WO2013161758A1 - Cooling unit for heat exchanger - Google Patents

Cooling unit for heat exchanger Download PDF

Info

Publication number
WO2013161758A1
WO2013161758A1 PCT/JP2013/061779 JP2013061779W WO2013161758A1 WO 2013161758 A1 WO2013161758 A1 WO 2013161758A1 JP 2013061779 W JP2013061779 W JP 2013061779W WO 2013161758 A1 WO2013161758 A1 WO 2013161758A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
duct
air
cooling unit
ejector nozzle
Prior art date
Application number
PCT/JP2013/061779
Other languages
French (fr)
Japanese (ja)
Inventor
秀希 吉田
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2013161758A1 publication Critical patent/WO2013161758A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/10Guiding or ducting cooling-air, to, or from, liquid-to-air heat exchangers

Definitions

  • the present invention relates to a cooling unit that blows air to a heat exchanger disposed in the front of a vehicle.
  • the vehicle's front-end module is equipped with a heat exchange unit.
  • the heat exchange unit includes a heat exchanger composed of a radiator and a condenser, and a cooling unit including an electric fan and a fan motor disposed behind the heat exchanger (see Patent Document 1 below).
  • a shroud is provided between the heat exchanger and the electric fan.
  • a pair of circular openings are formed in the shroud, and an electric fan is attached to each opening.
  • the electric fan When the electric fan is rotated, air is introduced from the front and flows backward through the heat exchanger and the electric fan. This air flow cools the refrigerant [refrigerant] and the cooling water [coolant] circulating in the heat exchanger.
  • the opening formed in the shroud is a circular shape that matches the shape of the fan, air passes through the outer part of the opening (particularly, the four corners of the heat exchanger). Hateful. For this reason, it has been desired to further improve the heat exchange efficiency by allowing air to pass through the entire heat exchanger.
  • An object of the present invention is to provide a cooling unit capable of improving the heat exchange efficiency by allowing air to pass through the entire heat exchanger.
  • a feature of the present invention is a cooling unit that blows out air toward a heat exchanger disposed in a front portion of a vehicle.
  • the cooling unit is disposed in front of the blower and the heat exchanger, and is supplied from the blower.
  • An air blowing frame that blows out toward the heat exchanger, and the air blowing frame is arranged in a vertical direction in front of the heat exchanger and a side duct into which air supplied from the blower flows.
  • a cooling unit is provided in which a nozzle is formed.
  • the air blown from the ejector nozzle passes through the heat exchanger while attracting the air in front of the blowing duct.
  • the air blown out from the ejector nozzle passes through the entire heat exchanger together with the attracted air. For this reason, the refrigerant
  • Each of the plurality of blowing ducts is formed with at least one of an ejector nozzle that blows air upward toward the heat exchanger and an ejector nozzle that blows air downward toward the heat exchanger. preferable.
  • the plurality of blow-out ducts are arranged at the uppermost stage, an upper duct formed with an ejector nozzle for blowing air downward toward the heat exchanger, and arranged at the lowermost stage, toward the heat exchanger
  • an intermediate duct in which an ejector nozzle that blows air downward is formed.
  • blower and the air blowing frame are attached to a radiator core support of the vehicle to which the heat exchanger is fixed.
  • the side ducts are respectively provided at both ends of the plurality of blowing ducts, each of the plurality of blowing ducts is divided into two in the width direction by a dividing portion provided at the center, and the cooling unit is It is preferable that the apparatus further includes a fixing support member that fixes the divided portion to the radiator core support of the vehicle to which the heat exchanger is fixed. More preferably, the fixed support member is a hood lock stay.
  • each of the plurality of blowing ducts has a teardrop-shaped cross section, and the curved portion of the teardrop-shaped cross section is disposed toward the front of the vehicle.
  • FIG. 1 is an exploded perspective view of a heat exchange unit including a cooling unit according to the first embodiment.
  • FIG. 2 is a plan sectional view of the heat exchange unit.
  • FIG. 3 is an enlarged plan sectional view of the heat exchange unit.
  • FIG. 4 is a side sectional view of the heat exchange unit.
  • 5A is a cross-sectional view taken along line VA-VA in FIG. 1
  • FIG. 5B is a cross-sectional view taken along line VB-VB in FIG.
  • FIG. 6 is an exploded perspective view of the heat exchange unit including the cooling unit according to the second embodiment.
  • 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is an exploded perspective view of the heat exchange unit including the cooling unit according to the third embodiment.
  • 9 is a cross-sectional view taken along line IX-IX in FIG.
  • the cooling unit 20 according to the first embodiment will be described with reference to FIGS. 1 to 5B.
  • the heat exchange unit 1 including the cooling unit 20 of the present embodiment is mounted on a vehicle.
  • forward direction [forward direction] (FD), rear direction [rearward direction] (RD), width direction [width direction] (WD), upward direction [upward direction] (FD) UD) and a downward direction (DD) are defined (see FIG. 1).
  • the terms “front”, “back”, “side”, “upper”, and “lower” are used.
  • the heat exchange unit 1 is provided in the front end module of the vehicle. As shown in FIGS. 1 to 4, the heat exchange unit 1 includes a heat exchanger 10, a cooling unit 20, and a radiator core support 30.
  • the heat exchanger 10 includes a radiator 11 and a condenser 12 and is fixed to the radiator core support 30.
  • the radiator 11 and the capacitor 12 are shown not on a cross section but on a side surface.
  • the cooling unit 20 includes a pair of blowers 21 attached to both sides of the heat exchanger 10 and an air blowing frame 100 that blows air supplied by the blower 21 toward the heat exchanger 10. And. Each blower 21 sucks air in the vicinity of the radiator core support 30 and supplies the air into the air blowing frame 100.
  • the air blowing frame 100 will be described later.
  • the radiator core support 30 is provided at the front of the vehicle.
  • the radiator core support 30 is provided with a heat exchanger housing 31 for housing the heat exchanger 10.
  • the heat exchanger accommodating portion 31 is formed with an opening 31A for allowing the air that has passed through the heat exchanger 10 to flow into the engine compartment.
  • Side duct rear portions [side duct ⁇ rear housings] 32 forming side ducts (side ducts), which will be described later, of the air blowing frame 100 are provided on both sides of the heat exchanger accommodating portion 31, respectively.
  • a sealing protrusion [sealing rib] 32A (see FIG. 3) is formed on each opening end face of the side duct rear portion 32 over the entire circumference.
  • Blower housings [blower housings] 33 for housing the blower 21 are provided on both side lower portions of the side duct rear portion 32 with a side wall [side wall] 35 interposed therebetween.
  • lamp housings 34 for housing the front lamp assembly are provided on both side upper portions of the side duct rear portion 32 with the side wall 35 interposed therebetween.
  • a vent opening [vent hole] 35A through which air from the blower 21 passes is formed on each side wall 35 between the side duct rear portion 32 and the blower accommodating portion 33.
  • the air blowing frame 100 is formed of a metal such as resin or aluminum, and is disposed in front of the heat exchanger 10.
  • the air blowing frame 100 is attached to the radiator core support 30.
  • the air blowing frame 100 includes a pair of side ducts 111 (see FIGS. 2 and 3) disposed on both sides, and a front of a heat exchange area of the heat exchanger 10 (tubes and fins of the radiator 11 and the condenser 12).
  • the outlet ducts 120 are provided.
  • Each side duct 111 includes a side duct rear part 32 and a side duct front part [side duct front housing] 110 attached to the front part of the side duct rear part 32.
  • Each side duct 111 distributes air from the blower 21 to the blowout duct 120.
  • a plurality of attachment openings 112 to which the blowout duct 120 is attached are formed on the side wall 110A of each side duct front part 110 so as to protrude.
  • the four attachment openings 112 are provided at equal intervals in the vertical direction.
  • the outer periphery of the end of the blowing duct 120 is fitted inside each mounting opening 112.
  • a sealing groove 113 (see FIG. 3) that fits with the sealing protrusion 32A is formed over the entire circumference.
  • Each blowing duct 120 (120A to 120D) blows air distributed from the side duct 111 to the heat exchanger 10.
  • the four blowing ducts 120 extend in parallel in the width direction, and are arranged at equal intervals in the vertical direction so as to cover the entire heat exchange area of the heat exchanger 10. That is, the four outlet ducts 120 are arranged in multiple stages in the vertical direction [aligned vertically in a multi louver manner].
  • Each blowout duct 120 is formed with one or two ejector nozzles 130 (131 to 134) for blowing air from the side duct 111 toward the heat exchanger 10 (see FIGS. 1 and 4).
  • the outlet duct 120 includes an upper duct 120A, a lower duct 120B, and two intermediate ducts 120C.
  • the upper duct 120A is disposed at the uppermost stage, and an ejector nozzle 131 that blows air downward toward the heat exchanger is formed on the lower surface thereof.
  • the front portion of the upper duct 120A is formed as a curved portion 121A, and the rear portion is formed as a tapered portion 122A that is thinned toward the heat exchanger 10, and the upper duct 120A has a tear. It has a drop-shaped cross-section.
  • the teardrop-shaped cross section has a small profile drag against the air flow and hardly forms a vortex on the downstream side. That is, the upper duct 120A can smoothly pass the air flow.
  • the ejector nozzle 131 of the upper duct 120A is formed as a slit by overlapping the rear end edge 121Ae of the curved portion 121A and the front end edge 122Ae of the tapered portion 122A.
  • the front edge 122Ae is located inside the rear edge 121Ae, and air is blown out from the ejector nozzle 131 toward the rear (slightly below).
  • the lower duct 120B is disposed at the lowermost stage, and an ejector nozzle 132 is formed on the upper surface thereof.
  • the front portion of the lower duct 120B is formed as a curved portion 121B, and the rear portion is formed as a tapered portion 122B.
  • the lower duct 120B also has a teardrop-like cross section. That is, the lower duct 120B can also smoothly pass the air flow.
  • the ejector nozzle 132 of the lower duct 120B is formed as a slit by overlapping the rear end edge 121Be of the curved portion 121B and the front end edge 122Be of the tapered portion 122B.
  • the front edge 122Be is located inside the rear edge 121Be, and air is blown out from the ejector nozzle 132 toward the rear (slightly upward).
  • Each intermediate duct 120C is disposed between the upper duct 120A and the lower duct 120B, and an ejector nozzle 133 is formed on the upper surface thereof, and an ejector nozzle 134 is formed on the lower surface thereof.
  • the front portion of each intermediate duct 120C is formed as a curved portion 121C, and the rear portion is formed as a tapered portion 122C.
  • Each intermediate duct 120C also has a teardrop-like cross section. That is, the intermediate duct 120C can also smoothly pass the air flow.
  • the bending portion 121C is fixed to a mounting base [attachment base] 123 provided at the front portion of the tapered portion 122C by a screw B.
  • the mounting base 123 is provided at intervals along the width direction (see FIG. 1).
  • the ejector nozzle 133 on the upper surface is formed as a slit by overlapping the rear end edge 121Ce of the curved portion 121C and the front end edge 122Ce of the tapered portion 122C.
  • the front edge 122Ce is located inside the rear edge 121Ce, and air is blown out from the ejector nozzle 133 toward the rear (slightly upward).
  • the ejector nozzle 134 on the lower surface is also formed as a slit by overlapping the rear end edge 121Ce of the curved portion 121C and the front end edge 122Ce of the tapered portion 122C.
  • the front edge 122Ce is located inside the rear edge 121Ce, and air is blown out from the ejector nozzle 134 toward the rear (slightly below).
  • the blowing duct 120 is mounted between the mounting opening 112 of the one side duct front part 110 and the mounting opening 112 of the other side duct front part 110, and the main part of the air blowing frame 100 is pre-assembled.
  • the heat exchanger 10, the blower 21, the main part of the pre-assembled air blowing frame 100, and the front lamp assembly are assembled to the radiator core support 30, and the heat exchange unit 1 is assembled.
  • the heat exchanger 10 is attached to the heat exchanger accommodating portion 31, the pair of side duct front portions 110 are fixed to the pair of side duct rear portions 32, and the blower 21 is attached to the blower accommodating portion 33.
  • the front lamp assembly is attached to the lamp housing portion 34.
  • the sealing groove 113 of the side duct front part 110 is fitted to the sealing protrusion 32A of the side duct rear part 32, and the main part of the pre-assembled air blowing frame 100 is fixed to the radiator core support 30.
  • the air blowing frame 100 is disposed in front of the heat exchanger 10.
  • the air flowing through the heat exchange unit 1 will be described with reference to the drawings.
  • the blower 21 is not driven. Even in such a case, since the cooling unit 20 of the present embodiment does not have a fan or a shroud that provides ventilation resistance, the air flows very smoothly, and high heat exchange efficiency is realized.
  • the blower 21 is used. Driven.
  • blower 21 When the blower 21 is driven, air is supplied from the blower 21 to the side duct 111.
  • the air supplied to the side duct 111 is distributed at the mounting opening 112 and flows into the blowout duct 120 from both ends of the blowout duct 120.
  • the flow rate (flow rate) can be controlled by adjusting the rotational speed of the blower 21.
  • the air flowing into the blowing duct 120 is blown out from the ejector nozzles 130 (131 to 134) toward the heat exchanger 10 (see FIG. 4). At this time, the air that has flowed into the blowing duct 120 is guided by the curved portion 121 (121A to 121C) and discharged from the ejector nozzle 130.
  • the air blown out from the ejector nozzle 130 passes through the heat exchanger 10 while drawing (drawing) air in front of the blowout duct 120 (sucking).
  • the air blown out from the ejector nozzle 130 passes through the entire heat exchange area of the heat exchanger 10 together with the attracted air, and cools the refrigerant and cooling water in the heat exchanger 10 efficiently.
  • the four outlet ducts 120 are arranged in the vertical direction in front of the heat exchanger 10 so as to cover the entire heat exchange area of the heat exchanger 10, and from the side duct 111. Air is blown out toward the heat exchanger 10 from the ejector nozzle 130 formed in the blowout duct 120. For this reason, the air blown out from the ejector nozzle 130 passes through the heat exchanger 10 while attracting the air in front of the blowout duct 120. That is, the air blown out from the ejector nozzle 130 passes through the entire heat exchange area of the heat exchanger 10 together with the attracted air. For this reason, the refrigerant
  • each blowing duct 120 an ejector nozzle 130 (132 and 133) that blows air upward toward the heat exchanger 10, and an ejector nozzle 130 (131 and 131) that blows air downward toward the heat exchanger 10. 134) is formed. For this reason, the air blown out from the ejector nozzle 130 is prevented from flowing to unnecessary portions and efficiently passes through all the heat exchange areas of the heat exchanger 10.
  • the blowout duct 120 is formed with an upper duct 120A in which an ejector nozzle 131 that blows air downward toward the heat exchanger 10 is formed and an ejector nozzle 132 that blows air upward toward the heat exchanger 10.
  • the air blown out from the ejector nozzle 130 is more reliably prevented from flowing to unnecessary portions, and more efficiently passes through all the heat exchange areas of the heat exchanger 10.
  • blower 21 and the air blowing frame 100 are attached to the radiator core support 30 to which the heat exchanger 10 is fixed. For this reason, it is not necessary to prepare the member for fixing the air blower 21 and the air blowing frame 100 separately. As a result, an increase in the vehicle weight can be prevented and the manufacturing cost of the heat exchange unit 1 can be reduced.
  • each intermediate duct 120C is fixed to the mounting base 123 of the tapered portion 122C with a screw B as shown in FIG. 5 (b).
  • the fixing strength (holding force) between the curved portion 121C and the tapered portion 122C can be increased, and the rigidity around the ejector nozzles 133 and 134 can be improved. That is, vibrations in the vicinity of the ejector nozzles 133 and 134 and abnormal noise due to vibration can be prevented, and air can be blown out stably.
  • the curved portion 121A of the upper duct 120A and the curved portion 121B of the lower duct 120B may also be coupled to the mounting bases of the tapered portions 122A and 122B via screws B.
  • the fixing strength (holding force) between the curved portions 121A and 121B and the tapered portions 122A and 122B can be increased, and the rigidity around the ejector nozzles 131 and 132 can be improved.
  • the cooling unit 20 according to the second embodiment will be described with reference to FIGS.
  • the structure of the blowing duct 120 is different from that of the first embodiment described above. For this reason, about the structure which is the same as that of 1st Embodiment, or an equivalent structure, the same code
  • each blowing duct 120 includes a dividing wall 125 that divides the inside into two at the center in the width direction.
  • screw holes 125 ⁇ / b> A are formed in the dividing wall 125.
  • the screw B is screwed into the screw hole 125 ⁇ / b> A, and the fixed support member [fixing stay] 200 is fixed to the dividing wall 125 of the blowing duct 120.
  • the fixed support member 200 includes an attachment hole 201 corresponding to the attachment hole 37A of the attachment base 37 provided on the upper portion of the radiator core support 30, a plurality of screw holes 202 corresponding to the screw holes 125A of the dividing wall 125, and a radiator.
  • An attachment hole 203 corresponding to the attachment hole 38 ⁇ / b> A of the attachment base 38 provided at the lower portion of the core support 30 is formed.
  • the fixed support member 200 fixes the blowing duct 120 to the radiator core support 30 while supporting the blowing duct 120 at the center (partition wall 125) in the width direction of the blowing duct 120.
  • the air blown out from the ejector nozzle 130 passes through all of the heat exchange area of the heat exchanger 10 together with the attracted air. For this reason, the refrigerant
  • each blowing duct 120 is divided into two in the width direction, there is no merging of air flow in each blowing duct 120, and the pressure distribution in each blowing duct 120 is stabilized. As a result, air is uniformly blown from the ejector nozzle 130, and the heat exchange efficiency of the heat exchanger 10 is further improved.
  • a hood lock stay is used as the fixed support member 200. Therefore, the air blowing frame 100 can be more firmly fixed to the radiator core support 30 without preparing a new member as the fixed support member 200, and the manufacturing cost can be reduced.
  • the cooling unit 20 according to the third embodiment will be described with reference to FIGS.
  • the configuration of the blowout duct 120 is different from the above-described first embodiment, and is similar to the above-described second embodiment.
  • the same reference numerals are given and their overlapping descriptions are omitted.
  • each blowing duct 120 is divided into two in the width direction. Specifically, as shown in FIG. 8, each blowing duct 120 is divided into a first duct 150 and a second duct 160 at the center in the width direction.
  • an attachment surface [attachment tab] 152 protruding toward the second duct 160 is formed from the side wall 151 of the first duct 150.
  • an attachment surface 162 that protrudes toward the first duct 150 is formed from the side wall 161 of the second duct 160.
  • the side walls 151 and 161 and the mounting surfaces 152 and 162 constitute a dividing portion that divides the blowing duct 120 into two in the width direction.
  • a screw hole 152A is formed in the mounting surface 152
  • a screw hole 162A is formed in the mounting surface 162.
  • the screw B is screwed into the screw holes 152A and 162A
  • the fixed support member 200 is fixed to the attachment surfaces 152 and 162.
  • the fixed support member 200 fixes the blowout duct 120 to the radiator core support 30 while supporting the blowout duct 120 at the center in the width direction of the blowout duct 120 (the side walls 151 and 161 and the attachment surfaces 152 and 162).
  • the air blown out from the ejector nozzle 130 passes through all of the heat exchange area of the heat exchanger 10 together with the attracted air. For this reason, the refrigerant
  • each blowing duct 120 is divided into two in the width direction, there is no merging of the air flow in each blowing duct 120 and the pressure distribution in each blowing duct 120 is the same as in the second embodiment described above. Stabilize. As a result, air is uniformly blown from the ejector nozzle 130, and the heat exchange efficiency of the heat exchanger 10 is further improved.
  • the cooling unit 20 of the above embodiment includes a pair of blowers 21.
  • the air blowing frame 100 includes one side duct 111 only on one side in the width direction. Air is supplied to one side duct 111 by one blower 21, and air is distributed from one side duct 111 to a plurality of outlet ducts 120 and blown out from the ejector nozzle 130.
  • the blowout duct 120 is preferably not cantilevered, and the ends that are not connected to the side ducts 111 are preferably connected by a support plate or the like.
  • the blowing duct 120 was attached to the side duct front part 110.
  • the side duct front part 110 and the outlet duct 120 may be integrally formed.
  • the shape of the blowing duct 120 is not limited to the shape of the said embodiment, What is necessary is just the shape which can blow off air toward the heat exchanger 10.
  • a shape having a teardrop-like cross section such as the blowout duct 120 of the above embodiment, is preferable because the air flow rate can be increased and the heat exchange efficiency can be improved.
  • the teardrop-like cross section having a curved portion in the front is preferable for attracting the front air by the air blown out from the emission nozzle 130.
  • the blowout duct 120 includes three types of ducts (upper duct 120A, lower duct 120B, and intermediate duct 120C).
  • the blowout duct 120 only needs to include at least one type of the above three types of ducts.
  • the blowing duct 120 may include the upper duct 120A and the lower duct 120B, and may not include the intermediate duct 120C.
  • the upper duct 120A blows air downward toward the heat exchanger 10.
  • the upper duct 120 ⁇ / b> A may blow air not only downward but also upward toward the heat exchanger 10.
  • the lower duct 120 ⁇ / b> B may blow air not only upward but also downward toward the heat exchanger 10.
  • Each blowout duct 120 may be formed with at least one of an ejector nozzle 130 that blows air upward toward the heat exchanger 10 and an ejector nozzle 130 that blows air downward toward the heat exchanger 10.

Abstract

The cooling unit of the present invention for injecting air toward a heat exchanger installed in a front part of a vehicle is provided with a blower and an air injection frame for injecting air supplied from the blower toward the heat exchanger, the air injection frame being installed in front of the heat exchanger. The air injection frame is provided with a side duct through which the air supplied from the blower is channeled, and a plurality of injection ducts arranged in the vertical direction in front of the heat exchanger and communicated at one end with the side duct. An ejector nozzle for injecting air diverted from the side duct toward the heat exchanger is formed in each of the injection ducts. This cooling unit makes it possible to pass air through the entire area of the heat exchanger and enhance the efficiency of heat exchange.

Description

熱交換器用冷却ユニットCooling unit for heat exchanger
 本発明は、車両前部に配設される熱交換器に空気を吹き出す冷却ユニット[cooling unit]に関する。 The present invention relates to a cooling unit that blows air to a heat exchanger disposed in the front of a vehicle.
 車両のフロントエンドモジュールには、熱交換ユニットが設けられている。熱交換ユニットは、ラジエータ及びコンデンサからなる熱交換器と、熱交換器の後方に配設された、電動ファン及びファンモータを備える冷却ユニットとによって構成されている(下記特許文献1参照)。 The vehicle's front-end module is equipped with a heat exchange unit. The heat exchange unit includes a heat exchanger composed of a radiator and a condenser, and a cooling unit including an electric fan and a fan motor disposed behind the heat exchanger (see Patent Document 1 below).
 特許文献1に開示されている熱交換ユニットでは、熱交換器と電動ファンとの間にシュラウドが設けられている。シュラウドには、一対の円形開口部が形成されており、各開口部に電動ファンが取り付けられる。電動ファンを回転させると、空気が、前方から導入され、熱交換器及び電動ファンを通過して後方へと流れる。この空気の流れによって熱交換器内を循環する冷媒[refrigerant]や冷却水[coolant]が冷却される。 In the heat exchange unit disclosed in Patent Document 1, a shroud is provided between the heat exchanger and the electric fan. A pair of circular openings are formed in the shroud, and an electric fan is attached to each opening. When the electric fan is rotated, air is introduced from the front and flows backward through the heat exchanger and the electric fan. This air flow cools the refrigerant [refrigerant] and the cooling water [coolant] circulating in the heat exchanger.
日本国特開2005-83321号公報Japanese Unexamined Patent Publication No. 2005-83321
 しかし、上記冷却ユニットでは、シュラウドに形成された開口部がファンの形状に合わせた円形なので、空気が開口部の外側部分(特に、熱交換器の四つの角部[four corners])を通過しにくい。このため、熱交換器の全域に空気を通過させて熱交換効率をより向上させることが望まれていた。 However, in the above cooling unit, since the opening formed in the shroud is a circular shape that matches the shape of the fan, air passes through the outer part of the opening (particularly, the four corners of the heat exchanger). Hateful. For this reason, it has been desired to further improve the heat exchange efficiency by allowing air to pass through the entire heat exchanger.
 本発明の目的は、熱交換器の全域に空気を通過させて熱交換効率を向上させることのできる冷却ユニットを提供することにある。 An object of the present invention is to provide a cooling unit capable of improving the heat exchange efficiency by allowing air to pass through the entire heat exchanger.
 本発明の特徴は、車両前部に配設される熱交換器に向けて空気を吹き出す冷却ユニットであって、送風機と、前記熱交換器の前方に配設され、前記送風機から供給された空気を前記熱交換器に向けて吹き出す空気吹出枠と、を備え、前記空気吹出枠が、前記送風機から供給された空気が流入される側部ダクトと、前記熱交換器の前方に上下方向に並設され、一端が前記側部ダクトと連通された複数の吹出ダクトと、を備えており、前記吹出ダクトのそれぞれに、前記側部ダクトから分配された空気を前記熱交換器に向けて吹き出すエジェクタノズルが形成されている、冷却ユニットを提供する。 A feature of the present invention is a cooling unit that blows out air toward a heat exchanger disposed in a front portion of a vehicle. The cooling unit is disposed in front of the blower and the heat exchanger, and is supplied from the blower. An air blowing frame that blows out toward the heat exchanger, and the air blowing frame is arranged in a vertical direction in front of the heat exchanger and a side duct into which air supplied from the blower flows. A plurality of outlet ducts, one end of which is communicated with the side ducts, and each of the outlet ducts ejects air distributed from the side ducts toward the heat exchanger. A cooling unit is provided in which a nozzle is formed.
 上記特徴によれば、エジェクタノズルから吹き出された空気は、吹き出しダクトの前方の空気を誘引しつつ、熱交換器を通過する。エジェクタノズルから吹き出された空気は、誘引された空気とともに、熱交換器の全域を通過する。このため、熱交換器内の冷媒などが効率よく冷却され、熱交換器の熱交換効率が向上する。 According to the above feature, the air blown from the ejector nozzle passes through the heat exchanger while attracting the air in front of the blowing duct. The air blown out from the ejector nozzle passes through the entire heat exchanger together with the attracted air. For this reason, the refrigerant | coolant etc. in a heat exchanger are cooled efficiently, and the heat exchange efficiency of a heat exchanger improves.
 前記複数の吹出ダクトそれぞれに、前記熱交換器に向けて上方に空気を吹き出すエジェクタノズル、及び、前記熱交換器に向けて下方に空気を吹き出すエジェクタノズルの少なくとも一方が形成されている、ことが好ましい。 Each of the plurality of blowing ducts is formed with at least one of an ejector nozzle that blows air upward toward the heat exchanger and an ejector nozzle that blows air downward toward the heat exchanger. preferable.
 前記複数の吹出ダクトが、最上段に配設され、前記熱交換器に向けて下方に空気を吹き出すエジェクタノズルが形成された上ダクトと、最下段に配設され、前記熱交換器に向けて上方に空気を吹き出すエジェクタノズルが形成された下ダクトと、前記上ダクトと前記下ダクトとの間に配設され、前記熱交換器に向けて空気を上方に吹き出すエジェクタノズル及び前記熱交換器に向けて下方に空気を吹き出すエジェクタノズルが形成された中間ダクトと、を備えている、ことが好ましい。 The plurality of blow-out ducts are arranged at the uppermost stage, an upper duct formed with an ejector nozzle for blowing air downward toward the heat exchanger, and arranged at the lowermost stage, toward the heat exchanger A lower duct in which an ejector nozzle that blows air upward is formed; and an ejector nozzle that is disposed between the upper duct and the lower duct and blows air upward toward the heat exchanger. And an intermediate duct in which an ejector nozzle that blows air downward is formed.
 前記送風機及び前記空気吹出枠が、前記熱交換器が固定される前記車両のラジエータコアサポートに取り付けられている、ことが好ましい。 It is preferable that the blower and the air blowing frame are attached to a radiator core support of the vehicle to which the heat exchanger is fixed.
 前記側部ダクトが、前記複数の吹出ダクトの両端にそれぞれ設けられており、前記複数の吹出ダクトのそれぞれが、中央に設けられた分割部によって幅方向に二分割され、前記冷却ユニットが、前記熱交換器が固定される前記車両のラジエータコアサポートに前記分割部を固定する固定支持部材をさらに備えている、ことが好ましい。前記固定支持部材が、フードロックステイである、ことがさらに好ましい。 The side ducts are respectively provided at both ends of the plurality of blowing ducts, each of the plurality of blowing ducts is divided into two in the width direction by a dividing portion provided at the center, and the cooling unit is It is preferable that the apparatus further includes a fixing support member that fixes the divided portion to the radiator core support of the vehicle to which the heat exchanger is fixed. More preferably, the fixed support member is a hood lock stay.
 前記複数の吹出ダクトのそれぞれが、涙滴状断面を有し、かつ、前記涙滴状断面の湾曲部を前記車両の前方に向けて配設されている、ことが好ましい。 Preferably, each of the plurality of blowing ducts has a teardrop-shaped cross section, and the curved portion of the teardrop-shaped cross section is disposed toward the front of the vehicle.
図1は、第1実施形態に係る冷却ユニットを備えた熱交換ユニットの分解斜視図である。FIG. 1 is an exploded perspective view of a heat exchange unit including a cooling unit according to the first embodiment. 図2は、前記熱交換ユニットの平断面図である。FIG. 2 is a plan sectional view of the heat exchange unit. 図3は、前記熱交換ユニットの拡大平断面図である。FIG. 3 is an enlarged plan sectional view of the heat exchange unit. 図4は、前記熱交換ユニットの側断面図である。FIG. 4 is a side sectional view of the heat exchange unit. 図5(a)は、図1のVA-VA線断面図であり、図5(b)は、図1のVB-VB線断面図である。5A is a cross-sectional view taken along line VA-VA in FIG. 1, and FIG. 5B is a cross-sectional view taken along line VB-VB in FIG. 図6は、第2実施形態に係る冷却ユニットを備えた熱交換ユニットの分解斜視図である。FIG. 6 is an exploded perspective view of the heat exchange unit including the cooling unit according to the second embodiment. 図7は、図6のVII-VII線断面図である。7 is a cross-sectional view taken along line VII-VII in FIG. 図8は、第3実施形態に係る冷却ユニットを備えた熱交換ユニットの分解斜視図である。FIG. 8 is an exploded perspective view of the heat exchange unit including the cooling unit according to the third embodiment. 図9は、図8のIX-IX線断面図である。9 is a cross-sectional view taken along line IX-IX in FIG.
 冷却ユニットの実施形態を、図面を参照しつつ説明する。図面において、同一又は同等の構成部分には、同一の符号が付されている。なお、図面において、寸法比率などは現実のものとは異なる場合がある。したがって、具体的な寸法などは以下の説明を参酌して判断されるべきである。また、図面間においても寸法比率などが異なる場合がある。 An embodiment of a cooling unit will be described with reference to the drawings. In the drawings, the same or equivalent components are denoted by the same reference numerals. In the drawings, dimensional ratios and the like may be different from actual ones. Accordingly, specific dimensions and the like should be determined in consideration of the following description. In addition, the dimensional ratio may differ between drawings.
 第1実施形態に係る冷却ユニット20について、図1~図5(b)を参照しつつ説明する。本実施形態の冷却ユニット20を備えた熱交換ユニット1は、車両に搭載される。なお、以下の説明では、車両を基準にして、前方向[forward direction](FD)、後方向[rearward direction](RD)、幅方向[width direction](WD)、上方向[upward direction](UD)、及び、下方向[downward direction](DD)が定義される(図1参照)。また、これに準じて、前[front]、後[back]、側方[side]、上[upper]、及び、下[lower]の語を用いる。 The cooling unit 20 according to the first embodiment will be described with reference to FIGS. 1 to 5B. The heat exchange unit 1 including the cooling unit 20 of the present embodiment is mounted on a vehicle. In the following description, forward direction [forward direction] (FD), rear direction [rearward direction] (RD), width direction [width direction] (WD), upward direction [upward direction] (FD) UD) and a downward direction (DD) are defined (see FIG. 1). Similarly, the terms “front”, “back”, “side”, “upper”, and “lower” are used.
 熱交換ユニット[heat exchange unit]1は、車両のフロントエンドモジュールに設けられる。図1~図4に示されるように、熱交換ユニット1は、熱交換器[heat exchanger]10と、冷却ユニット20と、ラジエータコアサポート30とを備えている。 The heat exchange unit 1 is provided in the front end module of the vehicle. As shown in FIGS. 1 to 4, the heat exchange unit 1 includes a heat exchanger 10, a cooling unit 20, and a radiator core support 30.
 熱交換器10は、ラジエータ11とコンデンサ12とを備えており、ラジエータコアサポート30に固定される。なお、図4においては、ラジエータ11及びコンデンサ12は、断面ではなく側面が示されている。冷却ユニット20は、熱交換器10の両側方に取り付けられた一対の送風機[blowers]21と、送風機21によって供給された空気を熱交換器10に向けて吹き出す空気吹出枠[air eduction frame]100とを備えている。各送風機21は、ラジエータコアサポート30の近傍の空気を吸い込んで、空気吹出枠100の内部に供給する。なお、空気吹出枠100については、後述する。 The heat exchanger 10 includes a radiator 11 and a condenser 12 and is fixed to the radiator core support 30. In FIG. 4, the radiator 11 and the capacitor 12 are shown not on a cross section but on a side surface. The cooling unit 20 includes a pair of blowers 21 attached to both sides of the heat exchanger 10 and an air blowing frame 100 that blows air supplied by the blower 21 toward the heat exchanger 10. And. Each blower 21 sucks air in the vicinity of the radiator core support 30 and supplies the air into the air blowing frame 100. The air blowing frame 100 will be described later.
 ラジエータコアサポート30は、車両の前部に設けられている。ラジエータコアサポート30には、熱交換器10を収容する熱交換器収容部[radiator housing]31が設けられている。熱交換器収容部31には、熱交換器10を通過した空気をエンジンコンパートメントに流すための開口31Aが形成されている。熱交換器収容部31の両側方には、空気吹出枠100の後述する側部ダクト[side ducts]を形成する側部ダクト後部[side duct rear housings]32がそれぞれ設けられている。 The radiator core support 30 is provided at the front of the vehicle. The radiator core support 30 is provided with a heat exchanger housing 31 for housing the heat exchanger 10. The heat exchanger accommodating portion 31 is formed with an opening 31A for allowing the air that has passed through the heat exchanger 10 to flow into the engine compartment. Side duct rear portions [side duct 部 rear housings] 32 forming side ducts (side ducts), which will be described later, of the air blowing frame 100 are provided on both sides of the heat exchanger accommodating portion 31, respectively.
 側部ダクト後部32の各開口端面上には、封止突起[sealing rib]32A(図3参照)が全周にわたって形成されている。側部ダクト後部32の両側方下部には、側壁[side walls]35を挟んで、送風機21を収容する送風機収容部[blower housings]33がそれぞれ設けられている。また、側部ダクト後部32の両側方上部には、側壁35を挟んで、前部ランプアッセンブリを収容するランプ収容部[lamp housings]34がそれぞれ設けられている。側部ダクト後部32と送風機収容部33との間の各側壁35には、送風機21からの空気が通過する送風口[vent hole]35Aが形成されている。 A sealing protrusion [sealing rib] 32A (see FIG. 3) is formed on each opening end face of the side duct rear portion 32 over the entire circumference. Blower housings [blower housings] 33 for housing the blower 21 are provided on both side lower portions of the side duct rear portion 32 with a side wall [side wall] 35 interposed therebetween. Further, lamp housings 34 for housing the front lamp assembly are provided on both side upper portions of the side duct rear portion 32 with the side wall 35 interposed therebetween. On each side wall 35 between the side duct rear portion 32 and the blower accommodating portion 33, a vent opening [vent hole] 35A through which air from the blower 21 passes is formed.
 空気吹出枠100の構成を図面を参照しつつ説明する。 The configuration of the air blowing frame 100 will be described with reference to the drawings.
 図1~図3に示されるように、空気吹出枠100は、樹脂やアルミ等の金属によって形成され、熱交換器10の前方に配設されている。空気吹出枠100は、ラジエータコアサポート30に取り付けられる。空気吹出枠100は、両側部に配設された一対の側部ダクト111(図2及び図3参照)と、熱交換器10の熱交換エリア(ラジエータ11やコンデンサ12のチューブ及びフィン)の前方に配設される吹出ダクト[eduction ducts]120とを備えている。各側部ダクト111は、側部ダクト後部32と、側部ダクト後部32の前部に取り付けられる側部ダクト前部[side duct front housing]110とで構成される。各側部ダクト111は、送風機21からの空気を吹出ダクト120に分配する。 As shown in FIGS. 1 to 3, the air blowing frame 100 is formed of a metal such as resin or aluminum, and is disposed in front of the heat exchanger 10. The air blowing frame 100 is attached to the radiator core support 30. The air blowing frame 100 includes a pair of side ducts 111 (see FIGS. 2 and 3) disposed on both sides, and a front of a heat exchange area of the heat exchanger 10 (tubes and fins of the radiator 11 and the condenser 12). The outlet ducts 120 are provided. Each side duct 111 includes a side duct rear part 32 and a side duct front part [side duct front housing] 110 attached to the front part of the side duct rear part 32. Each side duct 111 distributes air from the blower 21 to the blowout duct 120.
 各側部ダクト前部110の側壁110Aには、吹出ダクト120が取り付けられる複数の取付開口112が突出形成されている。本実施形態では、四つの取付開口112が、上下方向に等間隔に設けられている。各取付開口112の内側に、吹出ダクト120の端部外周が嵌合される。側部ダクト前部110の各開口端面上には、封止突起32Aと嵌合する封止溝113(図3参照)が全周にわたって形成されている。側部ダクト前部110が側部ダクト後部32に取り付けられると、封止溝113と封止突起32Aとが嵌合され、側部ダクト111からの空気漏れが防止される。 A plurality of attachment openings 112 to which the blowout duct 120 is attached are formed on the side wall 110A of each side duct front part 110 so as to protrude. In the present embodiment, the four attachment openings 112 are provided at equal intervals in the vertical direction. The outer periphery of the end of the blowing duct 120 is fitted inside each mounting opening 112. On each opening end face of the side duct front part 110, a sealing groove 113 (see FIG. 3) that fits with the sealing protrusion 32A is formed over the entire circumference. When the side duct front part 110 is attached to the side duct rear part 32, the sealing groove 113 and the sealing projection 32A are fitted, and air leakage from the side duct 111 is prevented.
 各吹出ダクト120(120A~120D)は、側部ダクト111から分配された空気を熱交換器10に吹き出す。本実施形態では、四つの吹出ダクト120が、幅方向に平行に延在されており、熱交換器10の熱交換エリアの全てをカバーするように上下方向に等間隔に配置されている。即ち、四つの吹出ダクト120は、上下方向に多段配置されている[aligned vertically in a multi louver manner]。 Each blowing duct 120 (120A to 120D) blows air distributed from the side duct 111 to the heat exchanger 10. In this embodiment, the four blowing ducts 120 extend in parallel in the width direction, and are arranged at equal intervals in the vertical direction so as to cover the entire heat exchange area of the heat exchanger 10. That is, the four outlet ducts 120 are arranged in multiple stages in the vertical direction [aligned vertically in a multi louver manner].
 各吹出ダクト120には、側部ダクト111からの空気を熱交換器10に向けて吹き出す一つ又は二つのエジェクタノズル130(131~134)が形成されている(図1及び図4参照)。具体的には、吹出ダクト120は、上ダクト[upper dust]120Aと、下ダクト[lower duct]120Bと、2つの中間ダクト[mid ducts]120Cとを備えている。 Each blowout duct 120 is formed with one or two ejector nozzles 130 (131 to 134) for blowing air from the side duct 111 toward the heat exchanger 10 (see FIGS. 1 and 4). Specifically, the outlet duct 120 includes an upper duct 120A, a lower duct 120B, and two intermediate ducts 120C.
 図4に示されるように、上ダクト120Aは、最上段に配設されており、その下面には、熱交換器に向けて下方に空気を吹き出すエジェクタノズル131が形成されている。上ダクト120Aの前部は湾曲部[curved portion]121Aとして形成され、かつ、後部は熱交換器10に向けて薄くされた先細部[tapered portion]122Aとして形成されており、上ダクト120Aは涙滴状断面[teardrop-shape cross-section]を有している。涙滴状断面は、空気流に対する形状抗力[profile drag]が小さく、かつ、下流側に渦をほとんど形成させない。即ち、上ダクト120Aは空気流を円滑に通過させることができる。上ダクト120Aのエジェクタノズル131は、湾曲部121Aの後端縁[rear edge]121Aeと先細部122Aの前端縁[front edge]122Aeとがオーバーラップされることでスリットとして形成されている。前端縁122Aeが後端縁121Aeの内側に位置しており、エジェクタノズル131からは後方(やや斜め下方)に向けて空気が吹き出される。 As shown in FIG. 4, the upper duct 120A is disposed at the uppermost stage, and an ejector nozzle 131 that blows air downward toward the heat exchanger is formed on the lower surface thereof. The front portion of the upper duct 120A is formed as a curved portion 121A, and the rear portion is formed as a tapered portion 122A that is thinned toward the heat exchanger 10, and the upper duct 120A has a tear. It has a drop-shaped cross-section. The teardrop-shaped cross section has a small profile drag against the air flow and hardly forms a vortex on the downstream side. That is, the upper duct 120A can smoothly pass the air flow. The ejector nozzle 131 of the upper duct 120A is formed as a slit by overlapping the rear end edge 121Ae of the curved portion 121A and the front end edge 122Ae of the tapered portion 122A. The front edge 122Ae is located inside the rear edge 121Ae, and air is blown out from the ejector nozzle 131 toward the rear (slightly below).
 下ダクト120Bは、最下段に配設されており、その上面にエジェクタノズル132が形成されている。下ダクト120Bの前部は湾曲部121Bとして形成され、かつ、後部は先細部122Bとして形成されており、下ダクト120Bも涙滴状断面を有している。即ち、下ダクト120Bも空気流を円滑に通過させることができる。下ダクト120Bのエジェクタノズル132は、湾曲部121Bの後端縁121Beと先細部122Bの前端縁122Beとがオーバーラップされることでスリットとして形成されている。前端縁122Beが後端縁121Beの内側に位置しており、エジェクタノズル132からは後方(やや斜め上方)に向けて空気が吹き出される。 The lower duct 120B is disposed at the lowermost stage, and an ejector nozzle 132 is formed on the upper surface thereof. The front portion of the lower duct 120B is formed as a curved portion 121B, and the rear portion is formed as a tapered portion 122B. The lower duct 120B also has a teardrop-like cross section. That is, the lower duct 120B can also smoothly pass the air flow. The ejector nozzle 132 of the lower duct 120B is formed as a slit by overlapping the rear end edge 121Be of the curved portion 121B and the front end edge 122Be of the tapered portion 122B. The front edge 122Be is located inside the rear edge 121Be, and air is blown out from the ejector nozzle 132 toward the rear (slightly upward).
 各中間ダクト120Cは、上ダクト120Aと下ダクト120Bとの間に配設されており、その上面にエジェクタノズル133が形成されていると共に、その下面にエジェクタノズル134が形成されている。各中間ダクト120Cの前部は湾曲部121Cとして形成され、かつ、後部は先細部122Cとして形成されており、各中間ダクト120Cも涙滴状断面を有している。即ち、中間ダクト120Cも空気流を円滑に通過させることができる。図5(b)に示されるように、湾曲部121Cは、先細部122Cの前部に設けられた取付基台[attachment base]123にネジBによって固定されている。取付基台123は、幅方向に沿って間隔をおいてに設けられている(図1参照)。 Each intermediate duct 120C is disposed between the upper duct 120A and the lower duct 120B, and an ejector nozzle 133 is formed on the upper surface thereof, and an ejector nozzle 134 is formed on the lower surface thereof. The front portion of each intermediate duct 120C is formed as a curved portion 121C, and the rear portion is formed as a tapered portion 122C. Each intermediate duct 120C also has a teardrop-like cross section. That is, the intermediate duct 120C can also smoothly pass the air flow. As shown in FIG. 5B, the bending portion 121C is fixed to a mounting base [attachment base] 123 provided at the front portion of the tapered portion 122C by a screw B. The mounting base 123 is provided at intervals along the width direction (see FIG. 1).
 図5(a)に示されるように、上面のエジェクタノズル133は、湾曲部121Cの後端縁121Ceと先細部122Cの前端縁122Ceとがオーバーラップされることでスリットとして形成されている。前端縁122Ceが後端縁121Ceの内側に位置しており、エジェクタノズル133からは後方(やや斜め上方)に向けて空気が吹き出される。下面のエジェクタノズル134も、湾曲部121Cの後端縁121Ceと先細部122Cの前端縁122Ceとがオーバーラップされることでスリットとして形成されている。前端縁122Ceが後端縁121Ceの内側に位置しており、エジェクタノズル134からは後方(やや斜め下方)に向けて空気が吹き出される。 As shown in FIG. 5A, the ejector nozzle 133 on the upper surface is formed as a slit by overlapping the rear end edge 121Ce of the curved portion 121C and the front end edge 122Ce of the tapered portion 122C. The front edge 122Ce is located inside the rear edge 121Ce, and air is blown out from the ejector nozzle 133 toward the rear (slightly upward). The ejector nozzle 134 on the lower surface is also formed as a slit by overlapping the rear end edge 121Ce of the curved portion 121C and the front end edge 122Ce of the tapered portion 122C. The front edge 122Ce is located inside the rear edge 121Ce, and air is blown out from the ejector nozzle 134 toward the rear (slightly below).
 上述した熱交換ユニット1の組立について、図面を参照しつつ説明する。 The assembly of the heat exchange unit 1 described above will be described with reference to the drawings.
 一方の側部ダクト前部110の取付開口112と他方の側部ダクト前部110の取付開口112との間に吹出ダクト120が取り付けられて、空気吹出枠100の主要部が予備組み立てされる。 The blowing duct 120 is mounted between the mounting opening 112 of the one side duct front part 110 and the mounting opening 112 of the other side duct front part 110, and the main part of the air blowing frame 100 is pre-assembled.
 次いで、ラジエータコアサポート30に、熱交換器10、送風機21、予備組立された空気吹出枠100の主要部、前部ランプアッセンブリが組み付けられて、熱交換ユニット1が組み立てられる。具体的には、熱交換器収容部31に熱交換器10が取り付けられ、一対の側部ダクト後部32に一対の側部ダクト前部110が固定され、送風機収容部33に送風機21が取り付けられ、ランプ収容部34に前部ランプアッセンブリが取り付けられる。 Next, the heat exchanger 10, the blower 21, the main part of the pre-assembled air blowing frame 100, and the front lamp assembly are assembled to the radiator core support 30, and the heat exchange unit 1 is assembled. Specifically, the heat exchanger 10 is attached to the heat exchanger accommodating portion 31, the pair of side duct front portions 110 are fixed to the pair of side duct rear portions 32, and the blower 21 is attached to the blower accommodating portion 33. The front lamp assembly is attached to the lamp housing portion 34.
 この際、側部ダクト後部32の封止突起32Aに側部ダクト前部110の封止溝113が嵌合されて、予備組立された空気吹出枠100の主要部がラジエータコアサポート30に固定される。空気吹出枠100は、熱交換器10の前方に配設される。 At this time, the sealing groove 113 of the side duct front part 110 is fitted to the sealing protrusion 32A of the side duct rear part 32, and the main part of the pre-assembled air blowing frame 100 is fixed to the radiator core support 30. The The air blowing frame 100 is disposed in front of the heat exchanger 10.
 熱交換ユニット1を流れる空気について、図面を参照しつつ説明する。車両が走行することで生じる空気流によって、熱交換器10で十分な熱交換が行われる場合は、送風機21は駆動されない。このような場合も、本実施形態の冷却ユニット20は通気抵抗となるファンやシュラウドを有していないので、空気は非常に円滑に流れて、高い熱交換効率が実現される。渋滞などで十分な空気流が得られずにラジエータ11での熱交換が低下している場合や、空調機の負荷が高まってコンデンサ12での熱交換を促進する場合などには、送風機21が駆動される。 The air flowing through the heat exchange unit 1 will be described with reference to the drawings. When sufficient heat exchange is performed in the heat exchanger 10 by the air flow generated by the traveling of the vehicle, the blower 21 is not driven. Even in such a case, since the cooling unit 20 of the present embodiment does not have a fan or a shroud that provides ventilation resistance, the air flows very smoothly, and high heat exchange efficiency is realized. When the heat exchange at the radiator 11 is reduced because a sufficient air flow cannot be obtained due to traffic jams, or when the load on the air conditioner is increased and the heat exchange at the condenser 12 is promoted, the blower 21 is used. Driven.
 送風機21が駆動されると、送風機21から側部ダクト111に空気が供給される。側部ダクト111に供給された空気は、取付開口112で分配されて吹出ダクト120の両端から吹出ダクト120の内部に流入する。なお、送風機21の回転速度を調整することで流速(流量)を制御できる。 When the blower 21 is driven, air is supplied from the blower 21 to the side duct 111. The air supplied to the side duct 111 is distributed at the mounting opening 112 and flows into the blowout duct 120 from both ends of the blowout duct 120. The flow rate (flow rate) can be controlled by adjusting the rotational speed of the blower 21.
 吹出ダクト120に流入した空気は、エジェクタノズル130(131~134)から熱交換器10に向けて吹き出される(図4参照)。このとき、吹出ダクト120に流入した空気は、湾曲部121(121A~121C)によってガイドされてエジェクタノズル130から放出される。 The air flowing into the blowing duct 120 is blown out from the ejector nozzles 130 (131 to 134) toward the heat exchanger 10 (see FIG. 4). At this time, the air that has flowed into the blowing duct 120 is guided by the curved portion 121 (121A to 121C) and discharged from the ejector nozzle 130.
 エジェクタノズル130から吹き出された空気は、吹出ダクト120の前方の空気を誘引[draw]しつつ(巻き込み[suck]つつ)、熱交換器10を通過する。エジェクタノズル130から吹き出された空気は、誘引された空気とともに、熱交換器10の熱交換エリアの全てを通過して、熱交換器10内の冷媒や冷却水を効率よく冷却する。 The air blown out from the ejector nozzle 130 passes through the heat exchanger 10 while drawing (drawing) air in front of the blowout duct 120 (sucking). The air blown out from the ejector nozzle 130 passes through the entire heat exchange area of the heat exchanger 10 together with the attracted air, and cools the refrigerant and cooling water in the heat exchanger 10 efficiently.
 本実施形態によれば、熱交換器10の熱交換エリアの全てをカバーするように四つの吹出ダクト120が熱交換器10の前方に上下方向に並説され、かつ、側部ダクト111からの空気が吹出ダクト120に形成されたエジェクタノズル130から熱交換器10に向けて吹き出される。このため、エジェクタノズル130から吹き出された空気は、吹出ダクト120の前方の空気を誘引しつつ、熱交換器10を通過する。即ち、エジェクタノズル130から吹き出された空気は、誘引された空気とともに、熱交換器10の熱交換エリアの全てを通過する。このため、熱交換器10内の冷媒や冷却水が効率よく冷却され、熱交換器10の熱交換効率が向上する。 According to the present embodiment, the four outlet ducts 120 are arranged in the vertical direction in front of the heat exchanger 10 so as to cover the entire heat exchange area of the heat exchanger 10, and from the side duct 111. Air is blown out toward the heat exchanger 10 from the ejector nozzle 130 formed in the blowout duct 120. For this reason, the air blown out from the ejector nozzle 130 passes through the heat exchanger 10 while attracting the air in front of the blowout duct 120. That is, the air blown out from the ejector nozzle 130 passes through the entire heat exchange area of the heat exchanger 10 together with the attracted air. For this reason, the refrigerant | coolant and cooling water in the heat exchanger 10 are cooled efficiently, and the heat exchange efficiency of the heat exchanger 10 improves.
 また、各吹出ダクト120には、熱交換器10に向けて上方に空気を吹き出すエジェクタノズル130(132及び133)、並びに、熱交換器10に向けて下方に空気を吹き出すエジェクタノズル130(131及び134)の少なくとも一方が形成されている。このため、エジェクタノズル130から吹き出された空気は、不要な箇所に流れるのを防止され、熱交換器10の熱交換エリアの全てを効率的に通過する。 Further, in each blowing duct 120, an ejector nozzle 130 (132 and 133) that blows air upward toward the heat exchanger 10, and an ejector nozzle 130 (131 and 131) that blows air downward toward the heat exchanger 10. 134) is formed. For this reason, the air blown out from the ejector nozzle 130 is prevented from flowing to unnecessary portions and efficiently passes through all the heat exchange areas of the heat exchanger 10.
 また、吹出ダクト120は、熱交換器10に向けて下方に空気を吹き出すエジェクタノズル131が形成された上ダクト120Aと、熱交換器10に向けて上方に空気を吹き出すエジェクタノズル132が形成された下ダクト120Bと、熱交換器10に向けて上方に空気を吹き出すエジェクタノズル133及び熱交換器10に向けて下方に空気を吹き出すエジェクタノズル134が形成された中間ダクト120Cとを備えている。このため、エジェクタノズル130から吹き出された空気は、不要な箇所に流れるのをより確実に防止され、熱交換器10の熱交換エリアの全てをより効率的に通過する。 In addition, the blowout duct 120 is formed with an upper duct 120A in which an ejector nozzle 131 that blows air downward toward the heat exchanger 10 is formed and an ejector nozzle 132 that blows air upward toward the heat exchanger 10. A lower duct 120B and an intermediate duct 120C in which an ejector nozzle 133 that blows air upward toward the heat exchanger 10 and an ejector nozzle 134 that blows air downward toward the heat exchanger 10 are formed. For this reason, the air blown out from the ejector nozzle 130 is more reliably prevented from flowing to unnecessary portions, and more efficiently passes through all the heat exchange areas of the heat exchanger 10.
 また、送風機21及び空気吹出枠100は、熱交換器10が固定されるラジエータコアサポート30に取り付けられる。このため、送風機21及び空気吹出枠100を固定するための部材を別に用意する必要がない。この結果、車両重量の増大を防止でき、かつ、熱交換ユニット1の製造コストを低減することができる。 Further, the blower 21 and the air blowing frame 100 are attached to the radiator core support 30 to which the heat exchanger 10 is fixed. For this reason, it is not necessary to prepare the member for fixing the air blower 21 and the air blowing frame 100 separately. As a result, an increase in the vehicle weight can be prevented and the manufacturing cost of the heat exchange unit 1 can be reduced.
 また、各中間ダクト120Cの湾曲部121Cは、図5(b)に示されるように、先細部122Cの取付基台123にネジBによって固定される。このため、湾曲部121Cと先細部122Cとの固定強度(保持力)を増大させることができ、エジェクタノズル133及び134の周囲の剛性を向上できる。つまり、エジェクタノズル133及び134の近傍箇所の振動や、振動による異音を防止でき、かつ、安定して空気を吹き出すことができる。 Further, the curved portion 121C of each intermediate duct 120C is fixed to the mounting base 123 of the tapered portion 122C with a screw B as shown in FIG. 5 (b). For this reason, the fixing strength (holding force) between the curved portion 121C and the tapered portion 122C can be increased, and the rigidity around the ejector nozzles 133 and 134 can be improved. That is, vibrations in the vicinity of the ejector nozzles 133 and 134 and abnormal noise due to vibration can be prevented, and air can be blown out stably.
 なお、上ダクト120Aの湾曲部121A及び下ダクト120Bの湾曲部121Bも、先細部122A及び122Bの取付基台にビスBを介して連結されてもよい。この場合、湾曲部121A及び121Bと先細部122A及び122Bとの固定強度(保持力)を増大させることでき、エジェクタノズル131及び132の周囲の剛性を向上できる。 Note that the curved portion 121A of the upper duct 120A and the curved portion 121B of the lower duct 120B may also be coupled to the mounting bases of the tapered portions 122A and 122B via screws B. In this case, the fixing strength (holding force) between the curved portions 121A and 121B and the tapered portions 122A and 122B can be increased, and the rigidity around the ejector nozzles 131 and 132 can be improved.
 次に、第2実施形態に係る冷却ユニット20について、図6及び図7を参照しつつ説明する。本実施形態では、吹出ダクト120の構成が上述した第1実施形態と異なる。このため、第1実施形態の構成と同一又は同等の構成に関しては、同一の符号を付してそれらの重複する説明を省略する。 Next, the cooling unit 20 according to the second embodiment will be described with reference to FIGS. In this embodiment, the structure of the blowing duct 120 is different from that of the first embodiment described above. For this reason, about the structure which is the same as that of 1st Embodiment, or an equivalent structure, the same code | symbol is attached | subjected and those overlapping description is abbreviate | omitted.
 本実施形態では、各吹出ダクト120の内部が、幅方向で二分割されている。具体的には、図6に示されるように、各吹出ダクト120は、幅方向の中央に内部を二分割する分割壁125を分割部として備えている。分割壁125には、図7に示されるように、ネジ孔125Aが形成されている。ネジ孔125AにネジBを螺合させて、固定支持部材[fixing stay]200が吹出ダクト120の分割壁125に固定される。 In the present embodiment, the inside of each outlet duct 120 is divided into two in the width direction. Specifically, as shown in FIG. 6, each blowing duct 120 includes a dividing wall 125 that divides the inside into two at the center in the width direction. As shown in FIG. 7, screw holes 125 </ b> A are formed in the dividing wall 125. The screw B is screwed into the screw hole 125 </ b> A, and the fixed support member [fixing stay] 200 is fixed to the dividing wall 125 of the blowing duct 120.
 また、固定支持部材200として、ボンネット/フードのロックを支持するフードロックステイ[hood lock stay]が利用されている。固定支持部材200には、ラジエータコアサポート30の上部に設けられた取付ベース37の取付孔37Aに対応する取付孔201と、分割壁125のネジ孔125Aに対応する複数のネジ孔202と、ラジエータコアサポート30の下部に設けられた取付ベース38の取付孔38Aに対応する取付孔203とが形成されている。固定支持部材200は、吹出ダクト120の幅方向の中央(分割壁125)で吹出ダクト120を支持しつつ、吹出ダクト120をラジエータコアサポート30に固定している。 Also, as the fixed support member 200, a hood lock stay that supports a hood / hood lock is used. The fixed support member 200 includes an attachment hole 201 corresponding to the attachment hole 37A of the attachment base 37 provided on the upper portion of the radiator core support 30, a plurality of screw holes 202 corresponding to the screw holes 125A of the dividing wall 125, and a radiator. An attachment hole 203 corresponding to the attachment hole 38 </ b> A of the attachment base 38 provided at the lower portion of the core support 30 is formed. The fixed support member 200 fixes the blowing duct 120 to the radiator core support 30 while supporting the blowing duct 120 at the center (partition wall 125) in the width direction of the blowing duct 120.
 本実施形態では、上述した第1実施形態と同様に、エジェクタノズル130から吹き出された空気は、誘引された空気とともに、熱交換器10の熱交換エリアの全てを通過する。このため、熱交換器10内の冷媒や冷却水が効率よく冷却され、熱交換器10の熱交換効率が向上する。 In the present embodiment, as in the first embodiment described above, the air blown out from the ejector nozzle 130 passes through all of the heat exchange area of the heat exchanger 10 together with the attracted air. For this reason, the refrigerant | coolant and cooling water in the heat exchanger 10 are cooled efficiently, and the heat exchange efficiency of the heat exchanger 10 improves.
 また、各吹出ダクト120の内部が幅方向で二分割されているので、各吹出ダクト120内での空気流の合流がなく、各吹出ダクト120内の圧力分布が安定する。この結果、エジェクタノズル130から空気が均一に吹き出され、熱交換器10の熱交換効率がより向上する。 Moreover, since the inside of each blowing duct 120 is divided into two in the width direction, there is no merging of air flow in each blowing duct 120, and the pressure distribution in each blowing duct 120 is stabilized. As a result, air is uniformly blown from the ejector nozzle 130, and the heat exchange efficiency of the heat exchanger 10 is further improved.
 さらに、固定支持部材200として、フードロックステイが利用されている。従って、固定支持部材200として新たな部材を用意する必要なくラジエータコアサポート30に空気吹出枠100をより強固に固定でき、製造コストを低減することができる。 Furthermore, a hood lock stay is used as the fixed support member 200. Therefore, the air blowing frame 100 can be more firmly fixed to the radiator core support 30 without preparing a new member as the fixed support member 200, and the manufacturing cost can be reduced.
 次に、第3実施形態に係る冷却ユニット20について、図8及び図9を参照しつつ説明する。本実施形態では、吹出ダクト120の構成が、上述した第1実施形態と異なり、上述した第2実施形態に似ている。第1及び第2実施形態の構成と同一又は同等の構成に関しては、同一の符号を付してそれらの重複する説明を省略する。 Next, the cooling unit 20 according to the third embodiment will be described with reference to FIGS. In the present embodiment, the configuration of the blowout duct 120 is different from the above-described first embodiment, and is similar to the above-described second embodiment. With respect to the same or equivalent configurations as those of the first and second embodiments, the same reference numerals are given and their overlapping descriptions are omitted.
 本実施形態では、各吹出ダクト120が、幅方向で二分割されている。具体的には、図8に示されるように、各吹出ダクト120は、幅方向の中央で、第1ダクト150と第2ダクト160とに分割されている。 In this embodiment, each blowing duct 120 is divided into two in the width direction. Specifically, as shown in FIG. 8, each blowing duct 120 is divided into a first duct 150 and a second duct 160 at the center in the width direction.
 図9に示されるように、第1ダクト150の側壁151からは、第2ダクト160に向けて突出された取付面[attachment tab]152が形成されている。同様に、第2ダクト160の側壁161からは、第1ダクト150に向けて突出された取付面162が形成されている。 As shown in FIG. 9, an attachment surface [attachment tab] 152 protruding toward the second duct 160 is formed from the side wall 151 of the first duct 150. Similarly, an attachment surface 162 that protrudes toward the first duct 150 is formed from the side wall 161 of the second duct 160.
 側壁151及び161並びに取付面152及び162は、吹出ダクト120を幅方向で二分割する分割部を構成している。取付面152にはネジ孔152Aが形成され、取付面162にはネジ孔162Aが形成されている。取付面152及び162が重ねられた状態で、ネジ孔152A及び162AにネジBを螺合させて、固定支持部材200が取付面152及び162に固定される。固定支持部材200は、吹出ダクト120の幅方向の中央(側壁151及び161並びに取付面152及び162)で吹出ダクト120を支持しつつ、吹出ダクト120をラジエータコアサポート30に固定している。 The side walls 151 and 161 and the mounting surfaces 152 and 162 constitute a dividing portion that divides the blowing duct 120 into two in the width direction. A screw hole 152A is formed in the mounting surface 152, and a screw hole 162A is formed in the mounting surface 162. In a state where the attachment surfaces 152 and 162 are overlapped, the screw B is screwed into the screw holes 152A and 162A, and the fixed support member 200 is fixed to the attachment surfaces 152 and 162. The fixed support member 200 fixes the blowout duct 120 to the radiator core support 30 while supporting the blowout duct 120 at the center in the width direction of the blowout duct 120 (the side walls 151 and 161 and the attachment surfaces 152 and 162).
 本実施形態では、上述した第1実施形態と同様に、エジェクタノズル130から吹き出された空気は、誘引された空気とともに、熱交換器10の熱交換エリアの全てを通過する。このため、熱交換器10内の冷媒や冷却水が効率よく冷却され、熱交換器10の熱交換効率が向上する。 In the present embodiment, as in the first embodiment described above, the air blown out from the ejector nozzle 130 passes through all of the heat exchange area of the heat exchanger 10 together with the attracted air. For this reason, the refrigerant | coolant and cooling water in the heat exchanger 10 are cooled efficiently, and the heat exchange efficiency of the heat exchanger 10 improves.
 また、各吹出ダクト120が幅方向で二分割されているので、上述した第2実施形態と同様に、各吹出ダクト120内での空気流の合流がなく、各吹出ダクト120内の圧力分布が安定する。この結果、エジェクタノズル130から空気が均一に吹き出され、熱交換器10の熱交換効率がより向上する。 Moreover, since each blowing duct 120 is divided into two in the width direction, there is no merging of the air flow in each blowing duct 120 and the pressure distribution in each blowing duct 120 is the same as in the second embodiment described above. Stabilize. As a result, air is uniformly blown from the ejector nozzle 130, and the heat exchange efficiency of the heat exchanger 10 is further improved.
 本発明は、上述した実施形態に限定されず、発明の範囲内で適宜変形が可能である。例えば、上記実施形態の冷却ユニット20は、一対の送風機21を備えていた。しかし、一つの送風機21のみが設けられてもよい。この場合、空気吹出枠100は、幅方向の一側部のみに一つの側部ダクト111を備える。一つの送風機21によって空気が一つの側部ダクト111に供給され、一つの側部ダクト111から複数の吹出ダクト120に空気が分配されてエジェクタノズル130から吹き出される。吹出ダクト120は片持ち状とされずに、それらの側部ダクト111に接続されない端部が支持板などで連結されることが好ましい。 The present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of the invention. For example, the cooling unit 20 of the above embodiment includes a pair of blowers 21. However, only one blower 21 may be provided. In this case, the air blowing frame 100 includes one side duct 111 only on one side in the width direction. Air is supplied to one side duct 111 by one blower 21, and air is distributed from one side duct 111 to a plurality of outlet ducts 120 and blown out from the ejector nozzle 130. The blowout duct 120 is preferably not cantilevered, and the ends that are not connected to the side ducts 111 are preferably connected by a support plate or the like.
 また、上記実施形態では、側部ダクト前部110と吹出ダクト120とが別部材として形成された後に、吹出ダクト120が側部ダクト前部110に取り付けられた。しかし、側部ダクト前部110と吹出ダクト120とが一体形成されてもよい。また、吹出ダクト120の形状も、上記実施形態の形状に限定されず、熱交換器10に向けて空気を吹き出すことのできる形状であればよい。ただし、上記実施形態の吹出ダクト120のような涙滴状断面を有する形状は、空気抵抗が少ないので空気流量を増やすことができ、熱交換効率を向上できるので好ましい。また、前方に湾曲部を有する涙滴状断面は、エダクションノズル130から吹き出された空気によって前方の空気を誘引するのに好ましい。 Moreover, in the said embodiment, after the side part duct front part 110 and the blowing duct 120 were formed as separate members, the blowing duct 120 was attached to the side duct front part 110. However, the side duct front part 110 and the outlet duct 120 may be integrally formed. Moreover, the shape of the blowing duct 120 is not limited to the shape of the said embodiment, What is necessary is just the shape which can blow off air toward the heat exchanger 10. FIG. However, a shape having a teardrop-like cross section, such as the blowout duct 120 of the above embodiment, is preferable because the air flow rate can be increased and the heat exchange efficiency can be improved. Moreover, the teardrop-like cross section having a curved portion in the front is preferable for attracting the front air by the air blown out from the emission nozzle 130.
 また、上記実施形態では、吹出ダクト120は、3種類(上ダクト120A、下ダクト120B及び中間ダクト120C)のダクトを備えていた。しかし、吹出ダクト120は、上記3種類のダクトの少なくとも1種類のダクトを備えていればよい。例えば、吹出ダクト120が、上ダクト120A及び下ダクト120Bを備え、中間ダクト120Cを備えていなくてもよい。ただし、空気抵抗を増加させずに、熱交換器10の熱交換エリアの全てに均一に空気を吹き付けるには、四つの吹出ダクト120を上記実施形態のように設けることが好ましい。 In the above embodiment, the blowout duct 120 includes three types of ducts (upper duct 120A, lower duct 120B, and intermediate duct 120C). However, the blowout duct 120 only needs to include at least one type of the above three types of ducts. For example, the blowing duct 120 may include the upper duct 120A and the lower duct 120B, and may not include the intermediate duct 120C. However, in order to blow air uniformly over the entire heat exchange area of the heat exchanger 10 without increasing the air resistance, it is preferable to provide the four blowing ducts 120 as in the above embodiment.
 さらに、上記実施形態では、上ダクト120Aは、熱交換器10に向けて下方に空気を吹き出す。しかし、上ダクト120Aは、熱交換器10に向けて下方だけでなく上方にも空気を吹き出してもよい。同様に、下ダクト120Bも、熱交換器10に向けて上方だけでなく下方にも空気を吹き出してもよい。各吹出ダクト120には、熱交換器10に向けて上方に空気を吹き出すエジェクタノズル130及び熱交換器10に向けて下方に空気を吹き出すエジェクタノズル130の少なくとも一方が形成されればよい。 Further, in the above embodiment, the upper duct 120A blows air downward toward the heat exchanger 10. However, the upper duct 120 </ b> A may blow air not only downward but also upward toward the heat exchanger 10. Similarly, the lower duct 120 </ b> B may blow air not only upward but also downward toward the heat exchanger 10. Each blowout duct 120 may be formed with at least one of an ejector nozzle 130 that blows air upward toward the heat exchanger 10 and an ejector nozzle 130 that blows air downward toward the heat exchanger 10.

Claims (7)

  1.  車両前部に配設される熱交換器に向けて空気を吹き出す冷却ユニットであって、
     送風機と、
     前記熱交換器の前方に配設され、前記送風機から供給された空気を前記熱交換器に向けて吹き出す空気吹出枠と、を備え、
     前記空気吹出枠が、前記送風機から供給された空気が流入される側部ダクトと、前記熱交換器の前方に上下方向に並設され、一端が前記側部ダクトと連通された複数の吹出ダクトと、を備えており、
     前記吹出ダクトのそれぞれに、前記側部ダクトから分配された空気を前記熱交換器に向けて吹き出すエジェクタノズルが形成されている、冷却ユニット。
    A cooling unit that blows out air toward a heat exchanger disposed in the front of the vehicle,
    A blower,
    An air blowing frame that is disposed in front of the heat exchanger and blows air supplied from the blower toward the heat exchanger;
    The air blowing frame includes a side duct into which air supplied from the blower flows and a plurality of blowing ducts arranged in parallel in the vertical direction in front of the heat exchanger and having one end communicated with the side duct. And,
    A cooling unit in which an ejector nozzle that blows air distributed from the side duct toward the heat exchanger is formed in each of the blowing ducts.
  2.  請求項1に記載の冷却ユニットであって、
     前記複数の吹出ダクトそれぞれに、前記熱交換器に向けて上方に空気を吹き出すエジェクタノズル、及び、前記熱交換器に向けて下方に空気を吹き出すエジェクタノズルの少なくとも一方が形成されている、冷却ユニット。
    The cooling unit according to claim 1,
    At least one of an ejector nozzle that blows air upward toward the heat exchanger and an ejector nozzle that blows air downward toward the heat exchanger is formed in each of the plurality of blowing ducts. .
  3.  請求項1又は請求項2に記載の冷却ユニットであって、
     前記複数の吹出ダクトが、
     最上段に配設され、前記熱交換器に向けて下方に空気を吹き出すエジェクタノズルが形成された上ダクトと、
     最下段に配設され、前記熱交換器に向けて上方に空気を吹き出すエジェクタノズルが形成された下ダクトと、
     前記上ダクトと前記下ダクトとの間に配設され、前記熱交換器に向けて空気を上方に吹き出すエジェクタノズル及び前記熱交換器に向けて下方に空気を吹き出すエジェクタノズルが形成された中間ダクトと、を備えている、冷却ユニット。
    The cooling unit according to claim 1 or 2,
    The plurality of blowing ducts are
    An upper duct provided with an ejector nozzle that is arranged at the top and blows air downward toward the heat exchanger;
    A lower duct provided with an ejector nozzle that is disposed at the bottom and blows air upward toward the heat exchanger;
    An intermediate duct formed between the upper duct and the lower duct and formed with an ejector nozzle that blows air upward toward the heat exchanger and an ejector nozzle that blows air downward toward the heat exchanger And a cooling unit.
  4.  請求項1~3の何れかに記載の冷却ユニットであって、
     前記送風機及び前記空気吹出枠が、前記熱交換器が固定される前記車両のラジエータコアサポートに取り付けられている、冷却ユニット。
    The cooling unit according to any one of claims 1 to 3,
    The cooling unit, wherein the blower and the air blowing frame are attached to a radiator core support of the vehicle to which the heat exchanger is fixed.
  5.  請求項1~4の何れかに記載の冷却ユニットであって、
     前記側部ダクトが、前記複数の吹出ダクトの両端にそれぞれ設けられており、
     前記複数の吹出ダクトのそれぞれが、中央に設けられた分割部によって幅方向に二分割され、
     前記冷却ユニットが、前記熱交換器が固定される前記車両のラジエータコアサポートに前記分割部を固定する固定支持部材をさらに備えている、冷却ユニット。
    The cooling unit according to any one of claims 1 to 4,
    The side ducts are respectively provided at both ends of the plurality of outlet ducts;
    Each of the plurality of blowing ducts is divided into two in the width direction by a dividing portion provided in the center,
    The cooling unit further includes a fixing support member that fixes the divided portion to a radiator core support of the vehicle to which the heat exchanger is fixed.
  6.  請求項5に記載の冷却ユニットであって、
     前記固定支持部材が、フードロックステイである、冷却ユニット。
    The cooling unit according to claim 5,
    The cooling unit, wherein the fixed support member is a hood lock stay.
  7.  請求項1に記載の冷却ユニットであって、
     前記複数の吹出ダクトのそれぞれが、涙滴状断面を有し、かつ、前記涙滴状断面の湾曲部を前記車両の前方に向けて配設されている、冷却ユニット。
    The cooling unit according to claim 1,
    The cooling unit, wherein each of the plurality of blowing ducts has a teardrop-shaped cross section, and the curved portion of the teardrop-shaped cross section is disposed toward the front of the vehicle.
PCT/JP2013/061779 2012-04-26 2013-04-22 Cooling unit for heat exchanger WO2013161758A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012101290A JP2013227938A (en) 2012-04-26 2012-04-26 Cooling fan device
JP2012-101290 2012-04-26

Publications (1)

Publication Number Publication Date
WO2013161758A1 true WO2013161758A1 (en) 2013-10-31

Family

ID=49483071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061779 WO2013161758A1 (en) 2012-04-26 2013-04-22 Cooling unit for heat exchanger

Country Status (2)

Country Link
JP (1) JP2013227938A (en)
WO (1) WO2013161758A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018205736A1 (en) 2018-04-16 2019-10-17 Ford Global Technologies, Llc Cooling system and method for applying at least two separate vehicle components of a motor vehicle with separate cooling air streams

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287451A (en) * 1996-04-22 1997-11-04 Aisin Chem Co Ltd Radiator cooling system
JPH09287450A (en) * 1996-04-19 1997-11-04 Aisin Chem Co Ltd Radiator cooling device
JP2005083321A (en) * 2003-09-10 2005-03-31 Calsonic Kansei Corp Mounting structure of cooling fan device in heat exchanger unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287450A (en) * 1996-04-19 1997-11-04 Aisin Chem Co Ltd Radiator cooling device
JPH09287451A (en) * 1996-04-22 1997-11-04 Aisin Chem Co Ltd Radiator cooling system
JP2005083321A (en) * 2003-09-10 2005-03-31 Calsonic Kansei Corp Mounting structure of cooling fan device in heat exchanger unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018205736A1 (en) 2018-04-16 2019-10-17 Ford Global Technologies, Llc Cooling system and method for applying at least two separate vehicle components of a motor vehicle with separate cooling air streams
DE102018205736B4 (en) 2018-04-16 2022-10-06 Ford Global Technologies, Llc Cooling system and method for subjecting at least two separate vehicle components of a motor vehicle to separate cooling air streams

Also Published As

Publication number Publication date
JP2013227938A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
WO2017098765A1 (en) Cooling device
JP2014020245A (en) Cooling fan device
JP6385752B2 (en) Outdoor unit for blower and air conditioner
US7066712B2 (en) Turbofan and air conditioner having the turbofan
JP4879318B2 (en) Centrifugal fan, air conditioner
JP2015001155A (en) Cooling device
US7363961B2 (en) Heat exchanger support structure of motor vehicle and supporting method
JP6564130B2 (en) Cooling fan device
US10518631B2 (en) Automotive grille
CN106062380B (en) Air supply device
WO2018116942A1 (en) Temperature conditioning unit, temperature conditioning system, and vehicle
KR20120063822A (en) Air duct
US10900410B2 (en) Duct assembly for vehicle
JP2008309121A (en) Fan shroud structure
JP6463483B2 (en) Air conditioner outdoor unit
JP2013124670A (en) Fan unit for heat exchanger
WO2013161758A1 (en) Cooling unit for heat exchanger
JP7029593B2 (en) Temperature control unit
KR101233538B1 (en) Cross-flow fan and air conditioner equipped with same
JP2014015863A (en) Cooling fan device
JPH0558897U (en) Air conditioner blower
US11578639B2 (en) Fan shroud and blower device
US11353207B2 (en) Light source device
US20230112130A1 (en) Air-guard having sub-guide structure
KR20160013653A (en) Cooling module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781680

Country of ref document: EP

Kind code of ref document: A1