WO2013164408A1 - Procédé de vérification de l'alignement de têtes d'impression et méthode d'alignement associée - Google Patents
Procédé de vérification de l'alignement de têtes d'impression et méthode d'alignement associée Download PDFInfo
- Publication number
- WO2013164408A1 WO2013164408A1 PCT/EP2013/059154 EP2013059154W WO2013164408A1 WO 2013164408 A1 WO2013164408 A1 WO 2013164408A1 EP 2013059154 W EP2013059154 W EP 2013059154W WO 2013164408 A1 WO2013164408 A1 WO 2013164408A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- printing
- alignment
- memory
- points
- processing means
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
- B41J2/04505—Control methods or devices therefor, e.g. driver circuits, control circuits aiming at correcting alignment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/21—Ink jet for multi-colour printing
- B41J2/2132—Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
- B41J2/2135—Alignment of dots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/21—Ink jet for multi-colour printing
- B41J2/2132—Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
- B41J2/2146—Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding for line print heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J25/00—Actions or mechanisms not otherwise provided for
- B41J25/304—Bodily-movable mechanisms for print heads or carriages movable towards or from paper surface
- B41J25/308—Bodily-movable mechanisms for print heads or carriages movable towards or from paper surface with print gap adjustment mechanisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
- G01B11/27—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
Definitions
- the present invention relates to methods of adjusting points and / or patterns printed on any substrate, and more particularly to the combination of such methods with methods of aligning mechanical systems.
- Alignment of systems comprising a mechanical part is a problem that arises simultaneously with the systems themselves.
- numerical adjustment methods making it possible in particular to equate experimental points exist and find applications in fields where the precise alignment of the systems making up a machine or a device is essential.
- WO 2005/039881 in which is disclosed a print head alignment method each comprising a plurality of nozzles.
- each print head prints on a substrate a series of drops.
- means compute the distance between each series of points and compare it to an ideal distance, characteristic of an optimal alignment between the heads. The result of this comparison serves as a basis for the alignment of the printheads with respect to a reference head.
- this numerical adjustment method is performed on one-off printing marks.
- the object of the present invention is to propose a method for evaluating and correcting the alignment of printing heads carried out using at least one adjustment algorithm, allowing greater accuracy in its use when eliminating inaccuracies related to the ejection of the drops of the printing heads, while limiting the use of the resources of the computer system on which the method is used.
- the number of printheads whose alignment must be evaluated and possibly corrected has very little influence on the overall processing time imposed by said method.
- the invention relates to a method for verifying the alignment of at least one printing head installed on a printing machine, by linear adjustment of at least one group of points represented on an image resulting from digitizing a model comprising a plurality of printed drops, characterized in that each drop comprises a plurality of points, each point having a uniform color according to a colorimetric database stored in a memory zone of a computer system implementing the method and comprising at least one memory space, acquisition means, recording and processing of data, the method comprising: a.
- a step of detecting the color of the points by the processing means followed by the allocation by the spatial coordinate processing and colorimetric coordinate means to each point of a digital image of a model stored in memory, these coordinates respectively being associated with a spatial reference relating to the image and a color table recorded in a memory space of the computer system, b. a step of creating, by the processing means, at least one list of points of the same colorimetric coordinates, the data relating to at least this list being stored in memory by the data recording means, c.
- an association step via the processing means, of each vector to the corresponding print head, a database associating each print head with a colorimetric coordinate being stored in memory, g. a comparison step using the means for processing the coordinates of the vectors with the coordinates of the respective optimal vectors stored in memory and characterizing an optimal alignment of the heads.
- the colorimetric and spatial coordinates make it possible to discriminate the points.
- the method is characterized in that a point is the smallest element of homogeneous hue, or pixel, of the image of the registered model.
- the method is characterized in that only the points, whose colorimetric coordinates are associated via the processing means to a reduced portion of the color table, are integrated in at least one of the lists created in step b said reduced portion being stored in a memory space of the computer system.
- the method is characterized in that an additional step of removing the points of a drop whose number of points is less than a value that can be selected by the user and stored in memory, is achieved via the processing means just before step e of the process.
- the method is characterized in that the value of the distance d is chosen and stored in memory by a user via input means associated with the computer system.
- the method is characterized in that the groups of points are vectorized by the least squares processing means. According to another feature, the method is characterized in that each group of points is adjusted by an affine function, so that the sum of the squares of the deviations of the coordinates, in the direction parallel to the printing direction (y), of each point of the group with respect to the affine function of adjustment is minimal.
- An additional object of the invention is to provide a method of aligning printheads.
- the invention relates to a method of aligning at least one print head installed on a printing machine, the position of each head being adjustable by means of adjustment means in a parallel plane.
- each head comprising a plurality of nozzles
- the printing machine comprising in particular a means for moving the substrate, means for measuring the instantaneous speed of the moving substrate, computer means for managing the printing operations, and alignment, the computer means comprising at least one memory zone, means for acquiring, recording and processing data
- the method being characterized in that it comprises: a. a step of creation by the computer processing means and recording by the recording means in a memory area of the computer system, a digital model usable for the alignment of the print heads, b.
- the method is characterized in that the printing machine comprises, independently of the moving means, means for detecting the edges of the substrate perpendicular to the displacement, so that the processing means triggers the printing. at least one print head at the appropriate time to perform the printing of a model, the instantaneous speed of displacement of the substrate being known at each moment and the optimum distance between the detection means and each print head being stored in a memory area of the computer system.
- the method is characterized in that a step of displaying configuration data of the alignment of at least one print head is performed in parallel with the generation of the configuration file, via means of display included in the computer means.
- the method is characterized in that the means for adjusting the heads make it possible to modify the position of the heads in two linear directions respectively perpendicular and parallel to the printing direction, and in an angular direction in a plane parallel to the substrate .
- the method is characterized in that the printed model comprises on the one hand at least one pattern substantially perpendicular to the printing direction, each pattern being realized by the whole or a portion of the nozzles of each print head, and secondly at least one pattern substantially parallel to the printing direction, each pattern being made by the same nozzle of a print head, the patterns perpendicular to the sense for checking the angular alignment of the heads and the alignment of the heads in the direction parallel to the printing direction, the patterns parallel to the printing direction for verifying the alignment of the heads in the direction perpendicular to the direction printing.
- the method is characterized in that the data acquisition means comprise a 2D image sensor whose resolution is between 0.1 and 100 megapixels, preferably around 6 megapixels.
- the method is characterized in that the data acquisition means comprise a linear image sensor fixed on the machine and connected to the means for measuring the instantaneous speed of the substrate, and whose field of view is at least as wide as the model printed on the substrate, said sensor being controlled by the computer means so as to digitize all the patterns printed on the substrate, the position of the substrate being known at every moment thanks to the measuring means of the According to another feature, the method is characterized in that a calibration step by the acquisition and processing means precedes the step of digitizing the model.
- FIG. 1 illustrates a functional diagram of the algorithm making it possible to carry out the linear adjustment
- FIG. 2 illustrates an exemplary model comprising several patterns
- FIG. 3 illustrates a representation of portions of the pixelated and vectorized pattern
- FIG. 4 illustrates a simplified three-dimensional diagram of the printing machine
- FIG 5 illustrates the functional diagram of the method of alignment of the printheads
- Figures 6a to 6c illustrate the possible position of defects of the printheads.
- Figure 7 illustrates a staggered layout diagram of the printheads.
- the method is implemented by means of a computer system (0), comprising for example and without limitation data processing means, for example and without limitation a central processor (Central English CPU) processing unit), data acquisition means controlled by the data processing means, means for recording the data associated with at least one memory space, for example and without limitation a mass storage device, a USB type flash memory associated with a read / write interface, an optical reader / writer.
- data processing means for example and without limitation a central processor (Central English CPU) processing unit
- data acquisition means controlled by the data processing means
- means for recording the data associated with at least one memory space for example and without limitation a mass storage device, a USB type flash memory associated with a read / write interface, an optical reader / writer.
- the print heads (1a, 10a, 1b, 10b, 1c, 1d) comprise at least one row comprising a plurality of nozzles aligned in a direction perpendicular to the printing direction, said heads (1a, 10a, 1b, 10b, 1c, 1d) being arranged one after the other in the printing machine.
- the print heads are arranged in staggered rows.
- the print heads (1a, 10a, 1b, 10b, 1c, 1d) are inkjet heads, and the nozzles comprise elements generating pressure waves, controlled by the computer system and for expelling drops of liquid (5) on the substrate (2), for example and without limitation ink or varnish.
- the object of the invention is to provide, by means of at least one algorithm included in a software package installed in the computer system, an affine equation of at least one pattern (40). , 41) represented on an image of a registered model and saved in at least one memory space of the computer system (0). This equation is carried out according to a method whose successive steps will now be described.
- This method comprises three main phases (7, 8, 9), themselves comprising several steps.
- the image resulting from the scanning of a printed model comprising a plurality of drops (4) printed, each drop (4) comprising a plurality of points (5).
- a point (5) is the smallest element of homogeneous hue present on the image of the registered model, whose hue is in accordance with a colorimetric database saved in a memory zone of the computer system ( 0).
- pixel the term "pixel" to describe the points (5) forming the patterns of the model.
- the first phase of the method is a phase of filtering (7) the colors of the pixels (5).
- the processing means of the computer system create color lists (70), each list being recorded by the recording means in a memory area of the computer system (0).
- Each list is representative of the color of a print head (1a, 10a, 1b, 10b, 1c, 1d). There are thus at least as many created lists as there are print heads (1a, 10a, 1b, 10b, 1c, 1d) installed on the printing machine.
- the processing means analyze each pixel (5) separately, first of all to assign them colorimetric coordinates (71) and to eliminate the pixels (5) whose the color does not correspond to any known or searched (72), a list of colorimetric coordinates of interest being recorded in a database contained in a memory space of the computer system (0).
- the colorimetric coordinates used are in accordance with the RGB code.
- a second step when the color of a pixel (5) is included in the list of colorimetric coordinates recorded in the database, the processing means of the computer system (0) will associate the corresponding pixel (5) in a created lists, and assign spatial coordinates (73), for example and without limitation in an orthonormal frame whose x and y axes are perpendicular and in the plane of the model image, the third axis z being perpendicular to the other two.
- the lists of pixels (5) thus created by the processing means and recorded in a memory zone of the computer system (0) comprise the spatial coordinates of a set of pixels (5) having the same colorimetric coordinates. Thus there are as many lists as colorimetric coordinates. All these lists, once finalized, are recorded in a memory zone of the computer system (0) by the means of recording the data.
- said processing means initiate the second phase (8) of the method, consisting of the analysis of each pixel list (5). ) so as to create groups of pixels (5). Each list is discriminated in at least one group.
- the processing means choose a first list (80) of pixels (5).
- Each pixel (5) of the list is analyzed (81) by the processing means: the processing means considers that two distinct groups of pixels (5) must be separated by a minimum distance d, recorded in a memory zone of the system computer science (0).
- the threshold distance (d) is entered via an input interface by a user in a memory area of the computer system (0).
- a pixel (5) is located at a distance less than d / 2 of a group, then said pixel (5) belongs to said group (82), and these spatial coordinates are associated with said group (83 '). If the pixel (5) of a list is not close to any listed group, then a new pixel group is created (83).
- two groups of pixels (5) represent two patterns (40, 41) separated on the image of the model. Recall that the groups of pixels (5) belonging to the same list of pixels (5) all have the same colorimetric coordinates.
- a group of pixels (5) is a set of pixels (5) belonging to the same pattern (40, 41) among a plurality represented on a model, and whose colorimetric coordinates are identical.
- the patterns (40, 41) are substantially linear.
- the processing means analyzes all the pixels (5) of a list (84) for all the registered lists (85) in a memory zone of the computer system (0) before proceeding to the third step (9) the method, consisting of the analysis by the processing means of each group of pixels (5), so that a linear adjustment algorithm is applied to them.
- the processing means selects a group (90) of pixels (5), and evaluates the number of pixels (5) present in each group (91). If the number of pixels (5) is less than a value stored in a memory zone of the computer system (0), this value can be chosen by a user and entered via input means connected to the computer system, then the processing means remove (92 ') said group of pixels (5).
- each group whose number of pixels (5) is greater than a value recorded in the computer system (0) is vectorized (92), that is to say that all the pixels (5) of the same group is adjusted, by means of an adjustment algorithm, by the vector (50) closest to the pattern (40, 41) represented on the model.
- the process is complete when all the groups containing enough pixels (5) are vectorized (93).
- the algorithm for performing the adjustment is based on the least squares method.
- the numerical analysis based on the least squares method consists of finding the coefficients a and b of the affine function making it possible to minimize the quantity corresponding to the sum of the squares of the differences in the coordinates of the pixels.
- (5) on the substrate (2) in a direction substantially parallel to the printing direction (y) with respect to the line of equation Y aX + b.
- the processing means associates each calculated vector with the corresponding print head (1a, 10a, 1b, 10b, 1c, 1d), a database associating each print head (1a, 10a, 1b). b, 10b, 1c, 1d) at a color coordinate being recorded in a memory area of the computer system (0). Finally, the processing means compare the coordinates of the calculated vectors with the optimal vector coordinates recorded in a memory zone of the computer system (0), characterizing an optimal alignment of the printing heads (1a, 10a, 1b, 10b, 1c, 1d).
- each piezoelectric element controlling the ejection of the drops (4) has an inaccuracy in a direction perpendicular to the printing direction (dx) and an inaccuracy in a direction parallel to the printing direction (dy) .
- the vectorization of the groups of pixels (5) makes it possible to overcome these inaccuracies.
- an optional step may be included in the method.
- an image processing and filtering method eliminates all the details of the image whose size is not between two threshold values recorded in a memory zone of the computer system.
- the printheads (10a, 10b) may be staggered in the printing machine.
- some nozzles belonging to different print heads may have the same coordinates in the direction perpendicular to the printing direction (x-axis).
- the computer means disable some nozzles (1 10a, 1 10b) printheads (10a, 10b), so that there is no overlap area during printing, while maintaining the printing accuracy relative to the distance between two nozzles of the same print head (10a, 10b).
- a single nozzle (100a, 100b) will be activated while all the other nozzles (1 10a, 1 10b) having the same coordinates along the x axis will be disabled.
- Another object of the invention is to propose, in some embodiments, a method of aligning at least one print head (1a, 10a, 1b, 10b, 1c, 1d) installed on a printing machine comprising at least one print head (1a, 10a, 1b, 10b, 1c, 1d).
- the printing machine comprises a computer system (0) that manages the printing and alignment operations of the heads (1a, 10a, 1b, 10b, 1c, 1d), and including data processing means, for example and without limitation a central processor (CPU of the English central processing unit), means for recording data associated with at least one memory space, for example and without limitation a mass storage device, a USB flash memory associated with a read / write interface, an optical reader / recorder, and a means for moving the substrate the speed of said moving means being instantaneously measurable by an encoder (20).
- data processing means for example and without limitation a central processor (CPU of the English central processing unit)
- means for recording data associated with at least one memory space for example and without limitation a mass storage device, a USB flash memory associated with a read / write interface, an optical reader / recorder, and a means for moving the substrate the speed of said moving means being instantaneously measurable by an encoder (20).
- the encoder (20) is a rotary optical encoder comprising a light source, a striated disk, whose striations are substantially equidistant, and a photodetector.
- the photodetector is able to receive light from the source when a streak is on the path between the photodetector and the light source.
- the number of grooves being perfectly known, the encoder (20) therefore makes it possible, knowing that the movement of the striated disk is directly dependent on the movement of the displacement means of the printing machine, to know at any moment the instantaneous speed of the means of displacement and fortiori the substrate (2).
- the resolution of the encoder (20) depends on the number of striations present on the disk.
- the rotary optical encoder has a resolution of 6500 counts per inch (cpi), an accuracy of the order of 4 micrometers.
- Each print head (1a, 10a, 1b, 10b, 1c, 1d) includes position adjustment means, which adjust the position in two linear directions - one perpendicular to the printing direction (x), and a parallel to the printing direction (y) - and in an angular direction, in a plane parallel to the substrate.
- These adjustment means are, for example and without limitation, micrometer screws mounted on springs and each of which can be connected to a motor controlled by the computer system.
- piezoelectric motors controlled by the computer means act as adjustment means.
- the printing machine comprises, in preferred embodiments, a detection cell (3) for the presence of a substrate, controlled by the computer system, the function of which is to detect the edges of the substrate perpendicular to the direction of the substrate. impression.
- the detection information is sent to the computer system.
- the distance between the cell and each print head being known and recorded in a memory area of the computer system, the instantaneous speed of the substrate being also known at any time by means of the rotary optical encoder (20), the processing means of the computer system are then able to activate the elements generating pressure waves from the nozzles of each print head at the precise moment when liquid drops (4) have to be expelled to produce a printing pattern (40, 41) .
- the heads (1a, 10a, 1b, 10b, 1c, 1d) as perfect as possible in order to avoid as much as possible the artifacts when printing .
- a digital alignment pattern comprising a plurality of patterns (40, 41) is provided by the processing means, each pattern (40, 41) comprising a set of pixels (5) whose color coordinates are identical.
- the model is adapted according to the number of heads (1a, 10a, 1b, 10b, 1c, 1d) whose position must be verified and / or corrected by the processing means, and according to the type of correction to bring to each print head (1a, 10a, 1b, 10b, 1c, 1d).
- the model is composed of patterns (40, 41) substantially linear.
- the printing of the model created by the processing means in the previous step, and recorded in a memory area of the computer system is performed on a substrate (2) using the printing machine controlled by the computer system.
- the model consists of at least one pattern (41a, 41b, 41c, 41d) that is substantially linear and parallel to the printing direction, and from minus one pattern (40a, 40b, 40c, 40d) substantially linear and perpendicular to the printing direction.
- Each pattern (41a, 41b, 41c, 41d) parallel to the printing direction - in the y direction - is made by the same nozzle of a print head, while each pattern (40a, 40b, 40c, 40d) perpendicular to the printing direction - in the x-direction - is achieved by all or a part of the nozzles of the same printing head (1a, 10a, 1b, 10b, 1c, 1 d), said nozzles expelling drops of liquids (4).
- Each pattern (40, 41) is composed of a plurality of drops (4).
- the perpendicular patterns (40a, 40b, 40c, 40d) in the printing direction make it possible to check the angular alignment of the heads (1a, 10a, 1b, 10b, 1c, 1d) and the alignment of the heads according to the direction parallel to the printing direction
- the parallel patterns (41a, 41b, 41c, 41d) in the printing direction make it possible to check the alignment of the heads (1a, 10a, 1b, 10b, 1 c, 1 d) in the direction perpendicular to the printing direction.
- the model printed in the previous step is digitized (63) by the acquisition means, said acquisition means being controlled by the processing means of the computer system.
- the acquisition means comprises a 2D image sensor installed outside the printing machine, and positioned above the printed substrate, and connected to the computer system.
- the resolution of the sensor may be between 0.1 and 100 megapixels, preferably around 6 megapixels.
- a digital camera is used to scan the model.
- the model is recorded by the recording means in a memory area of the computer system.
- the acquisition means comprise a linear sensor, fixed on the printing machine and directly connected on the one hand to the computer means (0) and on the other hand to the means for measuring the instantaneous speed ( 20) of the substrate (2).
- a 2D camera like the one described in the preceding paragraph, digitizes the patterns (40, 41) of the substrate (2) at once almost instantaneously
- a linear sensor is connected to the means for measuring the instantaneous speed (20) of the substrate (2) to digitize the patterns (40, 41) of the substrate (2) as the latter advances in the field of view of the linear sensor.
- the computer means (0) activate the linear sensor at the precise instant when the first edge of the substrate (2) , depending on the printing direction and perpendicular to the printing direction, enters the field of view of the linear sensor.
- the computer means (0) deactivate the linear sensor.
- the computer means (0) activate the linear sensor when the latter scans a reduced area of the surface of the substrate (2), the coordinates of this area being previously recorded in a memory area of the computer system. Between these two actions, the patterns (40, 41) present on the substrate (2) are digitized.
- the field of view of the linear sensor is at least as wide as the pattern printed on the substrate (2).
- Scanning the substrate (2) with a linear sensor is an operation that is performed in line, during the pattern printing process (40, 41) on the substrate (2).
- the use of a 2D camera allows a digitization of the different models made at a later time: the digitization can therefore in this case be performed offline, the positioning of the substrate (2) being in this case performed by the user.
- a calibration step (60) by the acquisition and processing means precedes the third step of the method.
- a calibration model is realized by the printing machine, controlled by the computer system.
- This calibration model comprises two patterns (41a, 41b, 41c, 41d) substantially parallel to the printing direction, each pattern being composed of a plurality of drops (4) made by the same nozzle, both units (41a, 41b, 41c, 41d) being made by two nozzles separated and separated by a distance whose value is known, this value being stored in the computer system, the two nozzles belonging to the same print head (1a, 10a, 1b, 10b, 1c, 1d).
- the acquisition means digitizes the calibration model that is stored in a memory area of the system.
- the adjustment method described above in the description is then applied to the two patterns (41a, 41b, 41c, 41d) of the model, thus creating two vectors (50) parallel to the printing direction.
- the distance measured between these two vectors is then associated by the processing means at the actual distance separating the two nozzles.
- the system processing means apply the linear adjustment method described above.
- Each drop (4) of the model is pixelated by the processing means, colorimetric and spatial coordinates being then assigned to each pixel (5) of the model.
- the pixels (5) whose colorimetric coordinates do not correspond to any color that may be proposed by the set of printing heads (1a, 10a, 1b, 10b, 1c, 1d). ) of the printing machine are eliminated and erased from the system memory. Lists of pixels (5) with the same colorimetric coordinates are then created by the processing means and recorded by the recording means in a memory zone of the computer system.
- Groups of pixels (5) are then created, each group comprising pixels (5) having the same colorimetric coordinates, each pixel (5) located at a distance less than d / 2 of a group belongs to said group, the value of the distance d stored in memory being greater than the size of a drop (4) and less than the minimum distance between two groups of pixels (5).
- a step deleting groups whose number of pixels (5) is less than a threshold value stored in a memory area of the computer system (0), is performed by the processing means. This threshold value can be entered by a user via input means, for example and without limitation a keyboard type human / machine interface.
- a step of removing artifacts for example and without limitation dust or satellite drops, is performed by the processing means.
- each pixel group (5) identified by the processing means is adjusted according to a linear adjustment algorithm, for example and without limitation an algorithm applying the least squares method.
- a linear adjustment algorithm for example and without limitation an algorithm applying the least squares method.
- Each vector (50) is then associated, via the processing means, with a print head (1 a, 10 a, 1 b, 10 b, 1 c, 1 d), by comparison of the colorimetric coordinates of each vector (50). with the colorimetric coordinates corresponding to the color of each print head (1a, 10a, 1b, 10b, 1c, 1d) and stored in a database of the computer system (0).
- a print head (1a, 10a, 1b, 10b, 1c, 1d) is associated a vector (50) substantially parallel to the printing direction - in the direction y - and a vector (50) substantially perpendicular - in the direction x - in the printing direction.
- the coordinates of the vectors (50) obtained following the application of the linear adjustment algorithm are compared with coordinates of these same vectors obtained under head positioning conditions (1 a, 10 a, 1 b, 10 b , 1 c, 1 d) ideal, these ideal coordinates being stored in a database of the computer system, corresponding to an optimal position of each print head (1 a, 10 a, 1 b, 10 b, 1 c, 1 d) of the printing machine.
- the optimum distances between each print head (1a, 10a, 1b, 10b, 1c, 1d) are known and stored in a database of the computer system.
- the position of the printheads (1a, 10a, 1b, 10b, 1c, 1d) can be adjusted by the adjustment means in two linear directions - a parallel to the printing direction ( y) and the other perpendicular (x) to the printing direction - and an angular direction in a plane parallel to the substrate.
- the calculated positioning defects (65) along these three directions will be described below.
- the coordinates of the vectors (50) substantially perpendicular to the printing direction are analyzed by the means of treatment.
- the processing means deduce precisely the tripping time of the print head (1a, 10a, 1b, 10b, 1c, 1d) number i, and sends information activating the piezoelectric elements of at least one nozzle of the print head (1a, 10a, 1b, 10b, 1c, 1d).
- the theoretical distance between two vectors (50) substantially perpendicular to the printing direction, one representative of the reference print head (1 a) and the other representative of another print head (10a, 1b, 10b, 1c, 1d), is therefore theoretically known, and is the result of the subtraction of the distances of each print head (1a, 10a, 1 b, 10b, 1c, 1d) having traced each vector (50) to the detection cell (3) of the substrate (2).
- the processing means realizes an actual measurement of this distance and then compares it with the theoretical value.
- a correction of the position of a head (1b, 1c, 1d) in the y direction relative to the reference head (1a) must be performed, the correction being equivalent to the difference between the theoretical value and the measured value of the distance of the vector (50) traced by the reference head (1 a) to the vector (50) traced by the head (1 b, 1 c, 1 d) to be aligned in the direction y, the reference head (1 a) being for example and without limitation the first print head in the direction of printing.
- a correction of the position of a head (1b, 1c, 1d) in the x direction relative to the reference head (1a) must be performed, the correction being equivalent to the difference between the theoretical value and the measured value of the distance of the vector (50) traced by a nozzle of the reference head (1 a) to the vector traced by a nozzle of the head (1 b, 1 c, 1 d) to be aligned in the x direction, the reference head (1 a) being for example and without limitation the first print head in the direction of printing.
- a configuration file (67) of the alignment of the printheads (1a, 10a, 1b, 10b, 1c, 1d ) of the machine is performed by the processing means, said file being stored in a memory area of the computer system.
- This file includes the corrections to be made to each print head (1a, 10a, 1b, 10b, 1c, 1d) whose position must be verified and / or corrected.
- this file includes the values of the corrections and the type of correction - in the x, y and / or angular direction, or which (s) nozzles (s) to disable - to be provided to the setting means located on the print heads (1a, 10a, 1b, 10b, 1c, 1d).
- a step of displaying the alignment configuration data of at least one print head (1a, 10a, 1b, 10b, 1c, 1d) is performed in parallel with the generation of the configuration file, via display means included in the computer means.
- This configuration file can be directly accessed by a user who will subsequently perform the settings of aligning the printheads (1a, 10a, 1b, 10b, 1c, 1d).
- this file may be transmitted via wire transmission means or not, to a computer system (0) connected to the printhead adjustment means (1a, 10a, 1b, 10b, 1c). , 1 d).
- the processing means analyze the corrections to be made to each print head (1a, 10a, 1b, 10b, 1c, 1d), and controls the adjustment means so that the position corrections are performed automatically according to the alignment information included in the configuration file.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Ink Jet (AREA)
- Accessory Devices And Overall Control Thereof (AREA)
- Record Information Processing For Printing (AREA)
Abstract
La présente invention a pour objet de proposer une méthode d'évaluation et de correction de l'alignement de têtes d'impression réalisée à l'aide d'au moins un algorithme d'ajustement linéaire, permettant une précision plus grande dans son utilisation en s'affranchissant des imprécisions liées à l'éjection des gouttes des têtes d'impression, tout en limitant l'utilisation des ressources du système informatique sur lequel la méthode est utilisée. D'autre part, le nombre de têtes d'impression dont l'alignement doit être évalué et éventuellement corrigé a très peu d'influence sur le temps de traitement global imposé par ladite méthode.
Description
Procédé de vérification de l'alignement de têtes d'impression et méthode d'alignement associée
DOMAINE TECHNIQUE DE L'INVENTION
La présente invention se rapporte aux procédés d'ajustement de points et/ou motifs imprimés sur un substrat quelconque, et plus particulièrement de l'association de tels procédés avec des méthodes d'alignement de systèmes mécaniques.
ARRIERE-PLAN TECHNOLOGIQUE DE L'INVENTION
L'alignement de systèmes comprenant une partie mécanique est un problème apparu en même temps que les systèmes eux-mêmes. De façon connue en soi, des méthodes d'ajustement numériques permettant notamment de mettre en équation des points expérimentaux existent et trouvent des applications dans des domaines où l'alignement précis des systèmes composant une machine ou un dispositif est essentiel.
A titre d'exemple, citons le domaine de l'impression et notamment les machines comprenant une pluralité de têtes d'impression. En effet, la diversité des applications engendrées par les possibilités de ces machines nécessitent la plupart du temps la présence de plusieurs têtes d'impression au sein d'une même machine. Mais ces têtes, afin que le fonctionnement de la machine d'impression soit optimal, doivent être alignées avec une précision proche de la résolution de l'impression, ce qui implique des ajustements micrométriques. Ainsi, l'ajustement grâce à des méthodes numériques prend tout son sens.
De nombreuses méthodes réduisant les artefacts liés à un mauvais alignement de systèmes mécaniques dépendant les uns des autres sont décrites dans l'art antérieur.
Citons notamment le document WO 2005/039881 dans lequel est divulguée une méthode d'alignement de têtes d'impression comprenant chacune une pluralité de buses. Afin de réaliser un motif qui servira à l'alignement des têtes, chaque tête d'impression imprime sur un substrat une série de gouttes. Après acquisition et numérisation de ce motif, des moyens
informatiques calculent la distance entre chaque série de points et la compare à une distance idéale, caractéristique d'un alignement optimal entre les têtes. Le résultat de cette comparaison sert de base pour l'alignement des têtes d'impression par rapport à une tête de référence. Cependant, cette méthode d'ajustement numérique est réalisée sur des marques d'impression ponctuelles.
Citons également le document US 201 1 /0169893, qui divulgue une machine d'impression jet d'encre comprenant des moyens d'ajustement de l'alignement du substrat. Au moins une tête d'impression réalise un motif composé de points spécifiques, ledit motif étant par la suite numérisé grâce à des moyens d'acquisition compris dans la machine d'impression. Cette image numérique est ensuite analysée, la position des points étant comparée à la position de points dans le cadre d'un alignement optimal. Le résultat de cette comparaison sert de base pour l'alignement du substrat à l'aide de moyens d'ajustement. Cependant, et comme précédemment, la méthode d'ajustement numérique est réalisée sur des marques d'impression ponctuelles. D'autre part, il ne s'agit pas d'aligner les têtes d'impression, mais le substrat d'impression.
DESCRIPTION GENERALE DE L'INVENTION
La présente invention a pour objet de proposer une méthode d'évaluation et de correction de l'alignement de têtes d'impression réalisée à l'aide d'au moins un algorithme d'ajustement, permettant une précision plus grande dans son utilisation en s'affranchissant des imprécisions liées à l'éjection des gouttes des têtes d'impression, tout en limitant l'utilisation des ressources du système informatique sur lequel la méthode est utilisée. D'autre part, le nombre de têtes d'impression dont l'alignement doit être évalué et éventuellement corrigé a très peu d'influence sur le temps de traitement global imposé par ladite méthode.
A cet effet, l'invention concerne un procédé de vérification de l'alignement d'au moins une tête d'impression installée sur une machine d'impression, par ajustement linéaire d'au moins un groupe de points représentés sur une image issue de la numérisation d'un modèle comprenant une pluralité de gouttes imprimées, caractérisé en ce que chaque goutte
comporte une pluralité de points, chaque point ayant une teinte uniforme conforme à une base de données colorimétrique sauvegardée dans une zone mémoire d'un système informatique mettant en œuvre le procédé et comprenant au moins un espace mémoire, des moyens d'acquisition, d'enregistrement et de traitement des données, le procédé comprenant : a. une étape de détection de la couleur des points par les moyens de traitement, suivi de l'attribution par les moyens de traitement de coordonnées spatiales et de coordonnées colorimétriques à chaque point d'une image numérique d'un modèle enregistrée en mémoire, ces coordonnées étant respectivement associées à un repère spatial relatif à l'image et une table colorimétrique enregistrés dans un espace mémoire du système informatique, b. une étape de création, par les moyens de traitement, d'au moins une liste de points de mêmes coordonnées colorimétriques, les données relatives à au moins cette liste étant enregistrées en mémoire par les moyens d'enregistrement des données, c. une étape de création, par les moyens de traitement, d'au moins un groupe de points d'une même liste de points de mêmes coordonnées colorimétriques et dont chaque point appartenant audit groupe doit être situé à une distance inférieure à une distance d/2 d'un point d'un autre groupe, la distance d enregistrée en mémoire correspondant à la distance minimale entre deux groupes de points, d. une étape de filtrage et de suppression des groupes dont le nombre de points est inférieur à une valeur limite enregistrée dans une zone mémoire du système informatique, e. étape de vectorisation, par les moyens de traitement, d'au moins un groupe de points, suivi de l'enregistrement en mémoire par les moyens d'enregistrement des coordonnées d'au moins un vecteur correspondant,
f. une étape d'association, via les moyens de traitement, de chaque vecteur à la tête d'impression correspondante, une base de données associant chaque tête d'impression à une coordonnée colorimétrique étant enregistrée en mémoire, g. une étape de comparaison à l'aide des moyens de traitement des coordonnées des vecteurs avec les coordonnées des vecteurs optimaux respectifs enregistrés en mémoire et caractérisant un alignement optimal des têtes.
Ainsi, les coordonnées colorimétriques et spatiales permettent de discriminer les points.
Selon une autre particularité, le procédé est caractérisé en ce qu'un point est le plus petit élément de teinte homogène, ou pixel, de l'image du modèle enregistré.
Selon une autre particularité, le procédé est caractérisé en ce que seuls les points, dont les coordonnées colorimétriques sont associées via les moyens de traitement à une portion réduite de la table colorimétrique, sont intégrés dans au moins une des listes créées à l'étape b, ladite portion réduite étant enregistrée dans un espace mémoire du système informatique.
Selon une autre particularité, le procédé est caractérisé en ce qu'une étape supplémentaire de suppression des points d'une goutte dont le nombre de points est inférieur à une valeur pouvant être choisie par l'utilisateur et enregistrée en mémoire, est réalisé via les moyens de traitement juste avant l'étape e du procédé.
Selon une autre particularité, le procédé est caractérisé en ce que la valeur de la distance d est choisie et enregistrée en mémoire par un utilisateur via des moyens de saisie associé au système informatique.
Selon une autre particularité, le procédé est caractérisé en ce que les groupes de points sont vectorisés par les moyens de traitement suivant la méthode des moindres carrés.
Selon une autre particularité, le procédé est caractérisé en ce que chaque groupe de points est ajusté par une fonction affine, de telle sorte que la somme des carrés des écarts des coordonnées, suivant la direction parallèle au sens d'impression (y), de chaque point du groupe par rapport à la fonction affine d'ajustement est minimale.
Un objectif supplémentaire de l'invention est de proposer une méthode d'alignement de têtes d'impression.
A cet effet, l'invention concerne une méthode d'alignement d'au moins une tête d'impression installée sur une machine d'impression, la position de chaque tête pouvant être ajustée à l'aide de moyens de réglage dans un plan parallèle au substrat, chaque tête comprenant une pluralité de buses, la machine d'impression comprenant notamment un moyen de déplacement du substrat, des moyens de mesure de la vitesse instantanée du substrat en déplacement, des moyens informatiques de gestion des opérations d'impression et d'alignement, les moyens informatiques comprenant au moins une zone mémoire, des moyens d'acquisition, d'enregistrement et de traitement des données, la méthode étant caractérisée en ce qu'elle comprend : a. une étape de création par les moyens de traitement informatique et d'enregistrement par les moyens d'enregistrement dans une zone mémoire du système informatique, d'un modèle numérique utilisable pour l'alignement des têtes d'impression, b. une étape d'impression dudit modèle avec la machine d'impression sur la base du modèle créé par les moyens de traitement et enregistré en mémoire, le modèle comprenant au moins un motif, chaque motif étant composé d'une pluralité de gouttes d'impression, c. une étape de numérisation du modèle imprimé par les moyens d'acquisition commandés par les moyens de traitement du système informatique, suivi de l'enregistrement en mémoire par les moyens d'enregistrement de l'image du modèle acquis,
une étape de vectorisation des motifs de l'image selon la revendication 1 , les vecteurs créés regroupant des points ayant notamment les mêmes coordonnées colorimétriques, une étape de génération par les moyens de traitement et d'enregistrement par les moyens d'enregistrement dans une zone mémoire du système informatique, d'un fichier de configuration de l'alignement d'au moins une tête d'impression réalisé sur la base des résultats obtenus à l'étape précédente.
Selon une autre particularité, la méthode est caractérisée en ce que la machine d'impression comprend, indépendamment du moyen de déplacement, un moyen de détection des bords du substrat perpendiculaire au déplacement, de manière à ce que les moyens de traitement déclenche l'impression d'au moins une tête d'impression au moment opportun afin de réaliser l'impression d'un modèle, la vitesse instantanée de déplacement du substrat étant connue à chaque instant et la distance optimale entre le moyen de détection et chaque tête d'impression étant enregistrée dans une zone mémoire du système informatique.
Selon une autre particularité, la méthode est caractérisée en ce qu'une étape d'affichage de données de configuration de l'alignement d'au moins une tête d'impression est réalisé parallèlement à la génération du fichier de configuration, via des moyens d'affichage compris dans les moyens informatiques.
Selon une autre particularité, la méthode est caractérisée en ce que les moyens de réglage des têtes permettent de modifier la position des têtes selon deux directions linéaires respectivement perpendiculaire et parallèle au sens d'impression, et selon une direction angulaire dans un plan parallèle au substrat.
Selon une autre particularité, la méthode est caractérisée en ce que le modèle imprimé comprend d'une part au moins un motif sensiblement perpendiculaire au sens d'impression, chaque motif étant réalisé par l'ensemble
ou une partie des buses de chaque tête d'impression, et d'autre part au moins un motif sensiblement parallèle au sens d'impression, chaque motif étant réalisé par la même buse d'une tête d'impression, les motifs perpendiculaires au sens d'impression permettant de vérifier l'alignement angulaire des têtes et l'alignement des têtes selon la direction parallèle au sens d'impression, les motifs parallèles au sens d'impression permettant de vérifier l'alignement des têtes selon la direction perpendiculaire au sens d'impression.
Selon une autre particularité, la méthode est caractérisée en ce que les moyens d'acquisition des données comprennent un capteur d'image 2D dont la résolution est comprise entre 0.1 et 100 mégapixels, préférentiellement autour de 6 mégapixels.
Selon une autre particularité, la méthode est caractérisée en ce que les moyens d'acquisition des données comprennent un capteur d'image linéaire fixé sur la machine et relié aux moyens de mesure de la vitesse instantanée du substrat, et dont le champ de vision est au moins aussi large que le modèle imprimé sur le substrat, ledit capteur étant contrôlé par les moyens informatiques de manière à numériser l'ensemble des motifs imprimés sur le substrat, la position du substrat étant connu à chaque instant grâce aux moyens de mesure de la vitesse instantanée dudit substrat Selon une autre particularité, la méthode est caractérisée en ce qu'une étape d'étalonnage par les moyens d'acquisition et de traitement précède l'étape de numérisation du modèle.
L'invention, avec ses caractéristiques et avantages, ressortira plus clairement à la lecture de la description faite en référence aux dessins annexés dans lesquels :
La figure 1 illustre un digramme fonctionnel de l'algorithme permettant de réaliser l'ajustement linéaire,
La figure 2 illustre un exemple de modèle comprenant plusieurs motifs,
La figure 3 illustre une représentation de portions du motif pixellisées et vectorisées,
La figure 4 illustre un schéma tridimensionnel simplifié de la machine d'impression,
La figure 5 illustre le diagramme fonctionnel de la méthode d'alignement des têtes d'impression, Les figures 6a à 6c illustrent les défauts de position possible des têtes d'impression.
La figure 7 illustre un schéma de positionnement en quinconce des têtes d'impression.
DESCRIPTION DES MODES DE REALISATION PREFERES DE
L'INVENTION
En référence à la figure 1 , le procédé de vérification de l'alignement d'au moins une tête d'impression installée sur une machine d'impression, par ajustement linéaire d'au moins un groupe de point (5) va maintenant être décrit. Le procédé est mis en oeuvre par le biais d'un système informatique (0), comprenant par exemple et de façon non limitative des moyens de traitement des données, par exemple et de façon non limitative un processeur central (CPU de l'anglais central processing unit), des moyens d'acquisition des données contrôlés par les moyens de traitement des données, des moyens d'enregistrement des données associés à au moins un espace mémoire, par exemple et de façon non limitative un dispositif de stockage de masse, une mémoire flash de type USB associée à une interface de lecture/écriture, un lecteur/enregistreur optique. Dans certains modes de réalisation, les têtes d'impressions (1 a, 10a, 1 b, 10b, 1 c, 1 d) comprennent au moins une rangée comprenant une pluralité de buses alignées suivant une direction perpendiculaire au sens d'impression, lesdites têtes (1 a, 10a, 1 b, 10b, 1 c, 1 d) étant disposées les unes à la suite des autres dans la machine d'impression. Dans certains modes de réalisation, illustrés figure 7, les têtes d'impression sont disposés en quinconce. Par exemple et de façon non limitative, les têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) sont des têtes jet d'encre, et les buses comprennent des éléments générant des ondes de pression, contrôlés par le
système informatique et permettant d'expulser des gouttes de liquide (5) sur le substrat (2), par exemple et de façon non limitative de l'encre ou un vernis. Par exemple et de façon non limitative, ces éléments sont des éléments piézoélectriques. Dans certains modes de réalisation, l'objectif de l'invention est de réaliser, par le biais d'au moins un algorithme compris dans un ensemble logiciel installé dans le système informatique, une mise en équation affine d'au moins un motif (40, 41 ) représenté sur une image d'un modèle enregistré et sauvegardé dans au moins un espace mémoire du système informatique (0). Cette mise en équation est réalisée suivant un procédé dont les étapes successives vont maintenant être décrites.
Ce procédé comprend trois phases principales (7, 8, 9), elles mêmes comprenant plusieurs étapes.
Dans des modes de réalisation préférentiels, l'image issue de la numérisation d'un modèle imprimé comprenant une pluralité de gouttes (4) imprimées, chaque goutte (4) comprenant une pluralité de points (5). Dans un mode de réalisation préférentiel, un point (5) est le plus petit élément de teinte homogène présent sur l'image du modèle enregistré, et dont la teinte est conforme à une base de données colorimétrique sauvegardée dans une zone mémoire du système informatique (0). Ainsi, dans la suite de la description, nous emploierons le terme « pixel » pour décrire les points (5) formant les motifs du modèle.
La première phase du procédé est une phase de filtrage (7) des couleurs des pixels (5). Dans une première étape, les moyens de traitement du système informatique créent des listes de couleurs (70), chaque liste étant enregistrée grâce aux moyens d'enregistrement dans une zone mémoire du système informatique (0). Chaque liste est représentative de la couleur d'une tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d). H y a donc au moins autant de liste créées que de têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) installées sur la machine d'impression. Dans une deuxième étape, les moyens de traitement analysent chaque pixel (5) séparément, afin dans un premier temps de leur attribuer des coordonnées colorimétriques (71 ) et d'éliminer les pixels (5) dont
la couleur ne correspond à aucune connue ou recherchée (72), une liste des coordonnées colorimétriques d'intérêt étant enregistrée dans une base de données contenue dans un espace mémoire du système informatique (0). Par exemple et de façon non limitative, les coordonnées colorimétriques utilisées sont conformes au code RGB.
Dans un deuxième temps, lorsque la couleur d'un pixel (5) est comprise dans la liste de coordonnées colorimétriques enregistrée dans la base de données, les moyens de traitement du système informatique (0) vont associer le pixel (5) correspondant dans une des listes crées, et lui attribuer des coordonnées spatiales (73), par exemple et de façon non limitative dans un repère orthonormé dont les axes x et y sont perpendiculaires et dans le plan de l'image du modèle, le troisième axe z étant perpendiculaire aux deux autres.
Les listes de pixels (5) ainsi créées par les moyens de traitement et enregistrées dans une zone mémoire du système informatique (0), comprennent les coordonnées spatiales d'un ensemble de pixels (5) ayant les mêmes coordonnées colorimétriques. Ainsi il y a autant de listes que de coordonnées colorimétriques. Toutes ces listes une fois finalisées sont enregistrées dans une zone mémoire du système informatique (0) grâce aux moyens d'enregistrement des données. Une fois que l'ensemble des pixels (5) du modèle sont analysés par les moyens de traitement (74), lesdits moyens de traitement initient la deuxième phase (8) du procédé, consistant en l'analyse de chaque liste de pixels (5) de manière à créer des groupes de pixels (5). Chaque liste est discriminée en au moins un groupe. Dans une première étape, les moyens de traitement choisissent une première liste (80) de pixels (5). Chaque pixel (5) de la liste est analysé (81 ) par les moyens de traitement : les moyens de traitement considère que deux groupes distincts de pixels (5) doivent être séparés d'une distance minimale d, enregistrée dans une zone mémoire du système informatique (0). Dans certains
modes de réalisation, la distance seuil (d) est entrée via une interface de saisie par un utilisateur dans une zone mémoire du système informatique (0).
Si un pixel (5) est situé à une distance inférieure à d/2 d'un groupe, alors ledit pixel (5) appartient audit groupe (82), et ces coordonnées spatiales sont associées audit groupe (83'). Si le pixel (5) d'une liste n'est proche d'aucun groupe répertorié, alors un nouveau groupe de pixel est créé (83). A titre d'exemple et de manière non limitative, deux groupes de pixels (5) représentent deux motifs (40, 41 ) séparés sur l'image du modèle. Rappelons que les groupes de pixels (5) appartenant à une même liste de pixels (5) ont tous les mêmes coordonnées colorimétriques. En conclusion, un groupe de pixels (5) est un ensemble de pixels (5) appartenant au même motif (40, 41 ) parmi une pluralité représentée sur un modèle, et dont les coordonnées colorimétriques sont identiques. Dans un mode de réalisation préférentiel, les motifs (40, 41 ) sont sensiblement linéaires. Les moyens de traitement analysent tous les pixels (5) d'une liste (84), et ce pour toutes les listes enregistrées (85) dans une zone mémoire du système informatique (0), avant de passer à la troisième étape (9) du procédé, consistant en l'analyse par les moyens de traitement de chaque groupe de pixels (5), de telle sorte qu'un algorithme d'ajustement linéaire leur soit appliqué. Les moyens de traitement sélectionnent un groupe (90) de pixels (5), et évaluent le nombre de pixels (5) présents dans chaque groupe (91 ). Si le nombre de pixels (5) est inférieur à une valeur enregistrée dans une zone mémoire du système informatique (0), cette valeur pouvant être choisie par un utilisateur et entrer via des moyens de saisie connectés au système informatique, alors les moyens de traitement suppriment (92') ledit groupe de pixels (5).
Ainsi, chaque groupe dont le nombre de pixels (5) est supérieur à une valeur enregistrée dans le système informatique (0), est vectorisé (92), c'est-à- dire que l'ensemble des pixels (5) d'un même groupe est ajusté, grâce à un algorithme d'ajustement, par le vecteur (50) le plus proche du motif (40, 41 ) représenté sur le modèle. Le procédé est terminé lorsque tous les groupes contenant suffisamment de pixels (5) sont vectorisés (93).
Dans un mode de réalisation préférentiel, l'algorithme permettant de réaliser l'ajustement est basé sur la méthode des moindres carrés. Chaque groupe de pixels (5) est donc ajusté par une fonction affine dont l'équation est de type Y = aX+b. L'analyse numérique basée sur la méthode des moindres carrés, bien connue de l'homme du métier, consiste à trouver les coefficients a et b de la fonction affine permettant de minimiser la quantité correspondant à la somme des carrés des écarts des coordonnées des pixels (5) sur le substrat (2) suivant une direction sensiblement parallèle au sens d'impression (y) par rapport à la droite d'équation Y = aX+b. Les coordonnées des vecteurs (50) ajustant chaque groupe de pixels
(5) sont finalement enregistrées dans une zone mémoire du système informatique, à l'aide des moyens d'enregistrement des données.
Les moyens de traitements associent chaque vecteur calculé à la tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) correspondante, une base de données associant chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) à une coordonnée colorimétrique étant enregistrée dans une zone mémoire du système informatique (0). Enfin, les moyens de traitement comparent les coordonnées des vecteurs calculés avec les coordonnées de vecteurs optimaux enregistrés dans une zone mémoire du système informatique (0), caractérisant un alignement optimal des têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d). L'alignement des têtes d'impression en s'appuyant sur ce type de vecteur, résultat de l'ajustement d'un groupe de pixels (5) compris dans des gouttes (4) d'impression, permet de s'affranchir des imprécisions liées à l'éjection des gouttes depuis les têtes d'impression vers le substrat (2). Par exemple et de manière non limitative, chaque élément piézoélectrique commandant l'éjection des gouttes (4) présente une imprécision suivant une direction perpendiculaire au sens d'impression (dx) et une imprécision suivant une direction parallèle au sens d'impression (dy). La vectorisation des groupes de pixels (5) permet de s'affranchir de ces imprécisions. Dans certains modes de réalisation, une étape optionnelle peut s'insérer dans le procédé. Elle consiste en la suppression par les moyens de
traitement des éventuels artefacts présents sur le modèle, qui ne doivent pas être confondus avec les motifs (40, 41 ) devant être ajustés et vectorisés. Par exemple et de manière non limitative, ces artefacts peuvent être des poussières ou des erreurs numériques sur l'image. Par exemple et de manière non limitative, un procédé de traitement et de filtrage de l'image élimine tous les détails de l'image dont la taille n'est pas comprise entre deux valeurs seuil enregistrées dans une zone mémoire du système informatique.
Dans certains modes de réalisation et en référence à la figure 7, les têtes d'impression (10a, 10b) peuvent être installées en quinconce dans la machine d'impression. Selon ce mode de réalisation particulier, certaines buses appartenant à des têtes d'impression différentes peuvent avoir les mêmes coordonnées selon la direction perpendiculaire au sens d'impression (axe x). Dans ce cas, il y a un risque de recouvrement au cours de l'impression. Pour éviter cet inconvénient, les moyens informatiques désactivent certaines buses (1 10a, 1 10b) des têtes d'impression (10a, 10b), de manière à ce qu'il n'y ait aucune zone de recouvrement lors de l'impression, tout en conservant la précision d'impression relative à la distance entre deux buses d'une même tête d'impression (10a, 10b). Ainsi, pour chaque coordonnée suivant l'axe x pour laquelle les moyens informatiques (0) répertorient au moins une buse d'impression, une seule et unique buse (100a, 100b) sera activée tandis que toutes les autres buses (1 10a, 1 10b) présentant les même coordonnées suivant l'axe x seront désactivées.
Un autre objet de l'invention est de proposer, dans certains modes de réalisation, une méthode d'alignement d'au moins une tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) installée sur une machine d'impression comportant au moins une tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d). En référence à la figure 4, la machine d'impression comporte un système informatique (0) gérant notamment les opérations d'impression et d'alignement des têtes (1 a, 10a, 1 b, 10b, 1 c, 1 d), et comprenant notamment des moyens de traitement des données, par exemple et de façon non limitative un processeur central (CPU de l'anglais central processing unit), des moyens d'enregistrement des données
associés à au moins un espace mémoire, par exemple et de façon non limitative un dispositif de stockage de masse, une mémoire flash de type USB associée à une interface de lecture/écriture, un lecteur/enregistreur optique, et un moyen de déplacement du substrat d'impression, la vitesse dudit moyen de déplacement pouvant être mesurée instantanément par un codeur (20). Dans certains modes de réalisation, le codeur (20) est un codeur optique rotatif comprenant une source de lumière, un disque strié, dont les stries sont sensiblement équidistantes, et un photodétecteur. Ainsi, lorsque le disque est en rotation à l'intérieur du codeur, le photodétecteur est en mesure de recevoir la lumière de la source lorsqu'une strie se trouve sur le chemin situé entre le photodétecteur et la source lumineuse. Le nombre de stries étant parfaitement connue, le codeur (20) permet donc, sachant que le mouvement du disque strié est directement dépendant du mouvement du moyen de déplacement de la machine d'impression, de connaître à tout moment la vitesse instantanée du moyen de déplacement et à fortiori du substrat (2). La résolution du codeur (20) dépend du nombre de stries présentes sur le disque. Par exemple et de façon non limitative, le codeur optique rotatif a une résolution de 6500 coups par pouce (cpi), soit une précision de l'ordre de 4 micromètres.
Chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) comprend des moyens de réglage de la position, qui permettent d'ajuster la position selon deux directions linéaires - une perpendiculaire au sens d'impression (x), et une parallèle au sens d'impression (y) - et dans une direction angulaire, dans un plan parallèle au substrat. Ces moyens de réglages sont par exemple et de façon non limitative des vis à pas micrométriques montées sur ressorts et chacune pouvant être reliées à un moteur contrôlé par le système informatique. Dans certains modes de réalisation non limitatifs, des moteurs piézoélectriques contrôlés par les moyens informatiques font office de moyens de réglage.
Enfin, la machine d'impression comprend dans des modes de réalisation préférentiels une cellule de détection (3) de la présence d'un substrat, contrôlée par le système informatique, dont la fonction est de détecter les bords du substrat perpendiculaires au sens d'impression. Lorsque la cellule
de détection (3) détecte un bord du substrat perpendiculaire au sens d'impression, l'information de détection est envoyée au système informatique. La distance entre la cellule et chaque tête d'impression étant connue et enregistrée dans une zone mémoire du système informatique, la vitesse instantanée du substrat étant également connue à chaque instant grâce au codeur (20) optique rotatif, les moyens de traitement du système informatique sont alors en mesure d'activer les éléments générant des ondes de pression des buses de chaque tête d'impression à l'instant précis où doivent être expulsées des goûtes de liquide (4) pour réaliser un motif d'impression (40, 41 ). Ainsi, l'homme du métier comprend la nécessité d'un positionnement des têtes (1 a, 10a, 1 b, 10b, 1 c, 1 d) le plus parfait possible afin d'éviter au maximum les artefacts lors de l'impression.
En référence à la figure 5, la méthode permettant dans certains modes de réalisation d'aligner au moins une tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) installée sur une machine d'impression va maintenant être décrite.
Au cours de la première étape de la méthode (61 ), un modèle d'alignement numérique comprenant plusieurs motifs (40, 41 ) est réalisé par les moyens de traitement, chaque motif (40, 41 ) comprenant un ensemble de pixels (5) dont les coordonnées colorimétriques sont identiques. Le modèle est adapté en fonction du nombre de têtes (1 a, 10a, 1 b, 10b, 1 c, 1 d) dont la position doit être vérifiée et/ou corrigée par les moyens de traitement, et en fonction du type de correction à apporter à chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d). Par exemple et de façon non limitative, le modèle est composé de motifs (40, 41 ) sensiblement linéaires. Au cours de la deuxième étape (62), l'impression du modèle créé par les moyens de traitement à l'étape précédente, et enregistré dans une zone mémoire du système informatique, est réalisé sur un substrat (2) à l'aide de la machine d'impression commandée par le système informatique. Dans certains modes de réalisation et en référence à la figure 2, le modèle est constitué d'au moins un motif (41 a, 41 b, 41 c, 41 d) sensiblement linéaire et parallèle au sens d'impression, et d'au moins un motif (40a, 40b, 40c, 40d) sensiblement linéaire
et perpendiculaire au sens d'impression. Chaque motif (41 a, 41 b, 41 c, 41 d) parallèle au sens d'impression - dans la direction y - est réalisé par une même buse d'une tête d'impression, tandis que chaque motif (40a, 40b, 40c, 40d) perpendiculaire au sens d'impression - dans la direction x - est réalisé par l'ensemble ou une partie des buses d'une même tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d), lesdites buses expulsant des gouttes de liquides (4). Chaque motif (40, 41 ) est composé d'une pluralité de gouttes (4). Les motifs perpendiculaires (40a, 40b, 40c, 40d) au sens d'impression permettent de vérifier l'alignement angulaire des têtes (1 a, 10a, 1 b, 10b, 1 c, 1 d) et l'alignement des têtes selon la direction parallèle au sens d'impression, les motifs parallèles (41 a, 41 b, 41 c, 41 d) au sens d'impression permettent de vérifier l'alignement des têtes (1 a, 10a, 1 b, 10b, 1 c, 1 d) selon la direction perpendiculaire au sens d'impression.
Au cours de la troisième étape, le modèle imprimé à l'étape précédente est numérisé (63) par les moyens d'acquisition, lesdits moyens d'acquisition étant contrôlés par les moyens de traitement du système informatique. Dans certains modes de réalisation, les moyens d'acquisition comprennent un capteur d'images 2D installé en dehors de la machine d'impression, et positionné au dessus du substrat imprimé, et reliée au système informatique. Par exemple et de façon non limitative, la résolution du capteur peut être comprise entre 0.1 et 100 mégapixels, préférentiellement autour de 6 mégapixels. De manière préférentielle et non limitative, une caméra numérique est utilisée pour numériser le modèle. Une fois numérisé, le modèle est enregistré par les moyens d'enregistrement dans une zone mémoire du système informatique. Dans certains modes de réalisation, les moyens d'acquisition comprennent un capteur linéaire, fixé sur la machine d'impression et directement reliée d'une part aux moyens informatiques (0) et d'autre part aux moyens de mesure de la vitesse instantanée (20) du substrat (2). Alors qu'une caméra 2D, comme celle décrite dans le paragraphe précédent, numérise les motifs (40, 41 ) du substrat (2) en une seule fois de manière quasi instantanée, un capteur linéaire est relié aux moyens de mesure de la vitesse instantanée
(20) du substrat (2) afin de numériser les motifs (40, 41 ) du substrat (2) à mesure que ce dernier avance dans le champ de vision du capteur linéaire. Par exemple et de façon non limitative, la vitesse instantanée du substrat (2) étant connue à chaque instant avec une grande précision, les moyens informatiques (0) activent le capteur linéaire à l'instant précis où le premier bord du substrat (2), selon le sens d'impression et perpendiculaire au sens d'impression, entre dans le champ de vision du capteur linéaire. De la même manière, lorsque le bord opposé du substrat (2) sort du champ de vision du capteur linéaire, alors les moyens informatiques (0) désactivent le capteur linéaire. Selon un autre exemple non limitatif, les moyens informatiques (0) activent le capteur linéaire lorsque ce dernier balaye une zone réduite de la surface du substrat (2), les coordonnées de cette zone étant préalablement enregistrées dans une zone mémoire du système informatique. Entre ces deux actions, les motifs (40, 41 ) présents sur le substrat (2) sont numérisés. Dans certains modes de réalisation, le champ de vision du capteur linéaire est au moins aussi large que le motif imprimé sur le substrat (2).
La numérisation du substrat (2) avec un capteur linéaire est une opération qui est réalisée en ligne, au cours du processus d'impression de motifs (40, 41 ) sur le substrat (2). L'utilisation d'une caméra 2D autorise une numérisation des différents modèles réalisés à un moment ultérieur : la numérisation peut donc dans ce cas être réalisée hors ligne, le positionnement du substrat (2) étant dans ce cas réalisé par l'utilisateur.
De manière optionnelle, une étape d'étalonnage (60) par les moyens d'acquisition et de traitement précède la troisième étape de la méthode. A cette fin, un modèle d'étalonnage est réalisé par la machine d'impression, commandée par le système informatique. Ce modèle d'étalonnage comprend deux motifs (41 a, 41 b, 41 c, 41 d) sensiblement parallèles au sens d'impression, chaque motif étant composé d'une pluralité de gouttes (4) réalisées par la même buse, les deux motifs (41 a, 41 b, 41 c, 41 d) étant réalisés par deux buses éloignées et séparées d'une distance dont la valeur est connue, cette valeur étant mémorisé dans le système informatique, les deux buses appartenant à
une même tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d). Les moyens d'acquisition numérisent le modèle d'étalonnage qui est enregistré dans une zone mémoire du système. Le procédé d'ajustement décrit plus haut dans la description est alors appliqué aux deux motifs (41 a, 41 b, 41 c, 41 d) du modèle, créant ainsi deux vecteurs (50) parallèles au sens d'impression. La distance mesurée entre ces deux vecteurs est alors associée par les moyens de traitement à la distance réelle séparant les deux buses.
Au cours de la quatrième étape (64) et en référence à la figure 3, les moyens de traitement du système appliquent le procédé d'ajustement linéaire décrit plus haut. Chaque goutte (4) du modèle est pixellisée par les moyens de traitement, des coordonnées colorimétriques et spatiales étant alors attribuées à chaque pixel (5) du modèle. Dans certains modes de réalisation non limitatifs, les pixels (5) dont les coordonnées colorimétriques ne correspondent à aucune couleur pouvant être proposée par l'ensemble des têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) de la machine d'impression, sont éliminés et effacés de la mémoire du système. Des listes de pixels (5) de même coordonnées colorimétriques sont ensuite créées par les moyens de traitement et enregistrées par les moyens d'enregistrement dans une zone mémoire du système informatique. Des groupes de pixels (5) sont ensuite créés, chaque groupe comprenant des pixels (5) de même coordonnées colorimétriques, chaque pixel (5) situé à une distance inférieure à d/2 d'un groupe appartient audit groupe, la valeur de la distance d enregistrée en mémoire étant supérieure à la taille d'une goutte (4) et inférieure à la distance minimale entre deux groupes de pixels (5). Une étape supprimant les groupes dont le nombre de pixels (5) est inférieur à une valeur seuil enregistrée dans une zone mémoire du système informatique (0), est réalisée par les moyens de traitement. Cette valeur seuil peut être saisie par un utilisateur via des moyens de saisie, par exemple et de façon non limitative une interface homme/machine type clavier. De manière optionnelle, une étape de suppression des artefacts, par exemple et de façon non limitative des poussières ou des gouttes satellites, est réalisée par les moyens de traitement. Enfin, chaque groupe de pixel (5) identifié par les
moyens de traitement est ajusté selon un algorithme d'ajustement linéaire, par exemple et de façon non limitative un algorithme appliquant la méthode des moindre carrés. Chaque groupe est ainsi vectorisé, les coordonnées desdits vecteurs (50) étant enregistrées dans une zone mémoire du système informatique.
Chaque vecteur (50) est ensuite associé, via les moyens de traitement, à une tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d), par comparaison des coordonnées colorimétriques de chaque vecteur (50) avec les coordonnées colorimétriques correspondant à la couleur de chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) et enregistrées en mémoire dans une base de données du système informatique (0). Dans des modes de réalisation préférentiels et de manière non limitative, à chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) est associé un vecteur (50) sensiblement parallèle au sens d'impression - suivant la direction y - et un vecteur (50) sensiblement perpendiculaire - selon la direction x - au sens d'impression.
Finalement, les coordonnées des vecteurs (50) obtenus suite à l'application de l'algorithme d'ajustement linéaire sont comparées à des coordonnées de ces mêmes vecteurs obtenus dans des conditions de positionnement des têtes (1 a, 10a, 1 b, 10b, 1 c, 1 d) idéales, ces coordonnées idéales étant enregistrées en mémoire dans une base de données du système informatique, correspondant à une position optimale de chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) de la machine d'impression. Ainsi, les distances optimales entre chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) sont connues et mémorisées dans une base de données du système informatique. De même, les distances d'écartement entre les buses d'une même tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d), et ce pour chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d), sont connues et mémorisées dans cette même bases de données. Enfin, des têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) positionnées de manière optimale réalisent des motifs (40, 41 ) qui sont ajustés par des vecteurs (50) parallèles.
Comme décrit plus haut, la position des têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) peut être ajustée grâce aux moyens de réglage suivant deux directions linéaires - une parallèle au sens d'impression (y) et l'autre perpendiculaire (x) au sens d'impression - et une direction angulaire dans un plan parallèle au substrat. En référence aux figures 6a à 6c, les défauts de positionnement calculés (65) suivant ces trois directions vont être décrits ci- après.
• Défaut de positionnement angulaire, dans un plan parallèle au substrat. Afin de mesurer la possible déviation angulaire des têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d), les coordonnées des vecteurs (50) sensiblement perpendiculaires au sens d'impression sont analysées par les moyens de traitement. Pour rappel, les coordonnées des vecteurs (50) sont obtenus par ajustement linéaire des pixels (5) appartenant à un même groupe suivant un algorithme, enregistré dans une zone mémoire du système informatique (0) et contrôlé par ledit système, l'équation de la droite ajustant lesdits pixels étant du type Y=aX+b. Si une tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) est correctement alignée, alors l'équation ajustant les points d'un même vecteur (50) est du type Y = b, la valeur de a étant nulle dans ce cas. Si l'équation ajustant les points d'un même vecteur (50) est du type Y=aX+b (a étant différent de 0), alors une correction de l'alignement angulaire de la tête (1 a, 10a, 1 b, 10b, 1 c, 1 d) correspondante par rapport au sens d'impression devra être réalisée.
• Défaut de positionnement selon la direction y, parallèle au sens d'impression. Comme décrit plus haut, la comparaison des données du codeur (20) avec celles envoyées par la cellule (3) détectant le substrat, permet aux buses d'expulser des gouttes de liquide (4) de telle manière qu'un motif (40, 41 ) quelconque soit fidèlement imprimé, même dans le cadre de l'utilisation de plusieurs têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) simultanément. En effet, la vitesse instantanée v du substrat (2) ainsi que sa position précise à un instant t0 enregistré en mémoire sont connue à chaque instant. La distance théorique d, de chaque tête
d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) à la cellule de détection (3) du substrat (2) est également connue et mémorisée dans une base de données du système informatique. Ainsi, sur la base de ces informations de distance et de vitesse, les moyens de traitement déduisent précisément le temps de déclenchement de la tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) numéro i, et envoie une information activant les éléments piézoélectriques d'au moins une buse de la tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d). Au cours de l'impression du modèle d'alignement, la distance théorique entre deux vecteurs (50) sensiblement perpendiculaires au sens d'impression, l'un représentatif de la tête d'impression de référence (1 a) et l'autre représentatif d'une autre tête d'impression (10a, 1 b, 10b, 1 c, 1 d), est donc théoriquement connue, et est le résultat de la soustraction des distances de chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) ayant tracé chaque vecteur (50) à la cellule de détection (3) du substrat (2). Les moyens de traitement réalise une mesure réelle de cette distance et la compare alors à la valeur théorique. Si une différence est trouvé par les moyens de traitement, alors une correction de la position d'une tête (1 b, 1 c, 1 d) suivant la direction y par rapport à la tête de référence (1 a) devra être réalisée, la correction étant équivalente à la différence entre la valeur théorique et la valeur mesurée de la distance du vecteur (50) tracé par la tête de référence (1 a) au vecteur (50) tracé par la tête (1 b, 1 c, 1 d) devant être alignée suivant la direction y, la tête de référence (1 a) étant par exemple et de façon non limitative la première tête d'impression dans le sens de l'impression.
• Défaut de positionnement suivant la direction x, perpendiculaire au sens d'impression. Au cours de l'impression du modèle d'alignement, la distance théorique entre deux vecteurs (50) sensiblement parallèles au sens d'impression est théoriquement connue, et correspond à l'espacement entre au moins deux buses. Cette valeur est mémorisée dans une zone mémoire du système informatique. Les moyens de traitement réalisent une mesure réelle de cette distance et la compare
alors à la valeur théorique. Si une différence est trouvé par les moyens de traitement, alors une correction de la position d'une tête (1 b, 1 c, 1 d) suivant la direction x par rapport à la tête de référence (1 a) devra être réalisée, la correction étant équivalente à la différence entre la valeur théorique et la valeur mesurée de la distance du vecteur (50) tracé par une buse de la tête de référence (1 a) au vecteur tracé par une buse de la tête (1 b, 1 c, 1 d) devant être aligné suivant la direction x, la tête de référence (1 a) étant par exemple et de façon non limitative la première tête d'impression dans le sens de l'impression. Dans une dernière étape, une fois toutes les têtes d'impression analysées (66), un fichier de configuration (67) de l'alignement des têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) de la machine est réalisé par les moyens de traitement, ledit fichier étant mémorisé dans une zone mémoire du système informatique. Ce fichier comprend les corrections à apporter à chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) dont la position doit être vérifiée et/ou corrigée. Dans certains modes de réalisation, ce fichier comprend les valeurs des corrections et le type de correction - suivant la direction x, y et/ou angulaire, ou bien quelle(s) buses(s) désactiver - à apporter aux moyens de réglages situés sur les têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d). Dans certains modes de réalisation, une étape d'affichage des données de configuration de l'alignement d'au moins une tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) est réalisée en parallèle de la génération du fichier de configuration, via des moyens d'affichage compris dans les moyens informatiques. Ce fichier de configuration peut être directement consulté par un utilisateur qui réalisera par la suite les réglages consistant à aligner les têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d). Dans certains modes de réalisation, ce fichier peut être transmis via des moyens de transmission filaire ou non, à un système informatique (0) relié aux moyens de réglage des têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d). Les moyens de traitement analysent les corrections devant être apportées à chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d), et
commande les moyens de réglage afin que les corrections de positions soient réalisées automatiquement suivant les informations d'alignement comprises dans le fichier de configuration.
La présente demande décrit diverses caractéristiques techniques et avantages en référence aux figures et/ou à divers modes de réalisation. L'homme de métier comprendra que les caractéristiques techniques d'un mode de réalisation donné peuvent en fait être combinées avec des caractéristiques d'un autre mode de réalisation à moins que l'inverse ne soit explicitement mentionné ou qu'il ne soit évident que ces caractéristiques sont incompatibles. De plus, les caractéristiques techniques décrites dans un mode de réalisation donné peuvent être isolées des autres caractéristiques de ce mode à moins que l'inverse ne soit explicitement mentionné.
Il doit être évident pour les personnes versées dans l'art que la présente invention permet des modes de réalisation sous de nombreuses autres formes spécifiques sans l'éloigner du domaine d'application de l'invention comme revendiqué. Par conséquent, les présents modes de réalisation doivent être considérés à titre d'illustration, mais peuvent être modifiés dans le domaine défini par la portée des revendications jointes, et l'invention ne doit pas être limitée aux détails donnés ci-dessus
Claims
1 . Procédé de vérification de l'alignement d'au moins une tête d'impression (1 a, 10a, 1 b, 1 0b, 1 c, 1 d) installée sur une machine d'impression, par ajustement linéaire d'au moins un groupe de points (5) représentés sur une image issue de la numérisation d'un modèle comprenant une pluralité de gouttes (4) imprimées, caractérisé en ce que chaque goutte (4) comporte une pluralité de points (5), chaque point (5) ayant une teinte uniforme conforme à une base de données colorimétrique sauvegardée dans une zone mémoire d'un système informatique (0) mettant en œuvre le procédé et comprenant au moins un espace mémoire, des moyens d'acquisition, d'enregistrement et de traitement des données, le procédé comprenant : a. une étape de détection de la couleur des points (5) par les moyens de traitement, suivi de l'attribution par les moyens de traitement de coordonnées spatiales et de coordonnées colorimétriques à chaque point (5) d'une image numérique d'un modèle enregistrée en mémoire, ces coordonnées étant respectivement associées à un repère spatial relatif à l'image et une table colorimétrique enregistrés dans un espace mémoire du système informatique (0), b. une étape de création, par les moyens de traitement, d'au moins une liste de points (5) de mêmes coordonnées colorimétriques, les données relatives à au moins cette liste étant enregistrées en mémoire par les moyens d'enregistrement des données, c. une étape de création, par les moyens de traitement, d'au moins un groupe de points (5) d'une même liste de points de mêmes coordonnées colorimétriques et dont chaque point (5) appartenant audit groupe doit être situé à une distance inférieure à une distance d/2 d'un point (5) d'un autre groupe, la distance d enregistrée en mémoire correspondant à la distance minimale entre deux groupes de points (5), d. une étape de filtrage et de suppression des groupes dont le nombre de points (5) est inférieur à une valeur limite enregistrée dans une zone mémoire du système informatique, e. une étape de vectorisation, par les moyens de traitement, d'au moins un groupe de points (5), suivi de l'enregistrement en mémoire par les moyens d'enregistrement des coordonnées d'au moins un vecteur (50) correspondant, f. une étape d'association, via les moyens de traitement, de chaque vecteur (50) à la tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) correspondante, une base de données associant chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) à une coordonnée colorimétrique étant enregistrée en mémoire, g. une étape de comparaison à l'aide des moyens de traitement des coordonnées des vecteurs (50) avec les coordonnées des vecteurs optimaux respectifs enregistrés en mémoire et caractérisant un alignement optimal des têtes (1 a, 10a, 1 b, 10b, 1 c, 1 d).
2. Procédé selon les revendications précédentes, caractérisé en ce qu'un point (5) est le plus petit élément de teinte homogène, ou pixel, de l'image du modèle enregistré.
3. Procédé selon les revendications précédentes, caractérisé en ce que seuls les points (5), dont les coordonnées colorimétriques sont associées via les moyens de traitement à une portion réduite de la table colorimétrique, sont intégrés dans au moins une des listes créées à l'étape b, ladite portion réduite étant enregistrée dans un espace mémoire du système informatique (0).
4. Procédé selon les revendications précédentes, caractérisé en ce qu'une étape supplémentaire de suppression des points (5) d'une goutte (4) dont le nombre de points (5) est inférieur à une valeur pouvant être choisie par l'utilisateur et enregistrée en mémoire, est réalisé via les moyens de traitement juste avant l'étape e du procédé.
5. Procédé selon la revendication 1 , caractérisé en ce que la valeur de la distance d est choisie et enregistrée en mémoire par un utilisateur via des moyens de saisie associé au système informatique (0).
6. Procédé selon les revendications précédentes, caractérisé en ce que les groupes de points (5) sont vectorisés par les moyens de traitement suivant la méthode des moindres carrés.
7. Procédé selon la revendication précédente, caractérisé en ce que chaque groupe de points (5) est ajusté par une fonction affine de telle sorte que la somme des carrés des écarts des coordonnées suivant la direction parallèle au sens d'impression (y) de chaque point (5) par rapport à la fonction affine d'ajustement est minimale.
8. Méthode d'alignement d'au moins une tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) installée sur une machine d'impression, la position de chaque tête (1 a, 10a, 1 b, 10b, 1 c, 1 d) pouvant être ajustée à l'aide de moyens de réglage dans un plan parallèle au substrat (2), chaque tête comprenant une pluralité de buses, la machine d'impression comprenant notamment un moyen de déplacement du substrat, des moyens de mesure (20) de la vitesse instantanée du substrat en déplacement, des moyens informatiques (0) de gestion des opérations d'impression et d'alignement, les moyens informatiques comprenant au moins une zone mémoire, des moyens d'acquisition, d'enregistrement et de traitement des données, la méthode étant caractérisée en ce qu'elle comprend : a. une étape de création (61 ) par les moyens de traitement informatique et d'enregistrement par les moyens d'enregistrement dans une zone mémoire du système informatique (0), d'un modèle numérique utilisable pour l'alignement des têtes d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d), b. une étape d'impression (62) dudit modèle avec la machine d'impression sur la base du modèle créé par les moyens de traitement et enregistré en mémoire, le modèle comprenant au moins un motif (40, 41 ), chaque motif étant composé d'une pluralité de gouttes d'impression (4), c. une étape de numérisation (63) du modèle imprimé par les moyens d'acquisition commandés par les moyens de traitement du système informatique (0), suivi de l'enregistrement en mémoire par les moyens d'enregistrement de l'image du modèle acquis, d. une étape de vectorisation (7, 8, 9) des motifs (40, 41 ) de l'image selon la revendication 1 , les vecteurs (50) créés regroupant des points (5) ayant notamment les mêmes coordonnées colorimétriques, e. une étape de génération (69) par les moyens de traitement et d'enregistrement par les moyens d'enregistrement dans une zone mémoire du système informatique (0), d'un fichier de configuration de l'alignement d'au moins une tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) réalisé sur la base des résultats obtenus à l'étape précédente.
9. Méthode d'alignement selon la revendication précédente, caractérisée en ce que la machine d'impression comprend, indépendamment du moyen de déplacement, un moyen de détection (3) des bords du substrat perpendiculaire au déplacement, de manière à ce que les moyens de traitement déclenche l'impression d'au moins une tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) au moment opportun afin de réaliser l'impression d'un modèle, la vitesse instantanée de déplacement du substrat étant connue à chaque instant et la distance optimale entre le moyen de détection (3) et chaque tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) étant enregistrée dans une zone mémoire du système informatique (0).
10. Méthode d'alignement selon la revendication 8, caractérisée en ce qu'une étape d'affichage de données de configuration de l'alignement d'au moins une tête d'impression (1 a, 10a, 1 b, 10b, 1 c, 1 d) est réalisé parallèlement à la génération du fichier de configuration, via des moyens d'affichage compris dans les moyens informatiques (0).
1 1 . Méthode d'alignement selon les revendications 8 à 1 0, caractérisée en ce que les moyens de réglage des têtes (1 a, 1 0a, 1 b, 1 0b, 1 c, 1 d) permettent de modifier la position des têtes (1 a, 1 0a, 1 b, 10b, 1 c, 1 d) selon deux directions linéaires respectivement perpendiculaire (x) et parallèle (y) au sens d'impression, et selon une direction angulaire dans un plan parallèle au substrat.
1 2. Méthode d'alignement selon les revendications 8 à 1 1 , caractérisée en ce que le modèle imprimé comprend d'une part au moins un motif (40a, 40b, 40c) sensiblement perpendiculaire au sens d'impression, chaque motif (40a, 40b, 40c) étant réalisé par l'ensemble ou une partie des buses de chaque tête d'impression, et d'autre part au moins un motif (41 a, 41 b, 41 c) sensiblement parallèle au sens d'impression, chaque motif (41 a, 41 b, 41 c) étant réalisé par la même buse d'une tête d'impression (1 a, 1 0a, 1 b, 1 0b, 1 c, 1 d), les motifs perpendiculaires au sens d'impression permettant de vérifier l'alignement angulaire des têtes (1 a, 1 0a, 1 b, 10b, 1 c, 1 d) et l'alignement des têtes selon la direction parallèle au sens d'impression, les motifs parallèles au sens d'impression permettant de vérifier l'alignement des têtes (1 a, 10a, 1 b, 10b, 1 c, 1 d) selon la direction perpendiculaire au sens d'impression.
1 3. Méthode d'alignement selon les revendications 8 à 1 2, caractérisé en ce que les moyens d'acquisition des données comprennent un capteur d'image 2D dont la résolution est comprise entre 0.1 et 100 megapixeis, préférentiellement autour de 6 mégapixels.
14. Méthode d'alignement selon les revendications 8 à 1 3, caractérisé en ce que les moyens d'acquisition des données comprennent un capteur d'image linéaire fixé sur la machine d'impression et relié aux moyens de mesure de la vitesse instantanée (20) du substrat (2), et dont le champ de vision est au moins aussi large que le modèle imprimé sur le substrat (2), ledit capteur étant contrôlé par les moyens informatiques (0) de manière à numériser l'ensemble des motifs (40, 41 ) imprimés sur le substrat (2), la position du substrat (2) étant connu à chaque instant grâce aux moyens de mesure de la vitesse instantanée (20) dudït substrat (2).
15. Méthode d'alignement selon les revendications 8 à 14, caractérisée en ce qu'une étape d'étalonnage par les moyens d'acquisition et de traitement précède l'étape de numérisation du modèle.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/398,170 US9090058B2 (en) | 2012-05-03 | 2013-05-02 | Method for checking the alignment of print heads and associated alignment method |
EP13724184.0A EP2844490B1 (fr) | 2012-05-03 | 2013-05-02 | Procédé de vérification de l'alignement de têtes d'impression et méthode d'alignement associée |
IL235380A IL235380B (en) | 2012-05-03 | 2014-10-28 | Method for checking the alignment of print heads and associated alignment method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1254068A FR2990155B1 (fr) | 2012-05-03 | 2012-05-03 | Procede de verification de l’alignement de tetes d’impression et methode d’alignement associee |
FR1254068 | 2012-05-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013164408A1 true WO2013164408A1 (fr) | 2013-11-07 |
Family
ID=47227883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/059154 WO2013164408A1 (fr) | 2012-05-03 | 2013-05-02 | Procédé de vérification de l'alignement de têtes d'impression et méthode d'alignement associée |
Country Status (5)
Country | Link |
---|---|
US (1) | US9090058B2 (fr) |
EP (1) | EP2844490B1 (fr) |
FR (1) | FR2990155B1 (fr) |
IL (1) | IL235380B (fr) |
WO (1) | WO2013164408A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10744714B2 (en) | 2015-04-30 | 2020-08-18 | Hewlett-Packard Development Company, L.P. | Misalignment detection for a 3D printing device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018211922A1 (de) | 2017-09-12 | 2019-03-14 | Heidelberger Druckmaschinen Ag | Automatisierte Bildsensorkalibrierung |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040207674A1 (en) * | 2002-10-03 | 2004-10-21 | Seiko Epson Corporation | Adjustment of misalignments of recording positions during bi-directional printing |
WO2005039881A2 (fr) | 2003-10-16 | 2005-05-06 | Eastman Kodak Company | Procede permettant d'aligner des ensembles buses a encre |
US20110007371A1 (en) * | 2008-12-17 | 2011-01-13 | Canon Kabushiki Kaisha | Measuring separation of patterns, and use thereof for determining printer characteristics |
US20110169893A1 (en) | 2008-09-18 | 2011-07-14 | Konica Minolta Holdings, Inc. | Inkjet image-drawing device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7517036B2 (en) * | 2004-05-27 | 2009-04-14 | Silverbrook Research Pty Ltd | Printhead module capable of printing a maximum of n channels of print data |
-
2012
- 2012-05-03 FR FR1254068A patent/FR2990155B1/fr active Active
-
2013
- 2013-05-02 WO PCT/EP2013/059154 patent/WO2013164408A1/fr active Application Filing
- 2013-05-02 US US14/398,170 patent/US9090058B2/en active Active
- 2013-05-02 EP EP13724184.0A patent/EP2844490B1/fr active Active
-
2014
- 2014-10-28 IL IL235380A patent/IL235380B/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040207674A1 (en) * | 2002-10-03 | 2004-10-21 | Seiko Epson Corporation | Adjustment of misalignments of recording positions during bi-directional printing |
WO2005039881A2 (fr) | 2003-10-16 | 2005-05-06 | Eastman Kodak Company | Procede permettant d'aligner des ensembles buses a encre |
US20110169893A1 (en) | 2008-09-18 | 2011-07-14 | Konica Minolta Holdings, Inc. | Inkjet image-drawing device |
US20110007371A1 (en) * | 2008-12-17 | 2011-01-13 | Canon Kabushiki Kaisha | Measuring separation of patterns, and use thereof for determining printer characteristics |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10744714B2 (en) | 2015-04-30 | 2020-08-18 | Hewlett-Packard Development Company, L.P. | Misalignment detection for a 3D printing device |
Also Published As
Publication number | Publication date |
---|---|
US9090058B2 (en) | 2015-07-28 |
US20150085007A1 (en) | 2015-03-26 |
EP2844490A1 (fr) | 2015-03-11 |
EP2844490B1 (fr) | 2016-10-05 |
FR2990155B1 (fr) | 2014-05-09 |
FR2990155A1 (fr) | 2013-11-08 |
IL235380B (en) | 2018-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2746343A1 (fr) | Systemes et procede d'etablissement d'une precision elevee en deux dimensions pour imprimantes et traceurs bases sur un balayage de detecteur dans une dimension | |
US10350880B2 (en) | Printing system control | |
WO2015166176A1 (fr) | Procédé de suivi de forme dans une scène observée par un capteur asynchrone de lumière | |
EP2844490B1 (fr) | Procédé de vérification de l'alignement de têtes d'impression et méthode d'alignement associée | |
WO2012143197A1 (fr) | Analyse de l'image numerique de la surface d'un pneumatique - traitement des points de non mesure | |
CH617278A5 (fr) | ||
EP4046129B1 (fr) | Procédé de fabrication | |
WO2017114845A1 (fr) | Procédé de calibration d'une imprimante tridimensionnelle | |
CN110062699A (zh) | 基于由基于梭式打印机打印的图像样本以确定打印条件的系统及方法 | |
JPWO2019065578A1 (ja) | 画像解析装置、印刷装置、画像解析方法、及びプログラム | |
EP3844739A1 (fr) | Marquage imprime pour un procede d'authentification et procede d'impression et d'authentification d'un marquage imprime | |
EP3328655B1 (fr) | Dispositif et procédé d'optimisation de transformation par voie numérique d'un substrat | |
FR2988327A1 (fr) | Procede et systeme de fabrication d'un document securise | |
CA2962728A1 (fr) | Procede d'orientation de composants de tube | |
US10992840B2 (en) | Obtaining printed element data of patches to determine calibration data of a printer | |
JP6455011B2 (ja) | 画像処理装置、輪郭抽出方法及びプログラム | |
WO2003073367A2 (fr) | Procédé de mesure de la localisation d'un objet par détection de phase | |
FR3076007A1 (fr) | Procede de modelisation d'un deplacement d'un objet appartenant a un assemblage d'au moins deux objets et representation numerique obtenue par le procede | |
FR3059453A1 (fr) | Procede et dispositif de deconvolution d'images numeriques | |
EP3189405B1 (fr) | Procédé de détermination d'un contour d'au moins une zone sur une surface matricielle | |
EP4159386A1 (fr) | Procédé de peinture d'une pièce comprenant la génération d'une trajectoire adaptée à la pièce réelle | |
WO2023099571A1 (fr) | Procédé et dispositif d'authentification de codes imprimés | |
FR3127314A1 (fr) | Procédé d’identification et de qualification de résultats d’impression de machines d’impression | |
FR2888366A1 (fr) | Procedes automatiques d'orientation d'une empreinte, de reconnaissance automatique d'empreintes et de correction d'une base de donnees d'empreintes | |
FR3027555A1 (fr) | Procede ameliore d'impression d'une image semi-transparente sur une plaque lenticulaire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13724184 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14398170 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013724184 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013724184 Country of ref document: EP |