WO2013166652A1 - 一种视力保健装置 - Google Patents

一种视力保健装置 Download PDF

Info

Publication number
WO2013166652A1
WO2013166652A1 PCT/CN2012/075175 CN2012075175W WO2013166652A1 WO 2013166652 A1 WO2013166652 A1 WO 2013166652A1 CN 2012075175 W CN2012075175 W CN 2012075175W WO 2013166652 A1 WO2013166652 A1 WO 2013166652A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
amplitude
light source
lens
source device
Prior art date
Application number
PCT/CN2012/075175
Other languages
English (en)
French (fr)
Inventor
王学敏
Original Assignee
深圳市爱派赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱派赛科技有限公司 filed Critical 深圳市爱派赛科技有限公司
Priority to PCT/CN2012/075175 priority Critical patent/WO2013166652A1/zh
Priority to CN2012800009490A priority patent/CN102905668A/zh
Publication of WO2013166652A1 publication Critical patent/WO2013166652A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H5/00Exercisers for the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand

Definitions

  • the present invention relates to a health care device, and more particularly to a vision care device for maintaining and restoring the amplitude of eye adjustment.
  • vision training equipment and vision development equipment developed according to the Bates Vision Training Method are also mainly for visual function expansion training for the intraocular and extraocular muscle strength and eye movement, so the training of vision is not comprehensive.
  • the technical problem to be solved by the present invention is: to fully restore the adjustment ability of the eye adjustment system, thereby achieving the purpose of root vision correction.
  • the eye regulation system adjusts the lens by changing the shape of the lens by changing the shape of the lens to change the curvature of the anterior surface of the lens to change the lens diopter. Therefore, if the elasticity of the lens deteriorates or disappears, The role of the ciliary muscle still does not solve the problem. Therefore, the technical solution of the present invention is: A vision health care device comprising a light source device and a control unit connected thereto, wherein the light source device is illuminated by the natural vibration frequency of the lens under the action of the control unit.
  • the light source device is a dual light source device, and the control unit is a control IC, a PLC or a control circuit.
  • the vision care device further includes a frequency setting unit coupled to the control unit for setting a blinking frequency of the light source device.
  • the blinking time of the light source device in one cycle is 1:3.
  • the light-emitting time ratio of the light source device in one cycle is 1:9.
  • the vision care device also includes a frequency test unit for testing the natural vibration frequency of the lens.
  • the natural vibration frequency is determined by the following steps:
  • the light source is flashed at the initial frequency of fl, and the vibration frequency and amplitude of the lens are measured; then, the blinking frequency of the light source is adjusted fd every At time, and the vibration frequency and amplitude of the lens are measured, and T is repeated; Then, the measured values of the average amplitudes in each time period are connected to obtain a graph, and the peak value of the graph is calculated; the vibration frequency corresponding to the amplitude closest to the peak of the graph is the natural vibration frequency of the lens; , 0.2 Hz ⁇ fl ⁇ 0.7 Hz, 0.01 Hz fd 0.05 Hz, 10 s ⁇ At ⁇ 120 s, 5 T 15 .
  • the invention also provides a test method for the natural vibration frequency of the lens, which comprises the following steps: ⁇ , causing the light source device to flash at the initial frequency of fl, and simultaneously measuring the vibration frequency and amplitude of the lens; B. At time between intervals Adjusting the blinking frequency of the light source device by fd, and measuring the vibration frequency and amplitude of the lens, and repeating T times;
  • the vibration frequency corresponding to the peak of the amplitude is the natural vibration frequency of the lens
  • the invention further provides a method for testing the natural vibration frequency of a lens, which comprises the following steps:
  • the present invention still further provides a method for testing a natural vibration frequency of a lens, which is characterized by the following steps:
  • the lens resonates under the action of the ciliary muscle to obtain effective forging, delaying the speed of aging, thereby recovering or improving its refractive power.
  • the ciliary muscle is also well trained in this process, so that a good adjustment range can be achieved, so that all aspects of the entire vision system are fully improved, and the vision correction problem is fundamentally solved.
  • the present invention uses a squeezing light source and a vibration sensor for measuring the vibration frequency and amplitude of the lens to measure the natural vibration frequency of the lens, which obtains the lens by providing a squeezing light source, and obtains the lens by adjusting the blinking frequency.
  • the source of the resonance flashes at a frequency to determine the natural vibration frequency of the lens.
  • FIG. 1 is a schematic view showing the structure of a vision care device of a preferred embodiment.
  • FIG 2 is a flashing frequency of the frequency f_ S ynt On y0, the test results 11 - amplitude FIG.
  • the parallel rays are focused by a lens and the point is the focal length from the center of the lens.
  • Diopter or degree of power is the unit that measures the refractive power of a lens.
  • the length of the focal length f marks the size of the refractive power. The shorter the focal length, the greater the refractive power. The reason for myopia is the refractive of the eye. The ability is too great, and people with farsightedness are too weak.
  • the reciprocal of the focal length is called the lens power, or the diopter, expressed in ⁇ , ie: the degree of convex lens (such as: hyperopic lens) is positive (+), and the degree of concave lens (such as: myopia lens) is negative (-).
  • the unit of diopter is abbreviated as D, and the unit of the International System of Units is m-l.
  • glasses often use degrees to express diopter. Multiplying the value of diopter D by 100 is the degree.
  • Refraction of the eye The external light is refracted by the refractive system of the eye, forming a sharply reduced inverted image on the retina. This physiological function is called refraction of the eye.
  • the refractive medium of the eye includes the cornea, aqueous humor, lens and vitreous.
  • the total refractive power of the eyeball is between 58 and 70D.
  • the cornea and lens are the most important refractive components.
  • the refractive power of the cornea is about 43D, and the lens is about 19D.
  • the refractive state of the eye includes frontal vision and refractive error (non-frontal).
  • refractive error non-frontal
  • the refractive state of the eye includes frontal vision and refractive error (non-frontal).
  • frontal vision When the eye is adjusted to rest, the parallel rays of the outside are refraction through the eye.
  • the system is just focused on the fovea of the retina. This refraction state is called frontal vision. If it cannot be focused in the fovea of the retina, it is called refractive error, including myopia, hyperopia and astigmatism.
  • Total refractive power of the eyeball (under unregulated state) Set to 60D.
  • the adjustment force is also in units of diopter.
  • Mechanism of regulation The mechanism by which regulation is generally considered to be:
  • the ciliary muscle When looking at a distant target, the ciliary muscle is in a relaxed state, the ciliary muscle maintains a certain tension in the lens suspensory ligament, and the lens is relatively flat in shape under the traction of the suspensory ligament.
  • the annular ciliary muscle contracts, the ring formed by the ciliary crown shrinks, the lens suspensory ligament relaxes, and the lens becomes convex due to elasticity.
  • the adjustment is mainly caused by an increase in the curvature of the anterior surface of the lens to increase the refractive power of the eye.
  • the maximum accommodation power that the eye can produce is called the adjustment amplitude.
  • the adjustment range is closely related to age, and the adolescents have strong adjustment ability. As they grow older, the adjustment power will gradually decrease and the presbyopia will appear.
  • Hoffstetter is often used to adjust the amplitude.
  • Average adjustment range 18-0.3 X age
  • Nearest point The closest point that can be seen when the maximum adjustment is made.
  • Adjustment range Distance between the far point and the near point.
  • Adjustment range The maximum adjustment force that the eye can produce.
  • Emmetropia In the state of eyeball relaxation, parallel rays outside 5m are refracted by the refractive system of the eye, and the focus falls on the retina.
  • Refractive error When the eyeball is in a relaxed state, parallel rays outside 5m are refracted by the refractive system of the eye and cannot be focused on the retina. Refractive errors include myopia, hyperopia, and astigmatism.
  • Pseudo myopia The regulation of sputum caused by excessive contraction of the ciliary muscle, the state of myopia can be improved after the sputum is removed. Refractive component classification
  • Refractive myopia mainly due to excessive curvature of the cornea or lens, the refractive power is outside the normal range, and the axial length is in the normal range.
  • Axial myopia The length of the axial axis is outside the normal range, and the curvature of the cornea and lens is in the normal range.
  • Fig. 1 it is a schematic structural view of a vision care device of this embodiment, which comprises a light source device 1 and a control unit 2, a frequency setting unit 3 and a frequency measuring unit 4 connected thereto.
  • the light source device 1 includes two flashing light sources 11, the control unit 2 is a control IC (of course, may also be a PLC or a control circuit), and the frequency setting unit 3 is used to input or adjust parameters of the control IC, thereby being separately controllable The blinking frequency of the two light sources 11.
  • the frequency measuring unit 4 includes a blinking light source and vibration sensing for measuring the vibration frequency and amplitude of the lens. Device. To simplify the device, the flashing light source in the frequency measuring unit 4 is shared with the light source device 1. In addition, considering the convenience and comfort of the measurement frequency, the vibration sensor uses a non-contact infrared laser fiber vibration sensor.
  • the natural vibration frequency measuring unit 4 of the lens is included.
  • the functional module it is not necessary to integrate the functional module, but to detect the natural vibration frequency (ie, the resonant frequency) of the lens in a place where the detecting device is specifically provided.
  • the vision care device of the present invention can be made simpler and more convenient to carry.
  • a preferred practice is to separate the two flashing sources 11 from each other to avoid interference.
  • the time required to set the off time is more than three times longer than the bright time. It is recommended to use a ratio of 1:9.
  • the light source should be close to the eyes (about 5 cm from the eyes) facing the eyes, and the eyes should be kept closed to avoid discomfort.
  • the time of each use of the device should not be too long to prevent excessive fatigue of the ciliary muscle. It is recommended to stick to it every day.
  • the measurement method mainly includes the following steps:
  • the light source is flashed at the initial frequency of fl, and the vibration frequency and amplitude of the lens are measured; then, the blinking frequency of the light source is adjusted fd every At time, and the vibration frequency and amplitude of the lens are measured, and T is repeated;
  • the measured values of the average amplitudes in each time period are connected to obtain a graph, and the peak value of the graph is calculated; the vibration frequency corresponding to the amplitude closest to the peak of the graph is the natural vibration frequency of the lens; O.lHz ⁇ fKOJHz, 0.01 Hz fd 0.05 Hz, 10s ⁇ At ⁇ 120s, 5 T 15.
  • C the measured value of the average amplitude in each time period is connected to obtain a graph, and the peak value of the amplitude V3 is calculated; D, the peak value of the amplitude V3 is the natural vibration frequency of the lens.
  • the flashing frequency is frequency measurement results ynt 0n yO 11 when f_ S - amplitude diagram in which the peak amplitude of the frequency corresponding to the natural frequency is close to the lens.
  • the frequency corresponding to the peak of the amplitude obtained after the steps B", C" and D again can be closer to the natural vibration frequency of the lens.
  • the frequency setting unit 3 can be used for setting.
  • the natural vibration frequency of the lens may change after a period of use, and the natural vibration frequency of the lens may be tested again by the frequency measuring unit 4, and set by the frequency setting unit 3.

Abstract

一种视力保健装置,其包括光源器件(1)和与之连接的控制单元(2),所述光源器件(1)在所述控制单元(2)的作用下,以晶状体的固有振动频率闪亮,通过闪亮的光源(11)的作用,使得晶状体产生谐振而得到有效的锻炼,从而可恢复或改善其屈光能力,延缓其老化的速度,这样即可在睫状肌的作用下达到良好的调节幅度,从根本上解决视力矫正问题。还提供一种晶状体固有振动频率的测定方法,通过由闪亮光源(11)和用于测量晶状体振动频率及振幅的振动传感器组成的频率测定单元(4)进行测定,该方法通过提供闪亮光源(11)引起晶状体的振动,并通过调整闪亮频率来获得晶状体谐振时的光源闪亮频率,从而确定晶状体的固有振动频率。该方法简便可靠,容易实现。

Description

一种视力保健装置 技术领域
本发明涉及一种保健装置, 尤其涉及一种用于保持及恢复眼睛调节幅度的视力保 健装置。
背景技术
长期视近使晶状体失去弹性和睫状肌失去活力, 从而使调节力下降, 形成近视。 传统视力矫正的主要方法有附加法和屈光性角膜手术两种。 而这两种方法都不是 针对调节系统的矫治, 因此是治标不治本的方法。
另有机械按摩法如视力保健操、 按摩器等进行视力保健或视力矫正, 也仅对睫状 肌有帮助, 能够取得一定的效果, 但往往还需要在看东西的时候需要瞪大或眯起眼睛 以取得足够的调节效果, 长此以往, 会导致眼睛显得极不美观, 也不是解决根本问题 的方法。 比如根据贝茨视力训练法开发的视力训练设备、 视力拓展设备等, 也都是主 要针对眼球内外肌力和眼球运动等进行的视觉功能拓展训练, 故对视力的训练并不全 面。
发明内容
鉴于现有技术中的上述缺陷, 本发明所要解决的技术问题是: 全面恢复眼睛调节 系统的调节能力, 从而达到根视力矫正的目的。
眼睛调节系统是通过睫状肌收缩或松弛, 带动悬韧带改变晶状体的形状从而改变 晶状体的前表面的曲率达到改变晶状体屈光度来调节视力的, 因此, 如果晶状体的弹 性变差或消失, 则仅靠睫状肌的作用仍然不能解决问题。 故本发明的技术方案是: 一 种视力保健装置, 包括光源器件和与之连接的控制单元, 所述光源器件在所述控制单 元的作用下, 以晶状体的固有振动频率闪亮。
本发明还可采用如下优选的技术方案:
所述光源器件为双光源器件, 所述控制单元是控制 IC、 PLC或控制电路。
所述视力保健装置还包括与所述控制单元连接的频率设置单元, 用于设置所述光 源器件的闪亮频率。
所述光源器件的闪亮在一个周期内的亮灭时间比 1 :3。 所述光源器件的闪亮在一个周期内的亮灭时间比为 1 :9。
所述视力保健装置还包括频率测试单元, 用于测试晶状体的固有振动频率。
所述固有振动频率通过以下步骤测定:
首先, 使光源以 fl的初始频率闪亮, 同时测定晶状体的振动频率及振幅; 然后, 每间隔 At时间将光源的闪亮频率调整 fd, 并测定晶状体的振动频率及振幅, 重复做 T 次; 再将测得的各时间段内的平均振幅的值连线得到曲线图, 计算曲线图的峰值; 取 与该曲线图的峰值最接近的振幅下对应的振动频率为晶状体的固有振动频率; 其中, 0.2Hz^fl < 0.7Hz, 0.01Hz fd 0.05Hz, 10s^At< 120s, 5 T 15。
本发明还提供了一种晶状体固有振动频率的测试方法, 其特征是包括如下步骤: Α、 使光源器件以 fl的初始频率闪亮, 同时测定晶状体的振动频率及振幅; B、 每间隔 At时间将光源器件的闪亮频率调整 fd, 并测定晶状体的振动频率及振 幅, 重复做 T次;
c、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值;
D、 取振幅的峰值对应的振动频率为晶状体的固有振动频率;
其中, 0.2Hz fl 0.7Hz, 0.01Hz fd 0.05Hz, 10s^At< 120s, 5 T 15。 本发明进一步提供了一种晶状体固有振动频率的测试方法, 其特征是包括如下步 骤:
Α、 使光源器件以 fl的初始频率闪亮, 同时测定频率及振幅;
B、 每间隔 At时间将光源器件的闪亮频率调整 fd, 并测定晶状体的振动频率及振 幅, 重复做 T次;
c、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 VI; B'、 将所述振幅的峰值 VI 对应的振动频率作为预设的光源器件的闪亮频率 f_syntony0, 每间隔 At时间将光源器件的闪亮频率调整 fd/n, 并通过所述振动传感器 测定频率及振幅;
C、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 V2;
D、 取振幅的峰值 V2对应的振动频率为晶状体的固有振动频率;
其中, 2<n^ l0, 10s^At< 120s, 5 T 15。
本发明再进一步提供了一种晶状体固有振动频率的测试方法, 其特征是包括如下 步骤:
Α、 使光源器件以 fl的初始频率闪亮, 同时测定晶状体的振动频率及振幅; B、 每间隔 At时间将光源器件的闪亮频率调整 fd, 并通过所述振动传感器测定频 率及振幅, 重复做 T次;
C、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 VI; B'、 将所述振幅的峰值 VI 对应的振动频率作为预设的光源器件的闪亮频率 f_syntonyO, 每间隔 At时间将光源器件的闪亮频率调整 fd/n, 并通过所述振动传感器 测定频率及振幅;
C、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 V2; B"、 将所述振幅的峰值 V2 对应的振动频率作为预设的光源器件的闪亮频率 f_syntonyl , 每间隔 At时间将光源器件的闪亮频率调整 fd/n/m, 并通过所述振动传感 器测定频率及振幅;
C"、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 V3;
D、 取振幅的峰值 V3对应的振动频率为晶状体的固有振动频率;
其中, 2 n 10, 2 m 10, 10s^At< 120s, 5 T 15。
本发明的有益效果是:
通过闪亮的光源的作用, 使得晶状体在睫状肌的作用下产生谐振而得到有效的锻 炼, 延缓其老化的速度, 从而可恢复或改善其屈光能力。 而睫状肌在此过程中也得到 了良好的训练, 从而能够实现良好的调节幅度, 使得整个视力系统的各个环节得到全 面改善, 从根本上解决视力矫正问题。
另外, 本发明采用闪亮光源和用于测量晶状体振动频率及振幅的振动传感器进行 晶状体的固有振动频率的测定, 该方法通过提供闪亮光源引起晶状体的振动, 并通过 调整闪亮频率来获得晶状体谐振时的光源闪亮频率, 从而确定晶状体的固有振动频率。 该方法简便可靠, 容易实现。
附图说明
图 1是一个优选实施例的视力保健装置结构示意图。
图 2是闪亮频率为 f_SyntOny0时, 测试 11个结果时的频率-振幅图。
具体实施方式
首先对本发明的原理进行说明如下:
平行光线经某透镜后聚焦为一点, 该点离透镜中心的距离为焦距。
屈光度或称焦度, 英语用 "Dioptre"表示, 是量度透镜屈光能力的单位。 焦距 f的长 短标志着折光能力的大小, 焦距越短, 其折光能力就越大, 近视的原因就是眼睛折光 能力太大, 远视的人则折光能力太弱。 焦距的倒数叫做透镜焦度, 或屈光度, 用 φ表 示, 即: 凸透镜 (如: 远视镜片) 的度数是正数 (+), 凹透镜 (如: 近视镜片) 的度数是负 数( -)。
屈光度的单位简写是 D, 国际单位制的单位是 m-l。
一般眼镜常使用度数来表示屈光度, 以屈光度 D 的数值乘以 100 就是度数。 眼的屈光:外界的光线经过眼的屈光系统折射后,在视网膜上形成清晰缩小的倒像, 这种生理功能就称为眼的屈光。
眼的屈光介质包括角膜、 房水、 晶状体和玻璃体, 眼球总屈光力在 58〜70D之间, 角膜和晶状体是最主要的屈光成分, 角膜的屈光力约为 43D, 晶状体约为 19D 。
眼的屈光力与眼轴长度匹配与否是决定眼屈光状态的关键,眼的屈光状态包括正视 和屈光不正 (非正视); 当眼调节静止时, 外界的平行光线经眼的屈光系统后恰好在视 网膜黄斑中心凹聚焦, 这种屈光状态称为正视, 若不能在视网膜黄斑中心凹聚焦, 称 为屈光不正, 包括近视、 远视和散光; 眼球总屈光力 (非调节状态下)定为 60D。
调节: 为了看清近距离目标, 需增加晶状体的曲率 (弯曲度), 从而增强眼的屈光 力, 使近距离物体在视网膜上成清晰像, 这种为看清近物而改变眼的屈光力的功能称 为调节 (accommodation)。
调节力也以屈光度为单位。
如一正视者阅读 40cm处目标, 则此时所需: 调节力为 l/0.4m=2.50D。
调节的机理: 通常认为调节产生的机理是:
—当看远目标时,睫状肌处于松弛状态,睫状肌使晶状体悬韧带保持一定的张力, 晶状体在悬韧带的牵引下, 其形状相对扁平。
—当看近目标时,环形睫状肌收缩,睫状冠所形成的环缩小,晶状体悬韧带松弛, 晶状体由于弹性而变凸。
调节主要是晶状体前表面的曲率增加而使眼的屈光力增强。
眼所能产生的最大调节力称为调节幅度。调节幅度与年龄密切相关,青少年调节力 强, 随着年龄增长, 调节力将逐渐减退而出现老视。
临床上比较常应用 Hoffstetter调节幅度, 公式来表达调节力与年龄的关系如下: 最小调节幅度 = 15-0.25 X年龄 最大调节幅度 = 25-0.4X年龄
平均调节幅度 = 18-0.3 X年龄
远点: 调节放松时所能看清的最远点。
近点: 最大调节时所能看清的最近点。
调节范围: 远点与近点的间距。
调节幅度: 眼所能产生的最大调节力。
正视眼 (emmetropia): 在眼球调节松弛状态下, 5m 以外的平行光线经眼的屈光 系统折射后, 焦点恰好落在视网膜上。
屈光不正: 眼球调节松弛状态下, 5m以外的平行光线经眼的屈光系统折射后, 不 能聚焦在视网膜上。 屈光不正包括近视、 远视、 散光。
近视的概念:在调节松弛状态下,平行光线经眼屈光系统的折射后,焦点落在视网膜 前,使远距离物体不能清晰地在视网膜上成像。
假性近视: 睫状肌过度收缩引起的调节痉挛, 解除痉挛后, 近视状态能有所改善。 屈光成分分类
1.屈光性近视: 主要由于角膜或晶状体曲率过大, 屈光力超出正常范围, 而眼轴长 度在正常范围。
2.轴性近视: 眼轴长度超出正常范围, 角膜和晶状体曲率在正常范围。
根据近视度数分类:
轻度: <-3.00D
中度: -3.00D〜- 6.00D
高度: >-6.00D
长期视近使晶状体失去弹性和 /或睫状肌失去活力, 从而使调节力下降, 形成近视。 传统近视矫治的主要方法有附加法和屈光性角膜手术两种。 而这两种方法都不是针对 调节系统的矫治, 因此是治标不治本的方法。
以下结合实施例并对照附图对本发明作进一步详细的说明。
如图 1所示, 是该实施例的视力保健装置结构示意图, 其包括光源器件 1和与之 连接的控制单元 2、 频率设置单元 3和频率测定单元 4。 其中, 光源器件 1包括两个闪 亮光源 11, 控制单元 2是一个控制 IC (当然, 也可以是 PLC或控制电路), 频率设置 单元 3用来输入或调节控制 IC的参数, 从而可分别控制两个光源 11的闪亮频率。
所述频率测定单元 4包括闪亮光源和用于测量晶状体振动频率及振幅的振动传感 器。 为简化设备, 频率测定单元 4中的闪亮光源与光源器件 1 中的共用。 另外, 考虑 到测定频率的方便和舒适性, 振动传感器采用非接触式红外激光光纤振动传感器。
本实施例中, 将晶状体的固有振动频率测定单元 4包含在内, 当然也可不必集成 此功能模块, 而是到专门提供检测装置的地方去检测晶状体固有振动频率 (也即谐振 频率), 这样可以使得本发明的视力保健装置更加简单和方便携带使用。
一个优选的做法是, 将两个闪亮光源 11相互隔开, 以免造成干扰。 另外, 光源器 件交替闪亮的时候, 需设置灭的时间要比亮的时间大三倍以上, 建议选择用 1 : 9的比 例为佳。
需要说明的是, 使用该视力保健装置, 光源要近距离 (离眼睛大概 5cm) 对着双 眼, 并需要保持眼睛闭合, 以免造成不适。 另外, 每次使用该装置的时间不应过长, 以防止睫状肌疲劳过度。 建议, 每天坚持使用。
首次使用该视力保健装置时, 需先进行晶状体固有振动频率的测定, 该测定方法 主要包括如下步骤:
首先, 使光源以 fl的初始频率闪亮, 同时测定晶状体的振动频率及振幅; 然后, 每间隔 At时间将光源的闪亮频率调整 fd, 并测定晶状体的振动频率及振幅, 重复做 T 次; 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算曲线图的峰值; 取与 该曲线图的峰值最接近的振幅下对应的振动频率为晶状体的固有振动频率; 其 中 , O.lHz^fKOJHz, 0.01Hz fd 0.05Hz, 10s^At< 120s, 5 T 15。
为了得到更为准确 的晶状体固有振动频率, 可采用如下测定方法:
Α、 使光源以 fl=0.2Hz的初始频率闪亮, 同时测定晶状体的振动频率及振幅;
B、 每间隔 At=60s的时间间隔将光源器件的闪亮频率调整 fd=0.01Hz, 并通过非接 触式红外激光光纤振动传感器测定频率及振幅, 重复做 11次;
C、 将测得的各时间段内的平均振幅的值连线得到一曲线图, 计算得到振幅的峰值
VI;
B'、 将所述振幅的峰值 VI 对应的振动频率作为预设的光源器件的闪亮频率 f_syntonyO,每间隔 At=60s的时间间隔将光源器件的闪亮频率调整 fd/5=0.002Hz,并通 过所述非接触式红外激光光纤振动传感器测定频率及振幅;
C、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 V2;
B"、 将所述振幅的峰值 V2 对应的振动频率作为预设的光源器件的闪亮频率 f_syntonyl , 每间隔 At=60s的时间间隔将光源器件的闪亮频率调整 fd/5/5=0.0004Hz, 并通过所述振动传感器测定频率及振幅;
C"、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 V3; D、 取振幅的峰值 V3对应的振动频率为晶状体的固有振动频率。
如图 2所示,是闪亮频率为 f_Synt0nyO时测定 11个结果时的频率-振幅示意图,其 中, 振幅的峰值对应的频率接近于晶状体的固有振动频率。 但再次经过步骤 B"、 C"和 D之后获得的振幅的峰值对应的频率可更加接近于晶状体的固有振动频率。
需要说明的是, 在进行晶状体的固有振动频率测定过程中, 需要保持眼睛闭合, 以免造成不适。
待测定出晶状体的固有振动频率之后, 即可通过频率设置单元 3进行设定使用。 为了取得更好的保健效果, 在使用一段时间之后, 晶状体的固有振动频率可能有 变化, 可再次通过频率测定单元 4测试晶状体的固有振动频率, 并由频率设置单元 3 进行设定。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定 本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说, 在不脱离本发明构思的前提下做出若干替代或明显变型, 而且性能或用途相同, 都应 当视为属于本发明的保护范围。

Claims

权 利 要 求 书
1、 一种视力保健装置, 其特征是: 包括光源器件和与之连接的控制单元, 所述光 源器件在所述控制单元的作用下, 以晶状体的固有振动频率闪亮。
2、 如权利要求 1所述的视力保健装置, 其特征是: 所述光源器件为双光源器件, 所述控制单元是控制 IC、 PLC或控制电路。
3、 如权利要求 2所述的视力保健装置, 其特征是: 该视力保健装置还包括与所述 控制单元连接的频率设置单元, 用于设置所述光源器件的闪亮频率。
4、 如权利要求 3所述的视力保健装置, 其特征是: 所述光源器件的闪亮在一个周 期内的亮灭时间比 1 :3。
5、 如权利要求 4所述的视力保健装置, 其特征是: 所述光源器件的闪亮在一个周 期内的亮灭时间比为 1 :9。
6、 如权利要求 1-5任一所述的视力保健装置, 其特征是: 该视力保健装置还包括 频率测定单元, 用于测试晶状体的固有振动频率。
7、 如权利要求 6所述的视力保健装置, 其特征是: 所述固有振动频率通过以下步 骤测定:
首先, 使光源器件以 fl 的初始频率闪亮, 同时测定晶状体的振动频率及振幅; 然 后, 每间隔 At时间将光源器件的闪亮频率调整 fd, 并测定晶状体的振动频率及振幅, 重复做 T次;
将测得的各时间段内的平均振幅的值连线得到曲线图, 计算曲线图的峰值; 取与该曲线图的峰值最接近的振幅下对应的振动频率为晶状体的固有振动频率; 其中, 0.2Hz^fK0.7Hz, 0.01Hz fd 0.05Hz, 10s^At< 120s, 5 T 15。
8、 一种晶状体固有振动频率的测定方法, 通过由闪亮光源和用于测量晶状体振动 频率及振幅的振动传感器组成的频率测定单元进行测定, 其特征是包括如下步骤:
Α、 使光源器件以 fl的初始频率闪亮, 同时测定晶状体的振动频率及振幅; B、 每间隔 At时间将光源器件的闪亮频率调整 fd, 并测定晶状体的振动频率及振 幅, 重复做 T次;
c、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值; D、 取振幅的峰值对应的振动频率为晶状体的固有振动频率; 其中, 0.2Hz^fK0.7Hz, 0.01Hz fd 0.05Hz, 10s^At< 120s, 5 T 15。
9、 一种晶状体固有振动频率的测定方法, 其特征是:
A、 使光源器件以 fl的初始频率闪亮, 同时测定频率及振幅;
B、 每间隔 At时间将光源器件的闪亮频率调整 fd, 并测定晶状体的振动频率及振 幅, 重复做 T次;
c、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 VI; B'、 将所述振幅的峰值 VI 对应的振动频率作为预设的光源器件的闪亮频率 f_syntony0,每间隔 At时间将光源器件的闪亮频率调整 fd/n, 并通过所述振动传感器测 定频率及振幅;
C、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 V2;
D、 取振幅的峰值 V2对应的振动频率为晶状体的固有振动频率;
其中, 2<n^ l0, 10s^At< 120s, 5 T 15。
10、 一种晶状体固有振动频率的测定方法, 其特征是:
Α、 使光源器件以 fl的初始频率闪亮, 同时测定晶状体的振动频率及振幅;
B、 每间隔 At时间将光源器件的闪亮频率调整 fd, 并通过所述振动传感器测定频 率及振幅, 重复做 T次;
C、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 VI; B'、 将所述振幅的峰值 VI 对应的振动频率作为预设的光源器件的闪亮频率 f_syntony0,每间隔 At时间将光源器件的闪亮频率调整 fd/n, 并通过所述振动传感器测 定频率及振幅;
C、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 V2; B"、 将所述振幅的峰值 V2 对应的振动频率作为预设的光源器件的闪亮频率 f_syntonyl ,每间隔 At时间将光源器件的闪亮频率调整 fd/n/m,并通过所述振动传感器 测定频率及振幅;
C"、 将测得的各时间段内的平均振幅的值连线得到曲线图, 计算振幅的峰值 V3;
D、 取振幅的峰值 V3对应的振动频率为晶状体的固有振动频率;
其中, 2 n 10, 2 m 10, 10s^At< 120s, 5 T 15。
PCT/CN2012/075175 2012-05-08 2012-05-08 一种视力保健装置 WO2013166652A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/075175 WO2013166652A1 (zh) 2012-05-08 2012-05-08 一种视力保健装置
CN2012800009490A CN102905668A (zh) 2012-05-08 2012-05-08 一种视力保健装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/075175 WO2013166652A1 (zh) 2012-05-08 2012-05-08 一种视力保健装置

Publications (1)

Publication Number Publication Date
WO2013166652A1 true WO2013166652A1 (zh) 2013-11-14

Family

ID=47577485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075175 WO2013166652A1 (zh) 2012-05-08 2012-05-08 一种视力保健装置

Country Status (2)

Country Link
CN (1) CN102905668A (zh)
WO (1) WO2013166652A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020244749A1 (en) 2019-06-05 2020-12-10 Abb Schweiz Ag Coupling element for electrically coupling the lateral connecting portions of a first and second laminated busbar via a circuit breaker and an arrangement including such an element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103230253B (zh) * 2013-04-27 2015-12-02 深圳职业技术学院 眼调节力训练装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1054377A (zh) * 1990-02-27 1991-09-11 余鹏 弱视保健电子万花筒
US5092669A (en) * 1990-03-16 1992-03-03 Migra Limited Optical device and method for using same
WO1997000653A1 (fr) * 1995-06-22 1997-01-09 Parbold Investments N.V. Procede d'amelioration des fonctions visuelles et dispositif de mise en ×uvre
CN2688264Y (zh) * 2003-12-23 2005-03-30 王峰 一种控制脑波频率的保健眼镜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1054377A (zh) * 1990-02-27 1991-09-11 余鹏 弱视保健电子万花筒
US5092669A (en) * 1990-03-16 1992-03-03 Migra Limited Optical device and method for using same
WO1997000653A1 (fr) * 1995-06-22 1997-01-09 Parbold Investments N.V. Procede d'amelioration des fonctions visuelles et dispositif de mise en ×uvre
CN2688264Y (zh) * 2003-12-23 2005-03-30 王峰 一种控制脑波频率的保健眼镜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020244749A1 (en) 2019-06-05 2020-12-10 Abb Schweiz Ag Coupling element for electrically coupling the lateral connecting portions of a first and second laminated busbar via a circuit breaker and an arrangement including such an element
US11843226B2 (en) 2019-06-05 2023-12-12 Abb Schweiz Ag Laminated busbars and direct connection of air circuit breakers in bus coupler sections

Also Published As

Publication number Publication date
CN102905668A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
CN110179581B (zh) 基于张力性调节机制防控近视及屈光不正的矫正方法
CN103576336A (zh) 用于可变光学电子眼科镜片的神经肌肉感测
JP2009504291A (ja) 遠近調節能力の回復用装置
CN106461970A (zh) 多功能隐形眼镜
Peppard Sight without glasses
CN108294725A (zh) 一种可测量晶状体调节力的验光仪
WO2013166652A1 (zh) 一种视力保健装置
CN205286874U (zh) 一种便携式假性近视矫正仪
CN201642758U (zh) 眼科调节集合检查训练仪
CN205539783U (zh) 一种采用裂隙镜片制作的去散裂隙组合镜
CN101972135A (zh) 一种个性化晶状体面形数据的检测方法
CN204016783U (zh) 一种视力矫正镜
CN206526167U (zh) 一种假性近视矫正眼镜
CN208176669U (zh) 全自动眼球训练仪
CN103860363A (zh) 一种视力矫正镜及其使用方法
RU2385691C1 (ru) Искусственный хрусталик глаза
CN205126754U (zh) 视力训练按摩一体机
RU2354337C1 (ru) Способ восстановления бинокулярных функций при содружественном косоглазии
CN109143612A (zh) 一种偏心离焦镜片
RU2813948C1 (ru) Способ определения внутриглазного давления по данным корнеотопографических показателей
CN106309007A (zh) 一种假性近视矫正眼镜
CN105395342A (zh) 一种便携式假性近视矫正仪
EP4105713A1 (en) Eyewear for a subject having an eye provided with a myopia control solution and associated method
CN2446970Y (zh) 一种近视治疗镜
Atkinson Oculo-refractive Cyclopedia and Dictionary

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000949.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876489

Country of ref document: EP

Kind code of ref document: A1