WO2013164874A1 - Dc circuit breaker - Google Patents

Dc circuit breaker Download PDF

Info

Publication number
WO2013164874A1
WO2013164874A1 PCT/JP2012/061530 JP2012061530W WO2013164874A1 WO 2013164874 A1 WO2013164874 A1 WO 2013164874A1 JP 2012061530 W JP2012061530 W JP 2012061530W WO 2013164874 A1 WO2013164874 A1 WO 2013164874A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
current
unit
charging
circuit breaker
Prior art date
Application number
PCT/JP2012/061530
Other languages
French (fr)
Japanese (ja)
Inventor
和順 田畠
伊藤 弘基
邦夫 菊池
健次 亀井
雄作 堀之内
正樹 平塚
翔 常世田
敏信 武田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/061530 priority Critical patent/WO2013164874A1/en
Publication of WO2013164874A1 publication Critical patent/WO2013164874A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc

Definitions

  • the present invention relates to a direct current circuit breaker that interrupts direct current.
  • a current zero point is formed by superimposing a resonant current from a commutation circuit composed of a capacitor and a reactor, and the DC current is cut off at the current zero point.
  • a DC circuit breaker for example, comprising a charging circuit comprising an AC power supply and a rectifier for charging the capacitor of the above-mentioned commutation circuit, discharging the charge of the capacitor charged in advance by the charging circuit.
  • Patent Document 1 A technique for forming a current zero by superimposing a resonant current on a direct current is disclosed (for example, Patent Document 1).
  • the above-described conventional technique has a problem that the DC circuit breaker is increased in size and cost because the above-described charging circuit is required to charge the capacitor of the commutation circuit.
  • the present invention has been made in view of the above, and an object thereof is to provide a DC circuit breaker that can be reduced in size and cost.
  • a DC circuit breaker forms a current zero point by superimposing a resonant current on a DC current flowing in a DC line, and the DC current is generated at the current zero point.
  • a DC circuit breaker for interrupting wherein the circuit is inserted into the DC line and serves as a flow path for the DC current in a steady state; and a commutation circuit that commutates the DC current after opening of the circuit breaker.
  • the commutation circuit includes a series resonant circuit composed of a capacitor and a reactor, a charging circuit for charging the capacitor with a DC potential of the DC line in a steady state, and after opening the blocking unit,
  • the interruption unit and the series resonance circuit are connected in parallel, and the resonance current generated by the series resonance circuit is superimposed on the direct current, and after the current interruption of the interruption unit, the current is passed through the series resonance circuit.
  • FIG. 1 is a diagram illustrating a configuration example of the DC circuit breaker according to the first embodiment.
  • FIG. 2 is a diagram illustrating an operation of the DC circuit breaker according to the first embodiment when a DC current is interrupted.
  • FIG. 3 is a diagram of a configuration example of the DC circuit breaker according to the second embodiment.
  • FIG. 4 is a diagram of a configuration example of the DC circuit breaker according to the third embodiment.
  • FIG. 5 is a diagram of a configuration example of a DC circuit breaker according to the fourth embodiment.
  • FIG. 6 is a diagram of a configuration example of the DC circuit breaker according to the fifth embodiment.
  • FIG. 7 is a diagram of a configuration example of the DC circuit breaker according to the sixth embodiment.
  • FIG. 8 is a diagram of a configuration example of a DC circuit breaker according to the seventh embodiment.
  • FIG. 9 is a diagram of a configuration example of the DC circuit breaker according to the eighth embodiment.
  • FIG. 1 is a diagram of a configuration example of the DC circuit breaker according to the first embodiment. As shown in FIG. 1, the DC circuit breaker according to the first embodiment is inserted into the DC line 1, and a DC current is passed after the circuit breaker 2 is opened, and the DC circuit 1 has a DC current flow path in a steady state. And a commutation circuit 4 for commutation.
  • the commutation circuit 4 includes a series resonance circuit 20 including a capacitor 5 and a reactor 6, and a series circuit including a disconnecting portion 3 and a discharge gap 7 that connect the cutoff portion 2 and the series resonance circuit 20 in parallel after the opening of the cutoff portion 2. And a charging resistor 8 which is a charging circuit 22 for charging the capacitor 5 with the DC potential of the DC line 1 in a steady state.
  • the discharge gap 7 has a duty of supplying a resonant current to superimpose the resonant current on the direct current flowing in the direct current line 1, and the disconnecting portion 3 is connected to the commutation circuit 4 after the current cutoff of the interrupting portion 2. And a minute current cutting duty for cutting a minute current flowing through the DC line 1 via the.
  • FIG. 2 is a diagram illustrating an operation of the DC circuit breaker according to the first embodiment when a DC current is interrupted.
  • the example shown in FIG. 2 shows an example in which current (1 pu) flows from the left end side to the right end side of the DC circuit breaker, as indicated by solid arrows in FIG.
  • the capacitor 5 is charged with the DC potential of the DC line 1 via the charging resistor 8 in a steady state.
  • blocking part 2 and the disconnection part 3 are close-controlled, and the discharge gap 7 is open-controlled.
  • the DC circuit breaker includes the charging resistor that is a charging circuit for charging the capacitor of the series resonance circuit with the DC potential of the DC line.
  • the current zero point formed by charging the capacitor with the DC potential of the DC line through the resistance for the DC line and discharging the capacitor charge and superimposing the resonant current on the fault current flowing in the DC line when the DC current is interrupted Therefore, it is not necessary to separately provide a charging circuit including an AC power source and a rectifier to charge the capacitor, and it is possible to realize a reduction in size and cost of the DC circuit breaker.
  • the time at which the discharge gap is controlled to close may be set to the time before and after the opening time of the blocking portion within a range where the zero point can be formed.
  • the surge absorber absorbs the overvoltage generated at both ends of the interrupting part after interrupting the current.
  • the surge absorber is provided depending on the withstand voltage of the interrupting part and other circuit conditions. The structure which does not do may be sufficient.
  • FIG. FIG. 3 is a diagram of a configuration example of the DC circuit breaker according to the second embodiment.
  • each component of the DC circuit breaker according to the second embodiment is the same as each component of the DC circuit breaker according to the first embodiment, description thereof is omitted here.
  • the disconnecting section 3 described in the first embodiment is connected in series with the blocking section 2 and inserted into the DC line 1. Even in such a configuration, the accident current can be interrupted by the same operation as in the first embodiment, and the same effect as in the first embodiment can be obtained.
  • the capacitor is connected as in the first embodiment.
  • FIG. FIG. 4 is a diagram of a configuration example of the DC circuit breaker according to the third embodiment.
  • symbol is attached
  • the commutation switch unit 21 described in the first embodiment is configured using only the opening / closing unit (first opening / closing unit) 9.
  • the open / close unit 9 is controlled to be opened in the steady state, and the DC resonance time by the series resonance circuit 20 after the opening of the blocking unit 2 or after the opening of the blocking unit 2 is interrupted.
  • the opening / closing part 9 is closed and controlled at a time around the opening time of the breaking part 2 within a range in which the current can be superimposed on the accident current to form a current zero point.
  • the opening / closing unit 9 is controlled to open.
  • the opening / closing unit 9 has both the duty for supplying the resonant current in the discharge gap 7 described in the first embodiment and the duty for cutting the minute current in the disconnecting unit 3.
  • the commutation switch unit is configured such that the switching unit has both the duty of supplying the resonant current in the discharge gap and the duty of cutting the minute current in the disconnecting part. Even in this case, as in the first embodiment, there is no need to provide a separate charging circuit including an AC power source and a rectifier to charge the capacitor, and the DC circuit breaker can be reduced in size and cost. Become.
  • FIG. FIG. 5 is a diagram of a configuration example of a DC circuit breaker according to the fourth embodiment.
  • symbol is attached
  • an open / close section (second open / close section) 9a having only a resonance current input duty is provided. Yes.
  • the opening / closing unit 9 a has a duty of supplying a resonant current to superimpose the resonant current on the DC current flowing through the DC line 1, and the disconnecting unit 3 is connected to the commutation circuit 4 after the current blocking of the blocking unit 2. And a minute current cutting duty for cutting a minute current flowing through the DC line 1 via the.
  • the discharge gap 7 when an air discharge gap is used as the discharge gap 7, it can be configured at a low cost, but the sound when a resonant current is applied is increased.
  • the opening / closing part 9a instead of the discharge gap 7, by using the opening / closing part 9a having only the responsibility for supplying the resonant current, it is possible to achieve both the reduction of the noise and the reduction of the cost when the resonant current is applied. It becomes possible.
  • FIG. FIG. 6 is a diagram of a configuration example of the DC circuit breaker according to the fifth embodiment.
  • symbol is attached
  • the charging circuit 22 of the capacitor 5 has a configuration in which a charging switch 10 is connected in series with the charging resistor 8.
  • the charging opening / closing part 10 is controlled to be closed to charge the capacitor 5 in a steady state, and the charging opening / closing part 10 is controlled to open in the event of an accident.
  • the charging switch is connected in series with the charging resistor, in addition to the effects of the above-described first to fourth embodiments, a constant value is provided. At all times, it is necessary to close the charging switch and charge the capacitor, and in the event of an accident, open the charging switch to reduce the charging time constant between the capacitor and the charging resistor. Even in some cases, the current zero point can be reliably formed and the DC current can be interrupted.
  • FIG. FIG. 7 is a diagram of a configuration example of the DC circuit breaker according to the sixth embodiment.
  • symbol is attached
  • the charging circuit 22 for the capacitor 5 is configured by connecting a charging opening / closing unit 10 instead of the charging resistor 8 in the second embodiment, that is, the fifth embodiment.
  • the resistance value of the charging resistor 8 in FIG. 7 is configured by connecting a charging opening / closing unit 10 instead of the charging resistor 8 in the second embodiment, that is, the fifth embodiment.
  • the charging time constant of the capacitor 5 is further shortened as compared with the fifth embodiment. Therefore, it is more suitable than the case of the fifth embodiment when it is necessary to charge the capacitor 5 in a short time in a steady state, that is, when it has a higher-speed cutoff duty than the fifth embodiment.
  • the charging switch is connected in place of the charging resistor, so that it has a higher-speed disconnection duty than the above-described fifth embodiment. Even in this case, the current zero point can be surely formed and the direct current interruption can be performed.
  • FIG. FIG. 8 is a diagram of a configuration example of a DC circuit breaker according to the seventh embodiment.
  • symbol is attached
  • the charging circuit 22 of the capacitor 5 has a configuration in which a charging diode 11 is connected instead of the charging resistor 8 in the second embodiment.
  • the present invention can be applied to the configurations of the first embodiment or the third to fourth embodiments.
  • the charging diode is connected instead of the charging resistor, it is necessary to charge the capacitor in a short time in a steady state. In this case, that is, even when having the duty of high-speed interruption, the current zero point can be reliably formed and the direct current interruption can be performed without requiring control for preventing discharge of the capacitor in the event of an accident.
  • FIG. 9 is a diagram of a configuration example of the DC circuit breaker according to the eighth embodiment.
  • symbol is attached
  • a plurality of blocking sections 2 in the second embodiment are connected in series, and voltage dividing resistors 12 are connected in parallel to each blocking section 2, respectively.
  • the DC circuit breaker of the eighth embodiment since a plurality of circuit breakers are connected in series and a voltage dividing resistor is connected in parallel to each circuit breaker, the current interruption of the circuit breaker The overvoltage generated later at both ends of the DC circuit breaker can be shared by the plurality of circuit breakers, and the voltage duty per unit of each circuit breaker can be reduced.
  • the configuration shown in the above embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part thereof is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

The purpose of the present invention is to provide a DC circuit breaker for which it is possible to reduce the size and the cost thereof. This DC circuit breaker is provided with: a cutoff section (2) that is inserted into a DC line (1) and that serves as a current path for DC current while in a steady state; and a commutation circuit (4) that commutates DC current after opening of the cutoff section (2). The commutation circuit (4) is provided with: a series resonance circuit (20) comprising a capacitor (5) and a reactor (6); a charging resistor (8) that is a charging circuit (22) for charging the capacitor (5) using the DC potential of the DC line (1) while in a stable state; and a commutation switch section (21) that, after opening of the cutoff section (2), connects the cutoff section (2) and the series resonance circuit (20) in parallel and superimposes the resonant current generated by the series resonance circuit (20) on the DC current, and after current cutoff by the cutoff section (2), cuts off the small amount of current flowing to the DC line (1) via the series resonance circuit (20).

Description

直流遮断器DC circuit breaker
 本発明は、直流電流を遮断する直流遮断器に関する。 The present invention relates to a direct current circuit breaker that interrupts direct current.
 従来、直流電流を遮断する直流遮断器においては、コンデンサとリアクトルからなる転流回路から共振性電流を重畳することで電流零点を形成し、その電流零点で直流電流の遮断を行っている。このような直流遮断器としては、例えば、上述した転流回路のコンデンサを充電しておく交流電源および整流器からなる充電回路を具備し、その充電回路により予め充電されたコンデンサの電荷を放電し、共振性電流を直流電流に重畳して電流零点を形成する技術が開示されている(例えば、特許文献1)。 Conventionally, in a DC circuit breaker that cuts off DC current, a current zero point is formed by superimposing a resonant current from a commutation circuit composed of a capacitor and a reactor, and the DC current is cut off at the current zero point. As such a DC circuit breaker, for example, comprising a charging circuit comprising an AC power supply and a rectifier for charging the capacitor of the above-mentioned commutation circuit, discharging the charge of the capacitor charged in advance by the charging circuit, A technique for forming a current zero by superimposing a resonant current on a direct current is disclosed (for example, Patent Document 1).
特許第4660131号公報Japanese Patent No. 4660131
 しかしながら、上記従来技術では、転流回路のコンデンサを充電するために別途上述した充電回路が必要であるため、直流遮断器が大型化、高コスト化する、という問題があった。 However, the above-described conventional technique has a problem that the DC circuit breaker is increased in size and cost because the above-described charging circuit is required to charge the capacitor of the commutation circuit.
 本発明は、上記に鑑みてなされたものであって、小型化、低コスト化が可能な直流遮断器を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a DC circuit breaker that can be reduced in size and cost.
 上述した課題を解決し、目的を達成するため、本発明にかかる直流遮断器は、直流線路に流れる直流電流に共振性電流を重畳して電流零点を形成し、該電流零点で前記直流電流を遮断する直流遮断器であって、前記直流線路に挿入され、定常時において前記直流電流の流路となる遮断部と、前記遮断部の開極後に、前記直流電流を転流する転流回路と、を備え、前記転流回路は、コンデンサとリアクトルとからなる直列共振回路と、定常時において前記コンデンサを前記直流線路の直流電位で充電するための充電回路と、前記遮断部の開極後に、前記遮断部と前記直列共振回路とを並列に接続し、前記直列共振回路により生じる前記共振性電流を前記直流電流に重畳させると共に、前記遮断部の電流遮断後に、前記直列共振回路を介して前記直流線路に流れる微小電流を裁断する転流スイッチ部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a DC circuit breaker according to the present invention forms a current zero point by superimposing a resonant current on a DC current flowing in a DC line, and the DC current is generated at the current zero point. A DC circuit breaker for interrupting, wherein the circuit is inserted into the DC line and serves as a flow path for the DC current in a steady state; and a commutation circuit that commutates the DC current after opening of the circuit breaker. The commutation circuit includes a series resonant circuit composed of a capacitor and a reactor, a charging circuit for charging the capacitor with a DC potential of the DC line in a steady state, and after opening the blocking unit, The interruption unit and the series resonance circuit are connected in parallel, and the resonance current generated by the series resonance circuit is superimposed on the direct current, and after the current interruption of the interruption unit, the current is passed through the series resonance circuit. Characterized in that it comprises a commutation switch portion for cutting the micro-current flowing in the DC line, the.
 本発明によれば、直流遮断器の小型化、低コスト化が実現可能となる、という効果を奏する。 According to the present invention, there is an effect that the DC circuit breaker can be reduced in size and cost.
図1は、実施の形態1にかかる直流遮断器の一構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of the DC circuit breaker according to the first embodiment. 図2は、実施の形態1にかかる直流遮断器の直流電流遮断時の動作を示す図である。FIG. 2 is a diagram illustrating an operation of the DC circuit breaker according to the first embodiment when a DC current is interrupted. 図3は、実施の形態2にかかる直流遮断器の一構成例を示す図である。FIG. 3 is a diagram of a configuration example of the DC circuit breaker according to the second embodiment. 図4は、実施の形態3にかかる直流遮断器の一構成例を示す図である。FIG. 4 is a diagram of a configuration example of the DC circuit breaker according to the third embodiment. 図5は、実施の形態4にかかる直流遮断器の一構成例を示す図である。FIG. 5 is a diagram of a configuration example of a DC circuit breaker according to the fourth embodiment. 図6は、実施の形態5にかかる直流遮断器の一構成例を示す図である。FIG. 6 is a diagram of a configuration example of the DC circuit breaker according to the fifth embodiment. 図7は、実施の形態6にかかる直流遮断器の一構成例を示す図である。FIG. 7 is a diagram of a configuration example of the DC circuit breaker according to the sixth embodiment. 図8は、実施の形態7にかかる直流遮断器の一構成例を示す図である。FIG. 8 is a diagram of a configuration example of a DC circuit breaker according to the seventh embodiment. 図9は、実施の形態8にかかる直流遮断器の一構成例を示す図である。FIG. 9 is a diagram of a configuration example of the DC circuit breaker according to the eighth embodiment.
 以下に添付図面を参照し、本発明の実施の形態にかかる直流遮断器について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。 Hereinafter, a DC circuit breaker according to an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
実施の形態1.
 図1は、実施の形態1にかかる直流遮断器の一構成例を示す図である。図1に示すように、実施の形態1にかかる直流遮断器は、直流線路1に挿入され、定常時において直流電流の流路となる遮断部2と、遮断部2の開極後に直流電流を転流する転流回路4とを備えている。
Embodiment 1 FIG.
FIG. 1 is a diagram of a configuration example of the DC circuit breaker according to the first embodiment. As shown in FIG. 1, the DC circuit breaker according to the first embodiment is inserted into the DC line 1, and a DC current is passed after the circuit breaker 2 is opened, and the DC circuit 1 has a DC current flow path in a steady state. And a commutation circuit 4 for commutation.
 転流回路4は、コンデンサ5およびリアクトル6からなる直列共振回路20と、遮断部2の開極後に遮断部2と直列共振回路20とを並列接続する断路部3および放電ギャップ7からなる直列回路として構成される転流スイッチ部21と、定常時においてコンデンサ5を直流線路1の直流電位で充電するための充電回路22である充電用抵抗8とを備えている。 The commutation circuit 4 includes a series resonance circuit 20 including a capacitor 5 and a reactor 6, and a series circuit including a disconnecting portion 3 and a discharge gap 7 that connect the cutoff portion 2 and the series resonance circuit 20 in parallel after the opening of the cutoff portion 2. And a charging resistor 8 which is a charging circuit 22 for charging the capacitor 5 with the DC potential of the DC line 1 in a steady state.
 本実施の形態では、放電ギャップ7は、共振性電流を直流線路1に流れる直流電流に重畳する共振性電流投入責務を有し、断路部3は、遮断部2の電流遮断後に転流回路4を介して直流線路1に流れる微小電流を裁断する微小電流裁断責務を有している。 In the present embodiment, the discharge gap 7 has a duty of supplying a resonant current to superimpose the resonant current on the direct current flowing in the direct current line 1, and the disconnecting portion 3 is connected to the commutation circuit 4 after the current cutoff of the interrupting portion 2. And a minute current cutting duty for cutting a minute current flowing through the DC line 1 via the.
 つぎに、実施の形態1にかかる直流遮断器の直流電流遮断時の動作について、図1および図2を参照して説明する。図2は、実施の形態1にかかる直流遮断器の直流電流遮断時の動作を示す図である。図2に示す例では、定常時には、図1に実線矢印で示したように、直流遮断器の左端側から右端側に向けて電流(1pu)が流れる例を示している。なお、本実施の形態では、定常時において、コンデンサ5は、充電用抵抗8を介して直流線路1の直流電位で充電されている。また、定常時において、遮断部2および断路部3は閉制御され、放電ギャップ7は開制御されている。 Next, the operation of the DC circuit breaker according to the first embodiment when the DC current is interrupted will be described with reference to FIG. 1 and FIG. FIG. 2 is a diagram illustrating an operation of the DC circuit breaker according to the first embodiment when a DC current is interrupted. The example shown in FIG. 2 shows an example in which current (1 pu) flows from the left end side to the right end side of the DC circuit breaker, as indicated by solid arrows in FIG. In the present embodiment, the capacitor 5 is charged with the DC potential of the DC line 1 via the charging resistor 8 in a steady state. Moreover, at the time of steady state, the interruption | blocking part 2 and the disconnection part 3 are close-controlled, and the discharge gap 7 is open-controlled.
 図2に示すように、時刻t1(=0.1s)において直流線路1に事故(ここでは、例えば図1に示す直流遮断器の右端側の地絡事故)が発生すると、遮断部2には、事故点までの回路条件や接地抵抗の値によって決まる定常時電流(1pu)の数倍の事故電流が流れ、図示しない制御回路からの開極指令に基づき、遮断部2が開極動作を開始する。ここで、遮断部2が開極するまでの開極時間を0.1sとした場合、時刻t2(=0.2s)に遮断部2が機械的に開極する。 As shown in FIG. 2, when a fault occurs in the DC line 1 at time t1 (= 0.1 s) (here, for example, a ground fault on the right end side of the DC breaker shown in FIG. 1), A fault current several times the steady-state current (1 pu) determined by the circuit conditions up to the fault point and the value of the ground resistance flows, and the breaker 2 starts the opening operation based on the opening command from the control circuit (not shown) To do. Here, when the opening time until the breaking portion 2 is opened is 0.1 s, the breaking portion 2 is mechanically opened at time t2 (= 0.2 s).
 このとき、図示しない制御回路から放電ギャップ7への閉制御指令が出力され、放電ギャップ7が閉制御されると、直流線路1の直流電位によって充電されたコンデンサ5の電荷が放電し、図1に破線矢印で示したように、コンデンサ5、遮断部2、断路部3、放電ギャップ7、リアクトル6のループで共振性電流が流れる。この共振性電流が直流線路1に流れている事故電流に重畳し、図2に示すように、時刻t3において電流零点が形成された時点で、遮断部2のアークが消弧され、電流が遮断される。なお、電流遮断後の遮断部2の極間に発生する過電圧については、例えば、遮断部2に並列にサージアブソーバを接続して吸収するようにすればよい。 At this time, when a close control command to the discharge gap 7 is output from a control circuit (not shown) and the discharge gap 7 is closed, the charge of the capacitor 5 charged by the DC potential of the DC line 1 is discharged, and FIG. As indicated by broken line arrows, a resonant current flows through the loop of the capacitor 5, the cutoff part 2, the disconnection part 3, the discharge gap 7, and the reactor 6. This resonant current is superimposed on the accident current flowing in the DC line 1, and when the current zero point is formed at time t3 as shown in FIG. 2, the arc of the interrupting unit 2 is extinguished and the current is interrupted. Is done. In addition, what is necessary is just to make it connect and absorb a surge absorber in parallel with the interruption | blocking part 2 about the overvoltage which generate | occur | produces between the poles of the interruption | blocking part 2 after electric current interruption | blocking.
 その後、つまり、遮断部2の電流遮断後においても、転流回路4を介して直流線路1に微小電流が流れ続けるため、この微小電流を除去するため、図示しない制御回路から断路指令を出力して断路部3を開制御する。以上の動作により、事故電流の遮断が完了する。 After that, that is, even after the current interruption of the interruption unit 2, since a minute current continues to flow through the DC line 1 via the commutation circuit 4, a disconnection command is output from a control circuit (not shown) in order to remove this minute current. Thus, the disconnecting portion 3 is controlled to be opened. By the above operation, the interruption of the accident current is completed.
 以上説明したように、実施の形態1の直流遮断器によれば、直列共振回路のコンデンサを直流線路の直流電位で充電するための充電回路である充電用抵抗を備え、定常時において、この充電用抵抗を介してコンデンサを直流線路の直流電位で充電し、直流電流遮断時において、コンデンサの電荷を放電させて共振性電流を直流線路に流れている事故電流に重畳して形成された電流零点で電流遮断を行うようにしたので、コンデンサを充電するために別途交流電源や整流器を含む充電回路を設ける必要がなく、直流遮断器の小型化、低コスト化が実現可能となる。 As described above, the DC circuit breaker according to the first embodiment includes the charging resistor that is a charging circuit for charging the capacitor of the series resonance circuit with the DC potential of the DC line. The current zero point formed by charging the capacitor with the DC potential of the DC line through the resistance for the DC line and discharging the capacitor charge and superimposing the resonant current on the fault current flowing in the DC line when the DC current is interrupted Therefore, it is not necessary to separately provide a charging circuit including an AC power source and a rectifier to charge the capacitor, and it is possible to realize a reduction in size and cost of the DC circuit breaker.
 なお、上述した実施の形態1では、遮断部の開極時刻に放電ギャップを閉制御する例について説明したが、遮断部の開極後に直列共振回路による共振性電流が事故電流に重畳して電流零点を形成可能な範囲で、放電ギャップを閉制御する時刻を遮断部の開極時刻に前後した時刻としてもよいことは言うまでもない。 In the first embodiment described above, the example in which the discharge gap is closed at the opening time of the breaking unit has been described. However, after the opening of the breaking unit, the resonance current generated by the series resonance circuit is superimposed on the accident current and Needless to say, the time at which the discharge gap is controlled to close may be set to the time before and after the opening time of the blocking portion within a range where the zero point can be formed.
 また、上述した実施の形態1では、電流遮断後の遮断部の両端に発生する過電圧をサージアブソーバにより吸収する例について説明したが、遮断部の耐電圧やその他回路条件によっては、サージアブソーバを具備しない構成であってもよい。 In the first embodiment described above, an example in which the surge absorber absorbs the overvoltage generated at both ends of the interrupting part after interrupting the current is described. However, depending on the withstand voltage of the interrupting part and other circuit conditions, the surge absorber is provided. The structure which does not do may be sufficient.
実施の形態2.
 図3は、実施の形態2にかかる直流遮断器の一構成例を示す図である。なお、実施の形態2にかかる直流遮断器の各構成部は、実施の形態1にかかる直流遮断器の各構成部と同一であるので、ここでは説明を省略する。
Embodiment 2. FIG.
FIG. 3 is a diagram of a configuration example of the DC circuit breaker according to the second embodiment. In addition, since each component of the DC circuit breaker according to the second embodiment is the same as each component of the DC circuit breaker according to the first embodiment, description thereof is omitted here.
 本実施の形態では、図3に示すように、実施の形態1において説明した断路部3が遮断部2と直列に接続され、直流線路1に挿入されている。このように構成した場合でも、実施の形態1と同様の動作により、事故電流の遮断が可能であり、実施の形態1と同様の効果を得ることができる。 In the present embodiment, as shown in FIG. 3, the disconnecting section 3 described in the first embodiment is connected in series with the blocking section 2 and inserted into the DC line 1. Even in such a configuration, the accident current can be interrupted by the same operation as in the first embodiment, and the same effect as in the first embodiment can be obtained.
 以上説明したように、実施の形態2の直流遮断器によれば、断路部を遮断部と直列に接続して直流線路に挿入した構成であっても、実施の形態1と同様に、コンデンサを充電するために別途交流電源や整流器を含む充電回路を設ける必要がなく、直流遮断器の小型化、低コスト化が実現可能となる。 As described above, according to the DC circuit breaker of the second embodiment, even in the configuration in which the disconnecting portion is connected in series with the interrupting portion and inserted into the DC line, the capacitor is connected as in the first embodiment. There is no need to provide a separate charging circuit including an AC power source and a rectifier for charging, and the DC circuit breaker can be reduced in size and cost.
実施の形態3.
 図4は、実施の形態3にかかる直流遮断器の一構成例を示す図である。なお、実施の形態1と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
Embodiment 3 FIG.
FIG. 4 is a diagram of a configuration example of the DC circuit breaker according to the third embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as that of Embodiment 1, or equivalent, and the detailed description is abbreviate | omitted.
 本実施の形態では、図4に示すように、実施の形態1において説明した転流スイッチ部21を、開閉部(第1の開閉部)9のみを用いて構成している。 In the present embodiment, as shown in FIG. 4, the commutation switch unit 21 described in the first embodiment is configured using only the opening / closing unit (first opening / closing unit) 9.
 本実施の形態にかかる直流遮断器の直流電流遮断時の動作について説明する。本実施の形態では、定常時において、開閉部9を開制御しておき、直流電流遮断時において、遮断部2の開極時刻、あるいは、遮断部2の開極後に直列共振回路20による共振性電流が事故電流に重畳して電流零点を形成可能な範囲で遮断部2の開極時刻に前後した時刻に、開閉部9を閉制御する。 The operation of the DC circuit breaker according to this embodiment when the DC current is interrupted will be described. In the present embodiment, the open / close unit 9 is controlled to be opened in the steady state, and the DC resonance time by the series resonance circuit 20 after the opening of the blocking unit 2 or after the opening of the blocking unit 2 is interrupted. The opening / closing part 9 is closed and controlled at a time around the opening time of the breaking part 2 within a range in which the current can be superimposed on the accident current to form a current zero point.
 その後、つまり、遮断部2の電流遮断後において転流回路4を介して流れ続ける微小電流を除去するため、開閉部9を開制御する。以上の動作により、事故電流の遮断が完了する。 Thereafter, in order to remove the minute current that continues to flow through the commutation circuit 4 after the current interruption of the interruption unit 2, the opening / closing unit 9 is controlled to open. By the above operation, the interruption of the accident current is completed.
 つまり、本実施の形態では、開閉部9が実施の形態1において説明した放電ギャップ7における共振性電流投入責務と断路部3における微小電流裁断責務とを兼ね備えたものとしている。 In other words, in the present embodiment, the opening / closing unit 9 has both the duty for supplying the resonant current in the discharge gap 7 described in the first embodiment and the duty for cutting the minute current in the disconnecting unit 3.
 以上説明したように、実施の形態3の直流遮断器によれば、転流スイッチ部として、開閉部を放電ギャップにおける共振性電流投入責務と断路部における微小電流裁断責務とを兼ね備えたものとして構成した場合であっても、実施の形態1と同様に、コンデンサを充電するために別途交流電源や整流器を含む充電回路を設ける必要がなく、直流遮断器の小型化、低コスト化が実現可能となる。 As described above, according to the direct current circuit breaker of the third embodiment, the commutation switch unit is configured such that the switching unit has both the duty of supplying the resonant current in the discharge gap and the duty of cutting the minute current in the disconnecting part. Even in this case, as in the first embodiment, there is no need to provide a separate charging circuit including an AC power source and a rectifier to charge the capacitor, and the DC circuit breaker can be reduced in size and cost. Become.
実施の形態4.
 図5は、実施の形態4にかかる直流遮断器の一構成例を示す図である。なお、実施の形態2と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
Embodiment 4 FIG.
FIG. 5 is a diagram of a configuration example of a DC circuit breaker according to the fourth embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as that of Embodiment 2, or equivalent, and the detailed description is abbreviate | omitted.
 本実施の形態では、図5に示すように、実施の形態2において説明した放電ギャップ7に代えて、共振性電流投入責務のみを有する開閉部(第2の開閉部)9aを備えた構成としている。 In the present embodiment, as shown in FIG. 5, instead of the discharge gap 7 described in the second embodiment, an open / close section (second open / close section) 9a having only a resonance current input duty is provided. Yes.
 本実施の形態では、開閉部9aは、共振性電流を直流線路1に流れる直流電流に重畳する共振性電流投入責務を有し、断路部3は、遮断部2の電流遮断後に転流回路4を介して直流線路1に流れる微小電流を裁断する微小電流裁断責務を有している。 In the present embodiment, the opening / closing unit 9 a has a duty of supplying a resonant current to superimpose the resonant current on the DC current flowing through the DC line 1, and the disconnecting unit 3 is connected to the commutation circuit 4 after the current blocking of the blocking unit 2. And a minute current cutting duty for cutting a minute current flowing through the DC line 1 via the.
 実施の形態2において、放電ギャップ7として気中放電ギャップを用いた場合、低コストで構成できる反面、共振性電流投入時の音が大きくなる。本実施の形態では、放電ギャップ7に代えて、共振性電流投入責務のみを有する開閉部9aを用いることにより、上述した共振性電流投入時の騒音の低減と低コスト化とを両立することが可能となる。 In the second embodiment, when an air discharge gap is used as the discharge gap 7, it can be configured at a low cost, but the sound when a resonant current is applied is increased. In the present embodiment, instead of the discharge gap 7, by using the opening / closing part 9a having only the responsibility for supplying the resonant current, it is possible to achieve both the reduction of the noise and the reduction of the cost when the resonant current is applied. It becomes possible.
 以上説明したように、実施の形態4の直流遮断器によれば、実施の形態2において説明した放電ギャップに代えて、共振性電流投入責務のみを有する開閉部を備えた構成とすることにより、上述した実施の形態1乃至3の効果に加え、共振性電流投入時の騒音の低減と低コスト化とを両立することが可能となる。 As described above, according to the DC circuit breaker of the fourth embodiment, in place of the discharge gap described in the second embodiment, by having a configuration including an opening / closing portion having only a resonance current input duty, In addition to the effects of the first to third embodiments described above, it is possible to achieve both noise reduction and cost reduction when a resonant current is input.
実施の形態5.
 図6は、実施の形態5にかかる直流遮断器の一構成例を示す図である。なお、実施の形態2と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
Embodiment 5. FIG.
FIG. 6 is a diagram of a configuration example of the DC circuit breaker according to the fifth embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as that of Embodiment 2, or equivalent, and the detailed description is abbreviate | omitted.
 本実施の形態では、図6に示すように、コンデンサ5の充電回路22として、充電用抵抗8と直列に充電用開閉部10を接続した構成としている。 In this embodiment, as shown in FIG. 6, the charging circuit 22 of the capacitor 5 has a configuration in which a charging switch 10 is connected in series with the charging resistor 8.
 本実施の形態にかかる直流遮断器の直流電流遮断時の動作について説明する。本実施の形態では、定常時において、充電用開閉部10を閉制御してコンデンサ5を充電しておき、事故発生時において、充電用開閉部10を開制御する。 The operation of the DC circuit breaker according to this embodiment when the DC current is interrupted will be described. In the present embodiment, the charging opening / closing part 10 is controlled to be closed to charge the capacitor 5 in a steady state, and the charging opening / closing part 10 is controlled to open in the event of an accident.
 このように制御することにより、事故発生時点から放電ギャップ7を閉制御するまでの間に、コンデンサ5の電荷が充電用抵抗8を介して放電するのを防止することができる。 By controlling in this way, it is possible to prevent the electric charge of the capacitor 5 from being discharged through the charging resistor 8 from the time of the accident until the discharge gap 7 is closed.
 例えば、定常時においてコンデンサ5の充電を短時間で行う必要がある場合、つまり、高速遮断責務を有する場合には、コンデンサ5と充電用抵抗8とによる充電時定数を小さくする必要がある。このような場合、充電用開閉部10を有していない構成では、事故発生時において充電用抵抗8を介してコンデンサ5の電荷が放電し、事故電流に重畳する共振性電流の波高値が小さくなり、電流零点を形成できない虞がある。 For example, when it is necessary to charge the capacitor 5 in a short time in a steady state, that is, when having a duty of high-speed shut-off, it is necessary to reduce the charging time constant by the capacitor 5 and the charging resistor 8. In such a case, in the configuration that does not include the charging opening / closing part 10, the charge of the capacitor 5 is discharged through the charging resistor 8 when an accident occurs, and the peak value of the resonant current superimposed on the accident current is small. Therefore, there is a possibility that the current zero point cannot be formed.
 本実施の形態では、事故発生時において、充電用開閉部10を開制御することにより、事故発生時点から放電ギャップ7を閉制御するまでの間のコンデンサ5の放電を防止することができるので、コンデンサ5と充電用抵抗8とによる充電時定数を小さくする必要がある場合でも、確実に電流零点を形成することができる。 In the present embodiment, when the accident occurs, by controlling the opening of the charging switch 10, it is possible to prevent the capacitor 5 from discharging from the time of the accident until the discharge gap 7 is closed, Even when the charging time constant by the capacitor 5 and the charging resistor 8 needs to be reduced, the current zero point can be reliably formed.
 なお、図6に示す例では、図3に示す実施の形態2の構成に対して、充電用抵抗8と直列に充電用開閉部10を接続して構成した例について説明したが、実施の形態1、あるいは実施の形態3乃至4の各構成に対して適用することも可能である。 In the example illustrated in FIG. 6, the example in which the charging opening / closing unit 10 is connected in series with the charging resistor 8 is described with respect to the configuration of the second embodiment illustrated in FIG. 3. The present invention can also be applied to the first or third to fourth embodiments.
 以上説明したように、実施の形態5の直流遮断器によれば、充電用抵抗と直列に充電用開閉部を接続した構成としたので、上述した実施の形態1乃至4の効果に加え、定常時において、充電用開閉部を閉制御してコンデンサを充電しておき、事故発生時において、充電用開閉部を開制御することにより、コンデンサと充電用抵抗とによる充電時定数を小さくする必要がある場合でも、確実に電流零点を形成して直流電流遮断を実施することができる。 As described above, according to the DC circuit breaker of the fifth embodiment, since the charging switch is connected in series with the charging resistor, in addition to the effects of the above-described first to fourth embodiments, a constant value is provided. At all times, it is necessary to close the charging switch and charge the capacitor, and in the event of an accident, open the charging switch to reduce the charging time constant between the capacitor and the charging resistor. Even in some cases, the current zero point can be reliably formed and the DC current can be interrupted.
実施の形態6.
 図7は、実施の形態6にかかる直流遮断器の一構成例を示す図である。なお、実施の形態2と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
Embodiment 6 FIG.
FIG. 7 is a diagram of a configuration example of the DC circuit breaker according to the sixth embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as that of Embodiment 2, or equivalent, and the detailed description is abbreviate | omitted.
 本実施の形態では、図7に示すように、コンデンサ5の充電回路22として、実施の形態2における充電用抵抗8に代えて、充電用開閉部10を接続した構成、つまり、実施の形態5における充電用抵抗8の抵抗値を略零とした構成としている。 In the present embodiment, as shown in FIG. 7, the charging circuit 22 for the capacitor 5 is configured by connecting a charging opening / closing unit 10 instead of the charging resistor 8 in the second embodiment, that is, the fifth embodiment. The resistance value of the charging resistor 8 in FIG.
 このように構成することにより、コンデンサ5の充電時定数は、実施の形態5よりもさらに短縮される。したがって、実施の形態5よりも定常時においてコンデンサ5の充電を短時間で行う必要がある場合、つまり、実施の形態5よりも高速遮断責務を有する場合に適している。 With this configuration, the charging time constant of the capacitor 5 is further shortened as compared with the fifth embodiment. Therefore, it is more suitable than the case of the fifth embodiment when it is necessary to charge the capacitor 5 in a short time in a steady state, that is, when it has a higher-speed cutoff duty than the fifth embodiment.
 なお、図7に示す例では、図3に示す実施の形態2の構成に対して、充電用抵抗8に代えて、充電用開閉部10を接続した例について説明したが、実施の形態5と同様に、実施の形態1、あるいは実施の形態3乃至4の各構成に対して適用することも可能である。 In the example illustrated in FIG. 7, the example in which the charging opening / closing unit 10 is connected instead of the charging resistor 8 is described with respect to the configuration of the second embodiment illustrated in FIG. 3. Similarly, the present invention can be applied to the configurations of the first embodiment or the third to fourth embodiments.
 以上説明したように、実施の形態6の直流遮断器によれば、充電用抵抗に代えて、充電用開閉部を接続した構成としたので、上述した実施の形態5よりも高速遮断責務を有する場合でも、確実に電流零点を形成して直流電流遮断を実施することができる。 As described above, according to the DC circuit breaker of the sixth embodiment, the charging switch is connected in place of the charging resistor, so that it has a higher-speed disconnection duty than the above-described fifth embodiment. Even in this case, the current zero point can be surely formed and the direct current interruption can be performed.
実施の形態7.
 図8は、実施の形態7にかかる直流遮断器の一構成例を示す図である。なお、実施の形態2と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
Embodiment 7 FIG.
FIG. 8 is a diagram of a configuration example of a DC circuit breaker according to the seventh embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as that of Embodiment 2, or equivalent, and the detailed description is abbreviate | omitted.
 本実施の形態では、図8に示すように、コンデンサ5の充電回路22として、実施の形態2における充電用抵抗8に代えて、充電用ダイオード11を接続した構成としている。 In the present embodiment, as shown in FIG. 8, the charging circuit 22 of the capacitor 5 has a configuration in which a charging diode 11 is connected instead of the charging resistor 8 in the second embodiment.
 このように構成することにより、定常時には、充電用ダイオード11を介してコンデンサ5を充電し、事故発生時には、コンデンサ5の電荷の放電を防止することができる。 With this configuration, it is possible to charge the capacitor 5 via the charging diode 11 in a steady state, and to prevent the capacitor 5 from being discharged when an accident occurs.
 実施の形態5乃至6の構成では、事故発生時において充電用開閉部10を開制御する必要があるが、本実施の形態では、このような制御が不要となる。したがって、実施の形態5乃至6において説明したように、定常時においてコンデンサ5の充電を短時間で行う必要がある場合、つまり、高速遮断責務を有する場合でも、事故発生時においてコンデンサ5の放電を防止するための制御を必要とすることなく、確実に電流零点を形成して直流電流遮断を実施することができる。 In the configurations of the fifth to sixth embodiments, it is necessary to control the opening of the charging opening / closing unit 10 when an accident occurs, but in the present embodiment, such control is not necessary. Therefore, as described in the fifth to sixth embodiments, when it is necessary to charge the capacitor 5 in a short time in a steady state, that is, even when having the duty of high-speed shutoff, the capacitor 5 is discharged at the time of occurrence of an accident. Without requiring control for prevention, it is possible to reliably form a current zero point and perform DC current interruption.
 なお、図8に示す例では、図3に示す実施の形態2の構成に対して、充電用抵抗8に代えて、充電用開閉部10を接続した例について説明したが、実施の形態5乃至6と同様に、実施の形態1、あるいは実施の形態3乃至4の各構成に対して適用することも可能である。 In the example illustrated in FIG. 8, the example in which the charging opening / closing unit 10 is connected instead of the charging resistor 8 is described with respect to the configuration of the second embodiment illustrated in FIG. 3. Similarly to the sixth embodiment, the present invention can be applied to the configurations of the first embodiment or the third to fourth embodiments.
 以上説明したように、実施の形態7の直流遮断器によれば、充電用抵抗に代えて、充電用ダイオードを接続した構成としたので、定常時においてコンデンサの充電を短時間で行う必要がある場合、つまり、高速遮断責務を有する場合でも、事故発生時においてコンデンサの放電を防止するための制御を必要とすることなく、確実に電流零点を形成して直流電流遮断を実施することができる。 As described above, according to the DC circuit breaker of the seventh embodiment, since the charging diode is connected instead of the charging resistor, it is necessary to charge the capacitor in a short time in a steady state. In this case, that is, even when having the duty of high-speed interruption, the current zero point can be reliably formed and the direct current interruption can be performed without requiring control for preventing discharge of the capacitor in the event of an accident.
実施の形態8.
 図9は、実施の形態8にかかる直流遮断器の一構成例を示す図である。なお、実施の形態2と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
Embodiment 8 FIG.
FIG. 9 is a diagram of a configuration example of the DC circuit breaker according to the eighth embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as that of Embodiment 2, or equivalent, and the detailed description is abbreviate | omitted.
 本実施の形態では、図9に示すように、実施の形態2における遮断部2を複数直列に接続し、各遮断部2にそれぞれ分圧抵抗12を並列に接続した構成としている。 In the present embodiment, as shown in FIG. 9, a plurality of blocking sections 2 in the second embodiment are connected in series, and voltage dividing resistors 12 are connected in parallel to each blocking section 2, respectively.
 このように構成することにより、遮断部2の電流遮断後に直流遮断器の両端に発生する過電圧が各分圧抵抗12により分圧され、各遮断部2の極間電圧を下げることができる。つまり、各遮断部2の一台あたりの電圧責務を軽減することが可能となる。 With this configuration, the overvoltage generated at both ends of the DC circuit breaker after the current interruption of the breaking unit 2 is divided by each voltage dividing resistor 12, and the voltage between the electrodes of each breaking unit 2 can be lowered. That is, it is possible to reduce the voltage duty per unit of each blocking unit 2.
 なお、図9に示す例では、図3に示す実施の形態2における遮断部2を複数直列に接続した例について説明したが、実施の形態1、あるいは実施の形態3乃至7の各構成に対して適用することも可能である。 In the example shown in FIG. 9, the example in which a plurality of blocking sections 2 in Embodiment 2 shown in FIG. 3 are connected in series has been described. However, for each configuration in Embodiment 1 or Embodiments 3 to 7 It is also possible to apply.
 以上説明したように、実施の形態8の直流遮断器によれば、遮断部を複数直列に接続し、各遮断部にそれぞれ分圧抵抗を並列に接続した構成としたので、遮断部の電流遮断後に直流遮断器の両端に発生する過電圧を複数の各遮断器で分担することができ、各遮断部の一台あたりの電圧責務を軽減することが可能となる。 As described above, according to the DC circuit breaker of the eighth embodiment, since a plurality of circuit breakers are connected in series and a voltage dividing resistor is connected in parallel to each circuit breaker, the current interruption of the circuit breaker The overvoltage generated later at both ends of the DC circuit breaker can be shared by the plurality of circuit breakers, and the voltage duty per unit of each circuit breaker can be reduced.
 なお、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。 Note that the configuration shown in the above embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part thereof is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.
 1 直流線路
 2 遮断部
 3 断路部
 4 転流回路
 5 コンデンサ
 6 リアクトル
 7 放電ギャップ
 8 充電用抵抗
 9 開閉部(第1の開閉部)
 9a 開閉部(第2の開閉部)
 10 充電用開閉部
 11 充電用ダイオード
 12 分圧抵抗
 20 直列共振回路
 21 転流スイッチ部
 22 充電回路
DESCRIPTION OF SYMBOLS 1 DC line 2 Interrupting part 3 Disconnecting part 4 Commutation circuit 5 Capacitor 6 Reactor 7 Discharge gap 8 Charging resistor 9 Opening / closing part (first opening / closing part)
9a Opening and closing part (second opening and closing part)
DESCRIPTION OF SYMBOLS 10 Charging switch 11 Charging diode 12 Voltage dividing resistor 20 Series resonance circuit 21 Commutation switch unit 22 Charging circuit

Claims (13)

  1.  直流線路に流れる直流電流に共振性電流を重畳して電流零点を形成し、該電流零点で前記直流電流を遮断する直流遮断器であって、
     前記直流線路に挿入され、定常時において前記直流電流の流路となる遮断部と、
     前記遮断部の開極後に、前記直流電流を転流する転流回路と、
     を備え、
     前記転流回路は、
     コンデンサとリアクトルとからなる直列共振回路と、
     定常時において前記コンデンサを前記直流線路の直流電位で充電するための充電回路と、
     前記遮断部の開極後に、前記遮断部と前記直列共振回路とを並列に接続し、前記直列共振回路により生じる前記共振性電流を前記直流電流に重畳させると共に、前記遮断部の電流遮断後に、前記直列共振回路を介して前記直流線路に流れる微小電流を裁断する転流スイッチ部と、
     を備えることを特徴とする直流遮断器。
    A DC circuit breaker that forms a current zero point by superimposing a resonance current on a DC current flowing in a DC line, and interrupts the DC current at the current zero point,
    A blocking portion inserted into the DC line and serving as a flow path for the DC current in a steady state;
    A commutation circuit that commutates the direct current after opening the blocking unit;
    With
    The commutation circuit is
    A series resonant circuit composed of a capacitor and a reactor;
    A charging circuit for charging the capacitor with a DC potential of the DC line at a constant time;
    After opening the blocking unit, the blocking unit and the series resonant circuit are connected in parallel, the resonant current generated by the series resonant circuit is superimposed on the DC current, and after the current blocking of the blocking unit, A commutation switch section for cutting a minute current flowing through the DC line via the series resonant circuit;
    A DC circuit breaker comprising:
  2.  前記転流スイッチ部は、
     前記遮断部の開極後に、前記遮断部と前記直列共振回路とを並列に接続する放電ギャップと、
     前記遮断部の電流遮断後に、前記直列共振回路を介して前記直流線路に流れる微小電流を裁断する断路部と、
     を備えることを特徴とする請求項1に記載の直流遮断器。
    The commutation switch unit is
    After opening of the interrupting part, a discharge gap that connects the interrupting part and the series resonant circuit in parallel;
    After disconnecting the current of the interrupting part, a disconnecting part for cutting a minute current flowing in the DC line through the series resonant circuit;
    The DC circuit breaker according to claim 1, comprising:
  3.  前記転流スイッチ部は、前記断路部と前記放電ギャップとが直列接続され構成されたことを特徴とする請求項2に記載の直流遮断器。 3. The DC circuit breaker according to claim 2, wherein the commutation switch unit is configured by connecting the disconnecting unit and the discharge gap in series.
  4.  前記転流スイッチ部は、前記断路部が前記遮断部に直列に接続され、前記放電ギャップが前記遮断部および前記断路部の接続点と前記直列共振回路との間に接続され構成されたことを特徴とする請求項2に記載の直流遮断器。 The commutation switch unit is configured such that the disconnecting part is connected in series to the interrupting part, and the discharge gap is connected between a connection point of the interrupting part and the disconnecting part and the series resonance circuit. The DC circuit breaker according to claim 2, characterized in that:
  5.  前記転流スイッチ部は、前記遮断部の開極後に、前記遮断部と前記直列共振回路とを並列に接続する機能と、前記遮断部の電流遮断後に、前記直列共振回路を介して前記直流線路に流れる微小電流を裁断する機能とを兼ね備えた第1の開閉部からなることを特徴とする請求項1に記載の直流遮断器。 The commutation switch unit has a function of connecting the blocking unit and the series resonant circuit in parallel after opening the blocking unit, and the DC line via the series resonant circuit after blocking the current of the blocking unit. 2. The DC circuit breaker according to claim 1, comprising a first opening / closing portion having a function of cutting a minute current flowing through the first current opening / closing portion.
  6.  前記転流スイッチ部は、
     前記遮断部の開極後に、前記遮断部と前記直列共振回路とを並列に接続する第2の開閉部と、
     前記遮断部の電流遮断後に、前記直列共振回路を介して前記直流線路に流れる微小電流を裁断する断路部と、
     を備えることを特徴とする請求項1に記載の直流遮断器。
    The commutation switch unit is
    A second opening / closing unit that connects the blocking unit and the series resonant circuit in parallel after the opening of the blocking unit;
    After disconnecting the current of the interrupting part, a disconnecting part for cutting a minute current flowing in the DC line through the series resonant circuit;
    The DC circuit breaker according to claim 1, comprising:
  7.  前記転流スイッチ部は、前記断路部と前記第2の開閉部とが直列接続され構成されたことを特徴とする請求項6に記載の直流遮断器。 The DC commutator according to claim 6, wherein the commutation switch unit is configured such that the disconnecting unit and the second switching unit are connected in series.
  8.  前記転流スイッチ部は、前記断路部が前記遮断部に直列に接続され、前記第2の開閉部が前記遮断部および前記断路部の接続点と前記直列共振回路との間に接続され構成されたことを特徴とする請求項6に記載の直流遮断器。 The commutation switch unit is configured such that the disconnecting unit is connected in series to the blocking unit, and the second opening / closing unit is connected between the connecting point of the blocking unit and the disconnecting unit and the series resonance circuit. The DC circuit breaker according to claim 6, wherein:
  9.  前記充電回路は、充電用抵抗であることを特徴とする請求項1に記載の直流遮断器。 The DC circuit breaker according to claim 1, wherein the charging circuit is a charging resistor.
  10.  前記充電回路は、充電用抵抗および充電用開閉部からなる直列回路であることを特徴とする請求項1に記載の直流遮断器。 The DC circuit breaker according to claim 1, wherein the charging circuit is a series circuit including a charging resistor and a charging switch.
  11.  前記充電回路は、充電用開閉部であることを特徴とする請求項1に記載の直流遮断器。 The DC circuit breaker according to claim 1, wherein the charging circuit is a charging switch.
  12.  前記充電回路は、充電用ダイオードであることを特徴とする請求項1に記載の直流遮断器。 The DC circuit breaker according to claim 1, wherein the charging circuit is a charging diode.
  13.  複数の前記遮断部が直列に接続され、前記遮断部にそれぞれ分圧抵抗が並列に接続され構成されたことを特徴とする請求項1に記載の直流遮断器。 2. The DC circuit breaker according to claim 1, wherein a plurality of the interrupting parts are connected in series, and voltage dividing resistors are connected in parallel to the interrupting parts, respectively.
PCT/JP2012/061530 2012-05-01 2012-05-01 Dc circuit breaker WO2013164874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061530 WO2013164874A1 (en) 2012-05-01 2012-05-01 Dc circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061530 WO2013164874A1 (en) 2012-05-01 2012-05-01 Dc circuit breaker

Publications (1)

Publication Number Publication Date
WO2013164874A1 true WO2013164874A1 (en) 2013-11-07

Family

ID=49514285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061530 WO2013164874A1 (en) 2012-05-01 2012-05-01 Dc circuit breaker

Country Status (1)

Country Link
WO (1) WO2013164874A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167406A (en) * 2015-03-10 2016-09-15 株式会社東芝 Dc circuit breaker
EP3093941A1 (en) * 2015-05-13 2016-11-16 LSIS Co., Ltd. Direct current circuit breaker and method using the same
JP6921364B1 (en) * 2020-12-09 2021-08-18 三菱電機株式会社 DC circuit breaker and DC circuit breaker system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199123A (en) * 1981-06-01 1982-12-07 Hitachi Ltd Dc breaker
JPS5857229A (en) * 1981-09-29 1983-04-05 株式会社日立製作所 High voltage dc breaker for dc transmission system
JPS58214238A (en) * 1982-06-08 1983-12-13 株式会社日立製作所 Dc breaker
JPS59146117A (en) * 1983-02-09 1984-08-21 株式会社日立製作所 High voltage dc breaker
JPS59169009A (en) * 1983-03-16 1984-09-22 株式会社日立製作所 Dc breaker
JPS6065411A (en) * 1983-09-21 1985-04-15 株式会社日立製作所 Line charging type dc breaker
JPS61179024A (en) * 1985-02-01 1986-08-11 株式会社日立製作所 Dc breaker
JPH05282973A (en) * 1992-04-02 1993-10-29 Hitachi Ltd Vacuum circuit breaker
JPH10309034A (en) * 1997-04-30 1998-11-17 Toshiba Corp Current-limiting breaker
JP2003263945A (en) * 2002-03-08 2003-09-19 Mitsubishi Electric Corp Commutation breaker
JP2003303533A (en) * 2002-04-10 2003-10-24 Toshiba Corp Dc breaker
JP2006032077A (en) * 2004-07-15 2006-02-02 Toshiba Corp Dc circuit breaker

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199123A (en) * 1981-06-01 1982-12-07 Hitachi Ltd Dc breaker
JPS5857229A (en) * 1981-09-29 1983-04-05 株式会社日立製作所 High voltage dc breaker for dc transmission system
JPS58214238A (en) * 1982-06-08 1983-12-13 株式会社日立製作所 Dc breaker
JPS59146117A (en) * 1983-02-09 1984-08-21 株式会社日立製作所 High voltage dc breaker
JPS59169009A (en) * 1983-03-16 1984-09-22 株式会社日立製作所 Dc breaker
JPS6065411A (en) * 1983-09-21 1985-04-15 株式会社日立製作所 Line charging type dc breaker
JPS61179024A (en) * 1985-02-01 1986-08-11 株式会社日立製作所 Dc breaker
JPH05282973A (en) * 1992-04-02 1993-10-29 Hitachi Ltd Vacuum circuit breaker
JPH10309034A (en) * 1997-04-30 1998-11-17 Toshiba Corp Current-limiting breaker
JP2003263945A (en) * 2002-03-08 2003-09-19 Mitsubishi Electric Corp Commutation breaker
JP2003303533A (en) * 2002-04-10 2003-10-24 Toshiba Corp Dc breaker
JP2006032077A (en) * 2004-07-15 2006-02-02 Toshiba Corp Dc circuit breaker

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167406A (en) * 2015-03-10 2016-09-15 株式会社東芝 Dc circuit breaker
EP3093941A1 (en) * 2015-05-13 2016-11-16 LSIS Co., Ltd. Direct current circuit breaker and method using the same
CN106159881A (en) * 2015-05-13 2016-11-23 Ls产电株式会社 Dc circuit breaker and the method using dc circuit breaker
JP2016213192A (en) * 2015-05-13 2016-12-15 エルエス産電株式会社Lsis Co., Ltd. Direct current circuit breaker
US10063046B2 (en) 2015-05-13 2018-08-28 Lsis Co., Ltd. Direct current circuit breaker and method using the same
CN106159881B (en) * 2015-05-13 2019-01-15 Ls 产电株式会社 Dc circuit breaker and the method for using dc circuit breaker
JP6921364B1 (en) * 2020-12-09 2021-08-18 三菱電機株式会社 DC circuit breaker and DC circuit breaker system
WO2022123700A1 (en) 2020-12-09 2022-06-16 三菱電機株式会社 Dc breaker and dc breaker system
EP4261865A4 (en) * 2020-12-09 2024-03-06 Mitsubishi Electric Corporation Dc breaker and dc breaker system

Similar Documents

Publication Publication Date Title
JP6049913B2 (en) DC circuit breaker
KR101521545B1 (en) Device and method to interrupt high voltage direct current
KR101550374B1 (en) High-voltage DC circuit breaker
KR101506581B1 (en) High-voltage DC circuit breaker
KR101522412B1 (en) Bi-directional DC interruption device
US9450397B2 (en) Circuit breaking arrangement
WO2015121983A1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
JP5265063B1 (en) DC circuit breaker
EP3413330B1 (en) Direct current circuit breaker
WO2013164875A1 (en) Dc circuit breaker
KR101641511B1 (en) Device for interrupting DC current and method the same
JP5654394B2 (en) Circuit breaker
JP2014512789A (en) Electrical equipment for short-circuit protection of three-phase loads in a three-phase system
JP2017114373A (en) Junction box
JP2009181864A (en) High voltage direct current circuit break support circuit and high voltage direct current breaker
WO2013164874A1 (en) Dc circuit breaker
WO2018131307A1 (en) Arc-suppressing device
JP6202871B2 (en) DC circuit breaker
JP5031607B2 (en) DC high-speed vacuum circuit breaker
JPWO2013164874A1 (en) DC circuit breaker
JP6386955B2 (en) DC cutoff device and DC cutoff method
WO2021084585A1 (en) Dc circuit breaker
WO2013098906A1 (en) Arc-discharge prevention circuit, and arc-discharge prevention device
KR101845826B1 (en) Improved reliability Two-way DC circuit breaker
WO2021054338A1 (en) Current interruption device and current interruption method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012542292

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875957

Country of ref document: EP

Kind code of ref document: A1