WO2013161836A1 - イオン交換膜電解槽 - Google Patents

イオン交換膜電解槽 Download PDF

Info

Publication number
WO2013161836A1
WO2013161836A1 PCT/JP2013/061958 JP2013061958W WO2013161836A1 WO 2013161836 A1 WO2013161836 A1 WO 2013161836A1 JP 2013061958 W JP2013061958 W JP 2013061958W WO 2013161836 A1 WO2013161836 A1 WO 2013161836A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
ion exchange
exchange membrane
electrolytic cell
rigid
Prior art date
Application number
PCT/JP2013/061958
Other languages
English (en)
French (fr)
Inventor
清人 浅海
平嶋 浩一
鄭侃 黄
岡本 光正
貢史 吉村
Original Assignee
クロリンエンジニアズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クロリンエンジニアズ株式会社 filed Critical クロリンエンジニアズ株式会社
Priority to IN2335MUN2014 priority Critical patent/IN2014MN02335A/en
Priority to EP13780850.7A priority patent/EP2843084B1/en
Priority to US14/396,143 priority patent/US9828684B2/en
Priority to CN201380022395.9A priority patent/CN104254644B/zh
Priority to KR1020147032135A priority patent/KR101858485B1/ko
Publication of WO2013161836A1 publication Critical patent/WO2013161836A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an ion exchange membrane electrolytic cell (hereinafter also simply referred to as “electrolytic cell”), and more specifically, an existing bipolar ion in which a cathode partition and a rigid cathode are joined via a plurality of V-shaped springs.
  • the present invention relates to an ion exchange membrane electrolytic cell having improved electrolytic performance by a simple technique.
  • an anode, an ion exchange membrane, and a hydrogen generation cathode are arranged in close contact with each other in order to lower the electrolysis voltage.
  • anode and cathode of the rigid member are accommodated in the electrode chamber, the electrodes are kept in close contact with the ion exchange membrane and the electrode spacing is kept at a predetermined value. Was difficult.
  • an electrolytic cell using an elastic material as a material As a means for reducing the distance between the electrodes or the distance between the electrode and the electrode current collector or maintaining it at a substantially constant value, an electrolytic cell using an elastic material as a material is known.
  • an electrolytic cell in order to prevent the ion exchange membrane from being damaged by bringing the electrode into close contact with the ion exchange membrane and to keep the distance between the positive and negative electrodes to a minimum, the direction of the distance between the electrodes of at least one of the electrodes The electrode is pressed by an elastic member to adjust the holding pressure.
  • this elastic material non-rigid materials such as metal fine wire woven fabric, non-woven fabric and net, and rigid materials such as leaf springs are known.
  • Patent Document 1 a metal coil body is mounted between a cathode and a cathode end plate instead of a conventionally used leaf spring or metal mesh body, and the cathode is uniformly pressed in the direction of the diaphragm so that the respective members are brought into close contact with each other.
  • An electrolytic cell has been proposed.
  • patent document 2 as an improvement technique of patent document 1, a metal coil body is wound around a corrosion-resistant frame to produce an elastic cushion material, and this elastic cushion material is placed between a hydrogen generating cathode and a cathode current collector plate.
  • an ion exchange membrane electrolytic cell that is mounted and the hydrogen generating cathode is uniformly pressed against the ion exchange membrane.
  • an electrolytic cell unit 40 having an anode chamber 31 having a rigid anode 31a and an anode partition wall 31b and a cathode chamber 32 having a rigid cathode 32a and a cathode partition wall 32b as shown in FIG.
  • a so-called zero-gap electrolyzer is known which is arranged continuously through 37.
  • a rigid cathode 32 a and a cathode partition wall 32 b are joined via a plurality of V-shaped springs 33, and the rigid cathode 32 a and the ion exchange membrane 37 are adjacent to each other by the reaction force of the V-shaped springs 33.
  • the rigid anode of the electrolytic cell unit is closely attached.
  • Patent Documents 1 and 2 are also applied to such an ion exchange membrane electrolytic cell for the purpose of preventing damage to the ion exchange membrane 37 and improving electrolytic performance. Improvements are possible. It is also conceivable to change the material of the V-shaped spring 33 to a low resistance material for the purpose of further improving the electrolytic performance. However, the work of replacing the V-shaped spring 33 in the existing bipolar electrode exchange membrane electrolytic cell is a large-scale operation, which is not preferable in terms of time and cost.
  • an object of the present invention is to improve the electrolytic performance of a conventional bipolar ion exchange membrane electrolytic cell in which a cathode partition and a rigid cathode are joined via a plurality of V-shaped springs by a simple method. is there.
  • the present inventors can easily improve electrolytic performance by minimizing the path of the electrolytic current flowing through the V-shaped spring of the ion exchange membrane electrolytic cell. The present inventors have found that this can be done and have completed the present invention.
  • the ion exchange membrane electrolytic cell of the present invention is partitioned by an ion exchange membrane into an anode chamber having a rigid anode and an anode partition, and a cathode chamber having a rigid cathode and a cathode partition, and the rigid cathode and the
  • an ion exchange membrane electrolytic cell in which a cathode partition is joined via a plurality of V-shaped springs A conductive member is disposed in the vicinity of the end portion on the opening side of the V-shaped spring, and the V-shaped spring is compressed to electrically connect the V-shaped spring and the conductive member.
  • the conductive member preferably has elasticity.
  • Another ion exchange membrane electrolytic cell of the present invention is partitioned by an ion exchange membrane into an anode chamber having a rigid anode and an anode partition, and a cathode chamber having a rigid cathode and a cathode partition, and the rigid cathode And an ion exchange membrane electrolytic cell in which the cathode barrier rib is joined via a plurality of V-shaped springs, In the region of the rigid cathode not joined to the plurality of V-shaped springs, a concave portion is formed in the direction of the cathode barrier rib, and the concave portion and the cathode barrier rib are electrically connected. .
  • another ion exchange membrane electrolytic cell of the present invention is partitioned by an ion exchange membrane into an anode chamber having a rigid anode and an anode partition, and a cathode chamber having a rigid cathode and a cathode partition, and the rigid cathode And an ion exchange membrane electrolytic cell in which the cathode barrier rib is joined via a plurality of V-shaped springs, By compressing the V-shaped spring, ends on the opening side of the V-shaped spring are electrically connected to each other.
  • a metal elastic body and a flexible cathode are disposed on the opposite surface of the rigid cathode on the V-shaped spring joint surface, and the metal elastic As the body, it is preferable to use an elastic cushion material obtained by winding a metal elastic body around a corrosion-resistant frame or a plurality of pairs of comb-shaped flat spring bodies extending obliquely from a flat spring-like body holding member. it can.
  • the said metal elastic body is a metal coil body.
  • FIG. 4 is a side view of the vicinity of the V-shaped spring viewed from the opening side, (c) is a cross-sectional view taken along line AA, and (d) is a cross-sectional view taken along line BB.
  • FIG. 1 It is an expansion partial perspective view of an example of the V-shaped spring vicinity of the ion exchange membrane electrolytic cell which concerns on the 2nd Embodiment of this invention. It is a general
  • (A) is a perspective view which shows a suitable example of the corrosion-resistant flame
  • (b) is a perspective view which shows a suitable example of an elastic cushion material. It is a fragmentary perspective view which shows a suitable example of a flat spring-like body.
  • FIG. 1 It is an enlarged view of the vicinity of the V-shaped spring of Examples 1 to 3 and the conventional electrolytic cell, (a) is Example 1, (b) is Example 2, (c) is Example 3, and (d) is FIG.
  • FIG. 1 is a schematic partial sectional view showing an electrical connection of an electrolytic cell unit of an ion exchange membrane electrolytic cell according to a first embodiment of the present invention.
  • the electrolytic cell unit 10 is partitioned into an anode chamber 1 having a rigid anode 1a and an anode partition wall 1b, and a cathode chamber 2 having a rigid cathode 2a and a cathode partition wall 2b.
  • the rigid cathode 2a and the cathode partition wall 2b are joined via a V-shaped spring 3.
  • the anode partition wall 1b and the cathode partition wall 2b have an uneven shape, which increases the rigidity of the electrode chamber made of a thin plate such as titanium or nickel.
  • FIG. 2 is an explanatory view of the vicinity of the V-shaped spring 3 of the ion exchange membrane electrolytic cell according to the first embodiment of the present invention
  • (a) is a plan view of the vicinity of the V-shaped spring
  • (b) of FIG. FIG. 4 is a side view of the vicinity of the V-shaped spring as viewed from the opening side of the V-shaped spring
  • (c) is an AA sectional view
  • (d) is a BB sectional view.
  • a conductive member 4 in the illustrated example, a metal rod-like body
  • this conductive member 4 is a gap between adjacent V-shaped springs 3.
  • the V-shaped spring 3 and the conductive member 4 are electrically connected when the V-shaped spring 3 is compressed, that is, when the V-shaped spring 3 is crushed.
  • FIGS. 3A and 3B are schematic diagrams for explaining electrical connection between the V-shaped spring and the conductive member.
  • FIG. 3A shows a state before compression of the V-shaped spring
  • FIG. 3B shows a state after compression of the V-shaped spring. is there.
  • the electrolytic current flows along the shape of the V-shaped spring 3.
  • the electrolytic current passes through the conductive member 4. It flows through the shortest path (see FIG. 1 and FIG. 3B), and power loss in the V-shaped spring 3 can be suppressed.
  • a stainless steel rod or plate covered with a nickel mesh can be used.
  • the cross-sectional shape of the conductive member 4 is circular, but in the electrolytic cell of the present invention, the cross-sectional shape of the conductive member 4 is not limited to this.
  • the cross-sectional shape of the conductive member 4 may be an ellipse, a triangle, a rectangle or the like other than a circle, but the hydrogen gas generated on the surface of the rigid cathode 2a escapes to the opposite side of the ion exchange membrane.
  • the rigid cathode 2a and the conductive member 4 are preferably in line contact so as not to interfere. Therefore, the cross-sectional shape of the conductive member 4 is preferably circular or elliptical.
  • the conductive member 4 preferably has elasticity.
  • the conductive member 4 is a rigid member such as a metal rod-like body, it may be difficult to manufacture the V-shaped spring 3 and the conductive member 4 in full contact. In this case, the contact between the V-shaped spring 3 and the conductive member 4 becomes partial, and the contact resistance cannot be sufficiently reduced. Therefore, by making the conductive member 4 elastic, the contact area between the V-shaped spring 3 and the conductive member 4 can be increased, thereby further reducing the contact resistance. As a result, the V-shaped spring 3 It is possible to minimize the power loss at.
  • FIGS. 4A and 4B are diagrams showing a preferable example of the conductive member having elasticity.
  • FIG. 4A is a plan view of the conductive member having elasticity
  • FIG. 4B is a side view of the conductive member having elasticity.
  • the conductive member 4 having elasticity shown in FIG. 4 is obtained by fixing a conductive mesh 4b to a metal rod-shaped body 4a by welding or the like in a bent state. It is not restricted to this, In addition, you may use the cylinder etc. which were produced with meshes, such as nickel.
  • a metal elastic body 5 (metal coil body in the illustrated example) is provided on the opposite surface of the rigid cathode 2a to the V-shaped spring 3 joint surface. It is preferable that the flexible cathode 6 is disposed so as to overlap in order. Thereby, the zero gap between the rigid cathode 2a and the ion exchange membrane 7 generated by compressing the V-shaped spring 3 is achieved. That is, the metal elastic body 5 uniformly presses the flexible cathode 6 in the direction of the ion exchange membrane 7, so that the flexible cathode 6 and the ion exchange membrane 7 are adjacent to each other without damaging the ion exchange membrane 7.
  • the rigid anode of the electrolytic cell unit to be in close contact with each other. Thereby, the electrolysis performance of the ion exchange membrane electrolytic cell can be improved.
  • FIG. 5 is a schematic partial sectional view showing an electrical connection of an electrolytic cell unit of an ion exchange membrane electrolytic cell according to a second embodiment of the present invention.
  • the electrolytic cell unit 20 is partitioned into an anode chamber 11 having a rigid anode 11a and an anode partition wall 11b, and a cathode chamber 12 having a rigid cathode 12a and a cathode partition wall 12b.
  • the rigid cathode 12a and the cathode partition wall 12b are joined via a V-shaped spring 13.
  • the anode partition wall 11b and the cathode partition wall 12b have an uneven shape, which increases the rigidity of the electrode chamber made of a thin plate such as titanium or nickel.
  • FIG. 6 is an enlarged partial perspective view of an example in the vicinity of the V-shaped spring of the ion exchange membrane electrolytic cell according to the second embodiment of the present invention.
  • a region where the plurality of V-shaped springs 13 of the rigid cathode 12 a are not joined (adjacent V-shaped springs are between each other and surrounded by a circle in FIG. 6.
  • a recess 18 is formed in the region S), and this recess 18 is brought into direct contact with the cathode partition 12b.
  • the electrolytic current that has conventionally flowed through the V-shaped spring 13 flows to the cathode partition 12b without passing through the V-shaped spring 13 (see FIG. 5), and power loss is minimized.
  • the method of providing the concave portion 18 in the rigid cathode 12a is not particularly limited.
  • the concave portion 18 may be formed using a metal hammer.
  • the contact resistance can be reduced by fixing the recess 18 and the cathode partition 12b by TIG welding or the like.
  • the electrolytic cell according to the second embodiment of the present invention is different from the electrolytic cell according to the first embodiment in that it is not necessary to introduce another member, and the cathode partition 12b is added to the existing rigid cathode 12a. Since only the recessed part 18 which goes is provided, it has the advantage that the process is easy.
  • the metal elastic body 15 metal coil body in the illustrated example
  • the flexible cathode 16 are sequentially stacked on the surface opposite to the joint surface of the V-shaped spring 13 of the rigid cathode 12a. It is preferable to be made. Thereby, the gap between the rigid cathode 12 a and the ion exchange membrane 17 generated by compressing the V-shaped spring 13 is made zero gap by the metal elastic body 15 and the flexible cathode 16.
  • FIG. 7 is a schematic partial cross-sectional view showing the electrical connection of the cathode chamber of the ion exchange membrane electrolytic cell according to the third embodiment of the present invention.
  • the electrolytic cell unit 30 is partitioned into an anode chamber 21 having a rigid anode 21a and an anode partition wall 21b, and a cathode chamber 22 having a rigid cathode 22a and a cathode partition wall 22b.
  • the rigid cathode 22 a and the cathode partition wall 22 b are joined via a V-shaped spring 23.
  • the anode partition wall 21b and the cathode partition wall 22b have an uneven shape, which increases the rigidity of the electrode chamber made of a thin plate such as titanium or nickel.
  • the electrolytic cell which concerns on the 3rd Embodiment of this invention, when the V-shaped spring 23 is compressed, the edge parts by the side of the opening of the V-shaped spring 23 contact and are electrically connected. Yes. That is, the V-shaped spring 23 is completely crushed. By adopting such a state, the electrolytic current that has conventionally flowed along the shape of the V-shaped spring 23 flows through the shortest path, and power loss can be minimized. By fixing the ends of the V-shaped springs 23 by TIG welding or the like, the contact resistance can be further reduced. Note that the electrolytic cell according to the third embodiment also has an advantage of easy processing because it is not necessary to introduce a new member.
  • a metal elastic body 25 (in the illustrated example, a metal coil body) and a flexible member are provided on the surface opposite to the joint surface of the V-shaped spring 23 of the rigid cathode 22a. It is preferable that the conductive cathode 26 is disposed in an overlapping manner. Thus, the gap between the rigid cathode 22 a and the ion exchange membrane 27 generated by compressing the V-shaped spring 23 is made zero by the metal elastic body 25 and the flexible cathode 26. In the present embodiment, since the V-shaped spring 23 is crushed, it is more elastic than the electrolytic cells 10 and 20 according to the first and second embodiments. The thickness of the body 25 is required.
  • metal coil bodies are exemplified as the metal elastic bodies 5, 15 and 25, but the ion exchange membrane electrolysis of the present invention is used.
  • the metal elastic bodies 5, 15 and 25 are made of a conductive material and have elastic properties, and the flexible cathodes 6, 16, and 26 are replaced with ion exchange membranes 7, 17 respectively. 27, there is no particular limitation as long as it can be supplied with power by being pressed.
  • a flat plate spring-like body extending from the flat spring-like body holding member, which will be described later, may be used.
  • nickel exhibiting good corrosion resistance nickel exhibiting good corrosion resistance, such as nickel, nickel alloy, stainless steel, or copper having low specific resistance. It can be obtained by processing a wire manufactured by coating a wire etc. with plating or the like into a spiral coil by roll processing.
  • the cross-sectional shape of the obtained wire is preferably a circle, an ellipse, a rectangle with rounded corners, or the like from the viewpoint of preventing damage to the ion exchange membrane.
  • NiW2201 nickel wire having a diameter of 0.17 mm
  • a coil wire having a cross-sectional shape of about 0.05 mm ⁇ 0.5 mm with rounded corners and a winding diameter of about 6 mm is obtained. be able to.
  • the metal elastic bodies 5, 15 and 25 are directly used as the rigid cathodes 2 a, 12 a and 22 a and the flexible cathodes 6, 16 and 26 in the electrolytic cell.
  • an elastic cushion material formed by winding a metal coil body around a corrosion-resistant frame may be used instead of the metal coil body.
  • FIG. 8A is a perspective view showing a preferred example of the corrosion-resistant frame used for the elastic cushion material
  • FIG. 8B is a perspective view showing an example of the elastic cushion material.
  • the corrosion-resistant frame 50 according to the present invention is composed of a metal round bar and a reinforcing rod 52 spanned between a pair of round bars in the longitudinal direction of a rectangular frame 51. ing.
  • a metal round bar for example, a nickel round metal bar having a diameter of about 1.2 mm can be suitably used.
  • the elastic cushion material 53 according to the present invention winds a metal elastic body 54 (a metal coil body in the illustrated example) over almost the entire length between a pair of round bars in the longitudinal direction of the corrosion-resistant frame 50. Can be obtained (FIG. 8B).
  • the elastic cushion material 53 thus obtained is held in the shape of the corrosion-resistant frame 50 because the metal elastic body 54 is wound around the corrosion-resistant frame 50, and the metal elastic body 54 is held from the corrosion-resistant frame 50.
  • the metal elastic body 54 can be handled as being integrated with the corrosion-resistant frame 50 with little separation. By winding the metal elastic body 54 around the corrosion resistant frame 50, the following advantages can be obtained.
  • the metal elastic body 54 since the metal elastic body 54 has a high deformation rate, it is difficult to handle, and it is often difficult to install the metal elastic body 54 at a predetermined location of the electrolytic cell as intended by the worker. Furthermore, since it is easily deformed (the strength is insufficient), even if it is once installed at a predetermined location of the electrolytic cell, it is displaced by the electrolytic solution or generated gas in the electrolytic cell, and it becomes difficult to uniformly adhere each member.
  • the elastic cushion material 53 is composed of, for example, a frame with four rectangular corrosion-resistant frames as shown in FIG. It can be obtained by winding the metal elastic body 54 between the two facing each other so as to obtain a substantially uniform density (see FIG. 8B).
  • a metal coil body has been described as an example of the metal bullet body used for the elastic cushion material. However, in addition to the metal coil body, the metal elastic body such as a metal nonwoven fabric is used. May be used.
  • the diameter of the metal coil body (the apparent diameter of the coil).
  • the diameter of the metal coil body (the apparent diameter of the coil).
  • a metal coil body with a small wire diameter is used, the number of contact points between the rigid cathodes 2a, 12a, 22a and the flexible cathodes 6, 16, 26 and the elastic cushion material is inevitably increased, and uniform contact is possible. become.
  • the elastic cushion material 53 after being mounted on the electrolytic cell is held in its shape by the corrosion-resistant frame 50, the elastic cushion material 53 is hardly subjected to plastic deformation, and is almost always reassembled when the electrolytic cell is disassembled and reassembled. Can be used.
  • FIG. 9 is a partial perspective view showing a preferred example of a flat spring-like body that can be used in the ion exchange membrane electrolytic cell of the present invention.
  • all the flat springs may extend obliquely in the same direction.
  • adjacent flat springs 60 face each other diagonally. Those extending in the range are preferred. If the flat spring members 60 extend in opposite directions, a force acts only in the vertical direction on the flexible cathode. For this reason, the flexible cathode moves only in the horizontal direction, and problems such as damage to the surface of the ion exchange membrane can be avoided.
  • the tip of the flat spring-like body 60 has a contact portion 60a that is bent substantially in parallel with the flat spring-like body holding portion 61 and is in contact with the flexible cathode as shown in the figure.
  • the contact portion 60a it is possible to avoid the flat spring-like body 60 from damaging the flexible cathode, and to improve the contact between the flexible cathode and the ion exchange membrane.
  • the flat spring-like body is made by cutting a plate material and then making the cut, but the flat spring-like body is made by joining the spring-like body to the flat plate by an arbitrary method. May be.
  • metal elastic member according to the ion exchange membrane electrolytic cell of the present invention has been described using a metal coil body, an elastic cushion material, and a flat spring-like body as examples, but the ion exchange membrane electrolytic cell of the present invention has been described.
  • metal fine wire may be used, and a metal nonwoven fabric may be used.
  • metal elastic bodies include metal wire knitted fabrics, woven fabrics and laminates thereof, or three-dimensionally knitted or three-dimensionally knitted and then subjected to swell processing or the like. You may use the thing of the shape.
  • the rigid cathodes 2a, 12a, 22a and the flexible cathodes 6, 16, 26 are used. If an elastic cushion material or the like is positioned on the substrate and thereafter assembled as usual, an ion exchange membrane electrolytic cell in which the elastic cushion material or the like is held at a predetermined position is obtained.
  • the assembly of the elastic cushion material using the metal elastic body is an operation outside the electrolytic cell, it can be easily performed, and the obtained elastic cushion material is connected to the target electrode in the electrolytic cell at the time of the electrolytic cell assembly.
  • the mounting current collector may be mounted so as to be electrically connected. Even at the time of wearing, the elastic cushion material itself is not deformed so as to hinder assembly due to the strength of the corrosion-resistant frame, so that it can be easily installed at a predetermined location.
  • electricity is usually flowed by a contact energization method.
  • the ion exchange membrane electrolytic cell of the present invention is partitioned by an ion exchange membrane into an anode chamber having an anode and an anode partition, and a cathode chamber having a rigid cathode and a cathode partition, and the rigid cathode is joined to the cathode partition.
  • the present invention relates to an improvement of an ion exchange membrane electrolytic cell supported by a plurality of V-shaped springs, and it is only important to satisfy the above-mentioned configuration, and other structures are conventionally used. Can be used as appropriate, and is not particularly limited.
  • the flexible cathodes 6, 16, and 26 are particularly limited as long as they are pressed by the metal elastic bodies 5, 15, 25 or the elastic cushion material and come into contact with the ion exchange membranes 7, 17, 27.
  • any material can be used as long as it is used for electrolysis, but the catalyst film is thin and highly active, and the surface of the film is smooth, and the ion exchange membrane is mechanical.
  • Pyrolytic active cathodes selected from the group consisting of Ru—La—Pt, Ru—Ce, Pt—Ce, and Pt—Ni are preferred.
  • Example 1 The ion exchange membrane is partitioned into an anode chamber having a rigid anode and an anode partition, and a cathode chamber having a rigid cathode and a cathode partition, and the rigid cathode is supported by a plurality of V-shaped springs joined to the cathode partition.
  • V-shaped spring of an existing ion exchange membrane electrolytic cell manufactured by Chlorine Engineers Co., Ltd .: BiTAC (registered trademark)
  • What was welded was arrange
  • a coil wire having a width of about 0.5 mm was produced by rolling a nickel wire (NW2201) having a wire diameter of 0.17 mm and a tensile strength of 620 to 680 N / m 2 .
  • a metal coil body having a coil winding diameter of about 6 mm was produced.
  • This metal coil body is wound around a nickel round bar frame (corrosion-resistant frame) with a diameter of 1.2 mm to adjust the shape to a rectangular parallelepiped shape, and an elastic cushion material having an approximate size of 10 mm thick ⁇ 110 mm wide ⁇ 350 mm long Produced.
  • the coil linear density of this elastic cushion material was about 7 g / dm 2 .
  • the obtained elastic cushion material was inserted between the rigid cathode and the flexible cathode so that the elastic cushion material was elastic, and electrolysis was performed at a current density of 4 kA / m 2 for 30 days.
  • the anode used was a dimensionally stable electrode manufactured by Permerek Electrode Co., Ltd.
  • the flexible cathode was an active cathode of a nickel micromesh substrate
  • the rigid cathode was nickel expanded metal.
  • the reaction surface sizes of the anode and the cathode were 110 mm in width and 1400 mm in height, respectively.
  • As the ion exchange membrane Flemion F-8020 manufactured by Asahi Glass Co., Ltd. was used.
  • Example 2 A conductive member is not arranged in the vicinity of the end of the V-shaped spring on the opening side, and a recess other than the V-shaped spring contact portion of the rigid cathode is recessed using a metal hammer, and this recess is brought into contact with the cathode partition. It was. Then, this contact part was fixed by TIG welding. Except for this, electrolysis was performed in the same procedure as in Example 1.
  • Example 3 The V-spring was completely crushed, and electrolysis was performed in the same procedure as in the example except that a metal coil body having a winding diameter of 8 mm and a flexible cathode were sequentially stacked on top of each other.
  • Electrolysis was performed as usual using BiTAC (registered trademark) manufactured by Chlorine Engineers Co., Ltd.
  • Conductors were welded to both ends of the V-shaped springs of the electrolytic cells of Examples 1 to 3 and the conventional example, and the potential difference was measured with a digital voltmeter.
  • 10 (a) to 10 (d) are enlarged views of the vicinity of the V-shaped springs of the electrolytic cells of Examples 1 to 3 and the conventional example, (a) being Example 1, (b) being Example 2, ( c) is Example 3, and (d) is a conventional example.
  • w in a figure is a welding position of conducting wire.
  • Example 1 was 13 mV
  • Example 2 was 10 mV
  • Example 3 was 7 mV, and it was confirmed that the voltage could be reduced as compared with the conventional example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 陰極隔壁と剛性陰極とが複数のV字バネを介して接合された既存の複極式イオン交換膜電解槽を、簡便な手法により、電解性能を向上させたイオン交換膜電解槽を提供する。 イオン交換膜7により、剛性陽極1aと陽極隔壁1bとを有する陽極室1と、剛性陰極2aと陰極隔壁2bとを有する陰極室2と、に区画され、剛性陰極2aと陰極隔壁2bとが複数のV字バネ3を介して接合されてなるイオン交換膜電解槽である。剛性陰極2aのV字バネ3接合面の反対面に、金属製弾性体5と可撓性陰極6とが積層されてなり、かつ、V字バネ3の開口側の端部近傍に導電性部材4が配置され、V字バネ3が圧縮されることにより、V字バネ3と導電性部材4が電気的に接続されてなる。

Description

イオン交換膜電解槽
 本発明は、イオン交換膜電解槽(以下、単に「電解槽」とも称する)に関し、詳しくは、陰極隔壁と剛性陰極とが複数のV字バネを介して接合された既存の複極式のイオン交換膜電解槽を、簡便な手法により、電解性能を向上させたイオン交換膜電解槽に関する。
 クロルアルカリ電解に使用するイオン交換膜電解槽では、通常、陽極、イオン交換膜および水素発生陰極の三者を密着状態で配置して電解電圧の低下を図っている。しかし、電解面積が数平方メートルにも達する大型の電解槽においては、剛性部材の陽極および陰極を電極室に収容した場合、両電極をイオン交換膜に密着させて電極間隔を所定値に保持することは困難であった。
 電極間距離または電極と電極集電体間の距離を小さくするため、またはほぼ一定値に維持するための手段として、これらに材料として弾性材料を使用する電解槽が知られている。このような電解槽は、電極をイオン交換膜に均一に密着させてイオン交換膜の破損をさけるため、および陽-陰両電極間距離を最小に保つため、少なくとも一方の電極の極間距離方向への移動が自由な構造とし、電極を弾力性部材で押し狭持圧を調節している。この弾性材料としては、金属の細線の織布、不織布、網等の非剛性材料、および板バネ等の剛性材料が知られている。
 しかしながら、これまでの非剛性材料は、電解槽への装着後に、陽極側から過度に押圧された場合に、部分的に変形して電極間距離が不均一になったり、細線がイオン交換膜に突き刺さるといった欠点を有していた。また、板バネ等の剛性材料は、イオン交換膜を傷つけたり、塑性変形が生じて再使用が不可能になるといった欠点を有していた。さらに、食塩電解槽のようなイオン交換膜電解槽では、陽極や陰極をイオン交換膜に密着させて低電圧で運転を継続できることが望ましく、電極をイオン交換膜方向に押圧するための種々の方法が提案されている。
 例えば、特許文献1では、従来用いられていた板バネや金属網状体に代わり、金属製コイル体を陰極と陰極端板の間に装着して陰極を隔膜方向に均一に押圧して各部材を密着させた電解槽が提案されている。また、特許文献2では、特許文献1の改良技術として、金属製コイル体を耐食性フレームに巻回して弾性クッション材を作製し、この弾性クッション材を水素発生陰極と陰極集電板との間に装着して水素発生陰極をイオン交換膜に均一に押圧させたイオン交換膜電解槽が提案されている。
特公昭63-53272号公報 特開2004-300543号公報
 今日、図11に示すような、剛性陽極31aと陽極隔壁31bとを有する陽極室31と、剛性陰極32aと陰極隔壁32bとを有する陰極室32と、を有する電解槽ユニット40が、イオン交換膜37を介して連続して配置された、いわゆるゼロギャップ電解槽が知られている。この電解槽ユニットは、剛性陰極32aと陰極隔壁32bとが、複数のV字バネ33を介して接合されており、V字バネ33の反力により、剛性陰極32aとイオン交換膜37と隣接する電解槽ユニットの剛性陽極とが密着させられてなる。このようなイオン交換膜電解槽に対しても、イオン交換膜37の破損防止および電解性能の向上を目的として、特許文献1および2にて提案されている金属製コイル体や弾性クッション材を適用した改良が可能である。また、電解性能のさらなる向上を目的として、V字バネ33の材質を低抵抗なものに変更することも考えられる。しかしながら、既存の複極式イオン交換膜電解槽におけるV字バネ33を取り換える作業は大掛かりなものであり、時間的にもコスト的にも好ましくない。
 そこで、本発明の目的は、陰極隔壁と剛性陰極とが複数のV字バネを介して接合された既存の複極式イオン交換膜電解槽を、簡便な手法により、電解性能を向上させることにある。
 本発明者らは、上記課題を解決するために鋭意検討した結果、上記イオン交換膜電解槽のV字バネを流れる電解電流の経路を最短にすることで、簡便に電解性能を向上させることができることを見出し、本発明を完成するに至った。
 すなわち、本発明のイオン交換膜電解槽は、イオン交換膜により、剛性陽極と陽極隔壁とを有する陽極室と、剛性陰極と陰極隔壁とを有する陰極室と、に区画され、前記剛性陰極と前記陰極隔壁とが複数のV字バネを介して接合されてなるイオン交換膜電解槽において、
 前記V字バネの開口側の端部近傍に導電性部材が配置され、該V字バネが圧縮されることにより、前記V字バネと前記導電性部材が電気的に接続されてなることを特徴とするものである。
 本発明においては、前記導電性部材は弾性を有することが好ましい。
 また、本発明の他のイオン交換膜電解槽は、イオン交換膜により、剛性陽極と陽極隔壁とを有する陽極室と、剛性陰極と陰極隔壁とを有する陰極室と、に区画され、前記剛性陰極と前記陰極隔壁とが複数のV字バネを介して接合されてなるイオン交換膜電解槽において、
 前記複数のV字バネと接合していない剛性陰極の領域に、陰極隔壁方向に向けて凹部が形成され、該凹部と陰極隔壁とが電気的に接続されてなることを特徴とするものである。
 さらに、本発明の他のイオン交換膜電解槽は、イオン交換膜により、剛性陽極と陽極隔壁とを有する陽極室と、剛性陰極と陰極隔壁とを有する陰極室と、に区画され、前記剛性陰極と前記陰極隔壁とが複数のV字バネを介して接合されてなるイオン交換膜電解槽において、
 前記V字バネが圧縮されることにより、該V字バネの開口側の端部同士が電気的に接続されてなることを特徴とするものである。
 本発明のイオン交換膜電解槽においては、前記剛性陰極のV字バネ接合面の反対面に、金属製弾性体と可撓性陰極とが重ねて配置されてなることが好ましく、前記金属製弾性体としては、耐食性フレームに金属製弾性体を巻回してなる弾性クッション材か、または、平板バネ状体保持部材から傾斜して延びる複数対の櫛状の平板バネ状体を好適に用いることができる。また、本発明のイオン交換膜電解槽においては、前記金属製弾性体は金属製コイル体であることが好ましい。
 本発明によれば、陰極隔壁と剛性陰極とが複数のV字バネを介して接合された既存の複極式イオン交換膜電解槽を、簡便な手法により、電解性能を向上させることができる。
本発明の第1の実施の形態に係るイオン交換膜電解槽の電解槽ユニットの電気的接続を示す概略部分断面図である。 本発明の第1の実施の形態に係るイオン交換膜電解槽のV字バネ近傍の説明図であり、(a)はV字バネ近傍の平面図であり、(b)は、V字バネの開口部側から見たV字バネ近傍の側面図であり、(c)は、A-A断面図であり、(d)はB-B断面図である。 V字バネと導電性部材との電気的接続を説明する概略図であり、(a)はV字バネ圧縮前の状態であり、(b)はV字バネ圧縮後の状態である。 本発明に係る弾性を有する導電性部材の一好適例を示す図であり、(a)弾性を有する導電性部材の平面図であり、(b)は弾性を有する導電性部材の側面図である。 本発明の第2の実施の形態に係るイオン交換膜電解槽の電解槽ユニットの電気的接続を示す概略部分断面図である。 本発明の第2の実施の形態に係るイオン交換膜電解槽のV字バネ近傍の一例の拡大部分斜視図である。 本発明の第3の実施の形態に係るイオン交換膜電解槽の電解槽ユニットの電気的接続を示す概略部分断面図である。 (a)は、弾性クッション材に用いる耐食性フレームの一好適例を示す斜視図であり、(b)は弾性クッション材の一好適例を示す斜視図である。 平板バネ状体の一好適例を示す部分斜視図である。 実施例1~3および従来例の電解槽のV字バネ近傍の拡大図であり、(a)は実施例1、(b)は実施例2、(c)は実施例3、(d)は従来例である。 従来のイオン交換膜電解槽の電解槽ユニットの電気的接続を示す概略部分断面図である。
 以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。
 本発明のイオン交換膜電解槽は、複極式電解槽ユニットの所定個数が、イオン交換膜を介して積層されて組み立てられてなる。図1は、本発明の第1の実施の形態に係るイオン交換膜電解槽の電解槽ユニットの電気的接続を示す概略部分断面図である。図示するように、電解槽ユニット10は、剛性陽極1aと陽極隔壁1bとを有する陽極室1と、剛性陰極2aと陰極隔壁2bとを有する陰極室2と、に区画されている。また、剛性陰極2aと陰極隔壁2bとはV字バネ3を介して接合されている。なお、図示例においては、陽極隔壁1bと陰極隔壁2bは凹凸を有する形状であり、チタン、ニッケル等の薄板で作製した電極室の剛性を高めている。
 図2は、本発明の第1の実施の形態に係るイオン交換膜電解槽のV字バネ3近傍の説明図であり、(a)はV字バネ近傍の平面図であり、(b)は、V字バネの開口部側から見たV字バネ近傍の側面図であり、(c)は、A-A断面図であり、(d)はB-B断面図である。図示するように、V字バネ3の開口側の端部近傍に導電性部材4(図示例では、金属製棒状体)が配置され、この導電性部材4は隣り合うV字バネ3同士の隙間(図示例では、wの位置)で、剛性陰極2aとティグ溶接等により固定されている。本発明の電解槽は、V字バネ3が圧縮されることによって、すなわち、V字バネ3が押し潰されることによって、V字バネ3と導電性部材4とが電気的に接続されている。
 図3は、V字バネと導電性部材との電気的接続を説明する概略図であり、(a)はV字バネ圧縮前の状態であり、(b)はV字バネ圧縮後の状態である。従来の電解槽においては、電解電流はV字バネ3の形状に沿って流れていたが、本発明の第1の実施の形態に係る電解槽においては、電解電流は導電性部材4を介して最短経路を流れることになり(図1および図3(b)参照)、V字バネ3における電力ロスを抑制することができる。導電性部材4としては、良好な耐食性を示すニッケル、ニッケル合金、ステンレス鋼、または銅等の固有抵抗の小さい金属に良好な耐食性を示すニッケル等をめっきで被覆して製造した棒状体や板状体、ステンレス鋼の棒状体や板状体をニッケル製のメッシュで覆ったものを用いることができる。
 図3においては、導電性部材4の断面形状は円形であるが、本発明の電解槽においては、導電性部材4の断面形状はこれに限られるものではない。導電性部材4の断面形状としては、円形以外にも、楕円形、三角形、矩形等を採用してもよいが、剛性陰極2a表面で発生した水素ガスがイオン交換膜の反対側に抜けるのを妨げないよう、剛性陰極2aと導電性部材4が線接触することが好ましい。そのため、導電性部材4の断面形状は、好ましくは円形または楕円形である。
 本発明の第1の実施の形態に係る電解槽においては、導電性部材4は弾性を有していることが好ましい。導電性部材4が金属製棒状体のような剛性部材である場合、V字バネ3と導電性部材4を全面的に接触させることは製作上困難な場合もある。この場合、V字バネ3と導電性部材4の接触が部分的となってしまい、接触抵抗を十分に低下させることができない。そこで、導電性部材4に弾性を持たせることで、V字バネ3と導電性部材4との接触面積を増加させ、これにより接触抵抗をさらに低下させることができ、結果として、V字バネ3における電力ロスを最小限に抑えることが可能となる。
 図4は、弾性を有する導電性部材の一好適例を示す図であり、(a)弾性を有する導電性部材の平面図であり、(b)は弾性を有する導電性部材の側面図である。図4に示す弾性を有する導電性部材4は、金属製棒状体4aに導電性メッシュ4bを、撓みを持たせた状態で溶接等により固定したものであるが、本発明の実施の形態はこれに限られるものではなく、これ以外にも、ニッケル等のメッシュで作製した筒等を用いてもよい。
 また、本発明の第1の実施の形態に係る電解槽においては、剛性陰極2aのV字バネ3接合面の反対面に、金属製弾性体5(図示例においては、金属製コイル体)と可撓性陰極6とが順に重ねて配置されてなることが好ましい。これにより、V字バネ3を圧縮することによって生じた、剛性陰極2aとイオン交換膜7との間のゼロギャップ化を図っている。すなわち、金属製弾性体5が可撓性陰極6をイオン交換膜7方向に均一に押圧することになり、イオン交換膜7を破損することなく、可撓性陰極6とイオン交換膜7と隣接する電解槽ユニットの剛性陽極とが密着することになる。これにより、イオン交換膜電解槽の電解性能を向上させることができる。
 次に、本発明の第2の実施の形態に係るイオン交換膜電解槽について説明する。
 本発明の第2の実施の形態においても、イオン交換膜電解槽は、複極式の電解槽ユニットの所定個数が、イオン交換膜を介して積層されて組み立てられてなる。図5は、本発明の第2の実施の形態に係るイオン交換膜電解槽の電解槽ユニットの電気的接続を示す概略部分断面図である。図示するように、電解槽ユニット20は、剛性陽極11aと陽極隔壁11bとを有する陽極室11と、剛性陰極12aと陰極隔壁12bとを有する陰極室12と、に区画されている。また、剛性陰極12aと陰極隔壁12bとはV字バネ13を介して接合されている。なお、図示例においては、陽極隔壁11bと陰極隔壁12bは凹凸を有する形状であり、チタン、ニッケル等の薄板で作製した電極室の剛性を高めている。
 本発明の第2の実施の形態に係る電解槽においては、剛性陰極12aの複数のV字バネ13が接触していない領域に凹部18を設ける。図6は、本発明の第2の実施の形態に係るイオン交換膜電解槽のV字バネ近傍の一例の拡大部分斜視図である。本実施の形態においては、図6に示すように、剛性陰極12aの複数のV字バネ13と接合していない領域(隣り合うV字バネが同士の間であり、図6中の丸で囲まれた領域S)に凹部18を形成し、この凹部18を、直接、陰極隔壁12bに接触させる。これにより、従来V字バネ13を経由して流れていた電解電流が、V字バネ13を経由することなく陰極隔壁12bに流れることになり(図5参照)、電力ロスを最小限に抑えることができる。
 なお、本実施の形態において、剛性陰極12aに凹部18を設ける手法については特に制限はなく、例えば、金槌を用いて凹部18を形成すればよい。また、この凹部18と陰極隔壁12bをティグ溶接等により固定することで、接触抵抗を低減させることができる。本発明の第2の実施の形態に係る電解槽は、第1の実施の形態に係る電解槽と異なり、新たに他の部材を導入する必要はなく、既存の剛性陰極12aに陰極隔壁12bに向かう凹部18を設けるだけであるため、その加工が容易であるという利点を有している。
 本実施の形態においても、剛性陰極12aのV字バネ13接合面の反対面に、金属製弾性体15(図示例においては、金属製コイル体)と可撓性陰極16とが順に重ねて配置されてなることが好ましい。これにより、V字バネ13を圧縮することによって生じた、剛性陰極12aとイオン交換膜17との間の隙間を、金属製弾性体15と可撓性陰極16によりゼロギャップ化を図っている。
 次に、本発明の第3の実施の形態に係るイオン交換膜電解槽について説明する。
 本発明の第3の実施の形態においても、やはり、イオン交換膜電解槽は、複極式の電解槽ユニットの所定個数が、イオン交換膜を介して積層されて組み立てられてなる。図7は、本発明の第3の実施の形態に係るイオン交換膜電解槽の陰極室の電気的接続を示す概略部分断面図である。図示例においては、電解槽ユニット30は、剛性陽極21aと陽極隔壁21bとを有する陽極室21と、剛性陰極22aと陰極隔壁22bとを有する陰極室22と、に区画されている。また、剛性陰極22aと陰極隔壁22bとはV字バネ23を介して接合されている。なお、図示例においては、陽極隔壁21bと陰極隔壁22bは凹凸を有する形状であり、チタン、ニッケル等の薄板で作製した電極室の剛性を高めている。
 また、本発明の第3の実施の形態に係る電解槽においては、V字バネ23が圧縮されることにより、V字バネ23の開口側の端部同士が接触し、電気的に接続されている。すなわち、V字バネ23が完全に押し潰された状態となっている。かかる状態とすることで、従来、V字バネ23の形状に沿って流れていた電解電流が、最短経路で流れることになり、電力ロスを最小限に抑えることができる。V字バネ23の端部同士は、ティグ溶接等により固定することで、さらに接触抵抗を低減させることができる。なお、第3の実施の形態に係る電解槽においても、新たな部材を導入する必要がないため、加工が容易であるという利点を有している。
 本発明の第3の実施の形態に係る電解槽においても、剛性陰極22aのV字バネ23接合面の反対面に、金属製弾性体25(図示例においては、金属製コイル体)と可撓性陰極26とが順に重ねて配置されてなることが好ましい。これにより、V字バネ23を圧縮することによって生じた、剛性陰極22aとイオン交換膜27との間の隙間を金属製弾性体25と可撓性陰極26によりゼロギャップ化を図っている。なお、本実施の形態においては、V字バネ23が押し潰された状態となっているため、第1の実施の形態および第2の実施の形態に係る電解槽10、20よりも金属製弾性体25の厚みが必要となる。
 本発明の第1~3の実施の形態に係るイオン交換膜電解槽においては、金属製弾性体5、15、25として金属製コイル体を例に挙げているが、本発明のイオン交換膜電解槽においては、金属製弾性体5、15、25は導電性材料からなり、かつ、弾性的性質を有するものであって、柔軟な可撓性陰極6、16、26をイオン交換膜7、17、27に押し付けて給電することができるものであれば、特に制限はない。例えば、金属製コイル体以外にも、後述する、平板バネ状体保持部材から傾斜して延びる平板バネ状体を用いてもよい。
 金属製弾性体5、15、25として金属製コイル体を用いる場合は、例えば、良好な耐食性を示すニッケル、ニッケル合金、ステンレス鋼、または銅等の固有抵抗の小さい金属に良好な耐食性を示すニッケル等をめっき等で被覆して製造した線材をロール加工により螺旋コイルに加工することにより得られる。得られた線材の断面形状は、イオン交換膜の損傷を防止するという観点から、円、楕円、角部が丸い矩形等であることが好ましい。具体的には、直径0.17mmのニッケル線(NW2201)をロール加工すると、断面形状が約0.05mm×0.5mmの角部が丸い矩形となり、巻き径が約6mmであるコイル線を得ることができる。
 図1、5および7においては、金属製弾性体5、15、25(図示例では金属製コイル体)はそのまま電解槽内の剛性陰極2a、12a、22aと可撓性陰極6、16、26間に配置されているが、本発明のイオン交換膜電解槽においては、金属製コイル体に代えて、耐食性フレームに金属製コイル体を巻回して構成した弾性クッション材を用いてもよい。図8(a)は、弾性クッション材に用いる耐食性フレームの一好適例を示す斜視図であり、(b)は弾性クッション材の例を示す斜視図である。
 図8(a)および(b)に示す例では、本発明に係る耐食性フレーム50は金属丸棒で長方形の枠51の長手方向の1対の丸棒間に掛け渡された補強杆52から成っている。この金属丸棒としては、例えば、直径約1.2mmのニッケル製金属丸棒を好適に用いることができる。本発明に係る弾性クッション材53は、耐食性フレーム50の長手方向の1対の丸棒間のほぼ全長に渡って、金属製弾性体54(図示例においては、金属製コイル体)を巻回することにより、得ることができる(図8(b))。このようにして得られた弾性クッション材53は、金属製弾性体54が耐食性フレーム50に巻回されているため、耐食性フレーム50の形状のまま保持され、金属製弾性体54が耐食性フレーム50から離脱することはほとんどなく、金属製弾性体54を耐食性フレーム50と一体化したものとして取り扱うことができる。金属製弾性体54を耐食性フレーム50に巻回することにより、以下の利点を得ることができる。
 すなわち、金属製弾性体54は変形率が高いため、取扱い難く、作業員の意図通りに電解槽の所定箇所に設置することが困難になることが多い。さらに容易に変形する(強度が不十分である)ため、一旦電解槽の所定箇所に設置しても電解槽内の電解液や生成ガスにより偏位して各部材の均一密着が困難になることがある。これに対して弾性クッション材53は、例えば、図8(a)に示すように、長方形状の耐食性フレーム4本の枠杆からなる。このうち対向する2本の間に、ほぼ均一密度になるように金属製弾性体54を巻回すことにより得られる(図8(b)参照)。なお、本発明においては、弾性クッション材に用いる金属製弾製体として金属製コイル体を例に用いて説明してきたが、金属製コイル体以外にも、金属製不織布等の上記金属製弾性体を用いてもよい。
 金属製弾性体として金属製コイル体を用いた場合、金属製コイル体や金属製コイル体を巻回して得られた弾性クッション材53においては、金属製コイル体の径(コイルの見掛け上の直径)は電解槽内に装着されることにより通常10~70%まで縮んで弾性が生じ、この弾性により剛性陰極2a、12a、22aと可撓性陰極6、16、26とを弾性的に接続して電極への給電が容易になる。線径の小さい金属製コイル体を使用すれば必然的に剛性陰極2a、12a、22aや可撓性陰極6、16、26と弾性クッション材との接触点の数が多くなり、均一接触が可能になる。また、電解槽に装着された後の弾性クッション材53は、その耐食性フレーム50により形状が保持されるため、塑性変形を受けることがほとんどなく、電解槽の解体-再組立時にもほとんどの場合再使用できる。
 また、本発明の電解槽においては、上述の通り、金属製弾性体として平板バネ状体を用いてもよい。図9は、本発明のイオン交換膜電解槽に用いることができる平板バネ状体の一好適例を示す部分斜視図である。本発明のイオン交換膜電解槽においては、平板バネ状体は全て同一の方向へ斜めに延びるものでもよいが、図9に示すように、隣接する平板バネ状体60は相互に対向して斜めに伸びているものが好ましい。平板バネ状体60が相互に反対方向に延びていれば、可撓性陰極に対して垂直方向にのみ力が作用することになる。そのため、可撓性陰極は水平方向にのみ移動することになり、イオン交換膜の表面を傷つける等の不具合を回避することができるからである。
 さらに、平板バネ状体60の先端は、図示するように平板バネ状体保持部61とほぼ平行に折り曲げられ、可撓性陰極と接触する接触部60aを有していることが好ましい。接触部60aを設けることにより、平板バネ状体60が可撓性陰極を傷つけることを回避することができるとともに、可撓性陰極とイオン交換膜との接触を良好なものとすることができる。なお、図示例では、平板バネ状体は板材に切り込みを入れ、その後、切り込みを起こして作製したものを用いているが、平板にバネ状体を任意の方法によって接合して作製したものを用いてもよい。
 ここまで、本発明のイオン交換膜電解槽に係る金属製弾性部材として、金属製コイル体、弾性クッション材および平板バネ状体を例に用いて説明してきたが、本発明のイオン交換膜電解槽においては、これら以外にも、金属細線に波形型付けしたものを用いてもよく、また、金属製の不織布を用いてもよい。なお、これ以外にも金属製弾性体としては、金属ワイヤーからなる編物、織物およびこれらの積層体、または三次元的に編んであるか、三次元的に編んだ後これにうねり加工等を施した形状のものを用いてもよい。
 本発明のイオン交換膜電解槽においては、金属製弾性体や、弾性クッション材を含むイオン交換膜電解槽を組み立てる際には、剛性陰極2a、12a、22aと可撓性陰極6、16、26に弾性クッション材等を位置させ、その後は通常通りに組立てれば所定の位置に弾性クッション材等が保持されたイオン交換膜電解槽が得られる。
 金属製弾性体を使用する弾性クッション材の組立は、電解槽外の作業であるため、容易に行うことができ、得られた弾性クッション材は、電解槽組立時に、電解槽内の対象電極と装着の集電体を電気的に接続するように装着するようにすればよい。この装着時にも弾性クッション材自体は耐食性フレームの強度により組立に支障が出る程には変形しないため、容易に所定箇所に設置できる。本発明においては、通常、電気は接触通電方式で流すことにする。
 本発明のイオン交換膜電解槽は、イオン交換膜により、陽極と陽極隔壁とを有する陽極室と、剛性陰極と陰極隔壁とを有する陰極室と、に区画され、剛性陰極が陰極隔壁に接合された複数のV字バネにより支持されてなるイオン交換膜電解槽の改良に係るものであり、上記構成を満足することのみが重要であり、それ以外の構造については、従来から用いられている構造を適宜用いることができ、特に制限はない。
 例えば、可撓性陰極6、16、26については、金属製弾性体5、15、25または弾性クッション材により押圧されてイオン交換膜7、17、27に接触するものであるのであれば特に制限はなく、通常、電解用に用いられるものであれば、いかなるものをも用いることができるが、触媒皮膜が薄くとも高活性であって、かつ、皮膜表面が平滑で、イオン交換膜を機械的に傷つけることのない、Ru-La-Pt系、Ru-Ce系、Pt-Ce系、および、Pt-Ni系からなる群から選択される熱分解型活性陰極が好適である。
 以下、実施例を用いて本発明をより詳細に説明する。
<実施例1>
 イオン交換膜により、剛性陽極と陽極隔壁とを有する陽極室と、剛性陰極と陰極隔壁とを有する陰極室と、に区画され、剛性陰極が陰極隔壁に接合された複数のV字バネにより支持されてなる既存のイオン交換膜電解槽(クロリンエンジニアズ株式会社製:BiTAC(登録商標))のV字バネの開口側端部近傍に、SUS310Sからなる直径3.0mmの棒状体に導電性メッシュを溶接したものを導電性部材として配置した。その後、隣り合うV字バネ間からのぞく導電性部材と陰極メッシュをティグ溶接により固定した。
 線径が0.17mmで、引張強度620~680N/mのニッケル線(NW2201)をロール加工により約0.5mm幅のコイル線を作製した。得られたコイル線を用いて、コイルの巻き径が約6mmの金属製コイル体を作製した。この金属製コイル体を、直径1.2mmのニッケル丸棒製枠(耐食性フレーム)に巻回して直方体状に形状を整え、概略サイズが厚さ10mm×幅110mm×長さ350mmの弾性クッション材を作製した。この弾性クッション材のコイル線密度は約7g/dmであった。得られた弾性クッション材を、剛性陰極と可撓性陰極間に弾性クッション材に弾性が生じるように挿入し、電流密度4kA/mで30日間電解を行った。
 なお、陽極としては、ペルメレック電極株式会社製の寸法安定性電極を、可撓性陰極としては、ニッケル製マイクロメッシュ基材の活性陰極を、剛性陰極としては、ニッケル製エキスパンデッドメタルを用いた。陽極および陰極の反応面サイズはそれぞれ幅110mm、高さ1400mmとした。イオン交換膜は旭硝子株式会社製のFlemionF-8020を用いた。
<実施例2>
 V字バネの開口側の端部近傍に導電性部材を配置せず、剛性陰極のV字バネ接触部以外を、金槌を用いて凹ませて凹部を形成し、この凹部を陰極隔壁に接触させた。その後、この接触部をティグ溶接により固定した。これ以外は、実施例1と同様の手順で電解を行った。
<実施例3>
 V字バネを完全に押し潰して、その上に巻き径が8mmの金属製コイル体および可撓性陰極を、順に重ねて配置したこと以外は実施例と同様の手順で電解を行った。
<従来例>
 クロリンエンジニアズ株式会社製:BiTAC(登録商標)を用いて通常通り電解を行った。
 実施例1~3および従来例の電解槽のV字バネの両端に導線を溶接して、その電位差をデジタルボルトメーターで測定した。図10(a)~(d)は、実施例1~3および従来例の電解槽のV字バネ近傍の拡大図であり、(a)は実施例1、(b)は実施例2、(c)は実施例3、(d)は従来例である。また、図中のwは導線の溶接位置である。
 電位差の測定結果は、従来例は25mVであった。これに対して、実施例1は13mV、実施例2は10mV、実施例3は7mVであり、いずれも従来例と比較して、電圧が低減できていることが確認できた。
1、11、21、31 陽極室
1a、11a、21a、31a 剛性陽極
1b、11b、21b、31b 陽極隔壁
2、12、22、32 陰極室
2a、12a、22a、32a 剛性陰極
2b、12b、22b、32b 陰極隔壁
3、13、23、33 V字バネ
4 導電性部材
4a 金属製棒状体
4b 導電性メッシュ
5、15、25 金属製弾性体
6、16、26 可撓性陰極
7、17、27、37 イオン交換膜
18 凹部
10、20、30、40 電解槽ユニット
50 耐食性フレーム
51 長方形枠
52 補強杆
53 弾性クッション材
54 金属製弾性体
60 平板バネ状体
60a 先端部
61 平板バネ状体保持部

Claims (8)

  1.  イオン交換膜により、剛性陽極と陽極隔壁とを有する陽極室と、剛性陰極と陰極隔壁とを有する陰極室と、に区画され、前記剛性陰極と前記陰極隔壁とが複数のV字バネを介して接合されてなるイオン交換膜電解槽において、
     前記V字バネの開口側の端部近傍に導電性部材が配置され、該V字バネが圧縮されることにより、前記V字バネと前記導電性部材が電気的に接続されてなることを特徴とするイオン交換膜電解槽。
  2.  前記導電性部材が弾性を有する請求項1記載のイオン交換膜電解槽。
  3.  イオン交換膜により、剛性陽極と陽極隔壁とを有する陽極室と、剛性陰極と陰極隔壁とを有する陰極室と、に区画され、前記剛性陰極と前記陰極隔壁とが複数のV字バネを介して接合されてなるイオン交換膜電解槽において、
     前記複数のV字バネと接合していない剛性陰極の領域に、陰極隔壁方向に向けて凹部が形成され、該凹部と陰極隔壁とが電気的に接続されてなることを特徴とするイオン交換膜電解槽。
  4.  イオン交換膜により、剛性陽極と陽極隔壁とを有する陽極室と、剛性陰極と陰極隔壁とを有する陰極室と、に区画され、前記剛性陰極と前記陰極隔壁とが複数のV字バネを介して接合されてなるイオン交換膜電解槽において、
     前記V字バネが圧縮されることにより、該V字バネの開口側の端部同士が電気的に接続されてなることを特徴とするイオン交換膜電解槽。
  5.  前記剛性陰極のV字バネ接合面の反対面に、金属製弾性体と可撓性陰極とが重ねて配置されてなる請求項1~4のうちいずれか一項記載のイオン交換膜電解槽。
  6.  前記金属製弾性体が、耐食性フレームに金属製弾性体を巻回してなる弾性クッション材である請求項5記載のイオン交換膜電解槽。
  7.  前記金属製弾性体が金属製コイル体である請求項5記載のイオン交換膜電解槽
  8.  前記金属製弾性体が、平板バネ状体保持部材から傾斜して延びる複数対の櫛状の平板バネ状体である請求項5記載のイオン交換膜電解槽。
     
PCT/JP2013/061958 2012-04-27 2013-04-23 イオン交換膜電解槽 WO2013161836A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN2335MUN2014 IN2014MN02335A (ja) 2012-04-27 2013-04-23
EP13780850.7A EP2843084B1 (en) 2012-04-27 2013-04-23 Cell for ion exchange membrane electrolysis
US14/396,143 US9828684B2 (en) 2012-04-27 2013-04-23 Cell for ion exchange membrane electrolysis
CN201380022395.9A CN104254644B (zh) 2012-04-27 2013-04-23 离子交换膜电解槽
KR1020147032135A KR101858485B1 (ko) 2012-04-27 2013-04-23 이온 교환막 전해조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012103978A JP5945154B2 (ja) 2012-04-27 2012-04-27 イオン交換膜電解槽
JP2012-103978 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161836A1 true WO2013161836A1 (ja) 2013-10-31

Family

ID=49483144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061958 WO2013161836A1 (ja) 2012-04-27 2013-04-23 イオン交換膜電解槽

Country Status (7)

Country Link
US (1) US9828684B2 (ja)
EP (1) EP2843084B1 (ja)
JP (1) JP5945154B2 (ja)
KR (1) KR101858485B1 (ja)
CN (1) CN104254644B (ja)
IN (1) IN2014MN02335A (ja)
WO (1) WO2013161836A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828684B2 (en) 2012-04-27 2017-11-28 Thyssenkrupp Uhde Chlorine Engineers (Japan) Ltd. Cell for ion exchange membrane electrolysis

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6501141B2 (ja) * 2014-11-21 2019-04-17 国立大学法人横浜国立大学 有機ハイドライド製造装置およびこれを用いた有機ハイドライドの製造方法
JP6656091B2 (ja) * 2016-06-14 2020-03-04 ティッセンクルップ・ウーデ・クロリンエンジニアズ ゲー エム ベー ハー 電解槽
JP2019143212A (ja) * 2018-02-22 2019-08-29 パナソニックIpマネジメント株式会社 電気分解用デバイス
EP4273302A2 (en) * 2018-07-06 2023-11-08 Asahi Kasei Kabushiki Kaisha Electrode structure, method for producing electrode structure, electrolysis cell, and electrolysis tank
KR102659911B1 (ko) 2019-12-06 2024-04-24 삼성중공업(주) 부유식 구조물 및 그의 선수각 제어 방법
EP4112784A1 (en) * 2020-02-26 2023-01-04 Asahi Kasei Kabushiki Kaisha Electrolytic tank and method for manufacturing electrolytic tank
CN111910205A (zh) * 2020-09-23 2020-11-10 江阴市宏泽氯碱设备制造有限公司 一种新型弹性结构膜极距离子膜电解槽

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108278A (en) * 1980-12-26 1982-07-06 Asahi Glass Co Ltd Double-electrode filter press type electrolytic cell
JPS6353272A (ja) 1986-08-22 1988-03-07 Ulvac Corp Cvd装置
JPH05306484A (ja) * 1992-04-30 1993-11-19 Chlorine Eng Corp Ltd 電解槽
JP2004300543A (ja) 2003-03-31 2004-10-28 Chlorine Eng Corp Ltd 電解用電極及びそれを使用するイオン交換膜電解槽
JP2009242922A (ja) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd 水電解装置用電極
JP2011117047A (ja) * 2009-12-04 2011-06-16 Tosoh Corp イオン交換膜法電解槽

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101410A (en) * 1977-09-26 1978-07-18 Olin Corporation Electrode assembly with flexible gas baffle conductor
JP2000192276A (ja) 1998-12-25 2000-07-11 Asahi Glass Co Ltd 複極型イオン交換膜電解槽
EP1397531A1 (en) 2001-06-15 2004-03-17 Akzo Nobel N.V. Electrolytic cell
EP1378589B1 (en) 2002-04-05 2005-12-07 CHLORINE ENGINEERS CORP., Ltd. Ion exchange membrane electrolyzer
US7303661B2 (en) 2003-03-31 2007-12-04 Chlorine Engineers Corp., Ltd. Electrode for electrolysis and ion exchange membrane electrolytic cell
JP2007084907A (ja) * 2005-09-26 2007-04-05 Chlorine Eng Corp Ltd 電解用立体電極及びイオン交換膜電解槽
EP1767671B1 (en) 2005-09-26 2012-05-02 CHLORINE ENGINEERS CORP., Ltd. Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using the three-dimensional electrode
JP4121137B2 (ja) 2006-04-10 2008-07-23 クロリンエンジニアズ株式会社 イオン交換膜電解槽
JP4305929B2 (ja) * 2006-06-05 2009-07-29 クロリンエンジニアズ株式会社 イオン交換膜電解槽
JP4198726B2 (ja) 2006-09-06 2008-12-17 クロリンエンジニアズ株式会社 イオン交換膜電解槽
JP4846869B1 (ja) * 2010-09-07 2011-12-28 クロリンエンジニアズ株式会社 電解用陰極構造体およびそれを用いた電解槽
JP5945154B2 (ja) 2012-04-27 2016-07-05 ティッセンクルップ・ウーデ・クロリンエンジニアズ株式会社 イオン交換膜電解槽

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108278A (en) * 1980-12-26 1982-07-06 Asahi Glass Co Ltd Double-electrode filter press type electrolytic cell
JPS6353272A (ja) 1986-08-22 1988-03-07 Ulvac Corp Cvd装置
JPH05306484A (ja) * 1992-04-30 1993-11-19 Chlorine Eng Corp Ltd 電解槽
JP2004300543A (ja) 2003-03-31 2004-10-28 Chlorine Eng Corp Ltd 電解用電極及びそれを使用するイオン交換膜電解槽
JP2009242922A (ja) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd 水電解装置用電極
JP2011117047A (ja) * 2009-12-04 2011-06-16 Tosoh Corp イオン交換膜法電解槽

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2843084A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828684B2 (en) 2012-04-27 2017-11-28 Thyssenkrupp Uhde Chlorine Engineers (Japan) Ltd. Cell for ion exchange membrane electrolysis

Also Published As

Publication number Publication date
KR101858485B1 (ko) 2018-05-16
JP5945154B2 (ja) 2016-07-05
JP2013231218A (ja) 2013-11-14
CN104254644B (zh) 2017-03-01
CN104254644A (zh) 2014-12-31
US20150114830A1 (en) 2015-04-30
EP2843084B1 (en) 2017-11-15
EP2843084A4 (en) 2016-04-13
KR20150013171A (ko) 2015-02-04
EP2843084A1 (en) 2015-03-04
US9828684B2 (en) 2017-11-28
IN2014MN02335A (ja) 2015-08-14

Similar Documents

Publication Publication Date Title
JP5945154B2 (ja) イオン交換膜電解槽
JP5695418B2 (ja) 電気化学セル用の弾性集電装置
WO2019111832A1 (ja) アルカリ水電解用膜-電極-ガスケット複合体
JP2010533239A5 (ja)
JP6656091B2 (ja) 電解槽
JP5970250B2 (ja) イオン交換膜電解槽用弾性クッション材
KR102274662B1 (ko) 한정-갭 전해 셀들을 레트로피트하는 방법
WO2021085334A1 (ja) アルカリ水電解槽用弾性マット
JP3860132B2 (ja) 水素発生陰極を使用するイオン交換膜電解槽
JP2004300543A (ja) 電解用電極及びそれを使用するイオン交換膜電解槽
WO2014199440A1 (ja) イオン交換膜電解槽
JP2013216922A (ja) イオン交換膜電解槽
JP3869383B2 (ja) 液透過型ガス拡散陰極を使用するイオン交換膜電解槽
JP2014221930A (ja) イオン交換膜電解槽
JP6318678B2 (ja) イオン交換膜法電解槽
JP2014214350A (ja) イオン交換膜電解槽
WO2016067389A1 (ja) イオン交換膜電解槽
JP2012140652A (ja) イオン交換膜法電解槽
JPH08100287A (ja) 複極型イオン交換膜電解槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780850

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14396143

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147032135

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013780850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013780850

Country of ref document: EP