce a light-transmitting organic EL panel. The translucent cathode is preferably made of Ag or Al and has a thickness of 20 nm or less. Furthermore, since the resistance increases when the translucent electrode is oxidized, it is preferable to provide an antioxidant film.
 次に、ボトムエミッション型の有機ELパネルを以下のように作製した。 Next, a bottom emission type organic EL panel was produced as follows.
 まず、上記の第1~第3工程を同様に実行し、正孔注入層までを有するガラス基板を用意した。 First, the above first to third steps were similarly performed to prepare a glass substrate having a hole injection layer.
 次に、焼成したPEDOT:PSSの正孔注入層上にキシレン溶媒中の固形分濃度2wt%の青ドーパントの5%-DPAVBi(4,4'-Bis[4-(di-p-tolylamino)styryl]biphenyl)を含むホストのPAND(2-Phenyl-9,10-di(naphthalen-2-yl)-anthracene)のインクを塗布し0.1Pa~50Paにて2分間真空乾燥、そして、10分、130℃で焼成して青発光層を形成した。 Next, 5% -DPAVBi (4,4′-Bis [4- (di-p-tolylamino) styryl) of blue dopant having a solid content concentration of 2 wt% in a xylene solvent on the hole injection layer of the baked PEDOT: PSS ], a host PAND (2-Phenyl-9,10-di (naphthalen-2-yl) -anthracene) ink containing biphenyl) was applied, vacuum dried at 0.1 Pa-50 Pa for 2 minutes, and 10 minutes, A blue light emitting layer was formed by baking at 130 ° C.
 次に、上記の第5工程を同様に実行し、焼成した青発光層上に真空蒸着にて正孔阻止層としてBCPを厚さ15nmの膜厚になるように成膜した。さらに、真空蒸着にて、電子輸送層である厚さ30nmのAlq3を成膜し、次に電子注入層を厚さ1nmのLiFを成膜し、最後に厚さ80nmのAg陰極を成膜し、液体封止してボトムエミッション型の有機ELパネルを作製した。 Next, the fifth step was carried out in the same manner, and a BCP film having a thickness of 15 nm was formed as a hole blocking layer on the fired blue light-emitting layer by vacuum deposition. Further, an Alq3 film having a thickness of 30 nm, which is an electron transport layer, is formed by vacuum vapor deposition. Next, LiF film having a thickness of 1 nm is formed as an electron injection layer, and finally an Ag cathode having a thickness of 80 nm is formed. A bottom emission type organic EL panel was produced by liquid sealing.
 次に、作製した2つの有機ELパネルのガラス基板側同士を透光性の有機ELパネルを拡散材が入った透光性接着剤を用いて張り合わせた。なお、透光性の有機ELパネルからの光損失が少ないように、張り合わせる際は透光性接着剤の層の厚さも含めて1mm以下であり、更に、両者のガラス基板も厚さ1mm以下で材質も透明で薄く光透過性に優れあることが好ましい。これにより、光の損失は若干あるが調色は可能であった。 Next, the glass substrate sides of the two produced organic EL panels were bonded to each other using a light-transmitting organic EL panel and a light-transmitting adhesive containing a diffusing material. In order to reduce light loss from the light-transmitting organic EL panel, the thickness of the light-transmitting adhesive layer including the thickness of the light-transmitting adhesive layer is 1 mm or less, and both glass substrates are 1 mm or less in thickness. The material is preferably transparent, thin and excellent in light transmission. As a result, the toning was possible with a slight loss of light.
 作製したこれらの封止工程では、半透明陰極を有する透光性の有機ELパネルは反射電極を有するボトムエミッション型の有機ELパネルの光を透過させるため、光を拡散させるオイルを用いるような構造とした。 In these produced sealing steps, a translucent organic EL panel having a translucent cathode transmits light of a bottom emission type organic EL panel having a reflective electrode, and therefore a structure that uses oil that diffuses light is used. It was.
 作製された有機ELデバイスの透光性の有機ELパネル側に光取り出しフィルム(きもと社製の商品名STE)を貼り付け光取り出し効率を改善させた。光取り出しフィルムはマイクロレンズ、ピラミッド構造など多様であるので、いずれか1つに限定されるものではない。 A light extraction film (trade name STE manufactured by Kimoto Co., Ltd.) was attached to the translucent organic EL panel side of the produced organic EL device to improve the light extraction efficiency. Since the light extraction film has a variety of microlenses, pyramid structures, and the like, it is not limited to any one.
 1 第1EL素子
 1t 第2EL素子
 2 第1基板
 2t 第2基板
 3 第1電極層
 3t 透光性電極層
 4 第1有機層
 4a 正孔注入層
 4b 正孔輸送層
 4c 発光層
 4d 電子輸送層
 4e 電子注入層
 4t 第2有機層
 5 第2電極層
 5A 反射膜
 5t 透光性電極層
 6 発光部
 7,7t 封止基板
 8 封止部
 11 制御部
 12 駆動部
 13 操作部
 G,B,R 発光領域
 BK 絶縁膜
DESCRIPTION OF SYMBOLS 1 1st EL element 1t 2nd EL element 2 1st board | substrate 2t 2nd board | substrate 3 1st electrode layer 3t Translucent electrode layer 4 1st organic layer 4a Hole injection layer 4b Hole transport layer 4c Light emitting layer 4d Electron transport layer 4e Electron injection layer 4t Second organic layer 5 Second electrode layer 5A Reflective film 5t Translucent electrode layer 6 Light emitting part 7, 7t Sealing substrate 8 Sealing part 11 Control part 12 Driving part 13 Operation part G, B, R Light emission Region BK Insulating film

Claims (9)

  1.  透光性の第1基板上に形成された第1電極層と前記第1電極層に対向する前記第2電極層とこれら電極層の間に挟持された第1有機層とを含み、前記第1有機層が前記第1及び第2電極層間の印加電圧に応じて第1発光帯域で発光して前記第1電極層及び前記第1基板を介して前記第1発光帯域の発光を放射する第1EL素子と、
     前記第1基板の前記第1電極層の反対側の主面上に形成された透光性の第2EL素子と、を有し、
     前記第2EL素子は、互いに対向する2つの透光性電極層とこれら透光性電極層の間に挟持され前記2つの透光性電極層間の印加電圧に応じて前記第1発光帯域と異なる第2発光帯域で発光して前記2つの透光性電極層を介して前記第2発光帯域の発光を放射する透光性の第2有機層とを含み、前記第1有機層及び前記第2有機層の一部又は全部が前記第1基板の厚さ方向において重なった重畳領域を形成するように配置されたことを特徴とする有機ELデバイス。
    A first electrode layer formed on a light-transmitting first substrate, the second electrode layer facing the first electrode layer, and a first organic layer sandwiched between the electrode layers, A first organic layer emits light in a first light emission band according to an applied voltage between the first and second electrode layers, and emits light in the first light emission band through the first electrode layer and the first substrate. 1 EL element;
    A translucent second EL element formed on the main surface of the first substrate opposite to the first electrode layer,
    The second EL element is sandwiched between two translucent electrode layers facing each other and the translucent electrode layer, and is different from the first light-emitting band according to the applied voltage between the two translucent electrode layers. A light-transmitting second organic layer that emits light in two light-emitting bands and emits light emitted in the second light-emitting band through the two light-transmitting electrode layers, and the first organic layer and the second organic layer An organic EL device, wherein a part or all of the layers are arranged so as to form an overlapping region in which the layers overlap in the thickness direction of the first substrate.
  2.  前記第1基板は光拡散材を含有する透光性の接着剤層を有することを特徴とする請求項1に記載の有機ELデバイス。 The organic EL device according to claim 1, wherein the first substrate has a light-transmitting adhesive layer containing a light diffusing material.
  3.  前記第1EL素子の第1有機層及び前記第2EL素子の第2有機層の少なくとも1つはストライプ状に並置された複数の発光層を有することを特徴とする請求項2に記載の有機ELデバイス。 3. The organic EL device according to claim 2, wherein at least one of the first organic layer of the first EL element and the second organic layer of the second EL element has a plurality of light emitting layers juxtaposed in a stripe shape. .
  4.  前記第1EL素子及び前記第2EL素子は、第1有機層及び第2有機層を保護する封止構造体を有することを特徴とする請求項2に記載の有機ELデバイス。 The organic EL device according to claim 2, wherein the first EL element and the second EL element have a sealing structure for protecting the first organic layer and the second organic layer.
  5.  前記封止構造体の内部の前記第1有機層及び第2有機層の周りに光拡散材が充填されていることを特徴とする請求項4に記載の有機ELデバイス。 The organic EL device according to claim 4, wherein a light diffusing material is filled around the first organic layer and the second organic layer inside the sealing structure.
  6.  前記2つの透光性電極層の少なくとも一方は20nm以下の厚さを有するAg、Al又はこれら金属を含む合金からなる薄膜を含むことを特徴とする請求項5に記載の有機ELデバイス。 6. The organic EL device according to claim 5, wherein at least one of the two translucent electrode layers includes a thin film made of Ag, Al or an alloy containing these metals having a thickness of 20 nm or less.
  7.  前記第2EL素子の外部面に貼り付けられた光取り出しフィルムを有することを特徴とする請求項2に記載の有機ELデバイス。 The organic EL device according to claim 2, further comprising a light extraction film attached to an external surface of the second EL element.
  8.  前記第1EL素子の前記第2電極層は反射電極層であることを特徴とする請求項2に記載の有機ELデバイス。 The organic EL device according to claim 2, wherein the second electrode layer of the first EL element is a reflective electrode layer.
  9.  前記第1EL素子の前記第2電極層から離間した反射膜を更に有し、前記第1EL素子の前記第2電極層が透光性電極層であることを特徴とする請求項2に記載の有機ELデバイス。 The organic material according to claim 2, further comprising a reflective film spaced apart from the second electrode layer of the first EL element, wherein the second electrode layer of the first EL element is a translucent electrode layer. EL device.
PCT/JP2012/061665 2012-05-07 2012-05-07 Organic electroluminescent device WO2013168212A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061665 WO2013168212A1 (en) 2012-05-07 2012-05-07 Organic electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061665 WO2013168212A1 (en) 2012-05-07 2012-05-07 Organic electroluminescent device

Publications (1)

Publication Number Publication Date
WO2013168212A1 true WO2013168212A1 (en) 2013-11-14

Family

ID=49550297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061665 WO2013168212A1 (en) 2012-05-07 2012-05-07 Organic electroluminescent device

Country Status (1)

Country Link
WO (1) WO2013168212A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118075A (en) * 1997-06-16 1999-01-12 Casio Comput Co Ltd Electroluminescent element
JP2006155940A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Organic electroluminescent light source device and lighting system having light adjustable and color adjustable characteristics
JP2006302626A (en) * 2005-04-19 2006-11-02 Semiconductor Energy Lab Co Ltd Display device
JP2007115645A (en) * 2005-09-22 2007-05-10 Matsushita Electric Works Ltd Organic light emitting element and its manufacturing method
JP2007525706A (en) * 2004-02-09 2007-09-06 株式会社豊田自動織機 Transflective display with full color OLED backlight
WO2009019775A1 (en) * 2007-08-08 2009-02-12 Pioneer Corporation Surface light-emitting device
JP2009076390A (en) * 2007-09-21 2009-04-09 Panasonic Electric Works Co Ltd Surface light-emitting type lighting system
JP2009526360A (en) * 2006-02-10 2009-07-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118075A (en) * 1997-06-16 1999-01-12 Casio Comput Co Ltd Electroluminescent element
JP2007525706A (en) * 2004-02-09 2007-09-06 株式会社豊田自動織機 Transflective display with full color OLED backlight
JP2006155940A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Organic electroluminescent light source device and lighting system having light adjustable and color adjustable characteristics
JP2006302626A (en) * 2005-04-19 2006-11-02 Semiconductor Energy Lab Co Ltd Display device
JP2007115645A (en) * 2005-09-22 2007-05-10 Matsushita Electric Works Ltd Organic light emitting element and its manufacturing method
JP2009526360A (en) * 2006-02-10 2009-07-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
WO2009019775A1 (en) * 2007-08-08 2009-02-12 Pioneer Corporation Surface light-emitting device
JP2009076390A (en) * 2007-09-21 2009-04-09 Panasonic Electric Works Co Ltd Surface light-emitting type lighting system

Similar Documents

Publication Publication Date Title
TWI448194B (en) Organic light emitting device, display unit including the same, and illuminating device including the same
JP4408382B2 (en) Organic light emitting display
JP4895742B2 (en) White organic electroluminescence device
US20080100209A1 (en) Organic Electroluminescent Display Device
US11108015B2 (en) Organic electroluminescent illumination panel, manufacturing method thereof, and organic electroluminescent illumination device with spacers protruding from a second electrode
US9111882B1 (en) Organic light emitting device and fabricating method thereof
WO2015090010A1 (en) Organic electroluminescent display panel and manufacturing method therefor, and display device
KR101815247B1 (en) Electroluminescent device
KR20110031960A (en) Polychromatic electronic display device with electroluminescent screen
JP2009252458A (en) Organic electroluminescent element
KR101877195B1 (en) Method for driving organic electroluminescent element
EP1538668B1 (en) Organic electroluminescence device
JP2011035087A (en) Organic el panel
KR20160061363A (en) Optoelectronic component device and method for operating an optoelectronic component
US10749127B2 (en) White organic light-emitting diode device
WO2013168215A1 (en) Organic electroluminescence device
WO2013168228A1 (en) Organic electroluminescence device
JPH11312584A (en) Organic el element
JP2016006744A (en) Luminaire
KR101844327B1 (en) Broad wavelength tunable tandem polymer light-emitting device and thereof manufacturing method
JPH11312585A (en) Organic el element
WO2013168212A1 (en) Organic electroluminescent device
WO2013168210A1 (en) Organic electroluminescence device
WO2011052209A1 (en) Electro-optic device and method for manufacturing same
KR100760901B1 (en) The White Organic Light Emitting Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP