WO2013162286A1 - Marker for detecting potency of adipose-derived stem cells, and use thereof - Google Patents

Marker for detecting potency of adipose-derived stem cells, and use thereof Download PDF

Info

Publication number
WO2013162286A1
WO2013162286A1 PCT/KR2013/003517 KR2013003517W WO2013162286A1 WO 2013162286 A1 WO2013162286 A1 WO 2013162286A1 KR 2013003517 W KR2013003517 W KR 2013003517W WO 2013162286 A1 WO2013162286 A1 WO 2013162286A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
derived stem
protein
differentiation
adipose derived
Prior art date
Application number
PCT/KR2013/003517
Other languages
French (fr)
Korean (ko)
Inventor
김미형
정경숙
안지원
원미선
Original Assignee
한국생명공학연구원
(주)안트로젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원, (주)안트로젠 filed Critical 한국생명공학연구원
Publication of WO2013162286A1 publication Critical patent/WO2013162286A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention is ANXA10 (annexin A10), IGF2BP3 (insulin-like growth factor 2 binding protein 3), MALL (Mal, T-cell differentiation protein-like), PTGER2 (prostaglandin E receptor 2), RGS20 (regulator of G-protein) signaling 20 transcript variant 1), integral membrane protein 2A (ITM2A), leucine-rich repeat LGI family, member 2 (LGI2), sulfatase 2 transcript variant 1 (SULF2), cyclin D2 (CCND2), and growth arrest and DNA-GADD45G marker-detecting composition for detecting the differentiation ability of adipose derived stem cells, the agent for measuring the level of one or more genes mRNA selected from the group consisting of damage-inducible, gamma), adipose derived stem cell therapy
  • the present invention relates to a composition for detecting a marker for measuring the titer of the composition, a composition for detecting a marker for measuring the aging of a
  • Regenerative medicine is a method for treating damaged or impaired tissues and organs, and is mainly related to cell-based therapy using stem cells with multipotency.
  • Human mesenchymal stem cells are adult stem cells that are free from cancerization and ethical issues that are generally a problem for embryonic stem cells, as well as fat cells, osteoblasts, chondrocytes, heart cells, It is reported that differentiation into various cells such as muscle cells and neurons is possible.
  • it since it has an immunomodulatory function, it can be used as an immunosuppressive agent for homologous bone marrow transplantation or autoimmune disease.
  • Adipose tissue contains more than 1,000 times more stem cells than stem cells that can be separated from the same amount of bone marrow, and various studies are attempting to use adipose-derived stem cells (ASC) as a biotransplant material. Is going on. Adipose-derived stem cells also have the same multipotent as bone marrow stem cells, and can differentiate into cartilage, bone, fat, muscle cells, and the like. In addition, the adipose tissue-derived stromal stem cells have similar expression patterns of bone marrow-derived stem cells and cell surface markers, and do not induce an immune response during autologous or allogeneic transplantation in vivo and in vitro , but rather regulate a immune response. It has been reported to have a spotlight as an effective means of cell therapy.
  • ASC adipose-derived stem cells
  • stem cell therapeutics the clinical results of stem cells published so far have confirmed the possibility of developing them as therapeutic agents, but the evaluation of the therapeutic effect is not satisfactory.
  • One of the causes of the insufficient therapeutic effect of such stem cell therapy is that the quality assessment through the molecular biological characteristics analysis of stem cells related to the therapeutic effect is not performed properly.
  • the quality of the result may be different even if the formulation is made using the same protocol due to the various characteristics of the cell donor in terms of age and health condition (Kretlow JD et al, BMC Cell Biol. 2008 Oct 28; 9). : 60).
  • the present invention relates to the differentiation capacity of stem cells as a control gene during passage of stem cells collected from a donor, and is known to decrease with increasing passage, ALPL (Alkaline phosphatase transcript variant 1) and VCAM-1 (Vacular).
  • IGF2BP3, ANXA10, MALL, PTGER2, and RGS20 genes increased adipose derived stem cell passages, confirming that these genes decreased with increasing passage of stem cells using cell adhesion molecule-1 transcript variant 1 (CD106).
  • ITM2A, LGI2, SULF2, CCND2, and GADD45G genes decreased with the increase of adipose derived stem cell passage. Therefore, the present invention has been completed by verifying that these genes can be used as markers for identifying youth or aging states represented by passages of donor stem cells.
  • One object of the present invention is ANXA10 (annexin A10), IGF2BP3 (insulin-like growth factor 2 binding protein 3), MALL (Mal, T-cell differentiation protein-like), PTGER2 (prostaglandin E receptor 2), RGS20 (regulator) of G-protein signaling 20 transcript variant 1), integral membrane protein 2A (ITM2A), leucine-rich repeat LGI family, member 2 (LGI2), sulfatase 2 transcript variant 1 (SULF2), cyclin D2 (CCND2), and GADD45G (growth It provides a composition for detecting a marker for detecting the differentiation capacity of adipose derived stem cells, including an agent for measuring the level of one or more gene mRNA or protein thereof selected from the group consisting of arrest and DNA-damage-inducible, gamma) It is.
  • Another object of the invention comprises an agent for measuring the level of at least one gene mRNA or protein thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. It is to provide a composition for detecting a marker for measuring the titer of adipose derived stem cell therapy.
  • Another object of the invention comprises an agent for measuring the level of at least one gene mRNA or protein thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. It is to provide a marker detection composition for measuring the aging of adipose derived stem cells.
  • Still another object of the present invention is to provide a marker detection kit for detecting a differentiation capacity of adipose derived stem cells, including a composition for detecting a marker for detecting the differentiation capacity of the adipose derived stem cells.
  • Still another object of the present invention is to provide a marker detection kit for measuring the titer of adipose derived stem cell therapeutic agent, comprising a composition for detecting a marker for measuring the titer of the adipose derived stem cell therapeutic agent.
  • Still another object of the present invention is to provide a marker detection kit for measuring aging of adipose derived stem cells, including a composition for detecting a marker for measuring aging of the adipose derived stem cell therapeutic agent.
  • Still another object of the present invention is to provide a method for detecting the differentiation ability of adipose derived stem cells, comprising measuring the expression level of the gene.
  • Still another object of the present invention is to provide a method for measuring the titer of adipose derived stem cell therapeutic agent, which comprises measuring the expression level of the gene.
  • Still another object of the present invention is to provide a method for screening a substance capable of regulating differentiation capacity of adipose derived stem cells, including measuring the expression level of the gene.
  • Still another object of the present invention is to provide a method of controlling differentiation from adipose derived stem cells to adipocytes, the method comprising controlling the expression level of the gene.
  • the present invention provides useful data in verifying the efficacy of adipose derived stem cells by providing markers capable of determining the differentiation capacity of adipose derived stem cells.
  • the markers may be useful for measuring the activity and titer of adipose derived stem cell therapeutics.
  • Figure 1a is a graph comparing the cell growth of adipose derived stem cells in basal medium and proliferation medium.
  • FIG. 1B is a cell photograph of passage 2 (P2), passage 5 (P5) and passage 8 (Passage 8, P8) in basal medium and proliferation medium.
  • Figure 2a is a test result to determine the differentiation capacity of P2 (Passage 2), P8 (Passage 8) and P14 (Passage 14) adipose derived stem cells. 12-day incubation in differentiation and differentiation medium followed by Oil-red O staining.
  • Figure 2b is a micrograph of the cells of Figure 2a, fat accumulation was confirmed by Oil-red O staining.
  • FIG. 2C is a graph showing the results of the experiment of FIG. 2A.
  • Figure 3a shows the results of microarray of three sets of P2, P5, P8 adipose derived stem cells using Illumina 24K chip.
  • 3b to 3d are graphs showing expression changes of genes showing significance through microarray analysis.
  • the ALPL and VCAM1 genes of FIG. 3b show the same results as the previous studies as control genes.
  • 3c shows a gene whose expression decreases with increasing passage
  • FIG. 3d shows a gene whose expression increases with increasing passage.
  • Figure 4 shows the change in the expression amount of the genes selected in Figure 3 in adipose derived stem cells collected from 17 donors by RT-PCR and real-time PCR
  • RPL13A is a control gene.
  • Figure 4a is the result of the control genes ALPL and VCAM1 genes
  • Figures 4b and 4c shows the results of the genes ANXA10, IGF2BP3, PTGER2, MALL, RGS20 increased in P8 compared to P2
  • Figures 4d and 4e compared to P2 P8 It shows the result of decreasing genes ITM2A, LGI2, SULF2, CCND2, and GADD45G at.
  • Figure 5 shows the protein changes in P2 and P8 of the genes, and also verified the protein expression results and cell differentiation capacity.
  • Figure 6a is to classify and differentiate the cells expressing the representative gene PTGER2 and non-expressing cells, the differentiation capacity of the cells. It is shown by verifying the relationship between cell growth rate and passage gene expression.
  • Figure 6b is to classify and distinguish the cells expressing the representative gene ITM2A and non-expressing cells, and then verify the differentiation capacity, cell growth rate and passage-specific gene expression relationship of the cells.
  • Figure 7a is a representative gene in the group consisting of ANXA10, IGF2BP3, PTGER2, MALL, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G genes as a representative gene, and the TRNA-treated TNF- ⁇ after introducing the corresponding siRNA
  • ALPL siRNA was used as a control.
  • Figure 7b shows a schematic diagram showing the relationship between the regulation of inflammation, mucosal regeneration and the like by the adipose stem cell therapy by the Cox-2 gene changes by the genes.
  • the invention comprises an agent for measuring at least one gene mRNA or protein level thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. It provides a marker detection composition for detecting the differentiation capacity of adipose derived stem cells.
  • the composition is one, two, three, four, five, six, seven, eight, selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. It may include agents that measure the mRNA or protein levels of dogs, nine or ten genes.
  • adipocyte-derived stem cell refers to stem cells isolated from adipose tissue capable of differentiating into most mesenchymal cells such as fat cells, osteoblasts, chondrocytes, and myofibroblasts.
  • ASC adipocyte-derived stem cell
  • stromal cells multipotent adipose-derived cells or adipose derived adult stem cells (adipose derived adult stem cells).
  • the adipose derived stem cells are not particularly limited thereto, but may be derived from mammals including pigs, cattle, primates, humans, and the like, which can be transplanted into humans.
  • the term "marker for detecting the differentiation capacity of adipose derived stem cells” refers to whether the expression of adipose derived stem cells with a high number of passages and adipose derived stem cells with a low passage, It may mean an organic biomolecule showing a significant difference.
  • the marker of the present invention refers to a marker capable of detecting differentiation capacity by increasing or decreasing the expression level in adipose derived stem cells having high differentiation capacity represented by a low passage number, more specifically ANXA10,
  • the expression levels of IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G.AnXA10, IGF2BP3, MALL, PTGER2 and RGS20 are reduced in ICT-derived adipose derived stem cells, and ITM2A, LGI2, SULF2, CCND2 and GADD45G are genes with increased expression.
  • GenBank of the National Institutes of Health
  • IGF2BP3 NM_006547.2, NP_006538.2
  • MALL NM_005434.3, NP_005425.1
  • PTGER2 NM_000956.2, NP_000947.2
  • RGS20 NM_170587.1, NP_733466.1
  • ITM2A NM_001171581.1, NP_001165052.1
  • LGI2 NM_018176.2, NP_060646.2
  • SULF2 NM_018837.2, NP_061325.1
  • CCND2 NM_001759.3, NP_001750.1
  • GADD45G NM_006705.2, NP_006696.1
  • the term "passage” refers to a method of continuously culturing a cell stage while periodically transferring a portion of the cell to a new culture vessel in order to continuously cultivate the cell in a healthy state for a long period of time. In other words, it means replacing the culture vessel or dividing the cell group, and once replacing the culture vessel or dividing the cell group is called one passage.
  • low passage ASCs of low or early passage mean adipose derived stem cells having high differentiation ability or therapeutic effect, and high passage ASCs of high passage or late passage.
  • the initial passage number may be 0 to 3, and preferably 0 to 2.
  • differentiation capacity means the ability of the adipose derived stem cells to differentiate into adipocytes, osteoblasts, chondrocytes, myofibroblasts, osteoblasts, muscle cells or neurons, and the like.
  • Phase differentiation capacity can be represented by the passage number of adipose derived stem cells.
  • high differentiation capacity means that the passage number is low, so that differentiation into various cells can easily occur.
  • Adipose derived stem cells having high differentiation capacity in the present invention are not limited thereto, and mean cells that easily induce differentiation into adipocytes, osteoblasts, chondrocytes, myofibroblasts, osteoblasts, muscle cells or neurons.
  • adipose derived stem cells which induce differentiation into adipocytes well.
  • adipose derived stem cells having high differentiation ability are reduced in expression of one or more genes selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20, and selected from the group consisting of ITM2A, LGI2, SULF2, CCND2 and GADD45G.
  • Adipose-derived stem cells with increased expression of one or more genes which have increased expression of ANXA10, IGF2BP3, MALL, PTGER2, or RGS20 genes, or reduced expression of ITM2A, LGI2, SULF2, CCND2, or GADD45G.
  • fat-derived stem cells having high efficiency of differentiation into adipocytes, osteoblasts, chondrocytes, myofibroblasts, muscle cells or neurons compared to cells.
  • the lower the passage number the better the differentiation ability (FIG.
  • the expression of ANXA10, IGF2BP3, MALL, PTGER2 or RGS20 genes was increased in the 8th generation cells, and that the expression of ITM2A, LGI2, SULF2, CCND2 or GADD45G genes was decreased (Figs. 3 to 5).
  • the markers of the present invention can effectively separate fat-derived stem cells having the same initial passage or similar differentiation ability from adipose derived stem cells having various passage numbers or different differentiation capacity isolated from transplant donors, thereby treating adipose derived stem cells.
  • Gene expression levels in biological samples can be confirmed by identifying the amount of mRNA or protein.
  • mRNA level measurement refers to a process of confirming mRNA presence and expression level of marker genes representing differentiation ability of adipose derived stem cells in a biological sample to diagnose differentiation ability of adipose derived stem cells. Measure the amount of.
  • Analytical methods for this purpose include reverse transcriptase (RT-PCR), competitive reverse transcriptase (RT) PCR, real time reverse transcriptase (Realtime RT-PCR), and RNase protection assay (RPA). , Northern blotting and DNA chips, but are not limited thereto.
  • RT-PCR reverse transcriptase
  • RT competitive reverse transcriptase
  • Realtime RT-PCR real time reverse transcriptase
  • RNase protection assay RNase protection assay
  • the agent for measuring mRNA level of the gene is preferably a primer pair or probe, and the nucleic acid sequences of the ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G genes are NM_007193.3, NM_006547.2, respectively. , NM_005434.3, NM_000956.2, NM_170587.1, NM_001171581.1, NM_018176.2, NM_018837.2, NM_001759.3, and NM_006705.2 are known to those skilled in the art based on these sequences A primer or probe can be designed to amplify the protein.
  • primer refers to a nucleic acid sequence having a short free 3 'terminal hydroxyl group, which forms a base pair with a complementary template and functions as a starting point for template strand copying. Means.
  • primers in the present invention include a primer pair for ANXA10 with SEQ ID NOs 7 and 8, a primer pair for IGF2BP3 with SEQ ID NOs 9 and 10, a primer pair for MALL with SEQ ID NOs 11 and 12, PTGER2 with SEQ ID NOs 13 and 14 Primer pair for RGS20, SEQ ID NOs: 15 and 16, primer pair for ITM2A, SEQ ID NOs: 17 and 18, primer pair for LGI2, SEQ ID NOs: 19 and 20, for SULF2, SEQ ID NOs: 21 and 22 Primer pairs, primer pairs for CCND2 with SEQ ID NOs: 23 and 24, or primer pairs for GADD45G with SEQ ID NOs: 25 and 26, but are not limited thereto.
  • the term “probe” refers to a nucleic acid fragment such as RNA or DNA corresponding to a short number of bases or hundreds of bases that can form specific binding with mRNA, and is labeled to indicate the presence or absence of a specific mRNA. You can check it.
  • the probe may be manufactured in the form of an oligonucleotide probe, a single stranded DNA probe, a double stranded DNA probe or an RNA probe.
  • hybridization is performed using a complementary probe with ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 or GADD45G polynucleotides, and it is possible to know the differentiation ability of adipose derived stem cells through hybridization. have. Selection of suitable probes and hybridization conditions can be modified based on what is known in the art.
  • Primers of the present invention can initiate DNA synthesis in the presence of reagents for polymerization (ie, DNA polymerase or reverse transcriptase) and four different nucleoside triphosphates at appropriate buffers and temperatures.
  • the primers of the present invention are sense and antisense nucleic acids having 7 to 50 nucleotide sequences as primers specific for each marker gene. Primers can incorporate additional features that do not change the basic properties of the primers that serve as a starting point for DNA synthesis.
  • Primers or probes of the invention can be synthesized chemically using phosphoramidite solid support methods, or other well known methods. Such nucleic acid sequences can also be modified using many means known in the art.
  • Non-limiting examples of such modifications include methylation, encapsulation, substitution of one or more homologs of natural nucleotides, and modifications between nucleotides, such as uncharged linkages such as methyl phosphonate, phosphoester, phosphoroami Date, carbamate, etc.) or charged linkages such as phosphorothioate, phosphorodithioate and the like.
  • Nucleic acids may be selected from one or more additional covalently linked residues, such as proteins (eg, nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), inserts (eg, acridine, psoralene, etc.).
  • Chelating agents eg, metals, radioactive metals, iron, oxidizing metals, etc.
  • alkylating agents eg, metals, radioactive metals, iron, oxidizing metals, etc.
  • Nucleic acid sequences of the invention can also be modified using a label that can provide a detectable signal directly or indirectly. Examples of labels include radioisotopes, fluorescent molecules and biotin.
  • the term "protein level measurement” refers to a process for confirming the presence and expression level of a protein expressed from a marker gene representing a differentiation capacity of adipose derived stem cells in a biological sample in order to detect the differentiation ability of adipose derived stem cells.
  • the amount of protein can be confirmed using an antibody that specifically binds to the protein of the gene.
  • an antibody refers to a specific protein molecule directed against an antigenic site.
  • an antibody means an antibody that specifically binds to a marker protein, and specifically, the marker gene of the present invention, IGF2BP3, ANXA10, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 or GADD45G
  • IGF2BP3, ANXA10, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 or GADD45G refers to an antibody that specifically binds to the protein to be encoded, and includes all polyclonal antibodies, monoclonal antibodies, and recombinant antibodies. Since the marker proteins of the present invention have been identified, the production of antibodies using them can be readily prepared using techniques well known in the art.
  • Polyclonal antibodies can be produced by methods well known in the art for injecting the marker protein antigen into an animal and collecting blood from the animal to obtain serum comprising the antibody.
  • Such polyclonal antibodies can be prepared from any animal species host such as goat, rabbit, sheep, monkey, horse, pig, cow and dog.
  • Monoclonal antibodies are known in the art by the hybridoma method (see Kohler and Milstein (1976) European Jounral of Immunology 6: 511-519), or phage antibody libraries (Clackson et al, Nature, 352: 624). -628, 1991; Marks et al, J. Mol. Biol., 222: 58, 1-597, 1991).
  • Antibodies prepared by the above method can be isolated and purified using methods such as gel electrophoresis, dialysis, salt precipitation, ion exchange chromatography, affinity chromatography, and the like.
  • the antibodies of the present invention also include functional fragments of antibody molecules, as well as complete forms having two full length light chains and two full length heavy chains.
  • a functional fragment of an antibody molecule refers to a fragment having at least antigen binding function, and includes Fab, F (ab '), F (ab') 2 and scFv. Protein levels can be measured by Western blot, enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), radioimmunodiffusion, and Ouchterlony immunodiffusion.
  • the present invention is not limited thereto.
  • the Western blot was used to measure the level of the gene protein (Example 4).
  • the invention comprises an agent for measuring at least one gene mRNA or protein level thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. It provides a composition for detecting a marker for measuring the titer of adipose derived stem cell therapeutic agent.
  • fat-derived stem cell therapeutic agent refers to the proliferation and selection of live autologous, allogenic, or xenogenic cells in vitro, or other methods for restoring the function of cells and tissues.
  • a series of actions such as changing the biological characteristics of fat-derived stem cells, medicines used for the purpose of treatment, diagnosis and prevention, or fat cells, osteoblasts, chondrocytes, and muscle fibers formed by the differentiation of fat-derived stem cells It means a therapeutic agent for the purpose of regeneration of parental cells, muscle cells or nerve cells.
  • the term "titer” refers to the therapeutic activity of the stem cell therapy, and preferably may refer to the differentiation or therapeutic ability of the adipose derived stem cell therapy.
  • the protein level of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 is low, and the expression level of ITM2A, LGI2, SULF2, CCND2 and GADD45G, P2 fat derived stem cells are excellent in differentiating ability to adipocytes (FIG. 5), cells with low expression level of PTGER2 and high expression levels of ITM2A were isolated to induce differentiation into adipocytes. As a result, cells with low expression level of PTGER2 were found to be adipocytes as compared to cells with high expression level. Differentiation occurs well, and it was confirmed that differentiation into adipocytes was better than that of cells having high ITM2A expression level (FIG.
  • PTGER2 siRNA was used to lower the expression level of PTGER2 in adipose derived stem cells, the expression level of NF-kB and its target gene COX-2 were also reduced. It was confirmed that it can be a marker that can indicate the inhibitory therapeutic activity, which is one of the therapeutic activities of adipose derived stem cells (FIG. 7).
  • the gene mRNA or protein level measurement thereof is the same as described above.
  • adipose derived comprising an agent that measures one or more gene mRNAs or protein levels thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G It provides a composition for detecting markers for measuring the aging of stem cells.
  • aged adipose derived stem cells have increased expression of one or more genes selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 compared to the control group, or ITM2A, LGI2, SULF2, CCND2 and GADD45G. Expression of one or more genes selected from the group consisting of can refer to adipose derived stem cells are reduced compared to the control.
  • the expression of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 proteins is reduced, and the adipose derived stem cells having increased expression of ITM2A, LGI2, SULF2, CCND2 and GADD45G proteins are ANXA10, IGF2BP3, MALL , Induction of differentiation into adipocytes was better compared to adipose derived stem cells having increased expression of PTGER2 and RGS20 proteins and decreased expression of ITM2A, LGI2, SULF2, CCND2 and GADD45G proteins (Example 4 And FIG. 5) .
  • the proliferative capacity of adipose derived stem cells with different expression level of PTGER2 in 10 passages or more in the case of cells with low expression level of PTGER2, the cells with high expression level of PTGER2 Compared to the cells with high proliferative capacity and resulted in greater proliferation, the proliferative capacity of cells with high ITM2A expression was superior to those with low ITM2A expression (Example 5 and FIG. 6).
  • the gene mRNA or protein level measurement thereof is the same as described above.
  • the present invention provides a marker detection kit for detecting a differentiation capacity of adipose derived stem cells, including a composition for detecting a marker for detecting the differentiation capacity of the adipose derived stem cells.
  • the marker detection kit of the present invention is used in immunological analysis as well as primers or antibodies capable of selectively recognizing marker genes or proteins thereof whose expression is increased or decreased depending on the number of passages or their differentiation capacity.
  • Tools and reagents commonly used in the art include, but are not limited to, suitable carriers, labeling materials capable of generating detectable signals, solubilizers, detergents, buffers, stabilizers, and the like.
  • the label is an enzyme, it may include a substrate and a reaction terminator that can measure the activity of the enzyme.
  • Suitable carriers include, but are not limited to, soluble carriers such as physiologically acceptable buffers known in the art, such as PBS, insoluble carriers such as polystyrene, polyethylene, polypropylene, polyesters, Polyacrylonitrile, fluororesin, crosslinked dextran, polysaccharides, polymers such as magnetic fine particles plated with latex metal, other papers, glass, metals, agarose and combinations thereof.
  • soluble carriers such as physiologically acceptable buffers known in the art, such as PBS, insoluble carriers such as polystyrene, polyethylene, polypropylene, polyesters, Polyacrylonitrile, fluororesin, crosslinked dextran, polysaccharides, polymers such as magnetic fine particles plated with latex metal, other papers, glass, metals, agarose and combinations thereof.
  • the kit for detecting a marker of the present invention may preferably be an RT-PCR kit, a DNA kit or a protein chip kit.
  • the protein chip is provided with an antibody against a protein encoded by the gene, antigen-antibody complex formation for two or more antibodies can be observed, which is more advantageous in detecting the differentiation capacity of adipose derived stem cells.
  • the RT-PCR kit may comprise individual primer pairs specific for the marker gene, as well as other test tubes or other suitable containers, reaction buffers (variable pH and magnesium concentrations), deoxynucleotides (dNTPs), Taq Enzymes such as polymerase and reverse transcriptase, DNAse, RNAse inhibitor DEPC-water, sterile water and the like.
  • reaction buffers variable pH and magnesium concentrations
  • dNTPs deoxynucleotides
  • Taq Enzymes such as polymerase and reverse transcriptase, DNAse, RNAse inhibitor DEPC-water, sterile water and the like.
  • the DNA chip kit may include a substrate on which a cDNA or oligonucleotide corresponding to a gene or a fragment thereof is attached, and a reagent, an agent, an enzyme, etc. for preparing a fluorescent probe, and the substrate may be a control gene. Or cDNA or oligonucleotide corresponding to fragments thereof.
  • the protein chip kit may be a kit in which one or more antibodies against a marker are arranged at a predetermined position on a substrate and immobilized at a high density.
  • the protein is separated from the sample, and the separated protein is hybridized with the protein chip to form an antigen-antibody complex, which can be read to confirm the presence or expression level of the protein.
  • the expression difference of marker genes of adipose derived stem cells having passage numbers 2, 5 and 8 was confirmed using a microarray (Examples 2 and 3).
  • the present invention provides a marker detection kit for measuring the titer of adipose derived stem cell therapeutic agent, comprising a composition for detecting a marker for measuring the titer of the adipose derived stem cell therapeutic agent.
  • the marker detection kit that can be used is the same as described above.
  • the present invention provides a marker detection kit for measuring the aging of adipose derived stem cells, including a marker detection composition for measuring the aging of the adipose derived stem cells.
  • the marker detection kit that can be used is the same as described above.
  • the invention comprises measuring the level of one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G.
  • the method comprises one, two, three, four, five, six, seven, eight, selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. Measuring the mRNA or protein level of the dog, nine or ten genes.
  • the method preferably determines that if the amount of one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 is less than the amount of the control group, the differentiation capacity is higher than that of the control group. Or if the amount of one or more gene mRNAs or proteins thereof selected from the group consisting of ITM2A, LGI2, SULF2, CCND2, and GADD45G is greater than the amount of the control group, determining that the differentiation capacity is higher than that of the control group. It may be a method for detecting the differentiation ability of the adipose derived stem cells, including. Measurement of the level of mRNA or its protein is the same as described above.
  • the expression of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 is reduced, and the adipose derived stem cells with increased expression of ITM2A, LGI2, SULF2, CCND2 and GADD45G are ANXA10, IGF2BP3, MALL, PTGER2 And it was confirmed that differentiation into adipocytes is better than adipose derived stem cells having increased expression of RGS20 and decreased expression of ITM2A, LGI2, SULF2, CCND2 and GADD45G (FIG. 5).
  • the invention comprises measuring the level of one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G.
  • the present invention comprises the steps of treating a differentiation capacity control candidate substance to adipose derived stem cells; And measuring an increase or decrease in one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G in adipose derived stem cells.
  • the present invention provides a method of screening a substance for regulating the differentiation capacity of adipose derived stem cells.
  • the term "differentiating ability of adipose derived stem cells” is a substance that indirectly or directly inhibits or induces a change in the amount of gene expression significantly occurring according to the passage of adipose derived stem cells or a differentiation ability represented by the same. Means. Differentiation capacity modulators can further differentiate by increasing the expression of a group of proteins (eg, ITM2A, LGI2, SULF2, CCND2 and GADD45G) that have increased expression in adipose derived stem cells with low passage numbers or high differentiation capacity. Can be induced and controlled to inhibit differentiation by reducing its expression.
  • a group of proteins eg, ITM2A, LGI2, SULF2, CCND2 and GADD45G
  • the expression may be further reduced to induce differentiation or increase its expression to inhibit differentiation. Therefore, the differentiation capacity of the adipose derived stem cells can be controlled by comparing the increase or decrease in the expression level of the differentiation detection marker gene of the adipose derived stem cells in the presence and absence of the candidate for differentiation control, and furthermore, It can be usefully used for screening.
  • the invention provides fat-derived by increasing or decreasing one or more gene mRNAs or protein levels thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G.
  • ANXA10 IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G.
  • the gene mRNA or its protein level can be increased using various methods known in the art that can increase the gene expression rate in a cell, preferably to construct a vector comprising the genes and transduce them into the cell. It is possible to increase the expression rate of these genes, but is not limited thereto.
  • the gene mRNA or protein level thereof may be reduced using methods known in the art that can delete genes in a cell or cause loss of gene function through gene mutation, preferably in the genes.
  • Small hairpin RNAs shRNAs
  • shRNAs can be produced and transduced into cells to lower the expression of these genes, but are not limited thereto.
  • shRNAs for one or more genes selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 are prepared and transduced into cells. Expression of these genes can be lowered, and vectors comprising one or more genes selected from the group consisting of ITM2A, LGI2, SULF2, CCND2, and GADD45G can be prepared, and these cells can be transduced to increase the expression rate.
  • Adipose tissue was isolated from donors (Antrogen, Gyeonggi-do, Korea). Adipose derived stromal stem cells were isolated from the obtained adipose tissue. Adipose tissue was washed 3-4 times with the same volume of KRB solution to remove blood. The same volume of collagenase solution as adipose tissue was added and reacted in a 37 ° C. water bath. This was transferred to a centrifuge tube and centrifuged at 20 ° C. and 1200 rpm for 10 minutes. The supernatant fat layer was removed, and the lower collagenase solution was carefully separated so as not to shake. After the substrate medium was suspended and centrifuged for 5 minutes at 20 °C, 1200 rpm.
  • the stromal-vascular fraction was suspended in substrate media and inoculated in culture vessels and incubated in 37 ° C., 5% CO 2 incubator for 24 hours. After removal of the culture solution, the cells were washed with phosphate buffer solution and 5 ng of epidermal growth factor (EGF) was added to the substrate medium or the medium containing basic fibroblast growth factor (bFGF) at a concentration of 1 ng / ml. Proliferation was performed using the medium contained at a / ml concentration.
  • EGF epidermal growth factor
  • bFGF basic fibroblast growth factor
  • adipose derived stromal stem cells When grown to about 80-90% of the culture vessel, they were obtained by separating into single cells by treating with trypsin. The obtained cells were diluted 1: 3 to 1: 4 with proliferation medium to carry out passage culture (Korean Patent Publication No. 10-2010-0118491).
  • FIG. 1A shows an example of cell population doubling levels (CPDL) of adipose derived stem cells cultured in proliferation medium
  • FIG. 1B shows a morphology picture of adipose stem cells cultured in proliferation medium in one sample.
  • CPDL cell population doubling levels
  • Adipose stem cells were suspended in proliferation medium to inoculate each of 90,000 cells in a 24-well culture vessel, incubated for 24 hours in a 37%, 5% CO 2 incubator and attached to the bottom.
  • the cells were filled with a single layer at the bottom of the culture vessel, the cells were changed to a substrate medium, incubated for 2-3 days in a 37 ° C., 5% CO 2 incubator, and then changed into differentiation medium and cultured for 5 days. After that, the differentiation medium was removed and changed into differentiation maintenance medium (fat cell medium, adipocyte media) and cultured for 12 days while changing to new differentiation maintenance medium every 3 days.
  • differentiation maintenance medium fat cell medium, adipocyte media
  • Substrate medium is DMEM (Dulbecco's Modified Eagle Medium) medium containing 10% bovine serum and 0.1% antibiotic and proliferation medium is DMEM / F12, 10% bovine serum, 5 ng / ml EGF, 0.25 ng / ml bFGF, 0.25 ng / Ml TGF- ⁇ 1, 0.1% antibiotic.
  • DMEM Dulbecco's Modified Eagle Medium
  • proliferation medium is DMEM / F12, 10% bovine serum, 5 ng / ml EGF, 0.25 ng / ml bFGF, 0.25 ng / Ml TGF- ⁇ 1, 0.1% antibiotic.
  • Differentiation medium contains DMEM / F12, 3% FBS, 33 ⁇ M biotin, 17 ⁇ M pantothenate, 1 ⁇ M insulin, 1 ⁇ M dexamethasone, 250 ⁇ M isobutylmethylxanthine, 100 ⁇ M indomethacin and differentiation maintenance medium DMEM / F12, 3% bovine serum, 33 ⁇ M biotin, 17 ⁇ M pantothenate, 100 nM insulin and 1 ⁇ M dexamethasone.
  • Oil-red O staining was performed to morphologically confirm the differentiation of adipose derived stem cells into adipocytes. Differentiated cells were rinsed with PBS solution (phosphate buffered saline) and fixed with 10% formalin. After fixing for 12 hours, the mixture was reacted for 20 minutes by adding 60% isoprophenol and stained with 0.5% Oil Red O solution (SIGMA 00625) at room temperature for 1 to 3 hours. After staining, the cells were washed once with 60% isoprophenol, three times with distilled water, dried, and then measured in the microscope to determine the percentage of cells that had undergone adipogenesis.
  • PBS solution phosphate buffered saline
  • Oil Red O solution SIGMA 00625
  • FIG. 2A An example of a plate stained with Oil-red O is shown in FIG. 2A, and an example of a microscopic picture of cells stained with Oil-red O is shown in FIG. 2B.
  • FIG. 2C is a quantitative measure of the differentiation result of the sample. The mean value is shown. It was confirmed that the fat-derived stem cells of the second passage had the highest differentiation ability, and that the fat-derived stem cells of the early passage had higher differentiation capacity.
  • Example 2 Confirmation of gene expression change by passage of adipose derived stem cells by microarray experiment
  • Adipose tissue was isolated from 17 donors (Antrogen, Gyeonggi-do, Korea) and cultured adipose derived stem cells as in Example 1.
  • the cultured adipose derived stem cells were lysed in 15 ml of digestion buffer in a kit to which 150 ⁇ l of beta mercapto ethanol was added. 15 ml of 70% ethanol was added thereto, mixed well, and centrifuged at 3000 g for 5 minutes to attach total RNA to the membrane. After two washes, total RNA was isolated by adding 1.2 ml of RNase-free water.
  • Fluorescently labeled DNA chips were scanned using a confocal laser scanner (Illumina, Inc.) to obtain data of fluorescence present in each spot and stored as TIFF image files.
  • TIFF image files were quantified with BeadStudio version 3 (Illumina) to quantify the fluorescence values of each spot. Quantified results were corrected using the 'quantile' function with Avadis Prophetic version 3.3 (Strand Genomics) program.
  • FIG. Figure 3a shows the difference in expression of the genes measured in passage 2 cells and passage 5, passage 8 cells cultured in proliferation medium.
  • IGF2BP3, ANXA10, MALL, PTGER2, and RGS20 genes show a significant increase in P8 compared to P2
  • ITM2A, LGI2, SULF2, CCND2, and GADD45G are genes with reduced expression in P8 compared to P2.
  • ALPL and VCAM1 are known to decrease in relation to differentiation capacity in the literature as control genes, and also showed significant decrease in this experiment. From these results, it can be seen that the genes can be used for diagnosing the differentiation and therapeutic ability of stem cells because the genes show a large expression difference when comparing P2 and P8.
  • IGF2BP3 increases with passage in the stem cell state before differentiation, but rapidly decreases when differentiation begins.
  • ITM2A it decreases with passage in the stem cell state but increases when differentiation begins.
  • Figure 3a shows the micro array results
  • Figures 3b to 3d graphically shows the difference in the expression level of the genes by passage.
  • Example 2 The expression levels of the genes identified in Example 2 using 17 pairs of donor adipose stem cell samples (P2 and P8) were analyzed by RT-PCR method. Total RNA was isolated via the method of Example 2.
  • RNA / primer mixture was stored at 55 ° C.
  • PRL13A was used as a standard gene for quantifying marker genes. RT-PCR reaction was performed using primers of the standard gene, and the concentration of cDNA was corrected so that the expression level of the standard gene RPL13A was the same. First, each cDNA was diluted 20-fold, and then PCR reaction was performed using 2 ⁇ l of the diluted sample.
  • PCR was performed using 15 ⁇ l of 2x PCR premix (Hot start), 2 ⁇ l of PRL13A forward primer, 2 ⁇ l of PRL13A reverse primer, and 11 ⁇ l of distilled water. 20, 23, and 25 cycles were performed. RT-PCR reaction conditions were performed at 94 °C 30 seconds, 50 °C 30 seconds, 72 °C 1 minutes.
  • the PRL13A primers used were forward 5'-CATCGTGGCTAAACAGGTACTG-3 '(SEQ ID NO: 1), reverse 5'-GCACGACCTTGAGGGCAGC-3' (SEQ ID NO: 2).
  • Each product was loaded into a 2% agarose gel, electrophoresed, electrophoresed, and gel images were taken. The images were quantified using the TotalLab v1.0 program (Nonlinear Dynamix), and then corrected for PCR. The concentration of was equally corrected.
  • CDNA diluted to the same amount was subjected to PCR using the sense and antisense primers of the genes.
  • cDNA was mixed with 3 ⁇ l, 2x premix 10 ⁇ l, primer 2 ⁇ l (20 pmole), and 2 ⁇ l of distilled water to make 20 ⁇ l of total solution.
  • the PCR reaction was 94 °C 1min, 54 °C 30sec, 72 °C Cycle was different for each gene.
  • it was electrophoresed using 2% agarose gel and analyzed using an imaging apparatus.
  • Realtime RT-PCR was used with DNASYBR®GreenI reagent and LightCycler (Roche) from Qiagen (CA, USA).
  • ITM2A (94.1%, decrease in 16 samples), LGI2 (76.4%, decrease in 13 samples), SULF2 (82.4) %, Decreased in 14 samples), CCND2 (82.4%, decreased in 14 samples) and GADD45G (76.4%, reduced in 13 samples)
  • the genes representing the aging of fat stem cells It may be used as a diagnostic marker or a marker for screening drugs related to stem cell differentiation.
  • Example 3 The amount of expression of the genes identified in Example 3 using donor adipose stem cell samples (P2 and P8) was analyzed by protein quantification by Western blot analysis. P2 and P8 cells used were differentiated simultaneously with protein analysis to verify their differentiation potential.
  • the cold protein lysis buffer (RIPA cell lysis buffer: 50 mM Tris-Cl (pH 7.5), 150 mM NaCl, 1% Nonidet P-40, 10 % Glycerol, 1 mM PMSF, 1 mM DTT, 20 mM NaF, 1 mM EDTA, protease inhibitors) were added to prepare the proteins of the cells. Using 30 ⁇ g of each prepared protein sample, 10% or 12% SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) gel was used to separate proteins by size, and then transferred to PVDF membrane.
  • SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
  • an antibody corresponding to each protein was attached.
  • Information on antibodies is as follows.
  • Anti-ALPL Sigma, HPA008765
  • anti-LGI2 Santa Cruz, sc-74723
  • anti-ITM2A Santa Cruz, sc-134811
  • anti-SULF2 R & D, MAB7087
  • anti-CCND2 Santa Cruz, sc -181
  • anti-GADD45G abcam, ab56802
  • anti-ANXA10 Santa Cruz, sc-70009
  • anti-IGF2BP3 Sura Cruz, sc-100766
  • anti-MALL Santa Cruz, sc-168544
  • anti -PTGER2 (abcam, ab16151), anti-RGS20 (abcam, ab77009), anti-ACTIN (Sigma, A5316).
  • the amount of each protein was identified by band using Immobilon TM Western Blotting Detection rea
  • Example 5 Isolation of cells using antibodies of membrane protein genes PTGER2 and ITM2A; Of gene expression and differentiation increase
  • the cultured cells were separated into single cells using trypsin, suspended in 0.5 ml buffer, and monoclonal antibodies against PTGER2 and ITM2A were added. After mixing well, the mixture was reacted at 4 ° C. for 30 minutes, washed with a buffer, centrifuged at 250 g for 10 minutes, cells were collected, and suspended again in 150 ⁇ l of buffer. The secondary antibody labeled with fluorescence was added and reacted at 4 ° C. for 30 minutes, and further reacted for 15 minutes at a place where light at room temperature did not pass. This was washed with a buffer and suspended in 3 ml of phenol red-free medium. Thereafter, cells separated by fluorescence and separated by unlabeled cells were separated using a cell sorter. These isolated cells were used for differentiation induction, cell growth rate and protein expression change.
  • the separated cells were placed in 24 wells (for differentiation and cell growth investigation) and 12 wells (for protein extraction) Corning plates to induce differentiation using the same method as in Examples 3 and 4, or to express cell growth and protein expression. Etc. were observed.
  • the genes of the present invention as well as the expression changes depending on the passage, the effect of differentiation ability and cell growth depending on whether the expression of the gene is changed, the expression level of the gene represents the degree of aging of the stem cells It can be used as a diagnostic marker or a stem cell therapeutic marker.
  • Example 6 Investigation of the expression changes of inflammation-related NF-kB, Cox-2 and Erk1 / 2 according to the introduction of siRNA corresponding to ALPL, PTGER2 and ITM2A as representative genes
  • siRNA was extracted from each sample, and knock-down of the gene was first confirmed by siRNA.
  • TNF- ⁇ was treated at 5 ng / ml, followed by 120 minutes at 15 to 30 minute intervals.
  • Samples were collected and 200 ⁇ l of RIPA cell lysis buffer was added to extract proteins, and the expression changes of NF-kB, Cox-2, and Erk1 / 2 protein were investigated.
  • Antibodies used were anti-phospho-Erk1 / 2 (Pharmingen, 554093), anti-phospho-NF-kB (Cell signaling, # 3037) and anti-Cox-2 (Santa Cruz, sc-6248). The amount of protein used in the experiment was confirmed by blotting through antibodies to GAPDH (anti-GAPDH, cell signaling).
  • Cox-2 induces inflammation associated with NF-kB (Fig. 7B), and therefore, the PTGER2 gene is adipose because it is expected that adipose stem cell therapeutics will generally inhibit inflammation in the affected area. It was confirmed that it can function as a marker gene for the passage and therapeutic activity of stem cells (Fig. 7a).
  • Prostagrandin E2 PGE2
  • PGE2 Prostagrandin E2
  • the genes are expected to be used as markers for predicting the future differentiation ability of adipose derived stem cells, and also proved to be involved in mechanisms such as adipose stem cell growth control, inflammation regulation, and mucosal regeneration.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to: a composition for detecting a marker for detecting the potency of adipose-derived stem cells, containing a preparation measuring one or more gene mRNAs selected from the group consisting of annexin A10 (ANXA10), insulin-like growth factor 2 binding protein 3 (IGF2BP3), MALL (Mal, T-cell differentiation protein-like), prostaglandin E receptor 2 (PTGER2), regulator of G-protein signaling 20 transcript variant 1 (RGS20), integral membrane protein 2A (ITM2A), LGI2 (leucine-rich repeat LGI family, member 2), sulfatase 2 transcript variant 1 (SULF2), cyclin D2 (CCND2) and GADD45G (growth arrest and DNA-damage-inducible, gamma), or the protein level thereof; a composition for detecting a marker for measuring the titer of an adipose-derived stem cell therapeutic agent; a composition for detecting a marker for measuring the senescence of adipose-derived stem cells; and a use thereof.

Description

지방유래줄기세포 분화능력 탐지 마커 및 이의 용도Adipose-derived stem cell differentiation detection marker and use thereof
본 발명은 ANXA10(annexin A10), IGF2BP3(insulin-like growth factor 2 binding protein 3), MALL(Mal, T-cell differentiation protein-like), PTGER2(prostaglandin E receptor 2), RGS20(regulator of G-protein signaling 20 transcript variant 1), ITM2A(integral membrane protein 2A), LGI2(leucine-rich repeat LGI family, member 2), SULF2(sulfatase 2 transcript variant 1), CCND2(cyclin D2) 및 GADD45G(growth arrest and DNA-damage-inducible, gamma)로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질 수준을 측정하는 제제를 포함하는, 지방유래줄기세포의 분화능력을 탐지하기 위한 마커 검출용 조성물, 지방유래줄기세포 치료제의 역가를 측정하기 위한 마커 검출용 조성물, 지방유래줄기세포의 노화를 측정하기 위한 마커 검출용 조성물 및 이의 용도에 관한 것이다.The present invention is ANXA10 (annexin A10), IGF2BP3 (insulin-like growth factor 2 binding protein 3), MALL (Mal, T-cell differentiation protein-like), PTGER2 (prostaglandin E receptor 2), RGS20 (regulator of G-protein) signaling 20 transcript variant 1), integral membrane protein 2A (ITM2A), leucine-rich repeat LGI family, member 2 (LGI2), sulfatase 2 transcript variant 1 (SULF2), cyclin D2 (CCND2), and growth arrest and DNA-GADD45G marker-detecting composition for detecting the differentiation ability of adipose derived stem cells, the agent for measuring the level of one or more genes mRNA selected from the group consisting of damage-inducible, gamma), adipose derived stem cell therapy The present invention relates to a composition for detecting a marker for measuring the titer of the composition, a composition for detecting a marker for measuring the aging of adipose derived stem cells, and a use thereof.
재생의학은 손상되거나 기능이 저하된 조직 및 기관을 치료하기 위한 방법으로서 주로 다분화능을 가진 줄기세포를 이용한 세포 기반 치료제(Cell-based therapy)와 관련된다. 인간 중간엽줄기세포(human mesenchymal stem cell)는 성체줄기세포로 배아줄기세포에 일반적으로 문제가 되는 암(Cancer)화나 윤리적인 문제에서 자유로울 뿐만 아니라, 지방세포, 골아세포, 연골세포, 심장세포, 근육세포 및 신경세포 등 다양한 세포로의 분화가 가능하다고 보고되고 있다. 또한, 면역조절 기능을 가지므로 동종의 골수이식, 또는 자가면역질환 등에 면역억제제로 사용할 수 있다. Regenerative medicine is a method for treating damaged or impaired tissues and organs, and is mainly related to cell-based therapy using stem cells with multipotency. Human mesenchymal stem cells are adult stem cells that are free from cancerization and ethical issues that are generally a problem for embryonic stem cells, as well as fat cells, osteoblasts, chondrocytes, heart cells, It is reported that differentiation into various cells such as muscle cells and neurons is possible. In addition, since it has an immunomodulatory function, it can be used as an immunosuppressive agent for homologous bone marrow transplantation or autoimmune disease.
지방조직은 동량의 골수에서 분리할 수 있는 줄기세포의 1,000배 이상의 줄기세포를 다량 포함하고 있어, 지방조직 유래 줄기세포(adipocyte-derived stem cells, ASC)를 생체이식 재료로 이용하고자 하는 연구가 다양하게 진행되고 있다. 지방유래 줄기세포 또한, 골수 줄기세포와 같은 다분화능을 가지고 있어 연골, 뼈, 지방, 근육 세포 등으로 분화가 가능하다. 또한, 지방조직 유래 스트로마 줄기세포는 골수 유래 줄기세포와 세포 표면 마커의 발현양상이 유사하고 in vivo in vitro에서 자가 또는 동종 이식시에도 면역반응을 유발시키지 않고, 오히려 면역반응을 조절하는 기능을 갖는 것으로 보고되고 있어 세포치료의 효과적인 수단으로써 각광받고 있다.Adipose tissue contains more than 1,000 times more stem cells than stem cells that can be separated from the same amount of bone marrow, and various studies are attempting to use adipose-derived stem cells (ASC) as a biotransplant material. Is going on. Adipose-derived stem cells also have the same multipotent as bone marrow stem cells, and can differentiate into cartilage, bone, fat, muscle cells, and the like. In addition, the adipose tissue-derived stromal stem cells have similar expression patterns of bone marrow-derived stem cells and cell surface markers, and do not induce an immune response during autologous or allogeneic transplantation in vivo and in vitro , but rather regulate a immune response. It has been reported to have a spotlight as an effective means of cell therapy.
하지만 줄기세포 치료제의 경우 지금까지 발표된 줄기세포의 임상결과를 살펴보면 치료제로서의 개발가능성은 확인되었으나 치료효과에 대한 평가가 만족스럽지 않은 실정이다. 이와 같은 줄기세포치료제의 불충분한 치료효과를 나타내는 원인 중 하나로 치료효과와 관련된 줄기세포의 분자생물학적 특성 분석을 통한 품질평가가 제대로 이루어지지 않음을 들고 있다. 세포치료제의 경우 제제의 특성상 세포 공여자의 나이 및 건강 상태 등이 다양하여 같은 프로토콜을 사용하여 제제를 만든다고 하여도 결과물의 품질은 달라질 수 있다(Kretlow JD et al, BMC Cell Biol. 2008 Oct 28;9:60).However, in the case of stem cell therapeutics, the clinical results of stem cells published so far have confirmed the possibility of developing them as therapeutic agents, but the evaluation of the therapeutic effect is not satisfactory. One of the causes of the insufficient therapeutic effect of such stem cell therapy is that the quality assessment through the molecular biological characteristics analysis of stem cells related to the therapeutic effect is not performed properly. In the case of cell therapies, the quality of the result may be different even if the formulation is made using the same protocol due to the various characteristics of the cell donor in terms of age and health condition (Kretlow JD et al, BMC Cell Biol. 2008 Oct 28; 9). : 60).
따라서 줄기세포 치료제를 일정 수준 이상의 치료 효과를 가지는 실제 의약품으로 개발하여 재현성 있게 생산하기 위해서는 줄기세포의 치료효과 및 역가와 같은 약효를 반영한 품질관리 시험법 개발이 강하게 요구되는 실정이다. 이러한 세포치료제 역가 측정법을 개발하기 위해서는 줄기세포의 치료효과 및 역가를 대변할 바이오 마커가 필요하다.Therefore, in order to develop and reproducibly produce stem cell therapeutics into actual medicines having a certain level of therapeutic effect and to produce reproducibly, it is strongly required to develop a quality control test method that reflects the effects such as therapeutic effects and potency of stem cells. In order to develop such cell therapeutic titer, biomarkers are needed to represent the therapeutic effect and titer of stem cells.
이에, 본 발명자들은 젊은 지방유래줄기세포(low passage ASCs)와 노화된 지방유래줄기세포(high passage ASCs)의 분화효율 및 치료효과가 다르다는 것에 착안하여, 젊은 지방유래줄기세포와 노화된 지방유래줄기세포를 구별할 수 있는 유전자군을 발굴하고, 이 마커 유전자들의 발현 여부를 통하여 줄기세포치료제의 젊은 지방유래줄기세포(early passage ASCs)의 분포를 판단하는 용도로 사용하고자 노력하였다. 이는 알려진 줄기세포와 분화 세포를 나누는 줄기세포 마커와는 다른 의미를 가질 수 있다. 본 발명자들은 공여자로부터 채취한 줄기세포를 계대 배양하는 과정에서 대조군 유전자로 줄기세포의 분화 능력과 관련된 것으로, 계대의 증가와 함께 감소하는 것으로 알려진 ALPL(Alkaline phosphatase transcript variant 1) 및 VCAM-1(Vacular cell adhesion molecule-1 transcript variant 1, CD106)을 사용하여 이들 유전자가 줄기세포의 계대의 증가와 함께 감소함을 확인하면서, IGF2BP3, ANXA10, MALL, PTGER2 및 RGS20 유전자가 지방유래줄기세포의 계대의 증가와 함께 더불어 증가하고, ITM2A, LGI2, SULF2, CCND2, 및 GADD45G 유전자가 지방유래줄기세포 계대의 증가와 함께 더불어 감소함을 확인하였다. 따라서 이러한 유전자들이 공여자의 줄기세포의 계대로 대변되는 젊음 혹은 노화상태를 확인할 수 있는 마커로서 사용할 수 있음을 검증함으로써 본 발명을 완성하였다.Therefore, the inventors have noticed that the differentiation efficiency and therapeutic effect of the low passage ASCs and the high passage ASCs are different, so that the young fat-derived stem cells and the aged fat-derived stem cells are different. We tried to find a group of genes that can distinguish cells, and to use them to determine the distribution of early passage ASCs of stem cell therapy through the expression of these marker genes. This may have a different meaning from a stem cell marker that divides known stem cells and differentiated cells. The present invention relates to the differentiation capacity of stem cells as a control gene during passage of stem cells collected from a donor, and is known to decrease with increasing passage, ALPL (Alkaline phosphatase transcript variant 1) and VCAM-1 (Vacular). IGF2BP3, ANXA10, MALL, PTGER2, and RGS20 genes increased adipose derived stem cell passages, confirming that these genes decreased with increasing passage of stem cells using cell adhesion molecule-1 transcript variant 1 (CD106). In addition, it was confirmed that the ITM2A, LGI2, SULF2, CCND2, and GADD45G genes decreased with the increase of adipose derived stem cell passage. Therefore, the present invention has been completed by verifying that these genes can be used as markers for identifying youth or aging states represented by passages of donor stem cells.
본 발명의 하나의 목적은 ANXA10(annexin A10), IGF2BP3(insulin-like growth factor 2 binding protein 3), MALL(Mal, T-cell differentiation protein-like), PTGER2(prostaglandin E receptor 2), RGS20(regulator of G-protein signaling 20 transcript variant 1), ITM2A(integral membrane protein 2A), LGI2(leucine-rich repeat LGI family, member 2), SULF2(sulfatase 2 transcript variant 1), CCND2(cyclin D2) 및 GADD45G(growth arrest and DNA-damage-inducible, gamma)로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질 수준을 측정하는 제제를 포함하는, 지방유래줄기세포의 분화능력을 탐지하기 위한 마커 검출용 조성물을 제공하는 것이다.One object of the present invention is ANXA10 (annexin A10), IGF2BP3 (insulin-like growth factor 2 binding protein 3), MALL (Mal, T-cell differentiation protein-like), PTGER2 (prostaglandin E receptor 2), RGS20 (regulator) of G-protein signaling 20 transcript variant 1), integral membrane protein 2A (ITM2A), leucine-rich repeat LGI family, member 2 (LGI2), sulfatase 2 transcript variant 1 (SULF2), cyclin D2 (CCND2), and GADD45G (growth It provides a composition for detecting a marker for detecting the differentiation capacity of adipose derived stem cells, including an agent for measuring the level of one or more gene mRNA or protein thereof selected from the group consisting of arrest and DNA-damage-inducible, gamma) It is.
본 발명의 또 다른 목적은 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 수준을 측정하는 제제를 포함하는, 지방유래줄기세포 치료제의 역가를 측정하기 위한 마커 검출용 조성물을 제공하는 것이다.Another object of the invention comprises an agent for measuring the level of at least one gene mRNA or protein thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. It is to provide a composition for detecting a marker for measuring the titer of adipose derived stem cell therapy.
본 발명의 또 다른 목적은 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 수준을 측정하는 제제를 포함하는, 지방유래줄기세포의 노화를 측정하기 위한 마커 검출용 조성물을 제공하는 것이다.Another object of the invention comprises an agent for measuring the level of at least one gene mRNA or protein thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. It is to provide a marker detection composition for measuring the aging of adipose derived stem cells.
본 발명의 또 다른 목적은 상기 지방유래줄기세포의 분화능력을 탐지하기 위한 마커 검출용 조성물을 포함하는, 지방유래줄기세포의 분화능력을 탐지하기 위한 마커 검출용 키트를 제공하는 것이다.Still another object of the present invention is to provide a marker detection kit for detecting a differentiation capacity of adipose derived stem cells, including a composition for detecting a marker for detecting the differentiation capacity of the adipose derived stem cells.
본 발명의 또 다른 목적은 상기 지방유래줄기세포 치료제의 역가를 측정하기 위한 마커 검출용 조성물을 포함하는, 지방유래줄기세포 치료제의 역가를 측정하기 위한 마커 검출용 키트를 제공하는 것이다.Still another object of the present invention is to provide a marker detection kit for measuring the titer of adipose derived stem cell therapeutic agent, comprising a composition for detecting a marker for measuring the titer of the adipose derived stem cell therapeutic agent.
본 발명의 또 다른 목적은 상기 지방유래줄기세포 치료제의 노화를 측정하기 위한 마커 검출용 조성물을 포함하는, 지방유래줄기세포의 노화를 측정하기 위한 마커 검출용 키트를 제공하는 것이다.Still another object of the present invention is to provide a marker detection kit for measuring aging of adipose derived stem cells, including a composition for detecting a marker for measuring aging of the adipose derived stem cell therapeutic agent.
본 발명의 또 다른 목적은 상기 유전자의 발현 수준을 측정하는 단계를 포함하는, 지방유래줄기세포의 분화 능력을 탐지하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for detecting the differentiation ability of adipose derived stem cells, comprising measuring the expression level of the gene.
본 발명의 또 다른 목적은 상기 유전자의 발현 수준을 측정하는 단계를 포함하는, 지방유래줄기세포 치료제의 역가를 측정하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for measuring the titer of adipose derived stem cell therapeutic agent, which comprises measuring the expression level of the gene.
본 발명의 또 다른 목적은 상기 유전자의 발현 수준을 측정하는 단계를 포함하는, 지방유래줄기세포의 분화 능력 조절 물질을 스크리닝하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for screening a substance capable of regulating differentiation capacity of adipose derived stem cells, including measuring the expression level of the gene.
본 발명의 또 다른 목적은 상기 유전자의 발현 수준을 조절하는 단계를 포함하는, 지방유래줄기세포로부터 지방세포로의 분화를 조절하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method of controlling differentiation from adipose derived stem cells to adipocytes, the method comprising controlling the expression level of the gene.
본 발명은 지방유래줄기세포의 분화능력을 판단할 수 있는 마커들을 제공함으로써, 지방유래줄기세포의 효능을 검증하는 것에 있어 유용한 자료를 제공한다. 또한, 상기 마커들은 지방유래줄기세포 치료제의 활성 및 역가를 측정하는 데 있어 유용하게 이용될 수 있다The present invention provides useful data in verifying the efficacy of adipose derived stem cells by providing markers capable of determining the differentiation capacity of adipose derived stem cells. In addition, the markers may be useful for measuring the activity and titer of adipose derived stem cell therapeutics.
도 1a는 기저배지와 증식배지에서의 지방유래 줄기세포의 세포성장을 비교한 그래프이다.Figure 1a is a graph comparing the cell growth of adipose derived stem cells in basal medium and proliferation medium.
도 1b는 기저배지와 증식배지에서의 계대 2(Passage 2, P2), 계대 5(passage 5, P5) 및 계대 8(Passage 8, P8) 상태의 세포사진이다.FIG. 1B is a cell photograph of passage 2 (P2), passage 5 (P5) and passage 8 (Passage 8, P8) in basal medium and proliferation medium.
도 2a는 P2(Passage 2), P8(Passage 8) 및 P14(Passage 14) 지방유래 줄기세포의 분화능력을 알아보는 실험 결과이다. 분화 배지와 분화유지 배지에서 12일간 배양한 다음 Oil-red O 염색을 한 플레이트의 사진이다.Figure 2a is a test result to determine the differentiation capacity of P2 (Passage 2), P8 (Passage 8) and P14 (Passage 14) adipose derived stem cells. 12-day incubation in differentiation and differentiation medium followed by Oil-red O staining.
도 2b는 도 2a 세포의 현미경 사진으로, 지방의 축적을 Oil-red O 염색으로 확인하였다. Figure 2b is a micrograph of the cells of Figure 2a, fat accumulation was confirmed by Oil-red O staining.
도 2c는 도 2a 실험 결과를 그래프로 나타낸 것이다.FIG. 2C is a graph showing the results of the experiment of FIG. 2A.
도 3a는 Illumina 24K chip을 이용한 3 세트의 P2, P5, P8 지방유래줄기세포의 마이크로어레이 결과를 나타낸 것이다.Figure 3a shows the results of microarray of three sets of P2, P5, P8 adipose derived stem cells using Illumina 24K chip.
도 3b 내지 3d는 마이크로어레이 분석을 통하여 유의성을 보인 유전자들의 발현 변화를 그래프로 나타낸 것으로, 도 3b의 ALPL과 VCAM1 유전자는 대조 유전자로서 선행 연구결과와 동일한 결과를 나타낸다. 도 3c는 계대수 증가에 따라 발현량이 감소하는 유전자를 보여주며, 도 3d는 계대수 증가에 따라 발현량이 증가하는 유전자를 보여준다.3b to 3d are graphs showing expression changes of genes showing significance through microarray analysis. The ALPL and VCAM1 genes of FIG. 3b show the same results as the previous studies as control genes. 3c shows a gene whose expression decreases with increasing passage, and FIG. 3d shows a gene whose expression increases with increasing passage.
도 4는 17 명의 공여자로부터 채취한 지방유래줄기세포에서 도 3에서 선별한 유전자들의 발현양 변화를 RT-PCR과 real-time PCR 을 통해 증명한 것으로, RPL13A는 대조 유전자이다. 도 4a는 대조 유전자 ALPL 과 VCAM1 유전자의 결과이며, 도 4b 및 4c는 P2에 비해 P8에서 증가하는 유전자 ANXA10, IGF2BP3, PTGER2, MALL, RGS20 의 결과를 나타낸 것이며, 도 4d 및 4e는 P2에 비해 P8에서 감소하는 유전자 ITM2A, LGI2, SULF2, CCND2, GADD45G의 결과를 나타낸 것이다.Figure 4 shows the change in the expression amount of the genes selected in Figure 3 in adipose derived stem cells collected from 17 donors by RT-PCR and real-time PCR, RPL13A is a control gene. Figure 4a is the result of the control genes ALPL and VCAM1 genes, Figures 4b and 4c shows the results of the genes ANXA10, IGF2BP3, PTGER2, MALL, RGS20 increased in P8 compared to P2, Figures 4d and 4e compared to P2 P8 It shows the result of decreasing genes ITM2A, LGI2, SULF2, CCND2, and GADD45G at.
도 5는 상기 유전자들의 P2와 P8에서의 단백질 변화를 나타낸 결과로서, 또한 단백질 발현결과와 세포분화능력을 검증하였다.Figure 5 shows the protein changes in P2 and P8 of the genes, and also verified the protein expression results and cell differentiation capacity.
도 6a는 대표 유전자 PTGER2를 발현하는 세포와 발현하지 않는 세포를 분류하여 구분한 다음, 상기 세포들의 분화능력. 세포성장률 및 계대별 유전자 발현 관계성을 검증하여 나타낸 것이다. Figure 6a is to classify and differentiate the cells expressing the representative gene PTGER2 and non-expressing cells, the differentiation capacity of the cells. It is shown by verifying the relationship between cell growth rate and passage gene expression.
도 6b는 대표 유전자 ITM2A를 발현하는 세포와 발현하지 않는 세포를 분류하여 구분한 다음, 상기 세포들의 분화능력, 세포성장률 및 계대별 유전자 발현 관계성을 검증하여 나타낸 것이다.Figure 6b is to classify and distinguish the cells expressing the representative gene ITM2A and non-expressing cells, and then verify the differentiation capacity, cell growth rate and passage-specific gene expression relationship of the cells.
도 7a는 ANXA10, IGF2BP3, PTGER2, MALL, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G 유전자로 구성되는 군에서 PTGER2 및 ITM2A를 대표 유전자로 하여 이에 해당하는 siRNA를 도입한 후 TNF-α를 처리한 다음, 염증에 관련된 NF-kB, Cox-2 및 Erk1/2의 발현변화를 조사한 결과로서, ALPL siRNA는 대조군으로 사용된 것이다. Figure 7a is a representative gene in the group consisting of ANXA10, IGF2BP3, PTGER2, MALL, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G genes as a representative gene, and the TRNA-treated TNF-α after introducing the corresponding siRNA Next, as a result of examining the expression changes of NF-kB, Cox-2 and Erk1 / 2 related to inflammation, ALPL siRNA was used as a control.
도 7b는 상기 유전자들에 의해 변화하는 Cox-2 유전자에 의하여 지방 줄기세포 치료제에 의한 염증조절과 점막재생 등의 조절 관련성을 보여주는 내용을 모식도로 나타낸 것이다. Figure 7b shows a schematic diagram showing the relationship between the regulation of inflammation, mucosal regeneration and the like by the adipose stem cell therapy by the Cox-2 gene changes by the genes.
하나의 양태로서, 본 발명은 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질 수준을 측정하는 제제를 포함하는, 지방유래줄기세포의 분화능력을 탐지하기 위한 마커 검출용 조성물을 제공한다. 상기 조성물은 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개 또는 10개 유전자의 mRNA 또는 이의 단백질 수준을 측정하는 제제를 포함할 수 있다.In one embodiment, the invention comprises an agent for measuring at least one gene mRNA or protein level thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. It provides a marker detection composition for detecting the differentiation capacity of adipose derived stem cells. The composition is one, two, three, four, five, six, seven, eight, selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. It may include agents that measure the mRNA or protein levels of dogs, nine or ten genes.
본 발명에서 용어, "지방유래줄기세포(adipocyte-derived stem cell, ASC)"는 지방세포, 골모세포, 연골모세포, 근섬유모세포 등 대부분의 중간엽 세포로 분화할 수 있는 지방조직으로부터 분리된 줄기세포로서, 지방전구세포, 기질세포, 다분화능 지방 유래 세포(multipotent adipose-derived cells) 또는 지방유래성체줄기세포(adipose derived adult stem cells) 등으로 불려온 세포를 의미한다. 상기 지방유래줄기세포는 특별히 이에 제한되지는 않으나, 인간에게 이식할 수 있는 돼지, 소, 영장류 및 인간 등을 포함하는 포유류 유래일 수 있다. As used herein, the term "adipocyte-derived stem cell (ASC)" refers to stem cells isolated from adipose tissue capable of differentiating into most mesenchymal cells such as fat cells, osteoblasts, chondrocytes, and myofibroblasts. By means of adipose progenitor cells, stromal cells, multipotent adipose-derived cells or adipose derived adult stem cells (adipose derived adult stem cells). The adipose derived stem cells are not particularly limited thereto, but may be derived from mammals including pigs, cattle, primates, humans, and the like, which can be transplanted into humans.
본 발명에서 용어, "지방유래줄기세포의 분화능력을 탐지하기 위한 마커"란 계대(passage)수가 높은 지방유래줄기세포와 계대(passage)수가 낮은 지방유래줄기세포를 비교했을 때, 그 발현 여부에 유의한 차이를 보이는 유기 생체 분자를 의미할 수 있다. 본 발명의 목적상, 본 발명의 마커는 낮은 계대수로 대변되는 분화능력이 높은 지방유래줄기세포에서 발현량이 증가 또는 감소함으로써 분화 능력을 탐지할 수 있는 마커를 의미하며, 더욱 구체적으로는 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G의 발현량으로서, 분화능력이 높은 지방유래줄기세포에서 ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20는 그 발현이 감소되어 있고, ITM2A, LGI2, SULF2, CCND2 및 GADD45G는 그 발현이 증가되어 있는 유전자이다. In the present invention, the term "marker for detecting the differentiation capacity of adipose derived stem cells" refers to whether the expression of adipose derived stem cells with a high number of passages and adipose derived stem cells with a low passage, It may mean an organic biomolecule showing a significant difference. For the purposes of the present invention, the marker of the present invention refers to a marker capable of detecting differentiation capacity by increasing or decreasing the expression level in adipose derived stem cells having high differentiation capacity represented by a low passage number, more specifically ANXA10, The expression levels of IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G.AnXA10, IGF2BP3, MALL, PTGER2 and RGS20 are reduced in ICT-derived adipose derived stem cells, and ITM2A, LGI2, SULF2, CCND2 and GADD45G are genes with increased expression.
본 발명에서 사용되는 상기 유전자들에 대한 정보는 미국국립보건원의 GenBank 등 공지의 데이터베이스로부터 얻을 수 있으며, 그 예로 ANXA10(NM_007193.3, NP_009124.2), IGF2BP3(NM_006547.2, NP_006538.2), MALL(NM_005434.3, NP_005425.1), PTGER2(NM_000956.2, NP_000947.2), RGS20(NM_170587.1, NP_733466.1), ITM2A(NM_001171581.1, NP_001165052.1), LGI2(NM_018176.2, NP_060646.2), SULF2(NM_018837.2, NP_061325.1), CCND2(NM_001759.3, NP_001750.1) 및 GADD45G(NM_006705.2, NP_006696.1)로 구성될 수 있으나, 이에 제한되지 않는다.Information on the genes used in the present invention can be obtained from known databases such as GenBank of the National Institutes of Health, for example ANXA10 (NM_007193.3, NP_009124.2), IGF2BP3 (NM_006547.2, NP_006538.2), MALL (NM_005434.3, NP_005425.1), PTGER2 (NM_000956.2, NP_000947.2), RGS20 (NM_170587.1, NP_733466.1), ITM2A (NM_001171581.1, NP_001165052.1), LGI2 (NM_018176.2, NP_060646.2), SULF2 (NM_018837.2, NP_061325.1), CCND2 (NM_001759.3, NP_001750.1) and GADD45G (NM_006705.2, NP_006696.1), but are not limited thereto.
본 발명에서 용어, "계대(passage)"란 세포를 건강한 상태로 지속적으로 장기간 배양하기 위해 주기적으로 세포의 일부를 새로운 배양용기에 옮긴 후 배양 배지를 갈아주면서 세포의 대를 계속 이어서 배양하는 방법에서, 배양용기를 교체하는 것 또는 세포군을 나누어 배양하는 것을 의미하며, 한 차례 배양용기 교체 또는 세포군을 나누어 배양하는 것을 1 계대(passage)라고 한다. 본 발명에서 계대수가 낮은 또는 초기 계대인 지방유래줄기세포(low passage ASCs)는 분화능력 또는 치료효과가 높은 지방유래줄기세포를 의미하며, 계대수가 높은 또는 후기 계대인 지방유래줄기세포(high passage ASCs)는 분화능력 또는 치료효과가 낮은 지방유래줄기세포를 의미할 수 있으나, 이에 제한되는 것은 아니다. 본 발명에서 초기 계대(early passage)수란 계대수가 0 내지 3일 수 있으며, 바람직하게는 0 내지 2일 수 있다.In the present invention, the term "passage" refers to a method of continuously culturing a cell stage while periodically transferring a portion of the cell to a new culture vessel in order to continuously cultivate the cell in a healthy state for a long period of time. In other words, it means replacing the culture vessel or dividing the cell group, and once replacing the culture vessel or dividing the cell group is called one passage. In the present invention, low passage ASCs of low or early passage mean adipose derived stem cells having high differentiation ability or therapeutic effect, and high passage ASCs of high passage or late passage. ) May refer to adipose derived stem cells having low differentiation or therapeutic effects, but are not limited thereto. In the present invention, the initial passage number may be 0 to 3, and preferably 0 to 2.
본 발명에서 용어, "분화능력"이란 지방유래줄기세포가 지방세포, 골모세포, 연골모세포, 근섬유모세포, 골모세포, 근육 세포 또는 신경 세포 등으로 분화될 수 있는 능력을 의미하며, 본 발명의 목적상 분화능력은 지방유래줄기세포의 계대수로 대변될 수 있다. 즉, 분화 능력이 높다는 것은 계대수가 낮아서 다양한 세포로 분화가 용이하게 일어날 수 있는 것을 의미한다. 본 발명에서 분화능력이 높은 지방유래줄기세포는 이에 제한되지는 않으나, 지방세포, 골모세포, 연골모세포, 근섬유모세포, 골모세포, 근육세포 또는 신경세포로 분화유도가 용이하게 일어나는 세포를 의미하며, 바람직하게는 지방세포로의 분화유도가 잘 일어나는 지방유래줄기세포를 의미한다. 본 발명에서 분화능력이 높은 지방유래줄기세포는 ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20로 이루어지는 군으로부터 선택된 하나 이상의 유전자의 발현이 감소되어 있고, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어지는 군으로부터 선택된 하나 이상의 유전자의 발현이 증가되어 있는 지방유래줄기세포로서, ANXA10, IGF2BP3, MALL, PTGER2 또는 RGS20 유전자의 발현이 증가되어 있거나, ITM2A, LGI2, SULF2, CCND2 또는 GADD45G의 발현이 감소되어 있는 지방유래줄기세포에 비하여 지방세포, 골모세포, 연골모세포, 근섬유모세포, 근육세포 또는 신경세포로의 분화 효율이 높은 지방유래줄기세포를 의미한다. 본 발명의 일 실시예에서는 2계대, 8계대 및 14계대인 지방유래줄기세포를 지방세포로 분화시킨 결과, 계대수가 낮을수록 분화능력이 뛰어난 것을 확인하였으며(도 2), 2계대인 세포에 비하여 8계대의 세포에서는 ANXA10, IGF2BP3, MALL, PTGER2 또는 RGS20 유전자의 발현이 증가되어 있고, ITM2A, LGI2, SULF2, CCND2 또는 GADD45G의 유전자의 발현이 감소되어 있는 것을 확인하였다(도 3 내지 5). 본 발명의 마커들은 이식공여자들로부터 분리한 다양한 계대수 또는 다른 분화능력을 지닌 지방유래줄기세포에서 동일한 초기 계대 또는 유사한 분화능력을 지닌 지방유래줄기세포를 효과적으로 분리할 수 있어 지방유래줄기세포의 치료제로서의 역가를 높일 수 있다.As used herein, the term "differentiation capacity" means the ability of the adipose derived stem cells to differentiate into adipocytes, osteoblasts, chondrocytes, myofibroblasts, osteoblasts, muscle cells or neurons, and the like. Phase differentiation capacity can be represented by the passage number of adipose derived stem cells. In other words, high differentiation capacity means that the passage number is low, so that differentiation into various cells can easily occur. Adipose derived stem cells having high differentiation capacity in the present invention are not limited thereto, and mean cells that easily induce differentiation into adipocytes, osteoblasts, chondrocytes, myofibroblasts, osteoblasts, muscle cells or neurons. Preferably, it refers to adipose derived stem cells which induce differentiation into adipocytes well. In the present invention, adipose derived stem cells having high differentiation ability are reduced in expression of one or more genes selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20, and selected from the group consisting of ITM2A, LGI2, SULF2, CCND2 and GADD45G. Adipose-derived stem cells with increased expression of one or more genes, which have increased expression of ANXA10, IGF2BP3, MALL, PTGER2, or RGS20 genes, or reduced expression of ITM2A, LGI2, SULF2, CCND2, or GADD45G. It refers to fat-derived stem cells having high efficiency of differentiation into adipocytes, osteoblasts, chondrocytes, myofibroblasts, muscle cells or neurons compared to cells. In one embodiment of the present invention, as a result of differentiating fat-derived adipose-derived stem cells of two passages, eight passages and 14 passages into adipocytes, it was confirmed that the lower the passage number, the better the differentiation ability (FIG. It was confirmed that the expression of ANXA10, IGF2BP3, MALL, PTGER2 or RGS20 genes was increased in the 8th generation cells, and that the expression of ITM2A, LGI2, SULF2, CCND2 or GADD45G genes was decreased (Figs. 3 to 5). The markers of the present invention can effectively separate fat-derived stem cells having the same initial passage or similar differentiation ability from adipose derived stem cells having various passage numbers or different differentiation capacity isolated from transplant donors, thereby treating adipose derived stem cells. The potency as can be raised.
생물학적 시료 중의 유전자 발현 수준은 mRNA 또는 단백질의 양을 확인함으로써 확인할 수 있다.Gene expression levels in biological samples can be confirmed by identifying the amount of mRNA or protein.
본 발명에서 용어, “mRNA 수준 측정”이란 지방유래줄기세포의 분화능력을 진단하기 위하여 생물학적 시료에서 지방유래줄기세포의 분화능력을 나타내는 마커 유전자들의 mRNA 존재 여부와 발현 정도를 확인하는 과정으로, mRNA의 양을 측정한다. 이를 위한 분석 방법으로는 역전사중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응(Competitive RT-PCR), 실시간 역전사 중합효소반응(Realtime RT-PCR), RNase 보호 분석법(RPA; RNase protection assay), 노던 블랏팅(Northern blotting) 및 DNA 칩 등이 있으나, 이로 제한되는 것은 아니다. 본 발명의 일 실시예에서는 상기 유전자 mRNA의 수준을 RT-PCR 및 Real-time PCR을 통하여 확인하였다(실시예 3).In the present invention, the term “mRNA level measurement” refers to a process of confirming mRNA presence and expression level of marker genes representing differentiation ability of adipose derived stem cells in a biological sample to diagnose differentiation ability of adipose derived stem cells. Measure the amount of. Analytical methods for this purpose include reverse transcriptase (RT-PCR), competitive reverse transcriptase (RT) PCR, real time reverse transcriptase (Realtime RT-PCR), and RNase protection assay (RPA). , Northern blotting and DNA chips, but are not limited thereto. In one embodiment of the present invention, the level of the gene mRNA was confirmed by RT-PCR and Real-time PCR (Example 3).
유전자의 mRNA 수준을 측정하는 제제는 바람직하게는 프라이머 쌍 또는 프로브이며, ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G 유전자의 핵산 서열은 각각 NM_007193.3, NM_006547.2, NM_005434.3, NM_000956.2, NM_170587.1, NM_001171581.1, NM_018176.2, NM_018837.2, NM_001759.3 및 NM_006705.2에 밝혀져 있으므로, 당업자는 상기 서열을 바탕으로 이들 유전자의 특정 영역을 특이적으로 증폭하는 프라이머 또는 프로브를 디자인할 수 있다. The agent for measuring mRNA level of the gene is preferably a primer pair or probe, and the nucleic acid sequences of the ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G genes are NM_007193.3, NM_006547.2, respectively. , NM_005434.3, NM_000956.2, NM_170587.1, NM_001171581.1, NM_018176.2, NM_018837.2, NM_001759.3, and NM_006705.2 are known to those skilled in the art based on these sequences A primer or probe can be designed to amplify the protein.
본 발명에서 용어, "프라이머(primer)"는 짧은 자유 3' 말단 수산화기를 가지는 핵산 서열로 상보적인 주형(template)과 염기쌍을 형성할 수 있고 주형 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 핵산 서열을 의미한다. 본 발명에서 프라이머의 예로, 서열번호 7 및 8인 ANXA10에 대한 프라이머 쌍, 서열번호 9 및 10인 IGF2BP3에 대한 프라이머 쌍, 서열번호 11 및 12인 MALL에 대한 프라이머 쌍, 서열번호 13 및 14인 PTGER2에 대한 프라이머 쌍, 서열번호 15 및 16인 RGS20에 대한 프라이머 쌍, 서열번호 17 및 18인 ITM2A에 대한 프라이머 쌍, 서열번호 19 및 20인 LGI2에 대한 프라이머 쌍, 서열번호 21 및 22인 SULF2에 대한 프라이머 쌍, 서열번호 23 및 24인 CCND2에 대한 프라이머 쌍 또는 서열번호 25 및 26인 GADD45G에 대한 프라이머 쌍을 일 수 있으나, 이에 제한되는 것은 아니다. As used herein, the term "primer" refers to a nucleic acid sequence having a short free 3 'terminal hydroxyl group, which forms a base pair with a complementary template and functions as a starting point for template strand copying. Means. Examples of primers in the present invention include a primer pair for ANXA10 with SEQ ID NOs 7 and 8, a primer pair for IGF2BP3 with SEQ ID NOs 9 and 10, a primer pair for MALL with SEQ ID NOs 11 and 12, PTGER2 with SEQ ID NOs 13 and 14 Primer pair for RGS20, SEQ ID NOs: 15 and 16, primer pair for ITM2A, SEQ ID NOs: 17 and 18, primer pair for LGI2, SEQ ID NOs: 19 and 20, for SULF2, SEQ ID NOs: 21 and 22 Primer pairs, primer pairs for CCND2 with SEQ ID NOs: 23 and 24, or primer pairs for GADD45G with SEQ ID NOs: 25 and 26, but are not limited thereto.
본 발명에서 용어, "프로브"란 mRNA와 특이적 결합을 이룰 수 있는 짧게는 수개의 염기 내지는 수백개의 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미하며 라벨링이 되어 있어서 특정 mRNA의 존재 유무를 확인할 수 있다. 프로브는 올리고뉴클레오타이드(oligonucleotide) 프로브, 단쇄 DNA(single stranded DNA) 프로브, 이중쇄 DNA(double stranded DNA) 프로브 또는 RNA 프로브 등의 형태로 제작될 수 있다. 본 발명에서는 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 또는 GADD45G 폴리뉴클레오타이드와 상보적인 프로브를 이용하여 혼성화를 실시하여, 혼성화 여부를 통해 지방유래줄기세포의 분화 능력을 알 수 있다. 적당한 프로브의 선택 및 혼성화 조건은 당업계에 공지된 것을 기초로 변형할 수 있다.As used herein, the term “probe” refers to a nucleic acid fragment such as RNA or DNA corresponding to a short number of bases or hundreds of bases that can form specific binding with mRNA, and is labeled to indicate the presence or absence of a specific mRNA. You can check it. The probe may be manufactured in the form of an oligonucleotide probe, a single stranded DNA probe, a double stranded DNA probe or an RNA probe. In the present invention, hybridization is performed using a complementary probe with ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 or GADD45G polynucleotides, and it is possible to know the differentiation ability of adipose derived stem cells through hybridization. have. Selection of suitable probes and hybridization conditions can be modified based on what is known in the art.
본 발명의 프라이머는 적절한 완충용액 및 온도에서 중합반응(즉, DNA 중합효소 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재 하에서 DNA 합성을 개시할 수 있다. 본 발명의 프라이머는, 각 마커 유전자에 특이적인 프라이머로 7개 내지 50개의 뉴클레오타이드 서열을 가진 센스 및 안티센스 핵산이다. 프라이머는 DNA 합성의 개시점으로 작용하는 프라이머의 기본 성질을 변화시키지 않는 추가의 특징을 혼입할 수 있다. 본 발명의 프라이머 또는 프로브는 포스포르아미다이트 고체 지지체 방법, 또는 기타 널리 공지된 방법을 사용하여 화학적으로 합성할 수 있다. 이러한 핵산 서열은 또한 당해 분야에 공지된 많은 수단을 이용하여 변형시킬 수 있다. 이러한 변형의 비제한적인 예로는 메틸화, 캡화, 천연 뉴클레오타이드 하나 이상의 동족체로의 치환, 및 뉴클레오타이드 간의 변형, 예를 들면, 하전되지 않은 연결체(예: 메틸 포스포네이트, 포스포트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체(예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있다. 핵산은 하나 이상의 부가적인 공유 결합된 잔기, 예를 들면, 단백질(예: 뉴클레아제, 독소, 항체, 시그날 펩타이드, 폴리-L-리신 등), 삽입제(예: 아크리딘, 프소랄렌 등), 킬레이트화제(예: 금속, 방사성 금속, 철, 산화성 금속 등), 및 알킬화제를 함유할 수 있다. 본 발명의 핵산 서열은 또한 검출 가능한 시그날을 직접적으로 또는 간접적으로 제공할 수 있는 표지를 이용하여 변형시킬 수 있다. 표지의 예로는 방사성 동위원소, 형광성 분자 및 바이오틴 등이 있다. Primers of the present invention can initiate DNA synthesis in the presence of reagents for polymerization (ie, DNA polymerase or reverse transcriptase) and four different nucleoside triphosphates at appropriate buffers and temperatures. The primers of the present invention are sense and antisense nucleic acids having 7 to 50 nucleotide sequences as primers specific for each marker gene. Primers can incorporate additional features that do not change the basic properties of the primers that serve as a starting point for DNA synthesis. Primers or probes of the invention can be synthesized chemically using phosphoramidite solid support methods, or other well known methods. Such nucleic acid sequences can also be modified using many means known in the art. Non-limiting examples of such modifications include methylation, encapsulation, substitution of one or more homologs of natural nucleotides, and modifications between nucleotides, such as uncharged linkages such as methyl phosphonate, phosphoester, phosphoroami Date, carbamate, etc.) or charged linkages such as phosphorothioate, phosphorodithioate and the like. Nucleic acids may be selected from one or more additional covalently linked residues, such as proteins (eg, nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), inserts (eg, acridine, psoralene, etc.). ), Chelating agents (eg, metals, radioactive metals, iron, oxidizing metals, etc.), and alkylating agents. Nucleic acid sequences of the invention can also be modified using a label that can provide a detectable signal directly or indirectly. Examples of labels include radioisotopes, fluorescent molecules and biotin.
본 발명에서 용어, “단백질 수준 측정”이란 지방유래줄기세포의 분화능력을 탐지하기 위하여 생물학적 시료에서 지방유래줄기세포의 분화능력을 나타내는 마커 유전자로부터 발현된 단백질의 존재 여부와 발현 정도를 확인하는 과정으로, 바람직하게는 상기 유전자의 단백질에 대하여 특이적으로 결합하는 항체를 이용하여 단백질의 양을 확인할 수 있다.  In the present invention, the term "protein level measurement" refers to a process for confirming the presence and expression level of a protein expressed from a marker gene representing a differentiation capacity of adipose derived stem cells in a biological sample in order to detect the differentiation ability of adipose derived stem cells. Preferably, the amount of protein can be confirmed using an antibody that specifically binds to the protein of the gene.
본 발명에서 용어,“항체”란 항원성 부위에 대해서 지시되는 특이적인 단백질 분자를 의미한다. 본 발명의 목적상, 항체는 마커 단백질에 대해 특이적으로 결합하는 항체를 의미하고, 구체적으로는 본 발명의 마커 유전자인 IGF2BP3, ANXA10, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 또는 GADD45G가 코딩하는 단백질에 대해 특이적으로 결합하는 항체를 의미하며, 다클론 항체, 단클론 항체 및 재조합 항체를 모두 포함한다. 본 발명의 마커 단백질이 규명되었으므로 이를 이용하여 항체를 생성하는 것은 당업계에 널리 공지된 기술을 이용하여 용이하게 제조할 수 있다. 다클론 항체는 상기 마커 단백질 항원을 동물에 주사하고 동물로부터 채혈하여 항체를 포함하는 혈청을 수득하는 당업계에 널리 공지된 방법에 의해 생산할 수 있다. 이러한 다클론 항체는 염소, 토끼, 양, 원숭이, 말, 돼지, 소 및 개 등의 임의의 동물 종 숙주로부터 제조가능하다. 단클론 항체는 당업계에 널리 공지된 하이브리도마 방법(hybridoma method)(Kohler 및 Milstein (1976) European Jounral of Immunology 6:511-519 참조), 또는 파지 항체 라이브러리(Clackson et al, Nature, 352:624-628, 1991; Marks et al, J. Mol. Biol., 222:58, 1-597, 1991) 기술을 이용하여 제조될 수 있다. 상기 방법으로 제조된 항체는 겔 전기영동, 투석, 염 침전, 이온교환 크로마토그래피, 친화성 크로마토그래피 등의 방법을 이용하여 분리, 정제할 수 있다. 또한 본 발명의 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 완전한 형태뿐만 아니라, 항체 분자의 기능적인 단편을 포함한다. 항체 분자의 기능적인 단편이란 적어도 항원 결합 기능을 보유하고 있는 단편을 뜻하며, Fab, F(ab'), F(ab')2 및 scFv 등이 있다. 단백질 수준의 측정 방법으로는 웨스턴 블랏(Western blot), 엘라이자(enzyme linked immunosorbent assay,ELISA), 방사선면역분석(RIA: Radioimmunoassay), 방사 면역 확산법(radioimmunodiffusion), 오우크테로니(Ouchterlony) 면역확산법, 로케트(rocket) 면역전기영동, 조직면역 염색, 면역침전 분석법(Immunoprecipitation Assay), 보체 고정 분석법(Complement Fixation Assay), 유세포분석(Fluorescence Activated Cell Sorter, FACS) 및 단백질 칩(protein chip) 등이 있으나, 이에 제한되는 것은 아니다. 본 발명의 일 실시예에서는 웨스턴 블랏을 이용하여 상기 유전자 단백질의 수준을 측정하였다(실시예 4).As used herein, the term “antibody” refers to a specific protein molecule directed against an antigenic site. For the purposes of the present invention, an antibody means an antibody that specifically binds to a marker protein, and specifically, the marker gene of the present invention, IGF2BP3, ANXA10, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 or GADD45G Refers to an antibody that specifically binds to the protein to be encoded, and includes all polyclonal antibodies, monoclonal antibodies, and recombinant antibodies. Since the marker proteins of the present invention have been identified, the production of antibodies using them can be readily prepared using techniques well known in the art. Polyclonal antibodies can be produced by methods well known in the art for injecting the marker protein antigen into an animal and collecting blood from the animal to obtain serum comprising the antibody. Such polyclonal antibodies can be prepared from any animal species host such as goat, rabbit, sheep, monkey, horse, pig, cow and dog. Monoclonal antibodies are known in the art by the hybridoma method (see Kohler and Milstein (1976) European Jounral of Immunology 6: 511-519), or phage antibody libraries (Clackson et al, Nature, 352: 624). -628, 1991; Marks et al, J. Mol. Biol., 222: 58, 1-597, 1991). Antibodies prepared by the above method can be isolated and purified using methods such as gel electrophoresis, dialysis, salt precipitation, ion exchange chromatography, affinity chromatography, and the like. The antibodies of the present invention also include functional fragments of antibody molecules, as well as complete forms having two full length light chains and two full length heavy chains. A functional fragment of an antibody molecule refers to a fragment having at least antigen binding function, and includes Fab, F (ab '), F (ab') 2 and scFv. Protein levels can be measured by Western blot, enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), radioimmunodiffusion, and Ouchterlony immunodiffusion. , Rocket immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, fluorescence activated cell sorter (FACS), and protein chip. However, the present invention is not limited thereto. In one embodiment of the present invention, the Western blot was used to measure the level of the gene protein (Example 4).
또 하나의 양태로서, 본 발명은 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질 수준을 측정하는 제제를 포함하는, 지방유래줄기세포 치료제의 역가를 측정하기 위한 마커 검출용 조성물을 제공한다. In another embodiment, the invention comprises an agent for measuring at least one gene mRNA or protein level thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. It provides a composition for detecting a marker for measuring the titer of adipose derived stem cell therapeutic agent.
본 발명에서 용어, "지방유래줄기세포 치료제"는 세포와 조직의 기능을 복원시키기 위하여 살아있는 자가(autologous), 동종(allogenic), 또는 이종(xenogenic) 세포를 체외에서 증식 및 선별하거나, 여타의 방법으로 지방유래줄기세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품, 또는 지방유래줄기세포가 분화됨으로써 형성되는 지방세포, 골모세포, 연골모세포, 근섬유모세포, 근육세포 또는 신경세포 등의 재생을 목적으로 하는 치료제를 의미한다.As used herein, the term "fat-derived stem cell therapeutic agent" refers to the proliferation and selection of live autologous, allogenic, or xenogenic cells in vitro, or other methods for restoring the function of cells and tissues. By using a series of actions such as changing the biological characteristics of fat-derived stem cells, medicines used for the purpose of treatment, diagnosis and prevention, or fat cells, osteoblasts, chondrocytes, and muscle fibers formed by the differentiation of fat-derived stem cells It means a therapeutic agent for the purpose of regeneration of parental cells, muscle cells or nerve cells.
본 발명에서 용어, "역가"는 줄기세포치료제의 치료적 활성(therapeutic activity)을 의미하며, 바람직하게는 지방유래줄기세포 치료제의 분화능력 또는 치료능력을 의미할 수 있다.In the present invention, the term "titer" refers to the therapeutic activity of the stem cell therapy, and preferably may refer to the differentiation or therapeutic ability of the adipose derived stem cell therapy.
본 발명의 일 실시예에서는 ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20의 단백질 수준이 낮고, ITM2A, LGI2, SULF2, CCND2 및 GADD45G의 발현 수준이 높은 P2인 지방유래줄기세포가 지방세포로의 분화능력 뛰어남을 확인하였고(도 5), PTGER2의 발현 수준이 낮은 세포와 ITM2A의 발현 수준이 높은 세포를 분리하여, 지방 세포로의 분화를 유도한 결과, PTGER2의 발현 수준이 낮은 세포가 높은 세포에 비하여 지방세포로의 분화가 잘 일어나며, ITM2A의 발현 수준이 높은 세포가 낮은 세포에 비하여 지방세포로의 분화가 잘 일어남을 확인하였다(도 6). 또한, PTGER2 siRNA를 이용하여 지방유래줄기세포의 PTGER2의 발현 수준을 낮춘 경우, NF-kB의 인산화 수준 및 그의 타겟 유전자인 COX-2의 발현 또한 감소시킴을 확인함으로써, PTGER2 단백질의 낮은 발현 수준이 지방유래줄기세포의 치료활성 중 하나인 염증 저해 치료 활성을 나타낼 수 있는 마커가 될 수 있음을 확인하였다(도 7). In one embodiment of the present invention, the protein level of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 is low, and the expression level of ITM2A, LGI2, SULF2, CCND2 and GADD45G, P2 fat derived stem cells are excellent in differentiating ability to adipocytes (FIG. 5), cells with low expression level of PTGER2 and high expression levels of ITM2A were isolated to induce differentiation into adipocytes. As a result, cells with low expression level of PTGER2 were found to be adipocytes as compared to cells with high expression level. Differentiation occurs well, and it was confirmed that differentiation into adipocytes was better than that of cells having high ITM2A expression level (FIG. 6). In addition, when PTGER2 siRNA was used to lower the expression level of PTGER2 in adipose derived stem cells, the expression level of NF-kB and its target gene COX-2 were also reduced. It was confirmed that it can be a marker that can indicate the inhibitory therapeutic activity, which is one of the therapeutic activities of adipose derived stem cells (FIG. 7).
상기 유전자 mRNA 또는 이의 단백질 수준 측정은 상기에서 설명한 바와 동일하다.The gene mRNA or protein level measurement thereof is the same as described above.
또 하나의 양태로서, ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질 수준을 측정하는 제제를 포함하는, 지방유래줄기세포의 노화를 측정하기 위한 마커 검출용 조성물을 제공한다. In another embodiment, adipose derived, comprising an agent that measures one or more gene mRNAs or protein levels thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G It provides a composition for detecting markers for measuring the aging of stem cells.
본 발명에서 용어, "노화"는 개체 연령 증가 또는 계대수의 증가로 지방유래줄기세포의 분화능력 또는 증식능력이 감소하는 것을 의미한다. 본 발명의 목적상, 노화된 지방유래줄기세포는 ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 발현이 대조군에 비해 증가되어 있거나, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 하나 이상의 유전자의 발현이 대조군에 비해 감소되어 있는 지방유래줄기세포를 의미할 수 있다. 본 발명의 일 실시예에서는 ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20 단백질의 발현이 감소되어 있고, ITM2A, LGI2, SULF2, CCND2 및 GADD45G 단백질의 발현이 증가되어 있는 지방유래줄기세포는 ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20 단백질의 발현이 증가되어 있고, ITM2A, LGI2, SULF2, CCND2 및 GADD45G 단백질의 발현이 감소되어 있는 지방유래줄기세포에 비하여 지방세포로의 분화유도가 더 잘 일어나는 것을 확인하였다 (실시예 4 및 도 5). 또한, 본 발명의 일 실시예에서는 PTGER2의 발현 수준이 다른 지방유래줄기세포를 10 계대 이상으로 배양하여 그 증식능력을 비교해 본 결과, PTGER2의 발현 수준이 낮은 세포의 경우 PTGER2의 발현 수준이 높은 세포에 비하여 증식능력이 지속적이며 결과적으로 더 뛰어남을 보여주었으며, 또한 ITM2A의 발현이 높은 세포의 증식능력이 ITM2A의 발현이 낮은 세포에 비하여 뛰어남을 보여주었다 (실시예 5 및 도 6). As used herein, the term "aging" means that the differentiation capacity or proliferation capacity of adipose derived stem cells is decreased due to an increase in the age of an individual or an increase in the number of passages. For the purposes of the present invention, aged adipose derived stem cells have increased expression of one or more genes selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 compared to the control group, or ITM2A, LGI2, SULF2, CCND2 and GADD45G. Expression of one or more genes selected from the group consisting of can refer to adipose derived stem cells are reduced compared to the control. In one embodiment of the present invention, the expression of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 proteins is reduced, and the adipose derived stem cells having increased expression of ITM2A, LGI2, SULF2, CCND2 and GADD45G proteins are ANXA10, IGF2BP3, MALL , Induction of differentiation into adipocytes was better compared to adipose derived stem cells having increased expression of PTGER2 and RGS20 proteins and decreased expression of ITM2A, LGI2, SULF2, CCND2 and GADD45G proteins (Example 4 And FIG. 5) . In addition, in one embodiment of the present invention as a result of comparing the proliferative capacity of adipose derived stem cells with different expression level of PTGER2 in 10 passages or more, in the case of cells with low expression level of PTGER2, the cells with high expression level of PTGER2 Compared to the cells with high proliferative capacity and resulted in greater proliferation, the proliferative capacity of cells with high ITM2A expression was superior to those with low ITM2A expression (Example 5 and FIG. 6).
상기 유전자 mRNA 또는 이의 단백질 수준 측정은 상기에서 설명한 바와 동일하다.The gene mRNA or protein level measurement thereof is the same as described above.
또 하나의 양태로서, 본 발명은 상기 지방유래줄기세포의 분화능력을 탐지하기 위한 마커 검출용 조성물을 포함하는, 지방유래줄기세포의 분화능력을 탐지하기 위한 마커 검출용 키트를 제공한다.As another aspect, the present invention provides a marker detection kit for detecting a differentiation capacity of adipose derived stem cells, including a composition for detecting a marker for detecting the differentiation capacity of the adipose derived stem cells.
본 발명의 마커 검출용 키트에는 계대수 또는 이로 대변되는 분화능력에 따라서 발현이 증가 또는 감소하는 마커 유전자 또는 이들의 단백질을 선택적으로 인지할 수 있는 프라이머 또는 항체뿐만 아니라 면역학적 분석에 사용되는 당 분야에서 일반적으로 사용되는 도구 및 시약 등이 포함된다. 이러한 도구나 시약으로는 적합한 담체, 검출 가능한 신호를 생성할 수 있는 표지 물질, 용해제, 세정제, 완충제, 안정화제 등이 포함되나, 이에 제한되지 않는다. 표지물질이 효소인 경우에는 효소의 활성을 측정할 수 있는 기질 및 반응 정지제를 포함할 수 있다. 적합한 담체로는, 이에 한정되지는 않으나, 가용성 담체, 예를 들어 당 분야에 공지된 생리학적으로 허용되는 완충액, 예를 들어 PBS, 불용성 담체, 예를 들어 폴리스틸렌, 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 폴리아크릴로니트릴, 불소수지, 가교 덱스트란, 폴리사카라이드, 라텍스에 금속을 도금한 자성 미립자와 같은 고분자, 기타 종이, 유리, 금속, 아가로스 및 이들의 조합일 수 있다.The marker detection kit of the present invention is used in immunological analysis as well as primers or antibodies capable of selectively recognizing marker genes or proteins thereof whose expression is increased or decreased depending on the number of passages or their differentiation capacity. Tools and reagents commonly used in the art. Such tools or reagents include, but are not limited to, suitable carriers, labeling materials capable of generating detectable signals, solubilizers, detergents, buffers, stabilizers, and the like. If the label is an enzyme, it may include a substrate and a reaction terminator that can measure the activity of the enzyme. Suitable carriers include, but are not limited to, soluble carriers such as physiologically acceptable buffers known in the art, such as PBS, insoluble carriers such as polystyrene, polyethylene, polypropylene, polyesters, Polyacrylonitrile, fluororesin, crosslinked dextran, polysaccharides, polymers such as magnetic fine particles plated with latex metal, other papers, glass, metals, agarose and combinations thereof.
본 발명의 마커 검출용 키트는 바람직하게는 RT-PCR 키트, DNA 키트 또는 단백질 칩 키트일 수 있다. 상기 단백질 칩에 상기 유전자가 코딩하는 단백질에 대한 항체가 제공되는 경우에는, 2개 이상의 항체에 대한 항원-항체 복합체 형성을 관측할 수 있어 지방유래줄기세포의 분화능력 탐지에 있어 보다 유리하다.The kit for detecting a marker of the present invention may preferably be an RT-PCR kit, a DNA kit or a protein chip kit. When the protein chip is provided with an antibody against a protein encoded by the gene, antigen-antibody complex formation for two or more antibodies can be observed, which is more advantageous in detecting the differentiation capacity of adipose derived stem cells.
상기 RT-PCR 키트는 마커 유전자에 대한 특이적인 각각의 프라이머 쌍을 포함할 수 있으며, 그 외 테스트 튜브 또는 다른 적절한 컨테이너, 반응 완충액(pH 및 마그네슘 농도는 다양), 데옥시뉴클레오타이드(dNTPs), Taq-폴리머라아제 및 역전사효소와 같은 효소, DNAse, RNAse 억제제 DEPC-수(DEPC-water), 멸균수 등을 포함할 수 있다. The RT-PCR kit may comprise individual primer pairs specific for the marker gene, as well as other test tubes or other suitable containers, reaction buffers (variable pH and magnesium concentrations), deoxynucleotides (dNTPs), Taq Enzymes such as polymerase and reverse transcriptase, DNAse, RNAse inhibitor DEPC-water, sterile water and the like.
상기 DNA 칩 키트는 유전자 또는 그의 단편에 해당하는 cDNA 또는 올리고뉴클레오티드(oligonucleotide)가 부착되어 있는 기판, 및 형광표식 프로브를 제작하기 위한 시약, 제제, 효소 등을 포함할 수 있으며, 상기 기판은 대조군 유전자 또는 그의 단편에 해당하는 cDNA 또는 올리고뉴클레오티드를 포함할 수 있다.The DNA chip kit may include a substrate on which a cDNA or oligonucleotide corresponding to a gene or a fragment thereof is attached, and a reagent, an agent, an enzyme, etc. for preparing a fluorescent probe, and the substrate may be a control gene. Or cDNA or oligonucleotide corresponding to fragments thereof.
상기 단백질 칩 키트는 마커에 대한 하나 이상의 항체가 기판 위의 정해진 위치에 배열되어 고밀도로 고정화되어 있는 키트일 수 있다. 단백질 칩을 이용하는 방법은 시료에서 단백질을 분리하고, 분리한 단백질을 단백질 칩과 혼성화시켜서 항원-항체 복합체를 형성하고, 이를 판독하여 단백질의 존재 또는 발현수준을 확인할 수 있다. The protein chip kit may be a kit in which one or more antibodies against a marker are arranged at a predetermined position on a substrate and immobilized at a high density. In the method using a protein chip, the protein is separated from the sample, and the separated protein is hybridized with the protein chip to form an antigen-antibody complex, which can be read to confirm the presence or expression level of the protein.
본 발명의 일 실시예에서는 마이크로어레이를 이용하여 계대수가 2, 5 및 8인 지방유래줄기세포의 마커 유전자들의 발현 차이를 확인하였다 (실시예 2 및 도 3).In an embodiment of the present invention, the expression difference of marker genes of adipose derived stem cells having passage numbers 2, 5 and 8 was confirmed using a microarray (Examples 2 and 3).
또 하나의 양태로서, 본 발명은 상기 지방유래줄기세포 치료제의 역가를 측정하기 위한 마커 검출용 조성물을 포함하는, 지방유래줄기세포 치료제의 역가를 측정하기 위한 마커 검출용 키트를 제공한다. As another aspect, the present invention provides a marker detection kit for measuring the titer of adipose derived stem cell therapeutic agent, comprising a composition for detecting a marker for measuring the titer of the adipose derived stem cell therapeutic agent.
사용될 수 있는 마커 검출용 키트는 상기에서 설명한 바와 동일하다.The marker detection kit that can be used is the same as described above.
또 하나의 양태로서, 본 발명은 상기 지방유래줄기세포의 노화를 측정하기 위한 마커 검출용 조성물을 포함하는, 지방유래줄기세포의 노화을 측정하기 위한 마커 검출용 키트를 제공한다.As another aspect, the present invention provides a marker detection kit for measuring the aging of adipose derived stem cells, including a marker detection composition for measuring the aging of the adipose derived stem cells.
사용될 수 있는 마커 검출용 키트는 상기에서 설명한 바와 동일하다.The marker detection kit that can be used is the same as described above.
또 하나의 양태로서, 본 발명은 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 수준을 측정하는 단계를 포함하는, 지방유래줄기세포의 분화 능력을 탐지하는 방법을 제공한다. 상기 방법은 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개 또는 10개 유전자의 mRNA 또는 이의 단백질 수준을 측정하는 단계를 포함할 수 있다.In another embodiment, the invention comprises measuring the level of one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. To provide a method for detecting the differentiation ability of adipose derived stem cells. The method comprises one, two, three, four, five, six, seven, eight, selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. Measuring the mRNA or protein level of the dog, nine or ten genes.
상기 방법은 바람직하게는 ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 양이 대조군의 형성량에 비해 적으면 분화능력이 대조군에 비해 높은 것으로 판단하는 단계, 또는 ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 양이 대조군의 형성량에 비해 많으면 분화능력이 대조군에 비해 높은 것으로 판단하는 단계를 추가로 포함하는 지방유래줄기세포의 분화 능력을 탐지하는 방법일 수 있다. mRNA 또는 이의 단백질의 수준 측정은 상기에서 설명한바와 동일하다. The method preferably determines that if the amount of one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 is less than the amount of the control group, the differentiation capacity is higher than that of the control group. Or if the amount of one or more gene mRNAs or proteins thereof selected from the group consisting of ITM2A, LGI2, SULF2, CCND2, and GADD45G is greater than the amount of the control group, determining that the differentiation capacity is higher than that of the control group. It may be a method for detecting the differentiation ability of the adipose derived stem cells, including. Measurement of the level of mRNA or its protein is the same as described above.
본 발명의 일 실시예에서는 ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20의 발현이 감소되어 있고, ITM2A, LGI2, SULF2, CCND2 및 GADD45G의 발현이 증가되어 있는 지방유래줄기세포는 ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20의 발현이 증가되어 있고, ITM2A, LGI2, SULF2, CCND2 및 GADD45G의 발현이 감소되어 있는 지방유래줄기세포에 비하여 지방세포로의 분화가 더 잘 일어남을 확인하였다(도 5). 또한, PTGER2의 발현이 낮은 지방유래줄기세포를 분리하여 지방세포로의 분화를 유도한 경우, PTGER2의 발현이 높은 세포에 비하여 지방세포로의 분화가 더 잘 일어남을 확인하였고(도 6a), ITM2A의 발현이 높은 지방유래줄기세포를 분리하여 ITM2A의 발현이 낮은 세포와의 지방세포로의 분화능력을 비교한 결과, ITM2A의 발현이 높은 세포의 분화능력이 더 뛰어난 것을 확인하였다(도 6b).In one embodiment of the present invention, the expression of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 is reduced, and the adipose derived stem cells with increased expression of ITM2A, LGI2, SULF2, CCND2 and GADD45G are ANXA10, IGF2BP3, MALL, PTGER2 And it was confirmed that differentiation into adipocytes is better than adipose derived stem cells having increased expression of RGS20 and decreased expression of ITM2A, LGI2, SULF2, CCND2 and GADD45G (FIG. 5). In addition, when adipose derived stem cells with low expression of PTGER2 induced differentiation into adipocytes, it was confirmed that differentiation into adipocytes was better than that of cells with high expression of PTGER2 (FIG. 6A), and ITM2A expression. The high fat-derived stem cells were isolated and compared with the cells with low expression of ITM2A to adipocytes. As a result, it was confirmed that the cells with high expression of ITM2A had better differentiation capacity (FIG. 6B).
또 하나의 양태로서, 본 발명은 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 수준을 측정하는 단계를 포함하는, 지방유래줄기세포 치료제의 역가를 측정하는 방법을 제공한다. In another embodiment, the invention comprises measuring the level of one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. To provide a method for measuring the titer of adipose derived stem cell therapy.
ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 단백질의 수준이 대조군에 비하여 감소함을 확인하거나 낮은 수준을 보이는 것을 확인하면서, 높은 분화능력을 가지는 것으로 판단하는 단계를 포함할 수 있으며, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 수준이 대조군에 비하여 증가하거나 높은 수준을 보이는 것을 확인하면서, 높은 분화능력을 가지는 것으로 판단하는 단계를 포함할 수 있다.  Determining that the level of one or more genes mRNA or protein selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 decreases or shows a low level compared to the control group, and judges that it has a high differentiation capacity It may include, ITM2A, LGI2, SULF2, CCND2 and GADD45G one or more genes selected from the group consisting of a high differentiation ability, while confirming that the level of the protein is increased or higher than that of the control group And determining that it is.
또 하나의 양태로서, 본 발명은 지방유래줄기세포에 분화 능력 조절 후보 물질을 처리하는 단계; 및 지방유래줄기세포에서 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 증가 또는 감소를 측정하는 단계를 포함하는, 지방유래줄기세포의 분화 능력 조절 물질을 스크리닝하는 방법을 제공한다. As another aspect, the present invention comprises the steps of treating a differentiation capacity control candidate substance to adipose derived stem cells; And measuring an increase or decrease in one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G in adipose derived stem cells. In addition, the present invention provides a method of screening a substance for regulating the differentiation capacity of adipose derived stem cells.
본 발명에서 용어, "지방유래줄기세포의 분화 능력 조절 물질"은 지방유래줄기세포의 계대 또는 이로 대변되는 분화 능력 차이에 따라 유의하게 일어나는 유전자 발현량의 변화를 간접적 또는 직접적으로 억제 또는 유도하는 물질을 의미한다. 분화 능력 조절 물질은 낮은 계대수 또는 높은 분화능력을 가진 지방유래줄기세포에서 발현이 증가되어 있는 단백질군(예컨대, ITM2A, LGI2, SULF2, CCND2 및 GADD45G)의 경우 그 발현을 더욱 증가시킴으로써 분화를 더욱 유도할 수 있고, 그 발현을 감소시킴으로써 분화를 억제하도록 조절할 수 있다. 또한, 발현이 감소되는 단백질(예컨대, ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20)의 경우에는 그 발현을 더욱 감소시킴으로써 분화를 유도하거나 그 발현을 증가시킴으로써 분화를 억제하도록 조절할 수 있다. 따라서, 분화 조절 후보 물질의 존재 및 부재 하에서의 지방유래줄기세포의 분화능력 검출 마커 유전자의 발현량의 증가 또는 감소를 비교하는 방법으로 지방유래줄기세포의 분화능력을 조절할 수 있고, 나아가 분화 조절 물질을 스크리닝하는데 유용하게 사용될 수 있다.In the present invention, the term "differentiating ability of adipose derived stem cells" is a substance that indirectly or directly inhibits or induces a change in the amount of gene expression significantly occurring according to the passage of adipose derived stem cells or a differentiation ability represented by the same. Means. Differentiation capacity modulators can further differentiate by increasing the expression of a group of proteins (eg, ITM2A, LGI2, SULF2, CCND2 and GADD45G) that have increased expression in adipose derived stem cells with low passage numbers or high differentiation capacity. Can be induced and controlled to inhibit differentiation by reducing its expression. In addition, in the case of proteins whose expression is reduced (eg, ANXA10, IGF2BP3, MALL, PTGER2 and RGS20), the expression may be further reduced to induce differentiation or increase its expression to inhibit differentiation. Therefore, the differentiation capacity of the adipose derived stem cells can be controlled by comparing the increase or decrease in the expression level of the differentiation detection marker gene of the adipose derived stem cells in the presence and absence of the candidate for differentiation control, and furthermore, It can be usefully used for screening.
또 하나의 양태로서, 본 발명은 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질 수준을 증가 또는 감소시킴으로써 지방유래줄기세포로부터 지방세포로의 분화를 조절하는 방법을 제공한다. In another embodiment, the invention provides fat-derived by increasing or decreasing one or more gene mRNAs or protein levels thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G. Provided are methods for controlling differentiation of stem cells to adipocytes.
상기 유전자 mRNA 또는 이의 단백질 수준은 세포 내에서 유전자 발현율을 높일 수 있는 당업계에 공지된 다양한 방법을 이용하여 증가시킬 수 있으며, 바람직하게는 상기 유전자들을 포함하는 벡터를 제작하고, 이들을 세포에 형질도입시켜 이들 유전자의 발현율을 높일 수 있으나, 이에 제한되지는 않는다. 또한, 상기 유전자 mRNA 또는 이의 단백질 수준은 세포 내에서 유전자를 결실시키거나 유전자 변이를 통해 유전자 기능을 상실시킬 수 있는 당업계에 공지된 방법을 사용하여 감소시킬 수 있으며, 바람직하게는 상기 유전자들에 대한 shRNA(small hairpin RNA)를 제작하고, 이들을 세포에 형질도입시켜 이들 유전자의 발현을 낮출 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 목적상, 지방유래줄기세포의 지방세포로의 분화를 증가시키기 위해서는 ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 대한 shRNA를 제작하고, 이들을 세포에 형질도입시켜 이들 유전자의 발현을 낮출 수 있으며, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 하나 이상의 유전자를 포함하는 벡터를 제작하고, 이들을 세포에 형질도입시켜 발현율을 높일 수 있다. The gene mRNA or its protein level can be increased using various methods known in the art that can increase the gene expression rate in a cell, preferably to construct a vector comprising the genes and transduce them into the cell. It is possible to increase the expression rate of these genes, but is not limited thereto. In addition, the gene mRNA or protein level thereof may be reduced using methods known in the art that can delete genes in a cell or cause loss of gene function through gene mutation, preferably in the genes. Small hairpin RNAs (shRNAs) can be produced and transduced into cells to lower the expression of these genes, but are not limited thereto. For the purposes of the present invention, to increase the differentiation of adipose derived stem cells into adipocytes, shRNAs for one or more genes selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 are prepared and transduced into cells. Expression of these genes can be lowered, and vectors comprising one or more genes selected from the group consisting of ITM2A, LGI2, SULF2, CCND2, and GADD45G can be prepared, and these cells can be transduced to increase the expression rate.
이하, 본 발명을 하기 실시예에서 보다 구체적으로 설명한다. 그러나 이들 실시예는 본 발명에 대한 이해를 돕기 위한 것일 뿐 이들에 의해 본 발명이 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail in the following Examples. However, these examples are only for the understanding of the present invention, and the present invention is not limited thereto.
실시예 1: 지방유래줄기세포 계대(passage)에 따른 분화능력 검증Example 1 Verification of Differentiation Ability According to Adipose-Derived Stem Cell Passage
(1) 인간 지방 유래 스트로마 줄기세포의 배양(1) Culture of human fat-derived stromal stem cells
공여자로부터 지방 조직을 분리하였다(안트로젠, 경기도, 대한민국). 얻어진 지방 조직으로부터 지방 유래 스트로마 줄기세포를 분리하였다. 혈액을 제거하기 위해 지방 조직을 같은 부피의 KRB 용액으로 3 내지 4회 세척하였다. 지방 조직과 같은 부피의 콜라게나제 용액을 넣어 37℃ 수욕에서 반응시켰다. 이를 원심분리용 튜브에 옮겨 넣고 20℃, 1200 rpm에서 10분 동안 원심분리하였다. 상층액인 지방층을 제거하고, 아래층인 콜라게나제 용액을 흔들리지 않도록 조심해서 분리하였다. 기질배지를 넣어 현탁시킨 후, 20℃, 1200 rpm에서 5분 동안 원심분리하였다. 이때, 아래에 가라앉는 것이 스트로마-혈관 분획이므로, 상층액을 제거하였다. 스트로마-혈관 분획을 기질배지에 현탁시켜 배양용기에 접종하고, 37℃, 5% CO2 인큐베이터에서 24 시간 동안 배양하였다. 배양액 제거 후 인산염 완충용액으로 세척하고, 기질배지, 또는 기질배지에 염기성 섬유아세포 성장인자(bFGF)가 1 ng/㎖ 농도로 포함된 배지, 또는 기질배지에 표피세포 성장인자(EGF)가 5 ng/㎖ 농도로 포함된 배지를 이용하여 증식시켰다. 지방유래 스트로마 줄기세포가 배양용기의 80-90% 정도로 자라면 트립신을 처리하여 단일 세포로 분리하여 수득하였다. 얻어진 세포를 증식배지로 1:3~1:4로 희석하여 계대 배양을 수행하였다(한국공개특허 제10-2010-0118491호).Adipose tissue was isolated from donors (Antrogen, Gyeonggi-do, Korea). Adipose derived stromal stem cells were isolated from the obtained adipose tissue. Adipose tissue was washed 3-4 times with the same volume of KRB solution to remove blood. The same volume of collagenase solution as adipose tissue was added and reacted in a 37 ° C. water bath. This was transferred to a centrifuge tube and centrifuged at 20 ° C. and 1200 rpm for 10 minutes. The supernatant fat layer was removed, and the lower collagenase solution was carefully separated so as not to shake. After the substrate medium was suspended and centrifuged for 5 minutes at 20 ℃, 1200 rpm. At this time, since the sinking below is the stromal-vascular fraction, the supernatant was removed. The stromal-vascular fractions were suspended in substrate media and inoculated in culture vessels and incubated in 37 ° C., 5% CO 2 incubator for 24 hours. After removal of the culture solution, the cells were washed with phosphate buffer solution and 5 ng of epidermal growth factor (EGF) was added to the substrate medium or the medium containing basic fibroblast growth factor (bFGF) at a concentration of 1 ng / ml. Proliferation was performed using the medium contained at a / ml concentration. When adipose derived stromal stem cells were grown to about 80-90% of the culture vessel, they were obtained by separating into single cells by treating with trypsin. The obtained cells were diluted 1: 3 to 1: 4 with proliferation medium to carry out passage culture (Korean Patent Publication No. 10-2010-0118491).
배양배지의 조성 및 계대배양에 따른 유전자 발현 차이를 분석하기 위하여 10% FBS가 포함된 DMEM인 기저배지로 배양한 5계대 세포와 기저배지에 1ng/㎖ bFGF가 포함된 증식배지로 배양한 2계대, 5계대, 8계대 세포를 수집하였다. To analyze the gene expression differences according to the composition and passage of culture medium, two passages cultured with basal medium of DMEM containing 10% FBS and growth medium containing 1 ng / ml bFGF in basal medium Cells from 5 passages and 8 passages were collected.
총 5개 로트 배양결과 기저배지로 배양할 때보다 증식배지로 배양할 때 증식속도가 높았으며, 섬유아세포형태를 안정적으로 유지하였다. 도 1a에 증식배지에서 배양한 지방유래줄기세포의 CPDL(cell population doubling level)의 예를 나타내었고, 도 1b에 한 샘플에서의 증식배지에서 배양한 지방줄기세포의 형태사진을 나타내었다.As a result of the culture of 5 lots, the growth rate was higher and the fibroblast morphology was stably maintained when cultured with the growth medium than when the basal medium was cultured. FIG. 1A shows an example of cell population doubling levels (CPDL) of adipose derived stem cells cultured in proliferation medium, and FIG. 1B shows a morphology picture of adipose stem cells cultured in proliferation medium in one sample.
(2) 인간 지방유래 줄기세포의 2계대(P2), 8계대(P8), 14계대(P14) 세포의 분화유도(2) Induction of differentiation of 2nd (P2), 8th (P8), 14th (P14) cells of human adipose derived stem cells
지방줄기세포를 증식배지에 현탁시켜 24 웰 배양용기에 각 90,000개의 세포를 접종하고, 37℃, 5% CO2 인큐베이터에서 24 시간 동안 배양하여 바닥에 붙였다. 세포가 배양 용기 바닥에 단일층으로 가득차면 기질배지로 갈아주고 37℃, 5% CO2 인큐베이터에서 2-3일 동안 배양한 후 분화배지로 갈아주고 5일 동안 배양하였다. 이후 분화배지를 제거하고 분화유지배지(지방세포배지, adipocyte media)로 갈아주고 3일마다 새로운 분화유지 배지로 바꾸어 주면서 12일간 배양하였다. Adipose stem cells were suspended in proliferation medium to inoculate each of 90,000 cells in a 24-well culture vessel, incubated for 24 hours in a 37%, 5% CO 2 incubator and attached to the bottom. When the cells were filled with a single layer at the bottom of the culture vessel, the cells were changed to a substrate medium, incubated for 2-3 days in a 37 ° C., 5% CO 2 incubator, and then changed into differentiation medium and cultured for 5 days. After that, the differentiation medium was removed and changed into differentiation maintenance medium (fat cell medium, adipocyte media) and cultured for 12 days while changing to new differentiation maintenance medium every 3 days.
기질배지는 10% 우혈청과 0.1% 항생제가 포함되어 있는 DMEM(Dulbecco's Modified Eagle Medium) 배지이고 증식배지는 DMEM/F12, 10% 우혈청, 5 ng/㎖ EGF, 0.25 ng/㎖ bFGF, 0.25 ng/㎖ TGF-β1, 0.1% 항생제를 포함한다. 분화 배지는 DMEM/F12, 3% FBS, 33 μM 바이오틴, 17 μM 판토테네이트, 1 μM 인슐린, 1 μM 덱사메타손, 250 μM IBMX(isobutylmethylxanthine), 100 μM 인도메타신(indomethacin)을 포함하고 분화유지배지는 DMEM/F12, 3% 우혈청, 33 μM 바이오틴, 17 μM 판토테네이트, 100 nM 인슐린 및 1 μM 덱사메타손을 포함한다.Substrate medium is DMEM (Dulbecco's Modified Eagle Medium) medium containing 10% bovine serum and 0.1% antibiotic and proliferation medium is DMEM / F12, 10% bovine serum, 5 ng / ml EGF, 0.25 ng / ml bFGF, 0.25 ng / Ml TGF-β1, 0.1% antibiotic. Differentiation medium contains DMEM / F12, 3% FBS, 33 μM biotin, 17 μM pantothenate, 1 μM insulin, 1 μM dexamethasone, 250 μM isobutylmethylxanthine, 100 μM indomethacin and differentiation maintenance medium DMEM / F12, 3% bovine serum, 33 μM biotin, 17 μM pantothenate, 100 nM insulin and 1 μM dexamethasone.
(3) 지방세포 분화 형태 확인 방법(Oil-Red O 염색)(3) Confirmation of fat cell differentiation form (Oil-Red O staining)
지방유래 줄기세포에서 지방세포(adipocyte)로의 분화를 형태학적으로 확인하기 위하여, Oil-red O 염색법(Oil-red O staining)을 시행하였다. 분화시킨 세포를 PBS 용액(phosphate buffered saline)으로 헹군 후, 10% 포르말린(formalin)으로 고정하였다. 12시간 동안 고정한 다음 60% 이소프로페놀를 첨가하여 20분 동안 반응시키고 0.5% Oil Red O 용액(SIGMA O0625)으로 실온에서 1 내지 3 시간 동안 염색시켰다. 염색 후 60% 이소프로페놀로 1회, 증류수로 3회 세척한 후 건조시킨 다음, 현미경 상에서 지방생성(Adipogenesis)이 이루어진 세포의 비율을 측정하였다. 이후 100% 이소프로페놀을 첨가하여 염색된 지방방울에서 Oil Red O 염료를 용출시킨 후 520 ㎚에서 흡광도를 측정하였다. 그 결과, 2계대, 8계대 및 14계대 지방유래줄기세포의 분화능력을 확인하였다. Oil-red O staining was performed to morphologically confirm the differentiation of adipose derived stem cells into adipocytes. Differentiated cells were rinsed with PBS solution (phosphate buffered saline) and fixed with 10% formalin. After fixing for 12 hours, the mixture was reacted for 20 minutes by adding 60% isoprophenol and stained with 0.5% Oil Red O solution (SIGMA 00625) at room temperature for 1 to 3 hours. After staining, the cells were washed once with 60% isoprophenol, three times with distilled water, dried, and then measured in the microscope to determine the percentage of cells that had undergone adipogenesis. Thereafter, 100% isoprophenol was added to elute the Oil Red O dye from the dyed fat drops, and the absorbance was measured at 520 nm. As a result, the differentiation ability of adipose derived stem cells of 2nd, 8th and 14th passages was confirmed.
도 2a에 Oil-red O로 염색된 플레이트의 예를 나타내었고, 도 2b에 Oil-red O로 염색된 세포의 현미경 상의 사진의 예를, 도 2c는 샘플의 분화결과를 정량적으로 측정하여 4개의 평균값을 나타낸 것이다. 2계대의 지방유래줄기세포가 분화능력이 가장 높은 것을 확인하여 초기 계대의 지방유래줄기세포일수록 분화능력이 높은 것을 확인하였다. An example of a plate stained with Oil-red O is shown in FIG. 2A, and an example of a microscopic picture of cells stained with Oil-red O is shown in FIG. 2B. FIG. 2C is a quantitative measure of the differentiation result of the sample. The mean value is shown. It was confirmed that the fat-derived stem cells of the second passage had the highest differentiation ability, and that the fat-derived stem cells of the early passage had higher differentiation capacity.
실시예 2: 마이크로 어레이 실험에 의한 지방유래줄기세포의 계대별 유전자 발현 증감 확인Example 2: Confirmation of gene expression change by passage of adipose derived stem cells by microarray experiment
(1) 인간 지방 유래 스트로마 줄기세포의 배양(1) Culture of human fat-derived stromal stem cells
공여자 17명으로부터 지방 조직을 분리하고(안트로젠, 경기도, 대한민국) 실시예 1에서와 같이 지방유래 줄기세포를 배양하였다. Adipose tissue was isolated from 17 donors (Antrogen, Gyeonggi-do, Korea) and cultured adipose derived stem cells as in Example 1.
(2) 총 RNA 분리(2) total RNA isolation
총 RNA는 QIAGEN 킷트(RNeasy Maxi kit: cat #75162)를 사용하여 분리하였고, Experion RNA StdSens(Bio-Rad사) 칩을 이용하여 정량하였다. 우선 상기 배양된 지방유래 줄기세포를 150 ㎕의 베타 멀캅토 에탄올을 첨가한 15 ㎖의 키트 내 분해 완충액에 용해시켰다. 여기에 15 ㎖의 70% 에탄올을 넣어 잘 섞은 후, 3000 g에서 5분간 원심분리하여 총 RNA를 막에 부착시켰다. 두 차례의 세척을 한 후, 1.2 ㎖의 RNase가 없는 물을 첨가하여 총 RNA를 분리하였다.Total RNA was isolated using QIAGEN kit (RNeasy Maxi kit: cat # 75162) and quantified using Experion RNA StdSens (Bio-Rad) chip. First, the cultured adipose derived stem cells were lysed in 15 ml of digestion buffer in a kit to which 150 µl of beta mercapto ethanol was added. 15 ml of 70% ethanol was added thereto, mixed well, and centrifuged at 3000 g for 5 minutes to attach total RNA to the membrane. After two washes, total RNA was isolated by adding 1.2 ml of RNase-free water.
(3) 마이크로어레이 실시(3) Microarray
상기 추출된 총 RNA를 Illumina TotalPrep RNA Amplification Kit(Ambion사)를 이용하여 하이브리드화 하였다. T7 Oligo(dT) 프라이머를 이용하여 cDNA를 합성하고, biotin-UTP를 이용하여 in vitro 전사(in vitro transcription)을 실시하여 biotin-labeled cRNA를 제조하였다. 제조된 cRNA는 NanoDrop을 이용하여 정량하였다. 지방유래줄기세포에서 제조된 cRNA를 Human-6 V2(Illumina사) 칩에 하이브리드화 하였다. 하이브리드화 후, 비특이적 하이브리드화를 제거하기 위하여 Illumina Gene Expression System 세척액(Illumina사)을 이용하여 DNA 칩을 세척하였고 세척된 DNA 칩은 streptavidin-Cy3(Amersham사) 형광 염색약으로 표지하였다. 형광 표지된 DNA 칩은 공촛점(confocal) 레이저 스캐너(Illumina사)를 이용하여 스캐닝하여 각 스팟에 존재하는 형광의 데이터를 얻어서 TIFF 형태의 이미지 파일로 저장하였다. TIFF 이미지 파일을 BeadStudio version 3(Illumina 사)으로 정량하여 각 스팟의 형광값을 정량하였다. 정량된 결과는 Avadis Prophetic version 3.3(Strand Genomics사) 프로그램으로 'quantile' 기능을 이용하여 보정하였다.The extracted total RNA was hybridized using an Illumina TotalPrep RNA Amplification Kit (Ambion). CDNA was synthesized using T7 Oligo (dT) primers and biotin-UTPin vitro Warrior(in vitro transcription) to prepare biotin-labeled cRNA. The prepared cRNA was quantified using NanoDrop. Manufactured from adipose derived stem cells cRNA was hybridized to a Human-6 V2 (Illumina) chip. After hybridization, DNA chips were washed using Illumina Gene Expression System Wash (Illumina) to remove nonspecific hybridization, and the washed DNA chips were labeled with streptavidin-Cy3 (Amersham) fluorescent dye. Fluorescently labeled DNA chips were scanned using a confocal laser scanner (Illumina, Inc.) to obtain data of fluorescence present in each spot and stored as TIFF image files. TIFF image files were quantified with BeadStudio version 3 (Illumina) to quantify the fluorescence values of each spot. Quantified results were corrected using the 'quantile' function with Avadis Prophetic version 3.3 (Strand Genomics) program.
그 결과를 도 3에 나타내었다. 도 3a는 증식배지에서 배양한 계대수 2인 세포와 계대수 5, 계대수 8인 세포에서 측정된 상기 유전자들의 발현 차이를 보여준다. IGF2BP3, ANXA10, MALL, PTGER2, 및 RGS20 유전자는 P2에 비하여 P8에서 현저한 증가를 보이는 유전자이며, ITM2A, LGI2, SULF2, CCND2 및 GADD45G는 P2에 비하여 P8에서 그 발현이 감소한 유전자이다. ALPL과 VCAM1은 대조 유전자로서 문헌상 분화능력과 관련하여 감소한다고 알려져 있으며, 본 실험에서도 유의성 있는 감소를 보였다. 이러한 결과로부터 상기 유전자들이 P2와 P8을 비교할 때 발현차이를 크게 나타내므로, 줄기세포의 분화 및 치료 능력을 진단하는 데 사용할 수 있음을 알 수 있다. 단, 분화된 세포에서의 발현은 분화전 계대에 따른 발현 변화와는 무관하게 달라진다. 예를 들면 IGF2BP3는 분화 전 줄기세포상태에서는 계대에 따라 증가하지만 분화가 시작되면 급격히 줄어들고, ITM2A의 경우 줄기세포상태에서는 계대에 따라 대체로 줄어들지만 분화가 시작되면 늘어난다. 도 3a는 마이크로 어레이 결과를 나타낸 것이며, 도 3b 내지 3d는 상기 유전자들의 계대별 발현량의 차이를 그래프로 나타낸 것이다.The results are shown in FIG. Figure 3a shows the difference in expression of the genes measured in passage 2 cells and passage 5, passage 8 cells cultured in proliferation medium. IGF2BP3, ANXA10, MALL, PTGER2, and RGS20 genes show a significant increase in P8 compared to P2, and ITM2A, LGI2, SULF2, CCND2, and GADD45G are genes with reduced expression in P8 compared to P2. ALPL and VCAM1 are known to decrease in relation to differentiation capacity in the literature as control genes, and also showed significant decrease in this experiment. From these results, it can be seen that the genes can be used for diagnosing the differentiation and therapeutic ability of stem cells because the genes show a large expression difference when comparing P2 and P8. However, expression in differentiated cells is independent of expression changes according to predifferentiation passages. For example, IGF2BP3 increases with passage in the stem cell state before differentiation, but rapidly decreases when differentiation begins. In the case of ITM2A, it decreases with passage in the stem cell state but increases when differentiation begins. Figure 3a shows the micro array results, Figures 3b to 3d graphically shows the difference in the expression level of the genes by passage.
실시예 3: 개별 공여자의 지방유래 줄기세포로부터 초기 계대(early Passage, < 2)를 대변할 수 있는 상기 유전자 발현 확인Example 3 Identification of the Gene Expression That Can Represent Early Passage (<2) from Adipose-Derived Stem Cells from Individual Donors
17쌍의 공여자 지방줄기세포 샘플(P2와 P8)를 이용하여 실시예 2에서 확인된 유전자들의 발현량을 RT-PCR 방법을 통하여 분석하였다. 실시예 2의 방법을 통하여 총 RNA를 분리하였다.The expression levels of the genes identified in Example 2 using 17 pairs of donor adipose stem cell samples (P2 and P8) were analyzed by RT-PCR method. Total RNA was isolated via the method of Example 2.
(1) cDNA 합성과 주형의 농도 보정(1) cDNA synthesis and concentration correction of template
시료 각각의 총 RNA 2㎍, 프라이머인 50μM Olgo(dT) 1 ㎕와 10 mM dNTP 2.5 ㎕를 넣고 RNase 저해제인 DEPC가 들어 있는 멸균수로 전체가 25 ㎕가 되도록 하여 RNA/primer 혼합용액을 만들었다. 65℃에서 5분간 반응시킨 후 55℃로 옮겨 보관하였다. 다음 10X RT buffer 5㎕, 25 mM MgCl2 10㎕, 0.1 M DTT 5㎕, RNase inhibitor 1㎕, SuperScriptIII RT 효소를 1㎕ 넣고 전체가 25㎕ 가 되도록 한 후 55℃에서 보관 중인 RNA/primer 혼합용액과 섞어준 후, 55℃에서 50분간 반응시켰다. 그 후 85℃에서 5분간 반응시켜 RT 효소를 불활성화한 후 얼음에 넣어 반응을 종결시켰다. 마커 유전자를 정량하기 위한 표준 유전자로서 PRL13A를 사용하였다. 표준 유전자의 프라이머를 이용하여 RT-PCR 반응을 수행하고 표준 유전자 RPL13A의 발현량이 동일해지도록 cDNA의 농도를 보정하였다. 우선 각각의 cDNA를 20배 희석한 후 희석된 샘플 2㎕를 이용하여 PCR 반응을 수행하였다. PCR은 2x PCR premix (Hot start) 15㎕, 2㎕의 PRL13A 정방향 프라이머 , 2㎕의 PRL13A 역방향 프라이머, 11㎕의 증류수를 넣어 사용하였고 20 cycle, 23 cycle, 25 cycle을 수행하였다. 이때 RT-PCR 반응 조건은 94℃ 30초, 50℃ 30초, 72℃ 1분으로 수행하였다. 사용된 PRL13A 프라이머는 정방향 5'-CATCGTGGCTAAACAGGTACTG-3' (서열번호 1), 역방향 5'-GCACGACCTTGAGGGCAGC-3' (서열번호 2)이다. PCR 산물을 2% 아가로스 젤에 로딩하여 전기영동한 후 젤 사진을 찍고, 이미지를 TotalLab v1.0 프로그램(Nonlinear Dynamix사)으로 정량한 후, 다시 보정하여 PCR을 수행하여 정량하는 방식으로 각 시료의 농도를 동일하게 보정하였다.2 μg of total RNA of each sample, 1 μl of 50 μM Olgo (dT) primer and 2.5 μl of 10 mM dNTP were added, and 25 μl of sterase water containing DEPC, an RNase inhibitor, was prepared so that the total mixture was 25 μl. After reacting at 65 ° C. for 5 minutes, the mixture was transferred to 55 ° C. and stored. Next, 5 µl of 10X RT buffer, 10 µl of 25 mM MgCl 2 , 5 µl of 0.1 M DTT, 1 µl of RNase inhibitor, and 1 µl of SuperScript III RT enzyme were added to make 25 µl. The RNA / primer mixture was stored at 55 ° C. After mixing with, it was reacted at 55 ℃ for 50 minutes. Thereafter, the reaction was carried out at 85 ° C. for 5 minutes to inactivate the RT enzyme, and then placed on ice to terminate the reaction. PRL13A was used as a standard gene for quantifying marker genes. RT-PCR reaction was performed using primers of the standard gene, and the concentration of cDNA was corrected so that the expression level of the standard gene RPL13A was the same. First, each cDNA was diluted 20-fold, and then PCR reaction was performed using 2 μl of the diluted sample. PCR was performed using 15 μl of 2x PCR premix (Hot start), 2 μl of PRL13A forward primer, 2 μl of PRL13A reverse primer, and 11 μl of distilled water. 20, 23, and 25 cycles were performed. RT-PCR reaction conditions were performed at 94 ℃ 30 seconds, 50 ℃ 30 seconds, 72 1 minutes. The PRL13A primers used were forward 5'-CATCGTGGCTAAACAGGTACTG-3 '(SEQ ID NO: 1), reverse 5'-GCACGACCTTGAGGGCAGC-3' (SEQ ID NO: 2). Each product was loaded into a 2% agarose gel, electrophoresed, electrophoresed, and gel images were taken. The images were quantified using the TotalLab v1.0 program (Nonlinear Dynamix), and then corrected for PCR. The concentration of was equally corrected.
(2) RT-PCR/Real-Time PCR 을 이용한 발현량 분석 (2) Expression level analysis using RT-PCR / Real-Time PCR
동일한 양이 되도록 희석한 cDNA를 상기 유전자들의 센스 및 안티센스 프라이머를 이용하여 PCR을 수행하였다. cDNA는 3㎕, 2x premix 10㎕, 프라이머 각 2 ㎕(20 pmole), 증류수 2㎕를 섞어 총 용액 20㎕로 만들고 PCR 반응은 94℃ 1분, 54℃ 30초, 72℃ 1분으로 하였으며 각 유전자마다 Cycle은 달리하였다. PCR 산물을 확인하기 위하여 2% 아가로스 젤을 이용하여 전기영동하고 이미지 장비를 이용하여 분석하였다. Realtime RT-PCR은 Qiagen사(CA, USA)의 DNASYBR®GreenI 시약과 LightCycler(Roche)를 이용하였다. Melt Curve 분석을 이용하여 PCR 산물의 질을 평가하였고 유전자 발현량은 LightCycler version 3.5 software(Roche)를 사용하여 분석하였다. 상기 RT-PCR/Real-Time PCR에서 사용한 유전자들의 특이적 프라이머와 대조 프라이머의 서열(서열번호 1 내지 서열번호 26)은 [표 1]에 명시하였다. 그 결과를 도 4에 나타내었다. CDNA diluted to the same amount was subjected to PCR using the sense and antisense primers of the genes. cDNA was mixed with 3µl, 2x premix 10µl, primer 2µl (20 pmole), and 2µl of distilled water to make 20µl of total solution.The PCR reaction was 94 ℃ 1min, 54 ℃ 30sec, 72 ℃ Cycle was different for each gene. In order to confirm the PCR product, it was electrophoresed using 2% agarose gel and analyzed using an imaging apparatus. Realtime RT-PCR was used with DNASYBR®GreenI reagent and LightCycler (Roche) from Qiagen (CA, USA). Melt Curve analysis was used to evaluate the quality of PCR products and gene expression levels were analyzed using LightCycler version 3.5 software (Roche). The specific primers of the genes used in the RT-PCR / Real-Time PCR and the sequence of the control primer (SEQ ID NO: 1 to SEQ ID NO: 26) are shown in Table 1. The results are shown in FIG.
그 결과, 상기의 유전자들은 확연히 P2에 비하여 P8에서 증가하거나 감소하는 것이 확인되었으므로(대조 유전자 ALPL (64.7%, 17개 샘플 중 11 개 샘플에서 감소), 대조 유전자 VCAM(58.8%, 10개 샘플에서 감소) (도 4a), ANXA10(94.1%, 16개 샘플에서 증가), IGF2BP3(76.4%, 13개 샘플에서 증가), MALL(58.8%, 10개 샘플에서 증가), PTGER2(58.8%, 10개 샘플에서 증가), RGS20(64.7%, 11 개 샘플에서 증가) (도 4b 및 4c), ITM2A(94.1%, 16개 샘플에서 감소), LGI2(76.4%, 13 개 샘플에서 감소), SULF2(82.4%, 14개 샘플에서 감소), CCND2(82.4%, 14개 샘플에서 감소) 및 GADD45G(76.4%, 13개 샘플에서 감소) (도 4d 및 4e), 상기 유전자들은 지방줄기세포의 노화정도를 대변하는 진단마커로서 또는 줄기세포 분화와 관련된 약물스크리닝 등을 위한 마커 등으로 사용할 수 있을 것으로 보인다.As a result, it was confirmed that the above genes were significantly increased or decreased in P8 compared to P2 (control gene ALPL (64.7%, decreased in 11 of 17 samples), and control gene VCAM (58.8%, in 10 samples). Decrease) (FIG. 4A), ANXA10 (94.1%, increased in 16 samples), IGF2BP3 (76.4%, increased in 13 samples), MALL (58.8%, increased in 10 samples), PTGER2 (58.8%, 10) Increase in sample), RGS20 (64.7%, increase in 11 samples) (FIGS. 4B and 4C), ITM2A (94.1%, decrease in 16 samples), LGI2 (76.4%, decrease in 13 samples), SULF2 (82.4) %, Decreased in 14 samples), CCND2 (82.4%, decreased in 14 samples) and GADD45G (76.4%, reduced in 13 samples) (FIGS. 4D and 4E), the genes representing the aging of fat stem cells It may be used as a diagnostic marker or a marker for screening drugs related to stem cell differentiation.
표 1
유전자(REF) 프라이머 서열번호
RPL13A(NM_012423.02) F: 5'-catcgtggctaaacaggtactg-3' 서열번호 1
R: 5'-gcacgaccttgagggcagc-3' 서열번호 2
ALPL(NM_000478.3) F: 5'-acagacaagaagcccttcac-3' 서열번호 3
R: 5'-gttgtgagcatagtccacca-3' 서열번호 4
VCAM1(NM_001078.2) F: 5'-tgcgggagtatatgaatgtg-3' 서열번호 5
R: 5'-acgagaagctcaggagaaaa-3' 서열번호 6
ANXA10(NM_007193.3) F: 5'-cgagacaaaccagcctattt-3' 서열번호 7
R: 5'-tggtcagcaggtctatttca-3' 서열번호 8
IGF2BP3(NM_006547.2) F: 5'-cacctgatgagaatgaccaa-3' 서열번호 9
R: 5'-actttgcagagccttctgtt-3' 서열번호 10
MALL(NM_005434.3) F: 5'-acaagtacatgccacgattg-3' 서열번호 11
R: 5'-aggcatggagaatgtagagc-3' 서열번호 12
PTGER2(NM_000956.2) F: 5'-cacctcattctcctggctat-3' 서열번호 13
R: 5'-gaggtcccatttttcctttc-3' 서열번호 14
RGS20(NM_170587.1) F: 5'-tcaacagaaacatggtggag-3' 서열번호 15
R: 5'-tctccgataaggactgaagc-3' 서열번호 16
ITM2A(NM_001171581.1) F: 5'-ggctgacattcgtgaggatg-3' 서열번호 17
R: 5'-tgaggggcatcagatagcag-3' 서열번호 18
LGI2(NM_018176.2) F: 5'-caatgacatcgagctgtttc-3' 서열번호 19
R: 5'-ctcgtgcagtgactggtaag-3' 서열번호 20
SULF2(NM_018837.2) F: 5'-tgatgaatgcagtgaacaca-3' 서열번호 21
R: 5'-tttaagtcccaggtccatgt-3' 서열번호 22
CCND2(NM_001759.3) F: 5'-gatcgcaactggaagtgtgg-3' 서열번호 23
R: 5'-tggtgatcttagccagcagc-3' 서열번호 24
GADD45G(NM_006705.2) F: 5'-cgagaacgacatcgacatag-3' 서열번호 25
R: 5'-gttcgaaatgaggatgcagt-3' 서열번호 26
Table 1
Gene (REF) primer SEQ ID NO:
RPL13A (NM_012423.02) F: 5'-catcgtggctaaacaggtactg-3 ' SEQ ID NO: 1
R: 5'-gcacgaccttgagggcagc-3 ' SEQ ID NO: 2
ALPL (NM_000478.3) F: 5'-acagacaagaagcccttcac-3 ' SEQ ID NO: 3
R: 5'-gttgtgagcatagtccacca-3 ' SEQ ID NO: 4
VCAM1 (NM_001078.2) F: 5'-tgcgggagtatatgaatgtg-3 ' SEQ ID NO: 5
R: 5'-acgagaagctcaggagaaaa-3 ' SEQ ID NO: 6
ANXA10 (NM_007193.3) F: 5'-cgagacaaaccagcctattt-3 ' SEQ ID NO: 7
R: 5'-tggtcagcaggtctatttca-3 ' SEQ ID NO: 8
IGF2BP3 (NM_006547.2) F: 5'-cacctgatgagaatgaccaa-3 ' SEQ ID NO: 9
R: 5'-actttgcagagccttctgtt-3 ' SEQ ID NO: 10
MALL (NM_005434.3) F: 5'-acaagtacatgccacgattg-3 ' SEQ ID NO: 11
R: 5'-aggcatggagaatgtagagc-3 ' SEQ ID NO: 12
PTGER2 (NM_000956.2) F: 5'-cacctcattctcctggctat-3 ' SEQ ID NO: 13
R: 5'-gaggtcccatttttcctttc-3 ' SEQ ID NO: 14
RGS20 (NM_170587.1) F: 5'-tcaacagaaacatggtggag-3 ' SEQ ID NO: 15
R: 5'-tctccgataaggactgaagc-3 ' SEQ ID NO: 16
ITM2A (NM_001171581.1) F: 5'-ggctgacattcgtgaggatg-3 ' SEQ ID NO: 17
R: 5'-tgaggggcatcagatagcag-3 ' SEQ ID NO: 18
LGI2 (NM_018176.2) F: 5'-caatgacatcgagctgtttc-3 ' SEQ ID NO: 19
R: 5'-ctcgtgcagtgactggtaag-3 ' SEQ ID NO: 20
SULF2 (NM_018837.2) F: 5'-tgatgaatgcagtgaacaca-3 ' SEQ ID NO: 21
R: 5'-tttaagtcccaggtccatgt-3 ' SEQ ID NO: 22
CCND2 (NM_001759.3) F: 5'-gatcgcaactggaagtgtgg-3 ' SEQ ID NO: 23
R: 5'-tggtgatcttagccagcagc-3 ' SEQ ID NO: 24
GADD45G (NM_006705.2) F: 5'-cgagaacgacatcgacatag-3 ' SEQ ID NO: 25
R: 5'-gttcgaaatgaggatgcagt-3 ' SEQ ID NO: 26
실시예 4: 선별된 유전자의 계대에 따른 단백질 발현 조사 Example 4: Investigation of protein expression according to passage of selected genes
공여자 지방줄기세포 샘플(P2와 P8)을 이용하여 실시예 3에서 확인된 유전자들의 발현량을 웨스턴 블랏 분석법으로 단백질 정량을 통하여 분석하였다. 사용된 P2와 P8 세포를 단백질 분석과 동시에 분화시켜 각각의 분화능력도 검증하였다. The amount of expression of the genes identified in Example 3 using donor adipose stem cell samples (P2 and P8) was analyzed by protein quantification by Western blot analysis. P2 and P8 cells used were differentiated simultaneously with protein analysis to verify their differentiation potential.
구체적으로, 60 mm 디쉬에서 키워진 세포를 PBS로 한번 헹구어낸 후, 차가운 단백질용 용해 완충액(RIPA cell lysis buffer: 50 mM Tris-Cl(pH 7.5), 150 mM NaCl, 1% Nonidet P-40, 10% 글리세롤, 1 mM PMSF, 1 mM DTT, 20 mM NaF, 1 mM EDTA, 단백질분해효소 저해제)을 첨가하여, 세포의 단백질을 준비하였다. 준비되어진 각 단백질 시료를 30㎍씩 사용하여 10% 혹은 12% SDS-PAGE(sodium dodecyl sulfate polyacrylamide gel electrophoresis) 겔(gel)에 걸어 크기별로 단백질을 분리해 낸 후, 이를 PVDF 막에 잘 옮겨주었다.Specifically, after rinsing the cells grown in a 60 mm dish with PBS once, the cold protein lysis buffer (RIPA cell lysis buffer: 50 mM Tris-Cl (pH 7.5), 150 mM NaCl, 1% Nonidet P-40, 10 % Glycerol, 1 mM PMSF, 1 mM DTT, 20 mM NaF, 1 mM EDTA, protease inhibitors) were added to prepare the proteins of the cells. Using 30 μg of each prepared protein sample, 10% or 12% SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) gel was used to separate proteins by size, and then transferred to PVDF membrane.
단백질이 옮겨진 필터를 적당한 크기로 잘라낸 후, 각 단백질에 해당하는 항체를 붙여주었다. 항체에 대한 정보는 다음과 같다. Anti-ALPL(Sigma, HPA008765), anti-LGI2(Santa Cruz, sc-74723), anti-ITM2A(Santa Cruz, sc-134811), anti-SULF2(R&D, MAB7087), anti-CCND2(Santa Cruz, sc-181), anti-GADD45G(abcam, ab56802), anti-ANXA10(Santa Cruz, sc-70009), anti-IGF2BP3(Santa Cruz, sc-100766), anti-MALL(Santa Cruz, sc-168544), anti-PTGER2(abcam, ab16151), anti-RGS20(abcam, ab77009), anti-ACTIN(Sigma, A5316). 각각의 단백질의 양은 ImmobilonTM 웨스턴 블럿팅 검출 시약(Western Blotting Detection reagents) (Millipore)를 사용하여 밴드(band)로 확인하였다.After removing the filter to which the protein was transferred to an appropriate size, an antibody corresponding to each protein was attached. Information on antibodies is as follows. Anti-ALPL (Sigma, HPA008765), anti-LGI2 (Santa Cruz, sc-74723), anti-ITM2A (Santa Cruz, sc-134811), anti-SULF2 (R & D, MAB7087), anti-CCND2 (Santa Cruz, sc -181), anti-GADD45G (abcam, ab56802), anti-ANXA10 (Santa Cruz, sc-70009), anti-IGF2BP3 (Santa Cruz, sc-100766), anti-MALL (Santa Cruz, sc-168544), anti -PTGER2 (abcam, ab16151), anti-RGS20 (abcam, ab77009), anti-ACTIN (Sigma, A5316). The amount of each protein was identified by band using Immobilon Western Blotting Detection reagents (Millipore).
그 결과, 상기 유전자 중 RT-PCR을 통하여 계대 증가에 따라 mRNA 수준이 감소하는 유전자인 ALPL, LGI2, ITM2A, SULF2, CCND2 및 GADD45G 단백질의 경우 P2에서 발현이 많고 P8에서 발현이 감소함을 관찰하였고, 계대 증가에 따라 mRNA 수준이 증가하는 유전자인 ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20 단백질의 경우 P2에서 발현이 낮고 P8에서 발현이 증가함을 관찰하였다(도 5). 사용된 P2와 P8 세포를 실시예 3에서와 같이 분화를 유도하여 각 계대별 세포의 분화능력도 검증하였다. 도 5에서 보는 바와 같이 P2 세포는 지방줄기세포 분화가 잘 이루어지며 P8 세포는 분화가 이루어지기는 하나 P2세포에 비해 그 분화 정도가 줄어듦을 알 수 있었다. 따라서 상기 유전자의 발현량 차이는 지방줄기세포의 젊고 노화됨을 알아볼 수 있는 마커로서 유용함을 증명하였다. As a result, it was observed that ALPL, LGI2, ITM2A, SULF2, CCND2, and GADD45G proteins, which are genes whose mRNA levels decrease with RT-PCR, are expressed in P2 and decreased in P8. In the case of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 proteins, which are genes whose mRNA levels increase with increasing passage, the expression was low in P2 and increased in P8 (FIG. 5). P2 and P8 cells used were induced differentiation as in Example 3 to verify the differentiation capacity of each passage. As shown in FIG. 5, P2 cells differentiated well from adipose stem cells, and P8 cells were differentiated, but the degree of differentiation was reduced compared to P2 cells. Therefore, the difference in the expression level of the gene proved to be useful as a marker for recognizing the young and aging of adipose stem cells.
실시예 5: 막단백질 유전자인 PTGER2와 ITM2A의 항체를 이용한 세포의 분리; 및 유전자 발현 정도와 분화 증가량 관련성 조사Example 5: Isolation of cells using antibodies of membrane protein genes PTGER2 and ITM2A; Of gene expression and differentiation increase
배양된 세포를 트립신(Trypsin)을 이용하여 단일 세포(single cell)로 분리하여 0.5 ㎖ 버퍼에 현탁한 후 PTGER2 및 ITM2A에 대한 단일클론항체를 첨가하였다. 잘 섞어 준 다음 4 ℃에서 30 분간 반응시키고, 버퍼를 이용하여 씻어 준 후 250 g에서 10 분간 원심분리하여 세포를 모으고 150㎕의 버퍼에 다시 현탁하였다. 형광으로 표지된 2차 항체를 넣고 4 ℃에서 30 분간 반응시키고 실온의 빛이 통하지 않는 장소에서 15 분간 더 반응시켰다. 이를 버퍼를 이용하여 씻어 준 후 3 ㎖의 페놀 레드(phenol red)가 없는 배지에 현탁시켰다. 이후 세포분별장치(cell sorter)를 이용하여 형광으로 표지된 세포와 표지되지 않은 세포를 구별하여 분리하였다. 이 분리된 세포를 분화 유도, 세포성장률 및 단백질 발현 변화에 이용하였다.The cultured cells were separated into single cells using trypsin, suspended in 0.5 ml buffer, and monoclonal antibodies against PTGER2 and ITM2A were added. After mixing well, the mixture was reacted at 4 ° C. for 30 minutes, washed with a buffer, centrifuged at 250 g for 10 minutes, cells were collected, and suspended again in 150 μl of buffer. The secondary antibody labeled with fluorescence was added and reacted at 4 ° C. for 30 minutes, and further reacted for 15 minutes at a place where light at room temperature did not pass. This was washed with a buffer and suspended in 3 ml of phenol red-free medium. Thereafter, cells separated by fluorescence and separated by unlabeled cells were separated using a cell sorter. These isolated cells were used for differentiation induction, cell growth rate and protein expression change.
분리한 세포를 24 웰(분화용, 세포성장 조사용)과 12 웰(단백질 추출용) 코닝 플레이트에 깔고 실시예 3 및 실시예 4와 같은 방법을 이용하여 분화를 유도하거나 세포성장 정도, 단백질 발현 등을 관찰하였다. The separated cells were placed in 24 wells (for differentiation and cell growth investigation) and 12 wells (for protein extraction) Corning plates to induce differentiation using the same method as in Examples 3 and 4, or to express cell growth and protein expression. Etc. were observed.
그 결과, PTGER2 발현이 되지 않는 세포는 PTGER2 발현이 높은 세포에 비해 분화유도가 더 잘 됨을 관찰하였고, 세포성장의 경우 계대수 10 이하에서는 PTGER2의 발현이 높은 세포가 더 잘 성장하였으나 계대수 10이 넘어가면 PTGER2 발현이 낮은 세포의 성장이 더 급격히 빨라짐을 알 수 있었다(도 6a). ITM2A의 경우, PTGER2와는 반대로 ITM2A 발현이 높은 세포의 분화가 더 잘되며 세포성장도 계대수 10 이후에 더 빨리 이루어짐을 알 수 있었다(도 6b).As a result, it was observed that cells that did not express PTGER2 had better differentiation induction than cells that had high PTGER2 expression. It was found that the rapid growth of cells with low PTGER2 expression was rapidly crossed (FIG. 6A). In the case of ITM2A, in contrast to PTGER2, cells with high ITM2A expression were better differentiated and cell growth was faster after passage 10 (Fig. 6b).
따라서 본 발명의 유전자들은 계대에 따라 발현이 변화함은 물론, 유전자의 발현 여부에 따라 분화능력과 세포성장에 미치는 영향이 달라지는 결과를 보아 상기 유전자의 발현량 변화가 지방줄기세포의 노화 정도를 대변하는 진단 마커 또는 줄기세포 치료제 관련 마커로 이용될 수 있을 것으로 보인다. Therefore, the genes of the present invention, as well as the expression changes depending on the passage, the effect of differentiation ability and cell growth depending on whether the expression of the gene is changed, the expression level of the gene represents the degree of aging of the stem cells It can be used as a diagnostic marker or a stem cell therapeutic marker.
실시예 6: 대표유전자로서 ALPL, PTGER2 및 ITM2A에 해당하는 siRNA 도입에 따른 염증관련 NF-kB, Cox-2 및 Erk1/2의 발현변화 조사 Example 6: Investigation of the expression changes of inflammation-related NF-kB, Cox-2 and Erk1 / 2 according to the introduction of siRNA corresponding to ALPL, PTGER2 and ITM2A as representative genes
인간 지방 유래 줄기세포를 6 웰 플레이트에 5 X 105개의 세포를 깔아준 후 24시간 동안 부착시켰다. 그 후, 500 ㎕의 Opti-MEM 배지에 상기유전자의 siRNA 및 control siRNA(40 nmol)를 각각 형질전환 하였다. 이 각각의 시료들에 siRNA 트랜스펙션 시약인 hiperfect(Qiagen)를 제조사의 매뉴얼대로 첨가시켜준 후, 교반기를 사용하여 잘 섞어 주었으며, 상온에서 siRNA 트랜스펙션 복합체가 생기도록 15분 동안 방치하였다. 이 동안 각 웰에 있는 배지를 새로운 10% FBS-DMEM 1.5 ㎖으로 갈아주었고, 15분이 지난 후에 각 시료들을 각 웰에 한 방울씩 천천히 첨가시켜 주었다. 48 시간의 배양 시간 후, 다시 한 번 hiperfect(Qiagen)를 이용한 siRNA의 세포주입과정을 같은 농도의 siRNA를 사용하여 시행하였으며, 두 번째의 siRNA의 첨가 후 72 시간이 지난 뒤에 Trizol을 500 ㎕씩 첨가시켜 RNA을 각 시료에서 뽑아내고 siRNA 에 의해 해당 유전자의 녹다운(Knock-down)을 우선 확인하였다. Human adipose derived stem cells were plated for 5 hours after placing 5 × 10 5 cells in a 6 well plate. Then, 500 μl of Opti-MEM medium was transformed with siRNA and control siRNA (40 nmol) of the gene, respectively. Each of these samples was added to the siRNA transfection reagent hiperfect (Qiagen) according to the manufacturer's manual, mixed well using a stirrer, and allowed to stand for 15 minutes to form a siRNA transfection complex at room temperature. During this time, the medium in each well was changed to 1.5 ml of fresh 10% FBS-DMEM, and after 15 minutes, each sample was slowly added dropwise to each well. After 48 hours of incubation time, the cell injection of siRNA using hiperfect (Qiagen) was performed again using the same concentration of siRNA, and 500 μl of Trizol was added 72 hours after the addition of the second siRNA. RNA was extracted from each sample, and knock-down of the gene was first confirmed by siRNA.
siRNA를 두 번 처리한 후 염증을 인위적으로 유발하기 위하여 TNF-α를 5 ng/㎖로 처리한 후 15 내지 30분 간격으로 120분 동안 처리하였다. 시료를 모아 세포 용해 완충용액(RIPA cell lysis buffer)을 200 ㎕씩 첨가하여 단백질을 추출하고 염증관련 NF-kB, Cox-2, 및 Erk1/2 단백질의 발현 변화를 조사하였다. 사용한 항체는 anti-phospho-Erk1/2(Pharmingen, 554093), anti-phospho-NF-kB(Cell signaling, #3037) 및 anti-Cox-2(Santa Cruz, sc-6248)이며, 각 시료에 대한 실험에 사용된 단백질의 양이 동일하다는 것을 GAPDH에 대한 항체(anti-GAPDH, Cell signaling)를 통한 블럿팅에서 확인하였다.In order to artificially induce inflammation after treatment with siRNA twice, TNF-α was treated at 5 ng / ml, followed by 120 minutes at 15 to 30 minute intervals. Samples were collected and 200 μl of RIPA cell lysis buffer was added to extract proteins, and the expression changes of NF-kB, Cox-2, and Erk1 / 2 protein were investigated. Antibodies used were anti-phospho-Erk1 / 2 (Pharmingen, 554093), anti-phospho-NF-kB (Cell signaling, # 3037) and anti-Cox-2 (Santa Cruz, sc-6248). The amount of protein used in the experiment was confirmed by blotting through antibodies to GAPDH (anti-GAPDH, cell signaling).
그 결과, 대조군으로 사용한 ALPL의 경우 NF-kB의 변화는 없었으나 Cox-2 발현의 증가가 ALPL knock-down에 의해 감소됨을 알 수 있었다(도 7a). 또한, 계대에 따라 감소하는 유전자 중 대표 유전자 ITM2A의 siRNA를 처리한 결과,콘트롤 유전자 ALPL의 siRNA 처리 결과와 유사하게 F-kB의 변화는 없었으나 Cox-2 발현의 증가가 ITM2A knock-down에 의해 감소됨을 알 수 있었으며 그 효과가 ALPL 에 비해 현저함을 알 수 있었다. 또한 상기 유전자 중, 계대에 따라 증가하는 유전자 중 대표 유전자 PTGER2의 siRNA를 처리한 결과 NF-kB 유전자의 활성이 줄어듦과 동시에 염증관련 Cox-2 유전자의 발현이 현저히 줄어든다는 것을 알 수 있었다. 이는 Cox-2가 NF-kB 와 관련하여 염증을 일으킨다는 연구결과(도 7b)에 비추어 볼 때, 지방줄기세포 치료제가 대체적으로 환부의 염증을 저해하는 기능이 있을 것으로 생각되므로, PTGER2 유전자는 지방줄기세포의 계대와 치료활성에 대한 마커 유전자로서 기능할 수 있을 것으로 확인되었다(도 7a). 또한, 도 7b에서 보는 바와 같이 Cox-2에 의해 증가하는 Prostagrandin E2(PGE2)의 경우 그 수준에 따라 염증과 점막재생이라는 다른 기능을 할 수 있으므로, 이로부터 지방줄기세포의 염증 저해 치료효과가 Cox-2 및 PGE2의 항상성에 의해 조절될 것이라는 것을 예측할 수 있다. As a result, in the case of ALPL used as a control, there was no change in NF-kB, but the increase in Cox-2 expression was reduced by ALPL knock-down (FIG. 7A). In addition, as a result of processing siRNA of the representative gene ITM2A among genes decreasing with passage, there was no change in F-kB similar to the siRNA treatment of the control gene ALPL, but an increase in Cox-2 expression was caused by ITM2A knock-down. It can be seen that the effect is remarkable compared to ALPL. In addition, the siRNA of the representative gene PTGER2 among the genes increased according to the passage was found to decrease the activity of the NF-kB gene and to significantly reduce the expression of inflammation related Cox-2 gene. This suggests that Cox-2 induces inflammation associated with NF-kB (Fig. 7B), and therefore, the PTGER2 gene is adipose because it is expected that adipose stem cell therapeutics will generally inhibit inflammation in the affected area. It was confirmed that it can function as a marker gene for the passage and therapeutic activity of stem cells (Fig. 7a). In addition, as shown in FIG. 7B, Prostagrandin E2 (PGE2), which is increased by Cox-2, may have different functions such as inflammation and mucosal regeneration according to its level, and thus, the anti-inflammatory effect of fat stem cells may be treated with Cox-2. It can be predicted that it will be regulated by the homeostasis of -2 and PGE2.
따라서 상기 유전자들은 지방유래 줄기세포의 향후 분화능력을 미리 예측할 수 있는 표지자로 사용될 수 있을 것으로 생각되며, 또한 지방줄기세포 세포성장 조절, 염증 조절, 점막재생 등의 기전에 관여할 것이라는 것을 증명하였다.Therefore, the genes are expected to be used as markers for predicting the future differentiation ability of adipose derived stem cells, and also proved to be involved in mechanisms such as adipose stem cell growth control, inflammation regulation, and mucosal regeneration.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. In this regard, the embodiments described above are to be understood in all respects as illustrative and not restrictive. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the following claims and equivalent concepts rather than the detailed description are included in the scope of the present invention.

Claims (16)

  1. ANXA10(annexin A10), IGF2BP3(insulin-like growth factor 2 binding protein 3), MALL(Mal, T-cell differentiation protein-like), PTGER2(prostaglandin E receptor 2), RGS20(regulator of G-protein signaling 20 transcript variant 1), ITM2A(integral membrane protein 2A), LGI2(leucine-rich repeat LGI family, member 2), SULF2(sulfatase 2 transcript variant 1), CCND2(cyclin D2) 및 GADD45G(growth arrest and DNA-damage-inducible, gamma)로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질 수준을 측정하는 제제를 포함하는, 지방유래줄기세포의 분화능력을 탐지하기 위한 마커 검출용 조성물.ANXA10 (annexin A10), IGF2BP3 (insulin-like growth factor 2 binding protein 3), MALL (Mal, T-cell differentiation protein-like), PTGER2 (prostaglandin E receptor 2), regulator of G-protein signaling 20 transcript variant 1), integral membrane protein 2A (ITM2A), leucine-rich repeat LGI family, member 2 (LGI2), sulfatase 2 transcript variant 1 (SULF2), cyclin D2 (CCND2), and growth arrest and DNA-damage-inducible , gamma) one or more genes selected from the group consisting of an agent measuring the protein level thereof, comprising a marker detecting composition for detecting the differentiation capacity of adipose derived stem cells.
  2. ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 수준을 측정하는 제제를 포함하는, 지방유래줄기세포 치료제의 역가를 측정하기 위한 마커 검출용 조성물.Titers of adipose derived stem cell therapeutics, including agents measuring levels of one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2, and GADD45G Marker detection composition for measuring.
  3. ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 수준을 측정하는 제제를 포함하는, 지방유래줄기세포의 노화를 측정하기 위한 마커 검출용 조성물.Aging of adipose derived stem cells, including an agent measuring the level of one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G Marker detection composition for measurement.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 유전자 mRNA의 수준을 측정하는 제제는 상기 유전자에 특이적으로 결합하는 프라이머를 포함하는 것인 조성물.The composition of claim 1, wherein the agent for measuring the level of the gene mRNA comprises a primer that specifically binds to the gene.
  5. 제4항에 있어서, 상기 유전자에 특이적으로 결합하는 프라이머 중 ANXA10에 대한 프라이머는 서열번호 7 및 8인 프라이머 쌍, IGF2BP3에 대한 프라이머는 서열번호 9 및 10인 프라이머 쌍, MALL에 대한 프라이머는 서열번호 11 및 12인 프라이머 쌍, PTGER2에 대한 프라이머는 서열번호 13 및 14인 프라이머쌍, RGS20에 대한 프라이머는 서열번호 15 및 16인 프라이머쌍, ITM2A에 대한 프라이머는 서열번호 17 및 18인 프라이머쌍, LGI2에 대한 프라이머는 서열번호 19 및 20인 프라이머쌍, SULF2에 대한 프라이머는 서열번호 21 및 22인 프라이머쌍, CCND2에 대한 프라이머는 서열번호 23 및 24인 프라이머쌍 및 GADD45G에 대한 프라이머는 서열번호 25 및 26인 프라이머쌍인 조성물.According to claim 4, wherein primers for ANXA10 among the primers specifically binding to the gene is a primer pair of SEQ ID NO: 7 and 8, primers for IGF2BP3 is a primer pair of SEQ ID NO: 9 and 10, primers for MALL is a sequence Primer pairs 11 and 12, primers for PTGER2 are primer pairs SEQ ID NO: 13 and 14, primers for RGS20 are primer pairs SEQ ID NO: 15 and 16, primers for ITM2A are primer pairs SEQ ID NOs: 17 and 18, Primers for LGI2 are primer pairs SEQ ID NOs: 19 and 20, primers for SEQ ID NOs: 21 and 22, primer pairs for CCND2, primer pairs SEQ ID NOs: 23 and 24, and primers for GADD45G are SEQ ID NO: 25 And a primer pair of 26.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 단백질의 수준을 측정하는 제제는 상기 단백질에 특이적인 항체를 포함하는 것인 조성물.The composition of claim 1, wherein the agent for measuring the level of the protein comprises an antibody specific for the protein.
  7. 제1항의 조성물을 포함하는 지방유래줄기세포의 분화능력을 탐지하기 위한 마커 검출용 키트.Marker detection kit for detecting the differentiation capacity of the adipose derived stem cells comprising the composition of claim 1.
  8. 제2항의 조성물을 포함하는 지방유래줄기세포 치료제의 역가를 측정하기 위한 마커 검출용 키트.Marker detection kit for measuring the titer of adipose derived stem cell therapy comprising the composition of claim 2.
  9. 제3항의 조성물을 포함하는 지방유래줄기세포의 노화를 측정하기 위한 마커 검출용 키트.Marker detection kit for measuring the aging of fat-derived stem cells comprising the composition of claim 3.
  10. 제7항 내지 제9항 중 어느 한 항에 있어서, 상기 키트는 RT-PCR 키트, DNA 칩 키트 또는 단백질 칩 키트인 마커 검출용 키트.The kit for detecting a marker according to any one of claims 7 to 9, wherein the kit is an RT-PCR kit, a DNA chip kit, or a protein chip kit.
  11. ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 수준을 측정하는 단계를 포함하는, 지방유래줄기세포의 분화능력을 탐지하는 방법.Differentiation ability of adipose derived stem cells, comprising measuring the level of one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G How to detect it.
  12. 제11항에 있어서, ANXA10, IGF2BP3, MALL, PTGER2 및 RGS20로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 양이 대조군의 형성량에 비해 적으면 분화능력이 대조군에 비해 높은 것으로 판단하는 단계를 추가로 포함하는, 지방유래줄기세포의 분화 능력을 탐지하는 방법.The method of claim 11, wherein if the amount of one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2 and RGS20 is less than the amount of the control group, it is determined that the differentiation capacity is higher than that of the control group. Further comprising the step of detecting the differentiation capacity of the adipose derived stem cells.
  13. 제11항에 있어서, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 양이 대조군의 형성량에 비해 많으면 분화능력이 대조군에 비해 높은 것으로 판단하는 단계를 추가로 포함하는, 지방유래줄기세포의 분화 능력을 탐지하는 방법. 12. The method of claim 11, wherein if the amount of one or more gene mRNAs or proteins thereof selected from the group consisting of ITM2A, LGI2, SULF2, CCND2, and GADD45G is higher than that of the control group, the differentiation capacity is higher than that of the control group. Further comprising, a method for detecting the differentiation ability of the adipose derived stem cells.
  14. ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 수준을 측정하는 단계를 포함하는, 지방유래줄기세포 치료제의 역가를 측정하는 방법.Titer of adipose derived stem cell therapy comprising measuring the level of one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G How to measure it.
  15. 지방유래줄기세포에 분화 능력 조절 후보 물질을 처리하는 단계; 및 Treating adipose derived stem cells with candidate substances for controlling differentiation capacity; And
    지방유래줄기세포에서 ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질의 증가 또는 감소를 측정하는 단계를 포함하는, 지방유래줄기세포의 분화 능력 조절 물질을 스크리닝하는 방법.Measuring an increase or decrease in one or more gene mRNAs or proteins thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G in adipose derived stem cells, A method for screening a differentiation regulating substance of adipose derived stem cells.
  16. ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 및 GADD45G로 이루어진 군으로부터 선택되는 1개 이상의 유전자 mRNA 또는 이의 단백질 수준을 증가 또는 감소시키는 단계를 포함하는, 지방유래줄기세포로부터 지방세포로의 분화를 조절하는 방법.Fat tax from adipose derived stem cells, comprising increasing or decreasing one or more gene mRNAs or protein levels thereof selected from the group consisting of ANXA10, IGF2BP3, MALL, PTGER2, RGS20, ITM2A, LGI2, SULF2, CCND2 and GADD45G How to control the differentiation of prisoners.
PCT/KR2013/003517 2012-04-24 2013-04-24 Marker for detecting potency of adipose-derived stem cells, and use thereof WO2013162286A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0042886 2012-04-24
KR1020120042886A KR101297829B1 (en) 2012-04-24 2012-04-24 Detection markers of differentiation potency of adipocyte-derived stem cells and use thereof

Publications (1)

Publication Number Publication Date
WO2013162286A1 true WO2013162286A1 (en) 2013-10-31

Family

ID=49220817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003517 WO2013162286A1 (en) 2012-04-24 2013-04-24 Marker for detecting potency of adipose-derived stem cells, and use thereof

Country Status (2)

Country Link
KR (1) KR101297829B1 (en)
WO (1) WO2013162286A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3009521A4 (en) * 2013-06-12 2017-01-04 Korea Research Institute of Bioscience and Biotechnology Marker for detecting proliferation and treatment capacities of adipose-derived stem cell cultured in medium containing egf or bfgf, and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100044173A (en) * 2007-06-13 2010-04-29 에프엠씨 코포레이션 Peptide linked cell matrix materials for stem cells and methods of using the same
US20120040855A1 (en) * 2009-03-11 2012-02-16 Yuanlong Pan Tissue-specific aging biomarkers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100044173A (en) * 2007-06-13 2010-04-29 에프엠씨 코포레이션 Peptide linked cell matrix materials for stem cells and methods of using the same
US20120040855A1 (en) * 2009-03-11 2012-02-16 Yuanlong Pan Tissue-specific aging biomarkers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOEUF ET AL.: "Enhanced ITM2A expression inhibits chondrogenic differentiation of mesenchymal stem cells", DIFFERENTIATION, vol. 78, 2009, pages 108 - 115 *
HWANG ET AL.: "Comparison with human amniotic membrane- and adipose tissue- derived mesenchymal stem cells", KOREAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, vol. 54, no. 11, 2011, pages 674 - 683 *
KIM, HEE KYUNG ET AL.: "Characterization and differentiation into adipocytes of mesenchymal stem cells (MSCs) from human adipose tissue and amniotic fluid", KOREAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, vol. 52, no. 4, 2009, pages 447 - 455 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3009521A4 (en) * 2013-06-12 2017-01-04 Korea Research Institute of Bioscience and Biotechnology Marker for detecting proliferation and treatment capacities of adipose-derived stem cell cultured in medium containing egf or bfgf, and use thereof
US9874574B2 (en) 2013-06-12 2018-01-23 Anterogen Co. Ltd. Marker for detecting proliferation and treatment capacities of adipose-derived stem cell cultured in medium containing EGF or BFGF, and use thereof

Also Published As

Publication number Publication date
KR101297829B1 (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5190654B2 (en) Method for identifying mesenchymal stem cells using molecular markers and use thereof
Cheung et al. MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3
Palermo et al. Nuclear reprogramming in heterokaryons is rapid, extensive, and bidirectional
JP4926966B2 (en) Dopaminergic neuron proliferative progenitor cell marker Msx1 / 2
CN101292031A (en) Nato3 markers of growing progenitor cell of dopamine-producing neuron
KR101577007B1 (en) detection markers of differentiation potency of adipocyte-derived stem cells and use thereof
WO2014200256A1 (en) Marker for detecting proliferation and treatment capacities of adipose-derived stem cell cultured in medium containing egf or bfgf, and use thereof
WO2013162286A1 (en) Marker for detecting potency of adipose-derived stem cells, and use thereof
WO2017176067A1 (en) Kit for detecting senescence of stem cell
WO2016209013A1 (en) Tm4sf19 as marker for diagnosing obesity and method using same
WO2015023078A1 (en) Marker for detecting proliferation and therapeutic capability of adipose-derived stem cells detectable in stem cell culture fluid, and use thereof
JP2019007759A (en) Method for evaluating aging degree and kit for evaluating aging degree
KR20160084004A (en) detection markers of differentiation potency of adipocyte-derived stem cells and use thereof
KR101777590B1 (en) Detection markers of proliferation and therapeutic potency of adipocyte-derived stem cells cultured in media containing EGF or bFGF, and use thereof
Wu et al. Transcriptome analysis reveals dysregulated gene expression networks in Sertoli cells of cattle-yak hybrids
WO2019074342A1 (en) Method for selecting highly efficient stem cell, using protein marker grp78
Salabi et al. Cell culture, sex determination and single cell cloning of ovine transgenic satellite cells in vitro
WO2023113525A1 (en) Novel biomarker for detection of cancer metastasis
WO2024096661A1 (en) Method for differentiating neural crest stem cells comprising axial specification information
WO2022139442A1 (en) Marker for selecting high-quality stem cells, and method for selecting high-quality stem cells using same
WO2023018266A1 (en) Novel microrna biomarker for early diagnosis of mild cognitive impairment or alzheimer&#39;s disease
WO2023210908A1 (en) Method for predicting effectiveness of effect of treating glioblastoma by means of t cells
WO2023106854A1 (en) Novel biomarker for detection of cancer metastasis
WO2020184911A1 (en) Marker for predicting tumor reactivity of lymphocytes, and use thereof
WO2022173212A1 (en) Invasive brain cancer animal model and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782403

Country of ref document: EP

Kind code of ref document: A1