WO2013165173A1 - Source container and vapor deposition reactor - Google Patents
Source container and vapor deposition reactor Download PDFInfo
- Publication number
- WO2013165173A1 WO2013165173A1 PCT/KR2013/003767 KR2013003767W WO2013165173A1 WO 2013165173 A1 WO2013165173 A1 WO 2013165173A1 KR 2013003767 W KR2013003767 W KR 2013003767W WO 2013165173 A1 WO2013165173 A1 WO 2013165173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container
- source
- inner container
- source material
- space
- Prior art date
Links
- 238000007740 vapor deposition Methods 0.000 title claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims description 38
- 239000012159 carrier gas Substances 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 229920002120 photoresistant polymer Polymers 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 8
- 238000004140 cleaning Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- -1 naphthalene-1-yl Chemical group 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/228—Gas flow assisted PVD deposition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/243—Crucibles for source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45519—Inert gas curtains
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
Definitions
- the present invention relates to a vapor deposition technique, and more particularly, to a source container for storing a source material for forming a thin film in a reactor and a reactor for vapor deposition comprising the same.
- a source container provided separately in a reactor for forming a thin film by a vapor deposition method such as chemical vapor deposition (CVD), atomic layer deposition (ALD) or organic vapor deposition (OVPD or condensation coating).
- CVD chemical vapor deposition
- ALD atomic layer deposition
- OVPD organic vapor deposition
- Solid or liquid source material, or source chemical may be charged in the source container, and the source material is heated to generate a gaseous precursor in the source container, and the virtual precursor is introduced into the reactor by a suitable carrier gas. Can be delivered.
- the source material contained in the source container is depleted as the process proceeds, so it is necessary to periodically fill the source material.
- the source material of the source container is insufficient, it may cause a defect of the manufactured device and a decrease in the process progress speed.
- the accurate confirmation and refilling of the source material is not only cumbersome, but also time consuming, since the source container must be manually unsealed and confirmed by the user in order to accurately confirm the remaining amount of the source material.
- the present invention has been made in an effort to provide a source container capable of reducing device defects and easily managing source materials to improve productivity.
- Another technical problem to be solved by the present invention is to provide a reactor for vapor deposition including a source container having the above advantages.
- Source container for achieving the above technical problem, the inner container in which the source material is accommodated; An outer container accommodating the inner container; A source amount measuring member coupled to the outer container to sense a load of the inner container; And a controller electrically connected to the source amount measuring member and deriving the amount of source material contained in the inner container based on the load of the inner container sensed by the source amount measuring member.
- the source amount measuring member may include a load cell.
- the load cell includes: a load terminal protruding from the bottom surface of the outer container to contact the inner container; And a signal generator for generating an electrical signal whose value varies depending on the load applied to the load terminal.
- the signal generator may include at least one of a strain gauge and a piezoelectric element.
- the source amount measuring member may be provided in plural and may be provided in a plurality of regions divided at regular intervals on the inner bottom surface of the outer container.
- the source container may further include a display unit for displaying information on any one or a combination of the derived amount of the source material, the temperature and pressure of the source container.
- the controller may display whether the remaining amount of the source material is less than or equal to the reference value through the display unit.
- the source container may further include a temperature measuring member coupled to the outer container to sense a temperature inside the source container.
- the outer container has a structure that can be opened or taken out of the inner container and the upper or lower is open, and may include a lid portion or a bottom portion for opening and closing the opened upper or lower portion. Can be.
- the inner container defines at least a portion of a first space in which the source material is received and a second space in which carrier gas introduced into and in contact with the first space and vapor generated from the source material are mixed;
- the source container may include a carrier gas inflow passage communicating an outside of the outer container with the second space and including an inlet port exposed in the second space; And a mixed gas discharge flow path communicating the outside of the outer container with the second space and including a discharge port exposed in the second space.
- the carrier gas inlet flow passage extends from the outside of the outer container to the second space past the first space, and the mixed gas discharge flow path extends from the second space to the outside of the outer container. Can be.
- the source container may further include a heating member for uniform heat supply inside the source container.
- the source material is liquid or solid, and the source material may have a vapor pressure of 10 ⁇ 6 Torr to 10 3 Torr within the range of 50 ° C. to 550 ° C.
- the vapor deposition reactor according to an embodiment of the present invention for achieving the above another technical problem may be coupled to the mixed gas discharge passage of the source container described above.
- the vapor deposition reactor is for manufacturing an organic light emitting device (OLED).
- the container of the source container is composed of a dual structure of the inner container that accommodates the source material and the outer container that accommodates the inner container, the mass of the inner container through the source amount measuring member and its change
- the remaining amount of the derived source material is displayed to the outside, accurate remaining amount of the source material can be checked and filled, thereby reducing process defects and facilitating operation of the source container.
- the cleaning process of the source container can be achieved only by removing and replacing the inner container or by cleaning the source container.
- Productivity can be improved by minimizing time, and the life of the equipment can be increased through periodic replacement of the inner container.
- FIG. 1 is a cross-sectional view showing a source container according to an embodiment of the present invention.
- FIG. 2 is an enlarged cross-sectional view of the source amount measuring member of the source container shown in FIG. 1.
- FIG. 3 is a cross-sectional view illustrating a state in which the inner container of the source container shown in FIG. 1 is taken out to the outside.
- 4A and 4B are cross-sectional views illustrating embodiments of the display unit illustrated in FIG. 1.
- FIG. 5 is a cross-sectional view showing a source container according to another embodiment of the present invention.
- 6A is a sectional view showing a source container according to another embodiment of the present invention.
- FIG. 6B is a cross-sectional view of the source container shown in FIG. 6A taken along line I-II.
- first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Thus, the first member, part, region, layer or portion, which will be discussed below, may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
- FIG. 1 is a cross-sectional view showing a source container 100 according to an embodiment of the present invention.
- the direction is represented through a Cartesian coordinate system, and the y direction represents a direction perpendicular to the ground.
- the source container 100 includes an inner container 10, an outer container 20, a source amount measuring member 30, and a controller 40.
- the source container 100 may further include a display unit 50, a carrier gas inflow passage 60, and a mixed gas discharge passage 70.
- the inner container 10 may be accommodated in the outer container 20 so that the container has a double structure.
- the source amount measuring member 30 is coupled to the outer container 20 so as to sense the mass of the inner container 10.
- Source materials (SM) suitable for use in the source container 100 are liquid or solid materials having a vapor pressure of 10 ⁇ 6 Torr to 10 3 Torr in the range of 50 ° C. to 550 ° C., and are suitable for vapor phase deposition of organic molecules, conjugates.
- Polymer, organometallic complex or inorganic source material for example C 27 H 18 AlN 3 O 3 (AlQ 3 ) and N, N′-Bis (naphthalene-1-yl) -N, N′-bis ( Known materials such as phenyl) benzidine (NPB) can be used.
- the source material SM is accommodated in the inner container 10.
- the inner container 10 has a space for accommodating the source material SM inwardly.
- the inner container 10 may be formed to have a predetermined thickness, and may have an open top shape.
- the inner container 10 may have a suitable shape corresponding to the inner space of the outer container 20 to be accommodated in the outer container 20.
- the outer side of the inner container 10 may be fixed by contacting at least a part of the outer container 20. It may have a corresponding shape or other member.
- the outer shape of the inner container 10 may be a cylindrical shape having a central axis in the z direction, but is not limited thereto, for example, an ellipsoid having a shaft in the transverse direction (x or y direction) or a longitudinal direction (z direction) or rolling. Can be. However, since the inner container 10 is housed in the outer container 20, it is preferable to have a structure that is easy to receive.
- the inner container 10 is generated from the source gas SM and the carrier gas introduced into the inner container 10 while contacting the first space V1 and the first space V1 containing the source material SM. At least a portion of the second space V2 in which the mixing of the vapor and the carrier gas occurs may be defined.
- the illustrated first space V1 is a region in which the source material SM can be accumulated, and the second space V2 is a gaseous phase generated from the source material SM due to vaporization and / or sublimation of the source material SM. It is a region filled with vapor which is a precursor.
- Some or all of the material of the inner container 10 may be any one of metal materials such as stainless steel, aluminum, titanium, copper, quartz, glass, or a material such as ceramic having an insulating effect. It can be selected from a combination of and the present invention is not limited thereby.
- the outer container 20 in which the inner container 10 is housed has a bottom surface 20W for supporting the inner container 10, and, for example, a carrier gas inflow passage 60 in the center of the bottom surface 20W. An opening may be formed to penetrate).
- the outer container 20 may be composed of a plurality of parts, and the plurality of parts may be configured to be detachable from each other for charging and periodic cleaning of the source material SM.
- the outer container 20 may be composed of three independent parts, such as the bottom portion 20_1, the body portion 20_2, and the lid portion 20_3.
- the bottom portion 20_1 and the body portion 20_2 of the outer container 20 may be integrated.
- the number of parts described above constituting the outer container 20 is exemplary, and the present invention is not limited thereto.
- the outer container 20 may consist of four or more separate parts.
- fastening members 20C such as bolts / nuts, joints, and / or clamps or threaded couplings or flange structures therebetween to maintain mechanical bond strength or to maintain airtightness.
- a sealing member 20D such as an O-ring.
- the inner container 10 and the outer container 20 may be made of different materials.
- the inner container 10 and the outer container 20 are preferably made of a material having high thermal conductivity while being resistant to heat deformation so as not to be affected by the high temperature source material SM, and in the case of the inner container 10 together with chemical resistance It is desirable to have.
- the source amount measuring member 30 may be coupled to the outer container 20 so as to sense the mass of the inner container 10.
- the source amount measuring member 30 detects the mass of the inner container 10 to generate an electrical signal for detecting the load of the source material SM based on the detected mass of the inner container 10 and controls the control unit 40. To provide.
- the quantity measuring object of the present invention is a source material SM containing a high temperature solid or liquid chemical
- the total mass of the inner container 10 containing the source material SM is sensed and accommodated in the inner container 10. It is easy to use a method of estimating the mass of the source material SM.
- the source amount measuring member 30 may include a load cell coupled to the bottom surface 20W of the outer container 20 to sense a load of the inner container 10.
- the load cell includes a load sensor for converting a physical quantity such as force or load into an electrical signal to measure force or load. The load cell will be described with reference to FIG. 2.
- the control unit 40 is electrically connected to the source amount measuring member 30 and based on the mass of the inner container 10 sensed by the source amount measuring member 30, the source material SM received in the inner container 10. ) Mass.
- the controller 40 is connected to the source amount measuring member 30 through electrical wiring, and is provided on one side of the outer container 20, or is separated from the outer container 20, for example, a source container ( It may be provided in the control system of the vapor deposition reactor including a 100, or may have a control unit of the control system.
- the controller 40 may perform overall control of the vapor deposition reactor including the source container 100 or the source container 100.
- the control unit 40 may be hardware such as an electronic control unit (ECU) or a micro control unit (MCU) or software running on these hardware, or may be a combination of these.
- the controller 40 may further include units for signal amplification and / or noise filtering, or may be connected to separate units provided externally.
- the controller 40 may derive the mass of the source material SM through an arithmetic operation from the load of the inner container 10 sensed by the source amount measuring member 30. For example, since the inner container 10 contains the source material SM, at the load of the inner container 10 in the state where the source material SM is accommodated, the inside of the state in which the source material SM is not accommodated. Subtracting the mass of the container 10 alone may yield the mass of the source material SM.
- the data on the mass of the inner container 10 in the empty state may be stored in a predetermined memory in advance. For example, if the load sensed by the current source amount measuring member 30 is 5 kg, and the pre-stored inner container 10 has a mass of 2 kg, the mass of the source material SM currently accommodated in the inner container 10 is 3 kg. Can be estimated as
- the theoretical model described above can be modified as follows.
- the load measured by the source amount measuring member 30 is not only the mass of the liquid or solid source material, but also the pressure of the mixed gas in the second space V2.
- the temperature of the source container 100 can also affect the load that is measured as a result.
- the pressure inside the source container 100 is proportional to the absolute temperature, and the resulting gas pressure is multiplied by the area component, such as the lower cross-sectional area of the inner container 20, resulting from the vapor of the mixed gas.
- the contribution of the load component can be taken into account.
- the parameter for detecting a suitable amount of source material SM by mass measurement may include any one or a combination of the mass, temperature and process cumulative time of the inner container 10 itself.
- the controller 40 may derive the mass and vapor pressure of the source material SM in various ways using the source amount measuring member 30, but the present invention is not limited thereto.
- the source container 100 may further include a display unit 50.
- the display unit 50 determines the information of the source material SM in order to effectively manage the process by finding information inside the source container, such as the mass of the source material SM derived by the control unit 40 or the replacement time and pressure of the source material. Residual amount and / or source container pressure may be indicated.
- the display unit 50 may display various messages transmitted from the control unit 40. For example, text information such as time information for notifying the replacement cycle of the source material SM, the temperature of the source container 100, whether the source container 100 has failed, a measurement error, or the like, and graphic elements such as a gauge and a scale are displayed. This can provide information to the user.
- the display unit 50 may be implemented through a separate monitoring device mounted on the side of the outer container 20 or electrically connected to the source container 100, or may be configured together with the control unit 40. Additional embodiments of the display unit 50 will be described later with reference to FIGS. 4A and 4B.
- the carrier gas inflow passage 60 and the mixed gas discharge passage 70 communicate the second space V2 with the outside of the outer container 20.
- the carrier gas inflow flow path 60 and the mixed gas discharge flow path 70 are formed through the inner container 10 and the outer container 20.
- the carrier gas may be introduced into the second space V2 from the outside through the carrier gas inflow passage 60 (carrier gas IN).
- the carrier gas is a gaseous fluid for delivering a gaseous precursor of the source material SM from the source container 100 to the reactor where the deposition process takes place.
- the carrier gas may be, for example, an inert gas such as helium, nitrogen and argon, which is heated and supplied to prevent condensation of the source material used, or a reactive gas such as oxygen, ozone and carbon dioxide.
- the carrier gas introduced into the second space V2 is mixed with the vapor of the source material SM diffused into the second space V2 and transferred to the reactor through the mixed gas discharge passage 70 (mixed gas).
- the reactor is, for example, a vapor deposition apparatus for manufacturing a semiconductor device, such as a memory or logic circuit, in which a device layer is formed by deposition of vapor or a reaction product thereof from a liquid or solid source material, or an organic EL (or It may be applied to a vapor deposition apparatus for manufacturing a display device such as an organic light emitting diode (OLED).
- a vapor deposition apparatus for manufacturing a semiconductor device such as a memory or logic circuit, in which a device layer is formed by deposition of vapor or a reaction product thereof from a liquid or solid source material, or an organic EL (or It may be applied to a vapor deposition apparatus for manufacturing a display device such as an organic light emitting diode (OLED).
- OLED organic light emitting diode
- this is exemplary and may be applied to other devices having a photovoltaic device, for example, an electrochemical cell, a photoconductive cell, a photoresistor, a photo switch, a phototransistor, and a phototube, depending on the source material SM. .
- a photovoltaic device for example, an electrochemical cell, a photoconductive cell, a photoresistor, a photo switch, a phototransistor, and a phototube, depending on the source material SM.
- the carrier gas inlet flow path 60 may extend from the outside of the outer container 20 to the second space V2 from the outside of the outer container 20, as shown in FIG. 1. .
- the inflow port 60P of the carrier gas inflow passage 60 may protrude above the surface of the source material SM and be exposed to the second space V2.
- the carrier gas inlet flow path 60 may extend directly from the exterior of the vessel 10 to the second space V2.
- the carrier gas inflow flow path 60 is defined relative to the mixed gas discharge flow path 70 based on the surface of the source material SM. Since it is below, it is a bottom-up flow method.
- the inlet port 60P of the carrier gas inlet flow path 60 is not limited to extending to the second space V2 after passing through the first space V1 as shown in the drawings. It is also possible for the inflow port 60P of the inflow flow path 60 to be disposed lower than the discharge port 70P with respect to the surface of the source material SM in the second space V2.
- the bottom surface 10W of the inner container 10 may contain the source material SM while the flow path 60 passes.
- the side wall 10S may extend along the flow path 60.
- the top of the inner container 10 shown in FIG. 1 is fully open, but may also include a top wall (not shown) for closing at least a portion of the top.
- the upper wall may extend along the flow path 70 as the side wall 10S.
- the container of the source container 100 is composed of a dual structure of the inner container 10 in which the source material SM is accommodated and the outer container 20 in which the inner container 10 is accommodated.
- the cleaning of the source container when the cleaning of the source container is required by the double structure, the cleaning can be achieved only by cleaning or replacing only the inner container 10 that is in direct contact with the source material SM, so that the run of the vapor deposition apparatus can be performed. You can increase the time.
- FIG. 2 is a cross-sectional view of a source amount measuring member according to an exemplary embodiment.
- the source amount measuring member may include a load cell 31.
- the load cell 31 is coupled to and supported by the bottom portion 20_1 on the outer container 20, and detects a load by contacting the inner container 10.
- the load cell 31 protrudes from the load cell housing 33, the bottom surface 20W of the outer container 20, and loads applied to the load terminal 35 and the load terminal 35 contacting the inner container 10.
- It may include a signal generator 37 for generating an electrical signal whose value is different.
- the signal generator 37 may include, for example, an elastic member 37_1 and a strain gauge 37_2.
- the load cell 31 includes a load terminal 35 inserted into an upper portion of the load cell housing 33, and an elastic member deformed according to the degree of pressure of the load terminal 35 below the load terminal 35.
- 37_1 may be installed.
- the rod terminal 35 is installed to contact the rear surface of the bottom surface 10W of the inner container 10.
- the load terminal 35 is pressed according to the load applied by the inner container 10 containing the source material SM.
- the elastic member 37_1 is deformed according to the degree of pressurization of the rod terminal 35, and, for example, the electrical resistance of the strain gauge 37_2 is changed according to the strain of the elastic member 37_1.
- the strain gauge 37_2 may include an electric circuit such as a Wheatstone bridge, and may convert a change in a current value changed by a resistance value into an electric signal.
- the strain gauge 37_2 may be a transducer such as a piezoelectric element that generates a change in capacitance according to the strain of the elastic member 37_1.
- the controller 40 receiving the electric signal calculates the amount of the source material SM according to the algorithm described above.
- FIG. 3 is a cross-sectional view illustrating a state in which the inner container of the source container 100 shown in FIG. 1 is taken out to the outside.
- the outer container 20 may have a structure in which an upper portion thereof is opened to accommodate the inner container 10 and to carry it out.
- the outer container 20 may include a body portion 21 including a bottom portion 20_1 and a body portion 20_2 and a lid portion 20_3 for opening and closing an open upper portion of the body portion 21. Can be.
- the main body portion 21 and the lid portion 20_3 may be coupled to each other by using the fastening members 20C or hinged as separate parts.
- the lid 20_3 may be opened to inject the source material SM into the inner container 10.
- the inner container 10 may be taken out from the outer container 20 to fill the source material SM, and then the inner container 10 may be stored in the outer container 20.
- the inner container 10 may be taken out through the bottom side of the source container 100 by removing the bottom portion 20_3 of the outer container 20.
- the source container needs to be cleaned periodically, and shortening its time can contribute to the improvement of productivity since the deposition process is inevitable during the cleaning process.
- the container may be quickly cleaned and replaced by removing the existing inner container 10 and replacing it with a new, clean inner container.
- the source container 100 of the present invention has the advantage of minimizing the downtime of the process according to the cleaning operation to improve productivity, and increase the life of the equipment through proper replacement of the inner container (10).
- a guide line such as an uneven surface may be formed. Thereby, the flow of the inner container 10 can be prevented, and storage and carrying out can be facilitated.
- the source container 100 may further include a temperature measuring member 80 installed inside the outer container 20 to sense a temperature of the inner container 10.
- the temperature measuring member 80 may be connected to the control unit 40 to display corresponding temperature information on the display unit 50.
- the temperature measured by the temperature measuring member 80 may be a parameter of the source amount measurement as described above with reference to FIG. 1. Since the source material SM can be heated in the range of 50 ° C. to 550 ° C., as the temperature is increased, the temperature extracted by the temperature measuring member 80 improves the accuracy of the source amount measurement.
- 4A and 4B are cross-sectional views illustrating embodiments of the display unit illustrated in FIG. 1.
- the display unit 50 may include display units 51a and 51b configured as light emitting diode (LED) lamps, a speaker unit 53 for outputting sound, and a warning lamp 55. . If the display unit 50 is mounted on one side of the outer container 20 or there is a heat bath surrounding the source container 100, the display unit 50 may be attached to the outside of the outer container 20 so that the user may check in real time.
- LED light emitting diode
- the display unit 50 displays data provided from the control unit 40 and performs the function by the control of the control unit 40, and includes, for example, a touch pad, a touch screen, a keyboard, and a mouse for inputting a user's command.
- the same predetermined interface unit (not shown) may be further included.
- the type, position, shape, and size of the display unit 50 may be variously modified as necessary, but the present invention is not limited thereto.
- the display unit 51a may be provided in the form of a plurality of bars that light up the residual amount of the source material SM in stages so that the display 51a may be intuitively recognized.
- the display unit 51b of another embodiment may display more accurate and detailed information through a liquid crystal display (LCD) screen displaying a residual amount of the source material SM as a numerical value.
- the display unit 51b may further display the temperature of the inner container 10 detected by the temperature measuring member 80.
- the display 51b may include a cathode ray tube (CRT), a plasma display panel (PDP), a digital light processing (DLP), a surface-conduction electron-emitter display (SED), and a field emission display (FED). It may be implemented in the form.
- CTR cathode ray tube
- PDP plasma display panel
- DLP digital light processing
- SED surface-conduction electron-emitter display
- FED field emission display
- the speaker unit 53 and the warning lamp 55 may notify whether the source material SM is depleted through the flashing of a predetermined sound and light, respectively.
- the controller 40 may determine whether the residual amount of the source material SM is equal to or less than a reference value, and notify the result of the result through the speaker unit 53 and the warning lamp 55.
- the speaker unit 53 and the warning light 55 may be used to perform an alarm function such as whether the source container 100 is broken or the replacement cycle of the inner container 10. As such, various states of the source container 100 may be easily displayed by the user so that quick replacement and repair may be performed accordingly.
- FIG. 5 is a cross-sectional view showing a source container according to another embodiment of the present invention.
- the source container 100a may further include a heating member 90 for uniform heat supply therein.
- the heating member 90 may heat the first space V1 in which the source material SM is filled, or heat the second space V2 in which the gas is filled.
- the heating member 90 may be provided independently to heat the first space V1 and the second space V2, respectively.
- the heating member 90 may be in the form of a rod extending in the z direction and arranged in a two-dimensional array in the x and y directions.
- the heating member 90 may be, for example, a resistance heater, and a shielding structure 90C may be provided to prevent direct contact of the source material SM in the first space V1.
- the shielding structure 90C may be assembled in a manner of being integrated with the bottom portion 20_1 of the outer container 20 or through the bottom portion 20_1 and drawn into the first space V1.
- the heating member 90 may be another heating member such as a radiant heater, a circulating fluid heater, and an induction heater. Further, in another embodiment, the heating member 90 is in addition to the rod shape, other linear, circular or two stacked in a concentric arrangement or Z direction about the central axis of the carrier gas inlet flow path 60 in the first space V1. It may be a dimensional surface heating body, but the present invention is not limited thereto.
- the shape of the shielding structure 90C of the outer container 20 is formed on the first bottom surface 10W of the inner container 10a. It may also include a protrusion (10C) protruding corresponding to the.
- the protrusion 10C may have a structure surrounding the heating member 90.
- FIG. 6A is a cross-sectional view illustrating a source container 100b according to still another embodiment of the present invention
- FIG. 6B is a cross-sectional view taken along the line I-II of the source container shown in FIG. 6A.
- a plurality of source amount measuring members 30_1, 30_2, 30_3, and 30_4 of the source container 100b of the present embodiment are provided in plural, and have a predetermined interval on the bottom surface 20W of the outer container 20.
- Each of the plurality of regions 20W_1, 20W_2, 20W_3, and 20W_4 divided into two regions may be provided.
- the regions 20W_1, 20W_2, 20W_3 and 20W_4 may be divided into quarters of equal width about the carrier gas inflow passage 60 passing through the bottom surface 20W of the outer container 20.
- Source portions measuring members 30_1, 30_2, 30_3, and 30_4 are provided at the centers of the regions 20W_1, 20W_2, 20W_3, and 20W_4, respectively.
- the load cell 31 protruding from the bottom surface 20W of the outer container 20 is substantially the inner container 10. Will be supported. Therefore, the load of the inner container 10 can be concentrated on the load terminal 35 of the load cell 31. If the rod terminal 35 of the source amount measuring member has a very small contact area, the load may be concentrated and possibly damaged, and accurate load measurement may be difficult as the inner container 10 is inclined. On the contrary, the plurality of source amount measuring members 30_1, 30_2, 30_3, and 30_4 support the lower portion of the inner container 10 evenly by area so that the load of the inner container 10 is dispersed and transmitted stably and accurately. A stable and accurate detection of the load can be achieved.
- the control unit 40 stores the total of load values detected through the plurality of source amount measuring members 30_1, 30_2, 30_3, and 30_4 disposed in the divided regions 20W_1, 20W_2, 20W_3, and 20W_4, respectively. Convert to load by 10). That is, the residual amount of the source material SM can be derived based on the total mass obtained by adding all the load values transmitted from the respective source amount measuring members 30_1, 30_2, 30_3, 30_4. In this case, a process of adding all the divided load values in the calculation process using the single source amount measuring member may be added.
- the illustrated embodiment shows that the bottom surface 20W of the outer container 20 is divided into four areas 20W_1, 20W_2, 20W_3, 20W_4, the area dividing method and the source amount measuring member 30_1, 30_2, 30_3. , 30_4) may be modified in various ways.
- a carrier gas inlet flow path 60 is connected to the mixed gas discharge flow path 70 based on the surface of the source material SM.
- the top-down flow method is also included.
- a carrier gas may be introduced through a flow path 70, and a mixed gas may be discharged through the flow path 60.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
The present invention relates to a source container and a vapor deposition reactor. The source container, according to one embodiment of the present invention, comprises: an internal container for accommodating a source material; an external container for receiving the internal container therein; a source quantity measurement member which is coupled to the external container and senses the weight of the internal container; and a control unit which is electrically connected to the source quantity measurement member, and which derives the quantity of the source material accommodated in the internal container on the basis of the weight of the internal container sensed by the source quantity measurement member.
Description
본 발명은 기상 증착 기술에 관한 것으로서, 더욱 상세하게는, 반응로에서 박막을 형성하기 위한 소스 재료를 저장하기 위한 소스 컨테이너 및 이를 포함하는 기상 증착용 반응로에 관한 것이다.The present invention relates to a vapor deposition technique, and more particularly, to a source container for storing a source material for forming a thin film in a reactor and a reactor for vapor deposition comprising the same.
반도체 제조 장치 또는 디스플레이 제조 장치에서, 화학기상증착(CVD), 원자층 증착(ALD) 또는 유기 기상증착(OVPD 또는 응축 코팅)과 같은 기상 증착 방법으로 박막을 형성하기 위한 반응로에는 별도로 마련된 소스 컨테이너가 종종 사용된다. 상기 소스 컨테이너 내에는 고상 또는 액상의 소스 재료, 또는 소스 케미컬이 장입될 수 있으며, 상기 소스 재료를 가열하여 소스 컨테이너 내에서 기상 전구체를 발생시키고, 상기 가상 전구체는 적합한 운반 가스에 의해 상기 반응로로 전달될 수 있다. In a semiconductor manufacturing device or a display manufacturing device, a source container provided separately in a reactor for forming a thin film by a vapor deposition method such as chemical vapor deposition (CVD), atomic layer deposition (ALD) or organic vapor deposition (OVPD or condensation coating). Is often used. Solid or liquid source material, or source chemical, may be charged in the source container, and the source material is heated to generate a gaseous precursor in the source container, and the virtual precursor is introduced into the reactor by a suitable carrier gas. Can be delivered.
일반적으로 상기 소스 컨테이너에 수용된 소스 재료는 공정이 진행됨에 따라 고갈되므로 주기적으로 소스 재료를 충전시키는 것이 요구된다. 상기 소스 컨테이너의 소스 재료가 부족해지면 제조된 소자의 불량 및 공정 진행 속도의 저하를 야기할 수 있다. 또한, 일반적으로 소스 컨테이너는 소스 재료의 잔량을 정확히 확인하기 위해서 사용자가 수동으로 소스 컨테이너의 밀봉 상태를 해제하고 확인하여야 하기 때문에 소스 재료의 정확한 잔량 확인 및 재충전은 번거로울 뿐만 아니라, 시간 소모적이다.In general, the source material contained in the source container is depleted as the process proceeds, so it is necessary to periodically fill the source material. When the source material of the source container is insufficient, it may cause a defect of the manufactured device and a decrease in the process progress speed. Also, in general, the accurate confirmation and refilling of the source material is not only cumbersome, but also time consuming, since the source container must be manually unsealed and confirmed by the user in order to accurately confirm the remaining amount of the source material.
본 발명이 해결하고자 하는 기술적 과제는, 소자 불량을 감소시키고, 소스 재료의 관리가 용이하여 생산성이 향상될 수 있는 소스 컨테이너를 제공하는 것이다. SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a source container capable of reducing device defects and easily managing source materials to improve productivity.
본 발명이 해결하고자 하는 다른 기술적 과제는, 상기 이점을 갖는 소스 컨테이너를 포함하는 기상 증착용 반응로를 제공하는 것이다. Another technical problem to be solved by the present invention is to provide a reactor for vapor deposition including a source container having the above advantages.
상기 기술적 과제를 달성하기 위한 본 발명의 일 실시예에 따른 소스 컨테이너는, 소스 재료가 수용되는 내부 용기; 상기 내부 용기를 수납하는 외부 용기; 상기 외부 용기에 결합되어 상기 내부 용기의 하중을 감지하는 소스량 측정 부재; 및 상기 소스량 측정 부재와 전기적으로 연결되고, 상기 소스량 측정 부재에 의해 감지된 상기 내부 용기의 하중에 기초하여 상기 내부 용기에 수용된 소스 재료의 양을 도출하는 제어부를 포함한다. Source container according to an embodiment of the present invention for achieving the above technical problem, the inner container in which the source material is accommodated; An outer container accommodating the inner container; A source amount measuring member coupled to the outer container to sense a load of the inner container; And a controller electrically connected to the source amount measuring member and deriving the amount of source material contained in the inner container based on the load of the inner container sensed by the source amount measuring member.
일부 실시예에서, 상기 소스량 측정 부재는 로드셀을 포함할 수 있다. 일부 실시예에서, 상기 로드셀은, 상기 외부 용기의 바닥면으로부터 돌출되어 상기 내부 용기에 접촉하는 로드 단자; 및 상기 로드 단자에 가해지는 상기 하중에 따라 값이 달라지는 전기적 신호를 발생하는 신호 발생부를 포함할 수 있다. 일부 실시예에서, 상기 신호 발생부는 스트레인 게이지 및 압전 소자 중 적어도 하나를 포함할 수 있다.In some embodiments, the source amount measuring member may include a load cell. In some embodiments, the load cell includes: a load terminal protruding from the bottom surface of the outer container to contact the inner container; And a signal generator for generating an electrical signal whose value varies depending on the load applied to the load terminal. In some embodiments, the signal generator may include at least one of a strain gauge and a piezoelectric element.
일부 실시예에서, 상기 소스량 측정 부재는 복수개로 마련되어, 상기 외부 용기의 내측 바닥면 상에서 일정한 간격으로 분할된 다수의 영역들에 각각 구비될 수 있다. 또한, 상기 소스 컨테이너는, 상기 도출된 소스 재료의 잔류량, 소스 컨테이너의 온도 및 압력 중 어느 하나 또는 이들의 조합에 관한 정보를 표시하는 표시부를 더 포함할 수 있다. 일부 실시예에서, 상기 제어부는 상기 소스 재료의 잔류량이 기준치 이하인지 여부를 상기 표시부를 통해 표시할 수 있다.In some embodiments, the source amount measuring member may be provided in plural and may be provided in a plurality of regions divided at regular intervals on the inner bottom surface of the outer container. In addition, the source container may further include a display unit for displaying information on any one or a combination of the derived amount of the source material, the temperature and pressure of the source container. In some embodiments, the controller may display whether the remaining amount of the source material is less than or equal to the reference value through the display unit.
일부 실시예에서, 상기 소스 컨테이너는 상기 외부 용기에 결합되어 상기 소스 컨테이너 내부의 온도를 감지하는 온도 측정 부재를 더 포함할 수 있다. 일부 실시예에서, 상기 외부 용기는 상부 또는 하부가 개방되어 상기 내부 용기를 내부로 수납 및 외부로 반출할 수 있는 구조를 가지며, 상기 개방된 상부 또는 하부를 개폐하기 위한 뚜껑부 또는 바닥부를 포함할 수 있다.In some embodiments, the source container may further include a temperature measuring member coupled to the outer container to sense a temperature inside the source container. In some embodiments, the outer container has a structure that can be opened or taken out of the inner container and the upper or lower is open, and may include a lid portion or a bottom portion for opening and closing the opened upper or lower portion. Can be.
일부 실시예에서, 상기 내부 용기는 상기 소스 재료가 수용되는 제 1 공간 및 상기 제 1 공간과 접하고 내부로 인입된 운반 가스와 상기 소스 재료로부터 발생한 증기가 혼합되는 제 2 공간의 적어도 일부를 한정하며, 상기 소스 컨테이너는, 상기 외부 용기의 외부와 상기 제 2 공간을 연통시키고, 상기 제 2 공간 내에 노출되는 유입 포트를 포함하는 운반 가스 유입 유로; 및 상기 외부 용기의 외부와 상기 제 2 공간을 연통시키고, 상기 제 2 공간 내에 노출되는 배출 포트를 포함하는 혼합 가스 배출 유로를 더 포함할 수 있다.In some embodiments, the inner container defines at least a portion of a first space in which the source material is received and a second space in which carrier gas introduced into and in contact with the first space and vapor generated from the source material are mixed; The source container may include a carrier gas inflow passage communicating an outside of the outer container with the second space and including an inlet port exposed in the second space; And a mixed gas discharge flow path communicating the outside of the outer container with the second space and including a discharge port exposed in the second space.
일부 실시예에서, 상기 운반 가스 유입 유로는 상기 외부 용기의 외부로부터 상기 제 1 공간을 경과하여 상기 제 2 공간으로 연장되며, 상기 혼합 가스 배출 유로는 상기 제2 공간으로부터 상기 외부 용기의 외부로 연장될 수 있다.In some embodiments, the carrier gas inlet flow passage extends from the outside of the outer container to the second space past the first space, and the mixed gas discharge flow path extends from the second space to the outside of the outer container. Can be.
일부 실시예에서, 상기 소스 컨테이너는, 상기 소스 컨테이너의 내부에 균일한 열공급을 위한 가열 부재를 더 포함할 수 있다. 일부 실시예에서, 상기 소스 재료는 액상 또는 고상이며, 상기 소스 재료는 50 ℃ 내지 550 ℃ 범위 내에서 10-6 Torr 내지 103 Torr의 증기압을 가질 수 있다.In some embodiments, the source container may further include a heating member for uniform heat supply inside the source container. In some embodiments, the source material is liquid or solid, and the source material may have a vapor pressure of 10 −6 Torr to 10 3 Torr within the range of 50 ° C. to 550 ° C.
상기 다른 기술적 과제를 달성하기 위한 본 발명의 일 실시예에 따른 기상 증착 반응로는 전술한 소스 컨테이너의 상기 혼합 가스 배출 유로에 결합될 수 있다. 상기 기상 증착 반응로는 유기 발광 소자(OLED)의 제조를 위한 것이다. The vapor deposition reactor according to an embodiment of the present invention for achieving the above another technical problem may be coupled to the mixed gas discharge passage of the source container described above. The vapor deposition reactor is for manufacturing an organic light emitting device (OLED).
본 발명의 실시예에 따르면, 소스 컨테이너의 용기를 소스 재료가 수용되는 내부 용기와 상기 내부 용기를 수납하는 외부 용기의 이중 구조로 구성하며, 소스량 측정 부재를 통해 상기 내부 용기의 질량 및 그 변화를 감지할 수 있으며, 도출된 소스 재료의 잔량을 외부에 표시하는 경우, 소스 재료의 정확한 잔량 확인 및 충전이 가능하여, 공정 불량이 감소되고, 소스 컨테이너의 운영이 용이해진다.According to an embodiment of the present invention, the container of the source container is composed of a dual structure of the inner container that accommodates the source material and the outer container that accommodates the inner container, the mass of the inner container through the source amount measuring member and its change When the remaining amount of the derived source material is displayed to the outside, accurate remaining amount of the source material can be checked and filled, thereby reducing process defects and facilitating operation of the source container.
또한, 공정이 완료되는 후, 상기 소스 컨테이너의 용기 내부를 세척하는 경우, 상기 내부 용기를 반출하고 교체하거나 이를 세척하는 것만으로 소스 컨테이너의 세정 공정이 달성될 수 있으므로, 세정 작업에 따른 공정의 중단 시간을 최소하여 생산성을 향상시키고, 내부 용기의 주기적인 교체를 통해 장비의 수명을 증가시킬 수 있다.In addition, when the inside of the container of the source container is washed after the process is completed, the cleaning process of the source container can be achieved only by removing and replacing the inner container or by cleaning the source container. Productivity can be improved by minimizing time, and the life of the equipment can be increased through periodic replacement of the inner container.
도 1은 본 발명의 일 실시예에 따른 소스 컨테이너를 도시한 단면도이다. 1 is a cross-sectional view showing a source container according to an embodiment of the present invention.
도 2는 도 1에 도시된 소스 컨테이너의 소스량 측정 부재의 확대 단면도이다.FIG. 2 is an enlarged cross-sectional view of the source amount measuring member of the source container shown in FIG. 1.
도 3은 도 1에 도시된 소스 컨테이너의 내부 용기를 외부로 반출한 모습을 도시한 단면도이다.3 is a cross-sectional view illustrating a state in which the inner container of the source container shown in FIG. 1 is taken out to the outside.
도 4a 및 도 4b는 도 1에 도시된 표시부의 실시예들을 도시한 단면도이다. 4A and 4B are cross-sectional views illustrating embodiments of the display unit illustrated in FIG. 1.
도 5는 본 발명의 다른 실시예에 따른 소스 컨테이너를 도시한 단면도이다. 5 is a cross-sectional view showing a source container according to another embodiment of the present invention.
도 6a는 본 발명의 또 다른 실시예에 따른 소스 컨테이너를 도시한 단면도이다. 6A is a sectional view showing a source container according to another embodiment of the present invention.
도 6b는 도 6a에 도시된 소스 컨테이너를 I-II선을 따라 절취한 단면도이다. FIG. 6B is a cross-sectional view of the source container shown in FIG. 6A taken along line I-II.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. The embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art, and the following examples can be modified in various other forms, and the scope of the present invention is It is not limited to an Example. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the inventive concept to those skilled in the art.
또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는" 는 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. In addition, in the following drawings, the thickness or size of each layer is exaggerated for convenience and clarity of description, the same reference numerals in the drawings refer to the same elements. As used herein, the term “and / or” includes any and all combinations of one or more of the listed items.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" may include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, "comprise" and / or "comprising" specifies the presence of the mentioned shapes, numbers, steps, actions, members, elements and / or groups of these. It is not intended to exclude the presence or the addition of one or more other shapes, numbers, acts, members, elements and / or groups.
본 명세서에서 제 1, 제 2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제 1 부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제 2 부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다. Although the terms first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Thus, the first member, part, region, layer or portion, which will be discussed below, may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
도 1은 본 발명의 일 실시예에 따른 소스 컨테이너(100)를 도시한 단면도이다. 방향은 직교 좌표계를 통해서 나타냈으며, y 방향은 지면에 수직한 방향을 나타낸다. 1 is a cross-sectional view showing a source container 100 according to an embodiment of the present invention. The direction is represented through a Cartesian coordinate system, and the y direction represents a direction perpendicular to the ground.
도 1을 참조하면, 소스 컨테이너(100)는 내부 용기(10), 외부 용기(20), 소스량 측정 부재(30) 및 제어부(40)를 포함한다. 또한, 소스 컨테이너(100)는 표시부(50), 운반 가스 유입 유로(60), 혼합 가스 배출 유로(70)를 더 포함할 수 있다. 소스 컨테이너(100)의 용기는 내부 용기(10)가 외부 용기(20)에 수납될 수 있어 용기는 이중 구조로 구성된다. 소스량 측정 부재(30)는 내부 용기(10)의 질량을 감지할 수 있도록 외부 용기(20)에 결합된다.Referring to FIG. 1, the source container 100 includes an inner container 10, an outer container 20, a source amount measuring member 30, and a controller 40. In addition, the source container 100 may further include a display unit 50, a carrier gas inflow passage 60, and a mixed gas discharge passage 70. In the container of the source container 100, the inner container 10 may be accommodated in the outer container 20 so that the container has a double structure. The source amount measuring member 30 is coupled to the outer container 20 so as to sense the mass of the inner container 10.
소스 컨테이너(100)에 사용하기에 적합한 소스 재료(SM)는 50 ℃ 내지 550 ℃ 범위 내에서 10-6 Torr 내지 103 Torr의 증기압을 갖는 액상 또는 고상 재료로서, 기상 증착에 적합한 유기 분자, 공역 중합체, 유기 금속 착물 또는 무기물 소스 재료일 수 있으며, 예를 들면, C27H18AlN3O3(AlQ3) 및 N, N'-Bis(naphthalene-1-yl)-N, N'-bis(phenyl)benzidine(NPB)와 같은 공지의 물질이 사용될 수 있다.Source materials (SM) suitable for use in the source container 100 are liquid or solid materials having a vapor pressure of 10 −6 Torr to 10 3 Torr in the range of 50 ° C. to 550 ° C., and are suitable for vapor phase deposition of organic molecules, conjugates. Polymer, organometallic complex or inorganic source material, for example C 27 H 18 AlN 3 O 3 (AlQ 3 ) and N, N′-Bis (naphthalene-1-yl) -N, N′-bis ( Known materials such as phenyl) benzidine (NPB) can be used.
내부 용기(10)에 소스 재료(SM)가 수용된다. 내부 용기(10)는 내측으로 소스 재료(SM)를 수용하기 위한 공간을 가진다. 내부 용기(10)는 일정한 두께로 형성될 수 있으며, 상부가 개구된 형상을 가질 수 있다. 내부 용기(10)는 외부 용기(20) 내에 수납될 수 있도록 외부 용기(20)의 내부 공간에 대응하는 적합한 형상을 가질 수 있다. 또한, 소스 컨테이너(100)의 외부 용기(20)가 가열되어 소스 컨테이너(100) 내부로 열전달이 필요한 경우, 내부 용기(10)의 외측이 외부 용기(20)와 적어도 일부가 접촉되어 고정될 수 있는 대응 형상 또는 다른 부재를 가질 수도 있다. The source material SM is accommodated in the inner container 10. The inner container 10 has a space for accommodating the source material SM inwardly. The inner container 10 may be formed to have a predetermined thickness, and may have an open top shape. The inner container 10 may have a suitable shape corresponding to the inner space of the outer container 20 to be accommodated in the outer container 20. In addition, when the outer container 20 of the source container 100 is heated and needs heat transfer to the inside of the source container 100, the outer side of the inner container 10 may be fixed by contacting at least a part of the outer container 20. It may have a corresponding shape or other member.
내부 용기(10)의 외형은 z 방향의 중심 축을 갖는 원통형일 수 있으나, 이에 제한되는 것은 아니며, 예를 들면, 횡방향(x 또는 y 방향) 또는 종방향(z 방향)의 축을 갖는 타원체이거나 구일 수 있다. 단, 내부 용기(10)는 외부 용기(20)에 수납되므로 수납에 용이한 구조를 갖는 것이 바람직하다. The outer shape of the inner container 10 may be a cylindrical shape having a central axis in the z direction, but is not limited thereto, for example, an ellipsoid having a shaft in the transverse direction (x or y direction) or a longitudinal direction (z direction) or rolling. Can be. However, since the inner container 10 is housed in the outer container 20, it is preferable to have a structure that is easy to receive.
내부 용기(10)는 소스 재료(SM)를 수용하는 제 1 공간(V1)과 제 1 공간(V1)과 접하면서 내부 용기(10)의 내부로 인입된 운반 가스와 소스 재료(SM)로부터 발생한 증기와 상기 운반 가스의 혼합이 일어나는 제 2 공간(V2)의 적어도 일부를 정의할 수 있다. 도시된 제 1 공간(V1)은 소스 재료(SM)가 축적될 수 있는 영역이며, 제 2 공간(V2)은 소스 재료(SM)가 기화 및/또는 승화하여, 소스 재료(SM)로부터 발생한 기상 전구체인 증기가 채워지는 영역이다. The inner container 10 is generated from the source gas SM and the carrier gas introduced into the inner container 10 while contacting the first space V1 and the first space V1 containing the source material SM. At least a portion of the second space V2 in which the mixing of the vapor and the carrier gas occurs may be defined. The illustrated first space V1 is a region in which the source material SM can be accumulated, and the second space V2 is a gaseous phase generated from the source material SM due to vaporization and / or sublimation of the source material SM. It is a region filled with vapor which is a precursor.
내부 용기(10)의 일부 또는 전체의 재료는 스텐레스 스틸, 알루미늄, 티타늄, 구리와 같은 금속 재료, 내부의 관측이 가능한 석영, 유리와 같은 재료 또는 단열 효과를 갖는 세라믹과 같은 재료 중 어느 하나 또는 이들의 조합으로부터 선택될 수 있으며, 본 발명이 이에 의해 제한되는 것은 아니다.Some or all of the material of the inner container 10 may be any one of metal materials such as stainless steel, aluminum, titanium, copper, quartz, glass, or a material such as ceramic having an insulating effect. It can be selected from a combination of and the present invention is not limited thereby.
내부 용기(10)가 수납되는 외부 용기(20)는 내부 용기(10)를 지지하기 위한 바닥면(20W)을 가지며, 바닥면(20W)의, 예를 들면, 중앙에 운반 가스 유입 유로(60)가 관통되도록 개구가 형성될 수 있다. The outer container 20 in which the inner container 10 is housed has a bottom surface 20W for supporting the inner container 10, and, for example, a carrier gas inflow passage 60 in the center of the bottom surface 20W. An opening may be formed to penetrate).
외부 용기(20)는 복수의 파트들로 구성될 수 있으며, 소스 재료(SM)의 장입과 주기적인 세정을 위해 이들 복수의 파트들은 서로 탈부착될 수 있도록 구성될 수 있다. 예를 들면, 도 1에 도시된 바와 같이, 외부 용기(20)는 바닥부(20_1), 몸체부(20_2) 및 뚜껑부(20_3)와 같이 3 개의 독립된 파트들로 구성될 수 있다. 다른 실시예에서, 외부 용기(20)의 바닥부(20_1)와 몸체부(20_2)는 일체화될 수도 있다. 외부 용기(20)를 구성하는 전술한 파트들의 개수는 예시적이며, 본 발명이 이에 의해 한정된 것은 아니다. 예를 들면, 외부 용기(20)는 4 개 이상의 독립된 파트들로 구성될 수도 있을 것이다. 이들 파트들은 볼트/너트, 조인트, 및/또는 클램프와 같은 체결 부재들(20C) 또는 이들 사이의 나사산 결합이나 플랜지 구조에 의해 서로 결합되어 기계적인 결합 강도를 유지하거나, 기밀을 유지하기 위한 금속 가스킷 및 오링과 같은 실링 부재(20D)를 더 포함할 수도 있다. The outer container 20 may be composed of a plurality of parts, and the plurality of parts may be configured to be detachable from each other for charging and periodic cleaning of the source material SM. For example, as shown in FIG. 1, the outer container 20 may be composed of three independent parts, such as the bottom portion 20_1, the body portion 20_2, and the lid portion 20_3. In another embodiment, the bottom portion 20_1 and the body portion 20_2 of the outer container 20 may be integrated. The number of parts described above constituting the outer container 20 is exemplary, and the present invention is not limited thereto. For example, the outer container 20 may consist of four or more separate parts. These parts are joined to each other by fastening members 20C such as bolts / nuts, joints, and / or clamps or threaded couplings or flange structures therebetween to maintain mechanical bond strength or to maintain airtightness. And a sealing member 20D such as an O-ring.
내부 용기(10)와 외부 용기(20)는 서로 다른 재질로 이루어질 수 있다. 내부 용기(10)와 외부 용기(20)는 고온의 소스 재료(SM)에 영향받지 않도록 열변형에 강하면서도 열전도율이 높은 재질로 구성되는 것이 바람직하며, 내부 용기(10)의 경우 내화학성을 함께 갖는 것이 바람직하다. The inner container 10 and the outer container 20 may be made of different materials. The inner container 10 and the outer container 20 are preferably made of a material having high thermal conductivity while being resistant to heat deformation so as not to be affected by the high temperature source material SM, and in the case of the inner container 10 together with chemical resistance It is desirable to have.
소스량 측정 부재(30)는 내부 용기(10)의 질량을 감지할 수 있도록 외부 용기(20)에 결합될 수 있다. 소스량 측정 부재(30)는 내부 용기(10)의 질량을 감지하여 감지된 내부 용기(10)의 질량을 기초로 소스 재료(SM)의 하중을 검출하기 위한 전기적 신호를 생성하고 이를 제어부(40)에 제공한다. The source amount measuring member 30 may be coupled to the outer container 20 so as to sense the mass of the inner container 10. The source amount measuring member 30 detects the mass of the inner container 10 to generate an electrical signal for detecting the load of the source material SM based on the detected mass of the inner container 10 and controls the control unit 40. To provide.
본 발명의 양 측정 대상물은 고온의 고상 또는 액상 화학 물질을 포함하는 소스 재료(SM)이므로, 소스 재료(SM)를 담겨 있는 내부 용기(10)의 전체 질량을 감지하여 내부 용기(10)에 수용된 소스 재료(SM)의 질량을 추산하는 방식을 사용하는 것이 용이하다. 다른 방식으로, 유체 표면에 뜨는 부표 부재를 활용한 게이지 지시 방식이 있을 수 있으나, 유체의 유동성으로 인하여 소스 재료(SM)의 특성상 게이지 오차가 발생할 확률이 높고, 내부 용기(10) 내에 부표 부재 및 관련 기구가 설치되어야 하고 소스 재료(SM)의 변질과 파티클이 발생될 수 있는 단점이 있다.Since the quantity measuring object of the present invention is a source material SM containing a high temperature solid or liquid chemical, the total mass of the inner container 10 containing the source material SM is sensed and accommodated in the inner container 10. It is easy to use a method of estimating the mass of the source material SM. Alternatively, there may be a gauge indicating method using a buoy member floating on the fluid surface, but due to the fluidity of the fluid, there is a high probability that a gauge error occurs due to the nature of the source material SM, and the buoy member and There is a disadvantage that the associated apparatus must be installed and that deterioration and particles of the source material SM can occur.
소스량 측정 부재(30)는 외부 용기(20)의 바닥면(20W)에 결합되어 내부 용기(10)의 하중을 감지하는 로드셀(Load Cell)을 포함할 수 있다. 상기 로드셀은 힘(Force)이나 하중(Load) 등의 물리량을 전기적 신호로 변환시켜 힘이나 하중을 측정하는 하중감지센서(Transducer)를 포함한다. 상기 로드셀에 관하여는 도 2를 참조하여 설명하기로 한다.The source amount measuring member 30 may include a load cell coupled to the bottom surface 20W of the outer container 20 to sense a load of the inner container 10. The load cell includes a load sensor for converting a physical quantity such as force or load into an electrical signal to measure force or load. The load cell will be described with reference to FIG. 2.
제어부(40)는 소스량 측정 부재(30)와 전기적으로 연결되고, 소스량 측정 부재(30)에 의해 감지된 내부 용기(10)의 질량에 기초하여 내부 용기(10)에 수용된 소스 재료(SM)의 질량을 도출한다. 제어부(40)는 소스량 측정 부재(30)와 전기적 배선을 통해 연결되며, 외부 용기(20)의 일 측면에 구비되거나, 또는 외부 용기(20)로부터 분리된 별도의 구성, 예컨대, 소스 컨테이너(100)를 포함하는 기상 증착 반응로의 제어 시스템에 구비되거나, 제어 시스템의 제어부가 이를 겸비할 수 있다.The control unit 40 is electrically connected to the source amount measuring member 30 and based on the mass of the inner container 10 sensed by the source amount measuring member 30, the source material SM received in the inner container 10. ) Mass. The controller 40 is connected to the source amount measuring member 30 through electrical wiring, and is provided on one side of the outer container 20, or is separated from the outer container 20, for example, a source container ( It may be provided in the control system of the vapor deposition reactor including a 100, or may have a control unit of the control system.
제어부(40)는 소스 컨테이너(100) 또는 소스 컨테이너(100)를 포함하는 기상 증착 반응로의 전반적인 제어를 수행할 수 있다. 제어부(40)는 전자제어장치(ECU: Electronic Control Unit) 또는 마이크로제어장치(MCU: Micro Control Unit)와 같은 하드웨어 또는 이들 하드웨어에서 실행되는 소프트웨어이거나, 이들이 결합된 집합적인 것일 수도 있다. 일부 실시예에서, 제어부(40)는 신호 증폭 및/또는 노이즈 필터링을 위한 유닛들을 더 포함하거나 외부에 별개의 마련된 유닛들과 서로 연결될 수 있다.The controller 40 may perform overall control of the vapor deposition reactor including the source container 100 or the source container 100. The control unit 40 may be hardware such as an electronic control unit (ECU) or a micro control unit (MCU) or software running on these hardware, or may be a combination of these. In some embodiments, the controller 40 may further include units for signal amplification and / or noise filtering, or may be connected to separate units provided externally.
제어부(40)는 소스량 측정 부재(30)에 의해 감지된 내부 용기(10)의 하중으로부터 산술적 연산을 통해 소스 재료(SM)의 질량을 도출할 수 있다. 예를 들면, 내부 용기(10)가 소스 재료(SM)를 수용하고 있으므로, 소스 재료(SM)가 수용된 상태의 내부 용기(10)의 하중에서, 소스 재료(SM)가 수용되지 않은 상태의 내부 용기(10)만의 질량을 제하면 소스 재료(SM)의 질량이 도출될 수 있다. 여기서, 내부가 비어있는 상태의 내부 용기(10)의 자체 질량에 대한 데이터는 소정의 메모리에 미리 저장될 수 있다. 예컨대, 현재 소스량 측정 부재(30)에 의해 감지된 하중이 5kg이고, 기 저장된 내부 용기(10)의 자체 질량이 2kg이라면, 현재 내부 용기(10)에 수용된 소스 재료(SM)의 질량은 3kg로 추산될 수 있다.The controller 40 may derive the mass of the source material SM through an arithmetic operation from the load of the inner container 10 sensed by the source amount measuring member 30. For example, since the inner container 10 contains the source material SM, at the load of the inner container 10 in the state where the source material SM is accommodated, the inside of the state in which the source material SM is not accommodated. Subtracting the mass of the container 10 alone may yield the mass of the source material SM. Here, the data on the mass of the inner container 10 in the empty state may be stored in a predetermined memory in advance. For example, if the load sensed by the current source amount measuring member 30 is 5 kg, and the pre-stored inner container 10 has a mass of 2 kg, the mass of the source material SM currently accommodated in the inner container 10 is 3 kg. Can be estimated as
그러나, 전술한 이론적 모델은 다음과 같이 변형 실시될 수 있다. 예를 들면, 소스 컨테이너(100)는 밀폐계이므로, 소스량 측정 부재(30)에 의해 측정되는 하중은 액상 또는 고상의 소스 재료의 질량뿐만 아니라, 제 2 공간(V2) 내의 혼합 가스가 갖는 압력도 영향을 미칠 수 있으며, 그 결과 측정되는 하중에는 소스 컨테이너(100)의 온도가 영향을 미칠 수 있다. 예를 들면, 기체 방정식에 의하면, 소스 컨테이너(100) 내부의 압력은 절대 온도에 비례하며, 그에 따른 기체 압력에, 내부 용기(20)의 하부 단면적과 같은 면적 성분을 곱하여 혼합 기체의 증기에 의한 하중 성분의 기여가 고려할 수 있다. However, the theoretical model described above can be modified as follows. For example, since the source container 100 is a closed system, the load measured by the source amount measuring member 30 is not only the mass of the liquid or solid source material, but also the pressure of the mixed gas in the second space V2. The temperature of the source container 100 can also affect the load that is measured as a result. For example, according to the gas equation, the pressure inside the source container 100 is proportional to the absolute temperature, and the resulting gas pressure is multiplied by the area component, such as the lower cross-sectional area of the inner container 20, resulting from the vapor of the mixed gas. The contribution of the load component can be taken into account.
또한, 공정이 진행됨에 따라 소스 재료의 양이 감소하게 되므로, 공정 누적 시간이 고려될 수 있다. 따라서, 질량 측정에 의한 소스 재료(SM)의 적합한 량을 검출하기 위한 파라미터는 내부 용기(10) 자체의 질량, 온도 및 공정 누적 시간 중 어느 하나 또는 이들의 조합을 포함할 수 있다. 이와 같이, 제어부(40)는 소스량 측정 부재(30)를 이용하여 다양한 방식으로 소스 재료(SM)의 질량 및 증기압을 도출할 수 있으며, 본 발명이 이에 의해 제한되는 것은 아니다. In addition, since the amount of source material is reduced as the process proceeds, process cumulative time may be considered. Thus, the parameter for detecting a suitable amount of source material SM by mass measurement may include any one or a combination of the mass, temperature and process cumulative time of the inner container 10 itself. As such, the controller 40 may derive the mass and vapor pressure of the source material SM in various ways using the source amount measuring member 30, but the present invention is not limited thereto.
소스 컨테이너(100)는 표시부(50)를 더 포함할 수도 있다. 표시부(50)는 제어부(40)에 의해 도출된 소스 재료(SM)의 질량 또는 소스 재료의 교체 시기 및 압력과 같은 소스 컨테이너 내부의 정보를 알아냄으로써 공정 관리를 효과적으로 하기 위해 소스 재료(SM)의 잔류량 및/또는 소스 컨테이너 압력을 표시할 수 있다. 또한, 표시부(50)는 제어부(40)로부터 전송되는 다양한 메시지를 표시할 수 있다. 예를 들면, 소스 재료(SM)의 교체 주기를 알리기 위한 시간 정보, 소스 컨테이너(100)의 온도, 소스 컨테이너(100)의 고장 여부, 측정 오류 등을 문자 또는 게이지 및 눈금과 같은 그래픽 요소를 표시함으로써 사용자에게 정보를 제공할 수 있다. The source container 100 may further include a display unit 50. The display unit 50 determines the information of the source material SM in order to effectively manage the process by finding information inside the source container, such as the mass of the source material SM derived by the control unit 40 or the replacement time and pressure of the source material. Residual amount and / or source container pressure may be indicated. In addition, the display unit 50 may display various messages transmitted from the control unit 40. For example, text information such as time information for notifying the replacement cycle of the source material SM, the temperature of the source container 100, whether the source container 100 has failed, a measurement error, or the like, and graphic elements such as a gauge and a scale are displayed. This can provide information to the user.
표시부(50)는 외부 용기(20)의 측면부에 장착되거나 소스 컨테이너(100)와 전기적으로 연결된 별도의 모니터링 장치를 통해 구현될 수 있으며, 제어부(40)와 함께 구성될 수도 있다. 표시부(50)에 대한 추가적인 실시예들에 관하여는, 도 4a 및 도 4b를 참조하여, 후술하도록 한다.The display unit 50 may be implemented through a separate monitoring device mounted on the side of the outer container 20 or electrically connected to the source container 100, or may be configured together with the control unit 40. Additional embodiments of the display unit 50 will be described later with reference to FIGS. 4A and 4B.
운반 가스 유입 유로(60)와 혼합 가스 배출 유로(70)는 제 2 공간(V2)과 외부 용기(20)의 외부를 연통시킨다. 운반 가스 유입 유로(60)와 혼합 가스 배출 유로(70)는 내부 용기(10) 및 외부 용기(20)를 관통하여 형성된다. 운반 가스 유입 유로(60)를 통하여 외부로부터 제 2 공간(V2)으로 운반 가스가 인입될 수 있다(운반 가스 IN). 상기 운반 가스는 소스 컨테이너(100)로부터 증착 프로세스가 일어나는 반응로로 소스 재료(SM)의 기상 전구체를 전달하기 위한 기상 유체이다. 상기 운반 가스는, 예를 들면, 사용되는 소스 재료의 응축을 방지하기 위하여 가열되어 공급되는 헬륨, 질소 및 아르곤과 같은 비활성 가스, 또는 산소, 오존 및 이산화탄소와 같은 반응성 가스일 수 있다. The carrier gas inflow passage 60 and the mixed gas discharge passage 70 communicate the second space V2 with the outside of the outer container 20. The carrier gas inflow flow path 60 and the mixed gas discharge flow path 70 are formed through the inner container 10 and the outer container 20. The carrier gas may be introduced into the second space V2 from the outside through the carrier gas inflow passage 60 (carrier gas IN). The carrier gas is a gaseous fluid for delivering a gaseous precursor of the source material SM from the source container 100 to the reactor where the deposition process takes place. The carrier gas may be, for example, an inert gas such as helium, nitrogen and argon, which is heated and supplied to prevent condensation of the source material used, or a reactive gas such as oxygen, ozone and carbon dioxide.
제 2 공간(V2) 내부로 인입된 상기 운반 가스는 제 2 공간(V2)으로 확산된 소스 재료(SM)의 증기와 혼합되어 혼합 가스 배출 유로(70)를 통하여 반응로로 전달된다(혼합 가스 OUT). 상기 반응로는, 예를 들면, 액체 또는 고체 소스 재료로부터 발생한 증기 또는 이의 반응 생성물의 증착에 의해 소자층이 형성되는 메모리 또는 로직 회로와 같은 반도체 소자 제조를 위한 기상 증착 장치, 또는 유기 EL(또는 유기 발광 다이오드(OLED)라고도 함)와 같은 디스플레이 소자의 제조를 위한 기상 증착 장치에 적용될 수 있다. 그러나, 이는 예시적이며, 소스 재료(SM)에 따라 광전 기전을 갖는 다른 소자들, 예를 들면, 전기화학전지, 광전도성 전지, 광저항기, 포토스위치, 포토트랜지스터 및 포토튜브에도 적용될 수 있을 것이다. The carrier gas introduced into the second space V2 is mixed with the vapor of the source material SM diffused into the second space V2 and transferred to the reactor through the mixed gas discharge passage 70 (mixed gas). OUT). The reactor is, for example, a vapor deposition apparatus for manufacturing a semiconductor device, such as a memory or logic circuit, in which a device layer is formed by deposition of vapor or a reaction product thereof from a liquid or solid source material, or an organic EL (or It may be applied to a vapor deposition apparatus for manufacturing a display device such as an organic light emitting diode (OLED). However, this is exemplary and may be applied to other devices having a photovoltaic device, for example, an electrochemical cell, a photoconductive cell, a photoresistor, a photo switch, a phototransistor, and a phototube, depending on the source material SM. .
일부 실시예에서, 운반 가스 유입 유로(60)는, 도 1에 도시된 바와 같이, 외부 용기(20)의 외부로부터 제 1 공간(V1)을 경과하여 제 2 공간(V2)으로 연장될 수 있다. 이 경우, 운반 가스 유입 유로(60)의 유입 포트(60P)는 소스 재료(SM)의 표면 위로 돌출되어 제 2 공간(V2)에 노출될 수 있다. 그러나, 다른 실시예에서, 운반 가스 유입 유로(60)는 용기(10)의 외부로부터 제 2 공간(V2)으로 직접 연장될 수도 있을 것이다. In some embodiments, the carrier gas inlet flow path 60 may extend from the outside of the outer container 20 to the second space V2 from the outside of the outer container 20, as shown in FIG. 1. . In this case, the inflow port 60P of the carrier gas inflow passage 60 may protrude above the surface of the source material SM and be exposed to the second space V2. However, in other embodiments, the carrier gas inlet flow path 60 may extend directly from the exterior of the vessel 10 to the second space V2.
도 1에 도시된 소스 컨테이너(100)는, 유체의 흐름 방향에 따라 정의하자면, 운반 가스 유입 유로(60)가 소스 재료(SM)의 표면을 기준으로 혼합 가스 배출 유로(70)에 비하여 상대적으로 아래에 있으므로, 상향식 흐름 방식이다. 상기 상향식 흐름 방식 구현을 위하여 운반 가스 유입 유로(60)의 유입 포트(60P)는 도시된 바와 같이 제 1 공간(V1)을 경과하여 제 2 공간(V2)으로 연장되는 것에 제한되지 않으며, 운반 가스 유입 유로(60)의 유입 포트(60P)가 제 2 공간(V2) 내에서 소스 재료(SM)의 표면을 기준으로 배출 포트(70P)에 비하여 낮게 배치되는 것도 가능하다.In the source container 100 shown in FIG. 1, the carrier gas inflow flow path 60 is defined relative to the mixed gas discharge flow path 70 based on the surface of the source material SM. Since it is below, it is a bottom-up flow method. In order to implement the bottom-up flow method, the inlet port 60P of the carrier gas inlet flow path 60 is not limited to extending to the second space V2 after passing through the first space V1 as shown in the drawings. It is also possible for the inflow port 60P of the inflow flow path 60 to be disposed lower than the discharge port 70P with respect to the surface of the source material SM in the second space V2.
전술한 바와 같이, 유로(60)가 제 1 공간(V1)을 경과하는 경우, 내부 용기(10)의 바닥면(10W)은 유로(60)가 경과되면서 소스 재료(SM)을 담기 위해, 도 1에 도시된 바와 같이, 유로(60)를 따라 연장된 측벽(10S)을 가질 수도 있다. 도 1에 도시된 내부 용기(10)의 상부는 완전히 개방되어 있지만, 상부의 적어도 일부를 폐쇄하기 위한 상부벽(미도시)을 포함할 수도 있다. 또한, 상기 상부벽은 유로(70)를 따라 측벽(10S)와 같이 연장될 수도 있다. As described above, when the flow path 60 passes through the first space V1, the bottom surface 10W of the inner container 10 may contain the source material SM while the flow path 60 passes. As shown in FIG. 1, the side wall 10S may extend along the flow path 60. The top of the inner container 10 shown in FIG. 1 is fully open, but may also include a top wall (not shown) for closing at least a portion of the top. In addition, the upper wall may extend along the flow path 70 as the side wall 10S.
전술한 실시예에 따르면, 소스 컨테이너(100)의 용기를 소스 재료(SM)가 수용되는 내부 용기(10)와 상기 내부 용기(10)를 수납하는 외부 용기(20)의 이중 구조로 구성하며, 소스량 측정 부재(30)를 통해 상기 내부 용기(10)의 하중을 감지하고, 도출된 소스 재료의 잔량을 알기 쉽게 외부에 표시함으로써, 소스 재료 (SM)의 정확한 잔량 확인 및 교체 주기를 쉽게 파악할 수 있게 된다.According to the above-described embodiment, the container of the source container 100 is composed of a dual structure of the inner container 10 in which the source material SM is accommodated and the outer container 20 in which the inner container 10 is accommodated. By detecting the load of the inner container 10 through the source amount measuring member 30 and displaying the remaining amount of the derived source material to the outside for easy understanding, it is possible to easily check the accurate remaining amount check and replacement cycle of the source material SM. It becomes possible.
또한, 상기 이중 구조에 의해 소스 컨테이너의 세정이 필요한 경우, 소스 재료(SM)와 직접적으로 접촉하는 내부 용기(10)만을 세정하거나 이를 교체하는 것만으로 세정을 달성할 수 있으므로, 기상 증착 장치의 런 타임을 증가시킬 수 있다.In addition, when the cleaning of the source container is required by the double structure, the cleaning can be achieved only by cleaning or replacing only the inner container 10 that is in direct contact with the source material SM, so that the run of the vapor deposition apparatus can be performed. You can increase the time.
도 2는 일 실시예에 따른 소스량 측정 부재의 단면도이다.2 is a cross-sectional view of a source amount measuring member according to an exemplary embodiment.
도 2를 참조하면, 소스량 측정 부재는 로드셀(31)을 포함할 수 있다. 로드셀(31)은 외부 용기(20)에 바닥부(20_1)에 결합되어 지지되고, 내부 용기(10)의 접촉하여 하중을 감지한다. 로드셀(31)은 로드셀 하우징(33), 외부 용기(20)의 바닥면(20W)으로부터 돌출되어 내부 용기(10)에 접촉하는 로드 단자(35) 및 로드 단자(35)에 가해지는 하중에 따라 값이 달라지는 전기적 신호를 발생하는 신호 발생부(37)를 포함할 수 있다. 신호 발생부(37)는, 예를 들면, 탄성부재(37_1) 및 스트레인 게이지(37_2)를 포함할 수 있다. 2, the source amount measuring member may include a load cell 31. The load cell 31 is coupled to and supported by the bottom portion 20_1 on the outer container 20, and detects a load by contacting the inner container 10. The load cell 31 protrudes from the load cell housing 33, the bottom surface 20W of the outer container 20, and loads applied to the load terminal 35 and the load terminal 35 contacting the inner container 10. It may include a signal generator 37 for generating an electrical signal whose value is different. The signal generator 37 may include, for example, an elastic member 37_1 and a strain gauge 37_2.
로드셀(31)은 로드셀 하우징(33)의 상부에 내측으로 삽입되는 로드 단자(35)를 포함하고, 상기 로드 단자(35)의 하측에는 로드 단자(35)의 가압 정도에 따라 변형되는 탄성부재(37_1)가 설치될 수 있다. 로드 단자(35)는 내부 용기(10)의 바닥면(10W)의 배면에 접촉되도록 설치된다. 소스 재료(SM)가 담긴 내부 용기(10)가 인가하는 하중에 따라 로드 단자(35)가 가압된다. 탄성부재(37_1)는 로드 단자(35)의 가압 정도에 따라 변형되고, 탄성부재(37_1)의 변형률에 따라 스트레인 게이지(37_2)의, 예를 들면, 전기저항이 변화된다. 이 경우, 상기 스트레인 게이지(37_2)는 휘스톤 브리지(Wheatstone Bridge)와 같은 전기회로를 포함할 수 있으며, 저항값에 의해 변화되는 전류값의 변화를 전기신호로 변환시킬 수 있다. The load cell 31 includes a load terminal 35 inserted into an upper portion of the load cell housing 33, and an elastic member deformed according to the degree of pressure of the load terminal 35 below the load terminal 35. 37_1) may be installed. The rod terminal 35 is installed to contact the rear surface of the bottom surface 10W of the inner container 10. The load terminal 35 is pressed according to the load applied by the inner container 10 containing the source material SM. The elastic member 37_1 is deformed according to the degree of pressurization of the rod terminal 35, and, for example, the electrical resistance of the strain gauge 37_2 is changed according to the strain of the elastic member 37_1. In this case, the strain gauge 37_2 may include an electric circuit such as a Wheatstone bridge, and may convert a change in a current value changed by a resistance value into an electric signal.
그러나, 이는 예시적이며, 스트레인 게이지(37_2)는 탄성부재(37_1)의 변형률에 따른 캐패시턴스의 변화를 발생시키는 압저 소자와 같은 트랜듀서일 수도 있다. 상기 전기신호를 제공받은 제어부(40)가 전술한 알고리즘에 따라 소스 재료(SM)의 양을 산출한다. However, this is exemplary, and the strain gauge 37_2 may be a transducer such as a piezoelectric element that generates a change in capacitance according to the strain of the elastic member 37_1. The controller 40 receiving the electric signal calculates the amount of the source material SM according to the algorithm described above.
도 3은 도 1에 도시된 소스 컨테이너(100)의 내부 용기를 외부로 반출한 모습을 도시한 단면도이다.3 is a cross-sectional view illustrating a state in which the inner container of the source container 100 shown in FIG. 1 is taken out to the outside.
도 3을 참조하면, 외부 용기(20)는 상부가 개방되어 내부 용기(10)를 내부로 수납 및 외부로 반출할 수 있는 구조를 가질 수 있다. 이를 위하여, 외부 용기(20)는 바닥부(20_1)와 몸체부(20_2)를 포함하는 본체부(21) 및 본체부(21)의 개방된 상부를 개폐하기 위한 뚜껑부(20_3)를 포함할 수 있다. 본체부(21)와 뚜껑부(20_3)는 독립된 파트들로서 체결 부재들(20C)을 이용해 결합되거나, 힌지 결합되는 구조를 가질 수 있다. 소스 재료(SM)가 고갈되면, 뚜껑부(20_3)를 열고 내부 용기(10)에 소스 재료(SM)를 주입할 수 있다. 또는 내부 용기(10)를 외부 용기(20)로부터 반출하여 소스 재료(SM)를 채운 다음, 내부 용기(10)를 외부 용기(20)에 수납할 수 있다. 다른 실시예에서, 도시하지는 않았지만, 내부 용기(10)는 외부 용기(20)의 바닥부(20_3)를 탈거하여 소스 컨테이너(100)의 하부측을 통하여 외부로 반출될 수도 있다.Referring to FIG. 3, the outer container 20 may have a structure in which an upper portion thereof is opened to accommodate the inner container 10 and to carry it out. To this end, the outer container 20 may include a body portion 21 including a bottom portion 20_1 and a body portion 20_2 and a lid portion 20_3 for opening and closing an open upper portion of the body portion 21. Can be. The main body portion 21 and the lid portion 20_3 may be coupled to each other by using the fastening members 20C or hinged as separate parts. When the source material SM is exhausted, the lid 20_3 may be opened to inject the source material SM into the inner container 10. Alternatively, the inner container 10 may be taken out from the outer container 20 to fill the source material SM, and then the inner container 10 may be stored in the outer container 20. In another embodiment, although not shown, the inner container 10 may be taken out through the bottom side of the source container 100 by removing the bottom portion 20_3 of the outer container 20.
소스 컨테이너는 주기적으로 세정이 필요하며, 세정이 진행되는 동안은 증착 공정의 중단이 불가피하기 때문에 이의 시간을 단축하는 것은 생산성의 향상에 기여할 수 있다. 본 발명의 실시예에 따르면, 소스 컨테이너(100)의 세정이 필요한 경우, 기존 내부 용기(10)를 반출하고 클리닝 처리된 새로운 내부 용기로 교체함으로써 용기의 세정 및 교체 작업을 신속히 수행할 수 있다. 이로써, 본 발명의 소스 컨테이너(100)는 세정 작업에 따른 공정의 중단 시간을 최소화하여 생산성을 향상시키고, 내부 용기(10)의 적절한 교체를 통해 장비의 수명을 증가시킬 수 있는 이점이 있다.The source container needs to be cleaned periodically, and shortening its time can contribute to the improvement of productivity since the deposition process is inevitable during the cleaning process. According to the exemplary embodiment of the present invention, when the source container 100 needs to be cleaned, the container may be quickly cleaned and replaced by removing the existing inner container 10 and replacing it with a new, clean inner container. Thus, the source container 100 of the present invention has the advantage of minimizing the downtime of the process according to the cleaning operation to improve productivity, and increase the life of the equipment through proper replacement of the inner container (10).
일부 실시예에서, 내부 용기(10)의 외주면 및 외부 용기(20)의 내주면 상에는 내부 용기(10)의 수납 및 반출을 안내하고, 소스량 측정 부재와의 정확한 접촉을 확보할 수 있도록 하는, 예를 들면, 요철 표면과 같은 가이드 라인(미도시)이 형성될 수 있다. 이에 의하여, 내부 용기(10)의 유동이 방지되고, 수납 및 반출이 용이해질 수 있다.In some embodiments, on the outer circumferential surface of the inner container 10 and on the inner circumferential surface of the outer container 20, it is possible to guide the receipt and removal of the inner container 10 and to ensure accurate contact with the source amount measuring member, eg For example, a guide line (not shown) such as an uneven surface may be formed. Thereby, the flow of the inner container 10 can be prevented, and storage and carrying out can be facilitated.
또한, 소스 컨테이너(100)는 외부 용기(20)에 내측에 설치되어 내부 용기(10)의 온도를 감지하는 온도 측정 부재(80)를 더 포함할 수 있다. 온도 측정 부재(80)는 제어부(40)에 연결되어 표시부(50)에 해당 온도 정보를 표시할 수 있다. 또한, 온도 측정 부재(80)에 의해 측정된 온도는 도 1을 참조하여 전술한 바와 같이 소스량 측정의 파라미터가 될 수 있다. 소스 재료(SM)는 50 ℃ 내지 550 ℃ 범위에서 가열될 수 있으므로, 온도가 증가될수록, 온도 측정 부재(80)에 의해 추출된 온도는 소스량 측정의 정확도를 향상시킨다. In addition, the source container 100 may further include a temperature measuring member 80 installed inside the outer container 20 to sense a temperature of the inner container 10. The temperature measuring member 80 may be connected to the control unit 40 to display corresponding temperature information on the display unit 50. In addition, the temperature measured by the temperature measuring member 80 may be a parameter of the source amount measurement as described above with reference to FIG. 1. Since the source material SM can be heated in the range of 50 ° C. to 550 ° C., as the temperature is increased, the temperature extracted by the temperature measuring member 80 improves the accuracy of the source amount measurement.
도 4a 및 도 4b는 도 1에 도시된 표시부의 실시예들을 도시한 단면도이다. 4A and 4B are cross-sectional views illustrating embodiments of the display unit illustrated in FIG. 1.
도 4a 및 도 4b를 참조하면, 표시부(50)는 LED(Light Emitting Diode)램프로 구성된 디스플레이부(51a, 51b), 음향을 출력하는 스피커부(53) 및 경고등(55)을 포함할 수 있다. 표시부(50)는 외부 용기(20)의 일 측면에 장착되거나, 소스 컨테이너(100)를 둘러싸는 열 배스가 있는 경우, 이의 외부에 부착되어 사용자가 실시간으로 확인 가능할 수 있도록 하는 것이 바람직하다. 4A and 4B, the display unit 50 may include display units 51a and 51b configured as light emitting diode (LED) lamps, a speaker unit 53 for outputting sound, and a warning lamp 55. . If the display unit 50 is mounted on one side of the outer container 20 or there is a heat bath surrounding the source container 100, the display unit 50 may be attached to the outside of the outer container 20 so that the user may check in real time.
표시부(50)는 제어부(40)로부터 제공되는 데이터를 표시하고 제어부(40)의 제어에 의해 그 기능을 수행하며, 사용자의 명령 입력을 위한 예를 들면, 터치패드, 터치스크린, 키보드 및 마우스와 같은 소정의 인터페이스부(미도시)를 더 포함할 수도 있다. 표시부(50)의 종류, 위치, 형태 및 크기는 필요에 따라 다양하게 변형될 수 있으며, 본 발명이 이에 제한되는 것은 아니다.The display unit 50 displays data provided from the control unit 40 and performs the function by the control of the control unit 40, and includes, for example, a touch pad, a touch screen, a keyboard, and a mouse for inputting a user's command. The same predetermined interface unit (not shown) may be further included. The type, position, shape, and size of the display unit 50 may be variously modified as necessary, but the present invention is not limited thereto.
일 실시예의 디스플레이부(51a)는 도 4a에 도시된 바와 같이, 소스 재료(SM)의 잔류량을 단계별로 점등하는 복수개의 바(bar) 형태로 구비되어 직관적으로 인지하기 쉽게 표시할 수 있다. 다른 실시예의 디스플레이부(51b)는 도 4b에 도시된 바와 같이, 소스 재료(SM)의 잔류량을 수치로서 표시하는 LCD(liquid crystal display) 화면을 통해 보다 정확하고 세밀한 정보를 표시할 수 있다. 부가적으로, 디스플레이부(51b)는 온도 측정 부재(80)에 의해 검출된 내부 용기(10)의 온도를 더 표시할 수도 있다. 다른 예로서, 디스플레이부(51b)는 CRT(cathode ray tube), PDP(plasma display panel), DLP(digital light processing), SED(surface-conduction electron-emitter display), FED(field emission display) 등의 형태로 구현될 수 있다. As shown in FIG. 4A, the display unit 51a according to an exemplary embodiment may be provided in the form of a plurality of bars that light up the residual amount of the source material SM in stages so that the display 51a may be intuitively recognized. As shown in FIG. 4B, the display unit 51b of another embodiment may display more accurate and detailed information through a liquid crystal display (LCD) screen displaying a residual amount of the source material SM as a numerical value. In addition, the display unit 51b may further display the temperature of the inner container 10 detected by the temperature measuring member 80. As another example, the display 51b may include a cathode ray tube (CRT), a plasma display panel (PDP), a digital light processing (DLP), a surface-conduction electron-emitter display (SED), and a field emission display (FED). It may be implemented in the form.
스피커부(53)와 경고등(55)은 소스 재료(SM)의 고갈 여부를 각각 소정의 음향과 광의 점멸을 통해 알릴 수 있다. 제어부(40)는 예를 들면, 소스 재료(SM)의 잔류량이 기준치 이하인지 여부를 판단하고, 그 결과를 상기 스피커부(53)와 경고등(55)을 통해 알릴 수 있다. 부가적으로, 스피커부(53)와 경고등(55)을 이용하여 소스 컨테이너(100)의 고장 여부, 내부 용기(10)의 교체 주기 등의 알람 기능을 수행할 수 있다. 이와 같이, 소스 컨테이너(100)의 다양한 상태를 사용자가 인지하기 쉽게 표시함으로써, 이에 따른 신속한 교체 및 수리가 이루어지도록 할 수 있다.The speaker unit 53 and the warning lamp 55 may notify whether the source material SM is depleted through the flashing of a predetermined sound and light, respectively. For example, the controller 40 may determine whether the residual amount of the source material SM is equal to or less than a reference value, and notify the result of the result through the speaker unit 53 and the warning lamp 55. In addition, the speaker unit 53 and the warning light 55 may be used to perform an alarm function such as whether the source container 100 is broken or the replacement cycle of the inner container 10. As such, various states of the source container 100 may be easily displayed by the user so that quick replacement and repair may be performed accordingly.
도 5는 본 발명의 다른 실시예에 따른 소스 컨테이너를 도시한 단면도이다. 전술한 구성 요소와 동일한 참조 번호를 갖는 구성 요소에 관하여는 모순되지 않는 한 전술한 개시 사항을 참조할 수 있으며, 중복된 설명은 생략하기로 한다. 5 is a cross-sectional view showing a source container according to another embodiment of the present invention. Concerning the components having the same reference numerals as the aforementioned components, reference may be made to the above-described disclosures unless there is a contradiction, and duplicate descriptions will be omitted.
도 5를 참조하면, 소스 컨테이너(100a)는 내부에 균일한 열공급을 위한 가열 부재(90)를 더 포함할 수 있다. 가열 부재(90)는 소스 재료(SM)가 채워지는 제 1 공간(V1)을 가열하거나, 기체가 채워지는 제 2 공간(V2)을 함께 가열할 수도 있다. 가열 부재(90)는 제 1 공간(V1)과 제 2 공간(V2)을 각각 가열하도록 독립적으로 제공될 수도 있다. Referring to FIG. 5, the source container 100a may further include a heating member 90 for uniform heat supply therein. The heating member 90 may heat the first space V1 in which the source material SM is filled, or heat the second space V2 in which the gas is filled. The heating member 90 may be provided independently to heat the first space V1 and the second space V2, respectively.
가열 부재(90)는 z 방향으로 연장된 봉 형태일 수 있으며, x 및 y 방향의 2차원적인 어레이 형태로 배열될 수 있다. 가열 부재(90)는, 예를 들면, 저항 히터일 수 있으며, 제 1 공간(V1) 내에서 소스 재료(SM)의 직접적인 접촉을 방지하기 위해 차폐 구조(90C)가 제공될 수 있다. 상기 차폐 구조(90C)는 외부 용기(20)의 바닥부(20_1)와 일체화되거나 바닥부(20_1)를 관통하여 제 1 공간(V1)으로 인입되는 방식으로 조립될 수 있다. The heating member 90 may be in the form of a rod extending in the z direction and arranged in a two-dimensional array in the x and y directions. The heating member 90 may be, for example, a resistance heater, and a shielding structure 90C may be provided to prevent direct contact of the source material SM in the first space V1. The shielding structure 90C may be assembled in a manner of being integrated with the bottom portion 20_1 of the outer container 20 or through the bottom portion 20_1 and drawn into the first space V1.
가열 부재(90)는 저항 히터 이외에, 복사 히터, 순환유체 히터 및 유도 히터와 같은 다른 가열 부재일 수도 있다. 또한, 다른 실시예에서, 가열 부재(90)는 봉 형태 이외에 제 1 공간(V1) 내에서 운반 가스 유입 유로(60)의 중심 축을 중심으로 동심원 배열이나 Z 방향으로 적층된 다른 선형, 원형 또는 2차원적인 면 가열체일 수 있으며, 본 발명이 이에 제한되는 것은 아니다. In addition to the resistance heater, the heating member 90 may be another heating member such as a radiant heater, a circulating fluid heater, and an induction heater. Further, in another embodiment, the heating member 90 is in addition to the rod shape, other linear, circular or two stacked in a concentric arrangement or Z direction about the central axis of the carrier gas inlet flow path 60 in the first space V1. It may be a dimensional surface heating body, but the present invention is not limited thereto.
내부 용기(10a)는 외부 용기(20)의 내부 공간에 대응하는 형상을 가지므로, 내부 용기(10a)의 제1 바닥면(10W)에는 상기 외부 용기(20)의 차폐 구조(90C)의 형상에 대응하여 돌출된 돌출부(10C)를 포함할 수도 있다. 돌출부(10C)는 가열 부재(90)를 감싸는 구조를 가질 수 있다.Since the inner container 10a has a shape corresponding to the inner space of the outer container 20, the shape of the shielding structure 90C of the outer container 20 is formed on the first bottom surface 10W of the inner container 10a. It may also include a protrusion (10C) protruding corresponding to the. The protrusion 10C may have a structure surrounding the heating member 90.
도 6a는 본 발명의 또 다른 실시예에 따른 소스 컨테이너(100b)를 도시하는 단면도이며, 도 6b는 도 6a에 도시된 소스 컨테이너를 I-II선을 따라 절취한 단면도이다. 전술한 구성 요소와 동일한 참조 번호를 갖는 구성 요소에 관하여는 모순되지 않는 한 전술한 개시 사항을 참조할 수 있으며, 중복된 설명은 생략하기로 한다.FIG. 6A is a cross-sectional view illustrating a source container 100b according to still another embodiment of the present invention, and FIG. 6B is a cross-sectional view taken along the line I-II of the source container shown in FIG. 6A. Concerning the components having the same reference numerals as the aforementioned components, reference may be made to the above-described disclosures unless there is a contradiction, and duplicate descriptions will be omitted.
도 6a 및 도 6b를 참조하면, 본 실시예의 소스 컨테이너(100b)의 소스량 측정 부재(30_1, 30_2, 30_3, 30_4)는 복수개로 마련되어, 외부 용기(20)의 바닥면(20W) 상에서 일정한 간격으로 분할된 다수의 영역들(20W_1, 20W_2, 20W_3, 20W_4)에 각각 구비될 수 있다. 영역들(20W_1, 20W_2, 20W_3, 20W_4)은 외부 용기(20)의 바닥면(20W)을 관통하는 운반 가스 유입 유로(60)를 중심으로 동일한 넓이로 4등분된 영역일 수 있다. 각 영역들(20W_1, 20W_2, 20W_3, 20W_4)의 중심부에는 각각 소스량 측정 부재(30_1, 30_2, 30_3, 30_4)가 구비된다. 6A and 6B, a plurality of source amount measuring members 30_1, 30_2, 30_3, and 30_4 of the source container 100b of the present embodiment are provided in plural, and have a predetermined interval on the bottom surface 20W of the outer container 20. Each of the plurality of regions 20W_1, 20W_2, 20W_3, and 20W_4 divided into two regions may be provided. The regions 20W_1, 20W_2, 20W_3 and 20W_4 may be divided into quarters of equal width about the carrier gas inflow passage 60 passing through the bottom surface 20W of the outer container 20. Source portions measuring members 30_1, 30_2, 30_3, and 30_4 are provided at the centers of the regions 20W_1, 20W_2, 20W_3, and 20W_4, respectively.
소스 컨테이너(100)는 내부 용기(10)와 외부 용기(20)의 이중 구조를 가지기 때문에, 외부 용기(20)의 바닥면(20W)으로부터 돌출된 로드셀(31)이 실질적으로 내부 용기(10)를 지지하게 된다. 따라서, 내부 용기(10)의 하중은 로드셀(31)의 로드 단자(35)에 집중될 수 있다. 소스량 측정 부재의 로드 단자(35)가 매우 작은 접촉 영역을 가지고 있는 경우, 하중이 집중되어 손상 가능성이 있고, 내부 용기(10)가 기울어지면서 정확한 하중 측정이 어려울 수 있다. 이와 달리, 복수의 소스량 측정 부재(30_1, 30_2, 30_3, 30_4)는 내부 용기(10)의 하부를 영역별로 고르게 지지하여 내부 용기(10)의 하중이 분산되어 안정적이고 정확하게 전달되도록 하여, 보다 안정되고 정확한 하중의 검출을 달성할 수 있다.Since the source container 100 has a dual structure of the inner container 10 and the outer container 20, the load cell 31 protruding from the bottom surface 20W of the outer container 20 is substantially the inner container 10. Will be supported. Therefore, the load of the inner container 10 can be concentrated on the load terminal 35 of the load cell 31. If the rod terminal 35 of the source amount measuring member has a very small contact area, the load may be concentrated and possibly damaged, and accurate load measurement may be difficult as the inner container 10 is inclined. On the contrary, the plurality of source amount measuring members 30_1, 30_2, 30_3, and 30_4 support the lower portion of the inner container 10 evenly by area so that the load of the inner container 10 is dispersed and transmitted stably and accurately. A stable and accurate detection of the load can be achieved.
제어부(40)는 분할된 다수의 영역들(20W_1, 20W_2, 20W_3, 20W_4)에 각각 배치된 복수개의 소스량 측정 부재(30_1, 30_2, 30_3, 30_4)를 통해 검출된 하중치의 총합을 내부 용기(10)에 의한 하중으로 환산한다. 즉, 각각의 소스량 측정 부재(30_1, 30_2, 30_3, 30_4)로부터 전송된 하중치를 모두 더하여 얻어진 총 질량에 기초하여 소스 재료(SM)의 잔류량을 도출할 수 있다. 이 경우, 단일 소스량 측정 부재를 이용한 연산 프로세스에서 분할된 하중치를 모두 더하는 과정이 추가될 수 있다. 도시된 실시예는 외부 용기(20)의 바닥면(20W)이 4개의 영역들(20W_1, 20W_2, 20W_3, 20W_4)로 분할됨을 도시하였지만, 영역 분할 방식과 소스량 측정 부재(30_1, 30_2, 30_3, 30_4)의 배치 구조는 다양하게 변형될 수 있다. The control unit 40 stores the total of load values detected through the plurality of source amount measuring members 30_1, 30_2, 30_3, and 30_4 disposed in the divided regions 20W_1, 20W_2, 20W_3, and 20W_4, respectively. Convert to load by 10). That is, the residual amount of the source material SM can be derived based on the total mass obtained by adding all the load values transmitted from the respective source amount measuring members 30_1, 30_2, 30_3, 30_4. In this case, a process of adding all the divided load values in the calculation process using the single source amount measuring member may be added. Although the illustrated embodiment shows that the bottom surface 20W of the outer container 20 is divided into four areas 20W_1, 20W_2, 20W_3, 20W_4, the area dividing method and the source amount measuring member 30_1, 30_2, 30_3. , 30_4) may be modified in various ways.
또한, 전술한 소스 컨테이너들은 상향식 흐름 방식에 관한 것이지만, 이는 예시적이며, 본 발명의 범위에는 운반 가스 유입 유로(60)가 소스 재료(SM)의 표면을 기준으로 혼합 가스 배출 유로(70)에 비하여 상대적으로 위에 있는 하향식 흐름 방식도 포함된다. 예를 들면, 도 6a를 참조하면, 소스 컨테이너는 유로(70)를 통하여 운반 가스가 인입되고, 유로(60)을 통하여 혼합 가스가 배출될 수도 있다.In addition, although the above-described source containers relate to a bottom-up flow method, this is exemplary and in the scope of the present invention, a carrier gas inlet flow path 60 is connected to the mixed gas discharge flow path 70 based on the surface of the source material SM. In comparison, the top-down flow method is also included. For example, referring to FIG. 6A, a carrier gas may be introduced through a flow path 70, and a mixed gas may be discharged through the flow path 60.
이상에서 설명한 본 발명이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다. The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be apparent to those who have the knowledge of.
Claims (17)
- 소스 재료가 수용되는 내부 용기;An inner container in which the source material is received;상기 내부 용기를 수납하는 외부 용기;An outer container accommodating the inner container;상기 외부 용기에 결합되어 상기 내부 용기의 하중을 감지하는 소스량 측정 부재; 및A source amount measuring member coupled to the outer container to sense a load of the inner container; And상기 소스량 측정 부재와 전기적으로 연결되고, 상기 소스량 측정 부재에 의해 감지된 상기 내부 용기의 하중에 기초하여 상기 내부 용기에 수용된 소스 재료의 양을 도출하는 제어부를 포함하는 소스 컨테이너.And a control unit electrically connected to the source amount measuring member and deriving an amount of source material contained in the inner container based on a load of the inner container sensed by the source amount measuring member.
- 제 1 항에 있어서, The method of claim 1,상기 제어부는 상기 내부 용기의 하중과 함께, 상기 내부 용기 자체의 질량, 온도 및 공정 누적 시간 중 어느 하나 또는 이들의 조합에 기초하여 상기 소스 재료의 양을 도출하는 것을 특징으로 하는 소스 컨테이너.And the control unit derives the amount of the source material based on any one or a combination of the mass, temperature and process cumulative time of the inner container itself, together with the load of the inner container.
- 제 1 항에 있어서, The method of claim 1,상기 소스량 측정 부재는 로드셀을 포함하는 것을 특징으로 하는 소스 컨테이너.And the source amount measuring member includes a load cell.
- 제 3 항에 있어서, 상기 로드셀은,The method of claim 3, wherein the load cell,상기 외부 용기의 바닥면으로부터 돌출되어 상기 내부 용기에 접촉하는 로드 단자; 및A rod terminal protruding from the bottom surface of the outer container to contact the inner container; And상기 로드 단자에 가해지는 상기 하중에 따라 값이 달라지는 전기적 신호를 발생하는 신호 발생부를 포함하는 것을 특징으로 하는 소스 컨테이너.And a signal generator for generating an electrical signal whose value varies depending on the load applied to the load terminal.
- 제 4 항에 있어서, The method of claim 4, wherein상기 신호 발생부는 스트레인 게이지 및 압전 소자 중 적어도 하나를 포함하는 것을 특징으로 하는 소스 컨테이너.And the signal generator comprises at least one of a strain gauge and a piezoelectric element.
- 제 1 항에 있어서, The method of claim 1,상기 상기 소스량 측정 부재는 복수개로 마련되어, 상기 외부 용기의 내측 바닥면 상에서 일정한 간격으로 분할된 다수의 영역들에 각각 구비되는 것을 특징으로 하는 소스 컨테이너.The source amount measuring member is provided in plurality, the source container, characterized in that provided in each of the plurality of areas divided at regular intervals on the inner bottom surface of the outer container.
- 제 1 항에 있어서, The method of claim 1,상기 도출된 소스 재료의 잔류량, 소스 컨테이너의 온도 및 압력 중 어느 하나 또는 이들의 조합에 관한 정보를 표시하는 표시부를 더 포함하는 것을 특징으로 하는 소스 컨테이너.And a display unit for displaying information on any one or a combination of the derived amount of the source material, the temperature and the pressure of the source container.
- 제 7 항에 있어서, The method of claim 7, wherein상기 제어부는 상기 소스 재료의 잔류량이 기준치 이하인지 여부를 상기 표시부를 통해 표시하는 것을 특징으로 하는 소스 컨테이너.And the control unit displays via the display unit whether the residual amount of the source material is equal to or less than a reference value.
- 제 1 항에 있어서, The method of claim 1,상기 외부 용기에 결합되어 상기 소스 컨테이너 내부의 온도를 감지하는 온도 측정 부재를 더 포함하는 것을 특징으로 하는 소스 컨테이너.And a temperature measuring member coupled to the outer container to sense a temperature inside the source container.
- 제 1 항에 있어서, The method of claim 1,상기 외부 용기는 상부 또는 하부가 개방되어 상기 내부 용기를 내부로 수납 및 외부로 반출할 수 있는 구조를 가지며, 상기 개방된 상부 또는 하부를 개폐하기 위한 뚜껑부 또는 바닥부를 포함하는 것을 특징으로 하는 소스 컨테이너.The outer container has a structure that can be opened or taken out of the inner container and the outer container is opened at the top or bottom, and comprises a lid or bottom for opening and closing the open top or bottom container.
- 제 1 항에 있어서, The method of claim 1,상기 내부 용기는 상기 소스 재료가 수용되는 제 1 공간 및 상기 제 1 공간과 접하고 내부로 인입된 운반 가스와 상기 소스 재료로부터 발생한 증기가 혼합되는 제 2 공간의 적어도 일부를 한정하며, The inner container defines at least a portion of a first space in which the source material is accommodated and a second space in which carrier gas introduced into and in contact with the first space and vapor generated from the source material are mixed;상기 소스 컨테이너는, 상기 외부 용기의 외부와 상기 제 2 공간을 연통시키고, 상기 제 2 공간 내에 노출되는 유입 포트를 포함하는 운반 가스 유입 유로; 및 상기 외부 용기의 외부와 상기 제 2 공간을 연통시키고, 상기 제 2 공간 내에 노출되는 배출 포트를 포함하는 혼합 가스 배출 유로를 더 포함하는 것을 특징으로 하는 소스 컨테이너.The source container may include a carrier gas inflow passage communicating an outside of the outer container with the second space and including an inlet port exposed in the second space; And a mixed gas discharge flow path communicating the outside of the outer container with the second space and including a discharge port exposed in the second space.
- 제 11 항에 있어서, The method of claim 11,상기 운반 가스 유입 유로는 상기 외부 용기의 외부로부터 상기 제 1 공간을 경과하여 상기 제 2 공간으로 연장되며,The carrier gas inflow passage extends from the outside of the outer container to the second space through the first space,상기 혼합 가스 배출 유로는 상기 제2 공간으로부터 상기 외부 용기의 외부로 연장된 것을 특징으로 하는 소스 컨테이너. The mixed gas discharge passage extends from the second space to the outside of the outer container.
- 제 1 항에 있어서, The method of claim 1,상기 소스 컨테이너의 내부에 균일한 열공급을 위한 가열 부재를 더 포함하는 것을 특징으로 하는 소스 컨테이너.The source container further comprises a heating member for uniform heat supply inside the source container.
- 제 1 항에 있어서, The method of claim 1,상기 소스 재료는 액상 또는 고상인 것을 특징으로 하는 소스 컨테이너. A source container, characterized in that the source material is liquid or solid.
- 제 14 항에 있어서, The method of claim 14,상기 소스 재료는 50 ℃ 내지 550 ℃ 범위 내에서 10-6 Torr 내지 103 Torr의 증기압을 갖는 것을 특징으로 하는 소스 컨테이너. And the source material has a vapor pressure of 10 −6 Torr to 10 3 Torr in the range of 50 ° C. to 550 ° C.
- 제 1 항 기재의 상기 소스 컨테이너의 혼합 가스 배출 유로에 결합되는 기상 증착 반응로. The vapor deposition reactor coupled to the mixed gas discharge passage of the source container of claim 1.
- 제 16 항에 있어서, The method of claim 16,상기 기상 증착 반응로는 유기 발광 소자(OLED), 전기화학전지, 광전도성 전지, 광저항기, 포토스위치, 포토트랜지스터 및 포토튜브의 제조를 위한 것을 특징으로 하는 기상 증착 반응로. The vapor deposition reactor is for producing an organic light emitting device (OLED), an electrochemical cell, a photoconductive cell, a photoresist, a photo switch, a phototransistor, and a phototube.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0045994 | 2012-05-01 | ||
KR1020120045994A KR101363354B1 (en) | 2012-05-01 | 2012-05-01 | Source container and reactor for vapor phase deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013165173A1 true WO2013165173A1 (en) | 2013-11-07 |
Family
ID=49514524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/003767 WO2013165173A1 (en) | 2012-05-01 | 2013-04-30 | Source container and vapor deposition reactor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101363354B1 (en) |
WO (1) | WO2013165173A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150053134A1 (en) * | 2012-03-28 | 2015-02-26 | UNITEX Co., LTD | Source container and vapour-deposition reactor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001295050A (en) * | 2000-04-11 | 2001-10-26 | Sony Corp | Vaporizer, method for using vaporizer, and method for vaporizing raw liquid |
JP2004115920A (en) * | 1992-12-15 | 2004-04-15 | Applied Materials Inc | Vaporizer and vapor deposition system of reactant liquid for chemical vapor film deposition process |
KR20080048812A (en) * | 2006-11-29 | 2008-06-03 | 엘지디스플레이 주식회사 | Deposition apparatus |
KR20090114475A (en) * | 2007-03-26 | 2009-11-03 | 가부시키가이샤 알박 | Evaporation source, vapor deposition apparatus and method of film formation |
-
2012
- 2012-05-01 KR KR1020120045994A patent/KR101363354B1/en active IP Right Grant
-
2013
- 2013-04-30 WO PCT/KR2013/003767 patent/WO2013165173A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004115920A (en) * | 1992-12-15 | 2004-04-15 | Applied Materials Inc | Vaporizer and vapor deposition system of reactant liquid for chemical vapor film deposition process |
JP2001295050A (en) * | 2000-04-11 | 2001-10-26 | Sony Corp | Vaporizer, method for using vaporizer, and method for vaporizing raw liquid |
KR20080048812A (en) * | 2006-11-29 | 2008-06-03 | 엘지디스플레이 주식회사 | Deposition apparatus |
KR20090114475A (en) * | 2007-03-26 | 2009-11-03 | 가부시키가이샤 알박 | Evaporation source, vapor deposition apparatus and method of film formation |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150053134A1 (en) * | 2012-03-28 | 2015-02-26 | UNITEX Co., LTD | Source container and vapour-deposition reactor |
US10066295B2 (en) * | 2012-03-28 | 2018-09-04 | Unitex Co., Ltd. | Source container and vapour-deposition reactor |
Also Published As
Publication number | Publication date |
---|---|
KR101363354B1 (en) | 2014-02-17 |
KR20130122875A (en) | 2013-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120034369A1 (en) | Vaporizing apparatus, substrate processing apparatus, coating and developing apparatus, and substrate processing method | |
JP6695750B2 (en) | Substrate holder inspection device, plating device including the same, and visual inspection device | |
WO2013147491A1 (en) | Source container and vapour-deposition reactor | |
WO2011145308A1 (en) | Battery inspection device | |
WO2013165173A1 (en) | Source container and vapor deposition reactor | |
CN104868544B (en) | The automatic stored monitoring system and its charging method of automatic charging | |
WO2014193138A1 (en) | Substrate support device and substrate treatment device comprising same | |
CN109521076A (en) | Gas-detecting device | |
CN101680090A (en) | Vacuum processing apparatus | |
CN102331996A (en) | Statistical analysis method and substrate process system | |
WO2014077563A1 (en) | Vapour-deposition device having mobile vapour-deposition source | |
CN103946695A (en) | Water concentration detection device | |
KR100859568B1 (en) | Electrostatic capacitance type sensor for detecting liquid level and system | |
CN101179008A (en) | Substrate processing apparatus and analysis method therefor | |
JP2011044458A (en) | Substrate processing system | |
WO2014007594A1 (en) | Source container and reactor for vapor deposition | |
TW418454B (en) | Semiconductor device manufacturing apparatus having controller detecting function of filter | |
US10135079B2 (en) | Fuel cell system equipped with a hydrogen leakage detector | |
KR20070102257A (en) | A device for perceiving a toxic gas leak | |
WO2020197067A1 (en) | Deposition apparatus | |
KR20070064110A (en) | Apparatus for collection carbon nano tube | |
CN210620935U (en) | Rapid roll-to-roll vapor deposition preparation device based on tube furnace | |
KR20070064108A (en) | Apparatus and method for collection carbon nano tube | |
JPH07274533A (en) | Portable power supply | |
US10438830B2 (en) | Semiconductor manufacturing apparatus and wafer holding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13784347 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/03/2015) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13784347 Country of ref document: EP Kind code of ref document: A1 |