WO2013161515A1 - Organic luminescent element - Google Patents

Organic luminescent element Download PDF

Info

Publication number
WO2013161515A1
WO2013161515A1 PCT/JP2013/059819 JP2013059819W WO2013161515A1 WO 2013161515 A1 WO2013161515 A1 WO 2013161515A1 JP 2013059819 W JP2013059819 W JP 2013059819W WO 2013161515 A1 WO2013161515 A1 WO 2013161515A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitter
lumo
emitting layer
homo
Prior art date
Application number
PCT/JP2013/059819
Other languages
French (fr)
Japanese (ja)
Inventor
石原 慎吾
広貴 佐久間
荒谷 介和
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2013161515A1 publication Critical patent/WO2013161515A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes

Definitions

  • the present invention relates to an organic light emitting device.
  • Patent Document 1 discloses the following technique. That is, in the stacked light-emitting layer, the first light-emitting layer is added with a triplet emitter (an emitter is also referred to as a dopant) and has both polarities, but transports holes in particular.
  • the second light-emitting layer has a bipolarity by adding a triplet emitter, and in particular has a structure that transports electrons and has a twist type II energy barrier at the interface between the first light-emitting layer and the second light-emitting layer. It is disclosed.
  • An object of this invention is to provide the element structure which maintains a high efficiency and has a long life characteristic.
  • the organic light emitting device has three light emitting layers.
  • the injected electrons are conducted through the first emitter.
  • the energy position of the HOMO of the first emitter molecule in an anionic state is lowered, becomes smaller than the HOMO of the first host material, and easily traps holes. As a result, an excited state is generated from the anion state of the first emitter.
  • FIG. 1 is a cross-sectional view of an embodiment of an organic light emitting device.
  • the organic light emitting element 100 includes a first substrate 101, a second substrate 102, a first electrode 103, a second electrode 104, and an organic layer 105.
  • the first substrate 101, the first electrode 103, the organic layer 105, the second electrode 104, and the second substrate 102 are arranged in this order from the lower side of FIG.
  • the organic light-emitting element in FIG. 1 is a top emission type that extracts light emitted from the organic layer 105 from the second electrode 104 side. It becomes.
  • the organic light-emitting element in FIG. 1 has a bottom that extracts light emitted from the organic layer 105 from the first electrode 103 side. It becomes an emission type.
  • the first substrate 101, the first electrode 103, the first electrode 103, the organic layer 105, the organic layer 105, and the second electrode 104 may be in contact with each other.
  • white light is emitted from the organic layer 105 by red light emission, green light emission, and blue light emission.
  • the organic layer 105 includes a light emitting layer of two emission colors that are complementary colors. For example, a combination of a light blue light emitting layer and a yellow light emitting layer can be considered.
  • Examples of the light source device using the present invention include, but are not limited to, household lighting, interior lighting, and backlights of liquid crystal display devices.
  • Fig. 2 shows a conceptual diagram of energy levels of a conventional organic light emitting device.
  • the organic layer 105 includes a hole transport layer 14, a first light emitting layer 1, a second light emitting layer 2, and an electron transport layer 15.
  • the first light emitting layer 1 includes a host and a light emitting emitter.
  • the second light emitting layer 2 includes a host and a light emitting emitter.
  • the light emitting emitter of the first light emitting layer 1 and the light emitting emitter of the second light emitting layer 2 are assumed to have the same main skeleton, the same substituent, or the same kind of substituent.
  • the highest occupied orbital (HOMO) energy is measured by photoelectron spectroscopy. Further, the lowest unoccupied orbit (LUMO) energy is directly measured by a method of calculating an HOMO-LUMO energy difference from an absorption spectrum, or by inverse photoelectron spectroscopy.
  • HOMO3 of the hole transport layer 14 is smaller than HOMO4 of the host material of the first light emitting layer 1.
  • the HOMO4 of the host material of the first light emitting layer 1 is smaller than the HOMO5 of the host material of the second light emitting layer 2.
  • the LUMO8 of the host material of the second light emitting layer 2 is smaller than the LUMO6 of the electron transport layer 15.
  • the LUMO7 of the host material of the first light emitting layer 1 is smaller than the LUMO8 of the host material of the second light emitting layer 2.
  • the LUMO energy positions 11 of the emitter molecules dispersed in the first light-emitting layer 1 and the second light-emitting layer 2 are the LUMO 7 of the host material of the first light-emitting layer 1 and the LUMO 8 of the host material of the second light-emitting layer 2. Greater than.
  • the HOMO energy positions 12 of the emitter molecules dispersed in the first light emitting layer 1 and the second light emitting layer 2 are HOMO4 of the host material of the first light emitting layer 1 and HOMO5 of the host material of the second light emitting layer 2. Smaller than.
  • the holes 9 are blocked by the energy barrier at the interface between the first light emitting layer 1 and the second light emitting layer 2 and accumulate on the first light emitting layer 1 side of the same interface.
  • the electrons 10 are blocked by the energy barrier at the interface between the first light emitting layer 1 and the second light emitting layer 2 and accumulate on the second light emitting layer 2 side.
  • the holes penetrating the first light emitting layer 1 are trapped in the light emitting emitter of the second light emitting layer 2.
  • electrons penetrating the second light emitting layer 2 are trapped in the light emitting emitter of the first light emitting layer 1. Therefore, carriers that do not contribute to light emission are reduced, resulting in high light emission efficiency.
  • the recombination density is increased in the vicinity of the interface between the first light emitting layer 1 and the second light emitting layer 2 and the excited state is concentrated. Therefore, the first light emitting layer 1 and the second light emitting layer are concentrated. Deterioration of the emitter near the interface with 2 becomes a problem. Also, no means for improving the deterioration of the emitter is disclosed.
  • FIG. 3 is a conceptual diagram of energy levels of an organic light emitting device having three light emitting layers.
  • the organic layer 105 includes a first light emitting layer 141, a second light emitting layer 142, and a third light emitting layer 143.
  • the first emitter is dispersed in the first host material.
  • the second light-emitting layer 142 the second emitter is dispersed in the second host material.
  • the third light-emitting layer 143 the third emitter is dispersed in the third host material.
  • the HOMO energy position 144 of the first host material is smaller than the HOMO energy position 145 of the first emitter molecule. Therefore, the holes injected into the first light emitting layer 141 are conducted between the first host molecules.
  • the HOMO energy position 146 of the second host material is also smaller than the HOMO energy position 147 of the second emitter molecule. Similar to the first light-emitting layer 141, the holes injected into the second light-emitting layer 142 conduct between the second host molecules.
  • the HOMO energy position 148 of the third host material is larger than the HOMO energy position 149 of the third emitter molecule. Therefore, the holes injected into the third light emitting layer 143 are trapped by the third emitter and conducted between the emitter molecules, or the hole traps to the third emitter molecule and the release to the third host molecule. To conduct between the third host molecules.
  • the LUMO energy position 154 of the third host material is smaller than the LUMO energy position 155 of the third emitter molecule. Therefore, the electrons injected into the third light emitting layer 143 are conducted between the third emitter molecules.
  • the LUMO energy position 152 of the second host material is also smaller than the LUMO energy position 153 of the second emitter molecule. Similar to the third light-emitting layer 143, the electrons injected into the second light-emitting layer 142 are conducted between the second emitter molecules.
  • the LUMO energy position 150 of the first host material is smaller than the LUMO energy position 151 of the first emitter molecule, and the electrons injected into the first light emitting layer 141 are conducted between the first emitter molecules. In the first light emitting layer, the second light emitting layer, and the third light emitting layer, electrons are conducted between the emitters. In order to improve the conduction characteristics, it is necessary to increase the concentration of the emitter. Specifically, 10% or more is desirable.
  • the recombination of carriers in each light emitting layer is as follows.
  • the injected electrons are conducted through the first emitter.
  • the energy position 145 ′ of the HOMO of the first emitter molecule in the anion state is lowered, becomes smaller than the HOMO of the first host material, and easily traps holes.
  • an excited state is generated from the anion state of the first emitter.
  • the triplet phosphorescent emitter molecule has an unstable cation state and is easily decomposed.
  • an excited state is generated without passing through the cation state of the emitter, so that deterioration due to decomposition of the emitter molecule is suppressed and high reliability can be secured.
  • the injected electrons are conducted through the second emitter.
  • the energy position 147 'of the HOMO of the second emitter molecule in the anion state is lowered, becomes smaller than the HOMO of the second host material, and tends to trap holes.
  • an excited state is generated from the anion state of the second emitter.
  • the third emitter functions as a hole trap.
  • the third light-emitting layer 143 is on the second electrode 104 side which is a cathode, There are many injected electrons, and the anion state of the third emitter is larger than the cation state. Therefore, the ratio of the excited state formed through the anion state of the third emitter is high, and high reliability is ensured even in the third light emitting layer.
  • the electron mobility of the third light-emitting layer is larger than the hole mobility of the first light-emitting layer 41 and the hole mobility of the second light-emitting layer, The cation state of the emitter is not formed, but an anion state is formed, and holes are trapped therein, and an excited state is generated. Therefore, high reliability is ensured also in the third light emitting layer.
  • the HOMO energy position of the emitter molecule is larger than the HOMO energy position of the host material. Therefore, it is desirable to use blue and green emitters having a large band gap, that is, a short emission center wavelength.
  • the HOMO energy position of the emitter molecule is smaller than the HOMO energy position of the host material, and the LUMO energy position of the emitter molecule is larger than the LUMO energy position of the host material. Therefore, it is desirable to use a red emitter having a small band gap, that is, a long emission center wavelength.
  • carrier mobility is measured by the TOF method or the IS method.
  • TOF method a sheet-like electric charge is generated on one electrode side by a light pulse, swept to the opposite side by an electric field, travel time is measured from a transient current waveform, and mobility is obtained using an average electric field.
  • the IS method applies a small sine wave voltage signal to the element and calculates the travel time, ie, mobility, by obtaining the impedance spectrum as a function of the frequency of the applied voltage signal from the amplitude and phase of the response current signal. It is a method to do.
  • FIG. 4 shows a conceptual diagram of energy levels of an organic light emitting device having three light emitting layers.
  • the organic layer 105 includes a first light emitting layer 241, a second light emitting layer 242, and a third light emitting layer 243.
  • the first emitter is dispersed in the first host material.
  • the second emitter is dispersed in the second host material.
  • the third emitter is dispersed in the third host material.
  • the HOMO energy position 244 of the first host material is smaller than the HOMO energy position 245 of the first emitter molecule. Therefore, the holes injected into the first light emitting layer 241 conduct between the first host molecules.
  • the HOMO energy position 246 of the second host material is also smaller than the HOMO energy position 247 of the second emitter molecule. Similar to the first light-emitting layer 241, the holes injected into the second light-emitting layer 242 conduct between the second host molecules.
  • the HOMO energy position 248 of the third host material is smaller than the HOMO energy position 249 of the third emitter molecule. Therefore, the holes injected into the third light emitting layer 243 are conducted between the third host molecules.
  • the LUMO energy position 254 of the third host material is smaller than the LUMO energy position 255 of the third emitter molecule. Therefore, the electrons injected into the third light emitting layer 243 are conducted between the third emitter molecules.
  • the LUMO energy position 252 of the second host material is also smaller than the LUMO energy position 253 of the second emitter molecule. Similar to the third light emitting layer 243, the electrons injected into the second light emitting layer 242 conduct between the second emitter molecules.
  • the LUMO energy position 250 of the first host material is smaller than the LUMO energy position 251 of the first emitter molecule, and the electrons injected into the first light emitting layer 241 conduct between the first emitter molecules.
  • the electrons injected into the first light emitting layer 241 conduct between the first emitter molecules.
  • the electrons are conducted between the emitters.
  • the recombination of carriers in each light emitting layer is as follows.
  • the injected electrons are conducted through the first emitter.
  • the energy position 245 ′ of the HOMO of the first emitter molecule in the anion state is lowered, becomes smaller than the HOMO of the first host material, and easily traps holes.
  • an excited state is generated from the anion state of the first emitter.
  • the triplet phosphorescent emitter molecule has an unstable cation state and is easily decomposed.
  • an excited state is generated without passing through the cation state of the emitter, so that deterioration due to decomposition of the emitter molecule is suppressed, and high reliability can be secured.
  • the injected electrons are conducted through the second emitter.
  • the energy position 247 ′ of the HOMO of the second emitter molecule in the anion state is lowered, becomes smaller than the HOMO of the second host material, and easily traps holes.
  • an excited state is generated from the anion state of the second emitter.
  • a recombination state is formed without passing through the cation state of the second emitter, so that high reliability can be ensured.
  • the injected electrons are conducted through the third emitter.
  • the energy position 249 ′ of the HOMO of the third emitter molecule in the anion state is lowered, becomes smaller than the HOMO of the third host material, and easily traps holes.
  • an excited state is generated from the anion state of the third emitter.
  • a recombination state is formed without passing through the cation state of the third emitter, so that high reliability can be secured.
  • the HOMO energy position 257 of the hole blocking material is preferably larger than the HOMO energy position 248 of the third host material.
  • the HOMO of the host material refers to the HOMO of a thin film formed of the host material.
  • FIG. 5 shows a conceptual diagram of energy levels of an organic light emitting device having two light emitting layers.
  • the organic layer 105 includes a first light emitting layer 341 and a second light emitting layer 342.
  • first light-emitting layer 341 a first emitter and a second emitter are dispersed in a first host material.
  • the second light-emitting layer 342 the third emitter is dispersed in the second host material.
  • the HOMO energy position 344 of the first host material is smaller than the HOMO energy position 345 of the first emitter molecule and the HOMO energy position 347 of the second emitter molecule. Therefore, the holes injected into the first light emitting layer 341 conduct between the first host molecules.
  • the HOMO energy position 346 of the second host material is smaller than the HOMO energy position 349 of the third emitter molecule. Therefore, the holes injected into the second light emitting layer 342 are conducted between the third host molecules.
  • the LUMO energy position 352 of the second host material is smaller than the LUMO energy position 355 of the third emitter molecule. Therefore, the electrons injected into the second light emitting layer 342 are conducted between the third emitter molecules.
  • the LUMO energy position 350 of the first host material is smaller than the LUMO energy position 351 of the first emitter molecule and the LUMO energy position 353 of the second emitter molecule, and is injected into the first light emitting layer 341.
  • the electrons are conducted between the first emitter molecules, between the second emitter molecules, or between the first emitter molecule and the second emitter molecule. In both the first light emitting layer and the second light emitting layer, electrons are conducted between the emitter molecules. In order to improve the conduction characteristics, it is necessary to increase the concentration of the emitter. Specifically, 10% or more is desirable.
  • the recombination of carriers in each light emitting layer is as follows.
  • the injected electrons are conducted through the first emitter or the second emitter.
  • the energy position 345 ′ of the HOMO of the first emitter molecule in the anion state is lowered and becomes smaller than the energy position of the HOMO of the first host material, so that holes are easily trapped.
  • the HOMO energy position 347 ′ of the second emitter molecule in an anionic state is lowered in energy, and becomes smaller than the HOMO energy position of the first host material, and is easily trapped with holes.
  • an excited state is generated from the anion state of the first emitter or the anion state of the second emitter.
  • the triplet phosphorescent emitter molecule has an unstable cation state and is easily decomposed.
  • an excited state is generated without passing through the cation state of the emitter, so that deterioration due to decomposition of the emitter molecules is suppressed, and high reliability can be ensured.
  • the HOMO energy position 349 ′ of the third emitter molecule in an anionic state is reduced in energy and becomes smaller than the HOMO energy position of the second host material, and traps with holes. It becomes easy. As a result, an excited state is generated from the anion state of the third emitter. Therefore, since the recombination state is formed without passing through the cation state of the third emitter, high reliability can be ensured.
  • the use of an element structure in which a hole blocking layer 356 is provided in the second light emitting layer 342 leads to higher efficiency.
  • the energy position 357 of the HOMO of the hole blocking material is preferably larger than the HOMO of the second host material. In that case, the holes propagated in the second light-emitting layer remain at the interface between the second light-emitting layer and the hole blocking layer, and finally enter an excited state, so that the reactive current that does not contribute to light emission is reduced. Therefore, high efficiency characteristics can be obtained.
  • FIG. 6 shows a conceptual diagram of energy levels of an organic light emitting device having two light emitting layers.
  • the light emitting layer of the organic layer 105 includes a first light emitting layer 441 and a second light emitting layer 442.
  • the stacking order of the first light-emitting layer 441 and the second light-emitting layer 442 is different.
  • a first emitter and a second emitter are dispersed in a first host material.
  • the third emitter is dispersed in the third host material.
  • the HOMO energy position 446 of the second host material is smaller than the HOMO energy position 449 of the third emitter molecule. Therefore, the holes injected into the second light emitting layer 442 conduct between the third host molecules.
  • the HOMO energy position 444 of the first host material is smaller than the HOMO energy position 445 of the first emitter molecule and the HOMO energy position 447 of the second emitter molecule. Therefore, the holes injected into the first light emitting layer 441 conduct between the first host molecules.
  • the LUMO energy position 450 of the first host material is smaller than the LUMO energy position 451 of the first emitter molecule and the LUMO energy position 453 of the second emitter molecule, and is injected into the first light emitting layer 441.
  • the electrons are conducted between the first emitter molecules, between the second emitter molecules, or between the first emitter molecule and the second emitter molecule.
  • the LUMO energy position 452 of the second host material is smaller than the LUMO energy position 455 of the third emitter molecule. Therefore, the electrons injected into the second light emitting layer 442 conduct between the third emitter molecules. In both the first light emitting layer and the second light emitting layer, electrons are conducted between the emitters. In order to improve the conduction characteristics, it is necessary to increase the concentration of the emitter. Specifically, 10% or more is desirable.
  • the recombination of carriers in each light emitting layer is as follows.
  • a recombination state is formed without passing through the cation state of the third emitter, so that high reliability can be ensured.
  • the injected electrons are conducted through the first emitter or the second emitter.
  • the energy position 445 ′ of the HOMO of the first emitter molecule in the anion state is lowered and becomes smaller than the energy position of the HOMO of the first host material, so that holes are easily trapped.
  • the HOMO energy position 447 ′ of the second emitter molecule in an anionic state is lowered in energy, and becomes smaller than the HOMO energy position of the first host material, and is easily trapped with holes.
  • an excited state is generated from the anion state of the first emitter or the anion state of the second emitter.
  • the triplet phosphorescent emitter molecule has an unstable cation state and is easily decomposed.
  • the HOMO energy position 445 ′ of the first emitter molecule in an anionic state is reduced in energy and becomes smaller than the HOMO energy position 444 of the first host material, and traps with holes. It becomes easy.
  • the HOMO energy position 447 ′ of the second emitter molecule in an anionic state is reduced in energy, and becomes smaller than the HOMO energy position 444 of the first host material, so that it is easy to trap holes.
  • an excited state is generated from the anion state of the first and second emitters. Therefore, an excited state is generated without passing through the cation state of the emitter, so that deterioration due to decomposition of the emitter molecule is suppressed, and high reliability can be secured.
  • the HOMO energy position 457 of the hole blocking material is preferably larger than the HOMO energy position 444 of the first host material. In that case, the holes propagated in the first light-emitting layer remain at the interface between the first light-emitting layer and the hole blocking layer 456, and finally enter an excited state, thereby reducing reactive current that does not contribute to light emission. Therefore, high efficiency characteristics can be obtained.
  • FIG. 7 shows a conceptual diagram of energy levels of an organic light emitting element having one light emitting layer.
  • the organic layer 105 is composed of a first light emitting layer 541.
  • a first emitter, a second emitter, and a third emitter are dispersed in a first host material.
  • the third emitter is unevenly distributed on the second electrode 104 side.
  • the HOMO energy position 544 of the first host material is smaller than the HOMO energy position 545 of the first emitter molecule and the HOMO energy position 547 of the second emitter molecule. Moreover, it is larger than the HOMO energy position 549 of the third emitter molecule. Therefore, the holes injected into the first light-emitting layer 541 are conducted between the first host molecules and trapped by the third emitter unevenly distributed on the second electrode side.
  • the LUMO energy position 550 of the first host material is the LUMO energy position 555 of the third emitter molecule, the LUMO energy position 551 of the first emitter molecule, and the LUMO energy position 553 of the second emitter molecule. Smaller than that. Therefore, the electrons injected into the first light-emitting layer 541 are conducted between the third emitter molecule, the first emitter molecule, the second emitter molecule, or between the first emitter molecule and the second emitter molecule. In the first light emitting layer, electrons are conducted between the emitters. In order to improve the conduction characteristics, it is necessary to increase the concentration of the emitter. Specifically, 10% or more is desirable.
  • the recombination of carriers in each light emitting layer is as follows.
  • the injected electrons are conducted through the first emitter or the second emitter.
  • the HOMO energy position 545 ′ of the first emitter molecule in an anionic state is lowered in energy, and becomes smaller than the HOMO energy position of the first host material, so that holes are easily trapped.
  • the HOMO energy position 547 ′ of the second emitter molecule in an anionic state is reduced in energy, and becomes smaller than the HOMO energy position of the first host material, so that holes are easily trapped.
  • an excited state is generated from the anion state of the first emitter or the anion state of the second emitter.
  • the HOMO energy position of the third emitter molecule is smaller than the HOMO energy position of the first host material, and the LUMO energy position of the third emitter molecule is the LUMO energy position of the first host material. Greater than energy position. Therefore, it is desirable to use a red emitter having a small band gap, that is, a long emission center wavelength, as the third emitter.
  • the organic layer will be described below.
  • the host it is preferable to use a carbazole derivative, a fluorene derivative, an arylsilane derivative, or the like.
  • the excitation energy of the host is preferably sufficiently larger than the excitation energy of the blue emitter. The excitation energy is measured using an emission spectrum.
  • the blue emitter has a maximum PL spectrum intensity at room temperature between 400 nm and 500 nm.
  • the main skeleton of the blue emitter include perylene and iridium complexes (Bis (3,5-difluoro-2- (2-pyrylyl) phenyl- (2-carbopyrylyl) iridium (III)): FIrpic and the like).
  • the iridium complex represented by (Chemical Formula 11) is more preferable in terms of light emission characteristics.
  • X1 represents an aromatic heterocycle containing N
  • X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle.
  • Examples of the aromatic heterocycle represented by X1 include quinoline ring, isoquinoline ring, pyridine ring, quinoxaline ring, thiazole ring, pyrimidine ring, benzothiazole ring, oxazole ring, benzoxazole ring, indole ring and isoindole ring. It is done.
  • Examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by X2 include a benzene ring, naphthalene ring, anthracene ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, and fluorene ring.
  • X3 includes acetylacetonate derivatives, picolinate derivatives, tetrakispyrazolyl borate derivatives and the like. X3 may be the same as X1-X2.
  • the concentration of the blue emitter is preferably 10 wt% or more with respect to the host.
  • the weight average molecular weight of the blue emitter is preferably 500 or more and 3000 or less.
  • the green emitter has a maximum PL spectrum intensity at room temperature between 500 nm and 590 nm.
  • the main skeleton of the green emitter include coumarin and derivatives thereof, and iridium complexes (Tris (2-phenylpyridine) iridium (III): hereinafter Ir (ppy) 3 , etc.).
  • the iridium complex represented by (Chemical Formula 11) is more preferable in terms of light emission characteristics.
  • X1 represents an aromatic heterocycle containing N
  • X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle.
  • Examples of the aromatic heterocycle represented by X1 include quinoline ring, isoquinoline ring, pyridine ring, quinoxaline ring, thiazole ring, pyrimidine ring, benzothiazole ring, oxazole ring, benzoxazole ring, indole ring and isoindole ring. It is done.
  • Examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by X2 include a benzene ring, naphthalene ring, anthracene ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, and fluorene ring.
  • X3 is an acetylacetonate derivative, and the same as X1-X2.
  • the HOMO energy position of the green emitter molecule is preferably larger than the HOMO energy position of the host material to which the emitter is added. Further, it is desirable that the energy position of the anionic HOMO in which electrons are supplied to the green emitter is smaller than the energy position of the HOMO of the host material to which the emitter is added. Specific examples include (Chemical Formula 14), (Chemical Formula 15), and (Chemical Formula 16).
  • the concentration of the green emitter is preferably 1 wt% or less with respect to the host.
  • the weight average molecular weight of the green emitter is preferably 500 or more and 3000 or less.
  • the red emitter has a maximum PL spectrum intensity at room temperature between 590 nm and 780 nm.
  • the main skeleton of the red emitter includes, for example, rubrene, (E) -2- (2- (4- (dimethylamino) styryl) -6-methyl-4H-pyran-4-ylidene) malononitrile (DCM) and its derivatives, iridium Complexes (such as Bis (1-phenylisoquinoline) (acetylacetonate) iridium (III)), osmium complexes, and europium complexes can be given.
  • the iridium complex represented by (Chemical Formula 11) is more preferable in terms of light emission characteristics.
  • X1 represents an aromatic heterocycle containing N
  • X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle.
  • Examples of the aromatic heterocycle represented by X1 include quinoline ring, isoquinoline ring, pyridine ring, quinoxaline ring, thiazole ring, pyrimidine ring, benzothiazole ring, oxazole ring, benzoxazole ring, indole ring and isoindole ring. It is done.
  • Examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by X2 include a benzene ring, naphthalene ring, anthracene ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, and fluorene ring.
  • X3 is preferably an acetylacetonate derivative or the like.
  • the concentration of the red emitter is preferably 1 wt% or less with respect to the host.
  • the weight average molecular weight of the red emitter is preferably 500 or more and 3000 or less.
  • the hole injection layer is used for the purpose of improving luminous efficiency and lifetime. Moreover, although it is not essential, it is used for the purpose of relaxing the unevenness of the anode.
  • a single hole injection layer or a plurality of hole injection layers may be provided.
  • the hole injection layer is preferably a conductive polymer such as PEDOT (poly (3,4-ethylenedioxythiophene)): PSS (polystyrene sulfonate).
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonate
  • polypyrrole-based or triphenylamine-based polymer materials can be used.
  • phthalocyanine compounds and starburst amine compounds that are often used in combination with a low molecular weight (weight average molecular weight 10,000 or less) material system are also applicable.
  • the hole transport layer is a layer that supplies holes to the light emitting layer.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • a single hole transport layer or a plurality of hole transport layers may be provided.
  • As the hole transport layer a starburst amine compound, a stilbene derivative, a hydrazone derivative, a thiophene derivative, a fluorene derivative, or the like can be used. Further, the present invention is not limited to these materials, and two or more of these materials may be used in combination.
  • an electron accepting material may be added to the hole transport layer.
  • An electron blocking layer for confining electrons in the light emitting layer may be provided between the hole transport layer and the light emitting layer.
  • the electron blocking layer material preferably has a small LUMO energy position.
  • the material which can be used together among the above may be contained in the electron blocking layer of 1 type, or 2 or more types.
  • the electron transport layer is a layer that supplies electrons to the light emitting layer.
  • an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • a single layer or a plurality of electron transport layers may be provided.
  • Examples of the material for the electron transport layer include bis (2-methyl-8-quinolinolato) -4- (phenylphenolato) aluminum (BAlq), tris (8-quinolinolato) aluminum (Alq 3 ), Tris (2 4,6-trimethyl-3- (pyridin-3-yl) phenyl) borane (3TPYMB), 1,4-Bis (triphenylsilyl) benzene (UGH2), oxadiazole derivatives, triazole derivatives, fullerene derivatives, phenanthroline derivatives, A quinoline derivative, a silole derivative, or the like can be used.
  • an electron donating material may be added to the electron transport layer.
  • a hole blocking layer In order to confine holes in the light emitting layer between the light emitting layer and the electron transport layer, a hole blocking layer may be provided.
  • the hole blocking layer material preferably has a deep HOMO energy position. Specific examples include 3TPYMB ((Chemical Formula 3)) and Alq 3 ((Chemical Formula 4)), but are not limited to these materials. Moreover, the material which can be used together among the above may be contained in the 1 or 2 or more types of hole-blocking layer.
  • the electron injection layer improves the electron injection efficiency from the cathode to the electron transport layer.
  • lithium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, magnesium oxide, and aluminum oxide are desirable.
  • the material is not limited to these materials, and two or more of these materials may be used in combination.
  • Examples of the first substrate 101 and the second substrate 102 include a glass substrate, a metal substrate, a plastic substrate on which an inorganic material such as SiO 2 , SiN x , and Al 2 O 3 is formed.
  • Examples of the metal substrate material include alloys such as stainless steel and alloy.
  • Examples of the plastic substrate material include polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polysulfone, polycarbonate, and polyimide.
  • the anode material any material having transparency and a high work function can be used. Specifically, conductive oxides such as ITO and IZO and metals having a large work function such as thin Ag can be used.
  • the electrode pattern can be formed on a substrate such as glass by using photolithography.
  • the cathode material is a reflective electrode for reflecting light from the light emitting layer.
  • a laminate of LiF and Al, an Mg: Ag alloy, or the like is preferably used.
  • an organic light-emitting device having three light-emitting layers shown in FIGS. 3 and 4 was fabricated by the following procedure using a vapor deposition method.
  • a glass substrate with an ITO (150 nm) electrode was immersed in acetone and subjected to ultrasonic cleaning for 10 minutes. Next, pure water cleaning and rotary drying were performed using an ultrasonic spin cleaning machine using pure water. Thereafter, the substrate was heated at 200 ° C. for 10 minutes in an air atmosphere using a hot plate. After heating, the substrate was cooled for 10 minutes, and UV / O 3 treatment was performed at an irradiation intensity of 8 mW / cm 2 for 30 minutes.
  • ⁇ -NPD (Chemical Formula 2)
  • the thickness of the hole injection layer was 5 nm.
  • TAPC ((Chemical Formula 1) was formed as a hole transport layer on the substrate.
  • the thickness of the hole injection layer was 85 nm.
  • an organic film having a thickness of 10 nm is formed as a first light emitting layer by doping the host material TCZ-1 ((Chemical Formula 5)) with 1 wt% of the green emitter (Chemical Formula 6). did. On top of that, an organic film having a thickness of 10 nm was formed by doping the host material mCP ((Chemical Formula 7)) with 10 wt% of the blue emitter FIr6 (Chemical Formula 8) as the second light emitting layer. On top of that, an organic film having a thickness of 10 nm was formed by doping the host material CBP ((Chemical Formula 9)) with 1 wt% of the red emitter (Chemical Formula 10) as the third light emitting layer.
  • the green light emitter is placed in the first light emitting layer and the blue light emitter is put in the second light emitting layer.
  • the blue light emitter is placed in the first light emitting layer and the second light emitting layer is reversed.
  • the organic light emitting device of the present invention can also be manufactured with a configuration in which a green emitter is inserted in the green light emitter.
  • a 3TPYMB ((Chemical Formula 3)) film was formed as an electron transport layer on the third light-emitting layer.
  • the film thickness of the electron transport layer was 30 nm.
  • LiF was formed as an electron injection layer on the hole blocking layer.
  • the thickness of the electron injection layer was 0.5 nm.
  • Al was deposited as a cathode on the electron injection layer.
  • the film thickness of the cathode was 150 nm.
  • sealing was performed using a sealing substrate with a sealing agent made of a photo-curing resin, to produce an organic light emitting device.
  • the HOMO energy position of the emitter molecule is deeper than the HOMO energy position of the host material, holes propagate between the host materials. . Further, since the LUMO energy position of the emitter molecule is deeper than the LUMO energy position of the host material, electrons are repeatedly captured and emitted by the emitter and propagated through the light emitting layer. For this reason, the excited states of the green and blue emitters were generated without passing through cations, so that the deterioration of the emitters was reduced.
  • the third light emitting layer holes are injected in a state where there are many anions of the red emitter, so that the excited state of the red emitter was generated without passing through the cation, so that deterioration of the emitter was reduced. Due to the above effects, the lifetime of the organic light emitting device was improved.
  • an organic light-emitting device having two light-emitting layers shown in FIGS. 5 and 6 was fabricated according to the following procedure using a vapor deposition method.
  • the pretreatment method of the glass substrate with ITO electrode and the formation method of the hole injection layer and the hole transport layer are the same as in Example 1.
  • the HOMO energy position of the emitter molecule is deeper than the HOMO energy position of the host material
  • the LUMO energy position of the emitter molecule is deeper than the LUMO energy position of the host material.
  • the excited states of the green and red emitters were generated without passing through cations, and the deterioration of the emitters was reduced.
  • the excited state of the blue emitter is generated without passing through the cation, and the deterioration of the emitter is reduced. Due to the above effects, the lifetime of the organic light emitting device was improved.
  • an organic light-emitting device having one light-emitting layer shown in FIG. 7 was prepared according to the following procedure using a coating method.
  • An ITO electrode was used for the lower electrode, and a polymer material was used for the hole transport layer.
  • TCZ-1 ((Chemical formula 5)) was used as the host material
  • FIr6 ((Chemical formula 8)) was used as the blue emitter
  • (Chemical formula 6) was used as the green emitter
  • (Chemical formula 13) was used as the red emitter.
  • the weight ratio of each material was 100: 10: 1: 1.
  • These coating materials were prepared by dissolving the host material, blue emitter, green emitter, and red emitter material in toluene.
  • the solid component concentration of the coating liquid was set to 1 wt.%.
  • a light emitting layer was formed by spin coating.
  • An electron transport layer was formed.
  • An electron transport layer was formed by spin coating using a coating solution in which (Chemical Formula 6) was dissolved in 2-propanol. Subsequently, a laminate of LiF and Al was formed as an electron injection layer / cathode, and a target organic light emitting device was produced.
  • the sealing method is the same as in Example 1.
  • the red emitter in the light emitting layer, was localized on the upper surface side serving as the electron transport layer side due to the substituent. Since the HOMO energy position of the blue emitter and the green emitter molecule is deeper than the HOMO energy position of the host material, and the LUMO energy position of the blue emitter and the green emitter molecule is deeper than the LUMO energy position of the host material, the blue emitter and the green emitter The excited state of was generated without going through the cation, and the deterioration of the emitter was reduced.
  • the HOMO energy position of the red emitter molecule is shallower than the HOMO energy position of the host material, but the LUMO energy position of the red emitter molecule is deeper than the LUMO energy position of the host material. A state was formed and emitter degradation was reduced. Due to the above effects, the lifetime of the organic light emitting device was improved.
  • Second light emitting layer 3 HOMO of hole transport layer 14 4 HOMO of the host material of the first light emitting layer 1 5 HOMO of the host material of the second light emitting layer 2 6 LUMO of electron transport layer 15 7 LUMO of the host material of the first light emitting layer 1 8 LUMO of the host material of the second light emitting layer 2 9 hole 10 electron 11 LUMO energy position 12 of the emitter molecule dispersed in the first light emitting layer 1 and the second light emitting layer 2 emitter molecule dispersed in the first light emitting layer 1 and the second light emitting layer 2 HOMO energy position 14 hole transport layer 15 electron transport layer 101 first substrate 102 second substrate 103 first electrode 104 second electrode 105 organic layers 143, 243 third light emitting layers 144, 244, 344 445, 544 HOMO energy position of the first host material 145, 245, 345, 445, 545 HOMO energy position

Abstract

In cases when two luminescent layers are present, the excited states are concentrated and the surfaces of the luminescent layers on the side where the excited states are formed deteriorate. The purpose of the present invention is to inhibit the deterioration of luminescent layers. This organic luminescent element has three luminescent layers. In the first luminescent layer, injected electrons are transferred to a first emitter. The molecules of the first emitter that have come into an anionic state have a reduced HOMO energy level, which is lower than the level of the HOMO of a first host material, and are hence apt to trap holes. As a result, the anionic state of the first emitter results in an excited state.

Description

有機発光素子Organic light emitting device
 本発明は、有機発光素子に関する。 The present invention relates to an organic light emitting device.
 従来例として、特許文献1に以下の技術が開示されている。すなわち、積層された発光層において、第1の発光層は三重項エミッタ(エミッタはドーパントともいう)が添加されて、両極性を有するが、特に正孔を輸送する。また第2の発光層は三重項エミッタが添加されて両極性を有するが、特に電子を輸送し、第1の発光層と第2の発光層の界面ではねじれタイプIIのエネルギー障壁を有する構造が開示されている。 As a conventional example, Patent Document 1 discloses the following technique. That is, in the stacked light-emitting layer, the first light-emitting layer is added with a triplet emitter (an emitter is also referred to as a dopant) and has both polarities, but transports holes in particular. The second light-emitting layer has a bipolarity by adding a triplet emitter, and in particular has a structure that transports electrons and has a twist type II energy barrier at the interface between the first light-emitting layer and the second light-emitting layer. It is disclosed.
特表2008-509565号公報Special table 2008-509565 gazette
 従来技術では、2つの発光層の界面に励起状態が集中し、界面近傍の発光エミッタが劣化することが問題であった。本発明は、高効率を維持し、長寿命特性を有する素子構造を提供することを目的とする。 In the prior art, the excited state is concentrated on the interface between the two light emitting layers, and the light emitting emitter near the interface is deteriorated. An object of this invention is to provide the element structure which maintains a high efficiency and has a long life characteristic.
 上記課題を解決するための本発明の特徴は以下の通りである。 The features of the present invention for solving the above-described problems are as follows.
 有機発光素子は3つの発光層を有する。第1の発光層では、注入された電子は第1のエミッタを伝導する。アニオン状態となった第1のエミッタ分子のHOMOのエネルギー位置は低エネルギー化し、第1のホスト材料のHOMOより小さくなり、正孔をトラップしやすくなる。その結果、第1のエミッタのアニオン状態から励起状態が生成される。 The organic light emitting device has three light emitting layers. In the first light emitting layer, the injected electrons are conducted through the first emitter. The energy position of the HOMO of the first emitter molecule in an anionic state is lowered, becomes smaller than the HOMO of the first host material, and easily traps holes. As a result, an excited state is generated from the anion state of the first emitter.
 本発明により、発光層の劣化を抑制できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, deterioration of the light emitting layer can be suppressed. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
有機発光素子の一実施形態における断面図である。It is sectional drawing in one Embodiment of an organic light emitting element. 従来構成の有機発光素子のエネルギー準位概念図である。It is an energy level conceptual diagram of the organic light emitting element of a conventional structure. 3つの発光層を有する有機発光素子のエネルギー準位概念図である。It is an energy level conceptual diagram of the organic light emitting element which has three light emitting layers. 3つの発光層を有する有機発光素子のエネルギー準位概念図である。It is an energy level conceptual diagram of the organic light emitting element which has three light emitting layers. 2つの発光層を有する有機発光素子のエネルギー準位概念図である。It is an energy level conceptual diagram of the organic light emitting element which has two light emitting layers. 2つの発光層を有する有機発光素子のエネルギー準位概念図である。It is an energy level conceptual diagram of the organic light emitting element which has two light emitting layers. 1つの発光層を有する有機発光素子のエネルギー準位概念図である。It is an energy level conceptual diagram of the organic light emitting element which has one light emitting layer. 第3の発光層に正孔阻止層を設けた例である。This is an example in which a hole blocking layer is provided in the third light emitting layer. 第2の発光層に正孔阻止層を設けた例である。This is an example in which a hole blocking layer is provided in the second light emitting layer. 第1の発光層に正孔阻止層を設けた例である。This is an example in which a hole blocking layer is provided in the first light emitting layer.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本願発明の内容の具体例を示すものであり、本願発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。実施例を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the embodiments, the same reference numerals are given to those having the same function, and the repeated explanation thereof is omitted.
 図1は有機発光素子の一実施形態における断面図である。有機発光素子100は、第1の基板101、第2の基板102、第1の電極103、第2の電極104および有機層105で構成される。図1の下側から第1の基板101、第1の電極103、有機層105、第2の電極104、第2の基板102の順に配置されている。第1の電極103を陰極となる反射電極、第2の電極104を陽極となる透明電極とすると、図1の有機発光素子は第2の電極104側から有機層105の発光を取り出すトップエミッション型となる。また、第1の電極103を陽極となる透明電極、第2の電極104を陰極となる反射電極とすると、図1の有機発光素子は第1の電極103側から有機層105の発光を取り出すボトムエミッション型となる。第1の基板101および第1の電極103、第1の電極103および有機層105、有機層105および第2の電極104はそれぞれ接していても構わない。有機層105として赤色発光層、緑色発光層および青色発光層が含まれることにより、有機層105から赤色発光、緑色発光、及び青色発光による白色光が出射される。ただし、白色光となるのであれば、有機層105として補色となる2つの発光色の発光層が含まれる。例えば、水色発光層と黄色発光層の組合せが考えられる。 FIG. 1 is a cross-sectional view of an embodiment of an organic light emitting device. The organic light emitting element 100 includes a first substrate 101, a second substrate 102, a first electrode 103, a second electrode 104, and an organic layer 105. The first substrate 101, the first electrode 103, the organic layer 105, the second electrode 104, and the second substrate 102 are arranged in this order from the lower side of FIG. When the first electrode 103 is a reflective electrode serving as a cathode and the second electrode 104 is a transparent electrode serving as an anode, the organic light-emitting element in FIG. 1 is a top emission type that extracts light emitted from the organic layer 105 from the second electrode 104 side. It becomes. Further, when the first electrode 103 is a transparent electrode serving as an anode and the second electrode 104 is a reflective electrode serving as a cathode, the organic light-emitting element in FIG. 1 has a bottom that extracts light emitted from the organic layer 105 from the first electrode 103 side. It becomes an emission type. The first substrate 101, the first electrode 103, the first electrode 103, the organic layer 105, the organic layer 105, and the second electrode 104 may be in contact with each other. By including a red light emitting layer, a green light emitting layer, and a blue light emitting layer as the organic layer 105, white light is emitted from the organic layer 105 by red light emission, green light emission, and blue light emission. However, in the case of white light, the organic layer 105 includes a light emitting layer of two emission colors that are complementary colors. For example, a combination of a light blue light emitting layer and a yellow light emitting layer can be considered.
 図1の有機発光素子に駆動装置等が備えられることで光源装置となる。本発明を用いた光源装置としては、家庭用の照明、車内の照明、液晶表示装置のバックライト等が挙げられるが、これらに限定するものではない。 1 is provided with a driving device or the like in the organic light emitting device of FIG. Examples of the light source device using the present invention include, but are not limited to, household lighting, interior lighting, and backlights of liquid crystal display devices.
 図2に従来構成の有機発光素子のエネルギー準位概念図を示す。図2において、有機層105は正孔輸送層14、第1の発光層1、第2の発光層2および電子輸送層15で構成される。第1の発光層1にはホストおよび発光性エミッタが含まれている。第2の発光層2にはホストおよび発光性エミッタが含まれている。第1の発光層1の発光性エミッタおよび第2の発光層2の発光性エミッタについて、主骨格が同じ、置換基が同じ、または同種の置換基を有するものとする。有機発光素子の両電極間に電圧が印加されると、正孔9および電子10が有機層105内に注入される。 Fig. 2 shows a conceptual diagram of energy levels of a conventional organic light emitting device. In FIG. 2, the organic layer 105 includes a hole transport layer 14, a first light emitting layer 1, a second light emitting layer 2, and an electron transport layer 15. The first light emitting layer 1 includes a host and a light emitting emitter. The second light emitting layer 2 includes a host and a light emitting emitter. The light emitting emitter of the first light emitting layer 1 and the light emitting emitter of the second light emitting layer 2 are assumed to have the same main skeleton, the same substituent, or the same kind of substituent. When a voltage is applied between both electrodes of the organic light emitting device, holes 9 and electrons 10 are injected into the organic layer 105.
 図2のエネルギー準位概念図において各層の関係を以下に記載するが、これに限られない。最高被占軌道(HOMO)エネルギーは光電子分光法によって測定される。また、最低空軌道(LUMO)エネルギーは、吸収スペクトルからHOMO-LUMOのエネルギー差を求め算出する方法や、逆光電子分光法によって直接測定される。正孔輸送層14のHOMO3は、第1の発光層1のホスト材料のHOMO4より小さい。第1の発光層1のホスト材料のHOMO4は、第2の発光層2のホスト材料のHOMO5より小さい。第2の発光層2のホスト材料のLUMO8は、電子輸送層15のLUMO6より小さい。第1の発光層1のホスト材料のLUMO7は、第2の発光層2のホスト材料のLUMO8より小さい。第1の発光層1及び第2の発光層2に分散されたエミッタ分子のLUMOのエネルギー位置11は、第1の発光層1のホスト材料のLUMO7および第2の発光層2のホスト材料のLUMO8より大きい。第1の発光層1及び第2の発光層2に分散されたエミッタ分子のHOMOのエネルギー位置12は、第1の発光層1のホスト材料のHOMO4および第2の発光層2のホスト材料のHOMO5より小さい。 In the energy level conceptual diagram of FIG. 2, the relationship between the layers is described below, but the present invention is not limited to this. The highest occupied orbital (HOMO) energy is measured by photoelectron spectroscopy. Further, the lowest unoccupied orbit (LUMO) energy is directly measured by a method of calculating an HOMO-LUMO energy difference from an absorption spectrum, or by inverse photoelectron spectroscopy. HOMO3 of the hole transport layer 14 is smaller than HOMO4 of the host material of the first light emitting layer 1. The HOMO4 of the host material of the first light emitting layer 1 is smaller than the HOMO5 of the host material of the second light emitting layer 2. The LUMO8 of the host material of the second light emitting layer 2 is smaller than the LUMO6 of the electron transport layer 15. The LUMO7 of the host material of the first light emitting layer 1 is smaller than the LUMO8 of the host material of the second light emitting layer 2. The LUMO energy positions 11 of the emitter molecules dispersed in the first light-emitting layer 1 and the second light-emitting layer 2 are the LUMO 7 of the host material of the first light-emitting layer 1 and the LUMO 8 of the host material of the second light-emitting layer 2. Greater than. The HOMO energy positions 12 of the emitter molecules dispersed in the first light emitting layer 1 and the second light emitting layer 2 are HOMO4 of the host material of the first light emitting layer 1 and HOMO5 of the host material of the second light emitting layer 2. Smaller than.
 第1の発光層1と第2の発光層2の界面のエネルギー障壁により、正孔9はブロックされて、同界面の第1の発光層1側にたまる。同様に、第1の発光層1と第2の発光層2界面のエネルギー障壁により、電子10はブロックされて、第2の発光層2側にたまる。電流密度が高くなるにつれて、第1の発光層1を突き抜けた正孔が第2の発光層2の発光性エミッタにおいてトラップされる。また、第2の発光層2を突き抜けた電子が第1の発光層1の発光性エミッタにおいてトラップされる。そのため、発光に寄与しないキャリアが低減され、高発光効率となる。しかし、従来構造では、第1の発光層1と第2の発光層2との界面付近において再結合密度が高くなり、励起状態が集中するため、第1の発光層1と第2の発光層2との界面付近におけるエミッタの劣化が問題となる。また、エミッタの劣化を改善する手段が開示されていない。 The holes 9 are blocked by the energy barrier at the interface between the first light emitting layer 1 and the second light emitting layer 2 and accumulate on the first light emitting layer 1 side of the same interface. Similarly, the electrons 10 are blocked by the energy barrier at the interface between the first light emitting layer 1 and the second light emitting layer 2 and accumulate on the second light emitting layer 2 side. As the current density increases, the holes penetrating the first light emitting layer 1 are trapped in the light emitting emitter of the second light emitting layer 2. Further, electrons penetrating the second light emitting layer 2 are trapped in the light emitting emitter of the first light emitting layer 1. Therefore, carriers that do not contribute to light emission are reduced, resulting in high light emission efficiency. However, in the conventional structure, the recombination density is increased in the vicinity of the interface between the first light emitting layer 1 and the second light emitting layer 2 and the excited state is concentrated. Therefore, the first light emitting layer 1 and the second light emitting layer are concentrated. Deterioration of the emitter near the interface with 2 becomes a problem. Also, no means for improving the deterioration of the emitter is disclosed.
 一方、本発明の一実施形態では、励起状態の生成において、発光エミッタのカチオン状態を経由しないことで、発光エミッタの劣化を抑制することを目的としている。図3に3つの発光層を有する有機発光素子のエネルギー準位概念図を示す。 On the other hand, one embodiment of the present invention aims to suppress the deterioration of the light emitting emitter by not passing through the cation state of the light emitting emitter in the generation of the excited state. FIG. 3 is a conceptual diagram of energy levels of an organic light emitting device having three light emitting layers.
 図3において、有機層105は第1の発光層141、第2の発光層142、及び第3の発光層143で構成されている。第1の発光層141は第1のホスト材料に第1のエミッタが分散されている。第2の発光層142は第2のホスト材料に第2のエミッタが分散されている。第3の発光層143は第3のホスト材料に第3のエミッタが分散されている。 In FIG. 3, the organic layer 105 includes a first light emitting layer 141, a second light emitting layer 142, and a third light emitting layer 143. In the first light-emitting layer 141, the first emitter is dispersed in the first host material. In the second light-emitting layer 142, the second emitter is dispersed in the second host material. In the third light-emitting layer 143, the third emitter is dispersed in the third host material.
 図3のエネルギー準位概念図において各層の関係を以下に記載するが、これに限られない。 In the energy level conceptual diagram of FIG. 3, the relationship of each layer is described below, but is not limited to this.
 始めに、正孔の発光層内における輸送について説明する。第1のホスト材料のHOMOのエネルギー位置144は、第1のエミッタ分子のHOMOのエネルギー位置145に比べて小さい。そのため、第1の発光層141に注入された正孔は第1のホスト分子間を伝導する。第2のホスト材料のHOMOのエネルギー位置146も第2のエミッタ分子のHOMOのエネルギー位置147に比べて小さい。第1の発光層141と同様、第2の発光層142に注入された正孔は第2のホスト分子間を伝導する。一方、第3のホスト材料のHOMOのエネルギー位置148は第3のエミッタ分子のHOMOのエネルギー位置149に比べて大きい。そのため、第3の発光層143に注入された正孔は第3のエミッタにトラップされ、エミッタ分子間を伝導するか、第3のエミッタ分子への正孔トラップと第3のホスト分子へのリリースを繰り返して第3のホスト分子間を伝導する。 First, the transport of holes in the light emitting layer will be described. The HOMO energy position 144 of the first host material is smaller than the HOMO energy position 145 of the first emitter molecule. Therefore, the holes injected into the first light emitting layer 141 are conducted between the first host molecules. The HOMO energy position 146 of the second host material is also smaller than the HOMO energy position 147 of the second emitter molecule. Similar to the first light-emitting layer 141, the holes injected into the second light-emitting layer 142 conduct between the second host molecules. On the other hand, the HOMO energy position 148 of the third host material is larger than the HOMO energy position 149 of the third emitter molecule. Therefore, the holes injected into the third light emitting layer 143 are trapped by the third emitter and conducted between the emitter molecules, or the hole traps to the third emitter molecule and the release to the third host molecule. To conduct between the third host molecules.
 次に、電子の発光層内における輸送について説明する。第3のホスト材料のLUMOのエネルギー位置154は、第3のエミッタ分子のLUMOのエネルギー位置155に比べて小さい。そのため、第3の発光層143に注入された電子は第3のエミッタ分子間を伝導する。第2のホスト材料のLUMOのエネルギー位置152も第2のエミッタ分子のLUMOのエネルギー位置153に比べて小さい。第3の発光層143同様、第2の発光層142に注入された電子は第2のエミッタ分子間を伝導する。第1のホスト材料のLUMOのエネルギー位置150は第1のエミッタ分子のLUMOのエネルギー位置151に比べて小さく、第1の発光層141に注入された電子は第1のエミッタ分子間を伝導する。第1の発光層、第2の発光層、及び第3の発光層とも、電子はエミッタ間を伝導する。伝導特性を向上させるためには、エミッタの濃度を高くする必要がある。具体的には、10%以上が望ましい。 Next, the transport of electrons in the light emitting layer will be described. The LUMO energy position 154 of the third host material is smaller than the LUMO energy position 155 of the third emitter molecule. Therefore, the electrons injected into the third light emitting layer 143 are conducted between the third emitter molecules. The LUMO energy position 152 of the second host material is also smaller than the LUMO energy position 153 of the second emitter molecule. Similar to the third light-emitting layer 143, the electrons injected into the second light-emitting layer 142 are conducted between the second emitter molecules. The LUMO energy position 150 of the first host material is smaller than the LUMO energy position 151 of the first emitter molecule, and the electrons injected into the first light emitting layer 141 are conducted between the first emitter molecules. In the first light emitting layer, the second light emitting layer, and the third light emitting layer, electrons are conducted between the emitters. In order to improve the conduction characteristics, it is necessary to increase the concentration of the emitter. Specifically, 10% or more is desirable.
 上記正孔、電子の輸送から、各発光層内におけるキャリアの再結合は以下の様になる。第1の発光層141では、注入された電子は第1のエミッタを伝導する。アニオン状態となった第1のエミッタ分子のHOMOのエネルギー位置145′は低エネルギー化し、第1のホスト材料のHOMOより小さくなり、正孔をトラップしやすくなる。その結果、第1のエミッタのアニオン状態から励起状態が生成される。我々のシミュレーションの検討結果によると、三重項燐光エミッタ分子では、カチオン状態が不安定で分解しやすい。第1の発光層141では、エミッタのカチオン状態を経由しないで励起状態が生成されるので、エミッタ分子の分解による劣化が抑制されて、高信頼性を確保できる。 From the transport of holes and electrons, the recombination of carriers in each light emitting layer is as follows. In the first light emitting layer 141, the injected electrons are conducted through the first emitter. The energy position 145 ′ of the HOMO of the first emitter molecule in the anion state is lowered, becomes smaller than the HOMO of the first host material, and easily traps holes. As a result, an excited state is generated from the anion state of the first emitter. According to our simulation results, the triplet phosphorescent emitter molecule has an unstable cation state and is easily decomposed. In the first light-emitting layer 141, an excited state is generated without passing through the cation state of the emitter, so that deterioration due to decomposition of the emitter molecule is suppressed and high reliability can be secured.
 同様に、第2の発光層142では、注入された電子は第2のエミッタを伝導する。アニオン状態となった第2のエミッタ分子のHOMOのエネルギー位置147′は低エネルギー化し、第2のホスト材料のHOMOより小さくなり、正孔をトラップしやすくなる。その結果、第2のエミッタのアニオン状態から励起状態が生成される。第2の発光層142においても第2のエミッタのカチオン状態を経由しないで再結合状態が形成されるため、高信頼性が確保できる。 Similarly, in the second light emitting layer 142, the injected electrons are conducted through the second emitter. The energy position 147 'of the HOMO of the second emitter molecule in the anion state is lowered, becomes smaller than the HOMO of the second host material, and tends to trap holes. As a result, an excited state is generated from the anion state of the second emitter. Also in the second light emitting layer 142, since a recombination state is formed without passing through the cation state of the second emitter, high reliability can be ensured.
 一方、第3の発光層143では、第3のエミッタが正孔のトラップとして機能するが、第3の発光層143は陰極である第2の電極104側にあるため、第3の発光層では注入された電子が多く、第3のエミッタのアニオン状態がカチオン状態に比べて多い。そのため、第3のエミッタのアニオン状態を経て励起状態が形成される割合が高く、第3の発光層においても高信頼性が確保される。特に、第1の発光層41の正孔移動度、第2の発光層の正孔移動度に比べて、第3の発光層の電子移動度が大きいと、第3の発光層では、第3のエミッタのカチオン状態が形成されず、アニオン状態が形成されており、それに正孔がトラップされて、励起状態が生成される。そのため、第3の発光層においても高信頼性が確保される。第1の発光層及び第2の発光層では、エミッタ分子のHOMOのエネルギー位置がホスト材料のHOMOのエネルギー位置より大きい。そのため、エミッタはバンドギャップの大きい、すなわち、発光中心波長の短い、青色、緑色エミッタを用いることが望ましい。一方、第3の発光層では、エミッタ分子のHOMOのエネルギー位置はホスト材料のHOMOのエネルギー位置より小さく、エミッタ分子のLUMOのエネルギー位置はホスト材料のLUMOのエネルギー位置より大きい。そのため、エミッタはバンドギャップの小さい、すなわち、発光中心波長の長い、赤色エミッタを用いることが望ましい。 On the other hand, in the third light-emitting layer 143, the third emitter functions as a hole trap. However, since the third light-emitting layer 143 is on the second electrode 104 side which is a cathode, There are many injected electrons, and the anion state of the third emitter is larger than the cation state. Therefore, the ratio of the excited state formed through the anion state of the third emitter is high, and high reliability is ensured even in the third light emitting layer. In particular, if the electron mobility of the third light-emitting layer is larger than the hole mobility of the first light-emitting layer 41 and the hole mobility of the second light-emitting layer, The cation state of the emitter is not formed, but an anion state is formed, and holes are trapped therein, and an excited state is generated. Therefore, high reliability is ensured also in the third light emitting layer. In the first light emitting layer and the second light emitting layer, the HOMO energy position of the emitter molecule is larger than the HOMO energy position of the host material. Therefore, it is desirable to use blue and green emitters having a large band gap, that is, a short emission center wavelength. On the other hand, in the third light emitting layer, the HOMO energy position of the emitter molecule is smaller than the HOMO energy position of the host material, and the LUMO energy position of the emitter molecule is larger than the LUMO energy position of the host material. Therefore, it is desirable to use a red emitter having a small band gap, that is, a long emission center wavelength.
 ここで、キャリア移動度はTOF法やIS法で計測される。TOF法とは、一方の電極側でシート状の電荷を光パルスで発生させ、電界によって反対側に掃引させて、過渡電流波形から走行時間を測定し、平均電界を利用して移動度を求める方法である。IS法とは、微小正弦波電圧信号を素子に印加し、その応答電流信号の振幅と位相から、印加電圧信号の周波数の関数としてインピーダンススペクトルを取得することにより、走行時間、すなわち移動度を算出する方法である。 Here, carrier mobility is measured by the TOF method or the IS method. In the TOF method, a sheet-like electric charge is generated on one electrode side by a light pulse, swept to the opposite side by an electric field, travel time is measured from a transient current waveform, and mobility is obtained using an average electric field. Is the method. The IS method applies a small sine wave voltage signal to the element and calculates the travel time, ie, mobility, by obtaining the impedance spectrum as a function of the frequency of the applied voltage signal from the amplitude and phase of the response current signal. It is a method to do.
 次に、本発明の別実施形態を説明する。図4に3つの発光層を有する有機発光素子のエネルギー準位概念図を示す。 Next, another embodiment of the present invention will be described. FIG. 4 shows a conceptual diagram of energy levels of an organic light emitting device having three light emitting layers.
 図4において、有機層105は第1の発光層241、第2の発光層242、及び第3の発光層243で構成されている。第1の発光層241は第1のホスト材料に第1のエミッタが分散されている。第2の発光層242は第2のホスト材料に第2のエミッタが分散されている。第3の発光層243は第3のホスト材料に第3のエミッタが分散されている。 In FIG. 4, the organic layer 105 includes a first light emitting layer 241, a second light emitting layer 242, and a third light emitting layer 243. In the first light-emitting layer 241, the first emitter is dispersed in the first host material. In the second light-emitting layer 242, the second emitter is dispersed in the second host material. In the third light-emitting layer 243, the third emitter is dispersed in the third host material.
 始めに、正孔の発光層内における輸送について説明する。第1のホスト材料のHOMOのエネルギー位置244は、第1のエミッタ分子のHOMOのエネルギー位置245に比べて小さい。そのため、第1の発光層241に注入された正孔は第1のホスト分子間を伝導する。第2のホスト材料のHOMOのエネルギー位置246も第2のエミッタ分子のHOMOのエネルギー位置247に比べて小さい。第1の発光層241と同様、第2の発光層242に注入された正孔は第2のホスト分子間を伝導する。第3のホスト材料のHOMOのエネルギー位置248は第3のエミッタ分子のHOMOのエネルギー位置249に比べて小さい。そのため、第3の発光層243に注入された正孔は第3のホスト分子間を伝導する。 First, the transport of holes in the light emitting layer will be described. The HOMO energy position 244 of the first host material is smaller than the HOMO energy position 245 of the first emitter molecule. Therefore, the holes injected into the first light emitting layer 241 conduct between the first host molecules. The HOMO energy position 246 of the second host material is also smaller than the HOMO energy position 247 of the second emitter molecule. Similar to the first light-emitting layer 241, the holes injected into the second light-emitting layer 242 conduct between the second host molecules. The HOMO energy position 248 of the third host material is smaller than the HOMO energy position 249 of the third emitter molecule. Therefore, the holes injected into the third light emitting layer 243 are conducted between the third host molecules.
 次に、電子の発光層内における輸送について説明する。第3のホスト材料のLUMOのエネルギー位置254は、第3のエミッタ分子のLUMOのエネルギー位置255に比べて小さい。そのため、第3の発光層243に注入された電子は第3のエミッタ分子間を伝導する。第2のホスト材料のLUMOのエネルギー位置252も第2のエミッタ分子のLUMOのエネルギー位置253に比べて小さい。第3の発光層243同様、第2の発光層242に注入された電子は第2のエミッタ分子間を伝導する。第1のホスト材料のLUMOのエネルギー位置250は第1のエミッタ分子のLUMOのエネルギー位置251に比べて小さく、第1の発光層241に注入された電子は第1のエミッタ分子間を伝導する。第1の発光層、第2の発光層、及び第3の発光層とも、電子はエミッタ間を伝導する。伝導特性を向上させるためには、エミッタの濃度を高くする必要がある。具体的には、10%以上が望ましい。 Next, the transport of electrons in the light emitting layer will be described. The LUMO energy position 254 of the third host material is smaller than the LUMO energy position 255 of the third emitter molecule. Therefore, the electrons injected into the third light emitting layer 243 are conducted between the third emitter molecules. The LUMO energy position 252 of the second host material is also smaller than the LUMO energy position 253 of the second emitter molecule. Similar to the third light emitting layer 243, the electrons injected into the second light emitting layer 242 conduct between the second emitter molecules. The LUMO energy position 250 of the first host material is smaller than the LUMO energy position 251 of the first emitter molecule, and the electrons injected into the first light emitting layer 241 conduct between the first emitter molecules. In the first light emitting layer, the second light emitting layer, and the third light emitting layer, electrons are conducted between the emitters. In order to improve the conduction characteristics, it is necessary to increase the concentration of the emitter. Specifically, 10% or more is desirable.
 上記正孔、電子の輸送から、各発光層内におけるキャリアの再結合は以下の様になる。第1の発光層241では、注入された電子は第1のエミッタを伝導する。アニオン状態となった第1のエミッタ分子のHOMOのエネルギー位置245′は低エネルギー化し、第1のホスト材料のHOMOより小さくなり、正孔をトラップしやすくなる。その結果、第1のエミッタのアニオン状態から励起状態が生成される。我々のシミュレーションの検討結果によると、三重項燐光エミッタ分子では、カチオン状態が不安定で分解しやすい。第1の発光層241では、エミッタのカチオン状態を経由しないで励起状態が生成されるので、エミッタ分子の分解による劣化が抑制されて、高信頼性が確保できる。 From the transport of holes and electrons, the recombination of carriers in each light emitting layer is as follows. In the first light emitting layer 241, the injected electrons are conducted through the first emitter. The energy position 245 ′ of the HOMO of the first emitter molecule in the anion state is lowered, becomes smaller than the HOMO of the first host material, and easily traps holes. As a result, an excited state is generated from the anion state of the first emitter. According to our simulation results, the triplet phosphorescent emitter molecule has an unstable cation state and is easily decomposed. In the first light emitting layer 241, an excited state is generated without passing through the cation state of the emitter, so that deterioration due to decomposition of the emitter molecule is suppressed, and high reliability can be secured.
 同様に、第2の発光層242では、注入された電子は第2のエミッタを伝導する。アニオン状態となった第2のエミッタ分子のHOMOのエネルギー位置247′は低エネルギー化し、第2のホスト材料のHOMOより小さくなり、正孔をトラップしやすくなる。その結果、第2のエミッタのアニオン状態から励起状態が生成される。第2の発光層242においても第2のエミッタのカチオン状態を経由しないで再結合状態が形成されるため、高信頼性が確保できる。 Similarly, in the second light emitting layer 242, the injected electrons are conducted through the second emitter. The energy position 247 ′ of the HOMO of the second emitter molecule in the anion state is lowered, becomes smaller than the HOMO of the second host material, and easily traps holes. As a result, an excited state is generated from the anion state of the second emitter. Also in the second light emitting layer 242, a recombination state is formed without passing through the cation state of the second emitter, so that high reliability can be ensured.
 同様に、第3の発光層243では、注入された電子は第3のエミッタを伝導する。アニオン状態となった第3のエミッタ分子のHOMOのエネルギー位置249′は低エネルギー化し、第3のホスト材料のHOMOより小さくなり、正孔をトラップしやすくなる。その結果、第3のエミッタのアニオン状態から励起状態が生成される。第3の発光層243においても第3のエミッタのカチオン状態を経由しないで再結合状態が形成されるため、高信頼性が確保できる。 Similarly, in the third light emitting layer 243, the injected electrons are conducted through the third emitter. The energy position 249 ′ of the HOMO of the third emitter molecule in the anion state is lowered, becomes smaller than the HOMO of the third host material, and easily traps holes. As a result, an excited state is generated from the anion state of the third emitter. Also in the third light emitting layer 243, a recombination state is formed without passing through the cation state of the third emitter, so that high reliability can be secured.
 図8に示した様に、第3の発光層243に正孔阻止層256を有する素子構成を用いると、高効率化に繋がる。正孔阻止材料のHOMOのエネルギー位置257は第3のホスト材料のHOMOのエネルギー位置248より大きい値が望ましい。ここで、ホスト材料のHOMOとは、ホスト材料で形成された薄膜のHOMOをさす。その場合、第3の発光層内を伝搬した正孔は、第3の発光層と正孔阻止層256の界面で留まり、最終的には励起状態となるため、発光に寄与しない無効電流が低減されるため、高効率特性が得られる。 As shown in FIG. 8, the use of an element structure having a hole blocking layer 256 in the third light emitting layer 243 leads to higher efficiency. The HOMO energy position 257 of the hole blocking material is preferably larger than the HOMO energy position 248 of the third host material. Here, the HOMO of the host material refers to the HOMO of a thin film formed of the host material. In that case, the holes propagated in the third light-emitting layer remain at the interface between the third light-emitting layer and the hole blocking layer 256 and finally become an excited state, so that the reactive current that does not contribute to light emission is reduced. Therefore, high efficiency characteristics can be obtained.
 次に、本発明の別実施形態を説明する。図5に2つの発光層を有する有機発光素子のエネルギー準位概念図を示す。 Next, another embodiment of the present invention will be described. FIG. 5 shows a conceptual diagram of energy levels of an organic light emitting device having two light emitting layers.
 図5において、有機層105は第1の発光層341、及び第2の発光層342で構成されている。第1の発光層341は第1のホスト材料に第1のエミッタと第2のエミッタが分散されている。第2の発光層342は第2のホスト材料に第3のエミッタが分散されている。 In FIG. 5, the organic layer 105 includes a first light emitting layer 341 and a second light emitting layer 342. In the first light-emitting layer 341, a first emitter and a second emitter are dispersed in a first host material. In the second light-emitting layer 342, the third emitter is dispersed in the second host material.
 始めに、正孔の発光層内における輸送について説明する。第1のホスト材料のHOMOのエネルギー位置344は、第1のエミッタ分子のHOMOのエネルギー位置345、第2のエミッタ分子のHOMOのエネルギー位置347に比べて小さい。そのため、第1の発光層341に注入された正孔は第1のホスト分子間を伝導する。第2のホスト材料のHOMOのエネルギー位置346は第3のエミッタ分子のHOMOのエネルギー位置349に比べて小さい。そのため、第2の発光層342に注入された正孔は第3のホスト分子間を伝導する。 First, the transport of holes in the light emitting layer will be described. The HOMO energy position 344 of the first host material is smaller than the HOMO energy position 345 of the first emitter molecule and the HOMO energy position 347 of the second emitter molecule. Therefore, the holes injected into the first light emitting layer 341 conduct between the first host molecules. The HOMO energy position 346 of the second host material is smaller than the HOMO energy position 349 of the third emitter molecule. Therefore, the holes injected into the second light emitting layer 342 are conducted between the third host molecules.
 次に、電子の発光層内における輸送について説明する。第2のホスト材料のLUMOのエネルギー位置352は、第3のエミッタ分子のLUMOのエネルギー位置355に比べて小さい。そのため、第2の発光層342に注入された電子は第3のエミッタ分子間を伝導する。第1のホスト材料のLUMOのエネルギー位置350は第1のエミッタ分子のLUMOのエネルギー位置351、第2のエミッタ分子のLUMOのエネルギー位置353に比べて小さく、第1の発光層341に注入された電子は第1のエミッタ分子間、第2のエミッタ分子間、或いは、第1のエミッタ分子と第2のエミッタ分子間を伝導する。第1の発光層、及び第2の発光層とも、電子はエミッタ分子間を伝導する。伝導特性を向上させるためには、エミッタの濃度を高くする必要がある。具体的には、10%以上が望ましい。 Next, the transport of electrons in the light emitting layer will be described. The LUMO energy position 352 of the second host material is smaller than the LUMO energy position 355 of the third emitter molecule. Therefore, the electrons injected into the second light emitting layer 342 are conducted between the third emitter molecules. The LUMO energy position 350 of the first host material is smaller than the LUMO energy position 351 of the first emitter molecule and the LUMO energy position 353 of the second emitter molecule, and is injected into the first light emitting layer 341. The electrons are conducted between the first emitter molecules, between the second emitter molecules, or between the first emitter molecule and the second emitter molecule. In both the first light emitting layer and the second light emitting layer, electrons are conducted between the emitter molecules. In order to improve the conduction characteristics, it is necessary to increase the concentration of the emitter. Specifically, 10% or more is desirable.
 上記正孔、電子の輸送から、各発光層内におけるキャリアの再結合は以下の様になる。第1の発光層341では、注入された電子は第1のエミッタ或いは第2のエミッタを伝導する。アニオン状態となった第1のエミッタ分子のHOMOのエネルギー位置345′は低エネルギー化し、第1のホスト材料のHOMOのエネルギー位置より小さくなり、正孔をトラップしやすくなる。 From the transport of holes and electrons, the recombination of carriers in each light emitting layer is as follows. In the first light emitting layer 341, the injected electrons are conducted through the first emitter or the second emitter. The energy position 345 ′ of the HOMO of the first emitter molecule in the anion state is lowered and becomes smaller than the energy position of the HOMO of the first host material, so that holes are easily trapped.
 また、アニオン状態となった第2のエミッタ分子のHOMOのエネルギー位置347′は低エネルギー化し、第1のホスト材料のHOMOのエネルギー位置より小さくなり、正孔とトラップしやすくなる。その結果、第1のエミッタのアニオン状態或いは第2のエミッタのアニオン状態から励起状態が生成される。我々のシミュレーションの検討結果によると、三重項燐光エミッタ分子では、カチオン状態が不安定で分解しやすい。第1の発光層341では、エミッタのカチオン状態を経由しないで励起状態が生成されるので、エミッタ分子の分解による劣化が抑制されて、高信頼性が確保できる。第2の発光層342においても、アニオン状態となった第3のエミッタ分子のHOMOのエネルギー位置349′は低エネルギー化し、第2のホスト材料のHOMOのエネルギー位置より小さくなり、正孔とトラップしやすくなる。その結果、第3のエミッタのアニオン状態から励起状態が生成される。そのため、第3のエミッタのカチオン状態を経由しないで再結合状態が形成されるため、高信頼性が確保できる。 In addition, the HOMO energy position 347 ′ of the second emitter molecule in an anionic state is lowered in energy, and becomes smaller than the HOMO energy position of the first host material, and is easily trapped with holes. As a result, an excited state is generated from the anion state of the first emitter or the anion state of the second emitter. According to our simulation results, the triplet phosphorescent emitter molecule has an unstable cation state and is easily decomposed. In the first light-emitting layer 341, an excited state is generated without passing through the cation state of the emitter, so that deterioration due to decomposition of the emitter molecules is suppressed, and high reliability can be ensured. Also in the second light-emitting layer 342, the HOMO energy position 349 ′ of the third emitter molecule in an anionic state is reduced in energy and becomes smaller than the HOMO energy position of the second host material, and traps with holes. It becomes easy. As a result, an excited state is generated from the anion state of the third emitter. Therefore, since the recombination state is formed without passing through the cation state of the third emitter, high reliability can be ensured.
 図9に示した様に、第2の発光層342に正孔阻止層356を設けた素子構成を用いると、高効率化に繋がる。正孔阻止材料のHOMOのエネルギー位置357は第2のホスト材料のHOMOより大きい値が望ましい。その場合、第2の発光層内を伝搬した正孔は、第2の発光層と正孔阻止層の界面で留まり、最終的には励起状態となるため、発光に寄与しない無効電流が低減されるため、高効率特性が得られる。 As shown in FIG. 9, the use of an element structure in which a hole blocking layer 356 is provided in the second light emitting layer 342 leads to higher efficiency. The energy position 357 of the HOMO of the hole blocking material is preferably larger than the HOMO of the second host material. In that case, the holes propagated in the second light-emitting layer remain at the interface between the second light-emitting layer and the hole blocking layer, and finally enter an excited state, so that the reactive current that does not contribute to light emission is reduced. Therefore, high efficiency characteristics can be obtained.
 次に、本発明の別実施形態を説明する。図6に2つの発光層を有する有機発光素子のエネルギー準位概念図を示す。 Next, another embodiment of the present invention will be described. FIG. 6 shows a conceptual diagram of energy levels of an organic light emitting device having two light emitting layers.
 図6において、有機層105の発光層は第1の発光層441、及び第2の発光層442で構成されている。図5と比べて、第1の発光層441と第2の発光層442の積層順が異なっている。第1の発光層441は第1のホスト材料に第1のエミッタと第2のエミッタが分散されている。第2の発光層442は第3のホスト材料に第3のエミッタが分散されている。 In FIG. 6, the light emitting layer of the organic layer 105 includes a first light emitting layer 441 and a second light emitting layer 442. Compared with FIG. 5, the stacking order of the first light-emitting layer 441 and the second light-emitting layer 442 is different. In the first light-emitting layer 441, a first emitter and a second emitter are dispersed in a first host material. In the second light-emitting layer 442, the third emitter is dispersed in the third host material.
 始めに、正孔の発光層内における輸送について説明する。第2のホスト材料のHOMOのエネルギー位置446は第3のエミッタ分子のHOMOのエネルギー位置449に比べて小さい。そのため、第2の発光層442に注入された正孔は第3のホスト分子間を伝導する。第1のホスト材料のHOMOのエネルギー位置444は、第1のエミッタ分子のHOMOのエネルギー位置445、第2のエミッタ分子のHOMOのエネルギー位置447に比べて小さい。そのため、第1の発光層441に注入された正孔は第1のホスト分子間を伝導する。 First, the transport of holes in the light emitting layer will be described. The HOMO energy position 446 of the second host material is smaller than the HOMO energy position 449 of the third emitter molecule. Therefore, the holes injected into the second light emitting layer 442 conduct between the third host molecules. The HOMO energy position 444 of the first host material is smaller than the HOMO energy position 445 of the first emitter molecule and the HOMO energy position 447 of the second emitter molecule. Therefore, the holes injected into the first light emitting layer 441 conduct between the first host molecules.
 次に、電子の発光層内における輸送について説明する。第1のホスト材料のLUMOのエネルギー位置450は第1のエミッタ分子のLUMOのエネルギー位置451、第2のエミッタ分子のLUMOのエネルギー位置453に比べて小さく、第1の発光層441に注入された電子は第1のエミッタ分子間、第2のエミッタ分子間、或いは、第1のエミッタ分子と第2のエミッタ分子間を伝導する。第2のホスト材料のLUMOのエネルギー位置452は、第3のエミッタ分子のLUMOのエネルギー位置455に比べて小さい。そのため、第2の発光層442に注入された電子は第3のエミッタ分子間を伝導する。第1の発光層、及び第2の発光層とも、電子はエミッタ間を伝導する。伝導特性を向上させるためには、エミッタの濃度を高くする必要がある。具体的には、10%以上が望ましい。 Next, the transport of electrons in the light emitting layer will be described. The LUMO energy position 450 of the first host material is smaller than the LUMO energy position 451 of the first emitter molecule and the LUMO energy position 453 of the second emitter molecule, and is injected into the first light emitting layer 441. The electrons are conducted between the first emitter molecules, between the second emitter molecules, or between the first emitter molecule and the second emitter molecule. The LUMO energy position 452 of the second host material is smaller than the LUMO energy position 455 of the third emitter molecule. Therefore, the electrons injected into the second light emitting layer 442 conduct between the third emitter molecules. In both the first light emitting layer and the second light emitting layer, electrons are conducted between the emitters. In order to improve the conduction characteristics, it is necessary to increase the concentration of the emitter. Specifically, 10% or more is desirable.
 上記正孔、電子の輸送から、各発光層内におけるキャリアの再結合は以下の様になる。第2の発光層442では、第3のエミッタのカチオン状態を経由しないで再結合状態が形成されるため、高信頼性が確保できる。また、第1の発光層441では、注入された電子は第1のエミッタ或いは第2のエミッタを伝導する。アニオン状態となった第1のエミッタ分子のHOMOのエネルギー位置445′は低エネルギー化し、第1のホスト材料のHOMOのエネルギー位置より小さくなり、正孔をトラップしやすくなる。また、アニオン状態となった第2のエミッタ分子のHOMOのエネルギー位置447′は低エネルギー化し、第1のホスト材料のHOMOのエネルギー位置より小さくなり、正孔とトラップしやすくなる。その結果、第1のエミッタのアニオン状態或いは第2のエミッタのアニオン状態から励起状態が生成される。我々のシミュレーションの検討結果によると、三重項燐光エミッタ分子では、カチオン状態が不安定で分解しやすい。第1の発光層441では、アニオン状態となった第1のエミッタ分子のHOMOのエネルギー位置445′は低エネルギー化し、第1のホスト材料のHOMOのエネルギー位置444より小さくなり、正孔とトラップしやすくなる。また、アニオン状態となった第2のエミッタ分子のHOMOのエネルギー位置447′は低エネルギー化し、第1のホスト材料のHOMOのエネルギー位置444より小さくなり、正孔とトラップしやすくなる。その結果、第1、第2のエミッタのアニオン状態から励起状態が生成される。そのため、エミッタのカチオン状態を経由しないで励起状態が生成されるので、エミッタ分子の分解による劣化が抑制されて、高信頼性が確保できる。 From the transport of holes and electrons, the recombination of carriers in each light emitting layer is as follows. In the second light-emitting layer 442, a recombination state is formed without passing through the cation state of the third emitter, so that high reliability can be ensured. In the first light emitting layer 441, the injected electrons are conducted through the first emitter or the second emitter. The energy position 445 ′ of the HOMO of the first emitter molecule in the anion state is lowered and becomes smaller than the energy position of the HOMO of the first host material, so that holes are easily trapped. In addition, the HOMO energy position 447 ′ of the second emitter molecule in an anionic state is lowered in energy, and becomes smaller than the HOMO energy position of the first host material, and is easily trapped with holes. As a result, an excited state is generated from the anion state of the first emitter or the anion state of the second emitter. According to our simulation results, the triplet phosphorescent emitter molecule has an unstable cation state and is easily decomposed. In the first light-emitting layer 441, the HOMO energy position 445 ′ of the first emitter molecule in an anionic state is reduced in energy and becomes smaller than the HOMO energy position 444 of the first host material, and traps with holes. It becomes easy. In addition, the HOMO energy position 447 ′ of the second emitter molecule in an anionic state is reduced in energy, and becomes smaller than the HOMO energy position 444 of the first host material, so that it is easy to trap holes. As a result, an excited state is generated from the anion state of the first and second emitters. Therefore, an excited state is generated without passing through the cation state of the emitter, so that deterioration due to decomposition of the emitter molecule is suppressed, and high reliability can be secured.
 図10に示した様に、第1の発光層441の隣に正孔阻止層456を設けた素子構成を用いると、高効率化に繋がる。正孔阻止材料のHOMOのエネルギー位置457は第1のホスト材料のHOMOのエネルギー位置444より大きい値が望ましい。その場合、第1の発光層内を伝搬した正孔は、第1の発光層と正孔阻止層456の界面で留まり、最終的には励起状態となるため、発光に寄与しない無効電流が低減されるため、高効率特性が得られる。 As shown in FIG. 10, using an element structure in which a hole blocking layer 456 is provided next to the first light emitting layer 441 leads to higher efficiency. The HOMO energy position 457 of the hole blocking material is preferably larger than the HOMO energy position 444 of the first host material. In that case, the holes propagated in the first light-emitting layer remain at the interface between the first light-emitting layer and the hole blocking layer 456, and finally enter an excited state, thereby reducing reactive current that does not contribute to light emission. Therefore, high efficiency characteristics can be obtained.
 次に、本発明の別実施形態を説明する。図7に1つの発光層を有する有機発光素子のエネルギー準位概念図を示す。 Next, another embodiment of the present invention will be described. FIG. 7 shows a conceptual diagram of energy levels of an organic light emitting element having one light emitting layer.
 図7において、有機層105は第1の発光層541で構成されている。第1の発光層541は第1のホスト材料に第1のエミッタ、第2のエミッタ、及び第3のエミッタが分散されている。第3のエミッタは第2の電極104側に偏在している。 In FIG. 7, the organic layer 105 is composed of a first light emitting layer 541. In the first light-emitting layer 541, a first emitter, a second emitter, and a third emitter are dispersed in a first host material. The third emitter is unevenly distributed on the second electrode 104 side.
 始めに、正孔の発光層内における輸送について説明する。第1のホスト材料のHOMOのエネルギー位置544は、第1のエミッタ分子のHOMOのエネルギー位置545、第2のエミッタ分子のHOMOのエネルギー位置547に比べて小さい。また、第3のエミッタ分子のHOMOのエネルギー位置549に比べて大きい。そのため、第1の発光層541に注入された正孔は第1のホスト分子間を伝導し、第2の電極側に偏在する第3のエミッタにトラップされる。 First, the transport of holes in the light emitting layer will be described. The HOMO energy position 544 of the first host material is smaller than the HOMO energy position 545 of the first emitter molecule and the HOMO energy position 547 of the second emitter molecule. Moreover, it is larger than the HOMO energy position 549 of the third emitter molecule. Therefore, the holes injected into the first light-emitting layer 541 are conducted between the first host molecules and trapped by the third emitter unevenly distributed on the second electrode side.
 次に、電子の発光層内における輸送について説明する。第1のホスト材料のLUMOのエネルギー位置550は、第3のエミッタ分子のLUMOのエネルギー位置555、第1のエミッタ分子のLUMOのエネルギー位置551、及び第2のエミッタ分子のLUMOのエネルギー位置553に比べて小さい。そのため、第1の発光層541に注入された電子は第3のエミッタ分子、第1のエミッタ分子、第2のエミッタ分子間、或いは第1のエミッタ分子と第2のエミッタ分子間を伝導する。第1の発光層では、電子はエミッタ間を伝導する。伝導特性を向上させるためには、エミッタの濃度を高くする必要がある。具体的には、10%以上が望ましい。 Next, the transport of electrons in the light emitting layer will be described. The LUMO energy position 550 of the first host material is the LUMO energy position 555 of the third emitter molecule, the LUMO energy position 551 of the first emitter molecule, and the LUMO energy position 553 of the second emitter molecule. Smaller than that. Therefore, the electrons injected into the first light-emitting layer 541 are conducted between the third emitter molecule, the first emitter molecule, the second emitter molecule, or between the first emitter molecule and the second emitter molecule. In the first light emitting layer, electrons are conducted between the emitters. In order to improve the conduction characteristics, it is necessary to increase the concentration of the emitter. Specifically, 10% or more is desirable.
 上記正孔、電子の輸送から、各発光層内におけるキャリアの再結合は以下の様になる。第1の発光層541では、注入された電子は第1のエミッタ或いは第2のエミッタを伝導する。アニオン状態となった第1のエミッタ分子のHOMOのエネルギー位置545′は低エネルギー化し、第1のホスト材料のHOMOのエネルギー位置より小さくなり、正孔をトラップしやすくなる。また、アニオン状態となった第2のエミッタ分子のHOMOのエネルギー位置547′は低エネルギー化し、第1のホスト材料のHOMOのエネルギー位置より小さくなり、正孔をトラップしやすくなる。その結果、第1のエミッタのアニオン状態或いは第2のエミッタのアニオン状態から励起状態が生成される。また、第2の電極104側に偏在する第3のエミッタにおいてもカチオン状態を経由しないで再結合状態が形成されるため、高信頼性が確保できる。第1の発光層では、第3のエミッタ分子のHOMOのエネルギー位置は第1のホスト材料のHOMOのエネルギー位置より小さく、第3のエミッタ分子のLUMOのエネルギー位置は第1のホスト材料のLUMOのエネルギー位置より大きい。そのため、第3のエミッタはバンドギャップの小さい、すなわち、発光中心波長の長い、赤色エミッタを用いることが望ましい。 From the transport of holes and electrons, the recombination of carriers in each light emitting layer is as follows. In the first light emitting layer 541, the injected electrons are conducted through the first emitter or the second emitter. The HOMO energy position 545 ′ of the first emitter molecule in an anionic state is lowered in energy, and becomes smaller than the HOMO energy position of the first host material, so that holes are easily trapped. In addition, the HOMO energy position 547 ′ of the second emitter molecule in an anionic state is reduced in energy, and becomes smaller than the HOMO energy position of the first host material, so that holes are easily trapped. As a result, an excited state is generated from the anion state of the first emitter or the anion state of the second emitter. In addition, since the recombination state is formed without passing through the cation state even in the third emitter unevenly distributed on the second electrode 104 side, high reliability can be ensured. In the first light emitting layer, the HOMO energy position of the third emitter molecule is smaller than the HOMO energy position of the first host material, and the LUMO energy position of the third emitter molecule is the LUMO energy position of the first host material. Greater than energy position. Therefore, it is desirable to use a red emitter having a small band gap, that is, a long emission center wavelength, as the third emitter.
 以下に有機層について説明する。 The organic layer will be described below.
<発光層ホスト>
 ホストとして、カルバゾール誘導体、フルオレン誘導体またはアリールシラン誘導体などを用いることが好ましい。効率の良い発光を得るためには青色エミッタの励起エネルギーよりも、ホストの励起エネルギーが十分大きいことが好ましい。なお、励起エネルギーは発光スペクトルを用いて測定される。
<Light emitting layer host>
As the host, it is preferable to use a carbazole derivative, a fluorene derivative, an arylsilane derivative, or the like. In order to obtain efficient light emission, the excitation energy of the host is preferably sufficiently larger than the excitation energy of the blue emitter. The excitation energy is measured using an emission spectrum.
<青色エミッタ>
 青色エミッタは400nmから500nmの間に室温におけるPLスペクトルの最大強度が存在する。青色エミッタの主骨格としては例えばペリレン、イリジウム錯体(Bis(3、5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(III)):FIrpicなど)があげられる。中でも発光特性の面で(化11)で示されるイリジウム錯体がより好ましい。式中X1はNを含む芳香族ヘテロ環を表し、X2は芳香族炭化水素環または芳香族ヘテロ環を表す。
<Blue emitter>
The blue emitter has a maximum PL spectrum intensity at room temperature between 400 nm and 500 nm. Examples of the main skeleton of the blue emitter include perylene and iridium complexes (Bis (3,5-difluoro-2- (2-pyrylyl) phenyl- (2-carbopyrylyl) iridium (III)): FIrpic and the like). Among them, the iridium complex represented by (Chemical Formula 11) is more preferable in terms of light emission characteristics. In the formula, X1 represents an aromatic heterocycle containing N, and X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 X1で表される芳香族ヘテロ環としては、キノリン環、イソキノリン環、ピリジン環、キノキサリン環、チアゾール環、ピリミジン環、ベンゾチアゾール環、オキサゾール環、ベンゾオキサゾール環、インドール環、イソインドール環などがあげられる。X2で表される芳香族炭化水素環または芳香族ヘテロ環としては、ベンゼン環、ナフタレン環、アントラセン環、チオフェン環、ベンゾチオフェン環、フラン環、ベンゾフラン環、フルオレン環などがあげられる。式中X3はアセチルアセトナート誘導体、ピコリネート誘導体、テトラキスピラゾリルボレート誘導体などが挙げられる。また、X3はX1-X2と同様でもかまわない。 Examples of the aromatic heterocycle represented by X1 include quinoline ring, isoquinoline ring, pyridine ring, quinoxaline ring, thiazole ring, pyrimidine ring, benzothiazole ring, oxazole ring, benzoxazole ring, indole ring and isoindole ring. It is done. Examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by X2 include a benzene ring, naphthalene ring, anthracene ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, and fluorene ring. In the formula, X3 includes acetylacetonate derivatives, picolinate derivatives, tetrakispyrazolyl borate derivatives and the like. X3 may be the same as X1-X2.
 発光効率やキャリア伝導の観点から、青色エミッタの濃度はホストに対し10wt%以上が好ましい。青色エミッタの重量平均分子量は500以上3000以下が望ましい。 From the viewpoint of luminous efficiency and carrier conduction, the concentration of the blue emitter is preferably 10 wt% or more with respect to the host. The weight average molecular weight of the blue emitter is preferably 500 or more and 3000 or less.
<緑色エミッタ>
 緑色エミッタは500nmから590nmの間に室温におけるPLスペクトルの最大強度が存在する。緑色エミッタの主骨格としては、例えばクマリンおよびその誘導体、イリジウム錯体(Tris(2-phenylpyridine)iridium(III):以下Ir(ppy)3、など)があげられる。中でも発光特性の面で(化11)で示されるイリジウム錯体がより好ましい。式中X1はNを含む芳香族ヘテロ環を表し、X2は芳香族炭化水素環または芳香族ヘテロ環を表す。
<Green emitter>
The green emitter has a maximum PL spectrum intensity at room temperature between 500 nm and 590 nm. Examples of the main skeleton of the green emitter include coumarin and derivatives thereof, and iridium complexes (Tris (2-phenylpyridine) iridium (III): hereinafter Ir (ppy) 3 , etc.). Among them, the iridium complex represented by (Chemical Formula 11) is more preferable in terms of light emission characteristics. In the formula, X1 represents an aromatic heterocycle containing N, and X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle.
 X1で表される芳香族ヘテロ環としては、キノリン環、イソキノリン環、ピリジン環、キノキサリン環、チアゾール環、ピリミジン環、ベンゾチアゾール環、オキサゾール環、ベンゾオキサゾール環、インドール環、イソインドール環などがあげられる。X2で表される芳香族炭化水素環または芳香族ヘテロ環としては、ベンゼン環、ナフタレン環、アントラセン環、チオフェン環、ベンゾチオフェン環、フラン環、ベンゾフラン環、フルオレン環などがあげられる。X3はアセチルアセトナート誘導体、X1-X2と同様のものなどが挙げられる。 Examples of the aromatic heterocycle represented by X1 include quinoline ring, isoquinoline ring, pyridine ring, quinoxaline ring, thiazole ring, pyrimidine ring, benzothiazole ring, oxazole ring, benzoxazole ring, indole ring and isoindole ring. It is done. Examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by X2 include a benzene ring, naphthalene ring, anthracene ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, and fluorene ring. X3 is an acetylacetonate derivative, and the same as X1-X2.
 前述した様に、緑色エミッタ分子のHOMOのエネルギー位置は同エミッタが添加されるホスト材料のHOMOのエネルギー位置より大きいことが望ましい。また、緑色エミッタに電子が供給されたアニオン状態のHOMOのエネルギー位置は同エミッタが添加されるホスト材料のHOMOのエネルギー位置より小さいことが望ましい。具体的な例として、(化14)、(化15)、(化16)が挙げられる。 As described above, the HOMO energy position of the green emitter molecule is preferably larger than the HOMO energy position of the host material to which the emitter is added. Further, it is desirable that the energy position of the anionic HOMO in which electrons are supplied to the green emitter is smaller than the energy position of the HOMO of the host material to which the emitter is added. Specific examples include (Chemical Formula 14), (Chemical Formula 15), and (Chemical Formula 16).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 緑色エミッタ分子のHOMOのエネルギー位置及びホスト材料のHOMOのエネルギー位置について、中性状態では、
  LUMO(host1)<LUMO(emit1)
 カチオン状態では、
  LUMO(host1)≧LUMO(emit1)
の関係を満たす。この関係は、青色エミッタ分子のHOMOのエネルギー位置及びホスト材料のHOMOのエネルギー位置についても成り立つ。
Regarding the HOMO energy position of the green emitter molecule and the HOMO energy position of the host material,
LUMO (host1) <LUMO (emit1)
In the cationic state,
LUMO (host1) ≧ LUMO (emit1)
Satisfy the relationship. This relationship also holds for the HOMO energy position of the blue emitter molecule and the HOMO energy position of the host material.
 発光効率、青色エミッタからのエネルギー移動の抑制およびキャリア伝導の観点から、緑色エミッタの濃度はホストに対し1wt%以下が好ましい。緑色エミッタの重量平均分子量は500以上3000以下が望ましい。 From the viewpoint of luminous efficiency, suppression of energy transfer from the blue emitter, and carrier conduction, the concentration of the green emitter is preferably 1 wt% or less with respect to the host. The weight average molecular weight of the green emitter is preferably 500 or more and 3000 or less.
<赤色エミッタ>
 赤色エミッタは590nmから780nmの間に室温におけるPLスペクトルの最大強度が存在する。赤色エミッタの主骨格としては、例えばルブレン、(E)-2-(2-(4-(dimethylamino)styryl)-6-methyl-4H-pyran-4-ylidene)malononitrile(DCM)およびその誘導体、イリジウム錯体(Bis(1-phenylisoquinoline)(acetylacetonate)iridium(III)など)、オスミウム錯体、ユーロピウム錯体があげられる。中でも発光特性の面で(化11)で示されるイリジウム錯体がより好ましい。式中X1はNを含む芳香族ヘテロ環を表し、X2は芳香族炭化水素環または芳香族ヘテロ環を表す。
<Red emitter>
The red emitter has a maximum PL spectrum intensity at room temperature between 590 nm and 780 nm. The main skeleton of the red emitter includes, for example, rubrene, (E) -2- (2- (4- (dimethylamino) styryl) -6-methyl-4H-pyran-4-ylidene) malononitrile (DCM) and its derivatives, iridium Complexes (such as Bis (1-phenylisoquinoline) (acetylacetonate) iridium (III)), osmium complexes, and europium complexes can be given. Among them, the iridium complex represented by (Chemical Formula 11) is more preferable in terms of light emission characteristics. In the formula, X1 represents an aromatic heterocycle containing N, and X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle.
 X1で表される芳香族ヘテロ環としては、キノリン環、イソキノリン環、ピリジン環、キノキサリン環、チアゾール環、ピリミジン環、ベンゾチアゾール環、オキサゾール環、ベンゾオキサゾール環、インドール環、イソインドール環などがあげられる。X2で表される芳香族炭化水素環または芳香族ヘテロ環としては、ベンゼン環、ナフタレン環、アントラセン環、チオフェン環、ベンゾチオフェン環、フラン環、ベンゾフラン環、フルオレン環などがあげられる。X3はアセチルアセトナート誘導体などが好ましい。 Examples of the aromatic heterocycle represented by X1 include quinoline ring, isoquinoline ring, pyridine ring, quinoxaline ring, thiazole ring, pyrimidine ring, benzothiazole ring, oxazole ring, benzoxazole ring, indole ring and isoindole ring. It is done. Examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by X2 include a benzene ring, naphthalene ring, anthracene ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, and fluorene ring. X3 is preferably an acetylacetonate derivative or the like.
 青色エミッタからのエネルギー移動の抑制およびキャリア伝導の観点から、赤色エミッタの濃度はホストに対し1wt%以下が好ましい。赤色エミッタの重量平均分子量は500以上3000以下が望ましい。 From the viewpoint of suppressing energy transfer from the blue emitter and carrier conduction, the concentration of the red emitter is preferably 1 wt% or less with respect to the host. The weight average molecular weight of the red emitter is preferably 500 or more and 3000 or less.
<正孔注入層>
 正孔注入層は発光効率や寿命を改善する目的で使用される。また、特に必須ではないが、陽極の凹凸を緩和する目的で使用される。正孔注入層を単層もしくは複数層設けてもよい。正孔注入層としては、PEDOT(ポリ(3、4-エチレンジオキシチオフェン)):PSS(ポリスチレンスルホネート)等の導電性高分子が好ましい。その他にも、ポリピロール系やトリフェニルアミン系のポリマー材料を用いることができる。また、低分子(重量平均分子量10000以下)材料系と組合せてよく用いられる、フタロシアニン類化合物やスターバーストアミン系化合物も適用可能である。
<Hole injection layer>
The hole injection layer is used for the purpose of improving luminous efficiency and lifetime. Moreover, although it is not essential, it is used for the purpose of relaxing the unevenness of the anode. A single hole injection layer or a plurality of hole injection layers may be provided. The hole injection layer is preferably a conductive polymer such as PEDOT (poly (3,4-ethylenedioxythiophene)): PSS (polystyrene sulfonate). In addition, polypyrrole-based or triphenylamine-based polymer materials can be used. Further, phthalocyanine compounds and starburst amine compounds that are often used in combination with a low molecular weight (weight average molecular weight 10,000 or less) material system are also applicable.
<正孔輸送層>
 正孔輸送層は発光層に正孔を供給する層である。広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層を単層もしくは複数層設けてもよい。正孔輸送層としては、スターバーストアミン系化合物やスチルベン誘導体、ヒドラゾン誘導体、チオフェン誘導体、フルオレン誘導体などを用いることができる。また、これらの材料に限られるものではなく、これらの材料を2種以上併用しても差し支えない。正孔輸送層を低抵抗化し駆動電圧を低下させるために、正孔輸送層中に電子受容性材料を添加しても良い。
<Hole transport layer>
The hole transport layer is a layer that supplies holes to the light emitting layer. In a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. A single hole transport layer or a plurality of hole transport layers may be provided. As the hole transport layer, a starburst amine compound, a stilbene derivative, a hydrazone derivative, a thiophene derivative, a fluorene derivative, or the like can be used. Further, the present invention is not limited to these materials, and two or more of these materials may be used in combination. In order to lower the resistance of the hole transport layer and reduce the driving voltage, an electron accepting material may be added to the hole transport layer.
<電子阻止層>
 正孔輸送層と発光層の間に発光層内に電子を閉じ込める電子阻止層を設けてもよい。電子阻止層材料はLUMOのエネルギー位置が小さいことが望ましい。具体的には、TAPC((化1))やNPB((化2))が望ましいが、これらの材料に限定されるものではない。また、上記のうち併用できる材料が1種または2種以上電子阻止層に含まれていてもよい。
<Electron blocking layer>
An electron blocking layer for confining electrons in the light emitting layer may be provided between the hole transport layer and the light emitting layer. The electron blocking layer material preferably has a small LUMO energy position. Specifically, TAPC ((Chemical Formula 1)) and NPB ((Chemical Formula 2)) are desirable, but are not limited to these materials. Moreover, the material which can be used together among the above may be contained in the electron blocking layer of 1 type, or 2 or more types.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
<電子輸送層>
 電子輸送層は発光層に電子を供給する層である。広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層を単層もしくは複数層設けてもよい。この電子輸送層の材料としては、例えば、ビス(2-メチル-8-キノリノラト)-4-(フェニルフェノラト)アルミニウム(BAlq)や、トリス(8-キノリノラト)アルミニウム(Alq3)、Tris(2、4、6-trimethyl-3-(pyridin-3-yl)phenyl)borane(3TPYMB)、1、4-Bis(triphenylsilyl)benzene(UGH2)、オキサジアゾール誘導体、トリアゾール誘導体、フラーレン誘導体、フェナントロリン誘導体、キノリン誘導体、シロール誘導体などを用いることができる。電子輸送層を低抵抗化し素子の駆動電圧を低下させるために、電子輸送層中に電子供与性材料を添加しても良い。
<Electron transport layer>
The electron transport layer is a layer that supplies electrons to the light emitting layer. In a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. A single layer or a plurality of electron transport layers may be provided. Examples of the material for the electron transport layer include bis (2-methyl-8-quinolinolato) -4- (phenylphenolato) aluminum (BAlq), tris (8-quinolinolato) aluminum (Alq 3 ), Tris (2 4,6-trimethyl-3- (pyridin-3-yl) phenyl) borane (3TPYMB), 1,4-Bis (triphenylsilyl) benzene (UGH2), oxadiazole derivatives, triazole derivatives, fullerene derivatives, phenanthroline derivatives, A quinoline derivative, a silole derivative, or the like can be used. In order to lower the resistance of the electron transport layer and reduce the driving voltage of the device, an electron donating material may be added to the electron transport layer.
<正孔阻止層>
 発光層と電子輸送層の間に発光層内に正孔を閉じ込めるため、正孔阻止層を設けてもよい。正孔阻止層材料はHOMOのエネルギー位置が深いことが望ましい。具体的には、3TPYMB((化3))やAlq3((化4))が挙げられるが、これらの材料に限定されるものではない。また、上記のうち併用できる材料が1種または2種以上正孔阻止層に含まれていてもよい。
<Hole blocking layer>
In order to confine holes in the light emitting layer between the light emitting layer and the electron transport layer, a hole blocking layer may be provided. The hole blocking layer material preferably has a deep HOMO energy position. Specific examples include 3TPYMB ((Chemical Formula 3)) and Alq 3 ((Chemical Formula 4)), but are not limited to these materials. Moreover, the material which can be used together among the above may be contained in the 1 or 2 or more types of hole-blocking layer.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
<電子注入層>
 電子注入層は陰極から電子輸送層への電子注入効率を向上させる。具体的には、弗化リチウム、弗化マグネシウム、弗化カルシウム、弗化ストロンチウム、弗化バリウム、酸化マグネシウム、酸化アルミニウムが望ましい。また、もちろんこれらの材料に限られるわけではなく、また、これらの材料を2種以上併用しても差し支えない。
<Electron injection layer>
The electron injection layer improves the electron injection efficiency from the cathode to the electron transport layer. Specifically, lithium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, magnesium oxide, and aluminum oxide are desirable. Of course, the material is not limited to these materials, and two or more of these materials may be used in combination.
<基板>
 第1の基板101および第2の基板102として、ガラス基板、金属基板、SiO2、SiNx、Al23等の無機材料を形成したプラスチック基板等が挙げられる。金属基板材料としては、ステンレス、アロイなどの合金が挙げられる。プラスチック基板材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、ポリサルフォン、ポリカーボネート、ポリイミド等が挙げられる。
<Board>
Examples of the first substrate 101 and the second substrate 102 include a glass substrate, a metal substrate, a plastic substrate on which an inorganic material such as SiO 2 , SiN x , and Al 2 O 3 is formed. Examples of the metal substrate material include alloys such as stainless steel and alloy. Examples of the plastic substrate material include polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polysulfone, polycarbonate, and polyimide.
 <陽極>
 陽極材料としては、透明性と高い仕事関数を有する材料であれば用いることができる。具体的には、ITO、IZOなどの導電性酸化物や、薄いAgなどの仕事関数の大きい金属が挙げられる。電極のパターン形成は、一般的にはガラス等の基板上にホトリソグラフィーなどを用いて行うことができる。
<Anode>
As the anode material, any material having transparency and a high work function can be used. Specifically, conductive oxides such as ITO and IZO and metals having a large work function such as thin Ag can be used. In general, the electrode pattern can be formed on a substrate such as glass by using photolithography.
<陰極>
 陰極材料は、発光層からの光を反射するための反射電極である。具体的には、LiFとAlの積層体やMg:Ag合金などが好適に用いられる。また、これらの材料に限定されるものではなく、例えばLiFの代わりとして、Cs化合物、Ba化合物、Ca化合物などを用いることができる。
<Cathode>
The cathode material is a reflective electrode for reflecting light from the light emitting layer. Specifically, a laminate of LiF and Al, an Mg: Ag alloy, or the like is preferably used. Moreover, it is not limited to these materials, For example, a Cs compound, Ba compound, Ca compound etc. can be used instead of LiF.
 以下に具体的な実施例を示して、本願発明の内容をさらに詳細に説明する。 The contents of the present invention will be described in more detail below by showing specific examples.
 本発明の第1の実施例として、図3、図4に示す3つの発光層を有する有機発光素子を蒸着法を用いて、以下の手順にて作製した。 As a first example of the present invention, an organic light-emitting device having three light-emitting layers shown in FIGS. 3 and 4 was fabricated by the following procedure using a vapor deposition method.
 ITO(150nm)電極付ガラス基板を、アセトンに浸して10分間超音波洗浄を行った。次に、純水を用いた超音波スピン洗浄機を用いて、純水洗浄及び回転乾燥を行った。その後、ホットプレートを用いて、大気雰囲気で基板を200℃10分間加熱した。加熱後、基板を10分間冷却し、UV/O3処理を照射強度8mW/cm2にて30分間行った。 A glass substrate with an ITO (150 nm) electrode was immersed in acetone and subjected to ultrasonic cleaning for 10 minutes. Next, pure water cleaning and rotary drying were performed using an ultrasonic spin cleaning machine using pure water. Thereafter, the substrate was heated at 200 ° C. for 10 minutes in an air atmosphere using a hot plate. After heating, the substrate was cooled for 10 minutes, and UV / O 3 treatment was performed at an irradiation intensity of 8 mW / cm 2 for 30 minutes.
 これらの処理を施した基板上に、真空蒸着装置にて、正孔注入層としてα-NPD((化2))を形成した。正孔注入層の膜厚は5nmであった。 On the substrate subjected to these treatments, α-NPD ((Chemical Formula 2)) was formed as a hole injection layer by a vacuum deposition apparatus. The thickness of the hole injection layer was 5 nm.
 次に、基板上に正孔輸送層としてTAPC((化1))を形成した。正孔注入層の膜厚は85nmであった。 Next, TAPC ((Chemical Formula 1)) was formed as a hole transport layer on the substrate. The thickness of the hole injection layer was 85 nm.
 次に、正孔輸送層の上に、第1の発光層としてホスト材料TCZ-1((化5))に緑色エミッタ((化6))を1wt%ドープした膜厚10nmの有機膜を形成した。その上に、第2の発光層としてホスト材料mCP((化7))に青色エミッタFIr6((化8))を10wt%ドープした膜厚10nmの有機膜を形成した。その上に、第3の発光層としてホスト材料CBP((化9))に赤色エミッタ((化10))を1wt%ドープした膜厚10nmの有機膜を形成した。 Next, on the hole transport layer, an organic film having a thickness of 10 nm is formed as a first light emitting layer by doping the host material TCZ-1 ((Chemical Formula 5)) with 1 wt% of the green emitter (Chemical Formula 6). did. On top of that, an organic film having a thickness of 10 nm was formed by doping the host material mCP ((Chemical Formula 7)) with 10 wt% of the blue emitter FIr6 (Chemical Formula 8) as the second light emitting layer. On top of that, an organic film having a thickness of 10 nm was formed by doping the host material CBP ((Chemical Formula 9)) with 1 wt% of the red emitter (Chemical Formula 10) as the third light emitting layer.
 なお、ここでは、第1の発光層に緑色エミッタを、第2の発光層に青色エミッタを入れる構成としたが、それを反対にして第1の発光層に青色エミッタを、第2の発光層に緑色エミッタを入れる構成としても、本発明の有機発光素子を製造可能である。 Here, the green light emitter is placed in the first light emitting layer and the blue light emitter is put in the second light emitting layer. However, the blue light emitter is placed in the first light emitting layer and the second light emitting layer is reversed. The organic light emitting device of the present invention can also be manufactured with a configuration in which a green emitter is inserted in the green light emitter.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 次に、第3の発光層上に電子輸送層として3TPYMB((化3))膜を形成した。電子輸送層の膜厚は30nmであった。 Next, a 3TPYMB ((Chemical Formula 3)) film was formed as an electron transport layer on the third light-emitting layer. The film thickness of the electron transport layer was 30 nm.
 次に、正孔阻止層上に電子注入層としてLiFを形成した。電子注入層の膜厚は0.5nmであった。次に、電子注入層の上に陰極としてAlを蒸着した。陰極の膜厚は150nmであった。 Next, LiF was formed as an electron injection layer on the hole blocking layer. The thickness of the electron injection layer was 0.5 nm. Next, Al was deposited as a cathode on the electron injection layer. The film thickness of the cathode was 150 nm.
 最後に、光硬化樹脂からなる封止剤の付いた封止基板を用いて封止を行い、有機発光素子を作製した。 Finally, sealing was performed using a sealing substrate with a sealing agent made of a photo-curing resin, to produce an organic light emitting device.
 本有機発光素子では、第1の発光層及び第2の発光層において、ホスト材料のHOMOのエネルギー位置に比べて、エミッタ分子のHOMOのエネルギー位置が深いため、正孔はホスト材料間を伝搬する。また、ホスト材料のLUMOのエネルギー位置に比べて、エミッタ分子のLUMOのエネルギー位置が深いため、電子はエミッタでの捕獲・放出を繰り返して発光層を伝搬する。そのため、緑色エミッタ、青色エミッタの励起状態はカチオンを経由しないで生成されたため、エミッタの劣化が低減された。また、第3の発光層では、赤色エミッタのアニオンが多い状態で正孔が注入されるため、赤色エミッタの励起状態がカチオンを経由しないで生成されたため、エミッタの劣化が低減された。以上の効果により、本有機発光素子の寿命が向上した。 In the present organic light emitting device, in the first light emitting layer and the second light emitting layer, since the HOMO energy position of the emitter molecule is deeper than the HOMO energy position of the host material, holes propagate between the host materials. . Further, since the LUMO energy position of the emitter molecule is deeper than the LUMO energy position of the host material, electrons are repeatedly captured and emitted by the emitter and propagated through the light emitting layer. For this reason, the excited states of the green and blue emitters were generated without passing through cations, so that the deterioration of the emitters was reduced. Further, in the third light emitting layer, holes are injected in a state where there are many anions of the red emitter, so that the excited state of the red emitter was generated without passing through the cation, so that deterioration of the emitter was reduced. Due to the above effects, the lifetime of the organic light emitting device was improved.
 次に、本発明の第2の実施例として、図5、図6に示す2つの発光層を有する有機発光素子を蒸着法を用いて、以下の手順に従って作製した。 Next, as a second example of the present invention, an organic light-emitting device having two light-emitting layers shown in FIGS. 5 and 6 was fabricated according to the following procedure using a vapor deposition method.
 ITO電極付ガラス基板の前処理方法、正孔注入層及び正孔輸送層の形成方法は、実施例1と同様である。 The pretreatment method of the glass substrate with ITO electrode and the formation method of the hole injection layer and the hole transport layer are the same as in Example 1.
 次に、正孔輸送層の上に第1の発光層としてホスト材料TCZ-1((化5))に緑色エミッタ((化12))を10wt%と赤色エミッタ((化10))を1wt%ドープした有機膜を形成した。第1発光層の膜厚は15nmであった。次に、第1の発光層に第2の発光層としてホスト材料mCP((化7))に青色エミッタFIr6((化8))を10wt%ドープした膜厚15nmの有機膜を形成した。その上に、電子輸送層、電子注入層、陰極、封止形成方法、条件は実施例1と同様である。 Next, 10 wt% of the green emitter ((Chemical Formula 12)) and 10 wt% of the red emitter ((Chemical Formula 10)) are added to the host material TCZ-1 ((Chemical Formula 5)) as the first light emitting layer on the hole transport layer. % Doped organic film was formed. The thickness of the first light emitting layer was 15 nm. Next, an organic film having a film thickness of 15 nm was formed by doping the host material mCP ((Chemical Formula 7)) with 10 wt% of the blue emitter FIr6 ((Chemical Formula 8)) as the second light emitting layer in the first light emitting layer. In addition, the electron transport layer, electron injection layer, cathode, sealing formation method, and conditions are the same as in Example 1.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本有機発光素子では、第1の発光層において、ホスト材料のHOMOのエネルギー位置よりエミッタ分子のHOMOのエネルギー位置が深く、ホスト材料のLUMOのエネルギー位置よりエミッタ分子のLUMOのエネルギー位置が深いため、緑色エミッタ、赤色エミッタの励起状態はカチオンを経由しないで生成され、エミッタの劣化が低減された。また、第3の発光層でも青色エミッタの励起状態がカチオンを経由しないで生成され、エミッタの劣化が低減された。以上の効果により、本有機発光素子の寿命が向上した。 In the present organic light emitting device, in the first light emitting layer, the HOMO energy position of the emitter molecule is deeper than the HOMO energy position of the host material, and the LUMO energy position of the emitter molecule is deeper than the LUMO energy position of the host material. The excited states of the green and red emitters were generated without passing through cations, and the deterioration of the emitters was reduced. In the third light emitting layer, the excited state of the blue emitter is generated without passing through the cation, and the deterioration of the emitter is reduced. Due to the above effects, the lifetime of the organic light emitting device was improved.
 次に、本発明の第3の実施例として、図7に示す1つの発光層を有する有機発光素子を塗布法を用いて、以下の手順に従って作製した。 Next, as a third example of the present invention, an organic light-emitting device having one light-emitting layer shown in FIG. 7 was prepared according to the following procedure using a coating method.
 下部電極にはITO電極、正孔輸送層にはポリマー系の材料を用いた。発光層にはホスト材料としてTCZ-1((化5))、青色エミッタとしてFIr6((化8))、緑色エミッタとして(化6)、赤色エミッタとして(化13)を用いた。それぞれの材料の重量比は100:10:1:1とした。 An ITO electrode was used for the lower electrode, and a polymer material was used for the hole transport layer. For the light emitting layer, TCZ-1 ((Chemical formula 5)) was used as the host material, FIr6 ((Chemical formula 8)) was used as the blue emitter, (Chemical formula 6) was used as the green emitter, and (Chemical formula 13) was used as the red emitter. The weight ratio of each material was 100: 10: 1: 1.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 これらのホスト材料、青色エミッタ、緑色エミッタ、赤色エミッタ材料をトルエンに溶解させて塗液を作製した。塗液の固形成分濃度は1wt.%に設定した。この塗液を用いて、スピンコート法により発光層を形成した。 These coating materials were prepared by dissolving the host material, blue emitter, green emitter, and red emitter material in toluene. The solid component concentration of the coating liquid was set to 1 wt.%. Using this coating solution, a light emitting layer was formed by spin coating.
 次に、電子輸送層を形成した。2-プロパノールに(化6)を溶解させた塗液を用いて、スピンコート法により電子輸送層を形成した。続いて、LiFとAlの積層体を電子注入層/陰極として形成し、目的の有機発光素子を作製した。封止方法は実施例1と同様である。 Next, an electron transport layer was formed. An electron transport layer was formed by spin coating using a coating solution in which (Chemical Formula 6) was dissolved in 2-propanol. Subsequently, a laminate of LiF and Al was formed as an electron injection layer / cathode, and a target organic light emitting device was produced. The sealing method is the same as in Example 1.
 本有機発光素子では、発光層において、赤色エミッタが置換基により、電子輸送層側となる上面側に局在した。ホスト材料のHOMOのエネルギー位置より青色エミッタ及び緑色エミッタ分子のHOMOのエネルギー位置が深く、ホスト材料のLUMOのエネルギー位置より青色エミッタ及び緑色エミッタ分子のLUMOのエネルギー位置が深いため、青色エミッタ、緑色エミッタの励起状態はカチオンを経由しないで生成され、エミッタの劣化が低減された。また、赤色エミッタ分子のHOMOのエネルギー位置は、ホスト材料のHOMOのエネルギー位置より浅いが、赤色エミッタ分子のLUMOのエネルギー位置がホスト材料のLUMOのエネルギー位置より深いため、赤色エミッタのアニオンを経て励起状態が形成され、エミッタの劣化が低減された。以上の効果により、本有機発光素子の寿命が向上した。 In the present organic light emitting device, in the light emitting layer, the red emitter was localized on the upper surface side serving as the electron transport layer side due to the substituent. Since the HOMO energy position of the blue emitter and the green emitter molecule is deeper than the HOMO energy position of the host material, and the LUMO energy position of the blue emitter and the green emitter molecule is deeper than the LUMO energy position of the host material, the blue emitter and the green emitter The excited state of was generated without going through the cation, and the deterioration of the emitter was reduced. In addition, the HOMO energy position of the red emitter molecule is shallower than the HOMO energy position of the host material, but the LUMO energy position of the red emitter molecule is deeper than the LUMO energy position of the host material. A state was formed and emitter degradation was reduced. Due to the above effects, the lifetime of the organic light emitting device was improved.
1、141、241、341、441、541 第1の発光層
2、142、242、342、442 第2の発光層
3 正孔輸送層14のHOMO
4 第1の発光層1のホスト材料のHOMO
5 第2の発光層2のホスト材料のHOMO
6 電子輸送層15のLUMO
7 第1の発光層1のホスト材料のLUMO
8 第2の発光層2のホスト材料のLUMO
9 正孔
10 電子
11 第1の発光層1及び第2の発光層2に分散されたエミッタ分子のLUMOのエネルギー位置
12 第1の発光層1及び第2の発光層2に分散されたエミッタ分子のHOMOのエネルギー位置
14 正孔輸送層
15 電子輸送層
101 第1の基板
102 第2の基板
103 第1の電極
104 第2の電極
105 有機層
143、243 第3の発光層
144、244、344、444、544 第1のホスト材料のHOMOのエネルギー位置
145、245、345、445、545 第1のエミッタ分子のHOMOのエネルギー位置146、246、346、446 第2のホスト材料のHOMOのエネルギー位置
147、247、347、447、547 第2のエミッタ分子のHOMOのエネルギー位置148、248 第3のホスト材料のHOMOのエネルギー位置
149、249、349、449、549 第3のエミッタ分子のHOMOのエネルギー位置150、250、350、450、550 第1のホスト材料のLUMOのエネルギー位置
151、251、351、451、551 第1のエミッタ分子のLUMOのエネルギー位置152、252、352、452 第2のホスト材料のLUMOのエネルギー位置
153、253、353、453、553 第2のエミッタ分子のLUMOのエネルギー位置154、254 第3のホスト材料のLUMOのエネルギー位置
155、255、355、455、555 第3のエミッタ分子のLUMOのエネルギー位置
1, 141, 241, 341, 441, 541 First light emitting layer 2, 142, 242, 342, 442 Second light emitting layer 3 HOMO of hole transport layer 14
4 HOMO of the host material of the first light emitting layer 1
5 HOMO of the host material of the second light emitting layer 2
6 LUMO of electron transport layer 15
7 LUMO of the host material of the first light emitting layer 1
8 LUMO of the host material of the second light emitting layer 2
9 hole 10 electron 11 LUMO energy position 12 of the emitter molecule dispersed in the first light emitting layer 1 and the second light emitting layer 2 emitter molecule dispersed in the first light emitting layer 1 and the second light emitting layer 2 HOMO energy position 14 hole transport layer 15 electron transport layer 101 first substrate 102 second substrate 103 first electrode 104 second electrode 105 organic layers 143, 243 third light emitting layers 144, 244, 344 445, 544 HOMO energy position of the first host material 145, 245, 345, 445, 545 HOMO energy position of the first emitter molecule 146, 246, 346, 446 HOMO energy position of the second host material 147, 247, 347, 447, 547 HOMO energy positions 148, 248 of the second emitter molecule HOMO energy positions 149, 249, 349, 449, 549 of the third material HOMO energy positions 150, 250, 350, 450, 550 of the third emitter molecule LUMO energy positions 151, 251, 351 of the first host material , 451, 551 LUMO energy position of the first emitter molecule 152, 252, 352, 452 LUMO energy position of the second host material 153, 253, 353, 453, 553 LUMO energy position of the second emitter molecule 154, 254 LUMO energy position of the third host material 155, 255, 355, 455, 555 LUMO energy position of the third emitter molecule

Claims (16)

  1.  陽極と、陰極と、
     前記陽極と前記陰極との間に順に配置された第1の発光層、第2の発光層、及び第3の発光層を有する有機発光素子であって、
     第1の発光層では、第1のホスト材料に第1のエミッタが分散され、
     第2の発光層では、第2のホスト材料に第2のエミッタが分散され、
     第3の発光層では、第3のホスト材料に第3のエミッタが分散され、
     前記第1の発光層では、正孔が発光層の第1のホスト材料間を伝導し、
     前記第2の発光層では、正孔が発光層の第2のホスト材料間を伝導し、
     前記第1の発光層では、電子が発光層の第1のエミッタ間を伝導し、
     前記第2の発光層では、電子が発光層の第2のエミッタ間を伝導し、
     前記第3の発光層では、電子が発光層の第3のエミッタ間を伝導することを特徴とする有機発光素子。
    An anode, a cathode,
    An organic light emitting device having a first light emitting layer, a second light emitting layer, and a third light emitting layer disposed in order between the anode and the cathode,
    In the first light emitting layer, the first emitter is dispersed in the first host material,
    In the second light emitting layer, the second emitter is dispersed in the second host material,
    In the third light emitting layer, the third emitter is dispersed in the third host material,
    In the first light emitting layer, holes are conducted between the first host materials of the light emitting layer,
    In the second light emitting layer, holes are conducted between the second host materials of the light emitting layer,
    In the first light emitting layer, electrons are conducted between the first emitters of the light emitting layer,
    In the second light emitting layer, electrons are conducted between the second emitters of the light emitting layer,
    In the third light emitting layer, an electron is conducted between the third emitters of the light emitting layer.
  2.  請求項1に記載の有機発光素子であって、
     前記第3の発光層では、正孔が第3のエミッタにトラップされることを特徴とする有機発光素子。
    The organic light-emitting device according to claim 1,
    In the third light emitting layer, the organic light emitting element is characterized in that holes are trapped by a third emitter.
  3.  請求項1に記載の有機発光素子であって、
     前記第1の発光層の正孔移動度が、前記第3の発光層の電子移動度より小さく、
     前記第2の発光層の正孔移動度が、前記第3の発光層の電子移動度より小さいことを特徴とする有機発光素子。
    The organic light-emitting device according to claim 1,
    The hole mobility of the first light emitting layer is smaller than the electron mobility of the third light emitting layer,
    The organic light emitting device, wherein the hole mobility of the second light emitting layer is smaller than the electron mobility of the third light emitting layer.
  4.  請求項1に記載の有機発光素子において、
     前記第1のホスト材料のHOMOをHOMO(host1)、
     前記第1のエミッタ分子のHOMOをHOMO(emit1)、
     前記第2のホスト材料のHOMOをHOMO(host2)、
     前記第2のエミッタ分子のHOMOをHOMO(emit2)、
    としたとき、下記式を満たすことを特徴とする有機発光素子。
      HOMO(host1)<HOMO(emit1)
      HOMO(host2)<HOMO(emit2)
    The organic light emitting device according to claim 1,
    HOMO of the first host material is HOMO (host 1),
    HOMO of the first emitter molecule is HOMO (emit1),
    HOMO of the second host material is HOMO (host 2),
    HOMO of the second emitter molecule is HOMO (emit2),
    An organic light-emitting element satisfying the following formula:
    HOMO (host1) <HOMO (emit1)
    HOMO (host2) <HOMO (emit2)
  5.  請求項2に記載の有機発光素子において、
     前記第3のホスト材料のHOMOをHOMO(host3)、
     前記第3のエミッタ分子のHOMOをHOMO(emit3)、
    としたとき、下記式を満たすことを特徴とする有機発光素子。
      HOMO(host3)>HOMO(emit3)
    The organic light emitting device according to claim 2,
    HOMO of the third host material is HOMO (host 3),
    The HOMO of the third emitter molecule is HOMO (emit3),
    An organic light-emitting element satisfying the following formula:
    HOMO (host3)> HOMO (emit3)
  6.  請求項1に記載の有機発光素子において、
     前記第1のホスト材料のLUMOをLUMO(host1)、
     前記第1のエミッタ分子のLUMOをLUMO(emit1)、
     前記第2のホスト材料のLUMOをLUMO(host2)、
     前記第2のエミッタ分子のLUMOをLUMO(emit2)、
     前記第3のホスト材料のLUMOをLUMO(host3)、
     前記第3のエミッタ分子のLUMOをLUMO(emit3)、
    としたとき、下記式を満たすことを特徴とする有機発光素子。
      LUMO(host1)<LUMO(emit1)
      LUMO(host2)<LUMO(emit2)
      LUMO(host3)<LUMO(emit3)
    The organic light emitting device according to claim 1,
    LUMO of the first host material is LUMO (host 1),
    The LUMO of the first emitter molecule is LUMO (emit1),
    LUMO of the second host material is LUMO (host 2),
    LUMO of the second emitter molecule is LUMO (emit2),
    LUMO of the third host material is LUMO (host 3),
    LUMO of the third emitter molecule is LUMO (emit3),
    An organic light-emitting element satisfying the following formula:
    LUMO (host1) <LUMO (emit1)
    LUMO (host2) <LUMO (emit2)
    LUMO (host3) <LUMO (emit3)
  7.  請求項1に記載の有機発光素子であって、
     正孔阻止層を有することを特徴とする有機発光素子。
    The organic light-emitting device according to claim 1,
    An organic light emitting device comprising a hole blocking layer.
  8.  陽極と、陰極と、
     前記陽極と前記陰極との間に順に配置された第1の発光層及び第2の発光層を有する有機発光素子であって、
     第1の発光層では、第1のホスト材料に第1のエミッタ及び第2のエミッタが分散され、
     第2の発光層では、第2のホスト材料に第3のエミッタが分散され、
     前記第1の発光層では、正孔が発光層の第1のホスト材料間を伝導し、
     前記第2の発光層では、正孔が発光層の第2のホスト材料間を伝導し、
     前記第1の発光層では、電子が発光層の第1のエミッタ間、第2のエミッタ分子間または第1のエミッタと第2のエミッタとの間を伝導し、
     前記第2の発光層では、電子が発光層の第3のエミッタ間を伝導することを特徴とする有機発光素子。
    An anode, a cathode,
    An organic light emitting device having a first light emitting layer and a second light emitting layer disposed in order between the anode and the cathode,
    In the first light emitting layer, the first emitter and the second emitter are dispersed in the first host material,
    In the second light emitting layer, the third emitter is dispersed in the second host material,
    In the first light emitting layer, holes are conducted between the first host materials of the light emitting layer,
    In the second light emitting layer, holes are conducted between the second host materials of the light emitting layer,
    In the first light emitting layer, electrons are conducted between the first emitters of the light emitting layer, between the second emitter molecules, or between the first emitter and the second emitter,
    In the second light-emitting layer, an electron is conducted between the third emitters of the light-emitting layer.
  9.  請求項8に記載の有機発光素子において、
     前記第1のホスト材料のHOMOをHOMO(host1)、
     前記第1のエミッタ分子のHOMOをHOMO(emit1)、
     前記第2のエミッタ分子のHOMOをHOMO(emit2)、
     前記第2のホスト材料のHOMOをHOMO(host2)、
     前記第3のエミッタ分子のHOMOをHOMO(emit3)、
    としたとき、下記式を満たすことを特徴とする有機発光素子。
      HOMO(host1)<HOMO(emit1)
      HOMO(host1)<HOMO(emit2)
      HOMO(host2)<HOMO(emit3)
    The organic light emitting device according to claim 8,
    HOMO of the first host material is HOMO (host 1),
    HOMO of the first emitter molecule is HOMO (emit1),
    HOMO of the second emitter molecule is HOMO (emit2),
    HOMO of the second host material is HOMO (host 2),
    The HOMO of the third emitter molecule is HOMO (emit3),
    An organic light-emitting element satisfying the following formula:
    HOMO (host1) <HOMO (emit1)
    HOMO (host1) <HOMO (emit2)
    HOMO (host2) <HOMO (emit3)
  10.  請求項8に記載の有機発光素子において、
     前記第1のホスト材料のLUMOをLUMO(host1)、
     前記第1のエミッタ分子のLUMOをLUMO(emit1)、
     前記第2のエミッタ分子のLUMOをLUMO(emit2)、
     前記第2のホスト材料のLUMOをLUMO(host2)、
     前記第3のエミッタ分子のLUMOをLUMO(emit3)、
    としたとき、下記式を満たすことを特徴とする有機発光素子。
      LUMO(host1)<LUMO(emit1)
      LUMO(host1)<LUMO(emit2)
      LUMO(host2)<LUMO(emit3)
    The organic light emitting device according to claim 8,
    LUMO of the first host material is LUMO (host 1),
    The LUMO of the first emitter molecule is LUMO (emit1),
    LUMO of the second emitter molecule is LUMO (emit2),
    LUMO of the second host material is LUMO (host 2),
    LUMO of the third emitter molecule is LUMO (emit3),
    An organic light-emitting element satisfying the following formula:
    LUMO (host1) <LUMO (emit1)
    LUMO (host1) <LUMO (emit2)
    LUMO (host2) <LUMO (emit3)
  11.  陽極と、陰極と、
     前記陽極と前記陰極との間に順に配置された第1の発光層を有する有機発光素子であって、
     第1の発光層では、第1のホスト材料に第1のエミッタ、第2のエミッタ及び第3のエミッタが分散され、
     前記第1の発光層では、正孔が第1のホスト分子間を伝導し、第2の電極側に偏在する第3のエミッタにトラップされ、
     前記第1の発光層では、電子が発光層の第1のエミッタ間、第2のエミッタ間、第1のエミッタと第2のエミッタ間、または第3のエミッタ間を伝導することを特徴とする有機発光素子。
    An anode, a cathode,
    An organic light-emitting device having a first light-emitting layer sequentially disposed between the anode and the cathode,
    In the first light emitting layer, the first emitter, the second emitter, and the third emitter are dispersed in the first host material,
    In the first light-emitting layer, holes are conducted between the first host molecules and trapped by a third emitter that is unevenly distributed on the second electrode side,
    In the first light emitting layer, electrons are conducted between the first emitter, the second emitter, the first emitter and the second emitter, or the third emitter of the light emitting layer. Organic light emitting device.
  12.  請求項11に記載の有機発光素子において、
     前記第1のホスト材料のHOMOをHOMO(host1)、
     前記第1のエミッタ分子のHOMOをHOMO(emit1)、
     前記第2のエミッタ分子のHOMOをHOMO(emit2)、
     前記第3のエミッタ分子のHOMOをHOMO(emit3)、
    としたとき、下記式を満たすことを特徴とする有機発光素子。
      HOMO(host1)<HOMO(emit1)
      HOMO(host1)<HOMO(emit2)
      HOMO(host1)>HOMO(emit3)
    The organic light emitting device according to claim 11,
    HOMO of the first host material is HOMO (host 1),
    HOMO of the first emitter molecule is HOMO (emit1),
    HOMO of the second emitter molecule is HOMO (emit2),
    The HOMO of the third emitter molecule is HOMO (emit3),
    An organic light-emitting element satisfying the following formula:
    HOMO (host1) <HOMO (emit1)
    HOMO (host1) <HOMO (emit2)
    HOMO (host1)> HOMO (emit3)
  13.  請求項11に記載の有機発光素子において、
     前記第1のホスト材料のLUMOをLUMO(host1)、
     前記第1のエミッタ分子のLUMOをLUMO(emit1)、
     前記第2のエミッタ分子のLUMOをLUMO(emit2)、
     前記第3のエミッタ分子のLUMOをLUMO(emit3)、
    としたとき、下記式を満たすことを特徴とする有機発光素子。
      LUMO(host1)<LUMO(emit1)
      LUMO(host1)<LUMO(emit2)
      LUMO(host1)<LUMO(emit3)
    The organic light emitting device according to claim 11,
    LUMO of the first host material is LUMO (host 1),
    The LUMO of the first emitter molecule is LUMO (emit1),
    LUMO of the second emitter molecule is LUMO (emit2),
    LUMO of the third emitter molecule is LUMO (emit3),
    An organic light-emitting element satisfying the following formula:
    LUMO (host1) <LUMO (emit1)
    LUMO (host1) <LUMO (emit2)
    LUMO (host1) <LUMO (emit3)
  14.  請求項1乃至13のいずれかに記載の有機発光素子において、
     前記第1のエミッタの濃度をm(emit1)、
     前記第2のエミッタの濃度をm(emit2)、
     前記第3のエミッタの濃度をm(emit3)、
    としたとき、以下の式を満たすことを特徴とする有機発光素子。
      m(emit1)≧10%
      m(emit2)≧10%
      m(emit3)≧10%
    The organic light emitting device according to any one of claims 1 to 13,
    The concentration of the first emitter is m (emit1),
    The concentration of the second emitter is m (emit2),
    The concentration of the third emitter is m (emit3),
    An organic light-emitting element satisfying the following formula:
    m (emit1) ≧ 10%
    m (emit2) ≧ 10%
    m (emit3) ≧ 10%
  15.  請求項1乃至7、11乃至13のいずれかに記載の有機発光素子において、
     前記第3のエミッタの発光色が赤色であることを特徴とする有機発光素子。
    The organic light emitting device according to any one of claims 1 to 7, 11 to 13,
    An organic light emitting element, wherein the emission color of the third emitter is red.
  16.  請求項1乃至7のいずれかに記載の有機発光素子において、
     前記第1のホスト材料のLUMOをLUMO(host1)、
     前記第1のエミッタ分子のLUMOをLUMO(emit1)、
     前記第2のホスト材料のLUMOをLUMO(host2)、
     前記第2のエミッタ分子のLUMOをLUMO(emit2)、
    としたとき、下記式を満たすことを特徴とする有機発光素子。
    中性状態では、
      LUMO(host1)<LUMO(emit1)
      LUMO(host2)<LUMO(emit2)
    カチオン状態では、
      LUMO(host1)≧LUMO(emit1)
      LUMO(host2)≧LUMO(emit2)
    The organic light emitting device according to any one of claims 1 to 7,
    LUMO of the first host material is LUMO (host 1),
    The LUMO of the first emitter molecule is LUMO (emit1),
    LUMO of the second host material is LUMO (host 2),
    LUMO of the second emitter molecule is LUMO (emit2),
    An organic light-emitting element satisfying the following formula:
    In the neutral state,
    LUMO (host1) <LUMO (emit1)
    LUMO (host2) <LUMO (emit2)
    In the cationic state,
    LUMO (host1) ≧ LUMO (emit1)
    LUMO (host2) ≧ LUMO (emit2)
PCT/JP2013/059819 2012-04-27 2013-04-01 Organic luminescent element WO2013161515A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012102002A JP2013229268A (en) 2012-04-27 2012-04-27 Organic light emitting element
JP2012-102002 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161515A1 true WO2013161515A1 (en) 2013-10-31

Family

ID=49482847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059819 WO2013161515A1 (en) 2012-04-27 2013-04-01 Organic luminescent element

Country Status (2)

Country Link
JP (1) JP2013229268A (en)
WO (1) WO2013161515A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200172562A1 (en) * 2018-12-04 2020-06-04 The University Of Hong Kong Transition metal luminescent complexes and methods of use
US10693094B2 (en) 2015-09-30 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
CN112310297A (en) * 2019-07-29 2021-02-02 环球展览公司 Color-stable multicolor OLED device structure
CN114057800A (en) * 2017-09-08 2022-02-18 北京夏禾科技有限公司 Organic luminescent material containing fluorine auxiliary ligand

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11145837B2 (en) 2014-12-17 2021-10-12 Universal Display Corporation Color stable organic light emitting diode stack
JP7059094B2 (en) * 2018-04-26 2022-04-25 キヤノン株式会社 Organic EL element, display device having it, image pickup device, lighting device, mobile body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034484A (en) * 2008-07-01 2010-02-12 Nippon Hoso Kyokai <Nhk> Organic electroluminescent element
JP2011103189A (en) * 2009-11-10 2011-05-26 Canon Inc Organic electroluminescence device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034484A (en) * 2008-07-01 2010-02-12 Nippon Hoso Kyokai <Nhk> Organic electroluminescent element
JP2011103189A (en) * 2009-11-10 2011-05-26 Canon Inc Organic electroluminescence device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693094B2 (en) 2015-09-30 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
CN114057800A (en) * 2017-09-08 2022-02-18 北京夏禾科技有限公司 Organic luminescent material containing fluorine auxiliary ligand
US20200172562A1 (en) * 2018-12-04 2020-06-04 The University Of Hong Kong Transition metal luminescent complexes and methods of use
CN112310297A (en) * 2019-07-29 2021-02-02 环球展览公司 Color-stable multicolor OLED device structure

Also Published As

Publication number Publication date
JP2013229268A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
JP5639181B2 (en) Organic light emitting device and light source device using the same
Kanagaraj et al. Small molecules in light‐emitting electrochemical cells: promising light‐emitting materials
JP5441654B2 (en) Organic electroluminescence device
KR102628129B1 (en) Material for organic electroluminescent element, and organic electroluminescent element
WO2013161515A1 (en) Organic luminescent element
EP3390547B1 (en) Ink composition of an organic functional material
JP6356060B2 (en) Organic ionic functional materials
JP5390441B2 (en) Organic electroluminescence device
JP5953237B2 (en) Organic electroluminescence device
JP2011171269A (en) Organic electric field light-emitting element
KR102360228B1 (en) Organic electro luminescence device
Xu et al. High efficiency and low roll‐off hybrid WOLEDs by using a deep blue aggregation‐induced emission material simultaneously as blue emitter and phosphor host
Ying et al. High‐performance white organic light‐emitting diodes with high efficiency, low efficiency roll‐off, and superior color stability/color rendering index by strategic design of exciplex hosts
JP2001319781A (en) Selecting method of organic luminous element material and organic luminous element using its material
JP5624932B2 (en) Organic light emitting device and light source device using the same
Yao et al. High efficiency and low roll-off all fluorescence white organic light-emitting diodes by the formation of interface exciplex
JP4915651B2 (en) Organic electroluminescence device
WO2013190982A1 (en) Organic light emitting layer material, coating liquid for organic light emitting layer formation using organic light emitting layer material, organic light emitting element using coating liquid for organic light emitting layer formation, light source device using organic light emitting element, and method for producing light emitting element
JP4915652B2 (en) Organic electroluminescence device
JP5668071B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT
WO2018180465A1 (en) Material for organic electroluminescence element, and organic electroluminescence element
JP4950632B2 (en) Organic electroluminescence device
JP5833614B2 (en) Organic electroluminescence device
WO2015092840A1 (en) Organic light-emitting element
KR20160040243A (en) Electro-optical device and the use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782306

Country of ref document: EP

Kind code of ref document: A1