WO2013164956A1 - Steering member structure - Google Patents

Steering member structure Download PDF

Info

Publication number
WO2013164956A1
WO2013164956A1 PCT/JP2013/061573 JP2013061573W WO2013164956A1 WO 2013164956 A1 WO2013164956 A1 WO 2013164956A1 JP 2013061573 W JP2013061573 W JP 2013061573W WO 2013164956 A1 WO2013164956 A1 WO 2013164956A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering member
vehicle
portions
column
width direction
Prior art date
Application number
PCT/JP2013/061573
Other languages
French (fr)
Japanese (ja)
Inventor
智 古沢
英明 池谷
雅人 安部
Original Assignee
日産自動車株式会社
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, カルソニックカンセイ株式会社 filed Critical 日産自動車株式会社
Publication of WO2013164956A1 publication Critical patent/WO2013164956A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/14Dashboards as superstructure sub-units
    • B62D25/145Dashboards as superstructure sub-units having a crossbeam incorporated therein

Definitions

  • the present invention relates to a steering member structure including a column mount bracket for connecting a middle portion of a steering member to a vehicle body side member and holding a column shaft.
  • a steering member structure in which a bulkhead is inscribed and fixed inside a steering member, and a column mount bracket for holding a column shaft is joined to the outer periphery of the fixed position of the bulkhead (for example, Patent Document 1). reference).
  • the steering member is supported by the vehicle body via a side bracket attached to both ends, a post bracket attached to a position different from the column mount bracket, and a center bracket.
  • the vibration input from the column shaft is input to the steering member via the column mount bracket. Then, vibration is transmitted from the steering member to the side brackets at both ends, the post brackets at the intermediate part, and the center bracket, and is supported by the vehicle body. That is, in the conventional steering member structure, vibration is supported from the column mount bracket via the steering member. Therefore, it is necessary to sufficiently ensure the rigidity of the steering member, and there is a problem that the weight of the steering member increases.
  • the present invention has been made paying attention to the above problems, and an object of the present invention is to provide a steering member structure capable of reducing the weight of the steering member by improving the rigidity of the column shaft supported by the column mount bracket. To do.
  • a steering member extending in the vehicle width direction and having both ends supported by the vehicle body side member, and an intermediate portion of the steering member are connected to the vehicle body side member.
  • a column mount bracket for holding the column shaft.
  • the column mount bracket includes a vehicle body connection portion, first and second front beam portions, first and second rear beam portions, a front connection beam portion, a rear connection beam portion, and a first front and rear connection.
  • the vehicle body connecting portion is fixed to the vehicle body side member.
  • the first and second front beam portions extend from the vehicle body connection portion and hold both sides of the column shaft in the vehicle front direction of the vehicle front portion.
  • the first and second rear beam portions extend from the vehicle body connecting portion, are joined to the steering member, and hold both sides in the vehicle width direction of the intermediate portion of the column shaft.
  • the front connection beam portion connects the first and second front beam portions.
  • the rear connecting beam portion connects the first and second rear beam portions.
  • the first front / rear connecting beam portion connects the first front beam portion and the first rear beam portion and is joined to the steering member.
  • the second front / rear connecting beam portion connects the second front beam portion and the second rear beam portion and is joined to the steering member.
  • the vibration in the vehicle width direction input from the column shaft includes the front side connecting beam portion connecting the first and second front side beam portions, and the first and second rear side beam portions. It is received by the rear connecting beam part that connects the two. The received vibration is transmitted to the vehicle body connecting portion via the first and second front beam portions and the first and second rear beam portions and is supported by the vehicle body side member.
  • the vibration in the vehicle vertical direction input from the column shaft extends from the vehicle body connection portion, and from the vehicle body connection portion and the first and second front beam portions that hold both sides of the vehicle front portion of the column shaft in the vehicle width direction.
  • first and second rear beam portions that hold both sides of the intermediate portion of the column shaft in the vehicle width direction.
  • the received vibration is transmitted to the vehicle body connecting portion and supported by the vehicle body side member.
  • the torsion occurring between the front connection beam portion, the rear connection beam portion, the first and second front beam portions, and the first and second rear beam portions due to the vibration from the column shaft is the first front side. It is restrained by a first front-rear connecting beam portion that connects the beam portion and the first rear beam portion, and a second front-rear connecting beam portion that connects the second front beam portion and the second rear beam portion.
  • the vibration from the column shaft can be received by the column mount bracket and directly transmitted to the vehicle body side member without being transmitted to the steering member. That is, the support rigidity of the column shaft by the column mount bracket can be improved. And since the rigidity performance by this column mount bracket improves, it becomes possible to reduce the rigidity of a steering member, and weight reduction of a steering member can be achieved.
  • FIG. 1 is a schematic perspective view showing a steering member structure of Embodiment 1.
  • FIG. It is the perspective view which expanded the A section in FIG. 1A.
  • It is a schematic perspective view which shows the column mount bracket of Example 1.
  • FIG. It is a side view which shows the column mount bracket of Example 1.
  • FIG. It is a top view which shows the column mount bracket of Example 1.
  • FIG. It is a perspective view when the column mount bracket of Example 1 is seen from the vehicle front.
  • FIG. It is an expansion perspective view when the column shaft front part holding
  • FIG. 1 It is a principal part front view which shows the column shaft front part holding
  • FIG. It is an expansion perspective view which shows the column shaft rear part holding part of the column mount bracket of Example 1.
  • FIG. It is an expansion perspective view when the column shaft rear part holding
  • FIG. It is a side view which shows the holding state of the column shaft by the column mount bracket of Example 1.
  • FIG. It is an expansion perspective view which shows the front part holding state of the column shaft by the column mount bracket of Example 1.
  • FIG. It is an expansion perspective view which shows the rear part holding state of the column shaft by the column mount bracket of Example 1.
  • FIG. It is an expansion perspective view which shows the rear part holding state of the column shaft by the column mount bracket of Example 1.
  • FIG. 1 It is a top view which shows the beam structure of the column mount bracket of Example 1.
  • FIG. It is a side view which shows the beam structure of the column mount bracket of Example 1.
  • FIG. It is a perspective view which shows the steering member structure of a comparative example. It is explanatory drawing which shows the vibration support effect
  • FIG. It is explanatory drawing which shows the vibration support effect
  • the configuration of the steering member structure according to the first embodiment will be described by dividing it into “entire configuration”, “column mount bracket configuration”, and “column shaft holding configuration”.
  • FIG. 1A is a schematic perspective view showing a steering member structure of the first embodiment.
  • FIG. 1B is an enlarged perspective view of a portion A in FIG. 1A.
  • the direction indicated by the arrow X indicates the front of the vehicle
  • the direction indicated by the arrow Y indicates the left side of the vehicle
  • the direction indicated by the arrow Z indicates the upper side of the vehicle.
  • the steering member structure of Example 1 includes a steering member 1 and a column mount bracket 2 and is disposed inside an instrument panel (not shown).
  • the steering member 1 is composed of a hollow cylindrical steel pipe extending in the vehicle width direction, and is fixedly supported by a front pillar 11c, which is a vehicle body side member, via side brackets 11a and 11b provided at both ends. .
  • the column mount bracket 2 is connected to an intermediate portion of the steering member 1 and a dash panel 14 which is a vehicle body side member, and couples the steering member 1 to the dash panel 14.
  • the column mount bracket 2 is fixed to the dash panel 14 by screwing a nut 16 b to a screw 16 a fixed to the dash panel 14.
  • the column mount bracket 2 holds the column shaft 3 below the steering member 1.
  • the column shaft 3 rotatably holds a steering shaft (not shown here) that rotates integrally with the handle 15.
  • a first center bracket 12 extending downward and a second center bracket 13 extending forward of the vehicle are provided in the middle portion of the steering member 1.
  • the lower end of the first center bracket 12 is fixedly supported by a floor tunnel portion (not shown).
  • the tip of the second center bracket 13 is fixedly supported by the dash panel 14.
  • FIG. 2 is a schematic perspective view illustrating the column mount bracket of the first embodiment.
  • FIG. 3 is a side view showing the column mount bracket of the first embodiment.
  • FIG. 4 is a plan view showing the column mount bracket of the first embodiment.
  • FIG. 5 is a perspective view of the column mount bracket of the first embodiment when viewed from the front of the vehicle.
  • FIGS. 6 to 11 are views showing the main part of the column mount bracket as appropriate.
  • the direction indicated by the arrow X indicates the front of the vehicle
  • the direction indicated by the arrow Y indicates the left side of the vehicle
  • the direction indicated by the arrow Z indicates the upper side of the vehicle.
  • the column mount bracket 2 includes a post bracket member 21, a base bracket member 22, a front column holding member 23, and a reinforcement member 24.
  • the post bracket member 21 has a vehicle body connecting portion 211, first and second lower leg portions 212A and 212B, and first and second upper leg portions 213A and 213B.
  • the post bracket member 21 is formed by punching a flat steel plate and press-bending it.
  • the vehicle body connecting portion 211 is made of a rectangular flat steel plate and is fastened and fixed to the dash panel 14.
  • a screw through hole 211a is formed at the center of the vehicle body connecting portion 211 (see FIG. 5).
  • the screw 16a fixed to the dash panel 14 passes through the screw through hole 211a.
  • the vehicle body connecting portion 211 has a flange-like folded surface 211b formed by folding a peripheral edge portion toward the rear of the vehicle, and has a ridge line 211c along the folded surface 211b.
  • the first lower leg portion 212A and the second lower leg portion 212B are respectively rearward from the pair of corner portions facing the vehicle lower side of the vehicle body connecting portion 211 when the vehicle body connecting portion 211 is fixed to the dash panel 14. Is extended towards.
  • the first and second lower leg portions 212A and 212B are arranged side by side in the vehicle width direction, and the distance between the first and second lower leg portions 212A and 212B slightly extends toward the tip, but is substantially parallel.
  • the base bracket member 22 is arrange
  • the first and second lower leg portions 212A and 212B have angle shapes having support side surfaces 212Aa and 212Ba, flange side surfaces 212Ab and 212Bb, and ridge lines 212Ac and 212Bc, respectively.
  • the support side surfaces 212 ⁇ / b> Aa and 212 ⁇ / b> Ba are opposed to each other, and a tip end portion thereof is spot welded at a side surface portion 222 and S ⁇ b> 1 portion of the base bracket member 22 to be described later. Further, the peripheral edges (indicated by Arc in FIG. 6) of the front end portions of the support side surfaces 212Aa and 212Ba are arc-welded to shaft holding portions 232 and 232, which will be described later, of the front column holding member 23, respectively.
  • the flange side surfaces 212Ab and 212Bb are formed by bending the end portions on the dash panel 14 side of the support side surfaces 212Aa and 212Ba in a direction facing each other, and face the dash panel 14.
  • the end portions of the flange side surfaces 212Ab and 212Bb on the vehicle body connection portion 211 side are integrally continuous with the folded surface 211b.
  • end portions of the flange side surfaces 212Ab and 212Bb on the base bracket member 22 side are formed only up to the front of the front end portions of the support side surfaces 212Aa and 212Ba in order to avoid interference with the base bracket member 22 (see FIG. 6). ).
  • the ridgeline 212Ac is a steel plate folding curve formed by bending the support side surface 212Aa to form the flange side surface 212Ab, and extends along the extending direction of the first lower leg portion 212A.
  • the ridgeline 212Bc is a steel plate folding curve generated by bending the support side surface 212Ba to form the flange side surface 212Bb, and extends along the extending direction of the second lower leg portion 212B.
  • the first upper leg portion 213A and the second upper leg portion 213B are respectively directed toward the rear of the vehicle from a pair of corner portions facing the vehicle upper side of the vehicle body connection portion 211 when the vehicle body connection portion 211 is fixed to the dash panel 14.
  • the peripheral edge (indicated by Arc 1 in FIG. 9) of the tip end is arc welded to the outer peripheral surface 1 a of the steering member 1.
  • the first and second upper leg portions 213A and 213B are arranged side by side in the vehicle width direction, and the interval in the vehicle width direction is set to gradually increase from the vehicle body connecting portion 211 toward the steering member 1 (FIG. 4). reference).
  • the first and second upper leg portions 213A and 213B have an angle shape having support side surfaces 213Aa and 213Ba, flange side surfaces 213Ab and 213Bb, and ridge lines 213Ac and 213Bc, respectively.
  • the support side surfaces 213Aa and 213Ba face the upper side of the vehicle, respectively, and the tip ends abut on the upper side of the steering member 1.
  • the flange side surfaces 213Ab and 213Bb are formed by bending the ends of the support side surfaces 213Aa and 213Ba on the outer side in the vehicle width direction and face each other.
  • the end portions of the flange side surfaces 213Ab and 213Bb on the vehicle body connecting portion 211 side are integrally continuous with the folded surface 211b.
  • the end portions of the flange side surfaces 213Ab and 213Bb on the steering member 1 side are gradually reduced along the outer peripheral surface 1a of the steering member 1.
  • welding surface portions 213Ad and 213Bd projecting outward in the vehicle width direction are formed at the ends of the flange side surfaces 213Ab and 213Bb on the steering member 1 side.
  • the welding surface portions 213Ad and 213Bd are arc welded to the first welding flange portion 222d of the base bracket member 22 to be described later on the vehicle front side, and the vehicle rear side is curved along the steering member 1 and arc welded to the outer peripheral surface 1a. (See FIGS. 3 and 11).
  • the ridge line 213Ac is a steel plate folding curve generated by bending the support side surface 213Aa to form the flange side surface 213Ab, and extends along the extending direction of the first upper leg portion 213A.
  • the ridge line 213Bc is a steel plate folding curve generated by bending the support side surface 213Ba to form the flange side surface 213Bb, and extends along the extending direction of the second upper leg portion 213B.
  • the base bracket member 22 has a base bracket main body 221, a pair of side surface portions 222, 222, and a pair of ridge lines 223, 223.
  • the base bracket member 22 is formed by punching a flat steel plate and press-bending it.
  • the base bracket body 221 is made of a steel plate extending in the vehicle front-rear direction, and a front portion 221a facing the vehicle front is inserted between the first and second lower legs 212A and 212B of the post bracket member 21 (FIG. 6). reference).
  • the rear portion 221b facing the rear of the vehicle is disposed below the steering member 1 (see FIG. 10).
  • the protrusion part 221c which protruded above the vehicle is formed in the vehicle width direction center part of this rear part 221b (refer FIG. 10).
  • the protruding portion 221c has a notch 221d formed in a region that interferes with the steering member 1.
  • the shaft holding bolt 17 penetrates the base bracket body 221 downward, and a head portion 17a (see FIG. 11) is welded and fixed to the upper surface (not shown) of the base bracket body 221.
  • the pair of side surfaces 222, 222 are formed by bending both ends of the base bracket body 221 in the vehicle width direction toward the upper side of the vehicle, and face each other.
  • the front part 222a of each side part 222 facing the vehicle front is spot welded to the flange side faces 212Ab and 212Bb of the first and second lower leg parts 212A and 212B at the S1 part (see FIG. 3).
  • a curved concave portion 222c into which the steering member 1 is fitted and first and second welding flange portions 222d and 222e projecting outward in the vehicle width direction are formed on the rear portion 222b of each side portion 222 facing the vehicle rear. ing.
  • the first and second welding flange portions 222d and 222e extend in the vehicle front-rear direction with the curved concave portion 222c interposed therebetween (see FIG. 3).
  • the first welding flange portion 222d located on the vehicle front side is arc welded to the vehicle front side of the welding surface portions 213Ad and 213Bd of the first and second upper leg portions 213A and 213B.
  • the second welding flange portion 222e located on the vehicle rear side is arc-welded to the vehicle rear side of a welding flange portion 242 (described later) of the reinforcement member 24.
  • the pair of ridge lines 223 and 223 are steel plate folding curves generated by bending the base bracket body 221 to form the pair of side surface portions 222 and 222, and each extend along the vehicle longitudinal direction.
  • the ridgelines 223 and 223 coincide with the ridgelines 212Ac and 212Bc of the first and second lower leg portions 212A and 212B in the vehicle width direction (see FIG. 8).
  • the front column holding member 23 has a bracket fixing portion 231 and a pair of shaft holding portions 232 and 232.
  • the front column holding member 23 is formed by punching a flat steel plate and press-bending it.
  • the bracket fixing portion 231 is a strip-shaped steel plate extending in the vehicle width direction, and is spot-welded at a portion S2 below the front portion 221a of the base bracket body 221 of the base bracket member 22 (see FIG. 7). .
  • the pair of shaft holding portions 232 and 232 are formed by bending both ends in the vehicle width direction of the bracket fixing portion 231 downward, and face each other.
  • Each shaft holding portion 232 is formed with a bolt through hole 232a through which the holding bolt B1 holding the front portion 3a of the column shaft 3 passes.
  • a nut 18 is welded and fixed to the outer side in the vehicle width direction of one bolt through hole 232a (see FIG. 6). Further, the distance between the pair of shaft holding portions 232 and 232 is the same as the distance between the tip portions of the first and second lower leg portions 212A and 212B.
  • the steel plate folding curves 233 and 233 generated by bending the bracket fixing portion 231 to form the pair of shaft holding portions 232 and 232 are positioned in the vehicle vertical direction with respect to the pair of ridge lines 223 and 223 of the base bracket member 22.
  • the support side surfaces 212Aa and 212Ba of the first and second lower leg portions 212A and 212B and the pair of shaft holding portions 232 and 232 are substantially flush with each other (see FIG. 8).
  • the reinforcement member 24 is a portion facing the front end portions of the first and second upper leg portions 213A and 213B of the post bracket member 21 and covering the upper side of the steering member 1 and the rear portion 221b of the base bracket body 221. .
  • the reinforcement member 24 includes a reinforcement body 241 and welding flange portions 242 and 242 provided on both sides of the reinforcement body 241.
  • the reinforcement member 24 is formed by punching a flat steel plate and press-bending it.
  • the reinforcement main body 241 has a pair of curved protrusions formed on both sides in the vehicle width direction by arc-welding the front end portion 241a to the outer peripheral surface 1a of the steering member 1 and the tip ends of the first and second upper leg portions 213A and 213B. Parts 241b and 241b, and a weld recess 241c formed at the center in the vehicle width direction. As shown in FIG. 4, each curved protrusion 241b is formed by bending a protruding surface 241d covering the shaft holding bolt 17 penetrating the base bracket body 221 and both sides of the protruding surface 241d in the vehicle width direction downward. A pair of rising surfaces 241e, 241e facing each other.
  • the steel plate bending curve produced by bending the protruding surface 241d to form the rising surfaces 241e, 241e is a pair of ridge lines 241f, 241f.
  • the one ridge line 241f located on the outer side in the vehicle width direction is continuous with the ridge lines 213Ac and 213Bc of the first and second upper leg portions 213A and 213B in the vehicle front-rear direction (see FIG. 4).
  • the weld recess 241c is a flat surface surrounded by rising surfaces 241e and 241e on both sides and a curved surface 241g along the steering member 1, and is in contact with the protruding portion 221c of the base bracket body 221 and is spot-welded at S3. Is done. Further, the rear end edge (indicated by Arc 2 in FIG. 9) of the reinforcement main body 241 is arc-welded to the base bracket main body 221.
  • the welding flange portions 242 and 242 protrude outward from the reinforcement main body 241 in the vehicle width direction.
  • the welding flange portion 242 is arc welded to the outer peripheral surface 1a of the steering member 1 on the vehicle front side, and arc welded to the second welding flange portion 222e of the base bracket member 22 on the vehicle rear side (see FIG. 11).
  • the steering member 1 is sandwiched between the first and second upper leg portions 213A and 213B, the reinforcement member 24, and the base bracket member 22 from the vehicle vertical direction.
  • FIG. 12 is a side view illustrating a state in which the column shaft is held by the column mount bracket according to the first embodiment.
  • FIG. 13 is an enlarged perspective view showing a column shaft front portion held by the column mount bracket of the first embodiment.
  • FIG. 14 is an enlarged perspective view illustrating a rear holding state of the column shaft by the column mount bracket according to the first embodiment.
  • the column shaft 3 is provided with a handle 15 (see FIG. 1A) at one end, and is formed of a hollow saddle member that rotatably supports a steering shaft 31 that rotates integrally with the handle 15.
  • the column shaft 3 has a front portion 3 a held by the front column holding member 23 and an intermediate portion 3 b held by the rear portion 221 b of the base bracket body 221 of the base bracket member 22.
  • the handle 15 is disposed on the rear portion 3c side of the column shaft 3.
  • a steering wheel (not shown) is connected to the other end of the steering shaft 31.
  • the column shaft 3 is provided with a tilt mechanism 32, an EPS motor 33, an EPS control unit 34, a speed reducer 35, and a torque sensor 36.
  • the tilt mechanism 32 is provided on a holding bracket 37 attached to the intermediate portion 3b of the column shaft 3, and adjusts the height position of the column shaft 3.
  • 32a is a tilt lever.
  • the EPS motor (electric power steering motor) 33 is an electric motor that is provided in the vicinity of the front portion 3a of the column shaft 3 and assists the steering of the handle 15.
  • the EPS control unit 34 controls the operation of the EPS motor 33 according to the detection value from the torque sensor 36.
  • the speed reducer 35 is provided between an output shaft (not shown) of the EPS motor 33 and the steering shaft 31, and reduces the rotational speed from the EPS motor 33 and transmits it to the steering shaft 31.
  • a holding shaft 38 disposed between the shaft holding portions 232 and 232 of the front column holding member 23 is formed on the front end surface 35a of the speed reducer 35 (see FIG. 13).
  • the shaft holding portions 232 and 232 and the holding shaft 38 are integrally penetrated by the holding bolt B1, so that the front portion 3a of the column shaft 3 is held by the column mount bracket 2.
  • the holding bracket 37 includes a bracket main body 37a surrounding the outer periphery of the column shaft 3, and a pair of holding flanges 37b and 37b protruding outward from the bracket main body 37a in the vehicle width direction.
  • Each holding flange 37b is formed with an insertion hole (not shown) into which a pair of shaft holding bolts 17 and 17 penetrating the base bracket body 221 of the base bracket member 22 are inserted.
  • the nut 17 b is screwed into the shaft holding bolt 17 inserted into the insertion hole, whereby the holding bracket 37 is fixed to the lower side of the base bracket member 22, and the intermediate portion 3 b of the column shaft 3 is held by the column mount bracket 2. Is done.
  • FIG. 15A is a plan view illustrating a beam structure of the column mount bracket according to the first embodiment.
  • FIG. 15B is a side view illustrating a beam structure of the column mount bracket according to the first embodiment.
  • the “beam” is a linear portion that connects between vibration support points where the transmission direction of vibration changes, and supports or transmits the input vibration.
  • the column mount bracket 2 that holds the column shaft 3 corresponds to the vehicle body connection portion A in which the vehicle body connection portion 211 of the post bracket member 21 is fixed to the dash panel 14 that is the vehicle body side member. To do.
  • first and second lower leg portions 212A and 212B and a pair of shaft holding portions 232 and 232 that are substantially flush with the first and second lower leg portions 212A and 212B extend from the vehicle body connecting portion A in the vehicle front-rear direction. 3 corresponds to first and second front beam portions B and C that support both sides in the vehicle width direction of the vehicle front portion.
  • the intermediate bracket 3b of the column shaft 3 is held by fixing the holding bracket 37 attached to the column shaft 3 to the pair of shaft holding bolts 17 and 17 welded to the rear portion 221b of the base bracket body 221.
  • the rear portion 221b of the base bracket main body 221 is covered with the reinforcement member 24 and arc-welded to the rear end edge of the reinforcement main body 241, and the second welding flange portion 222e is arc-welded to the welding flange portion 242.
  • the front end portion 241a of the reinforcement member 24 is arc welded to the steering member 1 and the front end portions of the first and second upper leg portions 213A and 213B.
  • first and second upper leg portions 213A and 213B, the reinforcement member 24, and the rear portion 221b of the base bracket main body 221 extend from the vehicle body connection portion A in the vehicle front-rear direction and are joined to the steering member 1. And corresponds to first and second rear beam portions D and E that support both sides of the intermediate portion 3b of the column shaft 3 in the vehicle width direction.
  • the front column holding member 23 has the bracket fixing portion 231
  • the pair of shaft holding portions 232 and 232 are integrated.
  • the pair of shaft holding portions 232 and 232 correspond to the first and second front beam portions as described above.
  • fixed part 231 connects between the 1st, 2nd front side beam parts B and C, and is equivalent to the front side connection beam part F extended in a vehicle width direction.
  • the rear portion 221b of the base bracket main body 221 to which the pair of shaft holding bolts 17 and 17 are fixed is continuous in the vehicle width direction, although the protruding portion 221c is formed at the center in the vehicle width direction. Accordingly, the rear portion 221b of the base bracket body 221 corresponds to the rear connecting beam portion G that connects the first and second rear beam portions D and E and extends in the vehicle width direction.
  • the base bracket member 22 extends in the vehicle front-rear direction and is joined to the first and second lower legs 212A and 212B and joined to the reinforcement member 24.
  • the base bracket member 22 is arc welded to the steering member 1 at the first welding flange portion 222d. Accordingly, the base bracket member 22 connects the first front beam portion B and the first rear beam portion D, and the first front and rear connection beam portions H joined to the steering member 1 and the second front beam portion C.
  • the second rear beam portion E are connected to each other and correspond to the second front / rear connection beam portion I joined to the steering member 1.
  • the base bracket body 221 corresponds to a continuous portion that connects the first front-rear connecting beam portion H and the second front-rear connecting beam portion I. That is, when the front portion 221a of the base bracket main body 221 and the bracket fixing portion 231 are spot-welded, the front side connecting beam portion F and the continuous portion are overlapped and fixed.
  • FIG. 16 is a perspective view showing a steering member structure of a comparative example.
  • the steering member 1 is a part that is connected to a vehicle body side member such as the front pillar 11c and the dash panel 14 and supports a steering wheel (not shown) connected to the column shaft 3 and the steering shaft 31. Therefore, the steering member 1 is required to have a function of suppressing resonance between the idling vibration, running vibration, and the like generated in the vehicle and the steering wheel.
  • the steering wheel vibrates in all directions including the vehicle vertical direction, vehicle width direction (vehicle left-right direction), and diagonal direction. Therefore, it is desirable for the steering member 1 to suppress vibration in all vibration directions. However, if the strength of the steering member 1 itself is improved in order to improve the vibration suppressing function, the weight of the steering member 1 increases.
  • a column bracket 100 that supports a column shaft (not shown here) attached to the steering member 1 is attached to a vehicle body side member such as a dash panel via a post bracket 101. It is possible to concatenate. However, even in this case, if the rigidity of the post bracket 101 is low, it is difficult to ensure a sufficient vibration suppressing effect, and the rigidity of the steering member 1 cannot be reduced.
  • FIG. 17 is an explanatory diagram illustrating a vibration support function when a vibration is input in the vehicle width direction in the steering member structure according to the first embodiment.
  • members provided on the column shaft 3 such as the tilt mechanism 32 are omitted.
  • the handle 15 vibrates in the vehicle width direction (vehicle left-right direction) as shown in FIG. 17 due to idling vibration, traveling vibration, or the like. At this time, since the steering shaft 31 coupled to the handle 15 also vibrates integrally with the handle 15, the column shaft 3 holding the steering shaft 31 also vibrates in the vehicle width direction.
  • the front portion 3 a of the column shaft 3 is held by the front column holding member 23, and the intermediate portion 3 b of the column shaft 3 is held by the rear portion 221 b of the base bracket body 221. Therefore, the vibration in the vehicle width direction of the column shaft 3 is input to the column mount bracket 2 from the front column holding member 23 and the rear portion 221b of the base bracket body 221.
  • the front column holding member 23 includes a bracket fixing portion 231 integrated with shaft holding portions 232 and 232 that are substantially flush with the first and second lower leg portions 212A and 212B. Therefore, the vibration in the vehicle width direction input to the front column holding member 23 connects the first and second front beam portions B and C and fixes the bracket corresponding to the front connection beam portion F extending in the vehicle width direction. It is received by the part 231. And by receiving the vibration of the vehicle width direction by the bracket fixing
  • the rear portion 221b of the base bracket main body 221 is continuous in the vehicle width direction, although the protruding portion 221c is formed at the center in the vehicle width direction. Therefore, the vibration in the vehicle width direction input to the rear portion 221b of the base bracket main body 221 connects the first and second rear beam portions D and E to the rear connection beam portion G extending in the vehicle width direction. It is received by the corresponding rear portion 221b of the base bracket body 221. Then, by receiving the vibration in the vehicle width direction by the rear portion 221b of the base bracket body 221, the pair of shaft holding bolts 17 and 17 holding the column shaft 3 are suppressed from vibrating individually. Thereby, the vibration of the intermediate part 3b of the column shaft 3 in the vehicle width direction can be suppressed.
  • bracket fixing portion 231 that receives vibration in the vehicle width direction and the rear portion 221b of the base bracket body 221 are connected by a base bracket member 22 corresponding to the first and second front and rear connecting beam portions H and I. Therefore, the bracket fixing portion 231 and the rear portion 221b of the base bracket main body 221 are suppressed from vibrating individually, and the column mount bracket 2 is prevented from being twisted in the vehicle width direction. That is, the front portion 3a and the intermediate portion 3b of the column shaft 3 are prevented from being twisted in the vehicle width direction.
  • the base bracket member 22 has a pair of ridges 223 and 223 that are formed by bending both ends of the base bracket body 221 in the vehicle width direction and extend in the vehicle front-rear direction. For this reason, the rigidity of the base bracket member 22 can be improved, and the column mount bracket 2 can be more effectively prevented from being twisted in the vehicle width direction.
  • the vibration received by the bracket fixing portion 231 is transmitted to the vehicle body connecting portion 211 via the first and second lower leg portions 212A and 212B and supported by the dash panel 14 that is a vehicle body side member.
  • the vibration received by the rear portion 221b of the base bracket main body 221 is transmitted to the vehicle body connecting portion 211 via the first and second upper leg portions 213A and 213B, and is supported by the dash panel 14 that is a vehicle body side member.
  • the vibration support rigidity with respect to the vibration in the vehicle width direction of the column mount bracket 2 can be improved, and the vibration transmitted to the steering member 1 can be suppressed. For this reason, the rigidity of the steering member 1 can be reduced, and the weight of the steering member 1 can be reduced.
  • the bracket fixing portion 231 that receives the vibration in the vehicle width direction is overlapped with the front portion 221a of the base bracket body 221 and is spot-welded at S2.
  • the rigidity of the bracket fixing portion 231 corresponding to the front connecting beam portion F that receives the vibration in the vehicle width direction input to the front column holding member 23 is improved, and the effect of suppressing the vibration input from the front column holding member 23 is enhanced. be able to.
  • the rear portion 221b of the base bracket main body 221 that receives vibration in the vehicle width direction is covered with the reinforcement member 24, and the rear end edge and the second welding flange portions 222e on both sides are arc-welded to the reinforcement main body 241.
  • the rigidity of the rear portion 221b of the base bracket body 221 corresponding to the rear connecting beam portion G that receives vibrations in the vehicle width direction input from the pair of shaft holding bolts 17, 17 is improved, and the pair of shaft holding bolts 17, The effect of suppressing vibration input from 17 can be enhanced.
  • the first and second upper leg portions 213A and 213B that transmit the vibration received by the rear portion 221b of the base bracket main body 221 to the vehicle body connection portion 211 are separated from the vehicle body connection portion 211. It is set so as to gradually expand toward the steering member 1.
  • the column shaft 3 vibrates more greatly on the side of the handle 15 at the free end, that is, on the rear portion 3c than on the front portion 3a. Therefore, the first and second upper leg portions 213A and 213B are extended in accordance with the vibration direction of the column shaft 3, and vibration transmission to the vehicle body connection portion 211 can be performed smoothly. As a result, the load acting on the steering member 1 can be reduced, and the rigidity of the steering member 1 can be further reduced.
  • the steering member 1 is sandwiched from the vehicle vertical direction by the first and second upper leg portions 213A and 213B, the reinforcement member 24, and the base bracket body 221. That is, the steering member 1 is sandwiched between the first rear beam portion D and the first front / rear connection beam portion H, and is sandwiched between the second rear beam portion E and the second front / rear connection beam portion I.
  • the joining strength between the steering member 1 and the column mount bracket 2 can be improved, and in particular, the vibration of the column mount bracket 2 when the column shaft 3 vibrates in the vehicle width direction can be suppressed.
  • the support rigidity of the column shaft 3 by the column mount bracket 2 can be increased, and the weight of the steering member 1 can be reduced.
  • FIG. 18 is an explanatory diagram illustrating a vibration support function when a vibration is input in the vehicle vertical direction in the steering member structure according to the first embodiment.
  • the handle 15 vibrates not only in the vehicle width direction (vehicle left-right direction) but also in the vehicle up-down direction due to idling vibration or traveling vibration.
  • the vibration in the vehicle vertical direction is transmitted from the steering shaft 31 to the column shaft 3, and the column shaft 3 also vibrates in the vehicle vertical direction.
  • the vibration of the column shaft 3 in the vehicle vertical direction is input to the column mount bracket 2 from the front column holding member 23 and the rear portion 221b of the base bracket body 221.
  • the shaft holding portions 232 and 232 for holding the front portion 3a of the column shaft 3 of the front column holding member 23 are substantially the same as the first and second lower leg portions 212A and 212B integrated with the vehicle body connecting portion 211. Consecutive and continuous. Therefore, the vibration in the vehicle vertical direction inputted to the front column holding member 23 is substantially flush with the first and second lower leg portions 212A and 212B corresponding to the first and second front beam portions B and C.
  • the vibration in the vehicle vertical direction inputted to the rear portion 221b of the base bracket main body 221 is caused by the reinforcement member 24 corresponding to the first and second rear beam portions D and E and the first and second upper leg portions 213A and 213B. Received by. That is, the vehicle vertical vibration input from the rear portion 221b of the base bracket main body 221 is received by the first and second rear beam portions D and E extending in the vehicle vertical direction corresponding to the vibration direction. As a result, the vehicle vertical vibration input from the rear portion 221b of the base bracket body 221 is suppressed, and the vehicle vertical vibration of the intermediate portion 3b of the column shaft 3 can be suppressed.
  • first and second lower legs 212A and 212B that receive vibration in the vertical direction of the vehicle, the reinforcement member 24, and the first and second upper legs 213A and 213B are the first and second front and rear connecting beam portions. They are connected by a base bracket member 22 corresponding to H and I. Therefore, part of the vehicle vertical vibration input to the rear portion 221b of the base bracket body 221 is transmitted to the first and second lower legs 212A and 212B via the base bracket member 22. And it is received by these 1st, 2nd lower leg 212A, 212B. That is, the vibration of the middle portion 3b of the column shaft 3 that vibrates relatively greatly can be suppressed by the first and second lower leg portions 212A and 212B.
  • the vibration suppression effect can be improved. Furthermore, the first and second lower leg portions 212A and 212B, the reinforcement member 24 and the first and second upper leg portions 213A and 213B are restrained from vibrating individually, and the column mount bracket 2 is mounted on the vehicle. It is possible to prevent twisting in the vertical direction. That is, the front portion 3a and the intermediate portion 3b of the column shaft 3 are prevented from being twisted in the vehicle vertical direction.
  • the base bracket member 22 has a pair of ridge lines 223 and 223 extending in the vehicle front-rear direction, the rigidity of the base bracket member 22 can be improved, and the column mount bracket 2 is more effectively twisted in the vehicle vertical direction. Can be prevented.
  • the ridgelines 223 and 223 are aligned with the ridgelines 212Ac and 212Bc of the first and second lower legs 212A and 212B, so that the positions of the first and second lower legs 212A and 212B match.
  • the rigidity can be increased, and the effect of suppressing vibration in the vertical direction can be further improved.
  • the vibration received by the first and second lower legs 212A and 212B and the vibration received by the reinforcement member 24 and the first and second upper legs 213A and 213B are all transmitted to the vehicle body connection portion 211. And supported by a dash panel 14 which is a vehicle body side member.
  • the vibration support rigidity with respect to the vehicle vertical vibration of the column mount bracket 2 can be improved, and the vibration transmitted to the steering member 1 can be suppressed. For this reason, the rigidity of the steering member 1 can be reduced, and the weight of the steering member 1 can be reduced.
  • the first and second lower leg portions 212A and 212B and the first and second upper leg portions 213A and 213B with respect to the vehicle body connecting portion 211 are directed downward of the vehicle. Has been extended. Therefore, when the column shaft 3 vibrates in the vehicle vertical direction, the first and second lower leg portions 212A and 212B and the first and second upper leg portions 213A and 213B suppress vibration of the column shaft 3 from above. It becomes. Therefore, it becomes easy to suppress the vibration in the vehicle vertical direction, and the vibration suppressing effect can be improved.
  • the column mount bracket 2 of the first embodiment holds the intermediate portion 3b of the column shaft 3 at a position higher than the front portion 3a.
  • the column shaft 3 vibrates more greatly on the side of the handle 15 at the free end, that is, on the rear portion 3c than on the front portion 3a. Therefore, the distance between the intermediate portion 3b of the column shaft 3 that greatly vibrates and the vehicle body connecting portion 211 can be shortened, and the vibration suppressing effect in the vehicle vertical direction can be improved.
  • first and second lower legs 212A and 212B have ridgelines 212Ac and 212Bc that bend the support side surfaces 212Aa and 212Ba and extend in the extending direction of the first and second lower legs 212A and 212B. Yes. Therefore, the rigidity of the first and second lower legs 212A and 212B can be improved, and vibrations in the vehicle vertical direction input from the front column holding member 23 can be more effectively suppressed.
  • the reinforcement member 24 and the first and second upper legs 213A and 213B also have a ridge line 241f and ridge lines 213Ac and 213Bc, respectively. Therefore, the rigidity of the reinforcement member 24 and the first and second upper leg portions 213A and 213B can be improved, and vibration in the vehicle vertical direction input from the rear portion 221b of the base bracket body 221 can be more effectively suppressed. it can.
  • the ridgelines 241f and 241f located on the outer side in the vehicle width direction of the reinforcement member 24 and the ridgelines 213Ac and 213Bc of the first and second upper leg portions 213A and 213B are continuous in the vehicle front-rear direction. Thereby, the vibration of the vehicle up-down direction input from the rear part 221b of the base bracket main body 221 can be more effectively suppressed.
  • the vehicle width direction position of ridgeline 213Ac of 1st upper side leg part 213A and the vehicle width direction position of one ridgeline 223 of the base bracket member 22 correspond. Further, the vehicle width direction position of the ridge line 213Bc of the second upper leg 213B and the vehicle width direction position of the other ridge line 223 of the base bracket member 22 coincide with each other. As a result, the rigidity of the base bracket member 22 and the first and second upper leg portions 213A and 213B can be improved. As a result, the load acting on the steering member 1 can be reduced, and the rigidity of the steering member 1 can be further reduced.
  • the column mount bracket 2 is A vehicle body connecting portion (vehicle body connecting portion 211) A fixed to the vehicle body side member 14, First and second front beam portions (first and second lower leg portions 212A and 212B) that extend from the vehicle body connection portion A to the vehicle lower side and hold both sides in the vehicle width direction of the vehicle front portion of the column shaft 3.
  • the first and second rear beam portions (the first and second rear beam portions) that extend downward from the vehicle body connection portion A, are joined to the steering member 1, and hold both sides of the intermediate portion 3 b of the column shaft 3 in the vehicle width direction.
  • the first and second front beam portions B and C, the first and second rear beam portions D and H, the front connection beam portion F, the rear connection beam portion G, and A part of at least one of the first and second front and rear connecting beam portions H and I is configured by a steel material in which a ridge line is formed by bending an end portion.
  • the first and second front beam portions B and C and the first and second front and rear connecting beam portions H and I are each formed of the steel material,
  • the first front beam portion B and the first front-rear connecting beam portion H are joined in a state in which the positions of the ridgelines 212Ac and 223 in the vehicle width direction coincide with each other.
  • the second front beam portion C and the second front / rear connecting beam portion I are joined together with their ridgelines 212Bc and 223 aligned in the vehicle width direction.
  • the rigidity of the first front beam portion (first lower leg portion 212A) B and the second front beam portion (second lower leg portion B) C can be increased against vibration in the vehicle vertical direction.
  • the vibration suppression effect in the vehicle vertical direction can be further improved.
  • the first and second rear beam portions D and H are leg portions (first and second upper leg portions) 213A and 213B disposed between the vehicle body connecting portion A and the steering member 1, respectively.
  • Reinforce portion (reinforce member) 24 disposed between the steering member 1 and the column shaft 3;
  • the leg portions 213A, 213B and the reinforcement portion 24 are each formed of the steel material,
  • the leg portions 213A, 213B and the reinforcement portion 24 are configured to be joined to the steering member 1 in a state in which the ridgelines 213Ac, 213Bc, 241f are continuous in the vehicle front-rear direction. Thereby, the vibration of the vehicle up-down direction input from the rear side connection beam part (rear part 221b of the base bracket main body 221) G can be more effectively suppressed.
  • the vehicle width direction interval between the first and second rear beam portions D and E is set so as to gradually spread from the vehicle body connection portion A toward the steering member 1.
  • the first and second rear beam portions (first and second upper leg portions 213A and 213B) D and E are extended in accordance with the vibration direction of the column shaft 3, and the vehicle body connecting portion It is possible to smoothly transmit the vibration to 211 and reduce the load acting on the steering member 1.
  • the first front / rear connecting beam portion H and the second front / rear connecting beam portion I are connected to each other via a continuous portion (base bracket body) 221;
  • the continuous portion 221 is configured to overlap and be fixed to the front connecting beam portion (bracket fixing portion 231) F.
  • fixed part 231) F can be improved, and the vibration suppression effect of a vehicle width direction can be improved.
  • the first and second rear beam portions D and E are joined to the upper side of the steering member 1, and the first and second front and rear connecting beam portions H and I are joined to the lower side of the steering member 1.
  • the steering member 1 is sandwiched between the first rear beam portion D and the first front and rear connection beam portion H, and is sandwiched between the second rear beam portion E and the second front and rear connection beam portion I.
  • the configuration whereby, the joint strength between the steering member 1 and the column mount bracket 2 can be improved, and in particular, the vibration suppressing effect when the column shaft 3 vibrates in the vehicle width direction can be improved.
  • first and second lower leg portions 212A, 212B and the front column holding member 23 are formed as separate members, and the support side surfaces 212Aa, 212Ba and the shaft holding portions 232, 232 are substantially flush with each other.
  • first and second front beam portions B and C are configured.
  • the first and second lower legs 212A and 212B and the front column holding member 23 may be integrally formed of one steel material. In this case, not only the process of welding the two members becomes unnecessary, but also the flange side surface can be easily formed up to the tip portion of the shaft holding portion.
  • first and second upper leg portions 213A and 213B and the reinforcement member 24 are formed as separate members, and the reinforcement member 24 is formed at the distal ends of the first and second upper leg portions 213A and 213B.
  • the first and second rear beam portions B and C are configured by welding the front end portion 241a.
  • the first and second upper leg portions 213A and 213B and the reinforcement member 24 may be integrally formed of one steel material. In this case, the process of welding two members becomes unnecessary.
  • the shaft holding bolt 17 is fixed to the rear portion 221b of the base bracket body 221.
  • the shaft holding bolt 17 may be provided on the reinforcement member 24 and the base bracket body 221 may be overlapped.
  • the portion corresponding to the rear connecting beam portion G that connects the first and second rear beam portions D and E holding the intermediate portion 3b of the column shaft 3 overlaps the two steel plates.
  • the rigidity of the rear connecting beam portion G can be improved and the vibration suppressing effect can be improved.
  • the rigidity of the rear connecting beam portion G may be improved by bending the rear end portion of the reinforcement member 24 to form a ridgeline.
  • the front column holding member 23 and the front portion 221a of the base bracket body 221 are overlapped to improve the rigidity of the front connecting beam portion F.
  • the front column holding member 23 has a front end portion.
  • a ridgeline may be formed by bending to improve rigidity.

Abstract

This steering member structure is configured in such a manner that the intermediate section of a steering member (1) is connected to a vehicle body-side member (14) and in such a manner that a column mount bracket (2) for holding a column shaft (3) is provided with: a vehicle body connection section (A) which is affixed to the vehicle body-side member (14); first and second front beam sections (B, C) which extend from the vehicle body connection section (A) and which hold the vehicle front section of the column shaft (3); first and second rear beam sections (D, E) which extend from the vehicle body connection section (A), are joined to the steering member (1), and hold the intermediate section (3b) of the column shaft (3); a front connection beam section (F) which connects the first and second front beam sections (B, C); a rear connection beam section (G) which connects the first and second rear beam sections (D, E); a first front-rear connection beam section (H) which connects the first front beam section (B) and the first rear beam section (D) and which is joined to the steering member (1); and a second front-rear connection beam section (I) which connects the second front beam section (C) and the second rear beam section (E) and which is joined to the steering member (1).

Description

ステアリングメンバ構造Steering member structure
 本発明は、ステアリングメンバの中間部を車体側部材に連結すると共に、コラムシャフトを保持するコラムマウントブラケットを備えたステアリングメンバ構造に関するものである。 The present invention relates to a steering member structure including a column mount bracket for connecting a middle portion of a steering member to a vehicle body side member and holding a column shaft.
 従来、ステアリングメンバの内部にバルクヘッドを内接固定し、このバルクヘッドの固定位置の外周に、コラムシャフトを保持するコラムマウントブラケットを接合したステアリングメンバ構造が知られている(例えば、特許文献1参照)。ここで、ステアリングメンバは、両端部に取り付けられたサイドブラケットや、コラムマウントブラケットとは異なる位置に取り付けられたポストブラケット、センターブラケットを介して、車体に支持されている。 2. Description of the Related Art Conventionally, a steering member structure is known in which a bulkhead is inscribed and fixed inside a steering member, and a column mount bracket for holding a column shaft is joined to the outer periphery of the fixed position of the bulkhead (for example, Patent Document 1). reference). Here, the steering member is supported by the vehicle body via a side bracket attached to both ends, a post bracket attached to a position different from the column mount bracket, and a center bracket.
特開2010-215186公報JP 2010-215186 A
 ところで、従来のステアリングメンバ構造では、コラムシャフトから入力する振動は、コラムマウントブラケットを介してステアリングメンバに入力される。そして、このステアリングメンバから、両端部のサイドブラケットや、中間部のポストブラケット、センターブラケットに振動が伝達され、車体により支持される。
すなわち、従来のステアリングメンバ構造では、コラムマウントブラケットからステアリングメンバを介して振動支持が行なわれていた。そのため、ステアリングメンバの剛性を十分に確保する必要があり、ステアリングメンバの重量が増加してしまうという問題があった。
By the way, in the conventional steering member structure, the vibration input from the column shaft is input to the steering member via the column mount bracket. Then, vibration is transmitted from the steering member to the side brackets at both ends, the post brackets at the intermediate part, and the center bracket, and is supported by the vehicle body.
That is, in the conventional steering member structure, vibration is supported from the column mount bracket via the steering member. Therefore, it is necessary to sufficiently ensure the rigidity of the steering member, and there is a problem that the weight of the steering member increases.
 本発明は、上記問題に着目してなされたもので、コラムマウントブラケットによるコラムシャフトの支持剛性を向上することで、ステアリングメンバの軽量化を図ることができるステアリングメンバ構造を提供することを目的とする。 The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a steering member structure capable of reducing the weight of the steering member by improving the rigidity of the column shaft supported by the column mount bracket. To do.
 上記目的を達成するため、本発明のステアリングメンバ構造では、車幅方向に延在し、両端部が車体側部材に支持されるステアリングメンバと、前記ステアリングメンバの中間部を前記車体側部材に連結すると共に、コラムシャフトを保持するコラムマウントブラケットと、を備えている。
 そして前記コラムマウントブラケットは、車体連結部と、第1,第2前側梁部と、第1,第2後側梁部と、前側連結梁部と、後側連結梁部と、第1前後連結梁部と、第2前後連結梁部と、を有する。
 前記車体連結部は、前記車体側部材に固定される。
 前記第1,第2前側梁部は、前記車体連結部から延在し、前記コラムシャフトの車両前部の車幅方向両側を保持する。
 前記第1,第2後側梁部は、前記車体連結部から延在し、前記ステアリングメンバに接合されると共に、前記コラムシャフトの中間部の車幅方向両側を保持する。
 前記前側連結梁部は、前記第1,第2前側梁部間を連結する。
 前記後側連結梁部は、前記第1,第2後側梁部間を連結する。
 前記第1前後連結梁部は、前記第1前側梁部と前記第1後側梁部を連結すると共に、前記ステアリングメンバに接合される。
 前記第2前後連結梁部は、前記第2前側梁部と前記第2後側梁部を連結すると共に、前記ステアリングメンバに接合される。
To achieve the above object, in the steering member structure of the present invention, a steering member extending in the vehicle width direction and having both ends supported by the vehicle body side member, and an intermediate portion of the steering member are connected to the vehicle body side member. And a column mount bracket for holding the column shaft.
The column mount bracket includes a vehicle body connection portion, first and second front beam portions, first and second rear beam portions, a front connection beam portion, a rear connection beam portion, and a first front and rear connection. A beam portion and a second front-rear connecting beam portion;
The vehicle body connecting portion is fixed to the vehicle body side member.
The first and second front beam portions extend from the vehicle body connection portion and hold both sides of the column shaft in the vehicle front direction of the vehicle front portion.
The first and second rear beam portions extend from the vehicle body connecting portion, are joined to the steering member, and hold both sides in the vehicle width direction of the intermediate portion of the column shaft.
The front connection beam portion connects the first and second front beam portions.
The rear connecting beam portion connects the first and second rear beam portions.
The first front / rear connecting beam portion connects the first front beam portion and the first rear beam portion and is joined to the steering member.
The second front / rear connecting beam portion connects the second front beam portion and the second rear beam portion and is joined to the steering member.
 本発明のステアリングメンバ構造にあっては、コラムシャフトから入力する車幅方向の振動は、第1,第2前側梁部間を連結する前側連結梁部と、第1,第2後側梁部間を連結する後側連結梁部によって受け止める。そして、受け止めた振動は、第1,第2前側梁部及び第1,第2後側梁部を介して車体連結部へと伝達され、車体側部材によって支持される。
一方、コラムシャフトから入力する車両上下方向の振動は、車体連結部から延在し、コラムシャフトの車両前部の車幅方向両側を保持する第1,第2前側梁部と、車体連結部から延在し、コラムシャフトの中間部の車幅方向両側を保持する第1,第2後側梁部によって受け止める。そして、受け止めた振動は、車体連結部へと伝達され、車体側部材によって支持される。
さらに、コラムシャフトからの振動を受けることで前側連結梁部、後側連結梁部、第1,第2前側梁部、第1,第2後側梁部の間に生じる捩れは、第1前側梁部と第1後側梁部を連結する第1前後連結梁部と、第2前側梁部と第2後側梁部を連結する第2前後連結梁部によって抑えられる。
 これにより、コラムシャフトからの振動をコラムマウントブラケットによって受け止め、ステアリングメンバに伝達することなく車体側部材に直接伝達することができる。すなわち、コラムマウントブラケットによるコラムシャフトの支持剛性を向上させることができる。そして、このコラムマウントブラケットによる剛性性能が向上する分、ステアリングメンバの剛性を低くすることが可能になり、ステアリングメンバの軽量化を図ることができる。
In the steering member structure according to the present invention, the vibration in the vehicle width direction input from the column shaft includes the front side connecting beam portion connecting the first and second front side beam portions, and the first and second rear side beam portions. It is received by the rear connecting beam part that connects the two. The received vibration is transmitted to the vehicle body connecting portion via the first and second front beam portions and the first and second rear beam portions and is supported by the vehicle body side member.
On the other hand, the vibration in the vehicle vertical direction input from the column shaft extends from the vehicle body connection portion, and from the vehicle body connection portion and the first and second front beam portions that hold both sides of the vehicle front portion of the column shaft in the vehicle width direction. It extends and is received by first and second rear beam portions that hold both sides of the intermediate portion of the column shaft in the vehicle width direction. The received vibration is transmitted to the vehicle body connecting portion and supported by the vehicle body side member.
Furthermore, the torsion occurring between the front connection beam portion, the rear connection beam portion, the first and second front beam portions, and the first and second rear beam portions due to the vibration from the column shaft is the first front side. It is restrained by a first front-rear connecting beam portion that connects the beam portion and the first rear beam portion, and a second front-rear connecting beam portion that connects the second front beam portion and the second rear beam portion.
Thereby, the vibration from the column shaft can be received by the column mount bracket and directly transmitted to the vehicle body side member without being transmitted to the steering member. That is, the support rigidity of the column shaft by the column mount bracket can be improved. And since the rigidity performance by this column mount bracket improves, it becomes possible to reduce the rigidity of a steering member, and weight reduction of a steering member can be achieved.
実施例1のステアリングメンバ構造を示す概略斜視図である。1 is a schematic perspective view showing a steering member structure of Embodiment 1. FIG. 図1AにおけるA部を拡大した斜視図である。It is the perspective view which expanded the A section in FIG. 1A. 実施例1のコラムマウントブラケットを示す概略斜視図である。It is a schematic perspective view which shows the column mount bracket of Example 1. FIG. 実施例1のコラムマウントブラケットを示す側面図である。It is a side view which shows the column mount bracket of Example 1. FIG. 実施例1のコラムマウントブラケットを示す平面図である。It is a top view which shows the column mount bracket of Example 1. FIG. 実施例1のコラムマウントブラケットを車両前方から見たときの斜視図である。It is a perspective view when the column mount bracket of Example 1 is seen from the vehicle front. 実施例1のコラムマウントブラケットのコラムシャフト前部保持部分を示す拡大斜視図である。It is an expansion perspective view which shows the column shaft front part holding part of the column mount bracket of Example 1. FIG. 実施例1のコラムマウントブラケットのコラムシャフト前部保持部分を車両前方から見たときの拡大斜視図である。It is an expansion perspective view when the column shaft front part holding | maintenance part of the column mount bracket of Example 1 is seen from the vehicle front. 実施例1のコラムマウントブラケットのコラムシャフト前部保持部分を示す要部正面図である。It is a principal part front view which shows the column shaft front part holding | maintenance part of the column mount bracket of Example 1. FIG. 実施例1のコラムマウントブラケットのコラムシャフト後部保持部分を示す拡大斜視図である。It is an expansion perspective view which shows the column shaft rear part holding part of the column mount bracket of Example 1. FIG. 実施例1のコラムマウントブラケットのコラムシャフト後部保持部分を車両下方から見たときの拡大斜視図である。It is an expansion perspective view when the column shaft rear part holding | maintenance part of the column mount bracket of Example 1 is seen from the vehicle downward direction. 実施例1のコラムマウントブラケットのコラムシャフト後部保持部分を示す側面図である。It is a side view which shows the column shaft rear part holding part of the column mount bracket of Example 1. FIG. 実施例1のコラムマウントブラケットによるコラムシャフトの保持状態を示す側面図である。It is a side view which shows the holding state of the column shaft by the column mount bracket of Example 1. FIG. 実施例1のコラムマウントブラケットによるコラムシャフトの前部保持状態を示す拡大斜視図である。It is an expansion perspective view which shows the front part holding state of the column shaft by the column mount bracket of Example 1. FIG. 実施例1のコラムマウントブラケットによるコラムシャフトの後部保持状態を示す拡大斜視図である。It is an expansion perspective view which shows the rear part holding state of the column shaft by the column mount bracket of Example 1. FIG. 実施例1のコラムマウントブラケットの梁構造を示す平面図である。It is a top view which shows the beam structure of the column mount bracket of Example 1. FIG. 実施例1のコラムマウントブラケットの梁構造を示す側面図である。It is a side view which shows the beam structure of the column mount bracket of Example 1. FIG. 比較例のステアリングメンバ構造を示す斜視図である。It is a perspective view which shows the steering member structure of a comparative example. 実施例1のステアリングメンバ構造における車幅方向の振動入力時の振動支持作用を示す説明図である。It is explanatory drawing which shows the vibration support effect | action at the time of the vibration input of the vehicle width direction in the steering member structure of Example 1. FIG. 実施例1のステアリングメンバ構造における車両上下方向の振動入力時の振動支持作用を示す説明図である。It is explanatory drawing which shows the vibration support effect | action at the time of the vibration input of the vehicle up-down direction in the steering member structure of Example 1. FIG.
 以下、本発明のステアリングメンバ構造を実施するための形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, a mode for carrying out the steering member structure of the present invention will be described based on Example 1 shown in the drawings.
 まず、構成を説明する。
実施例1のステアリングメンバ構造の構成を、「全体構成」、「コラムマウントブラケットの構成」、「コラムシャフトの保持構成」に分けて説明する。
First, the configuration will be described.
The configuration of the steering member structure according to the first embodiment will be described by dividing it into “entire configuration”, “column mount bracket configuration”, and “column shaft holding configuration”.
 [全体構成]
 図1Aは、実施例1のステアリングメンバ構造を示す概略斜視図である。図1Bは、図1AにおけるA部を拡大した斜視図である。なお、図1A中、矢印Xで示す方向は車両前方を示し、矢印Yで示す方向は車両左側方を示し、矢印Zで示す方向は車両上方を示す。
[overall structure]
FIG. 1A is a schematic perspective view showing a steering member structure of the first embodiment. FIG. 1B is an enlarged perspective view of a portion A in FIG. 1A. In FIG. 1A, the direction indicated by the arrow X indicates the front of the vehicle, the direction indicated by the arrow Y indicates the left side of the vehicle, and the direction indicated by the arrow Z indicates the upper side of the vehicle.
 実施例1のステアリングメンバ構造は、ステアリングメンバ1と、コラムマウントブラケット2と、を備え、図示しないインストルメントパネルの内側に配置されている。 The steering member structure of Example 1 includes a steering member 1 and a column mount bracket 2 and is disposed inside an instrument panel (not shown).
 前記ステアリングメンバ1は、車幅方向に延在した中空円筒状の鋼管により構成され、両端部に設けられたサイドブラケット11a,11bを介して、車体側部材であるフロントピラー11cに固定支持される。 The steering member 1 is composed of a hollow cylindrical steel pipe extending in the vehicle width direction, and is fixedly supported by a front pillar 11c, which is a vehicle body side member, via side brackets 11a and 11b provided at both ends. .
 前記コラムマウントブラケット2は、ステアリングメンバ1の中間部と、車体側部材であるダッシュパネル14とのそれぞれに接続され、ステアリングメンバ1をダッシュパネル14に連結する。ここで、図1Bに示すように、コラムマウントブラケット2は、ダッシュパネル14に固着されたネジ16aに、ナット16bが螺合することによりダッシュパネル14に固定される。
また、このコラムマウントブラケット2は、ステアリングメンバ1の下方でコラムシャフト3を保持する。なお、コラムシャフト3は、ハンドル15と一体に回転するステアリングシャフト(ここでは図示せず)を回転可能に保持するものである。
The column mount bracket 2 is connected to an intermediate portion of the steering member 1 and a dash panel 14 which is a vehicle body side member, and couples the steering member 1 to the dash panel 14. Here, as shown in FIG. 1B, the column mount bracket 2 is fixed to the dash panel 14 by screwing a nut 16 b to a screw 16 a fixed to the dash panel 14.
The column mount bracket 2 holds the column shaft 3 below the steering member 1. The column shaft 3 rotatably holds a steering shaft (not shown here) that rotates integrally with the handle 15.
 さらに、この実施例1では、ステアリングメンバ1の中間部に、下方に延在する第1センターブラケット12と、車両前方に延在する第2センターブラケット13と、が設けられている。前記第1センターブラケット12は、下端部が図示しないフロアトンネル部に固定支持される。前記第2センターブラケット13は、先端部がダッシュパネル14に固定支持される。 Furthermore, in the first embodiment, a first center bracket 12 extending downward and a second center bracket 13 extending forward of the vehicle are provided in the middle portion of the steering member 1. The lower end of the first center bracket 12 is fixedly supported by a floor tunnel portion (not shown). The tip of the second center bracket 13 is fixedly supported by the dash panel 14.
 [コラムマウントブラケットの構成]
 図2は、実施例1のコラムマウントブラケットを示す概略斜視図である。図3は、実施例1のコラムマウントブラケットを示す側面図である。図4は、実施例1のコラムマウントブラケットを示す平面図である。図5は、実施例1のコラムマウントブラケットを車両前方から見たときの斜視図である。図6~図11は、それぞれコラムマウントブラケットの要部を適宜示す図である。なお、各図中、矢印Xで示す方向は車両前方を示し、矢印Yで示す方向は車両左側方を示し、矢印Zで示す方向は車両上方を示す。
[Composition of column mount bracket]
FIG. 2 is a schematic perspective view illustrating the column mount bracket of the first embodiment. FIG. 3 is a side view showing the column mount bracket of the first embodiment. FIG. 4 is a plan view showing the column mount bracket of the first embodiment. FIG. 5 is a perspective view of the column mount bracket of the first embodiment when viewed from the front of the vehicle. FIGS. 6 to 11 are views showing the main part of the column mount bracket as appropriate. In each figure, the direction indicated by the arrow X indicates the front of the vehicle, the direction indicated by the arrow Y indicates the left side of the vehicle, and the direction indicated by the arrow Z indicates the upper side of the vehicle.
 前記コラムマウントブラケット2は、ポストブラケット部材21と、ベースブラケット部材22と、前側コラム保持部材23と、レインフォース部材24と、を備えている。 The column mount bracket 2 includes a post bracket member 21, a base bracket member 22, a front column holding member 23, and a reinforcement member 24.
 前記ポストブラケット部材21は、車体連結部211と、第1,第2下側脚部212A,212Bと、第1,第2上側脚部213A,213Bと、を有する。このポストブラケット部材21は、平板鋼板を型抜きし、プレス折り曲げ加工することで形成されている。 The post bracket member 21 has a vehicle body connecting portion 211, first and second lower leg portions 212A and 212B, and first and second upper leg portions 213A and 213B. The post bracket member 21 is formed by punching a flat steel plate and press-bending it.
 前記車体連結部211は、矩形状の平板鋼板からなり、ダッシュパネル14に締結固定される。この車体連結部211の中心部には、ネジ貫通孔211aが形成されている(図5参照)。このネジ貫通孔211aには、ダッシュパネル14に固定されたネジ16aが貫通する。さらに、車体連結部211は、周縁部を車両後方に向かって折り返してフランジ状の折返面211bが形成されており、この折返面211bに沿った稜線211cを有している。 The vehicle body connecting portion 211 is made of a rectangular flat steel plate and is fastened and fixed to the dash panel 14. A screw through hole 211a is formed at the center of the vehicle body connecting portion 211 (see FIG. 5). The screw 16a fixed to the dash panel 14 passes through the screw through hole 211a. Further, the vehicle body connecting portion 211 has a flange-like folded surface 211b formed by folding a peripheral edge portion toward the rear of the vehicle, and has a ridge line 211c along the folded surface 211b.
 前記第1下側脚部212A及び前記第2下側脚部212Bは、車体連結部211をダッシュパネル14に固定した際、車体連結部211の車両下方に臨む一対の角部分から、それぞれ車両後方に向かって延在されている。この第1,第2下側脚部212A,212Bは、車幅方向に並設され、その間隔は先端部に向かって僅かに広がるが、ほぼ平行となっている。そして、第1,第2下側脚部212A,212Bの先端部の間には、ベースブラケット部材22が配置される。さらに、第1,第2下側脚部212A,212Bは、それぞれ、支持側面212Aa,212Baと、フランジ側面212Ab,212Bbと、稜線212Ac,212Bcと、を有したアングル形状を呈している。 The first lower leg portion 212A and the second lower leg portion 212B are respectively rearward from the pair of corner portions facing the vehicle lower side of the vehicle body connecting portion 211 when the vehicle body connecting portion 211 is fixed to the dash panel 14. Is extended towards. The first and second lower leg portions 212A and 212B are arranged side by side in the vehicle width direction, and the distance between the first and second lower leg portions 212A and 212B slightly extends toward the tip, but is substantially parallel. And the base bracket member 22 is arrange | positioned between the front-end | tip parts of 1st, 2nd lower leg part 212A, 212B. Further, the first and second lower leg portions 212A and 212B have angle shapes having support side surfaces 212Aa and 212Ba, flange side surfaces 212Ab and 212Bb, and ridge lines 212Ac and 212Bc, respectively.
 前記支持側面212Aa,212Baは、互いに対向し、先端部がベースブラケット部材22の後述する側面部222とS1部においてスポット溶接される。また、各支持側面212Aa,212Baの先端部の周縁(図6においてArcで示す)は、前側コラム保持部材23の後述するシャフト保持部232,232にそれぞれアーク溶接される。
前記フランジ側面212Ab,212Bbは、各支持側面212Aa,212Baのダッシュパネル14側の端部を、互いに向き合う方向に折り曲げることで形成され、ダッシュパネル14に対向する。ここで、フランジ側面212Ab,212Bbの車体連結部211側の端部は、折返面211bと一体的に連続している。一方、各フランジ側面212Ab,212Bbのベースブラケット部材22側の端部は、ベースブラケット部材22との干渉を避けるため、支持側面212Aa,212Baの先端部の手前までしか形成されていない(図6参照)。
前記稜線212Acは、支持側面212Aaを折り曲げてフランジ側面212Abを形成することで生じた鋼板折曲線であり、第1下側脚部212Aの延在方向に沿って延びている。前記稜線212Bcは、支持側面212Baを折り曲げてフランジ側面212Bbを形成することで生じた鋼板折曲線であり、第2下側脚部212Bの延在方向に沿って延びている。
The support side surfaces 212 </ b> Aa and 212 </ b> Ba are opposed to each other, and a tip end portion thereof is spot welded at a side surface portion 222 and S <b> 1 portion of the base bracket member 22 to be described later. Further, the peripheral edges (indicated by Arc in FIG. 6) of the front end portions of the support side surfaces 212Aa and 212Ba are arc-welded to shaft holding portions 232 and 232, which will be described later, of the front column holding member 23, respectively.
The flange side surfaces 212Ab and 212Bb are formed by bending the end portions on the dash panel 14 side of the support side surfaces 212Aa and 212Ba in a direction facing each other, and face the dash panel 14. Here, the end portions of the flange side surfaces 212Ab and 212Bb on the vehicle body connection portion 211 side are integrally continuous with the folded surface 211b. On the other hand, end portions of the flange side surfaces 212Ab and 212Bb on the base bracket member 22 side are formed only up to the front of the front end portions of the support side surfaces 212Aa and 212Ba in order to avoid interference with the base bracket member 22 (see FIG. 6). ).
The ridgeline 212Ac is a steel plate folding curve formed by bending the support side surface 212Aa to form the flange side surface 212Ab, and extends along the extending direction of the first lower leg portion 212A. The ridgeline 212Bc is a steel plate folding curve generated by bending the support side surface 212Ba to form the flange side surface 212Bb, and extends along the extending direction of the second lower leg portion 212B.
 前記第1上側脚部213A及び前記第2上側脚部213Bは、車体連結部211をダッシュパネル14に固定した際、車体連結部211の車両上方に臨む一対の角部分から、それぞれ車両後方に向かって延在され、先端部の周縁(図9においてArc1で示す)がステアリングメンバ1の外周面1aにアーク溶接されている。この第1,第2上側脚部213A,213Bは、車幅方向に並設され、その車幅方向間隔は車体連結部211からステアリングメンバ1に向かうにつれて次第に広がるように設定されている(図4参照)。そして、第1,第2上側脚部213A,213Bは、それぞれ支持側面213Aa,213Baと、フランジ側面213Ab,213Bbと、稜線213Ac,213Bcと、を有したアングル形状を呈している。 The first upper leg portion 213A and the second upper leg portion 213B are respectively directed toward the rear of the vehicle from a pair of corner portions facing the vehicle upper side of the vehicle body connection portion 211 when the vehicle body connection portion 211 is fixed to the dash panel 14. The peripheral edge (indicated by Arc 1 in FIG. 9) of the tip end is arc welded to the outer peripheral surface 1 a of the steering member 1. The first and second upper leg portions 213A and 213B are arranged side by side in the vehicle width direction, and the interval in the vehicle width direction is set to gradually increase from the vehicle body connecting portion 211 toward the steering member 1 (FIG. 4). reference). The first and second upper leg portions 213A and 213B have an angle shape having support side surfaces 213Aa and 213Ba, flange side surfaces 213Ab and 213Bb, and ridge lines 213Ac and 213Bc, respectively.
 前記支持側面213Aa,213Baは、それぞれ車両上方に面しており、先端部がステアリングメンバ1の上側に当接する。
前記フランジ側面213Ab,213Bbは、各支持側面213Aa,213Baの車幅方向外側の端部を、下方に向かって折り曲げることで形成され、互いに対向する。ここで、フランジ側面213Ab,213Bbの車体連結部211側の端部は、折返面211bと一体的に連続している。一方、各フランジ側面213Ab,213Bbのステアリングメンバ1側の端部は、ステアリングメンバ1の外周面1aに沿って徐々に小さくなっている。さらに、各フランジ側面213Ab,213Bbのステアリングメンバ1側の端部には、車幅方向外側に突出した溶接面部213Ad,213Bdが形成されている。
この溶接面部213Ad,213Bdは、車両前方側が後述するベースブラケット部材22の第1溶接フランジ部222dにアーク溶接され、車両後方側がステアリングメンバ1に沿って湾曲すると共に外周面1aにアーク溶接されている(図3,図11参照)。
前記稜線213Acは、支持側面213Aaを折り曲げてフランジ側面213Abを形成することで生じた鋼板折曲線であり、第1上側脚部213Aの延在方向に沿って延びている。前記稜線213Bcは、支持側面213Baを折り曲げてフランジ側面213Bbを形成することで生じた鋼板折曲線であり、第2上側脚部213Bの延在方向に沿って延びている。
The support side surfaces 213Aa and 213Ba face the upper side of the vehicle, respectively, and the tip ends abut on the upper side of the steering member 1.
The flange side surfaces 213Ab and 213Bb are formed by bending the ends of the support side surfaces 213Aa and 213Ba on the outer side in the vehicle width direction and face each other. Here, the end portions of the flange side surfaces 213Ab and 213Bb on the vehicle body connecting portion 211 side are integrally continuous with the folded surface 211b. On the other hand, the end portions of the flange side surfaces 213Ab and 213Bb on the steering member 1 side are gradually reduced along the outer peripheral surface 1a of the steering member 1. Furthermore, welding surface portions 213Ad and 213Bd projecting outward in the vehicle width direction are formed at the ends of the flange side surfaces 213Ab and 213Bb on the steering member 1 side.
The welding surface portions 213Ad and 213Bd are arc welded to the first welding flange portion 222d of the base bracket member 22 to be described later on the vehicle front side, and the vehicle rear side is curved along the steering member 1 and arc welded to the outer peripheral surface 1a. (See FIGS. 3 and 11).
The ridge line 213Ac is a steel plate folding curve generated by bending the support side surface 213Aa to form the flange side surface 213Ab, and extends along the extending direction of the first upper leg portion 213A. The ridge line 213Bc is a steel plate folding curve generated by bending the support side surface 213Ba to form the flange side surface 213Bb, and extends along the extending direction of the second upper leg portion 213B.
 前記ベースブラケット部材22は、ベースブラケット本体221と、一対の側面部222,222と、一対の稜線223,223と、を有している。このベースブラケット部材22は、平板鋼板を型抜きし、プレス折り曲げ加工することで形成されている。 The base bracket member 22 has a base bracket main body 221, a pair of side surface portions 222, 222, and a pair of ridge lines 223, 223. The base bracket member 22 is formed by punching a flat steel plate and press-bending it.
 前記ベースブラケット本体221は、車両前後方向に延びる鋼板からなり、車両前方に向いた前部221aは、ポストブラケット部材21の第1,第2下側脚部212A,212B間に差し込まれる(図6参照)。一方、車両後方に向いた後部221bは、ステアリングメンバ1の下方に配置される(図10参照)。
そして、この後部221bの車幅方向中央部には、車両上方に突出した突出部221cが形成されている(図10参照)。なお、この突出部221cは、ステアリングメンバ1と干渉する領域に切欠部221dが形成されている。突出部221cの両側には、コラムシャフト3を保持する一対のシャフト保持ボルト17,17がそれぞれ突出するボルト貫通孔221e,221eが形成されている。シャフト保持ボルト17は、ベースブラケット本体221を下方に向かって貫通し、頭部17a(図11参照)がベースブラケット本体221の上面(図示せず)に溶接固定されている。
The base bracket body 221 is made of a steel plate extending in the vehicle front-rear direction, and a front portion 221a facing the vehicle front is inserted between the first and second lower legs 212A and 212B of the post bracket member 21 (FIG. 6). reference). On the other hand, the rear portion 221b facing the rear of the vehicle is disposed below the steering member 1 (see FIG. 10).
And the protrusion part 221c which protruded above the vehicle is formed in the vehicle width direction center part of this rear part 221b (refer FIG. 10). The protruding portion 221c has a notch 221d formed in a region that interferes with the steering member 1. Bolt through holes 221e and 221e from which a pair of shaft holding bolts 17 and 17 holding the column shaft 3 protrude are formed on both sides of the protruding portion 221c. The shaft holding bolt 17 penetrates the base bracket body 221 downward, and a head portion 17a (see FIG. 11) is welded and fixed to the upper surface (not shown) of the base bracket body 221.
 前記一対の側面部222,222は、ベースブラケット本体221の車幅方向両端部を、車両上方に向かって折り曲げることで形成され、互いに対向する。各側面部222の車両前方に向いた前部222aは、第1,第2下側脚部212A,212Bのフランジ側面212Ab,212BbにS1部においてスポット溶接される(図3参照)。一方、各側面部222の車両後方に向いた後部222bには、ステアリングメンバ1が嵌合する湾曲凹部222cと、車幅方向外側に突出した第1,第2溶接フランジ部222d,222eが形成されている。この第1,第2溶接フランジ部222d,222eは、湾曲凹部222cを挟んで車両前後方向に延在されている(図3参照)。そして、車両前方側に位置する第1溶接フランジ部222dは、第1,第2上側脚部213A,213Bの溶接面部213Ad,213Bdの車両前方側にアーク溶接されている。また、車両後方側に位置する第2溶接フランジ部222eは、レインフォース部材24の後述する溶接フランジ部242の車両後方側にアーク溶接される。 The pair of side surfaces 222, 222 are formed by bending both ends of the base bracket body 221 in the vehicle width direction toward the upper side of the vehicle, and face each other. The front part 222a of each side part 222 facing the vehicle front is spot welded to the flange side faces 212Ab and 212Bb of the first and second lower leg parts 212A and 212B at the S1 part (see FIG. 3). On the other hand, a curved concave portion 222c into which the steering member 1 is fitted and first and second welding flange portions 222d and 222e projecting outward in the vehicle width direction are formed on the rear portion 222b of each side portion 222 facing the vehicle rear. ing. The first and second welding flange portions 222d and 222e extend in the vehicle front-rear direction with the curved concave portion 222c interposed therebetween (see FIG. 3). The first welding flange portion 222d located on the vehicle front side is arc welded to the vehicle front side of the welding surface portions 213Ad and 213Bd of the first and second upper leg portions 213A and 213B. The second welding flange portion 222e located on the vehicle rear side is arc-welded to the vehicle rear side of a welding flange portion 242 (described later) of the reinforcement member 24.
 前記一対の稜線223,223は、ベースブラケット本体221を折り曲げて一対の側面部222,222を形成することで生じた鋼板折曲線であり、それぞれ車両前後方向に沿って延びている。この稜線223,223は、第1,第2下側脚部212A,212Bの稜線212Ac,212Bcと車幅方向位置が一致する(図8参照)。 The pair of ridge lines 223 and 223 are steel plate folding curves generated by bending the base bracket body 221 to form the pair of side surface portions 222 and 222, and each extend along the vehicle longitudinal direction. The ridgelines 223 and 223 coincide with the ridgelines 212Ac and 212Bc of the first and second lower leg portions 212A and 212B in the vehicle width direction (see FIG. 8).
 前記前側コラム保持部材23は、ブラケット固定部231と、一対のシャフト保持部232,232と、を有する。この前側コラム保持部材23は、平板鋼板を型抜きし、プレス折り曲げ加工することで形成されている。 The front column holding member 23 has a bracket fixing portion 231 and a pair of shaft holding portions 232 and 232. The front column holding member 23 is formed by punching a flat steel plate and press-bending it.
 前記ブラケット固定部231は、車幅方向に延在した帯状の鋼板であり、ベースブラケット部材22のベースブラケット本体221の前部221aの下側に、S2部においてスポット溶接される(図7参照)。 The bracket fixing portion 231 is a strip-shaped steel plate extending in the vehicle width direction, and is spot-welded at a portion S2 below the front portion 221a of the base bracket body 221 of the base bracket member 22 (see FIG. 7). .
 前記一対のシャフト保持部232,232は、ブラケット固定部231の車幅方向両端部を、下方に向かって折り曲げることで形成され、互いに対向する。各シャフト保持部232には、コラムシャフト3の前部3aを保持する保持ボルトB1が貫通するボルト貫通孔232aが形成されている。なお、一方のボルト貫通孔232aの車幅方向外側には、ナット18が溶着固定されている(図6参照)。
また、一対のシャフト保持部232,232の間隔は、第1,第2下側脚部212A,212Bの先端部の間隔と同じである。すなわち、ブラケット固定部231を折り曲げて一対のシャフト保持部232,232を形成することで生じた鋼板折曲線233,233は、ベースブラケット部材22の一対の稜線223,223と車両上下方向の位置が一致する。
また、第1,第2下側脚部212A,212Bの支持側面212Aa,212Baと、一対のシャフト保持部232,232は、ほぼ面一となる(図8参照)。
The pair of shaft holding portions 232 and 232 are formed by bending both ends in the vehicle width direction of the bracket fixing portion 231 downward, and face each other. Each shaft holding portion 232 is formed with a bolt through hole 232a through which the holding bolt B1 holding the front portion 3a of the column shaft 3 passes. A nut 18 is welded and fixed to the outer side in the vehicle width direction of one bolt through hole 232a (see FIG. 6).
Further, the distance between the pair of shaft holding portions 232 and 232 is the same as the distance between the tip portions of the first and second lower leg portions 212A and 212B. In other words, the steel plate folding curves 233 and 233 generated by bending the bracket fixing portion 231 to form the pair of shaft holding portions 232 and 232 are positioned in the vehicle vertical direction with respect to the pair of ridge lines 223 and 223 of the base bracket member 22. Match.
Further, the support side surfaces 212Aa and 212Ba of the first and second lower leg portions 212A and 212B and the pair of shaft holding portions 232 and 232 are substantially flush with each other (see FIG. 8).
 前記レインフォース部材24は、ポストブラケット部材21の第1,第2上側脚部213A,213Bの先端部に対向し、ステアリングメンバ1の上側、及び、ベースブラケット本体221の後部221bを覆う部分である。このレインフォース部材24は、レインフォース本体241と、レインフォース本体241の両側に設けられた溶接フランジ部242,242と、を有する。なお、このレインフォース部材24は、平板鋼板を型抜きし、プレス折り曲げ加工することで形成されている。 The reinforcement member 24 is a portion facing the front end portions of the first and second upper leg portions 213A and 213B of the post bracket member 21 and covering the upper side of the steering member 1 and the rear portion 221b of the base bracket body 221. . The reinforcement member 24 includes a reinforcement body 241 and welding flange portions 242 and 242 provided on both sides of the reinforcement body 241. The reinforcement member 24 is formed by punching a flat steel plate and press-bending it.
 前記レインフォース本体241は、前端部241aがステアリングメンバ1の外周面1a及び第1,第2上側脚部213A,213Bの先端部にアーク溶接され、車幅方向両側に形成された一対の湾曲突部241b,241bと、車幅方向中央部に形成された溶接凹部241cと、を有している。
各湾曲突部241bは、図4に示すように、ベースブラケット本体221を貫通するシャフト保持ボルト17を覆う突曲面241dと、この突曲面241dの車幅方向両側を下方に折り曲げることで形成され、互いに対向する一対の立上り面241e,241eと、を有する。そして、この湾曲突部241bでは、突曲面241dを折り曲げて立上り面241e,241eを形成することで生じた鋼板折曲線が一対の稜線241f,241fとなっている。ここで、車幅方向外側に位置する一方の稜線241fは、第1,第2上側脚部213A,213Bの稜線213Ac,213Bcと車両前後方向に連続する(図4参照)。
また、溶接凹部241cは、両側の立上り面241e,241e及びステアリングメンバ1に沿った湾曲面241gに囲まれた平坦面であり、ベースブラケット本体221の突出部221cと接触し、S3部においてスポット溶接される。さらに、レインフォース本体241の後端縁(図9においてArc2で示す)は、ベースブラケット本体221にアーク溶接される。
The reinforcement main body 241 has a pair of curved protrusions formed on both sides in the vehicle width direction by arc-welding the front end portion 241a to the outer peripheral surface 1a of the steering member 1 and the tip ends of the first and second upper leg portions 213A and 213B. Parts 241b and 241b, and a weld recess 241c formed at the center in the vehicle width direction.
As shown in FIG. 4, each curved protrusion 241b is formed by bending a protruding surface 241d covering the shaft holding bolt 17 penetrating the base bracket body 221 and both sides of the protruding surface 241d in the vehicle width direction downward. A pair of rising surfaces 241e, 241e facing each other. And in this curved protrusion 241b, the steel plate bending curve produced by bending the protruding surface 241d to form the rising surfaces 241e, 241e is a pair of ridge lines 241f, 241f. Here, the one ridge line 241f located on the outer side in the vehicle width direction is continuous with the ridge lines 213Ac and 213Bc of the first and second upper leg portions 213A and 213B in the vehicle front-rear direction (see FIG. 4).
The weld recess 241c is a flat surface surrounded by rising surfaces 241e and 241e on both sides and a curved surface 241g along the steering member 1, and is in contact with the protruding portion 221c of the base bracket body 221 and is spot-welded at S3. Is done. Further, the rear end edge (indicated by Arc 2 in FIG. 9) of the reinforcement main body 241 is arc-welded to the base bracket main body 221.
 前記溶接フランジ部242,242は、レインフォース本体241から車幅方向外側に突出している。この溶接フランジ部242は、車両前方側がステアリングメンバ1の外周面1aにアーク溶接され、車両後方側がベースブラケット部材22の第2溶接フランジ部222eとアーク溶接される(図11参照)。 The welding flange portions 242 and 242 protrude outward from the reinforcement main body 241 in the vehicle width direction. The welding flange portion 242 is arc welded to the outer peripheral surface 1a of the steering member 1 on the vehicle front side, and arc welded to the second welding flange portion 222e of the base bracket member 22 on the vehicle rear side (see FIG. 11).
 そして、前記ステアリングメンバ1は、図11に示すように、第1,第2上側脚部213A,213B及びレインフォース部材24と、ベースブラケット部材22によって車両上下方向から挟持される。 As shown in FIG. 11, the steering member 1 is sandwiched between the first and second upper leg portions 213A and 213B, the reinforcement member 24, and the base bracket member 22 from the vehicle vertical direction.
 [コラムシャフトの保持構成]
 図12は、実施例1のコラムマウントブラケットによるコラムシャフトの保持状態を示す側面図である。図13は、実施例1のコラムマウントブラケットによるコラムシャフト前部保持状態を示す拡大斜視図である。図14は、実施例1のコラムマウントブラケットによるコラムシャフトの後部保持状態を示す拡大斜視図である。
[Column shaft holding configuration]
FIG. 12 is a side view illustrating a state in which the column shaft is held by the column mount bracket according to the first embodiment. FIG. 13 is an enlarged perspective view showing a column shaft front portion held by the column mount bracket of the first embodiment. FIG. 14 is an enlarged perspective view illustrating a rear holding state of the column shaft by the column mount bracket according to the first embodiment.
 前記コラムシャフト3は、一端にハンドル15(図1A参照)が設けられ、ハンドル15と一体に回転するステアリングシャフト31を回転可能に支持する中空の菅部材から形成される。このコラムシャフト3は、前部3aが前側コラム保持部材23に保持され、中間部3bがベースブラケット部材22のベースブラケット本体221の後部221bに保持される。なお、ハンドル15は、コラムシャフト3の後部3c側に配置される。また、ステアリングシャフト31の他端には、図示しないステアリングホイールが連結される。そして、コラムシャフト3には、チルト機構32と、EPSモータ33と、EPSコントロールユニット34と、減速機35と、トルクセンサ36と、が設けられている。 The column shaft 3 is provided with a handle 15 (see FIG. 1A) at one end, and is formed of a hollow saddle member that rotatably supports a steering shaft 31 that rotates integrally with the handle 15. The column shaft 3 has a front portion 3 a held by the front column holding member 23 and an intermediate portion 3 b held by the rear portion 221 b of the base bracket body 221 of the base bracket member 22. The handle 15 is disposed on the rear portion 3c side of the column shaft 3. A steering wheel (not shown) is connected to the other end of the steering shaft 31. The column shaft 3 is provided with a tilt mechanism 32, an EPS motor 33, an EPS control unit 34, a speed reducer 35, and a torque sensor 36.
 前記チルト機構32は、コラムシャフト3の中間部3bに取り付けられた保持ブラケット37に設けられ、コラムシャフト3の高さ位置を調整する。図中32aはチルトレバーである。 The tilt mechanism 32 is provided on a holding bracket 37 attached to the intermediate portion 3b of the column shaft 3, and adjusts the height position of the column shaft 3. In the figure, 32a is a tilt lever.
 前記EPSモータ(電動パワーステアリングモータ)33は、コラムシャフト3の前部3a近傍に設けられ、ハンドル15の操舵を補助する電動モータである。 The EPS motor (electric power steering motor) 33 is an electric motor that is provided in the vicinity of the front portion 3a of the column shaft 3 and assists the steering of the handle 15.
 前記EPSコントロールユニット34は、トルクセンサ36からの検出値に応じて、EPSモータ33の動作を制御する。 The EPS control unit 34 controls the operation of the EPS motor 33 according to the detection value from the torque sensor 36.
 前記減速機35は、EPSモータ33の図示しない出力軸とステアリングシャフト31の間に設けられ、EPSモータ33からの回転数を低下させてステアリングシャフト31に伝達する。この減速機35の前端面35aには、前側コラム保持部材23のシャフト保持部232,232間に配置される保持シャフト38が形成されている(図13参照)。 The speed reducer 35 is provided between an output shaft (not shown) of the EPS motor 33 and the steering shaft 31, and reduces the rotational speed from the EPS motor 33 and transmits it to the steering shaft 31. A holding shaft 38 disposed between the shaft holding portions 232 and 232 of the front column holding member 23 is formed on the front end surface 35a of the speed reducer 35 (see FIG. 13).
 そして、シャフト保持部232,232及び保持シャフト38が、保持ボルトB1によって一体に貫通されることで、コラムマウントブラケット2によりコラムシャフト3の前部3aが保持される。 The shaft holding portions 232 and 232 and the holding shaft 38 are integrally penetrated by the holding bolt B1, so that the front portion 3a of the column shaft 3 is held by the column mount bracket 2.
 また、前記保持ブラケット37は、図14に示すように、コラムシャフト3の外周を取り囲むブラケット本体37aと、ブラケット本体37aから車幅方向外側に突出した一対の保持フランジ37b,37bと、を有する。各保持フランジ37bには、ベースブラケット部材22のベースブラケット本体221を貫通した一対のシャフト保持ボルト17,17がそれぞれ挿入される挿入孔(図示せず)が形成されている。この挿入孔に挿入されたシャフト保持ボルト17にナット17bが螺合することで、保持ブラケット37がベースブラケット部材22の下側に固定され、コラムマウントブラケット2によりコラムシャフト3の中間部3bが保持される。 Further, as shown in FIG. 14, the holding bracket 37 includes a bracket main body 37a surrounding the outer periphery of the column shaft 3, and a pair of holding flanges 37b and 37b protruding outward from the bracket main body 37a in the vehicle width direction. Each holding flange 37b is formed with an insertion hole (not shown) into which a pair of shaft holding bolts 17 and 17 penetrating the base bracket body 221 of the base bracket member 22 are inserted. The nut 17 b is screwed into the shaft holding bolt 17 inserted into the insertion hole, whereby the holding bracket 37 is fixed to the lower side of the base bracket member 22, and the intermediate portion 3 b of the column shaft 3 is held by the column mount bracket 2. Is done.
 [コラムマウントブラケットの梁構成]
 図15Aは、実施例1のコラムマウントブラケットの梁構造を示す平面図である。図15Bは、実施例1のコラムマウントブラケットの梁構造を示す側面図である。ここで「梁」とは、振動の伝達方向が変化する振動支持点間をつなぎ、入力された振動を支持或いは伝達する直線部分である。
[Beam configuration of column mount bracket]
FIG. 15A is a plan view illustrating a beam structure of the column mount bracket according to the first embodiment. FIG. 15B is a side view illustrating a beam structure of the column mount bracket according to the first embodiment. Here, the “beam” is a linear portion that connects between vibration support points where the transmission direction of vibration changes, and supports or transmits the input vibration.
 実施例1のステアリングメンバ構造において、コラムシャフト3を保持するコラムマウントブラケット2は、ポストブラケット部材21の車体連結部211が、車体側部材であるダッシュパネル14に固定される車体連結部Aに相当する。 In the steering member structure of the first embodiment, the column mount bracket 2 that holds the column shaft 3 corresponds to the vehicle body connection portion A in which the vehicle body connection portion 211 of the post bracket member 21 is fixed to the dash panel 14 that is the vehicle body side member. To do.
 また、一対のシャフト保持部232,232により、コラムシャフト3の保持シャフト38を挟み込んで保持する。これにより、第1,第2下側脚部212A,212Bと、これにほぼ面一になった一対のシャフト保持部232,232が、車体連結部Aから車両前後方向に延在し、コラムシャフト3の車両前部の車幅方向両側を支持する第1,第2前側梁部B,Cに相当する。 Further, the holding shaft 38 of the column shaft 3 is sandwiched and held by the pair of shaft holding portions 232 and 232. As a result, the first and second lower leg portions 212A and 212B and a pair of shaft holding portions 232 and 232 that are substantially flush with the first and second lower leg portions 212A and 212B extend from the vehicle body connecting portion A in the vehicle front-rear direction. 3 corresponds to first and second front beam portions B and C that support both sides in the vehicle width direction of the vehicle front portion.
 また、ベースブラケット本体221の後部221bに溶接された一対のシャフト保持ボルト17,17に、コラムシャフト3に取り付けられた保持ブラケット37を固定することで、コラムシャフト3の中間部3bが保持される。一方、ベースブラケット本体221の後部221bは、レインフォース部材24に覆われ、レインフォース本体241の後端縁とアーク溶接されると共に、第2溶接フランジ部222eが溶接フランジ部242とアーク溶接される。さらに、レインフォース部材24の前端部241aは、ステアリングメンバ1及び第1,第2上側脚部213A,213Bの先端部にアーク溶接される。
これにより、第1,第2上側脚部213A,213Bと、レインフォース部材24と、ベースブラケット本体221の後部221bが、車体連結部Aから車両前後方向に延在し、ステアリングメンバ1に接合されると共に、コラムシャフト3の中間部3bの車幅方向両側を支持する第1,第2後側梁部D,Eに相当する。
Further, the intermediate bracket 3b of the column shaft 3 is held by fixing the holding bracket 37 attached to the column shaft 3 to the pair of shaft holding bolts 17 and 17 welded to the rear portion 221b of the base bracket body 221. . On the other hand, the rear portion 221b of the base bracket main body 221 is covered with the reinforcement member 24 and arc-welded to the rear end edge of the reinforcement main body 241, and the second welding flange portion 222e is arc-welded to the welding flange portion 242. . Further, the front end portion 241a of the reinforcement member 24 is arc welded to the steering member 1 and the front end portions of the first and second upper leg portions 213A and 213B.
Accordingly, the first and second upper leg portions 213A and 213B, the reinforcement member 24, and the rear portion 221b of the base bracket main body 221 extend from the vehicle body connection portion A in the vehicle front-rear direction and are joined to the steering member 1. And corresponds to first and second rear beam portions D and E that support both sides of the intermediate portion 3b of the column shaft 3 in the vehicle width direction.
 また、前側コラム保持部材23がブラケット固定部231を有することで、一対のシャフト保持部232,232が一体になっている。ここで、一対のシャフト保持部232,232は、上述のように第1,第2前側梁部に相当する。これにより、ブラケット固定部231が、第1,第2前側梁部B,C間を連結し、車幅方向に延在する前側連結梁部Fに相当する。 Moreover, since the front column holding member 23 has the bracket fixing portion 231, the pair of shaft holding portions 232 and 232 are integrated. Here, the pair of shaft holding portions 232 and 232 correspond to the first and second front beam portions as described above. Thereby, the bracket fixing | fixed part 231 connects between the 1st, 2nd front side beam parts B and C, and is equivalent to the front side connection beam part F extended in a vehicle width direction.
 また、一対のシャフト保持ボルト17,17が固定されるベースブラケット本体221の後部221bは、車幅方向中央部に突出部221cが形成されているものの、車幅方向に連続している。これにより、ベースブラケット本体221の後部221bが、第1,第2後側梁部D,E間を連結し、車幅方向に延在する後側連結梁部Gに相当する。 Further, the rear portion 221b of the base bracket main body 221 to which the pair of shaft holding bolts 17 and 17 are fixed is continuous in the vehicle width direction, although the protruding portion 221c is formed at the center in the vehicle width direction. Accordingly, the rear portion 221b of the base bracket body 221 corresponds to the rear connecting beam portion G that connects the first and second rear beam portions D and E and extends in the vehicle width direction.
 また、ベースブラケット部材22が車両前後方向に延在され、第1,第2下側脚部212A,212Bと接合されると共に、レインフォース部材24と接合される。また、このベースブラケット部材22は、第1溶接フランジ部222dがステアリングメンバ1にアーク溶接される。これにより、ベースブラケット部材22が、第1前側梁部Bと第1後側梁部Dを連結すると共に、ステアリングメンバ1に接合される第1前後連結梁部Hと、第2前側梁部Cと第2後側梁部Eを連結すると共に、ステアリングメンバ1に接合される第2前後連結梁部Iに相当する。
なお、ベースブラケット本体221が、第1前後連結梁部Hと第2前後連結梁部Iを連結する連続部に相当する。すなわち、ベースブラケット本体221の前部221aとブラケット固定部231がスポット溶接されることで、前側連結梁部Fと連続部とが重なり合って固定されることとなる。
The base bracket member 22 extends in the vehicle front-rear direction and is joined to the first and second lower legs 212A and 212B and joined to the reinforcement member 24. The base bracket member 22 is arc welded to the steering member 1 at the first welding flange portion 222d. Accordingly, the base bracket member 22 connects the first front beam portion B and the first rear beam portion D, and the first front and rear connection beam portions H joined to the steering member 1 and the second front beam portion C. And the second rear beam portion E are connected to each other and correspond to the second front / rear connection beam portion I joined to the steering member 1.
The base bracket body 221 corresponds to a continuous portion that connects the first front-rear connecting beam portion H and the second front-rear connecting beam portion I. That is, when the front portion 221a of the base bracket main body 221 and the bracket fixing portion 231 are spot-welded, the front side connecting beam portion F and the continuous portion are overlapped and fixed.
 次に、作用を説明する。
 まず、「ステアリングメンバへの要求機能」を説明し、続いて、実施例1のステアリングメンバ構造の作用を、「車幅方向振動入力時の振動支持作用」、「車両上下方向振動入力時の振動支持作用」に分けて説明する。
Next, the operation will be described.
First, the “required function for the steering member” will be described, and subsequently, the operation of the steering member structure of the first embodiment will be described as “vibration support operation at the time of vehicle width direction vibration input” and “vibration at the time of vehicle vertical direction vibration input”. The description will be divided into “supporting action”.
 [ステアリングメンバへの要求機能]
 図16は、比較例のステアリングメンバ構造を示す斜視図である。
[Required functions for steering members]
FIG. 16 is a perspective view showing a steering member structure of a comparative example.
 ステアリングメンバ1とは、フロントピラー11cやダッシュパネル14等の車体側部材に連結され、コラムシャフト3やステアリングシャフト31に連結されるステアリングホイール(図示せず)を支持する部品である。そのため、ステアリングメンバ1には、車両に発生するアイドリング振動、走行振動等と、ステアリングホイールとの共振を抑制する機能が求められている。 The steering member 1 is a part that is connected to a vehicle body side member such as the front pillar 11c and the dash panel 14 and supports a steering wheel (not shown) connected to the column shaft 3 and the steering shaft 31. Therefore, the steering member 1 is required to have a function of suppressing resonance between the idling vibration, running vibration, and the like generated in the vehicle and the steering wheel.
 特に、ステアリングホイールは、車両上下方向、車幅方向(車両左右方向)、さらに斜め方向のあらゆる方向に振動する。そのため、ステアリングメンバ1は、すべての振動方向に対して、振動を抑制することが望ましい。しかしながら、振動抑制機能を向上するために、ステアリングメンバ1自体の強度を向上すると、ステアリングメンバ1の重量が増加してしまう。 Especially, the steering wheel vibrates in all directions including the vehicle vertical direction, vehicle width direction (vehicle left-right direction), and diagonal direction. Therefore, it is desirable for the steering member 1 to suppress vibration in all vibration directions. However, if the strength of the steering member 1 itself is improved in order to improve the vibration suppressing function, the weight of the steering member 1 increases.
 これに対し、例えば図16に示すように、ステアリングメンバ1に取り付けられたコラムシャフト(ここでは図示せず)を支持するコラムブラケット100を、ポストブラケット101を介してダッシュパネル等の車体側部材に連結することが考えられる。しかし、この場合であっても、ポストブラケット101の剛性が低いと、振動抑制効果を十分に確保することが難しくなり、ステアリングメンバ1の剛性を低減させることはできなかった。 On the other hand, for example, as shown in FIG. 16, a column bracket 100 that supports a column shaft (not shown here) attached to the steering member 1 is attached to a vehicle body side member such as a dash panel via a post bracket 101. It is possible to concatenate. However, even in this case, if the rigidity of the post bracket 101 is low, it is difficult to ensure a sufficient vibration suppressing effect, and the rigidity of the steering member 1 cannot be reduced.
 [車幅方向振動入力時の振動支持作用]
 図17は、実施例1のステアリングメンバ構造における車幅方向の振動入力時の振動支持作用を示す説明図である。なお、図17では、チルト機構32等コラムシャフト3に設けられる部材は省略している。
[Vibration support action at the time of vehicle width direction vibration input]
FIG. 17 is an explanatory diagram illustrating a vibration support function when a vibration is input in the vehicle width direction in the steering member structure according to the first embodiment. In FIG. 17, members provided on the column shaft 3 such as the tilt mechanism 32 are omitted.
 ハンドル15は、アイドリング振動や走行振動等により、図17に示すように、車幅方向(車両左右方向)に振動する。このとき、ハンドル15に連結されたステアリングシャフト31もハンドル15と一体に振動するため、ステアリングシャフト31を保持するコラムシャフト3も車幅方向に振動することとなる。 The handle 15 vibrates in the vehicle width direction (vehicle left-right direction) as shown in FIG. 17 due to idling vibration, traveling vibration, or the like. At this time, since the steering shaft 31 coupled to the handle 15 also vibrates integrally with the handle 15, the column shaft 3 holding the steering shaft 31 also vibrates in the vehicle width direction.
 ここで、コラムシャフト3の前部3aは、前側コラム保持部材23によって保持され、コラムシャフト3の中間部3bは、ベースブラケット本体221の後部221bによって保持される。
そのため、コラムシャフト3の車幅方向の振動は、この前側コラム保持部材23と、ベースブラケット本体221の後部221bとからコラムマウントブラケット2に入力される。
Here, the front portion 3 a of the column shaft 3 is held by the front column holding member 23, and the intermediate portion 3 b of the column shaft 3 is held by the rear portion 221 b of the base bracket body 221.
Therefore, the vibration in the vehicle width direction of the column shaft 3 is input to the column mount bracket 2 from the front column holding member 23 and the rear portion 221b of the base bracket body 221.
 このとき、前側コラム保持部材23は、第1,第2下側脚部212A,212Bとほぼ面一に連続するシャフト保持部232,232と一体になったブラケット固定部231を有している。そのため、前側コラム保持部材23に入力した車幅方向の振動は、第1,第2前側梁部B,C間を連結し、車幅方向に延在する前側連結梁部Fに相当するブラケット固定部231によって受け止められる。
そして、車幅方向の振動をブラケット固定部231によって受け止めることで、コラムシャフト3を保持する一対のシャフト保持部232,232が個々に振動することが抑制される。これにより、コラムシャフト3の前部3aの車幅方向の振動を抑制することができる。
At this time, the front column holding member 23 includes a bracket fixing portion 231 integrated with shaft holding portions 232 and 232 that are substantially flush with the first and second lower leg portions 212A and 212B. Therefore, the vibration in the vehicle width direction input to the front column holding member 23 connects the first and second front beam portions B and C and fixes the bracket corresponding to the front connection beam portion F extending in the vehicle width direction. It is received by the part 231.
And by receiving the vibration of the vehicle width direction by the bracket fixing | fixed part 231, it is suppressed that a pair of shaft holding part 232,232 holding the column shaft 3 vibrates separately. Thereby, the vibration of the front part 3a of the column shaft 3 in the vehicle width direction can be suppressed.
 また、ベースブラケット本体221の後部221bは、車幅方向中央部に突出部221cが形成されているものの、車幅方向に連続している。そのため、ベースブラケット本体221の後部221bに入力した車幅方向の振動は、第1,第2後側梁部D,E間を連結し、車幅方向に延在する後側連結梁部Gに相当するベースブラケット本体221の後部221bによって受け止められる。
そして、車幅方向の振動をベースブラケット本体221の後部221bによって受け止めることで、コラムシャフト3を保持する一対のシャフト保持ボルト17,17が個々に振動することが抑制される。これにより、コラムシャフト3の中間部3bの車幅方向の振動を抑制することができる。
Further, the rear portion 221b of the base bracket main body 221 is continuous in the vehicle width direction, although the protruding portion 221c is formed at the center in the vehicle width direction. Therefore, the vibration in the vehicle width direction input to the rear portion 221b of the base bracket main body 221 connects the first and second rear beam portions D and E to the rear connection beam portion G extending in the vehicle width direction. It is received by the corresponding rear portion 221b of the base bracket body 221.
Then, by receiving the vibration in the vehicle width direction by the rear portion 221b of the base bracket body 221, the pair of shaft holding bolts 17 and 17 holding the column shaft 3 are suppressed from vibrating individually. Thereby, the vibration of the intermediate part 3b of the column shaft 3 in the vehicle width direction can be suppressed.
 さらに、車幅方向の振動を受け止めるブラケット固定部231と、ベースブラケット本体221の後部221bは、第1,第2前後連結梁部H,Iに相当するベースブラケット部材22によって連結されている。
そのため、ブラケット固定部231と、ベースブラケット本体221の後部221bとが、個々に振動することが抑制され、コラムマウントブラケット2が車幅方向に捩れることが防止される。つまり、コラムシャフト3の前部3aと中間部3bが車幅方向に捩れることが防止される。
Furthermore, the bracket fixing portion 231 that receives vibration in the vehicle width direction and the rear portion 221b of the base bracket body 221 are connected by a base bracket member 22 corresponding to the first and second front and rear connecting beam portions H and I.
Therefore, the bracket fixing portion 231 and the rear portion 221b of the base bracket main body 221 are suppressed from vibrating individually, and the column mount bracket 2 is prevented from being twisted in the vehicle width direction. That is, the front portion 3a and the intermediate portion 3b of the column shaft 3 are prevented from being twisted in the vehicle width direction.
 特に、ベースブラケット部材22は、ベースブラケット本体221の車幅方向両端部が折り曲げられて形成され、車両前後方向に延びる一対の稜線223,223を有している。このため、ベースブラケット部材22の剛性を向上することができ、コラムマウントブラケット2が車幅方向に捩れることをより効果的に防止することができる。 In particular, the base bracket member 22 has a pair of ridges 223 and 223 that are formed by bending both ends of the base bracket body 221 in the vehicle width direction and extend in the vehicle front-rear direction. For this reason, the rigidity of the base bracket member 22 can be improved, and the column mount bracket 2 can be more effectively prevented from being twisted in the vehicle width direction.
 そして、ブラケット固定部231によって受け止めた振動は、第1,第2下側脚部212A,212Bを介して車体連結部211に伝達され、車体側部材であるダッシュパネル14によって支持される。また、ベースブラケット本体221の後部221bによって受け止めた振動は、第1,第2上側脚部213A,213Bを介して車体連結部211に伝達され、車体側部材であるダッシュパネル14によって支持される。 The vibration received by the bracket fixing portion 231 is transmitted to the vehicle body connecting portion 211 via the first and second lower leg portions 212A and 212B and supported by the dash panel 14 that is a vehicle body side member. The vibration received by the rear portion 221b of the base bracket main body 221 is transmitted to the vehicle body connecting portion 211 via the first and second upper leg portions 213A and 213B, and is supported by the dash panel 14 that is a vehicle body side member.
 この結果、コラムマウントブラケット2の車幅方向振動に対する振動支持剛性を向上することができ、ステアリングメンバ1に伝達される振動が抑えられる。このため、ステアリングメンバ1の剛性を低下することが可能となり、ステアリングメンバ1の軽量化を図ることができる。 As a result, the vibration support rigidity with respect to the vibration in the vehicle width direction of the column mount bracket 2 can be improved, and the vibration transmitted to the steering member 1 can be suppressed. For this reason, the rigidity of the steering member 1 can be reduced, and the weight of the steering member 1 can be reduced.
 なお、実施例1のステアリングメンバ構造では、車幅方向振動を受け止めるブラケット固定部231が、ベースブラケット本体221の前部221aに重ねられ、S2部においてスポット溶接されている。
これにより、前側コラム保持部材23に入力した車幅方向の振動を受け止める前側連結梁部Fに相当するブラケット固定部231の剛性が向上し、前側コラム保持部材23から入力する振動の抑制効果を高めることができる。
In the steering member structure according to the first embodiment, the bracket fixing portion 231 that receives the vibration in the vehicle width direction is overlapped with the front portion 221a of the base bracket body 221 and is spot-welded at S2.
As a result, the rigidity of the bracket fixing portion 231 corresponding to the front connecting beam portion F that receives the vibration in the vehicle width direction input to the front column holding member 23 is improved, and the effect of suppressing the vibration input from the front column holding member 23 is enhanced. be able to.
 また、車幅方向振動を受け止めるベースブラケット本体221の後部221bが、レインフォース部材24によって覆われ、後端縁及び両側の第2溶接フランジ部222eがレインフォース本体241にアーク溶接されている。
これにより、一対のシャフト保持ボルト17,17から入力した車幅方向の振動を受け止める後側連結梁部Gに相当するベースブラケット本体221の後部221bの剛性が向上し、一対のシャフト保持ボルト17,17から入力する振動の抑制効果を高めることができる。
Further, the rear portion 221b of the base bracket main body 221 that receives vibration in the vehicle width direction is covered with the reinforcement member 24, and the rear end edge and the second welding flange portions 222e on both sides are arc-welded to the reinforcement main body 241.
As a result, the rigidity of the rear portion 221b of the base bracket body 221 corresponding to the rear connecting beam portion G that receives vibrations in the vehicle width direction input from the pair of shaft holding bolts 17, 17 is improved, and the pair of shaft holding bolts 17, The effect of suppressing vibration input from 17 can be enhanced.
 さらに、この実施例1のステアリングメンバ構造では、ベースブラケット本体221の後部221bによって受け止めた振動を、車体連結部211に伝達する第1,第2上側脚部213A,213Bが、車体連結部211からステアリングメンバ1に向かうにつれて次第に広がるように設定されている。ここで、コラムシャフト3は、自由端になっているハンドル15側、つまり後部3cの方が前部3aよりも大きく振動する。
そのため、第1,第2上側脚部213A,213Bが、コラムシャフト3の振動方向に合わせて延在されることになり、車体連結部211への振動伝達をスムーズに行なうことができる。この結果、ステアリングメンバ1に作用する負荷を軽減でき、ステアリングメンバ1の剛性軽減をさらに図ることができる。
Further, in the steering member structure of the first embodiment, the first and second upper leg portions 213A and 213B that transmit the vibration received by the rear portion 221b of the base bracket main body 221 to the vehicle body connection portion 211 are separated from the vehicle body connection portion 211. It is set so as to gradually expand toward the steering member 1. Here, the column shaft 3 vibrates more greatly on the side of the handle 15 at the free end, that is, on the rear portion 3c than on the front portion 3a.
Therefore, the first and second upper leg portions 213A and 213B are extended in accordance with the vibration direction of the column shaft 3, and vibration transmission to the vehicle body connection portion 211 can be performed smoothly. As a result, the load acting on the steering member 1 can be reduced, and the rigidity of the steering member 1 can be further reduced.
 そして、この実施例1のステアリングメンバ構造では、ステアリングメンバ1が、第1,第2上側脚部213A,213B及びレインフォース部材24と、ベースブラケット本体221によって車両上下方向から挟持されている。すなわち、ステアリングメンバ1は、第1後側梁部Dと第1前後連結梁部Hにより挟持されると共に、第2後側梁部Eと第2前後連結梁部Iにより挟持される。
このため、ステアリングメンバ1とコラムマウントブラケット2の間の接合強度を向上することができ、特にコラムシャフト3が車幅方向に振動したときのコラムマウントブラケット2の振動を抑制することができる。この結果、コラムマウントブラケット2によるコラムシャフト3の支持剛性を高めることができて、ステアリングメンバ1の軽量化を図ることができる。
In the steering member structure of the first embodiment, the steering member 1 is sandwiched from the vehicle vertical direction by the first and second upper leg portions 213A and 213B, the reinforcement member 24, and the base bracket body 221. That is, the steering member 1 is sandwiched between the first rear beam portion D and the first front / rear connection beam portion H, and is sandwiched between the second rear beam portion E and the second front / rear connection beam portion I.
For this reason, the joining strength between the steering member 1 and the column mount bracket 2 can be improved, and in particular, the vibration of the column mount bracket 2 when the column shaft 3 vibrates in the vehicle width direction can be suppressed. As a result, the support rigidity of the column shaft 3 by the column mount bracket 2 can be increased, and the weight of the steering member 1 can be reduced.
 [車両上下方向振動入力時の振動支持作用]
 図18は、実施例1のステアリングメンバ構造における車両上下方向の振動入力時の振動支持作用を示す説明図である。
[Vibration support action at the time of vehicle vertical vibration input]
FIG. 18 is an explanatory diagram illustrating a vibration support function when a vibration is input in the vehicle vertical direction in the steering member structure according to the first embodiment.
 ハンドル15は、アイドリング振動や走行振動等により、車幅方向(車両左右方向)への振動に加えて車両上下方向にも振動する。この車両上下方向の振動は、ステアリングシャフト31からコラムシャフト3へと伝わり、コラムシャフト3も車両上下方向に振動することとなる。 The handle 15 vibrates not only in the vehicle width direction (vehicle left-right direction) but also in the vehicle up-down direction due to idling vibration or traveling vibration. The vibration in the vehicle vertical direction is transmitted from the steering shaft 31 to the column shaft 3, and the column shaft 3 also vibrates in the vehicle vertical direction.
 そして、このコラムシャフト3の車両上下方向の振動は、この前側コラム保持部材23と、ベースブラケット本体221の後部221bとからコラムマウントブラケット2に入力される。 The vibration of the column shaft 3 in the vehicle vertical direction is input to the column mount bracket 2 from the front column holding member 23 and the rear portion 221b of the base bracket body 221.
 このとき、前側コラム保持部材23のコラムシャフト3の前部3aを保持するシャフト保持部232,232は、車体連結部211と一体になった第1,第2下側脚部212A,212Bとほぼ面一に連続する。そのため、前側コラム保持部材23に入力した車両上下方向の振動は、第1,第2前側梁部B,Cに相当する第1,第2下側脚部212A,212Bと、これにほぼ面一に連続する一対のシャフト保持部232,232によって受け止められる。すなわち、前側コラム保持部材23から入力した車両上下方向の振動は、振動方向に一致した車両上下方向に延在する第1,第2前側梁部B,Cによって受け止められる。
これにより、前側コラム保持部材23から入力した車両上下方向の振動は抑制され、コラムシャフト3の前部3aの車両上下方向の振動を抑制することができる。
At this time, the shaft holding portions 232 and 232 for holding the front portion 3a of the column shaft 3 of the front column holding member 23 are substantially the same as the first and second lower leg portions 212A and 212B integrated with the vehicle body connecting portion 211. Consecutive and continuous. Therefore, the vibration in the vehicle vertical direction inputted to the front column holding member 23 is substantially flush with the first and second lower leg portions 212A and 212B corresponding to the first and second front beam portions B and C. Are received by a pair of shaft holding portions 232 and 232 that are continuous with each other. That is, the vehicle vertical vibration input from the front column holding member 23 is received by the first and second front beam portions B and C extending in the vehicle vertical direction that coincides with the vibration direction.
Thereby, the vehicle vertical vibration input from the front column holding member 23 is suppressed, and the vehicle vertical vibration of the front portion 3a of the column shaft 3 can be suppressed.
 また、ベースブラケット本体221の後部221bに入力した車両上下方向の振動は、第1,第2後側梁部D,Eに相当するレインフォース部材24及び第1,第2上側脚部213A,213Bによって受け止められる。すなわち、ベースブラケット本体221の後部221bから入力した車両上下方向の振動は、振動方向に一致した車両上下方向に延在する第1,第2後側梁部D,Eによって受け止められる。
これにより、ベースブラケット本体221の後部221bから入力した車両上下方向の振動は抑制され、コラムシャフト3の中間部3bの車両上下方向の振動を抑制することができる。
Further, the vibration in the vehicle vertical direction inputted to the rear portion 221b of the base bracket main body 221 is caused by the reinforcement member 24 corresponding to the first and second rear beam portions D and E and the first and second upper leg portions 213A and 213B. Received by. That is, the vehicle vertical vibration input from the rear portion 221b of the base bracket main body 221 is received by the first and second rear beam portions D and E extending in the vehicle vertical direction corresponding to the vibration direction.
As a result, the vehicle vertical vibration input from the rear portion 221b of the base bracket body 221 is suppressed, and the vehicle vertical vibration of the intermediate portion 3b of the column shaft 3 can be suppressed.
 さらに、車両上下方向の振動を受け止める第1,第2下側脚部212A,212Bと、レインフォース部材24及び第1,第2上側脚部213A,213Bは、第1,第2前後連結梁部H,Iに相当するベースブラケット部材22によって連結されている。
そのため、ベースブラケット本体221の後部221bに入力した車両上下方向の振動の一部は、このベースブラケット部材22を介して第1,第2下側脚部212A,212Bへと伝達される。そして、この第1,第2下側脚部212A,212Bによって受け止められる。すなわち、比較的大きく振動するコラムシャフト3の中間部3bの振動は、第1,第2下側脚部212A,212Bによっても抑えることができる。このため、振動抑制効果を向上することができる。
さらに、第1,第2下側脚部212A,212Bと、レインフォース部材24及び第1,第2上側脚部213A,213Bとが、個々に振動することが抑制され、コラムマウントブラケット2が車両上下方向に捩れることが防止される。つまり、コラムシャフト3の前部3aと中間部3bが車両上下方向に捩れることが防止される。
Further, the first and second lower legs 212A and 212B that receive vibration in the vertical direction of the vehicle, the reinforcement member 24, and the first and second upper legs 213A and 213B are the first and second front and rear connecting beam portions. They are connected by a base bracket member 22 corresponding to H and I.
Therefore, part of the vehicle vertical vibration input to the rear portion 221b of the base bracket body 221 is transmitted to the first and second lower legs 212A and 212B via the base bracket member 22. And it is received by these 1st, 2nd lower leg 212A, 212B. That is, the vibration of the middle portion 3b of the column shaft 3 that vibrates relatively greatly can be suppressed by the first and second lower leg portions 212A and 212B. For this reason, the vibration suppression effect can be improved.
Furthermore, the first and second lower leg portions 212A and 212B, the reinforcement member 24 and the first and second upper leg portions 213A and 213B are restrained from vibrating individually, and the column mount bracket 2 is mounted on the vehicle. It is possible to prevent twisting in the vertical direction. That is, the front portion 3a and the intermediate portion 3b of the column shaft 3 are prevented from being twisted in the vehicle vertical direction.
 特に、ベースブラケット部材22が車両前後方向に延びる一対の稜線223,223を有することで、ベースブラケット部材22の剛性を向上することができ、コラムマウントブラケット2の車両上下方向に捩れもより効果的に防止することができる。 In particular, since the base bracket member 22 has a pair of ridge lines 223 and 223 extending in the vehicle front-rear direction, the rigidity of the base bracket member 22 can be improved, and the column mount bracket 2 is more effectively twisted in the vehicle vertical direction. Can be prevented.
 また、この稜線223,223が、第1,第2下側脚部212A,212Bの稜線212Ac,212Bcと車幅方向位置が一致することで、第1,第2下側脚部212A,212Bの剛性を高めることができ、上下方向の振動抑制効果をさらに向上することができる。 Further, the ridgelines 223 and 223 are aligned with the ridgelines 212Ac and 212Bc of the first and second lower legs 212A and 212B, so that the positions of the first and second lower legs 212A and 212B match. The rigidity can be increased, and the effect of suppressing vibration in the vertical direction can be further improved.
 そして、第1,第2下側脚部212A,212Bによって受け止めた振動と、レインフォース部材24及び第1,第2上側脚部213A,213Bによって受け止めた振動は、いずれも車体連結部211に伝達され、車体側部材であるダッシュパネル14によって支持される。 The vibration received by the first and second lower legs 212A and 212B and the vibration received by the reinforcement member 24 and the first and second upper legs 213A and 213B are all transmitted to the vehicle body connection portion 211. And supported by a dash panel 14 which is a vehicle body side member.
 この結果、コラムマウントブラケット2の車両上下方向振動に対する振動支持剛性を向上することができ、ステアリングメンバ1に伝達される振動が抑えられる。このため、ステアリングメンバ1の剛性を低下することが可能となり、ステアリングメンバ1の軽量化を図ることができる。 As a result, the vibration support rigidity with respect to the vehicle vertical vibration of the column mount bracket 2 can be improved, and the vibration transmitted to the steering member 1 can be suppressed. For this reason, the rigidity of the steering member 1 can be reduced, and the weight of the steering member 1 can be reduced.
 なお、実施例1のコラムマウントブラケット2では、車体連結部211に対して第1,第2下側脚部212A,212B及び第1,第2上側脚部213A,213Bは、車両下方に向かって延在されている。そのため、コラムシャフト3が車両上下方向に振動したとき、第1,第2下側脚部212A,212B及び第1,第2上側脚部213A,213Bは、コラムシャフト3の振動を上方から抑えることとなる。
そのため、車両上下方向の振動が抑制しやすくなり、振動抑制効果を向上することができる。
In the column mount bracket 2 of the first embodiment, the first and second lower leg portions 212A and 212B and the first and second upper leg portions 213A and 213B with respect to the vehicle body connecting portion 211 are directed downward of the vehicle. Has been extended. Therefore, when the column shaft 3 vibrates in the vehicle vertical direction, the first and second lower leg portions 212A and 212B and the first and second upper leg portions 213A and 213B suppress vibration of the column shaft 3 from above. It becomes.
Therefore, it becomes easy to suppress the vibration in the vehicle vertical direction, and the vibration suppressing effect can be improved.
 また、実施例1のコラムマウントブラケット2は、コラムシャフト3の中間部3bを、前部3aよりも高い位置で保持している。ここで、上述のように、コラムシャフト3は、自由端になっているハンドル15側、つまり後部3cの方が前部3aよりも大きく振動する。
そのため、大きく振動してしまうコラムシャフト3の中間部3bと車体連結部211の距離の短縮を図り、車両上下方向の振動抑制効果を向上することができる。
Further, the column mount bracket 2 of the first embodiment holds the intermediate portion 3b of the column shaft 3 at a position higher than the front portion 3a. Here, as described above, the column shaft 3 vibrates more greatly on the side of the handle 15 at the free end, that is, on the rear portion 3c than on the front portion 3a.
Therefore, the distance between the intermediate portion 3b of the column shaft 3 that greatly vibrates and the vehicle body connecting portion 211 can be shortened, and the vibration suppressing effect in the vehicle vertical direction can be improved.
 さらに、第1,第2下側脚部212A,212Bが、支持側面212Aa,212Baを折り曲げ、第1,第2下側脚部212A,212Bの延在方向に延びる稜線212Ac,212Bcを有している。そのため、第1,第2下側脚部212A,212Bの剛性を向上することができ、前側コラム保持部材23から入力する車両上下方向の振動をより効果的に抑えることができる。 Further, the first and second lower legs 212A and 212B have ridgelines 212Ac and 212Bc that bend the support side surfaces 212Aa and 212Ba and extend in the extending direction of the first and second lower legs 212A and 212B. Yes. Therefore, the rigidity of the first and second lower legs 212A and 212B can be improved, and vibrations in the vehicle vertical direction input from the front column holding member 23 can be more effectively suppressed.
 また、レインフォース部材24及び第1,第2上側脚部213A,213Bも、それぞれ稜線241f、稜線213Ac,213Bcを有している。そのため、レインフォース部材24及び第1,第2上側脚部213A,213Bの剛性を向上することができ、ベースブラケット本体221の後部221bから入力する車両上下方向の振動をより効果的に抑えることができる。 The reinforcement member 24 and the first and second upper legs 213A and 213B also have a ridge line 241f and ridge lines 213Ac and 213Bc, respectively. Therefore, the rigidity of the reinforcement member 24 and the first and second upper leg portions 213A and 213B can be improved, and vibration in the vehicle vertical direction input from the rear portion 221b of the base bracket body 221 can be more effectively suppressed. it can.
 特に、レインフォース部材24の車幅方向外側に位置する稜線241f,241fと、第1,第2上側脚部213A,213Bの稜線213Ac,213Bcが車両前後方向に連続している。これにより、ベースブラケット本体221の後部221bから入力する車両上下方向の振動を、さらに効果的に抑えることができる。 Particularly, the ridgelines 241f and 241f located on the outer side in the vehicle width direction of the reinforcement member 24 and the ridgelines 213Ac and 213Bc of the first and second upper leg portions 213A and 213B are continuous in the vehicle front-rear direction. Thereby, the vibration of the vehicle up-down direction input from the rear part 221b of the base bracket main body 221 can be more effectively suppressed.
 そして、第1上側脚部213Aの稜線213Acの車幅方向位置と、ベースブラケット部材22の一方の稜線223の車幅方向位置が一致している。また、第2上側脚部213Bの稜線213Bcの車幅方向位置と、ベースブラケット部材22の他方の稜線223の車幅方向位置が一致している。
これにより、ベースブラケット部材22や第1,第2上側脚部213A,213Bの剛性をいずれ向上することができる。この結果、ステアリングメンバ1に作用する負荷を軽減でき、ステアリングメンバ1の剛性軽減をさらに図ることができる。
And the vehicle width direction position of ridgeline 213Ac of 1st upper side leg part 213A and the vehicle width direction position of one ridgeline 223 of the base bracket member 22 correspond. Further, the vehicle width direction position of the ridge line 213Bc of the second upper leg 213B and the vehicle width direction position of the other ridge line 223 of the base bracket member 22 coincide with each other.
As a result, the rigidity of the base bracket member 22 and the first and second upper leg portions 213A and 213B can be improved. As a result, the load acting on the steering member 1 can be reduced, and the rigidity of the steering member 1 can be further reduced.
 次に、効果を説明する。
実施例1のステアリングメンバ構造にあっては、下記に挙げる効果を得ることができる。
Next, the effect will be described.
In the steering member structure of the first embodiment, the following effects can be obtained.
 (1) 車幅方向に延在し、両端部が車体側部材に支持されるステアリングメンバ1と、
 前記ステアリングメンバ1の中間部を前記車体側部材(ダッシュパネル)14に連結すると共に、コラムシャフト3を保持するコラムマウントブラケット2と、を備えたステアリングメンバ構造において、
 前記コラムマウントブラケット2は、
 前記車体側部材14に固定される車体連結部(車体連結部211)Aと、
 前記車体連結部Aから車両下方に延在し、前記コラムシャフト3の車両前部の車幅方向両側を保持する第1,第2前側梁部(第1,第2下側脚部212A,212B、一対のシャフト保持部232,232)B,Cと、
 前記車体連結部Aから車両下方に延在し、前記ステアリングメンバ1に接合されると共に、前記コラムシャフト3の中間部3bの車幅方向両側を保持する第1,第2後側梁部(第1,第2上側脚部213A,213B、レインフォース部材24、ベースブラケット本体221の後部221b)D,Eと、
 前記第1,第2前側梁部B,C間を連結し、車幅方向に延在する前側連結梁部(ブラケット固定部231)Fと、
 前記第1,第2後側梁部D,E間を連結し、車幅方向に延在する後側連結梁部(ベースブラケット本体221の後部221b)Gと、
 前記第1前側梁部Bと前記第1後側梁部Dを連結すると共に、前記ステアリングメンバに接合される第1前後連結梁部(ベースブラケット部材22)Hと、
 前記第2前側梁部Cと前記第2後側梁部Eを連結すると共に、前記ステアリングメンバ1に接合される第2前後連結梁部(ベースブラケット部材22)Iと、
 を有する構成とした。
 これにより、コラムマウントブラケット2によるコラムシャフト3の支持剛性を向上することで、ステアリングメンバ1の軽量化を図ることができる。
(1) a steering member 1 extending in the vehicle width direction and having both end portions supported by the vehicle body side member;
In the steering member structure including the column mount bracket 2 for holding the column shaft 3 while connecting the intermediate portion of the steering member 1 to the vehicle body side member (dash panel) 14,
The column mount bracket 2 is
A vehicle body connecting portion (vehicle body connecting portion 211) A fixed to the vehicle body side member 14,
First and second front beam portions (first and second lower leg portions 212A and 212B) that extend from the vehicle body connection portion A to the vehicle lower side and hold both sides in the vehicle width direction of the vehicle front portion of the column shaft 3. A pair of shaft holders 232, 232) B, C;
The first and second rear beam portions (the first and second rear beam portions) that extend downward from the vehicle body connection portion A, are joined to the steering member 1, and hold both sides of the intermediate portion 3 b of the column shaft 3 in the vehicle width direction. 1, second upper leg portions 213A, 213B, reinforcement member 24, rear portion 221b) D, E of base bracket body 221;
A front connecting beam portion (bracket fixing portion 231) F that connects the first and second front beam portions B and C and extends in the vehicle width direction;
A rear connecting beam portion (a rear portion 221b of the base bracket body 221) G that connects the first and second rear beam portions D and E and extends in the vehicle width direction;
A first front-rear connecting beam portion (base bracket member 22) H that connects the first front beam portion B and the first rear beam portion D and is joined to the steering member;
A second front-rear connecting beam portion (base bracket member 22) I that connects the second front beam portion C and the second rear beam portion E and is joined to the steering member 1;
It was set as the structure which has.
Thereby, the weight of the steering member 1 can be reduced by improving the support rigidity of the column shaft 3 by the column mount bracket 2.
 (2) 前記第1,第2前側梁部B,Cと、前記第1,第2後側梁部D,Hと、前記前側連結梁部Fと、前記後側連結梁部Gと、前記第1,第2前後連結梁部H,Iと、のうち少なくとも何れか一つの一部は、端部を折り曲げることで稜線が形成された鋼材によって構成される構成とした。
 これにより、コラムマウントブラケット2の剛性を向上することができ、さらにコラムシャフト3の支持剛性を高めることができる。
(2) the first and second front beam portions B and C, the first and second rear beam portions D and H, the front connection beam portion F, the rear connection beam portion G, and A part of at least one of the first and second front and rear connecting beam portions H and I is configured by a steel material in which a ridge line is formed by bending an end portion.
Thereby, the rigidity of the column mount bracket 2 can be improved, and the support rigidity of the column shaft 3 can be further increased.
 (3) 前記第1,第2前側梁部B,Cと前記第1,第2前後連結梁部H,Iは、それぞれ前記鋼材によって形成され、
 前記第1前側梁部Bと前記第1前後連結梁部Hは、互いの稜線212Ac,223の車幅方向位置が一致した状態で接合され、
 前記第2前側梁部Cと前記第2前後連結梁部Iは、互いの稜線212Bc,223の車幅方向位置が一致した状態で接合される構成とした。
 これにより、車両上下方向の振動に対して、第1前側梁部(第1下側脚部212A)B及び第2前側梁部(第2下側脚部B)Cの剛性を高めることができ、車両上下方向の振動抑制効果をより向上することができる。
(3) The first and second front beam portions B and C and the first and second front and rear connecting beam portions H and I are each formed of the steel material,
The first front beam portion B and the first front-rear connecting beam portion H are joined in a state in which the positions of the ridgelines 212Ac and 223 in the vehicle width direction coincide with each other.
The second front beam portion C and the second front / rear connecting beam portion I are joined together with their ridgelines 212Bc and 223 aligned in the vehicle width direction.
As a result, the rigidity of the first front beam portion (first lower leg portion 212A) B and the second front beam portion (second lower leg portion B) C can be increased against vibration in the vehicle vertical direction. In addition, the vibration suppression effect in the vehicle vertical direction can be further improved.
 (4) 前記第1,第2後側梁部D,Hは、前記車体連結部Aと前記ステアリングメンバ1の間に配置された脚部(第1,第2上側脚部)213A,213Bと、前記ステアリングメンバ1から前記コラムシャフト3の間に配置されたレインフォース部(レインフォース部材)24と、を有し、
 前記脚部213A,213B及び前記レインフォース部24は、それぞれ前記鋼材によって形成され、
 前記脚部213A,213Bと前記レインフォース部24は、互いの稜線213Ac,213Bc、241fが車両前後方向に連続する状態で前記ステアリングメンバ1に接合される構成とした。
 これにより、後側連結梁部(ベースブラケット本体221の後部221b)Gから入力する車両上下方向の振動を、さらに効果的に抑えることができる。
(4) The first and second rear beam portions D and H are leg portions (first and second upper leg portions) 213A and 213B disposed between the vehicle body connecting portion A and the steering member 1, respectively. Reinforce portion (reinforce member) 24 disposed between the steering member 1 and the column shaft 3;
The leg portions 213A, 213B and the reinforcement portion 24 are each formed of the steel material,
The leg portions 213A, 213B and the reinforcement portion 24 are configured to be joined to the steering member 1 in a state in which the ridgelines 213Ac, 213Bc, 241f are continuous in the vehicle front-rear direction.
Thereby, the vibration of the vehicle up-down direction input from the rear side connection beam part (rear part 221b of the base bracket main body 221) G can be more effectively suppressed.
 (5) 前記第1,第2後側梁部D,E間の車幅方向間隔は、前記車体連結部Aから前記ステアリングメンバ1に向かって、次第に広がるように設定されている構成とした。
 これにより、第1,第2後側梁部(第1,第2上側脚部213A,213B)D,Eが、コラムシャフト3の振動方向に合わせて延在されることになり、車体連結部211への振動伝達をスムーズに行なって、ステアリングメンバ1に作用する負荷を軽減できる。
(5) The vehicle width direction interval between the first and second rear beam portions D and E is set so as to gradually spread from the vehicle body connection portion A toward the steering member 1.
Thus, the first and second rear beam portions (first and second upper leg portions 213A and 213B) D and E are extended in accordance with the vibration direction of the column shaft 3, and the vehicle body connecting portion It is possible to smoothly transmit the vibration to 211 and reduce the load acting on the steering member 1.
 (6) 前記第1前後連結梁部Hと前記第2前後連結梁部Iは、連続部(ベースブラケット本体)221を介して互いに連結され、
 前記連続部221は、前記前側連結梁部(ブラケット固定部231)Fに重なり合って固定される構成とした。
 これにより、前側連結梁部(ブラケット固定部231)Fの剛性を高めることができ、車幅方向の振動抑制効果を向上することができる。
(6) The first front / rear connecting beam portion H and the second front / rear connecting beam portion I are connected to each other via a continuous portion (base bracket body) 221;
The continuous portion 221 is configured to overlap and be fixed to the front connecting beam portion (bracket fixing portion 231) F.
Thereby, the rigidity of the front side connection beam part (bracket fixing | fixed part 231) F can be improved, and the vibration suppression effect of a vehicle width direction can be improved.
 (7) 前記第1,第2後側梁部D,Eは前記ステアリングメンバ1の上側に接合され、前記第1,第2前後連結梁部H,Iは前記ステアリングメンバ1の下側に接合され、
 前記ステアリングメンバ1は、前記第1後側梁部Dと前記第1前後連結梁部Hにより挟持されると共に、前記第2後側梁部Eと前記第2前後連結梁部Iにより挟持される構成とした。
 これにより、ステアリングメンバ1とコラムマウントブラケット2の接合強度を向上することができ、特にコラムシャフト3が車幅方向に振動したときの振動抑制効果を向上することができる。
(7) The first and second rear beam portions D and E are joined to the upper side of the steering member 1, and the first and second front and rear connecting beam portions H and I are joined to the lower side of the steering member 1. And
The steering member 1 is sandwiched between the first rear beam portion D and the first front and rear connection beam portion H, and is sandwiched between the second rear beam portion E and the second front and rear connection beam portion I. The configuration.
Thereby, the joint strength between the steering member 1 and the column mount bracket 2 can be improved, and in particular, the vibration suppressing effect when the column shaft 3 vibrates in the vehicle width direction can be improved.
 以上、本発明のステアリングメンバ構造を実施例1に基づき説明してきたが、具体的な構成については、この実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As mentioned above, although the steering member structure of the present invention has been described based on the first embodiment, the specific configuration is not limited to this embodiment, and departs from the gist of the invention according to each claim of the claims. Unless otherwise, design changes and additions are permitted.
 上記実施例1では、第1,第2下側脚部212A,212Bと前側コラム保持部材23とを別部材で形成し、支持側面212Aa,212Baとシャフト保持部232,232をほぼ面一状態で溶接することで、第1,第2前側梁部B,Cを構成している。しかしながら、第1,第2下側脚部212A,212Bと前側コラム保持部材23とを一つの鋼材によって一体的に形成してもよい。この場合では、二つの部材を溶接する工程が不要となるだけでなく、シャフト保持部の先端部分まで、容易にフランジ側面を形成することも可能となる。 In the first embodiment, the first and second lower leg portions 212A, 212B and the front column holding member 23 are formed as separate members, and the support side surfaces 212Aa, 212Ba and the shaft holding portions 232, 232 are substantially flush with each other. By welding, the first and second front beam portions B and C are configured. However, the first and second lower legs 212A and 212B and the front column holding member 23 may be integrally formed of one steel material. In this case, not only the process of welding the two members becomes unnecessary, but also the flange side surface can be easily formed up to the tip portion of the shaft holding portion.
 また、実施例1では、第1,第2上側脚部213A,213Bとレインフォース部材24を別部材で形成し、第1,第2上側脚部213A,213Bの先端部にレインフォース部材24の前端部241aを溶接することで、第1,第2後側梁部B,Cを構成している。しかしながら、第1,第2上側脚部213A,213Bとレインフォース部材24を一つの鋼材によって一体的に形成してもよい。この場合では、二つの部材を溶接する工程が不要となる。 In the first embodiment, the first and second upper leg portions 213A and 213B and the reinforcement member 24 are formed as separate members, and the reinforcement member 24 is formed at the distal ends of the first and second upper leg portions 213A and 213B. The first and second rear beam portions B and C are configured by welding the front end portion 241a. However, the first and second upper leg portions 213A and 213B and the reinforcement member 24 may be integrally formed of one steel material. In this case, the process of welding two members becomes unnecessary.
 さらに、実施例1では、シャフト保持ボルト17をベースブラケット本体221の後部221bに固定している。しかし、例えばレインフォース部材24にシャフト保持ボルト17を設けると共に、ベースブラケット本体221を重ね合わせてもよい。
この場合であっても、コラムシャフト3の中間部3bを保持する第1,第2後側梁部D,Eを連結する後側連結梁部Gに相当する部分が、二つの鋼板を重ね合わせた構成になり、後側連結梁部Gの剛性を向上し、振動抑制効果を向上することができる。
Further, in the first embodiment, the shaft holding bolt 17 is fixed to the rear portion 221b of the base bracket body 221. However, for example, the shaft holding bolt 17 may be provided on the reinforcement member 24 and the base bracket body 221 may be overlapped.
Even in this case, the portion corresponding to the rear connecting beam portion G that connects the first and second rear beam portions D and E holding the intermediate portion 3b of the column shaft 3 overlaps the two steel plates. Thus, the rigidity of the rear connecting beam portion G can be improved and the vibration suppressing effect can be improved.
 また、例えばレインフォース部材24の後端部を折り曲げて稜線を形成することで後側連結梁部Gの剛性を向上してもよい。また、実施例1では、前側コラム保持部材23とベースブラケット本体221の前部221aを重ね合わせることで前側連結梁部Fの剛性を向上しているが、例えば前側コラム保持部材23が前端部を折り曲げて稜線を形成し、剛性を向上するものであってもよい。 For example, the rigidity of the rear connecting beam portion G may be improved by bending the rear end portion of the reinforcement member 24 to form a ridgeline. In the first embodiment, the front column holding member 23 and the front portion 221a of the base bracket body 221 are overlapped to improve the rigidity of the front connecting beam portion F. For example, the front column holding member 23 has a front end portion. A ridgeline may be formed by bending to improve rigidity.
関連出願の相互参照Cross-reference of related applications
 本出願は、2012年5月2日に日本国特許庁に出願された特願2012-105043に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-105043 filed with the Japan Patent Office on May 2, 2012, the entire disclosure of which is fully incorporated herein by reference.

Claims (7)

  1.  車幅方向に延在し、両端部が車体側部材に支持されるステアリングメンバと、
     前記ステアリングメンバの中間部を前記車体側部材に連結すると共に、コラムシャフトを保持するコラムマウントブラケットと、を備えたステアリングメンバ構造において、
     前記コラムマウントブラケットは、
     前記車体側部材に固定される車体連結部と、
     前記車体連結部から車両上方又は車両下方に延在し、前記コラムシャフトの車両前部の車幅方向両側を保持する第1,第2前側梁部と、
     前記車体連結部から車両上方又は車両下方に延在し、前記ステアリングメンバに接合されると共に、前記コラムシャフトの中間部の車幅方向両側を保持する第1,第2後側梁部と、
     前記第1,第2前側梁部間を連結し、車幅方向に延在する前側連結梁部と、
     前記第1,第2後側梁部間を連結し、車幅方向に延在する後側連結梁部と、
     前記第1前側梁部と前記第1後側梁部を連結すると共に、前記ステアリングメンバに接合される第1前後連結梁部と、
     前記第2前側梁部と前記第2後側梁部を連結すると共に、前記ステアリングメンバに接合される第2前後連結梁部と、
     を有することを特徴とするステアリングメンバ構造。
    A steering member extending in the vehicle width direction and having both end portions supported by the vehicle body side member;
    In a steering member structure comprising a column mount bracket for connecting a middle portion of the steering member to the vehicle body side member and holding a column shaft,
    The column mount bracket is
    A vehicle body connecting portion fixed to the vehicle body side member;
    First and second front beam portions extending from the vehicle body connecting portion to the vehicle upper side or the vehicle lower side and holding both sides in the vehicle width direction of the vehicle front portion of the column shaft;
    First and second rear beam portions extending from the vehicle body connecting portion to the vehicle upper side or the vehicle lower side, joined to the steering member, and holding both sides in the vehicle width direction of the intermediate portion of the column shaft;
    Connecting the first and second front beam portions, and extending in the vehicle width direction, a front connection beam portion;
    Connecting the first and second rear beam portions and extending in the vehicle width direction; and a rear connection beam portion;
    Connecting the first front beam part and the first rear beam part, and a first front and rear connection beam part joined to the steering member;
    Connecting the second front beam portion and the second rear beam portion, and a second front / rear connecting beam portion joined to the steering member;
    A steering member structure comprising:
  2.  請求項1に記載されたステアリングメンバ構造において、
     前記第1,第2前側梁部と、前記第1,第2後側梁部と、前記前側連結梁部と、前記後側連結梁部と、前記第1,第2前後連結梁部と、のうち少なくとも何れか一つの一部は、端部を折り曲げることで稜線が形成された鋼材によって構成される
     ことを特徴とするステアリングメンバ構造。
    In the steering member structure according to claim 1,
    The first and second front beam portions, the first and second rear beam portions, the front connection beam portion, the rear connection beam portion, and the first and second front and rear connection beam portions; A steering member structure characterized in that at least a part of at least one of them is made of a steel material having a ridge formed by bending an end portion.
  3.  請求項2に記載されたステアリングメンバ構造において、
     前記第1,第2前側梁部と前記第1,第2前後連結梁部は、それぞれ前記鋼材によって形成され、
     前記第1前側梁部と前記第1前後連結梁部は、互いの稜線の車幅方向位置が一致した状態で接合され、
     前記第2前側梁部と前記第2前後連結梁部は、互いの稜線の車幅方向位置が一致した状態で接合される
     ことを特徴とするステアリングメンバ構造。
    In the steering member structure according to claim 2,
    The first and second front beam portions and the first and second front and rear connecting beam portions are each formed of the steel material,
    The first front beam portion and the first front-rear connecting beam portion are joined in a state in which the positions in the vehicle width direction of the ridge lines coincide with each other,
    The steering member structure, wherein the second front beam portion and the second front / rear connecting beam portion are joined in a state in which the positions of the ridgelines in the vehicle width direction coincide with each other.
  4.  請求項2又は請求項3に記載されたステアリングメンバ構造において、
     前記第1,第2後側梁部は、前記車体連結部と前記ステアリングメンバの間に配置された脚部と、前記ステアリングメンバから前記コラムシャフトの間に配置されたレインフォース部と、を有し、
     前記脚部及び前記レインフォース部は、それぞれ前記鋼材によって形成され、
     前記脚部と前記レインフォース部は、互いの稜線が車両前後方向に連続する状態で前記ステアリングメンバに接合される
     ことを特徴とするステアリングメンバ構造。
    In the steering member structure according to claim 2 or claim 3,
    The first and second rear beam portions include leg portions disposed between the vehicle body connecting portion and the steering member, and a reinforcement portion disposed between the steering member and the column shaft. And
    The leg portion and the reinforcement portion are each formed of the steel material,
    The steering member structure, wherein the leg portion and the reinforcement portion are joined to the steering member in a state where ridge lines of the leg portion and the reinforcement portion are continuous in the vehicle front-rear direction.
  5.  請求項1から請求項4のいずれか一項に記載されたステアリングメンバ構造において、
     前記第1,第2後側梁部間の車幅方向間隔は、前記車体連結部から前記ステアリングメンバに向かって、次第に広がるように設定されている
     ことを特徴とするステアリングメンバ構造。
    The steering member structure according to any one of claims 1 to 4,
    A steering member structure characterized in that an interval in the vehicle width direction between the first and second rear beam portions is set so as to gradually widen from the vehicle body connecting portion toward the steering member.
  6.  請求項1から請求項5のいずれか一項に記載されたステアリングメンバ構造において、
     前記第1前後連結梁部と前記第2前後連結梁部は、連続部を介して互いに連結され、
     前記連続部は、前記前側連結梁部に重なり合って固定される
     ことを特徴とするステアリングメンバ構造。
    The steering member structure according to any one of claims 1 to 5,
    The first front-rear connecting beam part and the second front-rear connecting beam part are connected to each other via a continuous part,
    The steering member structure, wherein the continuous portion is fixed to overlap the front connecting beam portion.
  7.  請求項1から請求項6のいずれか一項に記載されたステアリングメンバ構造において、
     前記第1,第2後側梁部は前記ステアリングメンバの上側に接合され、前記第1,第2前後連結梁部は前記ステアリングメンバの下側に接合され、
     前記ステアリングメンバは、前記第1後側梁部と前記第1前後連結梁部により挟持されると共に、前記第2後側梁部と前記第2前後連結梁部により挟持される
     ことを特徴とするステアリングメンバ構造。
    In the steering member structure according to any one of claims 1 to 6,
    The first and second rear beam portions are joined to the upper side of the steering member, and the first and second front and rear connecting beam portions are joined to the lower side of the steering member,
    The steering member is sandwiched between the first rear beam portion and the first front-rear connecting beam portion, and is also sandwiched between the second rear beam portion and the second front-rear connection beam portion. Steering member structure.
PCT/JP2013/061573 2012-05-02 2013-04-19 Steering member structure WO2013164956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012105043 2012-05-02
JP2012-105043 2012-05-02

Publications (1)

Publication Number Publication Date
WO2013164956A1 true WO2013164956A1 (en) 2013-11-07

Family

ID=49514358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061573 WO2013164956A1 (en) 2012-05-02 2013-04-19 Steering member structure

Country Status (1)

Country Link
WO (1) WO2013164956A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023803A1 (en) * 2014-08-14 2016-02-18 Peugeot Citroen Automobiles Sa Assembly comprising an instrument panel crossmember provided with a support for attaching said crossmember to the dashboard of a motor vehicle
JP2019217983A (en) * 2018-06-22 2019-12-26 マレリ株式会社 Steering member structure
JP2021024398A (en) * 2019-08-02 2021-02-22 スズキ株式会社 Vehicle front part structure
JP2021024397A (en) * 2019-08-02 2021-02-22 スズキ株式会社 Vehicle front part structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137707A (en) * 2000-11-02 2002-05-14 Nissan Motor Co Ltd Steering column structure for vehicle
JP2010143487A (en) * 2008-12-19 2010-07-01 Mazda Motor Corp Steering shaft supporting structure of automobile
JP2012046001A (en) * 2010-08-25 2012-03-08 Suzuki Motor Corp Steering support member structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137707A (en) * 2000-11-02 2002-05-14 Nissan Motor Co Ltd Steering column structure for vehicle
JP2010143487A (en) * 2008-12-19 2010-07-01 Mazda Motor Corp Steering shaft supporting structure of automobile
JP2012046001A (en) * 2010-08-25 2012-03-08 Suzuki Motor Corp Steering support member structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023803A1 (en) * 2014-08-14 2016-02-18 Peugeot Citroen Automobiles Sa Assembly comprising an instrument panel crossmember provided with a support for attaching said crossmember to the dashboard of a motor vehicle
FR3024860A1 (en) * 2014-08-14 2016-02-19 Peugeot Citroen Automobiles Sa ASSEMBLY COMPRISING A BOARD TRAVERSE EQUIPPED WITH A SUPPORT FOR ATTACHING IT TO THE APRON OF A MOTOR VEHICLE
JP2019217983A (en) * 2018-06-22 2019-12-26 マレリ株式会社 Steering member structure
JP2021024398A (en) * 2019-08-02 2021-02-22 スズキ株式会社 Vehicle front part structure
JP2021024397A (en) * 2019-08-02 2021-02-22 スズキ株式会社 Vehicle front part structure
JP7314695B2 (en) 2019-08-02 2023-07-26 スズキ株式会社 vehicle front structure
JP7400254B2 (en) 2019-08-02 2023-12-19 スズキ株式会社 Vehicle front structure

Similar Documents

Publication Publication Date Title
US9296409B2 (en) Vehicle steering column support structure
WO2013145549A1 (en) Front subframe structure of automobile
WO2015001973A1 (en) Vehicle body front section structure
JP6557291B2 (en) Body front structure
WO2017082124A1 (en) Front sub-frame structure
JP6668743B2 (en) Body structure
JP6115295B2 (en) Steering support member structure
WO2013164956A1 (en) Steering member structure
JP2010105585A (en) Steering support structure for automobile
WO2016208409A1 (en) Vehicle body front structure
JP2009012564A (en) Steering column support structure
WO2015146783A1 (en) Support structure of steering column
JP5915361B2 (en) Body front structure
JP2016199213A (en) Structure of steering support member
JP6102566B2 (en) Body cross member structure
JP5741300B2 (en) Support structure
JP6519554B2 (en) Vehicle rear structure
JP2001310756A (en) Vehicle body front part structure for automobile
JP2016107848A (en) Suspension support structure of automobile
JP6603578B2 (en) Suspension member reinforcement structure
JP2020083137A (en) Steering column support structure
JP6896957B2 (en) Support structure of steering mechanism
JP5617657B2 (en) Sub-frame
JP2012071783A (en) Vehicle body front structure of motor vehicle
JP2004203327A (en) Mounting structure of roll mount bracket

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13784878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP