WO2013161858A1 - Controller, stage device, exposure device, and control method - Google Patents

Controller, stage device, exposure device, and control method Download PDF

Info

Publication number
WO2013161858A1
WO2013161858A1 PCT/JP2013/062020 JP2013062020W WO2013161858A1 WO 2013161858 A1 WO2013161858 A1 WO 2013161858A1 JP 2013062020 W JP2013062020 W JP 2013062020W WO 2013161858 A1 WO2013161858 A1 WO 2013161858A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
filter
frequency
control
main resonance
Prior art date
Application number
PCT/JP2013/062020
Other languages
French (fr)
Japanese (ja)
Inventor
晃一 坂田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2013161858A1 publication Critical patent/WO2013161858A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37304Combined position measurement, encoder and separate laser, two different sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37493Use of different frequency band pass filters to separate different signals

Definitions

  • the present invention relates to a control apparatus, a stage apparatus, an exposure apparatus, and a control method.
  • This application claims priority based on Japanese Patent Application No. 2012-99129 for which it applied on April 24, 2012, and uses the content here.
  • the stage apparatus is used as an important component that is indispensable for positioning the mask and the semiconductor substrate.
  • the demand for the positioning performance is increasing (see, for example, Patent Document 1).
  • FIG. 11 is a block diagram of a P-PI (Proportional-Proportional Integral) control system that controls the position of the stage.
  • C P (s) is a controller that performs proportional control (P control).
  • C V (s) is a controller that performs proportional / integral control (PI control).
  • D (s) is a differentiator that differentiates the rotation angle ⁇ (t) of the motor and outputs the rotation speed of the motor.
  • P (s) is a stage that is an object to be controlled.
  • x (t) is the actual measurement position of the stage measured by the laser interferometer.
  • ⁇ (t) is the rotation angle of the motor obtained from the encoder. The stage moves by turning the ball screw with a motor.
  • r (t) is the target position of the stage.
  • e (t) is a difference between the target position r (t) of the stage and the actually measured position x (t).
  • u (t) is the final output from the controller.
  • the sensitivity function S (s) of this P-PI control system is expressed by the following equation (1).
  • the P-PI control system uses an outer feedback loop that controls C P (s) so that the difference e (t) between x (t) and r (t) becomes zero using the position x (t).
  • the outer loop is mainly used because the position of the stage is desired to be adjusted to a desired position, but a minor loop (inner loop) is used to suppress the influence of disturbance.
  • FIG. 12 is a block diagram showing a stepper model of the stage device (P (s)).
  • is a motor position
  • x is a stage position
  • T is a variable representing torque.
  • the transfer function from the torque T to each position is expressed by the following equations (2) to (5).
  • J is the motor inertia
  • B is the motor viscosity
  • M is the stage mass
  • C is the stage viscosity
  • K is the torsional rigidity of the ball screw
  • R is the rotation / translation conversion coefficient of the ball screw.
  • FIG. 13A and 13B are conceptual diagrams showing an example of the plant frequency characteristic of the stepper model.
  • FIG. 13A shows the characteristics of the position outer loop (that is, control characteristics related to the stage position)
  • FIG. 13B shows the characteristics of the speed minor loop (that is, control characteristics related to the rotation angle (motor position)).
  • 13A and 13B it can be seen that there is a resonance point (main resonance) at about 60 Hz.
  • the speed minor loop has no phase change before and after the resonance point (in-phase), but the position outer loop has a phase change before and after the resonance point. Is delayed by about 180 ° (reverse phase).
  • the speed minor loop shown in FIG. 13B can be increased to about 250 Hz at present.
  • the band of the position outer loop shown in FIG. 13A is 10 Hz or less.
  • An object of an aspect of the present invention is to provide a control device, a stage device, an exposure device, and a control method that can shorten the settling time.
  • One aspect of the present invention is based on a position outer loop for controlling the control target to be positioned at a target position based on the position of the control target for moving the object, and based on the moving speed of the control target.
  • a control device having a speed inner loop for controlling the object to be controlled to be positioned at the target position, wherein the control object is connected to the stage, the first member, and the stage.
  • a control member having a second member movable relative to the member, and information relating to the position of the stage of the control object in a frequency range that does not include a main resonance frequency in the frequency characteristics of the control object.
  • the first filter to be fed back and the information on the position of the second member are fed in the frequency range including the main resonance frequency in the frequency characteristic of the controlled object.
  • a second filter for click which is a control device, characterized in that it comprises a.
  • the second filter has a band-pass filter characteristic BPF (s) that passes a frequency range around the main resonance frequency, and the first filter is centered on the main resonance frequency. It is possible to have a band stop filter characteristic (1-BPF (s)) that allows passage of frequencies other than those before and after.
  • the first filter has a low-pass filter characteristic LPF (s) that passes a low frequency range lower than the main resonance frequency
  • the second filter passes a high frequency range higher than the main resonance frequency. It can have a high-pass filter characteristic (1-LPF (s)).
  • the first filter combines a low-pass filter characteristic LPF (s) that passes a low frequency range lower than the main resonance frequency and a notch filter (NF (s)) that blocks a predetermined frequency range.
  • the second filter has a high-pass filter characteristic (1-LPF (s)) that passes a high frequency range higher than the main resonance frequency, and the predetermined filter characteristic (LPF (s) ⁇ NF (s)). Filter characteristics ((1-LPF (s)) ⁇ NF (s)) combined with a notch filter (NF (s)) that blocks the frequency range of.
  • a stage that is movable in a predetermined direction with respect to the base and elastically coupled to the base, a drive unit that moves the stage along the predetermined direction, and the stage.
  • a control device for controlling the driving means so as to position and stop the motor at the target position, the control device positioning the stage at the target position based on the position of the stage.
  • a stage apparatus characterized by comprising a second filter for feedback information on the movement speed of the stage.
  • an exposure apparatus that exposes a mask pattern held on a mask stage onto a photosensitive substrate held on a substrate stage, wherein at least one of the mask stage and the substrate stage is provided.
  • a position outer loop that is controlled so as to be positioned at a target position based on the position of the stage, and a speed that is controlled so that the at least one stage is positioned at the target position based on a moving speed of the stage.
  • An inner loop a first filter that feeds back information on the position of the stage in a frequency range that does not include a main resonance frequency in the frequency characteristics of the stage, and a frequency range that includes a main resonance frequency in the frequency characteristics of the stage, Provide feedback on stage movement speed
  • An exposure apparatus characterized in that it comprises a control device and a second filter.
  • a speed inner loop for controlling the control target to be positioned at the target position based on the stage, the stage on which the object is placed, a first member, and connected to the stage Feeding back information on the position of the stage of the controlled object in a frequency range that does not include a main resonance frequency in the frequency characteristics of the controlled object having a second member movable relative to the first member. And information regarding the position of the second member of the controlled object in a frequency range including a main resonance frequency in the frequency characteristics of the controlled object.
  • control device can shorten the settling time.
  • FIG. 3 is a block diagram of a frequency separation P-PI (FSP-PI) control system for performing stage position control according to an embodiment of the present invention. It is a conceptual diagram which shows the filter characteristic for demonstrating the setting method of the characteristic of a 1st filter and a 2nd filter by this embodiment. It is a conceptual diagram which shows the filter characteristic for demonstrating the setting method of the characteristic of a 1st filter and a 2nd filter by this embodiment. It is a conceptual diagram which shows the filter characteristic for demonstrating the setting method of the characteristic of a 1st filter and a 2nd filter by this embodiment. It is a top view which shows the structure of the stage apparatus by one Embodiment of this invention.
  • FSP-PI frequency separation P-PI
  • the frequency separation is performed by a filter so that the motor position is fed back in the middle region where the main resonance exists, and the stage position is fed back in the low region related to positioning and the high region which is easily affected by the resolution.
  • the control system according to the embodiment of the present invention is referred to as a frequency separation P-PI (FSP-PI; Frequency Separation P-PI).
  • FIG. 1 is a block diagram of a frequency separation P-PI (FSP-PI) control system of a control apparatus that performs stage position control according to an embodiment of the present invention.
  • symbol is attached to the part corresponding to FIG. 11, and description is abbreviate
  • the FSP-PI control system of this embodiment includes a bandpass filter (BPF (s)) and a filter (1-BPF (1) in addition to the components of the P-PI control system shown in FIG. s)) and a multiplier (R).
  • the bandpass filter (BPF (s)) is a filter having a characteristic that allows a frequency component in the vicinity of the resonance frequency to pass.
  • the filter (1-BPF (s)) is a filter having a characteristic of passing a frequency component other than the frequency region in the vicinity of the resonance frequency.
  • the band-pass filter (BPF (s)) feeds back the position of the stage based on the rotation angle of the motor in the frequency range near the resonance frequency.
  • the multiplier (R) converts the rotation angle of the motor into the position of the stage.
  • the filter (1-BPF (s)) feeds back the stage position at a position away from the resonance frequency, that is, outside the frequency region in the vicinity of the resonance frequency.
  • the bandpass filter (1-BPF (s)) is referred to as a first filter
  • the bandpass filter (BPF (s)) is referred to as a second filter.
  • BPF (s) is composed of a primary HPF (High Pass Filter) and a primary LPF (Low Pass Filter), and is represented by the following equation (7).
  • f HPF ⁇ f LPF .
  • 2A to 2C are conceptual diagrams showing filter characteristics for explaining a method for setting the characteristics of the first filter and the second filter according to the present embodiment.
  • a (s) and B (s) are set so as to satisfy the following two conditions. .
  • a (s) has such a characteristic that the output of the second filter is more dominant than the output of the first filter at a frequency near the resonance frequency.
  • B (s) is a characteristic represented by the above mathematical formula (7).
  • a (s) is 1-BPF (s).
  • BPF (s) represented by the above formula (7) is as shown in FIG. 2A. Since A (s) is a vertically inverted BPF (s), the output of the first filter is suppressed near the resonance frequency, and the output of the second filter becomes dominant.
  • the above-described primary HPF refers to the first term of Equation (7) of BPF (s)
  • the primary LPF refers to the second term of Equation (7).
  • higher order HPF and LPF may be used instead of the first order.
  • a (s) is LPF (s) shown in Equation (7) (that is, the second term of Equation (7)).
  • B (s) be 1-LPF (s).
  • LPF (s) is as shown in FIG. 2B.
  • a (s) is LPF (s) ⁇ NF (s) (the product of the LPF of the second pattern and the notch filter NF).
  • B (s) is 1-LPF (s) ⁇ NF (s).
  • the notch filter NF (s) has characteristics as shown in FIG. 2C.
  • FIG. 3 is a top view showing a configuration of a stage apparatus 100 using a frequency separation P-PI (FSP-PI) control system according to an embodiment of the present invention.
  • a Y stage 2 is provided on the upper surface of the base 1 via a predetermined support mechanism (not shown) such as a bearing so as to be movable in the Y direction (up and down direction in the figure).
  • An X stage 3 is provided above the Y stage 2 through a similar support mechanism (not shown) so as to be movable in the X direction (left and right in the figure).
  • the Y stage 2 has a nut portion at a part thereof, and a Y ball screw 21 penetrates the nut portion to engage with each other.
  • the Y motor 22 provided on the base 1 rotates the Y ball screw 21
  • thrust in the Y direction is generated in the Y stage 2 via the nut portion, and the Y stage 2 moves in the Y direction with respect to the base 1. It is configured to move.
  • a command value for instructing the rotational torque of the Y ball screw 21 is input to the Y motor 22 in order to move the Y stage 2 to the target position, and the Y ball screw 21 is rotated in accordance with the command value.
  • the following damping mechanism using a linear motor is provided. That is, two rows of Y linear motor stators 23A and 23B are linearly provided along the Y direction on the base 1. Y linear motor movable elements 24A and 24B (not shown) are provided on the Y stage 2 at portions facing the Y linear motor stators 23A and 23B. The Y linear motor stators 23A and 23B and the Y linear motor movers 24A and 24B generate an electromagnetic force therebetween to attenuate the vibration of the Y stage 2.
  • Y linear motor A plurality of linear motors that generate driving force in the same direction (here, the Y direction) may be provided.
  • a plurality of interferometers that measure the position of the Y stage 2 with respect to the base 1 may be provided. When a plurality of linear motors are provided, the linear motor and the interferometer can be provided so as to correspond to each other. Further, the linear motor and the interferometer may be arranged at adjacent positions in a state where they correspond to each other.
  • the position control of the X stage 3 is the same as the position control of the Y stage 2 described above. That is, the X stage 3 has a nut portion (not shown) in a part thereof, and the X ball screw 31 penetrates the nut portion to engage with each other.
  • the X motor 32 provided on the Y stage 2 rotates the X ball screw 31
  • thrust in the X direction is generated in the X stage 3 via the nut portion
  • the X stage 3 is X with respect to the Y stage 2. It is configured to move in the direction.
  • a command value for instructing the rotational torque of the X ball screw 31 is input to the X motor 32 in order to move the X stage 3 to the target position, and the X ball screw 31 is rotated in accordance with the command value.
  • the following damping mechanism using a linear motor is provided. That is, the Y stage 2 is provided with two rows of X linear motor stators 33A and 33B linearly along the X direction. X linear motor movable elements 34A and 34B (not shown) are provided on the X stage 3 at portions facing the X linear motor stators 33A and 33B. The X linear motor stators 33A and 33B and the X linear motor movable elements 34A and 34B generate an electromagnetic force therebetween to attenuate the vibration of the X stage 3.
  • the laser beam L is irradiated to the corner cubes CCX1 and CCX2 fixed to the X stage 3 via the half mirror HM and the mirror MR to cause interference, thereby causing the X stage 3 to move with respect to the Y stage 2. Measure the position. Then, the electromagnetic force of the linear motor (X linear motor) is controlled so that the vibration is attenuated based on the measurement position.
  • X linear motor linear motor
  • a plurality of linear motors that generate driving force in the same direction may be provided.
  • a plurality of interferometers that measure the position of the X stage 3 relative to the Y stage 2 may be provided.
  • the linear motor and the interferometer can be provided so as to correspond to each other. Further, the linear motor and the interferometer may be arranged at adjacent positions in a state where they correspond to each other.
  • FIG. 4 is a side view of the stage apparatus 100 for explaining detailed position control of the X stage 3 in the stage apparatus 100 (only the upper part from the Y stage 2 is shown).
  • the stage apparatus 100 uses two laser interferometers, a positioning interferometer and an interferometer for the linear motor (X linear motor), in order to measure the position of the X stage 3.
  • the positioning interferometer measures the position Px of the X stage 3 using the positioning interferometer measurement unit 36 provided outside the X stage 3 and the Y stage 2 with reference to the installation position of the positioning interferometer measurement unit 36. To do.
  • the positioning interferometer measuring unit 36 can be installed on a metrology frame (not shown) or the base 1 provided outside the base 1. Further, when the stage apparatus 100 is applied to the exposure apparatus shown in FIG. 5 described later, for example, the stage apparatus 100 can be installed in an illumination optical system 202 of the exposure apparatus. In these cases, the measurement position Px is the position of the X stage 3 measured with reference to the base 1 and the illumination optical system 202.
  • the stage apparatus performs position control of the X stage 3 according to the measurement position Px measured by such a positioning interferometer. Specifically, the rotational torque of the X ball screw 31 necessary to move the X stage 3 to the target position is calculated based on the measurement position Px. The calculated rotational torque command value is given to the X motor 32 as a motor control value. The X motor 32 rotates the X ball screw 31 in accordance with the motor control value, whereby the position of the X stage 3 is controlled to the target position.
  • FIG. 5 is a side view showing a configuration of an exposure apparatus 201 to which the stage apparatus 100 according to the present embodiment is applied.
  • the exposure apparatus 201 includes an illumination optical system 202, a mask stage apparatus 203 that moves while holding a mask M (object), a projection optical system PL, and a substrate stage apparatus 205 that moves while holding a glass substrate P. Consists of including.
  • the illumination optical system 202 includes a light source unit, a shutter, a secondary light source forming optical system, a beam splitter, a condensing lens system, a reticle blind, and an imaging lens system, all not shown.
  • the illumination optical system 202 illuminates a predetermined illumination area (including a circuit pattern) on the mask M held by the mask stage device 203 with uniform illumination by the illumination light IL.
  • the projection optical system PL is an optical system (for example, a refractive optical system) having a plurality of lens elements arranged at predetermined intervals along the optical axis AX direction.
  • the predetermined magnification of the circuit pattern of the illumination area on the mask M via the projection optical system PL by the illumination light that has passed through the mask M are projected onto the glass substrate P, whereby the photoresist applied to the surface of the glass substrate P is exposed.
  • the mask stage device 203 is used as at least one of the mask stage device 203 and the substrate stage device 205.
  • the mask M is held by the plate holder on the X stage 3.
  • the glass substrate P is held by the same plate holder.
  • FIG. 6 is a perspective view showing the configuration of another stage apparatus according to an embodiment of the present invention.
  • a stage apparatus 300 is configured such that a stage apparatus that can move in the X direction and a stage apparatus that can move in the Y direction are combined, and the table can move freely in a horizontal plane.
  • the table has an X table 37X movable in the X direction and a Y table 37Y movable in the Y direction.
  • the X table 37X is provided on the Y table 37Y.
  • the X table 37X is supported on the Y table 37Y by a non-contact type guide mechanism (air bearing or the like) 36X extending in the X direction.
  • the Y table 37Y that supports the X table 37X is provided on the vibration isolation table 303.
  • the Y table 37Y is supported on the vibration isolation table 303 by a non-contact type guide mechanism (air bearing or the like) 36Y extending in the Y direction.
  • the Y table 37Y is driven in the Y direction by a feed screw 35Y provided in parallel with the guide mechanism 36Y.
  • the feed screw 35Y is driven by a motor 34Y attached on the vibration isolator 303.
  • Linear motor mechanisms 322Y and 323Y are provided between the Y table 37Y and the vibration isolation table 303.
  • the X table 37X is driven in the X direction by a feed screw 35X provided in parallel with the guide mechanism 36X.
  • the feed screw 35X is driven by a motor 34X attached on the Y table 37Y.
  • Linear motor mechanisms 322X and 323X are provided between the X table 37X and the Y table 37Y.
  • the laser interferometer 312Y is configured to detect the position of the Y table 37Y with high accuracy. Specifically, the laser interferometer 312Y irradiates the reflecting mirror 313Y provided on the X table 37X with laser light, and measures the position of the Y table 37Y in a non-contact manner based on the return light.
  • the laser interferometer 312X is configured to detect the position of the X table 37X with high accuracy.
  • the laser interferometer 312X irradiates the reflecting mirror 313X provided on the X table 37X with laser light, and measures the position of the X table 37X in a non-contact manner based on the return light.
  • the laser interferometer 312Y is fixed on the anti-vibration table 303, and the laser interferometer 312X is fixed on the Y table 37Y.
  • FIG. 8 The linear motor mechanisms 322X and 323X that drive the X table 37X in the X direction will be described.
  • the linear motor mechanisms 322X and 323X provided between the X table 37X and the Y table 37Y are the linear motor mechanism 322X (stator) attached to the X table 37X side of the Y table 37Y, and the X table 37X.
  • the linear motor mechanism 323X (movable element) is attached to the Y table 37Y side.
  • linear motor mechanisms 322Y and 323Y are provided between the Y table 37Y and the vibration isolation table 303 (see FIG. 8).
  • the stage apparatus 300 further includes a control unit 324.
  • the control unit 324 receives the table position information measured by the laser interferometers 312X and 312Y in cooperation with the reflecting mirrors 313X and 313Y, and receives the motor 34X and 34Y and the feed screws 35X and 35Y or the linear motor mechanism 322X,
  • the X table 37X and the Y table 37Y are appropriately driven through 323X and 322Y and 323Y.
  • the control unit 324 controls the entire apparatus.
  • a table (Y table 37Y) on which a wafer W (object) as a photosensitive substrate is placed.
  • the X table 37X is driven so that the next exposure area after the projection exposure is positioned at a predetermined position in the projection field of the projection optical system.
  • FIG. 8 is a side view showing a schematic configuration of a projection exposure apparatus 400 using the stage apparatus 300.
  • a stage controller (not shown) drives a motor (34X) 34Y provided on a vibration isolating base 303 that constitutes a base.
  • a table (37X) 37Y guided by a guide mechanism (36X) 36Y is driven to a predetermined position via a feed screw (drive shaft) (35X) 35Y.
  • a wafer W which is a photosensitive substrate, is placed on the table (37X) 37Y, and light emitted from a light source 408 in a desired exposure area on the wafer surface is constituted by a lens system such as a fly-eye lens and a condenser lens.
  • the aperture is narrowed down through the illumination optical system 409, the reticle 410, and the projection lens 411, and the mask pattern is imaged on the wafer W.
  • the table (37X) 37Y is appropriately driven so that the next exposure area is positioned at a predetermined position within the projection field of the projection lens 411.
  • the laser interferometer (312X) 312Y measures the position of the table (37X) 37Y based on the reflected light from the movable mirror 313Y provided on the table (37X) 37Y.
  • the entire apparatus excluding the table (37X) 37Y is fixed as a rigid body on the vibration isolator 303, and the table (37X) 37Y includes a feed screw (35X) 35Y and a table (37X) 37Y.
  • the guide mechanism (36X) 36Y is substantially fixed as a rigid body to the apparatus main body.
  • the table (37X) 37Y and the apparatus are integrated on a macro scale, but the table (37X) 37Y is the basis on a micro scale when comparing the rigidity of the entire apparatus and the support rigidity of the table (37X) 37Y. It is equivalent to a structural model that is spring-supported above.
  • Linear motor mechanisms 422 and 423 serve as second drive means for moving the table (37X) 37Y in the direction along the feed screw (35X) 35Y between the table (37X) 37Y and the vibration isolation table 303. Has been placed.
  • stage apparatus shown in FIGS. 3 and 4 or the stage apparatus shown in FIGS. 6 and 7 is represented as the model shown in FIG.
  • 9A and 9B are conceptual diagrams showing comparison results of frequency sensitivity characteristics and Nyquist diagrams between the FSP-PI control system according to the present embodiment and the P-PI control system according to the prior art.
  • 9A is a proportional gain K p of the position the outer loop shows the case of a 40.
  • 9B is a proportional gain K p of the position the outer loop shows the case of a 80.
  • the distance between the point ( ⁇ 1, 0) and each point on the curve (P-PI or FSP-PI) is the inverse of the sensitivity function 1 /
  • the FSP-PI control system mainly uses the motor position information by BPF in the middle region where the main resonance exists. For this reason, the phase is recovered in the FSP-PI control system compared to the P-PI control system. This can be read from the Nyquist diagram. As a result, it can be seen that a control system with a sufficient stability margin can be realized even if the gain is doubled. That is, according to the Nyquist diagrams shown in FIGS. 9A and 9B, the FSP-PI control system shows a characteristic curve away from the point ( ⁇ 1, 0), so that the control characteristics are improved. .
  • FIG. 10 is a conceptual diagram showing a position error response result as actual machine verification of the stage apparatus using the FSP-PI control system according to the present embodiment.
  • a nonlinear gain map is used.
  • the horizontal axis is defined as time
  • the vertical axis is defined as position error.
  • the horizontal axis is defined as time
  • the vertical axis is defined as accelerating movement, constant speed movement, decelerating movement, exposure, and settling in order from the bottom.
  • the settling time is about 200 ms.
  • the settling time is shortened to about 100 ms. Since the settling time varies depending on the stage coordinate position and each step, the settling time needs to be measured a plurality of times, but the settling time can be sufficiently shortened.
  • Substrate stage apparatus 300 ... Stage apparatus 303 ... Anti-vibration table 312X, 312Y ... Laser interferometers 313X, 313Y ... Reflector 322X, 322Y ... Re Amota mechanism (stator) 323x, 323Y ... linear motor mechanism (movable element) 324 ... control unit 400 ... projection exposure apparatus 408 ... light source 409 ... illumination optical system.

Abstract

A controller is provided with: a control object (P(s)) having a stage on which an object is placed, a first member, and a second member connected to the stage and capable of moving in relation to the first member; a first filter (1-BPF(s)) for feeding back information related to the stage position of the control object in a frequency range that does not include the main resonance frequency in the frequency characteristics of the control object; and a second filter (BPF(s)) for feeding back information related to the position of the second member in a frequency range including the main resonance frequency in the frequency characteristics of the control object.

Description

制御装置、ステージ装置、露光装置、及び制御方法Control apparatus, stage apparatus, exposure apparatus, and control method
 本発明は、制御装置、ステージ装置、露光装置、及び制御方法に関する。
 本願は、2012年4月24日に出願された特願2012-99129号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a control apparatus, a stage apparatus, an exposure apparatus, and a control method.
This application claims priority based on Japanese Patent Application No. 2012-99129 for which it applied on April 24, 2012, and uses the content here.
 ステージ装置は、例えば、マスクに形成した回路パターンを半導体基板上に露光する露光装置において、マスクと半導体基板の位置決めを行うために無くてはならない重要な構成要素として利用されており、回路の微細化の進展に伴って、その位置決め性能に対する要求が益々高まっている(例えば特許文献1参照)。 For example, in an exposure apparatus that exposes a circuit pattern formed on a mask onto a semiconductor substrate, the stage apparatus is used as an important component that is indispensable for positioning the mask and the semiconductor substrate. With the progress of computerization, the demand for the positioning performance is increasing (see, for example, Patent Document 1).
特開2009-141283号公報JP 2009-141283 A
 図11は、ステージの位置制御を行うP-PI(Proportional-Proportional Integral)制御系のブロック図である。図11において、C(s)は、比例制御(P制御)を行うコントローラである。C(s)は、比例・積分制御(PI制御)を行うコントローラである。D(s)は、微分器であり、モータの回転角θ(t)を微分してモータの回転速度を出力する。
 P(s)は、制御対象物であるステージである。x(t)は、レーザ干渉計で測定したステージの実測位置である。θ(t)は、エンコーダから得られるモータの回転角である。ステージは、ボールねじをモータで回すことで移動する。r(t)は、ステージの目標位置である。e(t)は、ステージの目標位置r(t)と実測位置x(t)との差分である。u(t)は、コントローラからの最終出力である。このP-PI制御系の感度関数S(s)は、次式(1)で表される。
FIG. 11 is a block diagram of a P-PI (Proportional-Proportional Integral) control system that controls the position of the stage. In FIG. 11, C P (s) is a controller that performs proportional control (P control). C V (s) is a controller that performs proportional / integral control (PI control). D (s) is a differentiator that differentiates the rotation angle θ (t) of the motor and outputs the rotation speed of the motor.
P (s) is a stage that is an object to be controlled. x (t) is the actual measurement position of the stage measured by the laser interferometer. θ (t) is the rotation angle of the motor obtained from the encoder. The stage moves by turning the ball screw with a motor. r (t) is the target position of the stage. e (t) is a difference between the target position r (t) of the stage and the actually measured position x (t). u (t) is the final output from the controller. The sensitivity function S (s) of this P-PI control system is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 P-PI制御系は、C(s)が、位置x(t)を用いてx(t)とr(t)の差分e(t)がゼロになるように制御する外側のフィードバックループ(ステージ位置を制御する位置アウターループ)と、D(s)が、θ(t)を用いてモータ位置微分の速度を制御する、内側のフィードバックループ(速度マイナー(インナー)ループ)とから構成されている。本来、ステージの位置を所望の位置に合わせたいので、アウターループが主になるが、外乱の影響を抑圧するためにマイナーループ(インナーループ)を用いている。 The P-PI control system uses an outer feedback loop that controls C P (s) so that the difference e (t) between x (t) and r (t) becomes zero using the position x (t). A position outer loop that controls the stage position) and an inner feedback loop (speed minor (inner) loop) in which D (s) controls the speed of motor position differentiation using θ (t). Yes. Originally, the outer loop is mainly used because the position of the stage is desired to be adjusted to a desired position, but a minor loop (inner loop) is used to suppress the influence of disturbance.
 図12は、ステージ装置(P(s))のステッパモデルを示すブロック図である。図において、θは、モータ位置、xは、ステージ位置、Tはトルクを表す変数である。トルクTから各位置までの伝達関数は、次式(2)~(5)で表される。 FIG. 12 is a block diagram showing a stepper model of the stage device (P (s)). In the figure, θ is a motor position, x is a stage position, and T is a variable representing torque. The transfer function from the torque T to each position is expressed by the following equations (2) to (5).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 Jは、モータイナーシャ、Bは、モータ粘性、Mは、ステージ質量、Cは、ステージ粘性、Kは、ボールねじのねじり剛性、Rは、ボールねじの回転・並進変換係数である。 Where J is the motor inertia, B is the motor viscosity, M is the stage mass, C is the stage viscosity, K is the torsional rigidity of the ball screw, and R is the rotation / translation conversion coefficient of the ball screw.
 図13A、13Bは、上記ステッパモデルのプラント周波数特性の一例を示す概念図である。図13Aが位置アウターループの特性(つまり、ステージ位置に関する制御特性)、図13Bが速度マイナーループの特性(つまり、回転角(モータ位置)に関する制御特性)である。図13A、13Bを見ると、60Hzくらいの所に共振点(主共振)があることが分かる。 13A and 13B are conceptual diagrams showing an example of the plant frequency characteristic of the stepper model. FIG. 13A shows the characteristics of the position outer loop (that is, control characteristics related to the stage position), and FIG. 13B shows the characteristics of the speed minor loop (that is, control characteristics related to the rotation angle (motor position)). 13A and 13B, it can be seen that there is a resonance point (main resonance) at about 60 Hz.
 上述した、P-PI制御系を用いたステージ装置では、速度マイナーループの方は、共振点の前後で位相に変化がないが(同相)、位置アウターループの方は、共振点の前後で位相が約180°遅れる(逆相)。このように、主共振モードが剛体に対して同相であるため、図13Bに示す速度マイナーループは、現状で約250Hzまで高帯域化できている。一方、ステージ位置の観測点では、主共振モードが剛体に対して逆相であるため、図13Aに示す位置アウターループの帯域は10Hz以下である。
 このように、位置アウターループの制御の帯域が共振周波数より高くできないため、ステージを動かした際の整定時間が長くなってしまうという問題がある。
In the stage apparatus using the P-PI control system described above, the speed minor loop has no phase change before and after the resonance point (in-phase), but the position outer loop has a phase change before and after the resonance point. Is delayed by about 180 ° (reverse phase). Thus, since the main resonance mode is in-phase with the rigid body, the speed minor loop shown in FIG. 13B can be increased to about 250 Hz at present. On the other hand, at the observation point of the stage position, since the main resonance mode is opposite in phase to the rigid body, the band of the position outer loop shown in FIG. 13A is 10 Hz or less.
Thus, since the control band of the position outer loop cannot be made higher than the resonance frequency, there is a problem that the settling time when the stage is moved becomes long.
 本発明の態様は、整定時間を短くすることができる制御装置、ステージ装置、露光装置、及び制御方法を提供することを目的とする。 An object of an aspect of the present invention is to provide a control device, a stage device, an exposure device, and a control method that can shorten the settling time.
 本発明の一態様は、物体を移動させるための制御対象物の位置に基づいて前記制御対象物を目標位置に位置決めするように制御する位置アウターループと、前記制御対象物の移動速度に基づいて前記制御対象物を前記目標位置に位置決めするように制御する速度インナーループとを有する制御装置であって、前記物体を載置するステージと、第1部材と、前記ステージに接続され、前記第1部材に対して移動可能な第2部材と、を有する前記制御対象物と、前記制御対象物の周波数特性における主共振周波数を含まない周波数域で、前記制御対象物の前記ステージの位置に関する情報をフィードバックする第1フィルタと、前記制御対象物の周波数特性における主共振周波数を含む周波数域で、前記第2部材の位置に関する情報をフィードバックする第2フィルタと、を備えることを特徴とする制御装置である。 One aspect of the present invention is based on a position outer loop for controlling the control target to be positioned at a target position based on the position of the control target for moving the object, and based on the moving speed of the control target. A control device having a speed inner loop for controlling the object to be controlled to be positioned at the target position, wherein the control object is connected to the stage, the first member, and the stage. A control member having a second member movable relative to the member, and information relating to the position of the stage of the control object in a frequency range that does not include a main resonance frequency in the frequency characteristics of the control object. The first filter to be fed back and the information on the position of the second member are fed in the frequency range including the main resonance frequency in the frequency characteristic of the controlled object. A second filter for click, which is a control device, characterized in that it comprises a.
 上記の態様において、前記第2フィルタは、前記主共振周波数を中心とした前後の周波数域を通過させるバンドパスフィルタ特性BPF(s)を有し、前記第1フィルタは、前記主共振周波数を中心とした前後の周波数域以外を通過させるバンドストップフィルタ特性(1-BPF(s))を有することができる。 In the above aspect, the second filter has a band-pass filter characteristic BPF (s) that passes a frequency range around the main resonance frequency, and the first filter is centered on the main resonance frequency. It is possible to have a band stop filter characteristic (1-BPF (s)) that allows passage of frequencies other than those before and after.
 上記の態様において、前記第1フィルタは、前記主共振周波数より低い低周波数域を通すローパスフィルタ特性LPF(s)を有し、前記第2フィルタは、前記主共振周波数より高い高周波数域を通すハイパスフィルタ特性(1-LPF(s))を有することができる。 In the above aspect, the first filter has a low-pass filter characteristic LPF (s) that passes a low frequency range lower than the main resonance frequency, and the second filter passes a high frequency range higher than the main resonance frequency. It can have a high-pass filter characteristic (1-LPF (s)).
 上記の態様において、前記第1フィルタは、前記主共振周波数より低い低周波数域を通すローパスフィルタ特性LPF(s)と、所定の周波数域を阻止するノッチフィルタ(NF(s))と、を組み合わせたフィルタ特性(LPF(s)・NF(s))を有し、前記第2フィルタは、前記主共振周波数より高い高周波数域を通すハイパスフィルタ特性(1-LPF(s))と、前記所定の周波数域を阻止するノッチフィルタ(NF(s))と、を組み合わせたフィルタ特性((1-LPF(s))・NF(s))を有することができる。 In the above aspect, the first filter combines a low-pass filter characteristic LPF (s) that passes a low frequency range lower than the main resonance frequency and a notch filter (NF (s)) that blocks a predetermined frequency range. The second filter has a high-pass filter characteristic (1-LPF (s)) that passes a high frequency range higher than the main resonance frequency, and the predetermined filter characteristic (LPF (s) · NF (s)). Filter characteristics ((1-LPF (s)) · NF (s)) combined with a notch filter (NF (s)) that blocks the frequency range of.
 本発明の他の態様は、ベースに対し所定方向へ移動可能であって、かつ前記ベースと弾性的に結合されたステージと、前記ステージを前記所定方向に沿って移動させる駆動手段と、前記ステージを目標位置に位置決めして停止させるように、前記駆動手段を制御する制御装置とを備えるステージ装置であって、前記制御装置は、前記ステージの位置に基づいて前記ステージを目標位置に位置決めするように制御する位置アウターループと、前記ステージの移動速度に基づいて前記ステージを目標位置に位置決めするように制御する速度インナーループと、前記ステージの周波数特性における主共振周波数を含まない周波数域で、前記ステージの位置に関する情報をフィードバックする第1フィルタと、前記ステージの周波数特性における主共振周波数を含む周波数域で、前記ステージの移動速度に関する情報をフィードバックする第2フィルタとを備えることを特徴とするステージ装置である。 According to another aspect of the present invention, there is provided a stage that is movable in a predetermined direction with respect to the base and elastically coupled to the base, a drive unit that moves the stage along the predetermined direction, and the stage. And a control device for controlling the driving means so as to position and stop the motor at the target position, the control device positioning the stage at the target position based on the position of the stage. A position outer loop to be controlled, a speed inner loop for controlling the stage to be positioned at a target position based on a moving speed of the stage, and a frequency range not including a main resonance frequency in the frequency characteristic of the stage, A first filter that feeds back information on the position of the stage, and a main frequency characteristic of the stage; In the frequency range including a resonant frequency, a stage apparatus characterized by comprising a second filter for feedback information on the movement speed of the stage.
 また、本発明の他の態様は、マスクステージに保持されたマスクのパターンを、基板ステージに保持された感光基板に露光する露光装置において、前記マスクステージと前記基板ステージとの少なくとも一方のステージを、前記ステージの位置に基づいて、目標位置に位置決めするように制御する位置アウターループと、前記少なくとも一方のステージを、前記ステージの移動速度に基づいて、前記目標位置に位置決めするように制御する速度インナーループと、前記ステージの周波数特性における主共振周波数を含まない周波数域で、前記ステージの位置に関する情報をフィードバックする第1フィルタと、前記ステージの周波数特性における主共振周波数を含む周波数域で、前記ステージの移動速度に関する情報をフィードバックする第2フィルタとを有する制御装置を備えることを特徴とする露光装置である。 According to another aspect of the present invention, there is provided an exposure apparatus that exposes a mask pattern held on a mask stage onto a photosensitive substrate held on a substrate stage, wherein at least one of the mask stage and the substrate stage is provided. A position outer loop that is controlled so as to be positioned at a target position based on the position of the stage, and a speed that is controlled so that the at least one stage is positioned at the target position based on a moving speed of the stage. An inner loop, a first filter that feeds back information on the position of the stage in a frequency range that does not include a main resonance frequency in the frequency characteristics of the stage, and a frequency range that includes a main resonance frequency in the frequency characteristics of the stage, Provide feedback on stage movement speed An exposure apparatus, characterized in that it comprises a control device and a second filter.
 また、本発明の他の態様は、物体を移動させるための制御対象物の位置に基づいて前記制御対象物を目標位置に位置決めするように制御する位置アウターループと、前記制御対象物の移動速度に基づいて前記制御対象物を前記目標位置に位置決めするように制御する速度インナーループとを有する制御方法であって、前記物体を載置するステージと、第1部材と、前記ステージに接続され、前記第1部材に対して移動可能な第2部材と、を有する前記制御対象物の周波数特性における主共振周波数を含まない周波数域で、前記制御対象物の前記ステージの位置に関する情報をフィードバックするステップと、前記制御対象物の周波数特性における主共振周波数を含む周波数域で、前記制御対象物の前記第2部材の位置に関する情報をフィードバックするステップと、を含むことを特徴とする制御方法である。 According to another aspect of the present invention, a position outer loop for controlling the control target to be positioned at a target position based on a position of the control target for moving the object, and a moving speed of the control target And a speed inner loop for controlling the control target to be positioned at the target position based on the stage, the stage on which the object is placed, a first member, and connected to the stage, Feeding back information on the position of the stage of the controlled object in a frequency range that does not include a main resonance frequency in the frequency characteristics of the controlled object having a second member movable relative to the first member. And information regarding the position of the second member of the controlled object in a frequency range including a main resonance frequency in the frequency characteristics of the controlled object. A control method characterized by comprising the steps of back, the.
 本発明の態様によれば、制御装置は、整定時間を短くすることができる。 According to the aspect of the present invention, the control device can shorten the settling time.
本発明の実施形態によるステージの位置制御を行う周波数分離P-PI(FSP-PI)制御系のブロック図である。FIG. 3 is a block diagram of a frequency separation P-PI (FSP-PI) control system for performing stage position control according to an embodiment of the present invention. 本実施形態による、第1フィルタ、第2フィルタの特性の設定方法を説明するためのフィルタ特性を示す概念図である。It is a conceptual diagram which shows the filter characteristic for demonstrating the setting method of the characteristic of a 1st filter and a 2nd filter by this embodiment. 本実施形態による、第1フィルタ、第2フィルタの特性の設定方法を説明するためのフィルタ特性を示す概念図である。It is a conceptual diagram which shows the filter characteristic for demonstrating the setting method of the characteristic of a 1st filter and a 2nd filter by this embodiment. 本実施形態による、第1フィルタ、第2フィルタの特性の設定方法を説明するためのフィルタ特性を示す概念図である。It is a conceptual diagram which shows the filter characteristic for demonstrating the setting method of the characteristic of a 1st filter and a 2nd filter by this embodiment. 本発明の一実施形態によるステージ装置の構成を示す上面図である。It is a top view which shows the structure of the stage apparatus by one Embodiment of this invention. ステージ装置におけるXステージの詳細な位置制御を説明するための同ステージ装置の側面図(Yステージより上部のみを示す)である。It is a side view (only an upper part is shown from a Y stage) of the stage device for explaining detailed position control of the X stage in a stage device. 本実施形態によるステージ装置を適用した露光装置の構成を示す側面図である。It is a side view which shows the structure of the exposure apparatus to which the stage apparatus by this embodiment is applied. 本発明の一実施形態による他のステージ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the other stage apparatus by one Embodiment of this invention. 本発明の一実施形態による他のステージ装置のXステージの詳細な位置制御を説明するための側面図である。It is a side view for demonstrating the detailed position control of the X stage of the other stage apparatus by one Embodiment of this invention. ステージ装置を用いた投影露光装置の概略構成を示す側面図である。It is a side view which shows schematic structure of the projection exposure apparatus using a stage apparatus. 本実施形態によるFSP-PI制御系と従来技術によるP-PI制御系との周波数感度特性とナイキスト線図との比較結果を示す概念図である。It is a conceptual diagram which shows the comparison result of the frequency sensitivity characteristic of the FSP-PI control system by this embodiment, and the P-PI control system by a prior art, and a Nyquist diagram. 本実施形態によるFSP-PI制御系と従来技術によるP-PI制御系との周波数感度特性とナイキスト線図との比較結果を示す概念図である。It is a conceptual diagram which shows the comparison result of the frequency sensitivity characteristic of the FSP-PI control system by this embodiment, and the P-PI control system by a prior art, and a Nyquist diagram. 本実施形態によるFSP-PI制御系を用いたステージ装置の実機検証として位置誤差応答結果を示す概念図である。It is a conceptual diagram which shows a position error response result as actual machine verification of the stage apparatus using the FSP-PI control system by this embodiment. ステージの位置制御を行うP-PI制御系のブロック図である。It is a block diagram of a P-PI control system for performing stage position control. ステージ装置(P(s))のステッパモデルを示すブロック図である。It is a block diagram which shows the stepper model of a stage apparatus (P (s)). 上記ステッパモデルのプラント周波数特性の一例を示す概念図である。It is a conceptual diagram which shows an example of the plant frequency characteristic of the said stepper model. 上記ステッパモデルのプラント周波数特性の一例を示す概念図である。It is a conceptual diagram which shows an example of the plant frequency characteristic of the said stepper model.
 本発明の実施形態は、主共振の存在する中域ではモータ位置を、位置決めに係る低域と分解能の影響を受けやすい高域ではステージ位置をフィードバックするように、フィルタで周波数分離を行う。本発明の実施形態による制御系を周波数分離P-PI(FSP-PI;Frequency Separation P-PI)と言うこととする。 In the embodiment of the present invention, the frequency separation is performed by a filter so that the motor position is fed back in the middle region where the main resonance exists, and the stage position is fed back in the low region related to positioning and the high region which is easily affected by the resolution. The control system according to the embodiment of the present invention is referred to as a frequency separation P-PI (FSP-PI; Frequency Separation P-PI).
 以下、本発明の一実施形態を、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態によるステージの位置制御を行う制御装置の周波数分離P-PI(FSP-PI)制御系のブロック図である。なお、図11に対応する部分には同一の符号を付けて説明を省略する。
 図1に示すように、本実施形態のFSP-PI制御系は、図11に示すP-PI制御系の構成要素に加えて、バンドパスフィルタ(BPF(s))、フィルタ(1-BPF(s))及び乗算器(R)を含む。
 バンドパスフィルタ(BPF(s))は、共振周波数の近傍における周波数成分を通すような特性を持ったフィルタである。これに対して、フィルタ(1-BPF(s))は、共振周波数の近傍における周波数域以外の周波数成分を通すような特性を持ったフィルタである。
FIG. 1 is a block diagram of a frequency separation P-PI (FSP-PI) control system of a control apparatus that performs stage position control according to an embodiment of the present invention. In addition, the same code | symbol is attached to the part corresponding to FIG. 11, and description is abbreviate | omitted.
As shown in FIG. 1, the FSP-PI control system of this embodiment includes a bandpass filter (BPF (s)) and a filter (1-BPF (1) in addition to the components of the P-PI control system shown in FIG. s)) and a multiplier (R).
The bandpass filter (BPF (s)) is a filter having a characteristic that allows a frequency component in the vicinity of the resonance frequency to pass. On the other hand, the filter (1-BPF (s)) is a filter having a characteristic of passing a frequency component other than the frequency region in the vicinity of the resonance frequency.
 バンドパスフィルタ(BPF(s))は、共振周波数の近傍における周波数域では、モータの回転角に基づくステージの位置をフィードバックする。乗算器(R)は、モータの回転角をステージの位置に変換する。フィルタ(1-BPF(s))は、共振周波数から離れた所、すなわち、共振周波数の近傍における周波数域以外で、ステージ位置をフィードバックする。
 なお、以下では、バンドパスフィルタ(1-BPF(s))を第1フィルタ、バンドパスフィルタ(BPF(s))を第2フィルタとする。
The band-pass filter (BPF (s)) feeds back the position of the stage based on the rotation angle of the motor in the frequency range near the resonance frequency. The multiplier (R) converts the rotation angle of the motor into the position of the stage. The filter (1-BPF (s)) feeds back the stage position at a position away from the resonance frequency, that is, outside the frequency region in the vicinity of the resonance frequency.
Hereinafter, the bandpass filter (1-BPF (s)) is referred to as a first filter, and the bandpass filter (BPF (s)) is referred to as a second filter.
 この制御系の感度関数は、次式(6)で表される。 The sensitivity function of this control system is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、BPF(s)は、1次HPF(High Pass Filter)と1次LPF(Low Pass Filter)で構成され、次式(7)で表される。 Here, BPF (s) is composed of a primary HPF (High Pass Filter) and a primary LPF (Low Pass Filter), and is represented by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 但し、fHPF<fLPFとする。
 図11に示すP-PI制御系では、図13A、13Bに示すように、主共振は60Hzで、中域に存在している。したがって、本実施形態のFSP-PI制御系において、例えば、1次HPFの共振周波数をfHPF=10Hz、1次LPFの共振周波数をfLPF=1kHzとすれば、主共振の前後で周波数分離することができる。
However, it is assumed that f HPF <f LPF .
In the P-PI control system shown in FIG. 11, as shown in FIGS. 13A and 13B, the main resonance is 60 Hz and exists in the middle range. Therefore, in the FSP-PI control system of this embodiment, for example, if the resonance frequency of the primary HPF is f HPF = 10 Hz and the resonance frequency of the primary LPF is f LPF = 1 kHz, the frequency is separated before and after the main resonance. be able to.
 次に、具体的に、第1フィルタ、第2フィルタの特性の設定方法について説明する。
 図2A~2Cは、本実施形態による、第1フィルタ、第2フィルタの特性の設定方法を説明するためのフィルタ特性を示す概念図である。ここで、第1フィルタの特性をA(s)、第2フィルタの特性をB(s)としたとき、A(s)、B(s)は、次の2つの条件を満たすように設定する。
Next, a method for setting the characteristics of the first filter and the second filter will be specifically described.
2A to 2C are conceptual diagrams showing filter characteristics for explaining a method for setting the characteristics of the first filter and the second filter according to the present embodiment. Here, when the characteristic of the first filter is A (s) and the characteristic of the second filter is B (s), A (s) and B (s) are set so as to satisfy the following two conditions. .
(条件1)A(s)は、共振周波数の付近の周波数において、第2フィルタの出力の方が第1フィルタの出力よりも支配的になるような特性を持つ。 (Condition 1) A (s) has such a characteristic that the output of the second filter is more dominant than the output of the first filter at a frequency near the resonance frequency.
(条件2)A(s)+B(s)=1 (Condition 2) A (s) + B (s) = 1
 次に、第1フィルタ及び第2フィルタの具体的な設定パターンを示す。
(第1パターン)
 B(s)は、上記数式(7)で示す特性とする。
 A(s)は、1-BPF(s)とする。
 なお、上記数式(7)で表されるBPF(s)は、図2Aに示すようになる。
 A(s)は、図示するBPF(s)を上下反転したものになるので、共振周波数近傍では、第1フィルタの出力が抑えられ、第2フィルタの出力が支配的になる。なお、上述した1次HPFというのは、BPF(s)の数式(7)の第1項、1次LPFというのは、数式(7)の第2項を指す。但し、1次でなく高次HPF、LPFでもよい。
Next, specific setting patterns of the first filter and the second filter are shown.
(First pattern)
B (s) is a characteristic represented by the above mathematical formula (7).
A (s) is 1-BPF (s).
In addition, BPF (s) represented by the above formula (7) is as shown in FIG. 2A.
Since A (s) is a vertically inverted BPF (s), the output of the first filter is suppressed near the resonance frequency, and the output of the second filter becomes dominant. Note that the above-described primary HPF refers to the first term of Equation (7) of BPF (s), and the primary LPF refers to the second term of Equation (7). However, higher order HPF and LPF may be used instead of the first order.
(第2パターン)
 A(s)は、数式(7)に示されているLPF(s)(つまり、数式(7)の第2項)とする。
 B(s)は、1-LPF(s)とする。
 LPF(s)は、図2Bに示すようになる。
(Second pattern)
A (s) is LPF (s) shown in Equation (7) (that is, the second term of Equation (7)).
Let B (s) be 1-LPF (s).
LPF (s) is as shown in FIG. 2B.
(第3パターン)
 A(s)は、LPF(s)・NF(s)(第2パターンのLPFとノッチフィルタNFの積)とする。
 B(s)は、1-LPF(s)・NF(s)とする
 ノッチフィルタNF(s)は、図2Cに示すような特性である。
(Third pattern)
A (s) is LPF (s) · NF (s) (the product of the LPF of the second pattern and the notch filter NF).
B (s) is 1-LPF (s) · NF (s). The notch filter NF (s) has characteristics as shown in FIG. 2C.
 第2パターンのLPFだけでは共振周波数におけるA(s)のゲインを十分に低減するのが難しいことがある。第3パターンでは、共振周波数におけるA(s)のゲインがノッチフィルタNFの谷でさらに低減されるので、第2パターンに比べて共振周波数近傍で第1フィルタの出力を抑えることができる。 It may be difficult to sufficiently reduce the gain of A (s) at the resonance frequency only with the second pattern LPF. In the third pattern, since the gain of A (s) at the resonance frequency is further reduced at the valley of the notch filter NF, the output of the first filter can be suppressed near the resonance frequency compared to the second pattern.
 次に、本実施形態による周波数分離P-PI(FSP-PI)制御系を用いたステージ装置について説明する。
 図3は、本発明の一実施形態による周波数分離P-PI(FSP-PI)制御系を用いたステージ装置100の構成を示す上面図である。ベース1の上面には、Yステージ2がY方向(図の上下方向)に移動可能にベアリング等の所定の支持機構(不図示)を介して設けられる。Yステージ2の上部には、Xステージ3がX方向(図の左右方向)に移動可能に同様の支持機構(不図示)を介して設けられる。
Next, the stage apparatus using the frequency separation P-PI (FSP-PI) control system according to the present embodiment will be described.
FIG. 3 is a top view showing a configuration of a stage apparatus 100 using a frequency separation P-PI (FSP-PI) control system according to an embodiment of the present invention. A Y stage 2 is provided on the upper surface of the base 1 via a predetermined support mechanism (not shown) such as a bearing so as to be movable in the Y direction (up and down direction in the figure). An X stage 3 is provided above the Y stage 2 through a similar support mechanism (not shown) so as to be movable in the X direction (left and right in the figure).
 Yステージ2はその一部にナット部を有し、Yボールねじ21がこのナット部に貫通して両者が噛み合っている。ベース1に設けられたYモータ22がYボールねじ21を回転させることによって、ナット部を介してYステージ2にY方向への推力が発生し、Yステージ2がベース1に対してY方向へ動くように構成されている。
 Yモータ22へはYステージ2を目標位置へ移動させるためにYボールねじ21の回転トルクを指示する指令値が入力され、これに従ってYボールねじ21の回転が行われて、Yステージ2が目標位置へ位置決めされる。
The Y stage 2 has a nut portion at a part thereof, and a Y ball screw 21 penetrates the nut portion to engage with each other. When the Y motor 22 provided on the base 1 rotates the Y ball screw 21, thrust in the Y direction is generated in the Y stage 2 via the nut portion, and the Y stage 2 moves in the Y direction with respect to the base 1. It is configured to move.
A command value for instructing the rotational torque of the Y ball screw 21 is input to the Y motor 22 in order to move the Y stage 2 to the target position, and the Y ball screw 21 is rotated in accordance with the command value. Positioned to position.
 更に、Yステージ2の位置決めの際に発生する振動を減衰させる制御を行うために、リニアモータによる次のような減衰機構が設けられている。
 即ち、ベース1にY方向に沿って線状に2列のYリニアモータ固定子23A、23Bが設けられる。Yステージ2にこのYリニアモータ固定子23A,23Bと向かい合う部位にYリニアモータ可動子24A,24B(不図示)が設けられる。Yリニアモータ固定子23A、23BとYリニアモータ可動子24A、24Bは、両者の間に電磁力を発生させて、Yステージ2の振動を減衰させる。
Furthermore, in order to control to attenuate the vibration generated when the Y stage 2 is positioned, the following damping mechanism using a linear motor is provided.
That is, two rows of Y linear motor stators 23A and 23B are linearly provided along the Y direction on the base 1. Y linear motor movable elements 24A and 24B (not shown) are provided on the Y stage 2 at portions facing the Y linear motor stators 23A and 23B. The Y linear motor stators 23A and 23B and the Y linear motor movers 24A and 24B generate an electromagnetic force therebetween to attenuate the vibration of the Y stage 2.
 このとき、ハーフミラーHMやミラーMRを介してYステージ2に固定されたコーナーキューブCCY1、CCY2へレーザ光Lを照射し干渉を行わせるレーザ干渉計を用いて、ベース1に対するYステージ2の位置を計測する。そして、その計測位置に基づいて振動が減衰するように前記リニアモータ(Yリニアモータ)の電磁力を制御する。
 同一方向(ここではY方向)の駆動力を発生させるリニアモータを複数設けてもよい。また、ベース1に対するYステージ2の位置を計測する干渉計も複数設けてもよい。リニアモータが複数設けられた場合は、リニアモータと干渉計をそれぞれ対応させるように設けることができる。また、リニアモータと干渉計は、それぞれを互いに対応させた状態で隣接した位置に配置するようにしてもよい。
At this time, the position of the Y stage 2 with respect to the base 1 using a laser interferometer that irradiates the laser beams L to the corner cubes CCY1 and CCY2 fixed to the Y stage 2 via the half mirror HM and the mirror MR to cause interference. Measure. Then, the electromagnetic force of the linear motor (Y linear motor) is controlled so that the vibration is attenuated based on the measurement position.
A plurality of linear motors that generate driving force in the same direction (here, the Y direction) may be provided. A plurality of interferometers that measure the position of the Y stage 2 with respect to the base 1 may be provided. When a plurality of linear motors are provided, the linear motor and the interferometer can be provided so as to correspond to each other. Further, the linear motor and the interferometer may be arranged at adjacent positions in a state where they correspond to each other.
 Xステージ3の位置制御も、上記したYステージ2の位置制御と同様である。
 即ち、Xステージ3はその一部にナット部(不図示)を有し、Xボールねじ31がこのナット部に貫通して両者が噛み合っている。Yステージ2に設けられたXモータ32がXボールねじ31を回転させることによって、ナット部を介してXステージ3にX方向への推力が発生し、Xステージ3がYステージ2に対してX方向へ動くように構成されている。
 Xモータ32へはXステージ3を目標位置へ移動させるためにXボールねじ31の回転トルクを指示する指令値が入力され、これに従ってXボールねじ31の回転が行われて、Xステージ3が目標位置へ位置決めされる。
The position control of the X stage 3 is the same as the position control of the Y stage 2 described above.
That is, the X stage 3 has a nut portion (not shown) in a part thereof, and the X ball screw 31 penetrates the nut portion to engage with each other. When the X motor 32 provided on the Y stage 2 rotates the X ball screw 31, thrust in the X direction is generated in the X stage 3 via the nut portion, and the X stage 3 is X with respect to the Y stage 2. It is configured to move in the direction.
A command value for instructing the rotational torque of the X ball screw 31 is input to the X motor 32 in order to move the X stage 3 to the target position, and the X ball screw 31 is rotated in accordance with the command value. Positioned to position.
 更に、Xステージ3の位置決めの際に発生する振動を減衰させる制御を行うために、リニアモータによる次のような減衰機構が設けられている。
 即ち、Yステージ2にX方向に沿って線状に2列のXリニアモータ固定子33A,33Bが設けられる。Xステージ3にこのXリニアモータ固定子33A,33Bと向かい合う部位にXリニアモータ可動子34A、34B(不図示)が設けられる。Xリニアモータ固定子33A、33BとXリニアモータ可動子34A、34Bは、両者の間に電磁力を発生させて、Xステージ3の振動を減衰させる。
Further, in order to control to attenuate the vibration generated when the X stage 3 is positioned, the following damping mechanism using a linear motor is provided.
That is, the Y stage 2 is provided with two rows of X linear motor stators 33A and 33B linearly along the X direction. X linear motor movable elements 34A and 34B (not shown) are provided on the X stage 3 at portions facing the X linear motor stators 33A and 33B. The X linear motor stators 33A and 33B and the X linear motor movable elements 34A and 34B generate an electromagnetic force therebetween to attenuate the vibration of the X stage 3.
 このとき、ハーフミラーHMやミラーMRを介してXステージ3に固定されたコーナーキューブCCX1、CCX2へレーザ光Lを照射し干渉を行わせるレーザ干渉計を用いて、Yステージ2に対するXステージ3の位置を計測する。そして、その計測位置に基づいて振動が減衰するように前記リニアモータ(Xリニアモータ)の電磁力を制御する。 At this time, the laser beam L is irradiated to the corner cubes CCX1 and CCX2 fixed to the X stage 3 via the half mirror HM and the mirror MR to cause interference, thereby causing the X stage 3 to move with respect to the Y stage 2. Measure the position. Then, the electromagnetic force of the linear motor (X linear motor) is controlled so that the vibration is attenuated based on the measurement position.
 同一方向(ここではX方向)の駆動力を発生させるリニアモータを複数設けてもよい。また、Yステージ2に対するXステージ3の位置を計測する干渉計も複数設けてもよい。リニアモータが複数設けられた場合は、リニアモータと干渉計をそれぞれ対応させるように設けることができる。また、リニアモータと干渉計は、それぞれを互いに対応させた状態で隣接した位置に配置するようにしてもよい。 A plurality of linear motors that generate driving force in the same direction (here, the X direction) may be provided. A plurality of interferometers that measure the position of the X stage 3 relative to the Y stage 2 may be provided. When a plurality of linear motors are provided, the linear motor and the interferometer can be provided so as to correspond to each other. Further, the linear motor and the interferometer may be arranged at adjacent positions in a state where they correspond to each other.
 図4は、上記ステージ装置100におけるXステージ3の詳細な位置制御を説明するための同ステージ装置100の側面図(Yステージ2より上部のみを示す)である。
 本ステージ装置100には、Xステージ3の位置を計測するために、位置決め用干渉計と前記リニアモータ(Xリニアモータ)用の干渉計の2つのレーザ干渉計が用いられる。位置決め用干渉計は、Xステージ3とYステージ2の外部に設けられた位置決め用干渉計測定部36により、この位置決め用干渉計測定部36の設置位置を基準としてXステージ3の位置Pxを計測する。
FIG. 4 is a side view of the stage apparatus 100 for explaining detailed position control of the X stage 3 in the stage apparatus 100 (only the upper part from the Y stage 2 is shown).
The stage apparatus 100 uses two laser interferometers, a positioning interferometer and an interferometer for the linear motor (X linear motor), in order to measure the position of the X stage 3. The positioning interferometer measures the position Px of the X stage 3 using the positioning interferometer measurement unit 36 provided outside the X stage 3 and the Y stage 2 with reference to the installation position of the positioning interferometer measurement unit 36. To do.
 例えば、位置決め用干渉計測定部36は、ベース1の外部に設けられたメトロロジーフレーム(図示せず)やベース1上に設置することができる。また、後述する図5の露光装置に本ステージ装置100を適用した場合には、例えば、露光装置の照明光学系202に組み込んだ状態で設置することができる。これらの場合、計測位置Pxは、ベース1や照明光学系202を基準に計測したXステージ3の位置となる。 For example, the positioning interferometer measuring unit 36 can be installed on a metrology frame (not shown) or the base 1 provided outside the base 1. Further, when the stage apparatus 100 is applied to the exposure apparatus shown in FIG. 5 described later, for example, the stage apparatus 100 can be installed in an illumination optical system 202 of the exposure apparatus. In these cases, the measurement position Px is the position of the X stage 3 measured with reference to the base 1 and the illumination optical system 202.
 一般的に、ステージ装置は、このような位置決め用干渉計によって計測される計測位置Pxに従って、Xステージ3の位置制御を行っている。
 具体的には、この計測位置Pxに基づいてXステージ3を目標位置へ移動させるのに必要なXボールねじ31の回転トルクが計算される。計算された回転トルクの指令値がモータ制御値としてXモータ32へ与えられる。Xモータ32がこのモータ制御値に従ってXボールねじ31を回転させることで、Xステージ3が目標位置へ位置制御される。
In general, the stage apparatus performs position control of the X stage 3 according to the measurement position Px measured by such a positioning interferometer.
Specifically, the rotational torque of the X ball screw 31 necessary to move the X stage 3 to the target position is calculated based on the measurement position Px. The calculated rotational torque command value is given to the X motor 32 as a motor control value. The X motor 32 rotates the X ball screw 31 in accordance with the motor control value, whereby the position of the X stage 3 is controlled to the target position.
 図5は、本実施形態によるステージ装置100を適用した露光装置201の構成を示す側面図である。露光装置201は、照明光学系202と、マスクM(物体)を保持して移動するマスクステージ装置203と、投影光学系PLと、ガラス基板Pを保持して移動する基板ステージ装置205と、を含んで構成される。 FIG. 5 is a side view showing a configuration of an exposure apparatus 201 to which the stage apparatus 100 according to the present embodiment is applied. The exposure apparatus 201 includes an illumination optical system 202, a mask stage apparatus 203 that moves while holding a mask M (object), a projection optical system PL, and a substrate stage apparatus 205 that moves while holding a glass substrate P. Consists of including.
 照明光学系202は、いずれも図示していない光源ユニット、シャッタ、2次光源形成光学系、ビームスプリッタ、集光レンズ系、レチクルブラインド、および結像レンズ系から構成される。照明光学系202は、マスクステージ装置203に保持されたマスクM上の所定の照明領域(回路パターンを含んでいる)を照明光ILにより均一な照度で照明する。 The illumination optical system 202 includes a light source unit, a shutter, a secondary light source forming optical system, a beam splitter, a condensing lens system, a reticle blind, and an imaging lens system, all not shown. The illumination optical system 202 illuminates a predetermined illumination area (including a circuit pattern) on the mask M held by the mask stage device 203 with uniform illumination by the illumination light IL.
 投影光学系PLは、光軸AX方向に沿って所定間隔で配置された複数枚のレンズエレメントを有する光学系(例えば屈折光学系)である。照明光学系202からの照明光ILによってマスクMの照明領域が照明されると、このマスクMを通過した照明光により、投影光学系PLを介してマスクM上の照明領域の回路パターンの所定倍率の正立像がガラス基板P上に投影され、これによりガラス基板Pの表面に塗布されたフォトレジストが露光される。 The projection optical system PL is an optical system (for example, a refractive optical system) having a plurality of lens elements arranged at predetermined intervals along the optical axis AX direction. When the illumination area of the mask M is illuminated by the illumination light IL from the illumination optical system 202, the predetermined magnification of the circuit pattern of the illumination area on the mask M via the projection optical system PL by the illumination light that has passed through the mask M Are projected onto the glass substrate P, whereby the photoresist applied to the surface of the glass substrate P is exposed.
 マスクステージ装置203または基板ステージ装置205の少なくともいずれか一方には、上述した図1のステージ装置を用いる。ここで、マスクステージ装置203として用いる場合にはXステージ3上のプレートホルダにマスクMが保持される。基板ステージ装置205として用いる場合には同プレートホルダにガラス基板Pが保持される。 1 is used as at least one of the mask stage device 203 and the substrate stage device 205. Here, when used as the mask stage device 203, the mask M is held by the plate holder on the X stage 3. When used as the substrate stage device 205, the glass substrate P is held by the same plate holder.
 図6は、本発明の一実施形態による他のステージ装置の構成を示す斜視図である。
 図6において、ステージ装置300は、X方向に移動可能なステージ装置とY方向に移動可能なステージ装置とが組み合わされ、水平面内でテーブルが自在に移動し得るように構成されている。テーブルは、X方向に移動可能なXテーブル37Xと、Y方向に移動可能なYテーブル37Yとを有している。
 Xテーブル37Xは、Yテーブル37Y上に設けられている。Xテーブル37Xは、X方向に延びた非接触方式のガイド機構(エアベアリング等)36Xによって、Yテーブル37Yに支持されている。また、Xテーブル37Xを支持するYテーブル37Yは、防振台303上に設けられている。Yテーブル37Yは、Y方向に延びた非接触方式のガイド機構(エアベアリング等)36Yによって、防振台303に支持されている。
FIG. 6 is a perspective view showing the configuration of another stage apparatus according to an embodiment of the present invention.
In FIG. 6, a stage apparatus 300 is configured such that a stage apparatus that can move in the X direction and a stage apparatus that can move in the Y direction are combined, and the table can move freely in a horizontal plane. The table has an X table 37X movable in the X direction and a Y table 37Y movable in the Y direction.
The X table 37X is provided on the Y table 37Y. The X table 37X is supported on the Y table 37Y by a non-contact type guide mechanism (air bearing or the like) 36X extending in the X direction. Further, the Y table 37Y that supports the X table 37X is provided on the vibration isolation table 303. The Y table 37Y is supported on the vibration isolation table 303 by a non-contact type guide mechanism (air bearing or the like) 36Y extending in the Y direction.
 Yテーブル37Yは、ガイド機構36Yと平行に設けられた送りねじ35YによってY方向に駆動される。送りねじ35Yは防振台303上の取り付けられたモータ34Yによって駆動される。Yテーブル37Yと防振台303との間には、リニアモータ機構322Y、323Yが設けられている。
 Xテーブル37Xは、ガイド機構36Xと平行に設けられた送りねじ35XによってX方向に駆動される。送りねじ35Xは、Yテーブル37Y上に取り付けられたモータ34Xによって駆動される。Xテーブル37XとYテーブル37Yとの間には、リニアモータ機構322X、323Xが設けられている。
The Y table 37Y is driven in the Y direction by a feed screw 35Y provided in parallel with the guide mechanism 36Y. The feed screw 35Y is driven by a motor 34Y attached on the vibration isolator 303. Linear motor mechanisms 322Y and 323Y are provided between the Y table 37Y and the vibration isolation table 303.
The X table 37X is driven in the X direction by a feed screw 35X provided in parallel with the guide mechanism 36X. The feed screw 35X is driven by a motor 34X attached on the Y table 37Y. Linear motor mechanisms 322X and 323X are provided between the X table 37X and the Y table 37Y.
 レーザ干渉計312Yは、Yテーブル37Yの位置を高精度に検出し得るように構成される。具体的には、レーザ干渉計312Yは、Xテーブル37X上に設けられた反射鏡313Yにレーザ光を照射し、その戻り光に基づいて非接触にYテーブル37Yの位置を計測する。
 レーザ干渉計312Xは、Xテーブル37Xの位置を高精度に検出し得るように構成される。レーザ干渉計312Xは、レーザ干渉計312Yと同様に、Xテーブル37X上に設けられた反射鏡313Xにレーザ光を照射し、その戻り光に基づいて非接触にXテーブル37Xの位置を計測する。
 図6では、簡略化して示してあるが、レーザ干渉計312Yは、防振台303上に固定され、レーザ干渉計312Xは、Yテーブル37Y上に固定されている。
The laser interferometer 312Y is configured to detect the position of the Y table 37Y with high accuracy. Specifically, the laser interferometer 312Y irradiates the reflecting mirror 313Y provided on the X table 37X with laser light, and measures the position of the Y table 37Y in a non-contact manner based on the return light.
The laser interferometer 312X is configured to detect the position of the X table 37X with high accuracy. Similarly to the laser interferometer 312Y, the laser interferometer 312X irradiates the reflecting mirror 313X provided on the X table 37X with laser light, and measures the position of the X table 37X in a non-contact manner based on the return light.
In FIG. 6, although simplified, the laser interferometer 312Y is fixed on the anti-vibration table 303, and the laser interferometer 312X is fixed on the Y table 37Y.
 ここで、Xテーブル37XをX方向に駆動するリニアモータ機構322X、323XとYテーブル37YをY方向に駆動するリニアモータ機構322Y、323Yの基本的な構成が一致することに着目し、図7にXテーブル37XをX方向に駆動するリニアモータ機構322X、323Xを説明する。
 Xテーブル37XとYテーブル37Yとの間に設けられたリニアモータ機構322X、323Xは、Yテーブル37Yの、Xテーブル37X側に取り付けられたリニアモータ機構322X(固定子)と、Xテーブル37Xの、Yテーブル37Y側に取り付けられたリニアモータ機構323X(可動子)とから構成されている。
 Y方向についても同様に、Yテーブル37Yと防振台303との間に、リニアモータ機構322Y、323Yが設けられている(図8を参照)。
Here, paying attention to the fact that the basic configurations of the linear motor mechanisms 322X and 323X for driving the X table 37X in the X direction and the linear motor mechanisms 322Y and 323Y for driving the Y table 37Y in the Y direction match, FIG. The linear motor mechanisms 322X and 323X that drive the X table 37X in the X direction will be described.
The linear motor mechanisms 322X and 323X provided between the X table 37X and the Y table 37Y are the linear motor mechanism 322X (stator) attached to the X table 37X side of the Y table 37Y, and the X table 37X. The linear motor mechanism 323X (movable element) is attached to the Y table 37Y side.
Similarly, in the Y direction, linear motor mechanisms 322Y and 323Y are provided between the Y table 37Y and the vibration isolation table 303 (see FIG. 8).
 このステージ装置300は、さらに制御部324を有している。制御部324は、反射鏡313X、313Yと協働してレーザ干渉計312X、312Yが計測したテーブル位置情報を受け、モータ34X、34Y及び送りねじ35X、35Yを介して、またはリニアモータ機構322X、323X及び322Y、323Yを介してXテーブル37X、Yテーブル37Yを適宜駆動させる。制御部324はこれらの他、装置全体を制御する。 The stage apparatus 300 further includes a control unit 324. The control unit 324 receives the table position information measured by the laser interferometers 312X and 312Y in cooperation with the reflecting mirrors 313X and 313Y, and receives the motor 34X and 34Y and the feed screws 35X and 35Y or the linear motor mechanism 322X, The X table 37X and the Y table 37Y are appropriately driven through 323X and 322Y and 323Y. In addition to these, the control unit 324 controls the entire apparatus.
 以上の構成において、この実施形態にかかるステージ装置300が半導体製造用の投影露光装置400(後述)に使用される場合、感光基板であるウエハW(物体)が載置されたテーブル(Yテーブル37Y、Xテーブル37X)は、投影露光後次の露光領域が投影光学系の投影視野の所定位置に位置決めされるように駆動される。 In the above configuration, when the stage apparatus 300 according to this embodiment is used in a projection exposure apparatus 400 (described later) for manufacturing a semiconductor, a table (Y table 37Y) on which a wafer W (object) as a photosensitive substrate is placed. The X table 37X) is driven so that the next exposure area after the projection exposure is positioned at a predetermined position in the projection field of the projection optical system.
 図8は、上記ステージ装置300を用いた投影露光装置400の概略構成を示す側面図である。
 半導体製造用の投影露光装置400に使用されるステージ装置300では、基盤を構成する防振台303上に設けられたモータ(34X)34Yをステージ制御部(図示せず)が駆動することにより、送りねじ(駆動軸)(35X)35Yを介してガイド機構(36X)36Yにガイドされるテーブル(37X)37Yが所定位置に駆動される。
 テーブル(37X)37Y上には、感光基板であるウエハWが載置され、このウエハ面上の所望の露光領域に光源408を発した光がフライアイレンズ、コンデンサレンズ等のレンズ系より構成される照明光学系409、レチクル410及び投影レンズ411を介して絞り込まれ、マスクパターンがウエハW上に結像される。
 露光領域の投影露光終了後、投影レンズ411の投影視野内の所定位置に次の露光領域が位置決めされるように、テーブル(37X)37Yが適宜駆動される。レーザ干渉計(312X)312Yは、テーブル(37X)37Y上に設けられた移動鏡313Yからの反射光に基づいてテーブル(37X)37Yの位置を計測する。
FIG. 8 is a side view showing a schematic configuration of a projection exposure apparatus 400 using the stage apparatus 300.
In the stage apparatus 300 used in the projection exposure apparatus 400 for manufacturing a semiconductor, a stage controller (not shown) drives a motor (34X) 34Y provided on a vibration isolating base 303 that constitutes a base. A table (37X) 37Y guided by a guide mechanism (36X) 36Y is driven to a predetermined position via a feed screw (drive shaft) (35X) 35Y.
A wafer W, which is a photosensitive substrate, is placed on the table (37X) 37Y, and light emitted from a light source 408 in a desired exposure area on the wafer surface is constituted by a lens system such as a fly-eye lens and a condenser lens. The aperture is narrowed down through the illumination optical system 409, the reticle 410, and the projection lens 411, and the mask pattern is imaged on the wafer W.
After the projection exposure of the exposure area is completed, the table (37X) 37Y is appropriately driven so that the next exposure area is positioned at a predetermined position within the projection field of the projection lens 411. The laser interferometer (312X) 312Y measures the position of the table (37X) 37Y based on the reflected light from the movable mirror 313Y provided on the table (37X) 37Y.
 投影露光装置400におけるステージ装置300では、テーブル(37X)37Yを除く装置全体が剛体として防振台303上に固定され、テーブル(37X)37Yは、送りねじ(35X)35Yとテーブル(37X)37Yのガイド機構(36X)36Yにより、装置本体にほぼ剛体として固定されている。
 換言すれば、マクロ的にはテーブル(37X)37Yと装置とは一体であるが、装置全体の剛性とテーブル(37X)37Yの支持剛性とを比較するとミクロ的にはテーブル(37X)37Yが基盤上でばね支持されているような構造モデルと等価である。これは、ここで要求される精度においては、接合部の遊びや摩擦により送りねじ(35X)35Yが完全な剛体とは見なされないためである。
 テーブル(37X)37Yと防振台303との間に、テーブル(37X)37Yを送りねじ(35X)35Yに沿った方向に移動させるための第2の駆動手段として、リニアモータ機構422、423が配置されている。
In the stage apparatus 300 in the projection exposure apparatus 400, the entire apparatus excluding the table (37X) 37Y is fixed as a rigid body on the vibration isolator 303, and the table (37X) 37Y includes a feed screw (35X) 35Y and a table (37X) 37Y. The guide mechanism (36X) 36Y is substantially fixed as a rigid body to the apparatus main body.
In other words, the table (37X) 37Y and the apparatus are integrated on a macro scale, but the table (37X) 37Y is the basis on a micro scale when comparing the rigidity of the entire apparatus and the support rigidity of the table (37X) 37Y. It is equivalent to a structural model that is spring-supported above. This is because the lead screw (35X) 35Y is not regarded as a complete rigid body due to play and friction of the joint in the accuracy required here.
Linear motor mechanisms 422 and 423 serve as second drive means for moving the table (37X) 37Y in the direction along the feed screw (35X) 35Y between the table (37X) 37Y and the vibration isolation table 303. Has been placed.
 上述した図3、図4に示すステージ装置、あるいは図6、図7に示すステージ装置が、前述した図12に示すモデルとして表される。 The above-described stage apparatus shown in FIGS. 3 and 4 or the stage apparatus shown in FIGS. 6 and 7 is represented as the model shown in FIG.
 図9A、9Bは、本実施形態によるFSP-PI制御系と従来技術によるP-PI制御系との周波数感度特性とナイキスト線図との比較結果を示す概念図である。図9Aは、位置アウターループの比例ゲインKが40の場合を示す。図9Bは、位置アウターループの比例ゲインKが80の場合を示す。
 図9A、9Bに示すナイキスト線図において、点(-1,0)と曲線(P-PIやFSP-PI)上の各点との距離は、感度関数の逆数1/|S(s)|と等しい。また、感度関数S(s)の値が小さいほど、外乱に対する制御特性が良い。よって、ナイキスト線図上の点(-1,0)から曲線が離れるほど、制御特性は良い。
9A and 9B are conceptual diagrams showing comparison results of frequency sensitivity characteristics and Nyquist diagrams between the FSP-PI control system according to the present embodiment and the P-PI control system according to the prior art. 9A is a proportional gain K p of the position the outer loop shows the case of a 40. 9B is a proportional gain K p of the position the outer loop shows the case of a 80.
In the Nyquist diagrams shown in FIGS. 9A and 9B, the distance between the point (−1, 0) and each point on the curve (P-PI or FSP-PI) is the inverse of the sensitivity function 1 / | S (s) | Is equal to Also, the smaller the value of the sensitivity function S (s), the better the control characteristics against disturbance. Therefore, the further away the curve from the point (−1, 0) on the Nyquist diagram, the better the control characteristics.
 位置アウターループの比例ゲインKを倍にすると、図9Bに示すように、P-PI制御系の曲線はナイキスト線図において点(-1,0)を中心とする半径0.5の円に入り、安定余裕が少ない。この原因は、主共振の影響で位相が遅れるためにある。一方、FSP-PI制御系は、主共振の存在する中域では、BPFによってモータ位置情報をメインに用いる。このため、FSP-PI制御系ではP-PI制御系に比べて位相が回復する。このことをナイキスト線図から読み取ることができる。
 これによって、ゲインを倍に上げても、安定余裕が十分に確保された制御系が実現できていることが分かる。すなわち、図9A、9Bに示すナイキスト線図によれば、FSP-PI制御系の方が点(-1,0)から離れた特性曲線を示しているので制御特性が向上していることが分かる。
If the proportional gain K p of the position outer loop doubled, as shown in FIG. 9B, the curve of P-PI control system to a circle of radius 0.5 centered at point (-1, 0) in the Nyquist diagram There is little stability margin. This is because the phase is delayed due to the influence of the main resonance. On the other hand, the FSP-PI control system mainly uses the motor position information by BPF in the middle region where the main resonance exists. For this reason, the phase is recovered in the FSP-PI control system compared to the P-PI control system. This can be read from the Nyquist diagram.
As a result, it can be seen that a control system with a sufficient stability margin can be realized even if the gain is doubled. That is, according to the Nyquist diagrams shown in FIGS. 9A and 9B, the FSP-PI control system shows a characteristic curve away from the point (−1, 0), so that the control characteristics are improved. .
 図10は、本実施形態によるFSP-PI制御系を用いたステージ装置の実機検証として位置誤差応答結果を示す概念図である。但し、非線形ゲインマップを用いている。図10において、上側のグラフでは、横軸を時間、縦軸を位置誤差と定義している。また、下側のグラフでは、横軸を時間、縦軸を、下から順に、加速移動中、等速移動中、減速移動中、露光中、整定中と定義している。
 従来技術によるP-PI制御系では、整定時間が約200msである。一方、本実施形態によるFSP-PI制御系では、整定時間を約100msまで短縮している。整定時間は、ステージ座標位置や各ステップにおいてバラツキがあるため、複数回測定する必要があるが、十分、整定時間を短くすることができる。
FIG. 10 is a conceptual diagram showing a position error response result as actual machine verification of the stage apparatus using the FSP-PI control system according to the present embodiment. However, a nonlinear gain map is used. In FIG. 10, in the upper graph, the horizontal axis is defined as time, and the vertical axis is defined as position error. In the lower graph, the horizontal axis is defined as time, and the vertical axis is defined as accelerating movement, constant speed movement, decelerating movement, exposure, and settling in order from the bottom.
In the conventional P-PI control system, the settling time is about 200 ms. On the other hand, in the FSP-PI control system according to the present embodiment, the settling time is shortened to about 100 ms. Since the settling time varies depending on the stage coordinate position and each step, the settling time needs to be measured a plurality of times, but the settling time can be sufficiently shortened.
 1…ベース 2…Yステージ 3…Xステージ 21…Yボールねじ 22…Yモータ 23A,23B…Yリニアモータ固定子 24A,24B…Yリニアモータ可動子 31…Xボールねじ 32…Xモータ 33A,33B…Xリニアモータ固定子 34A,34B…Xリニアモータ可動子 34X、34Y…モータ 35X、35Y…送りねじ 36…位置決め用干渉計測定部 36X、36Y…ガイド機構 37X…Xテーブル 37Y…Yテーブル 37…エンコーダ 38…ナット部 201…露光装置 202…照明光学系 203…マスクステージ装置 205…基板ステージ装置 300…ステージ装置 303…防振台 312X、312Y…レーザ干渉計 313X、313Y…反射鏡 322X、322Y…リニアモータ機構(固定子) 323X、323Y…リニアモータ機構(可動子) 324…制御部 400…投影露光装置 408…光源 409…照明光学系。 1 ... base 2 ... Y stage 3 ... X stage 21 ... Y ball screw 22 ... Y motor 23A, 23B ... Y linear motor stator 24A, 24B ... Y linear motor mover 31 ... X ball screw 32 ... X motor 33A, 33B ... X linear motor stator 34A, 34B ... X linear motor movable element 34X, 34Y ... motor 35X, 35Y ... feed screw 36 ... positioning interferometer measuring section 36X, 36Y ... guide mechanism 37X ... X table 37Y ... Y table 37 ... Encoder 38 ... Nut part 201 ... Exposure apparatus 202 ... Illumination optical system 203 ... Mask stage apparatus 205 ... Substrate stage apparatus 300 ... Stage apparatus 303 ... Anti-vibration table 312X, 312Y ... Laser interferometers 313X, 313Y ... Reflector 322X, 322Y ... Re Amota mechanism (stator) 323x, 323Y ... linear motor mechanism (movable element) 324 ... control unit 400 ... projection exposure apparatus 408 ... light source 409 ... illumination optical system.

Claims (7)

  1.  物体を移動させるための制御対象物の位置に基づいて前記制御対象物を目標位置に位置決めするように制御する位置アウターループと、前記制御対象物の移動速度に基づいて前記制御対象物を前記目標位置に位置決めするように制御する速度インナーループとを有する制御装置であって、
     前記物体を載置するステージと、第1部材と、前記ステージに接続され、前記第1部材に対して移動可能な第2部材と、を有する前記制御対象物と、
     前記制御対象物の周波数特性における主共振周波数を含まない周波数域で、前記制御対象物の前記ステージの位置に関する情報をフィードバックする第1フィルタと、
     前記制御対象物の周波数特性における主共振周波数を含む周波数域で、前記第2部材の位置に関する情報をフィードバックする第2フィルタと、
     を備えることを特徴とする制御装置。
    A position outer loop for controlling the control target to be positioned at the target position based on the position of the control target for moving the object, and the control target based on the moving speed of the control target. A control device having a speed inner loop for controlling to be positioned at a position,
    The control object having a stage on which the object is placed, a first member, and a second member connected to the stage and movable with respect to the first member;
    A first filter that feeds back information related to the position of the stage of the control object in a frequency range that does not include a main resonance frequency in the frequency characteristics of the control object;
    A second filter that feeds back information related to the position of the second member in a frequency range including a main resonance frequency in the frequency characteristics of the controlled object;
    A control device comprising:
  2.  前記第2フィルタは、前記主共振周波数を中心とした前後の周波数域を通過させるバンドパスフィルタ特性BPF(s)を有し、
     前記第1フィルタは、前記主共振周波数を中心とした前後の周波数域以外を通過させるバンドストップフィルタ特性(1-BPF(s))を有する
     ことを特徴とする請求項1に記載の制御装置。
    The second filter has a bandpass filter characteristic BPF (s) that allows a frequency range around the main resonance frequency to pass through,
    2. The control device according to claim 1, wherein the first filter has a band stop filter characteristic (1 -BPF (s)) that allows passage of frequencies other than the front and rear frequency ranges centered on the main resonance frequency.
  3.  前記第1フィルタは、前記主共振周波数より低い低周波数域を通すローパスフィルタ特性LPF(s)を有し、
     前記第2フィルタは、前記主共振周波数より高い高周波数域を通すハイパスフィルタ特性(1-LPF(s))を有する
     ことを特徴とする請求項1に記載の制御装置。
    The first filter has a low-pass filter characteristic LPF (s) that passes a low frequency region lower than the main resonance frequency,
    The control device according to claim 1, wherein the second filter has a high-pass filter characteristic (1-LPF (s)) that passes a high frequency region higher than the main resonance frequency.
  4.  前記第1フィルタは、前記主共振周波数より低い低周波数域を通すローパスフィルタ特性LPF(s)と、所定の周波数域を阻止するノッチフィルタ(NF(s))と、を組み合わせたフィルタ特性(LPF(s)・NF(s))を有し、
     前記第2フィルタは、前記主共振周波数より高い高周波数域を通すハイパスフィルタ特性(1-LPF(s))と、前記所定の周波数域を阻止するノッチフィルタ(NF(s))と、を組み合わせたフィルタ特性((1-LPF(s))・NF(s))を有する
     ことを特徴とする請求項1に記載の制御装置。
    The first filter has a filter characteristic (LPF) that combines a low-pass filter characteristic LPF (s) that passes a low frequency range lower than the main resonance frequency and a notch filter (NF (s)) that blocks a predetermined frequency range. (S) · NF (s))
    The second filter combines a high-pass filter characteristic (1-LPF (s)) that passes a high frequency range higher than the main resonance frequency and a notch filter (NF (s)) that blocks the predetermined frequency range. The control device according to claim 1, further comprising: a filter characteristic ((1-LPF (s)) · NF (s)).
  5.  ベースに対し所定方向へ移動可能であって、かつ前記ベースと弾性的に結合されたステージと、前記ステージを前記所定方向に沿って移動させる駆動手段と、前記ステージを目標位置に位置決めして停止させるように、前記駆動手段を制御する制御装置とを備えるステージ装置であって、
     前記制御装置は、
     前記ステージの位置に基づいて前記ステージを目標位置に位置決めするように制御する位置アウターループと、
     前記ステージの移動速度に基づいて前記ステージを目標位置に位置決めするように制御する速度インナーループと、
     前記ステージの周波数特性における主共振周波数を含まない周波数域で、前記ステージの位置に関する情報をフィードバックする第1フィルタと、
     前記ステージの周波数特性における主共振周波数を含む周波数域で、前記ステージの移動速度に関する情報をフィードバックする第2フィルタと
     を備えることを特徴とするステージ装置。
    A stage that is movable in a predetermined direction with respect to the base and is elastically coupled to the base, a driving unit that moves the stage along the predetermined direction, and the stage is positioned at a target position and stopped. A stage device comprising a control device for controlling the driving means,
    The control device includes:
    A position outer loop for controlling the stage to be positioned at a target position based on the position of the stage;
    A speed inner loop for controlling the stage to be positioned at a target position based on the moving speed of the stage;
    A first filter that feeds back information related to the position of the stage in a frequency range that does not include a main resonance frequency in the frequency characteristics of the stage;
    A stage device comprising: a second filter that feeds back information related to the moving speed of the stage in a frequency range including a main resonance frequency in the frequency characteristics of the stage.
  6.  マスクステージに保持されたマスクのパターンを、基板ステージに保持された感光基板に露光する露光装置において、
     前記マスクステージと前記基板ステージとの少なくとも一方のステージを、前記ステージの位置に基づいて、目標位置に位置決めするように制御する位置アウターループと、
     前記少なくとも一方のステージを、前記ステージの移動速度に基づいて、前記目標位置に位置決めするように制御する速度インナーループと、
     前記ステージの周波数特性における主共振周波数を含まない周波数域で、前記ステージの位置に関する情報をフィードバックする第1フィルタと、
     前記ステージの周波数特性における主共振周波数を含む周波数域で、前記ステージの移動速度に関する情報をフィードバックする第2フィルタと
     を有する制御装置
     を備えることを特徴とする露光装置。
    In an exposure apparatus that exposes a mask pattern held on a mask stage onto a photosensitive substrate held on a substrate stage,
    A position outer loop for controlling at least one of the mask stage and the substrate stage to be positioned at a target position based on the position of the stage; and
    A speed inner loop that controls the at least one stage to be positioned at the target position based on a moving speed of the stage;
    A first filter that feeds back information related to the position of the stage in a frequency range that does not include a main resonance frequency in the frequency characteristics of the stage;
    An exposure apparatus comprising: a control device including: a second filter that feeds back information related to a moving speed of the stage in a frequency range including a main resonance frequency in the frequency characteristics of the stage.
  7.  物体を移動させるための制御対象物の位置に基づいて前記制御対象物を目標位置に位置決めするように制御する位置アウターループと、前記制御対象物の移動速度に基づいて前記制御対象物を前記目標位置に位置決めするように制御する速度インナーループとを有する制御方法であって、
     前記物体を載置するステージと、第1部材と、前記ステージに接続され、前記第1部材に対して移動可能な第2部材と、を有する前記制御対象物の周波数特性における主共振周波数を含まない周波数域で、前記制御対象物の前記ステージの位置に関する情報をフィードバックするステップと、
     前記制御対象物の周波数特性における主共振周波数を含む周波数域で、前記制御対象物の前記第2部材の位置に関する情報をフィードバックするステップと、
     を含むことを特徴とする制御方法。
    A position outer loop for controlling the control target to be positioned at the target position based on the position of the control target for moving the object, and the control target based on the moving speed of the control target. A control method having a speed inner loop for controlling to be positioned at a position,
    Including a main resonance frequency in a frequency characteristic of the controlled object, comprising: a stage on which the object is placed; a first member; and a second member connected to the stage and movable with respect to the first member. Feeding back information on the position of the stage of the controlled object in a non-frequency region;
    Feeding back information on the position of the second member of the control object in a frequency range including a main resonance frequency in the frequency characteristics of the control object;
    The control method characterized by including.
PCT/JP2013/062020 2012-04-24 2013-04-24 Controller, stage device, exposure device, and control method WO2013161858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-099129 2012-04-24
JP2012099129 2012-04-24

Publications (1)

Publication Number Publication Date
WO2013161858A1 true WO2013161858A1 (en) 2013-10-31

Family

ID=49483166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062020 WO2013161858A1 (en) 2012-04-24 2013-04-24 Controller, stage device, exposure device, and control method

Country Status (2)

Country Link
TW (1) TW201351063A (en)
WO (1) WO2013161858A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204366A (en) * 2014-04-14 2015-11-16 株式会社ニコン Drive system, driving method, exposure device, exposure method, and device manufacturing method
IT201700122296A1 (en) * 2017-10-27 2019-04-27 Hpt Sinergy Srl CARTESIAN MACHINE TOOL WITH NUMERIC CONTROL PERFORMED FOR HIGH PRECISION WORKINGS AND MONITORING EQUIPMENT FOR DEFORMATIONS FOR CARTESIAN TOOL MACHINES FOR HIGH PRECISION MACHINING

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088159A (en) * 1994-06-17 1996-01-12 Nikon Corp Scanning type exposure system
JP2005245051A (en) * 2004-02-24 2005-09-08 Matsushita Electric Ind Co Ltd Control parameter calculation method of motor control device and motor control device
JP2009141283A (en) * 2007-12-10 2009-06-25 Nikon Corp Stage device, exposure device, and method of controlling the stage device
JP2011233002A (en) * 2010-04-28 2011-11-17 Nikon Corp Disturbance observer, feedback compensator, positioning device, exposure device and method for designing disturbance observer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088159A (en) * 1994-06-17 1996-01-12 Nikon Corp Scanning type exposure system
JP2005245051A (en) * 2004-02-24 2005-09-08 Matsushita Electric Ind Co Ltd Control parameter calculation method of motor control device and motor control device
JP2009141283A (en) * 2007-12-10 2009-06-25 Nikon Corp Stage device, exposure device, and method of controlling the stage device
JP2011233002A (en) * 2010-04-28 2011-11-17 Nikon Corp Disturbance observer, feedback compensator, positioning device, exposure device and method for designing disturbance observer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204366A (en) * 2014-04-14 2015-11-16 株式会社ニコン Drive system, driving method, exposure device, exposure method, and device manufacturing method
IT201700122296A1 (en) * 2017-10-27 2019-04-27 Hpt Sinergy Srl CARTESIAN MACHINE TOOL WITH NUMERIC CONTROL PERFORMED FOR HIGH PRECISION WORKINGS AND MONITORING EQUIPMENT FOR DEFORMATIONS FOR CARTESIAN TOOL MACHINES FOR HIGH PRECISION MACHINING

Also Published As

Publication number Publication date
TW201351063A (en) 2013-12-16

Similar Documents

Publication Publication Date Title
JP4358817B2 (en) Lithographic apparatus and device manufacturing method
JP5909451B2 (en) Drive system and drive method, exposure apparatus and exposure method, and drive system design method
US20100001168A1 (en) Damping apparatus and exposure apparatus
JP6032503B2 (en) Drive system and drive method, and exposure apparatus and exposure method
US11619886B2 (en) Position measurement system, interferometer system and lithographic apparatus
WO2013161858A1 (en) Controller, stage device, exposure device, and control method
EP3764165A1 (en) Substrate shape measuring device
JP2013114297A (en) Drive system and driving method, and exposure device and exposing method
JP2016513276A (en) Lithographic apparatus and device manufacturing method
US11556064B2 (en) Stage apparatus and method for calibrating an object loading process
JP5587450B2 (en) Lithographic apparatus, method, and multi-degree-of-freedom control system
US11914307B2 (en) Inspection apparatus lithographic apparatus measurement method
JP5034917B2 (en) STAGE DEVICE, EXPOSURE DEVICE, AND STAGE DEVICE CONTROL METHOD
US11774865B2 (en) Method of controlling a position of a first object relative to a second object, control unit, lithographic apparatus and apparatus
EP3872444A1 (en) Interferometer system and lithographic apparatus
EP3876036A1 (en) Vibration isolation system and associated applications in lithography
EP3761116A1 (en) A mirror calibrating method, a position measuring method, a lithographic apparatus and a device manufacturing method
JP2009065058A (en) Method of designing driver, method of designing stage device, method of manufacturing stage device, method of manufacturing exposure apparatus and stage device
NL2032345A (en) A position measurement system, a positioning system, a lithographic apparatus, and a device manufacturing method
NL2023487A (en) Substrate shape measuring device, Substrate handling device, Substrate shape measuring unit and Method to handle substrates
JPH07335538A (en) Stage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP