WO2013161496A1 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
WO2013161496A1
WO2013161496A1 PCT/JP2013/059094 JP2013059094W WO2013161496A1 WO 2013161496 A1 WO2013161496 A1 WO 2013161496A1 JP 2013059094 W JP2013059094 W JP 2013059094W WO 2013161496 A1 WO2013161496 A1 WO 2013161496A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion element
magnetoelectric conversion
magnetic field
magnetoelectric
current path
Prior art date
Application number
PCT/JP2013/059094
Other languages
French (fr)
Japanese (ja)
Inventor
蛇口 広行
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Publication of WO2013161496A1 publication Critical patent/WO2013161496A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the present invention relates to a current sensor that detects a current to be measured flowing in a current path, and more particularly to a current sensor that detects magnetism of an induced magnetic field generated by a current flowing in a current path.
  • a current sensor that detects a measured current flowing in a current path (wire) is well known for controlling and monitoring various devices.
  • a current using a magnetic core that surrounds the current path and focuses the magnetic flux generated around the current path, and a magnetoelectric transducer that detects magnetism generated when current flows in the current path Sensors are well known.
  • FIG. 18 is a diagram schematically showing a configuration of a current detector 900 in the conventional example of Patent Document 1.
  • a current detector 900 shown in FIG. 18 includes a parasitic capacitance adjustment unit 910 provided on the mounting wiring board 909, and the parasitic capacitance adjustment unit 910 causes a connection between the conductor 902 and the wiring unit 940 wired on the mounting wiring board 909. It is said that malfunction of the circuit can be suppressed by setting the value of the parasitic capacitance (stray capacitance) to the same value.
  • the present invention solves the above-described problems, and an object of the present invention is to provide a current sensor capable of measuring a current value with high accuracy by reducing the influence of noise.
  • a current sensor for detecting a current path through which a current to be measured flows and a magnetic field of an induced magnetic field generated by a current flowing through the current path.
  • Surrounding the magnetic core provided with the first gap and the second gap, the first magnetoelectric conversion element provided in the first gap of the magnetic core, and the magnetic core A second magnetoelectric conversion element provided in the second gap, and an arithmetic device for calculating a difference in output between the first magnetoelectric conversion element and the second magnetoelectric conversion element, The angle formed by the direction of the first magnetic field applied to the magnetoelectric conversion element and the first magnetosensitive direction detected by the first magnetoelectric conversion element, and the induction magnetic field applied to the second magnetoelectric conversion element.
  • the direction of the second magnetic field and the second magnetoelectric transducer detect The angle formed by the two magnetic sensing directions is different, and the total capacitance between the current path and the first magnetoelectric transducer, and between the current path and the second magnetoelectric trans
  • the current sensor of the present invention is different in the angle formed between the direction of the first magnetic field and the first magnetosensitive direction and the angle formed between the direction of the second magnetic field and the second magnetosensitive direction. Since the total capacitance between the path and the first magnetoelectric conversion element is equal to the total capacitance between the current path and the second magnetoelectric conversion element, it is detected by the two magnetoelectric conversion elements. When the difference between different output values is calculated by the calculation device, the influence of noise caused by the capacitance can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected. Therefore, it is possible to provide a current sensor that can measure a current value with high accuracy.
  • the current sensor of the present invention is characterized in that a dielectric is provided between the current path and the magnetic core.
  • this dielectric since the dielectric is provided between the current path and the magnetic core, this dielectric allows the total capacitance between the current path and the first magnetoelectric transducer, the current path and the first The total capacitance between the two magnetoelectric conversion elements can be easily made equal, and the total capacitance of each can be made more equal. For this reason, when the difference between the different output values detected by the two magnetoelectric conversion elements is calculated by the calculation device, it is possible to subtract the influence of noise caused by the capacitance more accurately. As a result, the influence of noise that enters at the same timing can be further reduced, and only the signal can be detected more accurately.
  • the direction of the first magnetic field and the first magnetosensitive direction are parallel, and the direction of the second magnetic field and the second magnetosensitive direction are parallel. Yes.
  • the first magnetic field direction and the first magnetosensitive direction are parallel, and the second magnetic field direction and the second magnetosensitive direction are parallel.
  • the induced magnetic fields received by the first and second magnetoelectric conversion elements are the same, and the external magnetic fields received by the first and second magnetoelectric conversion elements at different angles are different.
  • the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced.
  • the current sensor of the present invention is characterized in that the direction of the first magnetic field is opposite to the direction of the second magnetic field.
  • the output value of one of the magnetoelectric transducers Becomes a positive value and the output value of the other magnetoelectric conversion element becomes a negative value, so that the maximum difference value between the output value of the first magnetoelectric conversion element and the output value of the second magnetoelectric conversion element is obtained.
  • the sensitivity of the current sensor can be increased by calculating the difference value between the outputs of the first and second magnetoelectric transducers with the computing device.
  • the current sensor of the present invention is characterized in that the direction of the first magnetic field and the first magnetosensitive direction are parallel, and the direction of the second magnetic field and the second magnetosensitive direction are orthogonal to each other. .
  • the magnetoelectric transducer since the direction of the first magnetic field and the first magnetosensitive direction are parallel to each other and the direction of the second magnetic field and the second magnetosensitive direction are orthogonal to each other, The magnetoelectric transducer no longer feels the magnetic field in the direction of the second magnetic field, but only the external magnetic field. Thus, the influence of the external magnetic field can be easily reduced by comparing the first magnetoelectric conversion element and the second magnetoelectric conversion element.
  • the current sensor of the present invention is a current sensor for detecting a current path through which a current to be measured flows and a magnetic field of an induced magnetic field generated by the current flowing through the current path, and surrounds the current path and is provided with a gap.
  • the angle formed by the first magnetosensitive direction detected by the conversion element, the direction of the magnetic field that is the induction magnetic field applied to the second magnetoelectric conversion element, and the second magnetosensitive direction detected by the second magnetoelectric conversion element The angle between the current path and the front And the capacitance of the overall between the first magneto-electric transducer, is characterized
  • the angle formed between the direction of the first magnetic field and the first magnetosensitive direction is different from the angle formed between the direction of the second magnetic field and the second magnetosensitive direction.
  • the output values detected by the two magnetoelectric conversion elements are different, and the difference between the output values detected by the two magnetoelectric conversion elements can be calculated by an arithmetic device and compared.
  • the total capacitance between the current path and the first magnetoelectric conversion element is equal to the total capacitance between the current path and the second magnetoelectric conversion element. It is possible to accurately cancel the influence of noise. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected. Therefore, it is possible to provide a current sensor that can measure a current value with high accuracy.
  • the first magnetoelectric conversion element and the second magnetoelectric conversion element are disposed in the thickness direction of the magnetic core and are equidistant from the current path. It is characterized by being arranged side by side.
  • the current sensor of the present invention is arranged side by side so that the first magnetoelectric transducer and the second magnetoelectric transducer arranged in the thickness direction of the magnetic core are equidistant from the current path. Therefore, the total capacitance between the current path and the first magnetoelectric conversion element and the total capacitance between the current path and the second magnetoelectric conversion element can be made more equal. it can. For this reason, when the difference between the different output values detected by the two magnetoelectric conversion elements is calculated by the calculation device, it is possible to subtract the influence of noise caused by the capacitance more accurately. As a result, the influence of noise that enters at the same timing can be further reduced, and only the signal can be detected more accurately.
  • the current sensor of the present invention is characterized in that the direction of the magnetic field and the first magnetic sensing direction are parallel, and the direction of the magnetic field and the second magnetic sensing direction are parallel.
  • the current sensor of the present invention since the direction of the magnetic field and the first magnetosensitive direction are parallel and the direction of the magnetic field and the second magnetosensitive direction are parallel, the current sensor of the present invention has the first magnetoelectric conversion element.
  • the induced magnetic fields received by the second and second magnetoelectric conversion elements are the same, and the external magnetic fields received by the first and second magnetoelectric conversion elements at different angles are different.
  • the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced.
  • the distance and the facing area between the current path and the first magnetoelectric conversion element and the distance and the facing area between the current path and the second magnetoelectric conversion element are equal.
  • the distance and the facing area between the magnetic core and the first magnetoelectric conversion element are equal to the distance and the facing area between the magnetic core and the second magnetoelectric conversion element.
  • the distance between the current path, the first magnetoelectric conversion element, and the second magnetoelectric conversion element and the facing area are equal, and the magnetic core, the first magnetoelectric conversion element, and the first magnetoelectric conversion element Since the distance and the facing area between the two magnetoelectric conversion elements are equal, the capacitances of the respective magnetoelectric conversion elements and current paths, and the respective magnetoelectric conversion elements and the magnetic core are equal. As a result, it is easy to make the total capacitance of each magnetoelectric conversion element equal when manufacturing a current sensor, and the influence of noise caused by electrostatic coupling can be further reduced. .
  • the angle formed by the direction of the first magnetic field and the first magnetic sensing direction is different from the angle formed by the direction of the second magnetic field and the second magnetic sensitive direction. Since the total capacitance between the magnetoelectric transducers and the total capacitance between the current path and the second magnetoelectric transducer are equal, different output values detected by the two magnetoelectric transducers When the difference is calculated by the calculation device, the influence of noise caused by the capacitance can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected.
  • FIG. 2A and 2B are diagrams illustrating the current sensor according to the first embodiment of the present invention, in which FIG. 2A is a side view seen from the X1 side shown in FIG. 1, and FIG. 2B is a side view seen from the X2 side shown in FIG.
  • FIG. 2C is a top view seen from the Z1 side shown in FIG.
  • FIG. 6A is a front view seen from the Y2 side shown in FIG. 5 and FIG. 6B is a side view seen from the X1 side shown in FIG.
  • FIG. 6C is a top view seen from the Z1 side shown in FIG.
  • It is the schematic diagram which showed the direction of the induction magnetic field in the current sensor of 2nd Embodiment of this invention, and the magnetosensitive direction of a magnetoelectric conversion element.
  • FIG. 6A is a front view seen from the Y2 side shown in FIG. 5
  • FIG. 6B is a side view seen from the X1 side shown in FIG.
  • FIG. 6C is a top view seen from the Z1 side shown in FIG.
  • It is the schematic diagram which showed the direction of the induction magnetic field in the current
  • FIG. 10A is a front view seen from the Y2 side shown in FIG. 9 and FIG. 10B is a side view seen from the X1 side shown in FIG.
  • FIG. 10C is a top view seen from the Z1 side shown in FIG.
  • It is the schematic diagram which showed the electrostatic capacitance in the current sensor of 3rd Embodiment of this invention. It is the schematic diagram which showed the direction of the induction magnetic field in the current sensor of 3rd Embodiment of this invention, and the magnetosensitive direction of a magnetoelectric conversion element.
  • FIG. 13A is a diagram illustrating a modification of the current sensor according to the first embodiment of the present invention
  • FIG. 13A is a modification 1 in which the arrangement position of the magnetoelectric conversion element is changed
  • FIG. 13B is a diagram of the magnetoelectric conversion element; It is the modification 2 which changed the arrangement position.
  • FIG. 14A is a schematic diagram illustrating a modification of the current sensor according to the first embodiment and the second embodiment of the present invention, and FIG. 14A is a modification 3 in which the arrangement position of the magnetoelectric conversion element according to the first embodiment is changed.
  • FIG. 14B is the modification 4 which changed the arrangement position of the magnetoelectric conversion element of 2nd Embodiment. It is a figure explaining the modification of the current sensor of 1st Embodiment of this invention, and 2nd Embodiment, Comprising:
  • FIG. 15A is the modification 5 which changed the electric current path and magnetic body core of 1st Embodiment, FIG.
  • FIG. 15B is a sixth modification in which the current path and the magnetic core of the second embodiment are changed. It is a figure explaining the modification of the current sensor of 2nd Embodiment of this invention, Comprising: It is the current sensor of the modification 9 which changed the arrangement position of the magnetoelectric conversion element.
  • FIG. 17A is a diagram illustrating a modification of the current sensor according to the third embodiment of the present invention, and FIG. 17A is a modification 10 in which the arrangement position of the magnetoelectric transducer according to the third embodiment is changed, and FIG. This is a modified example 11 in which the arrangement position of the third embodiment is changed. It is the figure which showed schematically the structure of the current detector in the prior art example of patent document 1.
  • FIG. 17A is a diagram illustrating a modification of the current sensor according to the third embodiment of the present invention
  • FIG. 17A is a modification 10 in which the arrangement position of the magnetoelectric transducer according to the third embodiment is changed
  • FIG. This is a modified example 11 in which the arrangement position
  • FIG. 1 is a perspective view illustrating a current sensor 101 according to the first embodiment of the present invention.
  • 2A and 2B are diagrams for explaining the current sensor 101 according to the first embodiment of the present invention.
  • FIG. 2A is a side view seen from the X1 side shown in FIG. 1
  • FIG. 2B is a diagram showing X2 shown in FIG. 2C is a side view seen from the side
  • FIG. 2C is a top view seen from the Z1 side shown in FIG.
  • FIG. 3 is a schematic diagram showing capacitance in the current sensor according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the direction of the induced magnetic field and the magnetosensitive direction of the magnetoelectric transducer 13 in the current sensor according to the first embodiment of the present invention.
  • the current sensor 101 includes a current path CB through which a current to be measured flows and a magnetic body disposed at a position surrounding the current path CB in a circular ring shape.
  • Core 11 two magnetoelectric conversion elements 13 (first magnetoelectric conversion element 13 ⁇ / b> A and second magnetoelectric conversion element 13 ⁇ / b> B) that detect magnetism of an induced magnetic field generated by a current flowing in current path CB, and a first magnetoelectric conversion
  • an arithmetic unit 17 that calculates a difference in output between the element 13A and the second magnetoelectric transducer 13B.
  • the dielectric 14 (the first dielectric 14A and the second dielectric 14B) provided between the current path CB and the magnetic core 11, the first magnetoelectric conversion element 13A, the second magnetoelectric The board
  • substrate 9 which mounts the conversion element 13B and the arithmetic unit 17 is provided.
  • the substrate 9 is provided with a wiring pattern (not shown) for transmitting output values from the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B to the arithmetic unit 17.
  • the magnetic core 11 is made of a soft magnetic material, such as permalloy (Fe—Ni alloy), and is formed in a circular ring shape as shown in FIGS. 1 and 2.
  • the first gap K11 is provided, and the second gap K12 is provided on the side facing the first gap K11 and the current path CB.
  • the magnetic body core 11 is arrange
  • the current path CB and the magnetic core 11 are fixed by using a dielectric 14 described later, or by holding the current path CB on the magnetic core 11 using a holding member or the like (not shown). Can be easily achieved.
  • the first gap K11 and the second gap K12 are formed in the same size and shape, and the first gap K11 and the second gap K12 are connected to the current path CB.
  • the current path CB is arranged so as to be symmetric with respect to the central axis Aj.
  • the magnetic core 11 is formed in a circular ring shape, but the opposing surfaces forming the first gap K11 or the second gap K12 are formed so as to be parallel, A magnetic field (first magnetic field direction M11 or second magnetic field direction M12 described later) in the first gap K11 or the second gap K12 is a parallel magnetic field.
  • permalloy Fe—Ni alloy
  • Amorphous magnetic alloy, oxide ferrite, etc. may be used.
  • the magnetoelectric conversion element 13 is a current sensor that detects magnetism generated when a current flows through the current path CB.
  • the magnetoelectric conversion element 13 is a magnetoresistive element (GMR (Giant Magneto Resistive) element using a giant magnetoresistive effect).
  • GMR Magnetoresistive element
  • an antiferromagnetic layer is formed of an ⁇ -Fe 2 O 3 layer
  • a pinned layer is formed of a NiFe layer
  • an intermediate layer is formed of a Cu layer
  • a free layer is formed of a NiFe layer.
  • a GMR element is produced on a silicon substrate, and the cut GMR chip is packaged with a thermosetting synthetic resin. As shown in FIGS.
  • the magnetoelectric conversion element 13 includes two magnetoelectric conversion elements 13, that is, a first magnetoelectric conversion element 13A and a second magnetoelectric conversion element 13B. Note that the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B have the same outer shape (packaging size).
  • first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are mounted on a substrate 9 such as a printed circuit board (PCB) as shown in FIG. 1 and FIG.
  • the first magnetoelectric conversion element 13A is disposed in the gap K11, and the second magnetoelectric conversion element 13B is disposed in the second gap K12.
  • C1 C 13 + C 31 ⁇ C 11 / (C 31 + C 11) + C 32 ⁇ C 12 / (C 32 + C 12)
  • the capacitance between the second magneto-electric conversion element 13B and the magnetic core 11 is generated as C 21 and C 22, the capacitance between the second magneto-electric conversion element 13B and the current path CB There occurs as C 23, as a result, the electrostatic capacity C2 of the total between the current paths CB and the second electromagnetic element 13B is as follows.
  • C2 C 23 + C 31 ⁇ C 21 / (C 31 + C 21) + C 32 ⁇ C 22 / (C 32 + C 22)
  • the magnetic sensing direction detected by the first magnetoelectric conversion element 13A is arranged to be the first magnetic sensing direction S11, and the sensitivity detected by the second magnetoelectric conversion element 13B. It arrange
  • the magnetosensitive direction here indicates a direction in which the value detected by the magnetoelectric transducer 13 is positive.
  • the direction of the induced magnetic field in the first gap K11 in which the first magnetoelectric conversion element 13A is disposed is the first magnetic field direction M11, and the second magnetoelectric conversion element 13B.
  • the direction of the induced magnetic field in the second gap K12 in which is disposed is the second magnetic field direction M12.
  • the angle formed by the first magnetic direction S11 detected by the first magnetoelectric conversion element 13A and the direction M11 of the first magnetic field of the induced magnetic field applied to the first magnetoelectric conversion element 13A that is, 0 °
  • the angle formed by the second magnetic direction S12 detected by the second magnetoelectric conversion element 13B and the direction M12 of the second magnetic field of the induced magnetic field applied to the magnetoelectric conversion element 13B that is, 180 °.
  • the calculation device 17 calculates the difference between the output values detected by the two magnetoelectric conversion elements 13 (13A, 13B). Can be compared.
  • the total capacitance C1 between the current path CB and the first magnetoelectric conversion element 13A and the total capacitance between the current path CB and the second magnetoelectric conversion element 13B is adjusted to be equal.
  • the electrostatic capacitance added to each magnetoelectric conversion element 13 (13A, 13B) can be accurately subtracted.
  • the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected.
  • two dielectrics 14, that is, the first dielectric 14 ⁇ / b> A and the second dielectric are provided between the current path CB and the magnetic core 11.
  • the dielectric 14B is provided.
  • the dielectric constant and size of the dielectric 14 the first dielectric 14A and the second dielectric 14B
  • the total current between the current path CB and the first magnetoelectric transducer 13A is changed.
  • the above-described adjustment to make the capacitance C1 equal to the total capacitance C2 between the current path CB and the second magnetoelectric transducer 13B can be easily performed, and the respective total capacitance (C1 and C2). ) Can be made more equal.
  • the material of the dielectric 14 is not limited, and may be a synthetic resin or an oxide, and may be a metal if it is non-magnetic. Further, as shown in FIG. 2C, the thicknesses of the two dielectrics 14 (the first dielectric 14A and the second dielectric 14B) are made the same and press-fitted between the current path CB and the magnetic core 11. In this arrangement, the dielectric 14 fixes the current path CB and plays a role of positioning the current path CB at the center of the magnetic core 11, and consequently the current path CB and the two magnetoelectric transducers 13 (13 ⁇ / b> A, 13 ⁇ / b> B). ) Is the same distance from each other. Further, in the adjustment described above, it is also performed by slightly moving the arrangement position of the dielectric 14.
  • the first magnetic field direction M11 and the first magnetic sensing direction S11 are parallel, and the second magnetic field direction M12 and the second magnetic sensitive direction S12. Are arranged in parallel to the first gap K11 and the second gap K12, the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B.
  • the induction magnetic fields received by the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are the same, and the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are at different angles.
  • the external magnetic field received by each will be different.
  • the influence of the external magnetic field can be canceled and the influence from the external magnetic field can be easily reduced.
  • the first gap K11 and the second gap so that the first magnetic field direction M11 and the second magnetic field direction M12 are opposite to each other.
  • K12 is provided in the magnetic core 11.
  • the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are arranged, and a first feeling parallel to the first magnetic field direction M11 is provided.
  • the magnetic direction S11 and the second magnetic sensing direction S12 parallel to the second magnetic field direction M12 are opposite to each other. As a result, the output value of one magnetoelectric conversion element 13 becomes a positive value and the output value of the other magnetoelectric conversion element 13 becomes a negative value.
  • the output value of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element The maximum difference value with the output value of 13B is obtained.
  • the sensitivity of the current sensor 101 can be increased by calculating the difference value between the outputs of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B by the calculation device 17.
  • the arithmetic device 17 described above is mounted on the substrate 9 and is not shown in detail, the first magnetoelectric conversion element 13A, the second magnetoelectric conversion element 13B, and the electric Are connected, and a difference between outputs of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B is calculated.
  • the arithmetic unit 17 includes a semiconductor integrated circuit (IC: IC) for processing and calculating electrical signals from the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B. Integrated Circuit).
  • the arithmetic device 17 is mounted on the substrate 9 on which the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are mounted. However, the arithmetic device 17 is mounted on another substrate or another electronic device, May be connected.
  • the first magnetoelectric conversion element is formed in the first gap K11 and the second gap K12 formed in the same size and shape. Since the 13A and the second magnetoelectric conversion element 13B are arranged so as to be positioned at the center of each gap, the distance between the magnetic core 11 and the first and second magnetoelectric conversion elements 13A and 13B is Are equal. Also, since the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are formed with the same outer shape (packaging size), the magnetic core 11, the first magnetoelectric conversion element 13A, and the second magnetoelectric conversion The facing area with the element 13B is equal. As a result, the capacitances C 11 and C 21 , and C 12 and C 22 shown in FIG. 3 are equivalent.
  • the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are disposed so as to be symmetric with respect to the central axis Aj of the current path CB. Therefore, the distance between the current path CB and the first and second magnetoelectric conversion elements 13A and 13B is equal. Further, since the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are formed with the same outer shape (packaging size), the current path CB, the first magnetoelectric conversion element 13A, and the second magnetoelectric conversion element The facing area with 13B is equal. As a result, the capacitances C 13 and C 23 shown in FIG. 3 become equivalent.
  • each of the magnetoelectric conversion elements 13 becomes more equal. Therefore, when the current sensor 101 is manufactured, each of the magnetoelectric conversion elements 13 (13A, It is easy to make the total capacitance (C1, C2) of 13B) more equal.
  • the current sensor 101 of the present invention has the angle formed by the first magnetic field direction M11 and the first magnetic sensing direction S11 and the angle formed by the second magnetic field direction M12 and the second magnetic sensing direction S12. Unlikely, the total capacitance C1 between the current path CB and the first magnetoelectric conversion element 13A and the total capacitance C2 between the current path CB and the second magnetoelectric conversion element 13B are equal.
  • the difference between different output values detected by the two magnetoelectric conversion elements 13 (13A, 13B) is calculated by the calculation device 17, the influence of noise caused by electrostatic coupling can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected. Therefore, it is possible to provide the current sensor 101 that can measure the current value with high accuracy.
  • the dielectric 14 (the first dielectric 14A and the second dielectric 14B) is provided between the current path CB and the magnetic core 11, the dielectric 14 (the first dielectric 14A and the second dielectric 14B) is provided.
  • the dielectric constant and size of the dielectric 14B By changing the dielectric constant and size of the dielectric 14B), the total capacitance C1 between the current path CB and the first magnetoelectric conversion element 13A, and the current path CB and the second magnetoelectric conversion element 13B.
  • the above-described adjustment can be facilitated to make the total electrostatic capacity C2 between and equal to each other, and the total electrostatic capacity (C1 and C2) can be made more equal.
  • the first magnetoelectric transducer 13A and The induction magnetic fields received by the second magnetoelectric conversion element 13B are the same, and the external magnetic fields received by the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B at different angles are different. Accordingly, by comparing the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B, the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced. . Therefore, it is possible to provide the current sensor 101 that can measure the current value with high accuracy.
  • the first magnetic sensing direction S11 parallel to the first magnetic field direction M11 and the second magnetic field direction M12 parallel to the first magnetic field direction M12.
  • the two magnetic sensing directions S12 are opposite to each other.
  • the output value of one magnetoelectric conversion element 13 becomes a positive value and the output value of the other magnetoelectric conversion element 13 becomes a negative value
  • the output value of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element The maximum difference value with the output value of 13B is obtained.
  • the sensitivity of the current sensor 101 can be increased by calculating the difference value between the outputs of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B by the calculation device 17.
  • the distance and the facing area between the current path CB and the first and second magnetoelectric conversion elements 13A and 13B are equal, and the magnetic core 11, the first and second magnetoelectric conversion elements 13A and 13B, and the second magnetoelectric conversion element. Since the distance to 13B and the facing area are equal, the capacitances of the respective magnetoelectric conversion elements 13 (13A, 13B) and the current path CB, the respective magnetoelectric conversion elements 13 (13A, 13B), and the magnetic core 11 are equivalent. become. As a result, it is easy to make the total capacitance (C1, C2) of the respective magnetoelectric conversion elements 13 (13A, 13B) more equal, and the influence of noise due to electrostatic coupling is further reduced. be able to.
  • FIG. 5 is a perspective view illustrating the current sensor 102 according to the second embodiment of the present invention.
  • 6A and 6B are diagrams illustrating the current sensor 102 according to the second embodiment of the present invention.
  • FIG. 6A is a front view seen from the Y2 side shown in FIG. 5, and
  • FIG. 6B is X1 shown in FIG. 6C is a side view seen from the side, and
  • FIG. 6C is a top view seen from the Z1 side shown in FIG.
  • FIG. 7 is a schematic diagram showing capacitance in the current sensor according to the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the direction of the induced magnetic field and the magnetosensitive direction of the magnetoelectric transducer 23 in the current sensor according to the second embodiment of the present invention.
  • the current sensor 102 of the second embodiment is mainly different from the first embodiment in the arrangement position of the magnetoelectric conversion element 23.
  • symbol is attached
  • the current sensor 102 includes a current path CB through which a current to be measured flows and a magnetic body disposed at a position surrounding the current path CB with a hollow rectangle.
  • the core 21 two magnetoelectric conversion elements 23 (first magnetoelectric conversion element 23A and second magnetoelectric conversion element 23B) for detecting the magnetism of the induced magnetic field generated by the current flowing in the current path CB, and the first magnetoelectric conversion And an arithmetic unit 17 that calculates a difference in output between the element 23A and the second magnetoelectric conversion element 23B.
  • the dielectric 24 (the first dielectric 24A and the second dielectric 24B) provided between the current path CB and the magnetic core 21, the first magnetoelectric transducer 23A, the second magnetoelectric The board
  • substrate 9 which mounts the conversion element 23B and the arithmetic unit 17 is provided.
  • the substrate 9 is provided with a wiring pattern (not shown) for transmitting output values from the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B to the arithmetic unit 17.
  • the magnetic core 21 is made of a soft magnetic material, such as Sendust (Fe—Si—Al alloy), and is formed into a hollow rectangle as shown in FIGS. 5 and 6, and the magnetic core 21 has one side thereof.
  • the first gap K21 and the second gap K22 are provided on the other side.
  • the magnetic body core 21 is arrange
  • the first gap K21 and the second gap K22 are formed in the same size and shape, and the first gap K21 and the second gap K22 are 90 ° with respect to the central axis Aj of the current path CB.
  • the current path CB is arranged so as to be equidistant.
  • the current path CB is easily disposed and fixed by using the dielectric 14 described later or by holding the current path CB on the magnetic core 11 using a holding member or the like (not shown). it can.
  • Sendust Fe—Si—Al alloy
  • Fe—Si—Al alloy any soft magnetic material may be used.
  • Other ferrous materials such as permalloy (Fe—Ni alloy), silicon steel, etc. Amorphous magnetic alloy, oxide ferrite, etc. may be used.
  • the magnetoelectric conversion element 23 is a current sensor for detecting magnetism generated when a current flows in the current path CB.
  • a magnetoresistive element GMR (Giant Magneto Resistive) element using a giant magnetoresistive effect) Say.
  • GMR element for example, an antiferromagnetic layer is formed of an ⁇ -Fe 2 O 3 layer, a pinned layer is formed of a NiFe layer, an intermediate layer is formed of a Cu layer, and a free layer is formed of a NiFe layer.
  • a GMR element is produced on a silicon substrate, and the cut out GMR chip is packaged with a thermosetting synthetic resin. Further, as shown in FIGS.
  • the magnetoelectric conversion element 23 includes two magnetoelectric conversion elements 23, that is, a first magnetoelectric conversion element 23 ⁇ / b> A and a second magnetoelectric conversion element 23 ⁇ / b> B. Note that the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B have the same outer shape (packaging size).
  • the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B are mounted on the substrate 9, and the first magnetoelectric conversion element 23A is arranged in the first gap K21.
  • the second magnetoelectric conversion element 23B is disposed in the second gap K22.
  • C3 C 16 + C 34 ⁇ C 14 / (C 34 + C 14) + C 35 ⁇ C 15 / (C 35 + C 15)
  • the capacitance between the second magneto-electric conversion element 23B and the magnetic core 21 is produced as a C 24 and C 25, the capacitance between the second magneto-electric conversion element 23B and the current path CB There occurs as C 26, as a result, the capacitance C4 of the total between the current paths CB and the second electromagnetic element 23B is as follows.
  • C4 C 26 + C 34 ⁇ C 24 / (C 34 + C 24) + C 35 ⁇ C 25 / (C 35 + C 25)
  • the magnetic sensing direction detected by the first magnetoelectric conversion element 23A is arranged to be the first magnetic sensing direction S21, and the sensitivity detected by the second magnetoelectric conversion element 23B. It arrange
  • the magnetosensitive direction here indicates a direction in which the value detected by the magnetoelectric conversion element 23 is positive.
  • the direction of the induced magnetic field in the first gap K21 in which the first magnetoelectric conversion element 23A is disposed is the first magnetic field direction M21, and the second magnetoelectric conversion element 23B.
  • the direction of the induced magnetic field in the second gap K22 in which is disposed is the second magnetic field direction M22.
  • the angle formed by the first magnetic field direction M21 of the first magnetic field applied to the first magnetoelectric transducer 23A and the first magnetosensitive direction S21 detected by the first magnetoelectric transducer 23A that is, 0 °
  • This is different from the angle formed by the direction M22 of the second magnetic field of the induced magnetic field applied to the magnetoelectric conversion element 23B and the second magnetosensitive direction S22 detected by the second magnetoelectric conversion element 23B, that is, 90 °.
  • the difference between the output values detected by the two magnetoelectric conversion elements 23 (23A, 23B) is calculated by the arithmetic unit 17. Can be compared.
  • the capacitance C4 is adjusted to be equal.
  • the electrostatic capacitance added to each magnetoelectric conversion element 23 (23A, 23B) can be accurately subtracted.
  • the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected.
  • two dielectrics 24, that is, the first dielectric 24A and the second dielectric are provided between the current path CB and the magnetic core 21.
  • the dielectric 24B is provided.
  • the dielectric constant and size of the dielectric 24 (the first dielectric 24A and the second dielectric 24B)
  • the total current between the current path CB and the first magnetoelectric transducer 23A is changed.
  • the above-described adjustment can be easily performed to make the capacitance C3 equal to the total capacitance C4 between the current path CB and the second magnetoelectric transducer 23B, and each total capacitance (C3 and C4) can be made more equal.
  • the material of the dielectric 24 is not limited, and may be a synthetic resin or an oxide, and may be a metal if it is non-magnetic. Further, as shown in FIG. 6C, the thicknesses of the two dielectrics 24 (the first dielectric 24A and the second dielectric 24B) are made the same and press-fitted between the current path CB and the magnetic core 21. In this arrangement, the dielectric 24 fixes the current path CB and plays a role of positioning the current path CB at the center of the magnetic core 21, and thus the current path CB and the two magnetoelectric transducers 23 (23 ⁇ / b> A, 23 ⁇ / b> B). ) Is the same distance from each other.
  • the first magnetic field direction M21 and the first magnetic sensing direction S21 are parallel, and the second magnetic field direction M22 and the second magnetic sensitive direction S22.
  • the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B are arranged in the first gap K21 and the second gap K22.
  • the induced magnetic field received by the second magnetoelectric conversion element 23B that is, the magnetic field of the second magnetic field direction M22 becomes 0, and the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B have different angles.
  • the external magnetic field received at will be different.
  • the 1st magnetoelectric conversion element is made into the 1st space
  • the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B are formed with the same outer shape (packaging size), the magnetic core 21, the first magnetoelectric conversion element 23A, and the second magnetoelectric conversion The area facing the element 23B is equal. As a result, the capacitances C 14 and C 24 , and C 15 and C 25 shown in FIG. 7 are equivalent.
  • the first gap K21 and the second gap K22 are arranged so as to be 90 ° and equidistant from the central axis Aj of the current path CB. Therefore, the distance between the current path CB and the first and second magnetoelectric conversion elements 23A and 23B can be arranged equally. Further, since the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B are formed with the same outer shape (packaging size), the current path CB, the first magnetoelectric conversion element 23A, and the second magnetoelectric conversion element The opposing area to 23B is equal. As a result, the capacitances C 16 and C 26 shown in FIG. 7 become equivalent.
  • the capacitances added to the respective magnetoelectric conversion elements 23 become more equal. Therefore, when the current sensor 102 is manufactured, the respective magnetoelectric conversion elements 23 (23A, 23A, It is easy to make the total capacitance (C3, C4) of 23B) more equal.
  • the current sensor 102 of the present invention includes the angle formed by the first magnetic field direction M21 and the first magnetic sensing direction S21, and the angle formed by the second magnetic field direction M22 and the second magnetic sensitive direction S22. Unlikely, the total capacitance C3 between the current path CB and the first magnetoelectric conversion element 23A is equal to the total capacitance C4 between the current path CB and the second magnetoelectric conversion element 23B.
  • the difference between the different output values detected by the two magnetoelectric conversion elements 23 (23A, 23B) is calculated by the calculation device 17, the influence of noise caused by electrostatic coupling can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected. Therefore, it is possible to provide the current sensor 102 that can measure the current value with high accuracy.
  • the dielectric 24 (first dielectric 24A and second dielectric 24B) is provided between the current path CB and the magnetic core 21, the dielectric 24 (first dielectric 24A and second dielectric 24A) is provided.
  • the dielectric constant and size of the dielectric 24B By changing the dielectric constant and size of the dielectric 24B), the total capacitance C3 between the current path CB and the first magnetoelectric conversion element 23A, and the current path CB and the second magnetoelectric conversion element 23B are changed.
  • the above-described adjustment to make the total electrostatic capacity C4 between the two terminals equal to each other can be facilitated, and the respective total electrostatic capacity (C3 and C4) can be made more equal.
  • the second magnetoelectric conversion element 23B receives the magnetic field.
  • the induced magnetic field becomes 0, that is, the magnetic field of the second magnetic field direction M22 is not felt, and the external magnetic fields received at different angles by the first magnetoelectric transducer 23A and the second magnetoelectric transducer 23B are different.
  • the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced. .
  • the distance and the facing area between the current path CB and the first and second magnetoelectric conversion elements 23A and 23B are equal, and the magnetic core 21, the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element Since the distance and the facing area to 23B are equal, the respective magnetoelectric transducers 23 (23A, 23B) and current paths CB, the respective magnetoelectric transducers 23 (23A, 23B) and the magnetic core 21 have the same capacitance. become. As a result, the electrostatic capacitance, which is the stray capacitance superimposed on each of the magnetoelectric conversion elements 23 (23A, 23B), becomes more equal. Therefore, when the current sensor 102 is manufactured, each of the magnetoelectric conversion elements 23 (23A) 23B), it is easy to make the total capacitance (C3, C4) more equal, and the influence of noise caused by electrostatic coupling can be further reduced.
  • FIG. 9 is a perspective view illustrating the current sensor 103 according to the third embodiment of the present invention.
  • 10A and 10B are diagrams illustrating the current sensor 103 according to the third embodiment of the present invention.
  • FIG. 10A is a front view seen from the Y2 side shown in FIG. 9, and
  • FIG. 10B is X1 shown in FIG. 10C is a side view seen from the side, and
  • FIG. 10C is a top view seen from the Z1 side shown in FIG. 9.
  • the second substrate 39B and the second magnetoelectric transducer 33B are omitted in FIG. 10C.
  • FIG. 11 is a schematic diagram illustrating the capacitance in the current sensor according to the third embodiment of the present invention.
  • FIG. 11 is a schematic diagram illustrating the capacitance in the current sensor according to the third embodiment of the present invention.
  • the current sensor 103 of the third embodiment is mainly different from the first embodiment in the arrangement positions of the gap K33 of the magnetic core 31 and the magnetoelectric conversion element 33.
  • symbol is attached
  • the current sensor 103 includes a current path CB through which a current to be measured flows and a magnetic body disposed at a position surrounding the current path CB with a hollow rectangle.
  • Core 31 two magnetoelectric conversion elements 33 (first magnetoelectric conversion element 33 ⁇ / b> A and second magnetoelectric conversion element 33 ⁇ / b> B) for detecting the magnetism of the induced magnetic field generated by the current flowing in current path CB, and the first magnetoelectric conversion And an arithmetic device 17 that calculates a difference in output between the element 33A and the second magnetoelectric conversion element 33B.
  • first substrate 39A on which the first magnetoelectric conversion element 33A and the arithmetic unit 17 are mounted, and a second substrate 39B on which the second magnetoelectric conversion element 33B is mounted are provided.
  • a wiring pattern (not shown) for transmitting output values from the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B to the arithmetic unit 17 is provided on the first substrate 39A and the second substrate 39B. Is provided.
  • the magnetic core 31 is made of a soft magnetic material, such as permalloy (Fe—Ni alloy), and is formed into a hollow rectangle as shown in FIGS. 9 and 10, and the magnetic core 31 has a gap on one side thereof. K33 is provided and configured. And the magnetic body core 31 is arrange
  • permalloy Fe—Ni alloy
  • Sendust Fe—Si—Al alloy
  • silicon steel etc.
  • other non-ferrous materials such as non-ferrous Amorphous magnetic alloy, oxide ferrite, etc. may be used.
  • the magnetoelectric conversion element 33 is a current sensor for detecting magnetism generated when a current flows through the current path CB.
  • the magnetoelectric conversion element 33 is a magnetoresistive element (GMR (Giant Magneto Resistive) element using a giant magnetoresistive effect).
  • GMR Magnetoresistive element
  • an antiferromagnetic layer is formed of an ⁇ -Fe 2 O 3 layer
  • a pinned layer is formed of a NiFe layer
  • an intermediate layer is formed of a Cu layer
  • a free layer is formed of a NiFe layer.
  • a GMR element is produced on a silicon substrate, and the cut out GMR chip is packaged with a thermosetting synthetic resin.
  • the magnetoelectric conversion element 33 includes two magnetoelectric conversion elements 33, that is, a first magnetoelectric conversion element 33A and a second magnetoelectric conversion element 33B. Note that the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B have the same outer shape (packaging size).
  • the first magnetoelectric conversion element 33A is mounted on a first substrate 39A such as a printed circuit board (PCB), and the second magnetoelectric conversion element 33B is printed wiring. It is mounted on a second substrate 39B such as a printed circuit board (PCB), and is arranged in the gap K33 in the thickness direction of the magnetic core 31 and arranged vertically so as to be equidistant from the current path CB. It is arranged.
  • a first substrate 39A such as a printed circuit board (PCB)
  • PCB printed circuit board
  • C5 C 19 + C 37 ⁇ C 17 / (C 37 + C 17) + C 37 ⁇ C 18 / (C 37 + C 18)
  • the capacitance between the second magneto-electric conversion element 33B and the magnetic core 31 is produced as a C 27 and C 28, the capacitance between the second magneto-electric conversion element 33B and the current path CB There occurs as C 29, as a result, the capacitance C6 of the total between the current paths CB and second magnetoelectric conversion element 33B are as the following equation.
  • C6 C 29 + C 37 ⁇ C 27 / (C 37 + C 27) + C 37 ⁇ C 28 / (C 37 + C 28)
  • the magnetic sensing direction detected by the first magnetoelectric conversion element 33A is arranged to be the first magnetic sensing direction S31, and the sensitivity detected by the second magnetoelectric conversion element 33B.
  • the magnetic direction is arranged to be a second magnetic sensing direction S32 opposite to the first magnetic sensing direction S31.
  • the magnetosensitive direction here indicates a direction in which the value detected by the magnetoelectric conversion element 33 is positive.
  • the direction of the magnetic field in the gap K33 in which the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B are disposed is a magnetic field direction M33 that is an induction magnetic field.
  • the angle formed by the direction M33 of the magnetic field applied to the first magnetoelectric conversion element 33A and the first magnetosensitive direction S31 detected by the first magnetoelectric conversion element 33A that is, 0 °
  • the second magnetoelectric conversion element 33B Is different from an angle formed by the direction M33 of the magnetic field applied to the second magnetic sensing direction S32 detected by the second magnetoelectric transducer 33B, that is, 180 °.
  • the output values detected by the two magnetoelectric conversion elements 33 (33A, 33B) are different, so the difference between the output values detected by the two magnetoelectric conversion elements 33 (33A, 33B) is calculated by the arithmetic unit 17. Can be compared.
  • the capacitance C6 is adjusted to be equal. Thereby, the electrostatic capacitance added to each magnetoelectric conversion element 33 (33A, 33B) can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected. Further, this adjustment is performed by slightly moving the arrangement position of the current path CB, or by inserting a dielectric between the magnetoelectric conversion element 33 and the magnetic core 31 in some cases.
  • positioned in the thickness direction of the magnetic body core 31 are electric current. Since they are arranged vertically so as to be equidistant with respect to the path CB, the total capacitance C5 between the current path CB and the first magnetoelectric transducer 33A, the current path CB and the second path The total capacitance C6 between the magnetoelectric conversion element 33B can be made more equal.
  • the magnetic field direction M33 and the first magnetic sensing direction S31 are parallel, and the magnetic field direction M33 and the second magnetic sensing direction S32 are parallel. Therefore, the induction magnetic fields received by the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B are the same as absolute values, and the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B are respectively External magnetic fields received at different angles will be different. Thereby, by comparing the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B, the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced. .
  • the current sensor 103 of the present invention is different in the angle formed between the magnetic field direction M33 and the first magnetic sensing direction S31 and the angle formed between the magnetic field direction M33 and the second magnetic sensitive direction S32.
  • the output values detected by the two magnetoelectric conversion elements 33 (33A, 33B) are different, and the difference between the output values detected by the two magnetoelectric conversion elements 33 (33A, 33B) is calculated by the arithmetic unit 17 and compared. it can.
  • the total capacitance C5 between the current path CB and the first magnetoelectric conversion element 33A is equal to the total capacitance C6 between the current path CB and the second magnetoelectric conversion element 33B.
  • the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B arranged in the thickness direction of the magnetic core 31 are arranged vertically so as to be equidistant from the current path CB.
  • the total capacitance C5 between the current path CB and the first magnetoelectric conversion element 33A and the total capacitance C6 between the current path CB and the second magnetoelectric conversion element 33B are made more equal. be able to. For this reason, when calculating the difference between the different output values detected by the two magnetoelectric conversion elements 33 (33A, 33B) by the calculation device 17, it is possible to subtract the influence of noise caused by the capacitance more accurately. . As a result, the influence of noise that enters at the same timing can be further reduced, and only the signal can be detected more accurately.
  • the first magnetoelectric transducer 33A and the second magnetoelectric element 33A since the magnetic field direction M33 and the first magnetic sensing direction S31 are parallel, and the magnetic field direction M33 and the second magnetic sensing direction S32 are parallel, the first magnetoelectric transducer 33A and the second magnetoelectric element 33A.
  • the induction magnetic fields received by the conversion element 33B are the same in absolute value, and the external magnetic fields received by the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B at different angles are different. Thereby, by comparing the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B, the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced. .
  • FIG. 13 is a diagram for explaining a modification of the current sensor 101 according to the first embodiment of the present invention.
  • FIG. 13A shows a modification 1 in which the arrangement position of the magnetoelectric transducer 13 (13A, 13B) is changed.
  • FIG. 13B is a current sensor C101 of Modification 2 in which the arrangement position of the magnetoelectric conversion element 13 (13B) is changed.
  • FIG. 14 is a schematic diagram for explaining a modification of the current sensors (101, 102) of the first embodiment and the second embodiment of the present invention.
  • FIG. 14A shows the magnetoelectric conversion element 13 of the first embodiment.
  • FIG. 14B is a fourth modification in which the arrangement position of the magnetoelectric transducer 23 of the second embodiment is changed.
  • FIG. 15 is a diagram for explaining a modification of the current sensors (101, 102) according to the first and second embodiments of the present invention.
  • FIG. 15A shows the current path CB and the magnetic body according to the first embodiment.
  • FIG. 15B is a sixth modification in which the core 11 is changed, and
  • FIG. 15B is a sixth modification in which the current path CB and the magnetic core 21 of the second embodiment are changed.
  • FIG. 16 is a diagram for explaining a modification of the current sensor 102 according to the second embodiment of the present invention, and is a current sensor D102 of the modification 9 in which the arrangement position of the magnetoelectric conversion element 23 is changed.
  • FIG. 17 is a top view illustrating a modification of the current sensor 103 according to the third embodiment of the present invention.
  • FIG. 17A illustrates a modification 10 in which the arrangement position of the magnetoelectric transducer 33 according to the third embodiment is changed.
  • FIG. 17B is a current sensor D123 of Modification 11 in which the arrangement position of the magnetoelectric conversion element 33 of the third embodiment is changed.
  • the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are positioned at the centers of the respective gaps (K11, K12) of the first gap K11 and the second gap K12. by disposing the capacitance of the magnetic core 11 and the first electromagnetic element 13A and the second magneto-electric conversion element 13B, C 11 and C 21, and C 12 and preferably as C 22 is equal to However, they may be shifted from each other. As shown in FIG. 13A, the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are relative to each of the first gap K11 and the second gap K12 (K11, K12). If the target positional relationship is made equal, the same effect is obtained.
  • the magnetic core 11 is configured such that the first gap K11 and the second gap K12 are symmetrical with respect to the central axis Aj of the current path CB.
  • the arrangement angle with the second gap K12 may be changed.
  • the arrangement angle of the magnetic core C11 with the first gap K11 and the second gap CK12 is 135 °.
  • the first magnetic field direction M11 and the first magnetic sensing direction S11 are parallel, and the second magnetic field direction M12 and the second magnetic sensing direction S12 are parallel.
  • the magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are preferably arranged and configured, the magnetosensitive directions of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B may be changed.
  • the angle formed by the first magnetic field direction M11 of the induced magnetic field applied to the first magnetoelectric transducer 13A and the first magnetosensitive direction CS11 detected by the first magnetoelectric transducer 13A that is, 15 °.
  • the angle formed by the second magnetic direction CS12 detected by the second magnetoelectric conversion element 13B and the direction M12 of the second magnetic field of the induced magnetic field applied to the second magnetoelectric conversion element 13B that is, 75 °. .
  • the first magnetic field direction M21 and the first magnetosensitive direction S21 are parallel, and the second magnetic field direction M22 and the second magnetic sensitive direction S22 are orthogonal to each other.
  • the magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B are preferably arranged, but may be configured by changing the magnetic sensitive direction of the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B. .
  • the angle formed by the first magnetic field direction M21 of the induced magnetic field applied to the first magnetoelectric transducer 23A and the first magnetosensitive direction CS21 detected by the first magnetoelectric transducer 23A that is, 30 °.
  • the angle formed by the second magnetic direction CS22 detected by the second magnetoelectric conversion element 23B and the direction M22 of the second magnetic field of the induced magnetic field applied to the second magnetoelectric conversion element 23B that is, 60 °. .
  • the current path CB has a circular cross section, but a current path CCB having a rectangular cross section may be used. In that case, as shown to FIG. 15A, it is good to make the magnetic body core C12 of the current sensor C501 into an elliptical shape. Similarly, as shown in FIG. 15B, the magnetic core C21 of the current sensor C602 may be rectangular.
  • two dielectrics are used between the current path CB and the magnetic cores (11, 21). You may comprise using the above dielectric material. Or the structure which does not use a dielectric material may be sufficient.
  • ⁇ Modification 8> In the first embodiment and the second embodiment, two dielectrics (14, 24) are used between the current path CB and the magnetic cores (11, 21). However, the magnetoelectric conversion element (13 23) and the magnetic core (11, 21) may be configured using a dielectric. In this case, the same effect can be obtained.
  • the first gap K21 and the second gap K22 are arranged to be 90 ° with respect to the central axis Aj of the current path CB.
  • the first gap CK21 and the second gap CK22 may be disposed in the vicinity of the rectangular corner of the magnetic core C71. For this reason, since the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B can be disposed close to each other, the external magnetic field is entered at the same timing even when the source of the external magnetic field is relatively close. The influence of the incoming noise can be reduced, and the influence from the external magnetic field can be more reliably reduced.
  • the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B are arranged vertically in the thickness direction of the magnetic core 31, but as shown in FIG. 17A, You may arrange

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

The purpose of the present invention is to provide a current sensor, which is less affected due to noise, and which is capable of performing highly accurate current value measurement. This current sensor is characterized in being provided with: a magnetic material core (11), which is disposed at a position surrounding a current path (CB) having flowing therein a current to be measured, and which is provided with a first gap and a second gap; a first magnetoelectric conversion element (13A), which is provided in the first gap of the magnetic material core; a second magnetoelectric conversion element (13B), which is provided in the second gap of the magnetic material core; and a calculating apparatus, which calculates a difference between output of the first magnetoelectric conversion element and that of the second magnetoelectric conversion element. The current sensor is also characterized in that: an angle formed by the direction of a first magnetic field of an inductive magnetic field applied to the first magnetoelectric conversion element, and the first magnetic sensing direction detected by means of the first magnetoelectric conversion element, and an angle formed by the direction of a second magnetic field of an inductive magnetic field applied to the second magnetoelectric conversion element, and the second magnetic sensing direction detected by means of the second magnetoelectric conversion element are different from each other; and total electrostatic capacitance between the current path and the first magnetoelectric conversion element, and total electrostatic capacitance between the current path and the second magnetoelectric conversion element are equal to each other.

Description

電流センサCurrent sensor
 本発明は、電流路に流れる被測定電流を検出する電流センサに関し、特に電流路に流れる電流によって発生する誘導磁界の磁気を検出する電流センサに関する。 The present invention relates to a current sensor that detects a current to be measured flowing in a current path, and more particularly to a current sensor that detects magnetism of an induced magnetic field generated by a current flowing in a current path.
 各種機器の制御や監視のために、電流路(電線)に流れる被測定電流を検出する電流センサが良く知られている。この種の電流センサとして、電流路を囲み電流路の回りに発生する磁束を集束する磁性体コアと、電流路に電流が流れたときに発生する磁気を検出する磁電変換素子とを用いた電流センサが良く知られている。 A current sensor that detects a measured current flowing in a current path (wire) is well known for controlling and monitoring various devices. As this type of current sensor, a current using a magnetic core that surrounds the current path and focuses the magnetic flux generated around the current path, and a magnetoelectric transducer that detects magnetism generated when current flows in the current path Sensors are well known.
 上述の電流センサの例として、特許文献1では、図18に示すように、磁性体コア904と、磁気センサ(磁電変換素子)906と、導体(電流路)902に近接して配置される実装配線基板909とを含んで構成された電流検出器900が提案されている。図18は、特許文献1の従来例における電流検出器900の構成を概略的に示した図である。図18に示す電流検出器900は、実装配線基板909に寄生容量調整部910を設け、この寄生容量調整部910によって、導体902と実装配線基板909上に配線された配線部940との間の寄生容量(浮遊容量)の値を同じ値とすることによって、回路が誤動作することを抑制することができるとしている。 As an example of the above-described current sensor, in Patent Document 1, as shown in FIG. 18, a magnetic core 904, a magnetic sensor (magnetoelectric conversion element) 906, and a conductor (current path) 902 are disposed in the vicinity. A current detector 900 including a wiring board 909 has been proposed. FIG. 18 is a diagram schematically showing a configuration of a current detector 900 in the conventional example of Patent Document 1. In FIG. A current detector 900 shown in FIG. 18 includes a parasitic capacitance adjustment unit 910 provided on the mounting wiring board 909, and the parasitic capacitance adjustment unit 910 causes a connection between the conductor 902 and the wiring unit 940 wired on the mounting wiring board 909. It is said that malfunction of the circuit can be suppressed by setting the value of the parasitic capacitance (stray capacitance) to the same value.
特開2009-64878号公報JP 2009-64878 A
 しかしながら、特許文献1の従来例の構成では、導体(電流路)902と磁気センサ(磁電変換素子)906との間にも静電結合があり、この寄生容量(浮遊容量)によって、電流が変化していなくても、導体(電流路)902の電位変動があると、磁気センサ(磁電変換素子)906の出力値が変動するといった問題があった。このようにして、この出力値の変動、所謂ノイズが付加されるため、電流検出器(電流センサ)900の測定精度が悪化するという課題があった。 However, in the configuration of the conventional example of Patent Document 1, there is also electrostatic coupling between the conductor (current path) 902 and the magnetic sensor (magnetoelectric conversion element) 906, and the current changes due to this parasitic capacitance (stray capacitance). Even if not, there is a problem that if the potential of the conductor (current path) 902 varies, the output value of the magnetic sensor (magnetoelectric conversion element) 906 varies. Thus, since the fluctuation of the output value, so-called noise is added, there is a problem that the measurement accuracy of the current detector (current sensor) 900 is deteriorated.
 本発明は、上述した課題を解決するもので、ノイズによる影響が低減されて精度の高い電流値の計測ができる電流センサを提供することを目的とする。 The present invention solves the above-described problems, and an object of the present invention is to provide a current sensor capable of measuring a current value with high accuracy by reducing the influence of noise.
 この課題を解決するために、本発明の電流センサは、被測定電流が流れる電流路と、前記電流路に流れる電流によって発生する誘導磁界の磁気を検出する電流センサであって、前記電流路を囲むとともに、第1の空隙と第2の空隙が設けられた磁性体コアと、前記磁性体コアの前記第1の空隙内に設けられた第1の磁電変換素子と、前記磁性体コアの前記第2の空隙内に設けられた第2の磁電変換素子と、前記第1の磁電変換素子と前記第2の磁電変換素子との出力の差分を演算する演算装置と、を備え、前記第1の磁電変換素子に加わる前記誘導磁界の第1磁界の向きと前記第1の磁電変換素子が検出する第1感磁方向とがなす角と、前記第2の磁電変換素子に加わる前記誘導磁界の第2磁界の向きと前記第2の磁電変換素子が検出する第2感磁方向とがなす角と、が異なり、前記電流路と前記第1の磁電変換素子との間の総合の静電容量と、前記電流路と前記第2の磁電変換素子との間の総合の静電容量とが等しいことを特徴としている。 In order to solve this problem, a current sensor according to the present invention is a current sensor for detecting a current path through which a current to be measured flows and a magnetic field of an induced magnetic field generated by a current flowing through the current path. Surrounding the magnetic core provided with the first gap and the second gap, the first magnetoelectric conversion element provided in the first gap of the magnetic core, and the magnetic core A second magnetoelectric conversion element provided in the second gap, and an arithmetic device for calculating a difference in output between the first magnetoelectric conversion element and the second magnetoelectric conversion element, The angle formed by the direction of the first magnetic field applied to the magnetoelectric conversion element and the first magnetosensitive direction detected by the first magnetoelectric conversion element, and the induction magnetic field applied to the second magnetoelectric conversion element The direction of the second magnetic field and the second magnetoelectric transducer detect The angle formed by the two magnetic sensing directions is different, and the total capacitance between the current path and the first magnetoelectric transducer, and between the current path and the second magnetoelectric transducer. The total capacitance is equal.
 これによれば、本発明の電流センサは、第1磁界の向きと第1感磁方向とがなす角と、第2磁界の向きと第2感磁方向とがなす角と、が異なり、電流路と第1の磁電変換素子との間の総合の静電容量と、電流路と第2の磁電変換素子との間の総合の静電容量とが等しいので、2つの磁電変換素子で検出される異なる出力値の差分を演算装置で演算する際に、静電容量に起因するノイズの影響を正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響を低減することができ、信号のみを正確に検出することができる。したがって、精度の高い電流値の計測ができる電流センサを提供することができる。 According to this, the current sensor of the present invention is different in the angle formed between the direction of the first magnetic field and the first magnetosensitive direction and the angle formed between the direction of the second magnetic field and the second magnetosensitive direction. Since the total capacitance between the path and the first magnetoelectric conversion element is equal to the total capacitance between the current path and the second magnetoelectric conversion element, it is detected by the two magnetoelectric conversion elements. When the difference between different output values is calculated by the calculation device, the influence of noise caused by the capacitance can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected. Therefore, it is possible to provide a current sensor that can measure a current value with high accuracy.
 また、本発明の電流センサは、前記電流路と前記磁性体コアとの間に誘電体を設けることを特徴としている。 The current sensor of the present invention is characterized in that a dielectric is provided between the current path and the magnetic core.
 これによれば、電流路と磁性体コアとの間に誘電体を設けるので、この誘電体により、電流路と第1の磁電変換素子との間の総合の静電容量と、電流路と第2の磁電変換素子との間の総合の静電容量とを等しくすることが容易にでき、それぞれの総合の静電容量をより等しくすることができる。このため、2つの磁電変換素子で検出される異なる出力値の差分を演算装置で演算する際に、静電容量に起因するノイズの影響をより正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響をより低減することができ、信号のみをより正確に検出することができる。 According to this, since the dielectric is provided between the current path and the magnetic core, this dielectric allows the total capacitance between the current path and the first magnetoelectric transducer, the current path and the first The total capacitance between the two magnetoelectric conversion elements can be easily made equal, and the total capacitance of each can be made more equal. For this reason, when the difference between the different output values detected by the two magnetoelectric conversion elements is calculated by the calculation device, it is possible to subtract the influence of noise caused by the capacitance more accurately. As a result, the influence of noise that enters at the same timing can be further reduced, and only the signal can be detected more accurately.
 また、本発明の電流センサは、前記第1磁界の向きと前記第1感磁方向とが平行であり、前記第2磁界の向きと前記第2感磁方向とが平行であることを特徴としている。 In the current sensor according to the present invention, the direction of the first magnetic field and the first magnetosensitive direction are parallel, and the direction of the second magnetic field and the second magnetosensitive direction are parallel. Yes.
 これによれば、本発明の電流センサは、第1磁界の向きと第1感磁方向とが平行であるとともに、第2磁界の向きと第2感磁方向とが平行であるので、第1の磁電変換素子及び第2の磁電変換素子が受けるそれぞれの誘導磁界は同じになり、第1の磁電変換素子及び第2の磁電変換素子がそれぞれ違う角度で受ける外部磁場はそれぞれ違うようになる。このことにより、第1の磁電変換素子と第2の磁電変換素子とを比較することで、外部磁場の影響を算出して相殺でき、外部磁場からの影響を低減することが容易にできる。 According to this, in the current sensor of the present invention, the first magnetic field direction and the first magnetosensitive direction are parallel, and the second magnetic field direction and the second magnetosensitive direction are parallel. The induced magnetic fields received by the first and second magnetoelectric conversion elements are the same, and the external magnetic fields received by the first and second magnetoelectric conversion elements at different angles are different. Thus, by comparing the first magnetoelectric conversion element and the second magnetoelectric conversion element, the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced.
 また、本発明の電流センサは、前記第1磁界の向きと前記第2磁界の向きとが逆向きであることを特徴としている。 The current sensor of the present invention is characterized in that the direction of the first magnetic field is opposite to the direction of the second magnetic field.
 これによれば、第1磁界の向きと平行な第1感磁方向と、第2磁界の向きと平行な第2感磁方向と、が逆向きになるので、一方の磁電変換素子の出力値がプラス値となり、他方の磁電変換素子の出力値がマイナス値となるので、第1の磁電変換素子の出力値と第2の磁電変換素子の出力値との差分値が最大に得られる。このことにより、第1の磁電変換素子と第2の磁電変換素子との出力の差分値を演算装置で演算することで、電流センサの感度を高めることができる。 According to this, since the first magnetosensitive direction parallel to the direction of the first magnetic field and the second magnetosensitive direction parallel to the direction of the second magnetic field are reversed, the output value of one of the magnetoelectric transducers Becomes a positive value and the output value of the other magnetoelectric conversion element becomes a negative value, so that the maximum difference value between the output value of the first magnetoelectric conversion element and the output value of the second magnetoelectric conversion element is obtained. As a result, the sensitivity of the current sensor can be increased by calculating the difference value between the outputs of the first and second magnetoelectric transducers with the computing device.
 また、本発明の電流センサは、前記第1磁界の向きと前記第1感磁方向とが平行であり、前記第2磁界の向きと前記第2感磁方向とが直交することを特徴としている。 The current sensor of the present invention is characterized in that the direction of the first magnetic field and the first magnetosensitive direction are parallel, and the direction of the second magnetic field and the second magnetosensitive direction are orthogonal to each other. .
 これによれば、本発明の電流センサは、第1磁界の向きと第1感磁方向とが平行であるとともに、第2磁界の向きと第2感磁方向とが直交するので、第2の磁電変換素子は第2磁界の向きの磁界を感じなくなり、外部磁場のみを感じるようになる。このことにより、第1の磁電変換素子と第2の磁電変換素子とを比較することで、外部磁場の影響を低減することが容易にできる。 According to this, since the direction of the first magnetic field and the first magnetosensitive direction are parallel to each other and the direction of the second magnetic field and the second magnetosensitive direction are orthogonal to each other, The magnetoelectric transducer no longer feels the magnetic field in the direction of the second magnetic field, but only the external magnetic field. Thus, the influence of the external magnetic field can be easily reduced by comparing the first magnetoelectric conversion element and the second magnetoelectric conversion element.
 また、本発明の電流センサは、被測定電流が流れる電流路と、前記電流路に流れる電流によって発生する誘導磁界の磁気を検出する電流センサであって、前記電流路を囲むとともに、空隙が設けられた磁性体コアと、前記磁性体コアの前記空隙内に設けられた第1の磁電変換素子と、前記磁性体コアの前記空隙内に設けられた第2の磁電変換素子と、前記第1の磁電変換素子と前記第2の磁電変換素子との出力の差分を演算する演算装置と、を備え、前記第1の磁電変換素子に加わる前記誘導磁界である磁界の向きと前記第1の磁電変換素子が検出する第1感磁方向とがなす角と、前記第2の磁電変換素子に加わる前記誘導磁界である磁界の向きと前記第2の磁電変換素子が検出する第2感磁方向とがなす角と、が異なり、前記電流路と前記第1の磁電変換素子との間の総合の静電容量と、前記電流路と前記第2の磁電変換素子との間の総合の静電容量とが等しいことを特徴としている。 The current sensor of the present invention is a current sensor for detecting a current path through which a current to be measured flows and a magnetic field of an induced magnetic field generated by the current flowing through the current path, and surrounds the current path and is provided with a gap. The magnetic core formed, the first magnetoelectric conversion element provided in the gap of the magnetic core, the second magnetoelectric conversion element provided in the gap of the magnetic core, and the first An arithmetic unit that calculates a difference in output between the first magnetoelectric conversion element and the second magnetoelectric conversion element, and a direction of the magnetic field that is the induction magnetic field applied to the first magnetoelectric conversion element and the first magnetoelectric The angle formed by the first magnetosensitive direction detected by the conversion element, the direction of the magnetic field that is the induction magnetic field applied to the second magnetoelectric conversion element, and the second magnetosensitive direction detected by the second magnetoelectric conversion element The angle between the current path and the front And the capacitance of the overall between the first magneto-electric transducer, is characterized by equal and the capacitance of the overall between the current path and the second electromagnetic element.
 これによれば、本発明の電流センサは、第1磁界の向きと第1感磁方向とがなす角と、第2磁界の向きと第2感磁方向とがなす角と、が異なるので、2つの磁電変換素子で検出される出力値が異なり、2つの磁電変換素子で検出される出力値の差分を演算装置で演算して比較することができる。さらに、電流路と第1の磁電変換素子との間の総合の静電容量と、電流路と第2の磁電変換素子との間の総合の静電容量とが等しいので、静電結合に起因するノイズの影響を正確に打ち消すことができる。このことにより、同じタイミングで入ってくるノイズの影響を低減することができ、信号のみを正確に検出することができる。したがって、精度の高い電流値の計測ができる電流センサを提供することができる。 Accordingly, in the current sensor of the present invention, the angle formed between the direction of the first magnetic field and the first magnetosensitive direction is different from the angle formed between the direction of the second magnetic field and the second magnetosensitive direction. The output values detected by the two magnetoelectric conversion elements are different, and the difference between the output values detected by the two magnetoelectric conversion elements can be calculated by an arithmetic device and compared. Furthermore, the total capacitance between the current path and the first magnetoelectric conversion element is equal to the total capacitance between the current path and the second magnetoelectric conversion element. It is possible to accurately cancel the influence of noise. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected. Therefore, it is possible to provide a current sensor that can measure a current value with high accuracy.
 また、本発明の電流センサは、前記第1の磁電変換素子及び前記第2の磁電変換素子は、前記磁性体コアの厚み方向に配設されるとともに、前記電流路に対して等距離になるように並べて配設されることを特徴としている。 In the current sensor of the present invention, the first magnetoelectric conversion element and the second magnetoelectric conversion element are disposed in the thickness direction of the magnetic core and are equidistant from the current path. It is characterized by being arranged side by side.
 これによれば、本発明の電流センサは、磁性体コアの厚み方向に配設された第1の磁電変換素子及び第2の磁電変換素子が電流路に対して等距離になるように並べて配設されるので、電流路と第1の磁電変換素子との間の総合の静電容量と、電流路と第2の磁電変換素子との間の総合の静電容量とをより等しくすることができる。このため、2つの磁電変換素子で検出される異なる出力値の差分を演算装置で演算する際に、静電容量に起因するノイズの影響をより正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響をより低減することができ、信号のみをより正確に検出することができる。 According to this, the current sensor of the present invention is arranged side by side so that the first magnetoelectric transducer and the second magnetoelectric transducer arranged in the thickness direction of the magnetic core are equidistant from the current path. Therefore, the total capacitance between the current path and the first magnetoelectric conversion element and the total capacitance between the current path and the second magnetoelectric conversion element can be made more equal. it can. For this reason, when the difference between the different output values detected by the two magnetoelectric conversion elements is calculated by the calculation device, it is possible to subtract the influence of noise caused by the capacitance more accurately. As a result, the influence of noise that enters at the same timing can be further reduced, and only the signal can be detected more accurately.
 また、本発明の電流センサは、前記磁界の向きと前記第1感磁方向とが平行であり、前記磁界の向きと前記第2感磁方向とが平行であることを特徴としている。 The current sensor of the present invention is characterized in that the direction of the magnetic field and the first magnetic sensing direction are parallel, and the direction of the magnetic field and the second magnetic sensing direction are parallel.
 これによれば、本発明の電流センサは、磁界の向きと第1感磁方向とが平行であるとともに、磁界の向きと第2感磁方向とが平行であるので、第1の磁電変換素子及び第2の磁電変換素子が受けるそれぞれの誘導磁界は同じになり、第1の磁電変換素子及び第2の磁電変換素子がそれぞれ違う角度で受ける外部磁場はそれぞれ違うようになる。このことにより、第1の磁電変換素子と第2の磁電変換素子とを比較することで、外部磁場の影響を算出して相殺でき、外部磁場からの影響を低減することが容易にできる。 According to this, since the direction of the magnetic field and the first magnetosensitive direction are parallel and the direction of the magnetic field and the second magnetosensitive direction are parallel, the current sensor of the present invention has the first magnetoelectric conversion element. The induced magnetic fields received by the second and second magnetoelectric conversion elements are the same, and the external magnetic fields received by the first and second magnetoelectric conversion elements at different angles are different. Thus, by comparing the first magnetoelectric conversion element and the second magnetoelectric conversion element, the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced.
 また、本発明の電流センサは、前記電流路と前記第1の磁電変換素子との距離及び対向面積と、前記電流路と前記第2の磁電変換素子との距離及び対向面積と、が等しいとともに、前記磁性体コアと前記第1の磁電変換素子との距離及び対向面積と、前記磁性体コアと前記第2の磁電変換素子との距離及び対向面積と、が等しいことを特徴としている。 In the current sensor of the present invention, the distance and the facing area between the current path and the first magnetoelectric conversion element and the distance and the facing area between the current path and the second magnetoelectric conversion element are equal. The distance and the facing area between the magnetic core and the first magnetoelectric conversion element are equal to the distance and the facing area between the magnetic core and the second magnetoelectric conversion element.
 これによれば、本発明の電流センサは、電流路と第1の磁電変換素子及び第2の磁電変換素子との距離及び対向面積が等しいとともに、磁性体コアと第1の磁電変換素子及び第2の磁電変換素子との距離及び対向面積が等しいので、それぞれの磁電変換素子と電流路、それぞれの磁電変換素子と磁性体コアとの静電容量が同等になる。このことにより、電流センサを作製する際に、それぞれの磁電変換素子の総合の静電容量をより等しくすることが容易であり、静電結合に起因するノイズの影響をより一層低減することができる。 According to this, in the current sensor of the present invention, the distance between the current path, the first magnetoelectric conversion element, and the second magnetoelectric conversion element and the facing area are equal, and the magnetic core, the first magnetoelectric conversion element, and the first magnetoelectric conversion element Since the distance and the facing area between the two magnetoelectric conversion elements are equal, the capacitances of the respective magnetoelectric conversion elements and current paths, and the respective magnetoelectric conversion elements and the magnetic core are equal. As a result, it is easy to make the total capacitance of each magnetoelectric conversion element equal when manufacturing a current sensor, and the influence of noise caused by electrostatic coupling can be further reduced. .
 本発明の電流センサは、第1磁界の向きと第1感磁方向とがなす角と、第2磁界の向きと第2感磁方向とがなす角と、が異なり、電流路と第1の磁電変換素子との間の総合の静電容量と、電流路と第2の磁電変換素子との間の総合の静電容量とが等しいので、2つの磁電変換素子で検出される異なる出力値の差分を演算装置で演算する際に、静電容量に起因するノイズの影響を正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響を低減することができ、信号のみを正確に検出することができる。 In the current sensor of the present invention, the angle formed by the direction of the first magnetic field and the first magnetic sensing direction is different from the angle formed by the direction of the second magnetic field and the second magnetic sensitive direction. Since the total capacitance between the magnetoelectric transducers and the total capacitance between the current path and the second magnetoelectric transducer are equal, different output values detected by the two magnetoelectric transducers When the difference is calculated by the calculation device, the influence of noise caused by the capacitance can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected.
本発明の第1実施形態の電流センサを説明する斜視図である。It is a perspective view explaining the current sensor of a 1st embodiment of the present invention. 本発明の第1実施形態の電流センサを説明する図であって、図2Aは、図1に示すX1側から見た側面図であり、図2Bは、図1に示すX2側から見た側面図であり、図2Cは、図1に示すZ1側から見た上面図である。2A and 2B are diagrams illustrating the current sensor according to the first embodiment of the present invention, in which FIG. 2A is a side view seen from the X1 side shown in FIG. 1, and FIG. 2B is a side view seen from the X2 side shown in FIG. FIG. 2C is a top view seen from the Z1 side shown in FIG. 本発明の第1実施形態の電流センサにおける静電容量を示した模式図である。It is the schematic diagram which showed the electrostatic capacitance in the current sensor of 1st Embodiment of this invention. 本発明の第1実施形態の電流センサにおける誘導磁界の向きと磁電変換素子の感磁方向を示した模式図である。It is the schematic diagram which showed the direction of the induction magnetic field in the current sensor of 1st Embodiment of this invention, and the magnetosensitive direction of a magnetoelectric conversion element. 本発明の第2実施形態の電流センサを説明する斜視図である。It is a perspective view explaining the current sensor of a 2nd embodiment of the present invention. 本発明の第2実施形態の電流センサを説明する図であって、図6Aは、図5に示すY2側から見た正面図であり、図6Bは、図5に示すX1側から見た側面図であり、図6Cは、図5に示すZ1側から見た上面図である。FIG. 6A is a front view seen from the Y2 side shown in FIG. 5 and FIG. 6B is a side view seen from the X1 side shown in FIG. FIG. 6C is a top view seen from the Z1 side shown in FIG. 本発明の第2実施形態の電流センサにおける静電容量を示した模式図である。It is the schematic diagram which showed the electrostatic capacitance in the current sensor of 2nd Embodiment of this invention. 本発明の第2実施形態の電流センサにおける誘導磁界の向きと磁電変換素子の感磁方向を示した模式図である。It is the schematic diagram which showed the direction of the induction magnetic field in the current sensor of 2nd Embodiment of this invention, and the magnetosensitive direction of a magnetoelectric conversion element. 本発明の第3実施形態の電流センサを説明する斜視図である。It is a perspective view explaining the current sensor of a 3rd embodiment of the present invention. 本発明の第3実施形態の電流センサを説明する図であって、図10Aは、図9に示すY2側から見た正面図であり、図10Bは、図9に示すX1側から見た側面図であり、図10Cは、図9に示すZ1側から見た上面図である。FIG. 10A is a front view seen from the Y2 side shown in FIG. 9 and FIG. 10B is a side view seen from the X1 side shown in FIG. FIG. 10C is a top view seen from the Z1 side shown in FIG. 本発明の第3実施形態の電流センサにおける静電容量を示した模式図である。It is the schematic diagram which showed the electrostatic capacitance in the current sensor of 3rd Embodiment of this invention. 本発明の第3実施形態の電流センサにおける誘導磁界の向きと磁電変換素子の感磁方向を示した模式図である。It is the schematic diagram which showed the direction of the induction magnetic field in the current sensor of 3rd Embodiment of this invention, and the magnetosensitive direction of a magnetoelectric conversion element. 本発明の第1実施形態の電流センサの変形例を説明する図であって、図13Aは、磁電変換素子の配設位置を変えた変形例1であって、図13Bは、磁電変換素子の配設位置を変えた変形例2である。FIG. 13A is a diagram illustrating a modification of the current sensor according to the first embodiment of the present invention, FIG. 13A is a modification 1 in which the arrangement position of the magnetoelectric conversion element is changed, and FIG. 13B is a diagram of the magnetoelectric conversion element; It is the modification 2 which changed the arrangement position. 本発明の第1実施形態及び第2実施形態の電流センサの変形例を説明する模式図であって、図14Aは、第1実施形態の磁電変換素子の配設位置を変えた変形例3であって、図14Bは、第2実施形態の磁電変換素子の配設位置を変えた変形例4である。FIG. 14A is a schematic diagram illustrating a modification of the current sensor according to the first embodiment and the second embodiment of the present invention, and FIG. 14A is a modification 3 in which the arrangement position of the magnetoelectric conversion element according to the first embodiment is changed. And FIG. 14B is the modification 4 which changed the arrangement position of the magnetoelectric conversion element of 2nd Embodiment. 本発明の第1実施形態及び第2実施形態の電流センサの変形例を説明する図であって、図15Aは、第1実施形態の電流路及び磁性体コアを変えた変形例5であって、図15Bは、第2実施形態の電流路及び磁性体コアを変えた変形例6である。It is a figure explaining the modification of the current sensor of 1st Embodiment of this invention, and 2nd Embodiment, Comprising: FIG. 15A is the modification 5 which changed the electric current path and magnetic body core of 1st Embodiment, FIG. 15B is a sixth modification in which the current path and the magnetic core of the second embodiment are changed. 本発明の第2実施形態の電流センサの変形例を説明する図であって、磁電変換素子の配設位置を変えた変形例9の電流センサである。It is a figure explaining the modification of the current sensor of 2nd Embodiment of this invention, Comprising: It is the current sensor of the modification 9 which changed the arrangement position of the magnetoelectric conversion element. 本発明の第3実施形態の電流センサの変形例を説明する図であって、図17Aは、第3実施形態の磁電変換素子の配設位置を変えた変形例10であって、図17Bは、第3実施形態の配設位置を変えた変形例11である。FIG. 17A is a diagram illustrating a modification of the current sensor according to the third embodiment of the present invention, and FIG. 17A is a modification 10 in which the arrangement position of the magnetoelectric transducer according to the third embodiment is changed, and FIG. This is a modified example 11 in which the arrangement position of the third embodiment is changed. 特許文献1の従来例における電流検出器の構成を概略的に示した図である。It is the figure which showed schematically the structure of the current detector in the prior art example of patent document 1. FIG.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [第1実施形態]
 図1は、本発明の第1実施形態の電流センサ101を説明する斜視図である。図2は、本発明の第1実施形態の電流センサ101を説明する図であって、図2Aは、図1に示すX1側から見た側面図であり、図2Bは、図1に示すX2側から見た側面図であり、図2Cは、図1に示すZ1側から見た上面図である。図3は、本発明の第1実施形態の電流センサにおける静電容量を示した模式図である。図4は、本発明の第1実施形態の電流センサにおける誘導磁界の向きと磁電変換素子13の感磁方向を示した模式図である。
[First Embodiment]
FIG. 1 is a perspective view illustrating a current sensor 101 according to the first embodiment of the present invention. 2A and 2B are diagrams for explaining the current sensor 101 according to the first embodiment of the present invention. FIG. 2A is a side view seen from the X1 side shown in FIG. 1, and FIG. 2B is a diagram showing X2 shown in FIG. 2C is a side view seen from the side, and FIG. 2C is a top view seen from the Z1 side shown in FIG. FIG. 3 is a schematic diagram showing capacitance in the current sensor according to the first embodiment of the present invention. FIG. 4 is a schematic diagram showing the direction of the induced magnetic field and the magnetosensitive direction of the magnetoelectric transducer 13 in the current sensor according to the first embodiment of the present invention.
 本発明の第1実施形態の電流センサ101は、図1及び図2に示すように、被測定電流が流れる電流路CBと、円形の環状で電流路CBを囲む位置に配設された磁性体コア11と、電流路CBに流れる電流によって発生する誘導磁界の磁気を検出する2つの磁電変換素子13(第1の磁電変換素子13A及び第2の磁電変換素子13B)と、第1の磁電変換素子13Aと第2の磁電変換素子13Bとの出力の差分を演算する演算装置17と、を備えて構成される。他に、電流路CBと磁性体コア11との間に設けられた誘電体14(第1の誘電体14A及び第2の誘電体14B)と、第1の磁電変換素子13A、第2の磁電変換素子13B及び演算装置17を搭載している基板9を備えている。なお、基板9には、第1の磁電変換素子13A及び第2の磁電変換素子13Bからの出力値を演算装置17に伝送するための配線パターン(図示していない)が設けられている。 As shown in FIGS. 1 and 2, the current sensor 101 according to the first embodiment of the present invention includes a current path CB through which a current to be measured flows and a magnetic body disposed at a position surrounding the current path CB in a circular ring shape. Core 11, two magnetoelectric conversion elements 13 (first magnetoelectric conversion element 13 </ b> A and second magnetoelectric conversion element 13 </ b> B) that detect magnetism of an induced magnetic field generated by a current flowing in current path CB, and a first magnetoelectric conversion And an arithmetic unit 17 that calculates a difference in output between the element 13A and the second magnetoelectric transducer 13B. In addition, the dielectric 14 (the first dielectric 14A and the second dielectric 14B) provided between the current path CB and the magnetic core 11, the first magnetoelectric conversion element 13A, the second magnetoelectric The board | substrate 9 which mounts the conversion element 13B and the arithmetic unit 17 is provided. The substrate 9 is provided with a wiring pattern (not shown) for transmitting output values from the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B to the arithmetic unit 17.
 磁性体コア11は、軟磁性体、例えばパーマロイ(Fe-Ni合金)を用い、図1及び図2に示すように、円形の環状に形成され、磁性体コア11には、その一方側に第1の空隙K11と、第1の空隙K11と電流路CBを挟んで対向する側に第2の空隙K12が設けられて構成されている。そして、金属製の電流路CBを囲むように磁性体コア11が配設され、電流路CBの回りに発生する磁束を集束している。なお、電流路CBと磁性体コア11との固定には、後述する誘電体14を用いるか、或いは図示はしないが、保持部材等を用いて電流路CBを磁性体コア11に保持することによって容易に達成できる。 The magnetic core 11 is made of a soft magnetic material, such as permalloy (Fe—Ni alloy), and is formed in a circular ring shape as shown in FIGS. 1 and 2. The first gap K11 is provided, and the second gap K12 is provided on the side facing the first gap K11 and the current path CB. And the magnetic body core 11 is arrange | positioned so that the metal current path CB may be enclosed, and the magnetic flux which generate | occur | produces around the current path CB is converged. The current path CB and the magnetic core 11 are fixed by using a dielectric 14 described later, or by holding the current path CB on the magnetic core 11 using a holding member or the like (not shown). Can be easily achieved.
 また、図1及び図2に示すように、第1の空隙K11と第2の空隙K12とが同じ大きさ及び形状で形成され、第1の空隙K11と第2の空隙K12とが電流路CBの中心軸Ajに対して対称になるように、電流路CBが配設されている。なお、磁性体コア11は、円形の環状に形成されているが、第1の空隙K11或いは第2の空隙K12を形成している対向する面が、平行になるように形成されているので、第1の空隙K11或いは第2の空隙K12内の磁界(後述する第1磁界の向きM11或いは第2磁界の向きM12)は、平行磁界となっている。また、磁性体コア11にパーマロイ(Fe-Ni合金)を用いたが、軟磁性材料であれば良く、他の鉄系材料であるセンダスト(Fe-Si-Al合金)、珪素鋼等や、非鉄系のアモルファス磁性合金等、酸化物のフェライトなどでも良い。 Further, as shown in FIGS. 1 and 2, the first gap K11 and the second gap K12 are formed in the same size and shape, and the first gap K11 and the second gap K12 are connected to the current path CB. The current path CB is arranged so as to be symmetric with respect to the central axis Aj. The magnetic core 11 is formed in a circular ring shape, but the opposing surfaces forming the first gap K11 or the second gap K12 are formed so as to be parallel, A magnetic field (first magnetic field direction M11 or second magnetic field direction M12 described later) in the first gap K11 or the second gap K12 is a parallel magnetic field. In addition, permalloy (Fe—Ni alloy) is used for the magnetic core 11, but any soft magnetic material may be used. Amorphous magnetic alloy, oxide ferrite, etc. may be used.
 磁電変換素子13は、電流路CBに電流が流れたときに発生する磁気を検出する電流のセンサであって、例えば、巨大磁気抵抗効果を用いた磁気抵抗素子(GMR(Giant Magneto Resistive)素子と言う)を用いている。GMR素子は、例えば、反強磁性層がα-Fe層、ピン層がNiFe層、中間層がCu層、フリー層がNiFe層から形成されている。そして、この磁電変換素子13は、GMR素子をシリコン基板上に作製し、切り出されたGMRチップを熱硬化性の合成樹脂でパッケージングしている。また、磁電変換素子13は、図1及び図2に示すように、2つの磁電変換素子13、つまり第1の磁電変換素子13Aと第2の磁電変換素子13Bとを備えている。なお、第1の磁電変換素子13Aと第2の磁電変換素子13Bの外形(パッケージングサイズ)は、同じサイズのものを選定している。 The magnetoelectric conversion element 13 is a current sensor that detects magnetism generated when a current flows through the current path CB. For example, the magnetoelectric conversion element 13 is a magnetoresistive element (GMR (Giant Magneto Resistive) element using a giant magnetoresistive effect). Say). In the GMR element, for example, an antiferromagnetic layer is formed of an α-Fe 2 O 3 layer, a pinned layer is formed of a NiFe layer, an intermediate layer is formed of a Cu layer, and a free layer is formed of a NiFe layer. In the magnetoelectric conversion element 13, a GMR element is produced on a silicon substrate, and the cut GMR chip is packaged with a thermosetting synthetic resin. As shown in FIGS. 1 and 2, the magnetoelectric conversion element 13 includes two magnetoelectric conversion elements 13, that is, a first magnetoelectric conversion element 13A and a second magnetoelectric conversion element 13B. Note that the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B have the same outer shape (packaging size).
 また、第1の磁電変換素子13Aと第2の磁電変換素子13Bは、図1及び図2に示すように、プリント配線板(PCB:Printed Circuit Board)等の基板9に搭載され、第1の空隙K11に第1の磁電変換素子13Aが配設され、第2の空隙K12に第2の磁電変換素子13Bが配設されている。これにより、図3に示すように、第1の磁電変換素子13Aと磁性体コア11との間に静電容量がC11及びC12として生じ、第1の磁電変換素子13Aと電流路CBとの間に静電容量がC13として生じ、磁性体コア11と電流路CBとの間に静電容量がC31及びC32として生じて、結果として、電流路CBと第1の磁電変換素子13Aとの間の総合の静電容量C1は次式のようになる。 Further, the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are mounted on a substrate 9 such as a printed circuit board (PCB) as shown in FIG. 1 and FIG. The first magnetoelectric conversion element 13A is disposed in the gap K11, and the second magnetoelectric conversion element 13B is disposed in the second gap K12. As a result, as shown in FIG. 3, capacitances are generated as C 11 and C 12 between the first magnetoelectric conversion element 13A and the magnetic core 11, and the first magnetoelectric conversion element 13A and the current path CB resulting capacitance as C 13 between the electrostatic capacitance between the magnetic core 11 and the current path CB is generated as C 31 and C 32, as a result, a current path CB of the first electromagnetic element The total capacitance C1 between 13A is given by the following equation.
 C1=C13+C31×C11/(C31+C11)+C32×C12/(C32+C12 C1 = C 13 + C 31 × C 11 / (C 31 + C 11) + C 32 × C 12 / (C 32 + C 12)
 同様にして、第2の磁電変換素子13Bと磁性体コア11との間に静電容量がC21及びC22として生じ、第2の磁電変換素子13Bと電流路CBとの間に静電容量がC23として生じて、結果として、電流路CBと第2の磁電変換素子13Bとの間の総合の静電容量C2は次式のようになる。 Similarly, the capacitance between the second magneto-electric conversion element 13B and the magnetic core 11 is generated as C 21 and C 22, the capacitance between the second magneto-electric conversion element 13B and the current path CB There occurs as C 23, as a result, the electrostatic capacity C2 of the total between the current paths CB and the second electromagnetic element 13B is as follows.
 C2=C23+C31×C21/(C31+C21)+C32×C22/(C32+C22 C2 = C 23 + C 31 × C 21 / (C 31 + C 21) + C 32 × C 22 / (C 32 + C 22)
 また、図4に示すように、第1の磁電変換素子13Aが検出する感磁方向が第1感磁方向S11になるように配設されるとともに、第2の磁電変換素子13Bが検出する感磁方向が第2感磁方向S12になるように配設されている。ここでいう感磁方向とは、磁電変換素子13が検出する値がプラスになる向きを示している。一方、図4に示すように、第1の磁電変換素子13Aが配設される第1の空隙K11における誘導磁界の向きが第1磁界の向きM11となっており、第2の磁電変換素子13Bが配設される第2の空隙K12における誘導磁界の向きが第2磁界の向きM12となっている。このため、第1の磁電変換素子13Aに加わる誘導磁界の第1磁界の向きM11と第1の磁電変換素子13Aが検出する第1感磁方向S11とがなす角、つまり0°と、第2の磁電変換素子13Bに加わる誘導磁界の第2磁界の向きM12と第2の磁電変換素子13Bが検出する第2感磁方向S12とがなす角、つまり180°と、異なっている。これにより、2つの磁電変換素子13(13A、13B)で検出される出力値が異なるので、この2つの磁電変換素子13(13A、13B)で検出される出力値の差分を演算装置17で演算して比較することができる。 Further, as shown in FIG. 4, the magnetic sensing direction detected by the first magnetoelectric conversion element 13A is arranged to be the first magnetic sensing direction S11, and the sensitivity detected by the second magnetoelectric conversion element 13B. It arrange | positions so that a magnetic direction may turn into 2nd magnetosensitive direction S12. The magnetosensitive direction here indicates a direction in which the value detected by the magnetoelectric transducer 13 is positive. On the other hand, as shown in FIG. 4, the direction of the induced magnetic field in the first gap K11 in which the first magnetoelectric conversion element 13A is disposed is the first magnetic field direction M11, and the second magnetoelectric conversion element 13B. The direction of the induced magnetic field in the second gap K12 in which is disposed is the second magnetic field direction M12. For this reason, the angle formed by the first magnetic direction S11 detected by the first magnetoelectric conversion element 13A and the direction M11 of the first magnetic field of the induced magnetic field applied to the first magnetoelectric conversion element 13A, that is, 0 °, This is different from the angle formed by the second magnetic direction S12 detected by the second magnetoelectric conversion element 13B and the direction M12 of the second magnetic field of the induced magnetic field applied to the magnetoelectric conversion element 13B, that is, 180 °. As a result, since the output values detected by the two magnetoelectric conversion elements 13 (13A, 13B) are different, the calculation device 17 calculates the difference between the output values detected by the two magnetoelectric conversion elements 13 (13A, 13B). Can be compared.
 更に、本発明の第1実施形態では、電流路CBと第1の磁電変換素子13Aとの間の総合の静電容量C1と、電流路CBと第2の磁電変換素子13Bとの間の総合の静電容量C2とが等しくなるように調整されている。これにより、それぞれの磁電変換素子13(13A、13B)に付加された静電容量を正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響を低減することができ、信号のみを正確に検出することができる。 Furthermore, in the first embodiment of the present invention, the total capacitance C1 between the current path CB and the first magnetoelectric conversion element 13A and the total capacitance between the current path CB and the second magnetoelectric conversion element 13B. The capacitance C2 is adjusted to be equal. Thereby, the electrostatic capacitance added to each magnetoelectric conversion element 13 (13A, 13B) can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected.
 更に、本発明の第1実施形態では、図2Cないし図4に示すように、電流路CBと磁性体コア11との間に、2つの誘電体14、つまり第1の誘電体14Aと第2の誘電体14Bとが設けられている。これにより、この誘電体14(第1の誘電体14A及び第2の誘電体14B)の誘電率や大きさを変えることにより、電流路CBと第1の磁電変換素子13Aとの間の総合の静電容量C1と、電流路CBと第2の磁電変換素子13Bとの間の総合の静電容量C2とを等しくする前述した調整が容易にでき、それぞれの総合の静電容量(C1とC2)をより等しくすることができる。このため、2つの磁電変換素子13(13A、13B)で検出される異なる出力値の差分を演算装置17で演算する際に、静電容量に起因するノイズの影響をより正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響をより低減することができ、信号のみをより正確に検出することができる。 Furthermore, in the first embodiment of the present invention, as shown in FIGS. 2C to 4, two dielectrics 14, that is, the first dielectric 14 </ b> A and the second dielectric are provided between the current path CB and the magnetic core 11. The dielectric 14B is provided. Thus, by changing the dielectric constant and size of the dielectric 14 (the first dielectric 14A and the second dielectric 14B), the total current between the current path CB and the first magnetoelectric transducer 13A is changed. The above-described adjustment to make the capacitance C1 equal to the total capacitance C2 between the current path CB and the second magnetoelectric transducer 13B can be easily performed, and the respective total capacitance (C1 and C2). ) Can be made more equal. For this reason, when calculating the difference between the different output values detected by the two magnetoelectric transducers 13 (13A, 13B) by the calculation device 17, it is possible to subtract the influence of noise caused by the capacitance more accurately. . As a result, the influence of noise that enters at the same timing can be further reduced, and only the signal can be detected more accurately.
 また、誘電体14には、材質の制限は無く、合成樹脂や酸化物等で良く、非磁性であれば金属でも良い。また、図2Cに示すように、2つの誘電体14(第1の誘電体14A及び第2の誘電体14B)の厚みを同じにして、電流路CBと磁性体コア11との間に圧入するように配置すると、誘電体14は、電流路CBを固定するとともに、電流路CBを磁性体コア11の中心に位置させる役割を担い、ひいては電流路CBと2つの磁電変換素子13(13A、13B)のそれぞれとの距離を等距離にする役割を担っている。また、上述した調整において、この誘電体14の配設位置を少し移動させることによっても行われる。 The material of the dielectric 14 is not limited, and may be a synthetic resin or an oxide, and may be a metal if it is non-magnetic. Further, as shown in FIG. 2C, the thicknesses of the two dielectrics 14 (the first dielectric 14A and the second dielectric 14B) are made the same and press-fitted between the current path CB and the magnetic core 11. In this arrangement, the dielectric 14 fixes the current path CB and plays a role of positioning the current path CB at the center of the magnetic core 11, and consequently the current path CB and the two magnetoelectric transducers 13 (13 </ b> A, 13 </ b> B). ) Is the same distance from each other. Further, in the adjustment described above, it is also performed by slightly moving the arrangement position of the dielectric 14.
 また、本発明の第1実施形態では、図4に示すように、第1磁界の向きM11と第1感磁方向S11とが平行であり、第2磁界の向きM12と第2感磁方向S12とが平行になるように、第1の空隙K11及び第2の空隙K12に対して、第1の磁電変換素子13A及び第2の磁電変換素子13Bを配設している。これによれば、第1の磁電変換素子13A及び第2の磁電変換素子13Bが受けるそれぞれの誘導磁界は同じになり、それぞれ違う角度で第1の磁電変換素子13A及び第2の磁電変換素子13Bが受ける外部磁場はそれぞれ違うようになる。このことにより、第1の磁電変換素子13Aと第2の磁電変換素子13Bとを比較することで、外部磁場の影響を相殺でき、外部磁場からの影響を低減することが容易にできる。 In the first embodiment of the present invention, as shown in FIG. 4, the first magnetic field direction M11 and the first magnetic sensing direction S11 are parallel, and the second magnetic field direction M12 and the second magnetic sensitive direction S12. Are arranged in parallel to the first gap K11 and the second gap K12, the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B. According to this, the induction magnetic fields received by the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are the same, and the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are at different angles. The external magnetic field received by each will be different. Thus, by comparing the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B, the influence of the external magnetic field can be canceled and the influence from the external magnetic field can be easily reduced.
 更に、本発明の第1実施形態では、図4に示すように、第1磁界の向きM11と第2磁界の向きM12とが逆向きになるように、第1の空隙K11及び第2の空隙K12が磁性体コア11に設けられている。そして、この第1の空隙K11及び第2の空隙K12に、第1の磁電変換素子13Aの及び第2の磁電変換素子13Bが配設されて、第1磁界の向きM11と平行な第1感磁方向S11と第2磁界の向きM12と平行な第2感磁方向S12とが逆向きになる。これにより、一方の磁電変換素子13の出力値がプラス値となり、他方の磁電変換素子13の出力値がマイナス値となるので、第1の磁電変換素子13Aの出力値と第2の磁電変換素子13Bの出力値との差分値が最大に得られる。このことにより、第1の磁電変換素子13Aと第2の磁電変換素子13Bとの出力の差分値を演算装置17で演算することで、電流センサ101の感度を高めることができる。 Furthermore, in the first embodiment of the present invention, as shown in FIG. 4, the first gap K11 and the second gap so that the first magnetic field direction M11 and the second magnetic field direction M12 are opposite to each other. K12 is provided in the magnetic core 11. In the first gap K11 and the second gap K12, the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are arranged, and a first feeling parallel to the first magnetic field direction M11 is provided. The magnetic direction S11 and the second magnetic sensing direction S12 parallel to the second magnetic field direction M12 are opposite to each other. As a result, the output value of one magnetoelectric conversion element 13 becomes a positive value and the output value of the other magnetoelectric conversion element 13 becomes a negative value. Therefore, the output value of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element The maximum difference value with the output value of 13B is obtained. Thus, the sensitivity of the current sensor 101 can be increased by calculating the difference value between the outputs of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B by the calculation device 17.
 上述した演算装置17は、基板9に搭載されて、詳細な図示はしていないが、基板9に設けられた配線パターンにより、第1の磁電変換素子13Aと第2の磁電変換素子13Bと電気的に接続され、第1の磁電変換素子13Aと第2の磁電変換素子13Bとの出力の差分を演算している。また、詳細な図示はしていないが、演算装置17には、第1の磁電変換素子13A及び第2の磁電変換素子13Bからの電気信号を処理して演算するための半導体集積回路(IC:Integrated Circuit)が備えられている。なお、演算装置17は、第1の磁電変換素子13Aと第2の磁電変換素子13Bが搭載されている基板9に搭載されているが、別な基板或いは別な電子機器に搭載されて、電気的に繋がれていても良い。 Although the arithmetic device 17 described above is mounted on the substrate 9 and is not shown in detail, the first magnetoelectric conversion element 13A, the second magnetoelectric conversion element 13B, and the electric Are connected, and a difference between outputs of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B is calculated. Although not shown in detail, the arithmetic unit 17 includes a semiconductor integrated circuit (IC: IC) for processing and calculating electrical signals from the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B. Integrated Circuit). The arithmetic device 17 is mounted on the substrate 9 on which the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are mounted. However, the arithmetic device 17 is mounted on another substrate or another electronic device, May be connected.
 また、本発明の第1実施形態では、図2及び図3に示すように、同じ大きさ及び形状で形成された第1の空隙K11と第2の空隙K12とに、第1の磁電変換素子13A及び第2の磁電変換素子13Bが各々の空隙の中心に位置するように配置されているので、磁性体コア11と第1の磁電変換素子13A及び第2の磁電変換素子13Bとの距離が等しくなっている。また、第1の磁電変換素子13A及び第2の磁電変換素子13Bが同じ外形(パッケージングサイズ)で形成されているので、磁性体コア11と第1の磁電変換素子13A及び第2の磁電変換素子13Bとの対向面積が等しくなっている。これにより、図3に示す静電容量、C11とC21、及びC12とC22が同等になる。 Further, in the first embodiment of the present invention, as shown in FIGS. 2 and 3, the first magnetoelectric conversion element is formed in the first gap K11 and the second gap K12 formed in the same size and shape. Since the 13A and the second magnetoelectric conversion element 13B are arranged so as to be positioned at the center of each gap, the distance between the magnetic core 11 and the first and second magnetoelectric conversion elements 13A and 13B is Are equal. Also, since the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are formed with the same outer shape (packaging size), the magnetic core 11, the first magnetoelectric conversion element 13A, and the second magnetoelectric conversion The facing area with the element 13B is equal. As a result, the capacitances C 11 and C 21 , and C 12 and C 22 shown in FIG. 3 are equivalent.
 更に、図2及び図3に示すように、第1の磁電変換素子13Aと第2の磁電変換素子13Bとが電流路CBの中心軸Ajに対して対称になるように、配設されているので、電流路CBと第1の磁電変換素子13A及び第2の磁電変換素子13Bとの距離が等しくなっている。また、第1の磁電変換素子13A及び第2の磁電変換素子13Bが同じ外形(パッケージングサイズ)で形成されているので、電流路CBと第1の磁電変換素子13A及び第2の磁電変換素子13Bとの対向面積が等しくなっている。これにより、図3に示す静電容量、C13とC23が同等になる。 Further, as shown in FIGS. 2 and 3, the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are disposed so as to be symmetric with respect to the central axis Aj of the current path CB. Therefore, the distance between the current path CB and the first and second magnetoelectric conversion elements 13A and 13B is equal. Further, since the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are formed with the same outer shape (packaging size), the current path CB, the first magnetoelectric conversion element 13A, and the second magnetoelectric conversion element The facing area with 13B is equal. As a result, the capacitances C 13 and C 23 shown in FIG. 3 become equivalent.
 以上のようなことから、それぞれの磁電変換素子13(13A、13B)に付加される静電容量がより同等になるので、電流センサ101を作製する際に、それぞれの磁電変換素子13(13A、13B)の総合の静電容量(C1、C2)をより等しくすることが容易である。 As described above, the capacitance added to each of the magnetoelectric conversion elements 13 (13A, 13B) becomes more equal. Therefore, when the current sensor 101 is manufactured, each of the magnetoelectric conversion elements 13 (13A, It is easy to make the total capacitance (C1, C2) of 13B) more equal.
 以上により、本発明の電流センサ101は、第1磁界の向きM11と第1感磁方向S11とがなす角と、第2磁界の向きM12と第2感磁方向S12とがなす角と、が異なり、電流路CBと第1の磁電変換素子13Aとの間の総合の静電容量C1と、電流路CBと第2の磁電変換素子13Bとの間の総合の静電容量C2とが等しいので、2つの磁電変換素子13(13A、13B)で検出される異なる出力値の差分を演算装置17で演算する際に、静電結合に起因するノイズの影響を正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響を低減することができ、信号のみを正確に検出することができる。したがって、精度の高い電流値の計測ができる電流センサ101を提供することができる。 As described above, the current sensor 101 of the present invention has the angle formed by the first magnetic field direction M11 and the first magnetic sensing direction S11 and the angle formed by the second magnetic field direction M12 and the second magnetic sensing direction S12. Unlikely, the total capacitance C1 between the current path CB and the first magnetoelectric conversion element 13A and the total capacitance C2 between the current path CB and the second magnetoelectric conversion element 13B are equal. When the difference between different output values detected by the two magnetoelectric conversion elements 13 (13A, 13B) is calculated by the calculation device 17, the influence of noise caused by electrostatic coupling can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected. Therefore, it is possible to provide the current sensor 101 that can measure the current value with high accuracy.
 また、電流路CBと磁性体コア11との間に誘電体14(第1の誘電体14A及び第2の誘電体14B)を設けるので、この誘電体14(第1の誘電体14A及び第2の誘電体14B)の誘電率や大きさを変えることにより、電流路CBと第1の磁電変換素子13Aとの間の総合の静電容量C1と、電流路CBと第2の磁電変換素子13Bとの間の総合の静電容量C2とを等しくする、前述した調整が容易にでき、それぞれの総合の静電容量(C1とC2)をより等しくすることができる。このため、2つの磁電変換素子13(13A、13B)で検出される異なる出力値の差分を演算装置17で演算する際に、静電容量に起因するノイズの影響をより正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響をより低減することができ、信号のみをより正確に検出することができる。 Further, since the dielectric 14 (the first dielectric 14A and the second dielectric 14B) is provided between the current path CB and the magnetic core 11, the dielectric 14 (the first dielectric 14A and the second dielectric 14B) is provided. By changing the dielectric constant and size of the dielectric 14B), the total capacitance C1 between the current path CB and the first magnetoelectric conversion element 13A, and the current path CB and the second magnetoelectric conversion element 13B. The above-described adjustment can be facilitated to make the total electrostatic capacity C2 between and equal to each other, and the total electrostatic capacity (C1 and C2) can be made more equal. For this reason, when calculating the difference between the different output values detected by the two magnetoelectric transducers 13 (13A, 13B) by the calculation device 17, it is possible to subtract the influence of noise caused by the capacitance more accurately. . As a result, the influence of noise that enters at the same timing can be further reduced, and only the signal can be detected more accurately.
 また、第1磁界の向きM11と第1感磁方向S11とが平行であるとともに、第2磁界の向きM12と第2感磁方向S12とが平行であるので、第1の磁電変換素子13A及び第2の磁電変換素子13Bが受けるそれぞれの誘導磁界は同じになり、第1の磁電変換素子13A及び第2の磁電変換素子13Bがそれぞれ違う角度で受ける外部磁場はそれぞれ違うようになる。このことにより、第1の磁電変換素子13Aと第2の磁電変換素子13Bとを比較することで、外部磁場の影響を算出して相殺でき、外部磁場からの影響を低減することが容易にできる。したがって、精度の高い電流値の計測ができる電流センサ101を提供することができる。 In addition, since the first magnetic field direction M11 and the first magnetic sensing direction S11 are parallel, and the second magnetic field direction M12 and the second magnetic sensing direction S12 are parallel, the first magnetoelectric transducer 13A and The induction magnetic fields received by the second magnetoelectric conversion element 13B are the same, and the external magnetic fields received by the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B at different angles are different. Accordingly, by comparing the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B, the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced. . Therefore, it is possible to provide the current sensor 101 that can measure the current value with high accuracy.
 また、第1磁界の向きM11と第2磁界の向きM12とが逆向きであるので、第1磁界の向きM11と平行な第1感磁方向S11と、第2磁界の向きM12と平行な第2感磁方向S12と、が逆向きになる。このため、一方の磁電変換素子13の出力値がプラス値となり、他方の磁電変換素子13の出力値がマイナス値となるので、第1の磁電変換素子13Aの出力値と第2の磁電変換素子13Bの出力値との差分値が最大に得られる。このことにより、第1の磁電変換素子13Aと第2の磁電変換素子13Bとの出力の差分値を演算装置17で演算することで、電流センサ101の感度を高めることができる。 In addition, since the first magnetic field direction M11 and the second magnetic field direction M12 are opposite to each other, the first magnetic sensing direction S11 parallel to the first magnetic field direction M11 and the second magnetic field direction M12 parallel to the first magnetic field direction M12. The two magnetic sensing directions S12 are opposite to each other. For this reason, since the output value of one magnetoelectric conversion element 13 becomes a positive value and the output value of the other magnetoelectric conversion element 13 becomes a negative value, the output value of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element The maximum difference value with the output value of 13B is obtained. Thus, the sensitivity of the current sensor 101 can be increased by calculating the difference value between the outputs of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B by the calculation device 17.
 また、電流路CBと第1の磁電変換素子13A及び第2の磁電変換素子13Bとの距離及び対向面積が等しいとともに、磁性体コア11と第1の磁電変換素子13A及び第2の磁電変換素子13Bとの距離及び対向面積が等しいので、それぞれの磁電変換素子13(13A、13B)と電流路CB、それぞれの磁電変換素子13(13A、13B)と磁性体コア11との静電容量が同等になる。このことにより、それぞれの磁電変換素子13(13A、13B)の総合の静電容量(C1、C2)をより等しくすることが容易であり、静電結合に起因するノイズの影響をより一層低減することができる。 Further, the distance and the facing area between the current path CB and the first and second magnetoelectric conversion elements 13A and 13B are equal, and the magnetic core 11, the first and second magnetoelectric conversion elements 13A and 13B, and the second magnetoelectric conversion element. Since the distance to 13B and the facing area are equal, the capacitances of the respective magnetoelectric conversion elements 13 (13A, 13B) and the current path CB, the respective magnetoelectric conversion elements 13 (13A, 13B), and the magnetic core 11 are equivalent. become. As a result, it is easy to make the total capacitance (C1, C2) of the respective magnetoelectric conversion elements 13 (13A, 13B) more equal, and the influence of noise due to electrostatic coupling is further reduced. be able to.
 [第2実施形態]
 図5は、本発明の第2実施形態の電流センサ102を説明する斜視図である。図6は、本発明の第2実施形態の電流センサ102を説明する図であって、図6Aは、図5に示すY2側から見た正面図であり、図6Bは、図5に示すX1側から見た側面図であり、図6Cは、図5に示すZ1側から見た上面図である。図7は、本発明の第2実施形態の電流センサにおける静電容量を示した模式図である。図8は、本発明の第2実施形態の電流センサにおける誘導磁界の向きと磁電変換素子23の感磁方向を示した模式図である。第2実施形態の電流センサ102は、第1実施形態に対し、磁電変換素子23の配設位置が主に異なる。なお、第1実施形態と同一構成については、同一符号を付して詳細な説明は省略する。
[Second Embodiment]
FIG. 5 is a perspective view illustrating the current sensor 102 according to the second embodiment of the present invention. 6A and 6B are diagrams illustrating the current sensor 102 according to the second embodiment of the present invention. FIG. 6A is a front view seen from the Y2 side shown in FIG. 5, and FIG. 6B is X1 shown in FIG. 6C is a side view seen from the side, and FIG. 6C is a top view seen from the Z1 side shown in FIG. FIG. 7 is a schematic diagram showing capacitance in the current sensor according to the second embodiment of the present invention. FIG. 8 is a schematic diagram showing the direction of the induced magnetic field and the magnetosensitive direction of the magnetoelectric transducer 23 in the current sensor according to the second embodiment of the present invention. The current sensor 102 of the second embodiment is mainly different from the first embodiment in the arrangement position of the magnetoelectric conversion element 23. In addition, about the same structure as 1st Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 本発明の第2実施形態の電流センサ102は、図5及び図6に示すように、被測定電流が流れる電流路CBと、中空の矩形で電流路CBを囲む位置に配設された磁性体コア21と、電流路CBに流れる電流によって発生する誘導磁界の磁気を検出する2つの磁電変換素子23(第1の磁電変換素子23A及び第2の磁電変換素子23B)と、第1の磁電変換素子23Aと第2の磁電変換素子23Bとの出力の差分を演算する演算装置17と、を備えて構成される。他に、電流路CBと磁性体コア21との間に設けられた誘電体24(第1の誘電体24A及び第2の誘電体24B)と、第1の磁電変換素子23A、第2の磁電変換素子23B及び演算装置17を搭載している基板9を備えている。なお、基板9には、第1の磁電変換素子23A及び第2の磁電変換素子23Bからの出力値を演算装置17に伝送するための配線パターン(図示していない)が設けられている。 As shown in FIGS. 5 and 6, the current sensor 102 according to the second embodiment of the present invention includes a current path CB through which a current to be measured flows and a magnetic body disposed at a position surrounding the current path CB with a hollow rectangle. The core 21, two magnetoelectric conversion elements 23 (first magnetoelectric conversion element 23A and second magnetoelectric conversion element 23B) for detecting the magnetism of the induced magnetic field generated by the current flowing in the current path CB, and the first magnetoelectric conversion And an arithmetic unit 17 that calculates a difference in output between the element 23A and the second magnetoelectric conversion element 23B. In addition, the dielectric 24 (the first dielectric 24A and the second dielectric 24B) provided between the current path CB and the magnetic core 21, the first magnetoelectric transducer 23A, the second magnetoelectric The board | substrate 9 which mounts the conversion element 23B and the arithmetic unit 17 is provided. The substrate 9 is provided with a wiring pattern (not shown) for transmitting output values from the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B to the arithmetic unit 17.
 磁性体コア21は、軟磁性体、例えばセンダスト(Fe-Si-Al合金)を用い、図5及び図6に示すように、中空の矩形に形成され、磁性体コア21には、その一辺側に第1の空隙K21と他辺側に第2の空隙K22が設けられて構成されている。そして、金属製の電流路CBを囲むように磁性体コア21が配設され、電流路CBの回りに発生する磁束を集束している。また、第1の空隙K21と第2の空隙K22とが同じ大きさ及び形状で形成され、第1の空隙K21と第2の空隙K22とが電流路CBの中心軸Ajに対して90°でしかも等距離になるように、電流路CBが配設されている。なお、電流路CBの配設及び固定には、後述する誘電体14を用いるか、或いは図示はしないが、保持部材等を用いて電流路CBを磁性体コア11に保持することによって容易に達成できる。また、磁性体コア21にセンダスト(Fe-Si-Al合金)を用いたが、軟磁性材料であれば良く、他の鉄系材料であるパーマロイ(Fe-Ni合金)、珪素鋼等や、非鉄系のアモルファス磁性合金等、酸化物のフェライトなどでも良い。 The magnetic core 21 is made of a soft magnetic material, such as Sendust (Fe—Si—Al alloy), and is formed into a hollow rectangle as shown in FIGS. 5 and 6, and the magnetic core 21 has one side thereof. The first gap K21 and the second gap K22 are provided on the other side. And the magnetic body core 21 is arrange | positioned so that the metal current path CB may be enclosed, and the magnetic flux which generate | occur | produces around the current path CB is converged. In addition, the first gap K21 and the second gap K22 are formed in the same size and shape, and the first gap K21 and the second gap K22 are 90 ° with respect to the central axis Aj of the current path CB. In addition, the current path CB is arranged so as to be equidistant. The current path CB is easily disposed and fixed by using the dielectric 14 described later or by holding the current path CB on the magnetic core 11 using a holding member or the like (not shown). it can. Further, Sendust (Fe—Si—Al alloy) is used for the magnetic core 21, but any soft magnetic material may be used. Other ferrous materials such as permalloy (Fe—Ni alloy), silicon steel, etc. Amorphous magnetic alloy, oxide ferrite, etc. may be used.
 磁電変換素子23は、電流路CBに電流が流れたときに発生する磁気を検出する電流のセンサであって、例えば、巨大磁気抵抗効果を用いた磁気抵抗素子(GMR(Giant Magneto Resistive)素子と言う)を用いている。GMR素子は、例えば、反強磁性層がα-Fe層、ピン層がNiFe層、中間層がCu層、フリー層がNiFe層から形成されている。そして、この磁電変換素子23は、GMR素子をシリコン基板上に作製し、切り出されたGMRチップを熱硬化性の合成樹脂でパッケージングしている。また、磁電変換素子23は、図5及び図6に示すように、2つの磁電変換素子23、つまり第1の磁電変換素子23Aと第2の磁電変換素子23Bとを備えている。なお、第1の磁電変換素子23Aと第2の磁電変換素子23Bの外形(パッケージングサイズ)は、同じサイズのものを選定している。 The magnetoelectric conversion element 23 is a current sensor for detecting magnetism generated when a current flows in the current path CB. For example, a magnetoresistive element (GMR (Giant Magneto Resistive) element using a giant magnetoresistive effect) Say). In the GMR element, for example, an antiferromagnetic layer is formed of an α-Fe 2 O 3 layer, a pinned layer is formed of a NiFe layer, an intermediate layer is formed of a Cu layer, and a free layer is formed of a NiFe layer. In the magnetoelectric conversion element 23, a GMR element is produced on a silicon substrate, and the cut out GMR chip is packaged with a thermosetting synthetic resin. Further, as shown in FIGS. 5 and 6, the magnetoelectric conversion element 23 includes two magnetoelectric conversion elements 23, that is, a first magnetoelectric conversion element 23 </ b> A and a second magnetoelectric conversion element 23 </ b> B. Note that the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B have the same outer shape (packaging size).
 また、第1の磁電変換素子23Aと第2の磁電変換素子23Bは、図5及び図6に示すように、基板9に搭載され、第1の空隙K21に第1の磁電変換素子23Aが配設され、第2の空隙K22に第2の磁電変換素子23Bが配設されている。これにより、図7に示すように、第1の磁電変換素子23Aと磁性体コア21との間に静電容量がC14及びC15として生じ、第1の磁電変換素子23Aと電流路CBとの間に静電容量がC16として生じ、磁性体コア21と電流路CBとの間に静電容量がC34及びC35として生じて、結果として、電流路CBと第1の磁電変換素子23Aとの間の総合の静電容量C3は次式のようになる。 Further, as shown in FIGS. 5 and 6, the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B are mounted on the substrate 9, and the first magnetoelectric conversion element 23A is arranged in the first gap K21. The second magnetoelectric conversion element 23B is disposed in the second gap K22. As a result, as shown in FIG. 7, capacitance is generated as C 14 and C 15 between the first magnetoelectric conversion element 23A and the magnetic core 21, and the first magnetoelectric conversion element 23A and the current path CB resulting capacitance as C 16 between the electrostatic capacitance between the magnetic core 21 and the current path CB is generated as C 34 and C 35, as a result, a current path CB of the first electromagnetic element The total capacitance C3 between 23A is expressed by the following equation.
 C3=C16+C34×C14/(C34+C14)+C35×C15/(C35+C15 C3 = C 16 + C 34 × C 14 / (C 34 + C 14) + C 35 × C 15 / (C 35 + C 15)
 同様にして、第2の磁電変換素子23Bと磁性体コア21との間に静電容量がC24及びC25として生じ、第2の磁電変換素子23Bと電流路CBとの間に静電容量がC26として生じて、結果として、電流路CBと第2の磁電変換素子23Bとの間の総合の静電容量C4が次式のようになる。 Similarly, the capacitance between the second magneto-electric conversion element 23B and the magnetic core 21 is produced as a C 24 and C 25, the capacitance between the second magneto-electric conversion element 23B and the current path CB There occurs as C 26, as a result, the capacitance C4 of the total between the current paths CB and the second electromagnetic element 23B is as follows.
 C4=C26+C34×C24/(C34+C24)+C35×C25/(C35+C25 C4 = C 26 + C 34 × C 24 / (C 34 + C 24) + C 35 × C 25 / (C 35 + C 25)
 また、図8に示すように、第1の磁電変換素子23Aが検出する感磁方向が第1感磁方向S21になるように配設されるとともに、第2の磁電変換素子23Bが検出する感磁方向が第2感磁方向S22になるように配設されている。ここでいう感磁方向とは、磁電変換素子23が検出する値がプラスになる向きを示している。一方、図8に示すように、第1の磁電変換素子23Aが配設される第1の空隙K21における誘導磁界の向きが第1磁界の向きM21となっており、第2の磁電変換素子23Bが配設される第2の空隙K22における誘導磁界の向きが第2磁界の向きM22となっている。このため、第1の磁電変換素子23Aに加わる誘導磁界の第1磁界の向きM21と第1の磁電変換素子23Aが検出する第1感磁方向S21とがなす角、つまり0°と、第2の磁電変換素子23Bに加わる誘導磁界の第2磁界の向きM22と第2の磁電変換素子23Bが検出する第2感磁方向S22とがなす角、つまり90°と、異なっている。これにより、2つの磁電変換素子23(23A、23B)で検出される出力値が異なるので、この2つの磁電変換素子23(23A、23B)で検出される出力値の差分を演算装置17で演算して比較することができる。 Further, as shown in FIG. 8, the magnetic sensing direction detected by the first magnetoelectric conversion element 23A is arranged to be the first magnetic sensing direction S21, and the sensitivity detected by the second magnetoelectric conversion element 23B. It arrange | positions so that a magnetic direction may turn into 2nd magnetosensitive direction S22. The magnetosensitive direction here indicates a direction in which the value detected by the magnetoelectric conversion element 23 is positive. On the other hand, as shown in FIG. 8, the direction of the induced magnetic field in the first gap K21 in which the first magnetoelectric conversion element 23A is disposed is the first magnetic field direction M21, and the second magnetoelectric conversion element 23B. The direction of the induced magnetic field in the second gap K22 in which is disposed is the second magnetic field direction M22. Therefore, the angle formed by the first magnetic field direction M21 of the first magnetic field applied to the first magnetoelectric transducer 23A and the first magnetosensitive direction S21 detected by the first magnetoelectric transducer 23A, that is, 0 °, This is different from the angle formed by the direction M22 of the second magnetic field of the induced magnetic field applied to the magnetoelectric conversion element 23B and the second magnetosensitive direction S22 detected by the second magnetoelectric conversion element 23B, that is, 90 °. Accordingly, since the output values detected by the two magnetoelectric conversion elements 23 (23A, 23B) are different, the difference between the output values detected by the two magnetoelectric conversion elements 23 (23A, 23B) is calculated by the arithmetic unit 17. Can be compared.
 更に、本発明の第2実施形態では、電流路CBと第1の磁電変換素子23Aとの間の総合の静電容量C3と、電流路CBと第2の磁電変換素子23Bとの間の総合の静電容量C4とが等しくなるように調整されている。これにより、それぞれの磁電変換素子23(23A、23B)に付加された静電容量を正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響を低減することができ、信号のみを正確に検出することができる。 Further, in the second embodiment of the present invention, the total capacitance C3 between the current path CB and the first magnetoelectric conversion element 23A, and the total between the current path CB and the second magnetoelectric conversion element 23B. The capacitance C4 is adjusted to be equal. Thereby, the electrostatic capacitance added to each magnetoelectric conversion element 23 (23A, 23B) can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected.
 更に、本発明の第2実施形態では、図6Cないし図8に示すように、電流路CBと磁性体コア21との間に、2つの誘電体24、つまり第1の誘電体24Aと第2の誘電体24Bとが設けられている。これにより、この誘電体24(第1の誘電体24A及び第2の誘電体24B)の誘電率や大きさを変えることにより、電流路CBと第1の磁電変換素子23Aとの間の総合の静電容量C3と、電流路CBと第2の磁電変換素子23Bとの間の総合の静電容量C4とを等しくする、前述した調整が容易にでき、それぞれの総合の静電容量(C3とC4)をより等しくすることができる。このため、2つの磁電変換素子23(23A、23B)で検出される異なる出力値の差分を演算装置17で演算する際に、静電容量に起因するノイズの影響をより正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響をより低減することができ、信号のみをより正確に検出することができる。 Further, in the second embodiment of the present invention, as shown in FIGS. 6C to 8, two dielectrics 24, that is, the first dielectric 24A and the second dielectric are provided between the current path CB and the magnetic core 21. The dielectric 24B is provided. As a result, by changing the dielectric constant and size of the dielectric 24 (the first dielectric 24A and the second dielectric 24B), the total current between the current path CB and the first magnetoelectric transducer 23A is changed. The above-described adjustment can be easily performed to make the capacitance C3 equal to the total capacitance C4 between the current path CB and the second magnetoelectric transducer 23B, and each total capacitance (C3 and C4) can be made more equal. For this reason, when calculating the difference between the different output values detected by the two magnetoelectric conversion elements 23 (23A, 23B) by the calculation device 17, it is possible to subtract the influence of noise caused by the capacitance more accurately. . As a result, the influence of noise that enters at the same timing can be further reduced, and only the signal can be detected more accurately.
 また、誘電体24には、材質の制限は無く、合成樹脂や酸化物等で良く、非磁性であれば金属でも良い。また、図6Cに示すように、2つの誘電体24(第1の誘電体24A及び第2の誘電体24B)の厚みを同じにして、電流路CBと磁性体コア21との間に圧入するように配置すると、誘電体24は、電流路CBを固定するとともに、電流路CBを磁性体コア21の中心に位置させる役割を担い、ひいては電流路CBと2つの磁電変換素子23(23A、23B)のそれぞれとの距離を等距離にする役割を担っている。 The material of the dielectric 24 is not limited, and may be a synthetic resin or an oxide, and may be a metal if it is non-magnetic. Further, as shown in FIG. 6C, the thicknesses of the two dielectrics 24 (the first dielectric 24A and the second dielectric 24B) are made the same and press-fitted between the current path CB and the magnetic core 21. In this arrangement, the dielectric 24 fixes the current path CB and plays a role of positioning the current path CB at the center of the magnetic core 21, and thus the current path CB and the two magnetoelectric transducers 23 (23 </ b> A, 23 </ b> B). ) Is the same distance from each other.
 また、本発明の第2実施形態では、図8に示すように、第1磁界の向きM21と第1感磁方向S21とが平行であり、第2磁界の向きM22と第2感磁方向S22とが直交になるように、第1の空隙K21及び第2の空隙K22に対して、第1の磁電変換素子23A及び第2の磁電変換素子23Bを配設している。これによれば、第2の磁電変換素子23Bが受ける誘導磁界、つまり第2磁界の向きM22の磁界は0になり、第1の磁電変換素子23A及び第2の磁電変換素子23Bがそれぞれ違う角度で受ける外部磁場はそれぞれ違うようになる。このことにより、第1の磁電変換素子23Aと第2の磁電変換素子23Bとを比較することで、外部磁場の影響を算出して相殺でき、外部磁場からの影響を低減することが容易にできる。 In the second embodiment of the present invention, as shown in FIG. 8, the first magnetic field direction M21 and the first magnetic sensing direction S21 are parallel, and the second magnetic field direction M22 and the second magnetic sensitive direction S22. And the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B are arranged in the first gap K21 and the second gap K22. According to this, the induced magnetic field received by the second magnetoelectric conversion element 23B, that is, the magnetic field of the second magnetic field direction M22 becomes 0, and the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B have different angles. The external magnetic field received at will be different. Thereby, by comparing the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B, the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced. .
 また、本発明の第2実施形態では、図5及び図6に示すように、同じ大きさ及び形状で形成された第1の空隙K21と第2の空隙K22とに、第1の磁電変換素子23A及び第2の磁電変換素子23Bが各々の空隙(K21、K22)の中心に位置するように配置されているので、磁性体コア21と第1の磁電変換素子23A及び第2の磁電変換素子23Bとの距離が等しくなっている。また、第1の磁電変換素子23A及び第2の磁電変換素子23Bが同じ外形(パッケージングサイズ)で形成されているので、磁性体コア21と第1の磁電変換素子23A及び第2の磁電変換素子23Bとの対向面積が等しくなっている。これにより、図7に示す静電容量、C14とC24、及びC15とC25が同等になる。 Moreover, in 2nd Embodiment of this invention, as shown in FIG.5 and FIG.6, the 1st magnetoelectric conversion element is made into the 1st space | gap K21 and the 2nd space | gap K22 which were formed by the same magnitude | size and shape. Since 23A and the second magnetoelectric conversion element 23B are arranged so as to be positioned at the center of each gap (K21, K22), the magnetic core 21, the first magnetoelectric conversion element 23A, and the second magnetoelectric conversion element The distance to 23B is equal. Further, since the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B are formed with the same outer shape (packaging size), the magnetic core 21, the first magnetoelectric conversion element 23A, and the second magnetoelectric conversion The area facing the element 23B is equal. As a result, the capacitances C 14 and C 24 , and C 15 and C 25 shown in FIG. 7 are equivalent.
 更に、図5及び図6に示すように、第1の空隙K21と第2の空隙K22とが電流路CBの中心軸Ajに対して90°でしかも等距離になるように、配設されているので、電流路CBと第1の磁電変換素子23A及び第2の磁電変換素子23Bとの距離を等しく配置することができる。また、第1の磁電変換素子23A及び第2の磁電変換素子23Bが同じ外形(パッケージングサイズ)で形成されているので、電流路CBと第1の磁電変換素子23A及び第2の磁電変換素子23Bとの対向面積が等しくなっている。これにより、図7に示す静電容量、C16とC26が同等になる。 Further, as shown in FIGS. 5 and 6, the first gap K21 and the second gap K22 are arranged so as to be 90 ° and equidistant from the central axis Aj of the current path CB. Therefore, the distance between the current path CB and the first and second magnetoelectric conversion elements 23A and 23B can be arranged equally. Further, since the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B are formed with the same outer shape (packaging size), the current path CB, the first magnetoelectric conversion element 23A, and the second magnetoelectric conversion element The opposing area to 23B is equal. As a result, the capacitances C 16 and C 26 shown in FIG. 7 become equivalent.
 以上のようなことから、それぞれの磁電変換素子23(23A、23B)に付加される静電容量がより同等になるので、電流センサ102を作製する際に、それぞれの磁電変換素子23(23A、23B)の総合の静電容量(C3、C4)をより等しくすることが容易である。 For the above reasons, the capacitances added to the respective magnetoelectric conversion elements 23 (23A, 23B) become more equal. Therefore, when the current sensor 102 is manufactured, the respective magnetoelectric conversion elements 23 (23A, 23A, It is easy to make the total capacitance (C3, C4) of 23B) more equal.
 以上により、本発明の電流センサ102は、第1磁界の向きM21と第1感磁方向S21とがなす角と、第2磁界の向きM22と第2感磁方向S22とがなす角と、が異なり、電流路CBと第1の磁電変換素子23Aとの間の総合の静電容量C3と、電流路CBと第2の磁電変換素子23Bとの間の総合の静電容量C4とが等しいので、2つの磁電変換素子23(23A、23B)で検出される異なる出力値の差分を演算装置17で演算する際に、静電結合に起因するノイズの影響を正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響を低減することができ、信号のみを正確に検出することができる。したがって、精度の高い電流値の計測ができる電流センサ102を提供することができる。 As described above, the current sensor 102 of the present invention includes the angle formed by the first magnetic field direction M21 and the first magnetic sensing direction S21, and the angle formed by the second magnetic field direction M22 and the second magnetic sensitive direction S22. Unlikely, the total capacitance C3 between the current path CB and the first magnetoelectric conversion element 23A is equal to the total capacitance C4 between the current path CB and the second magnetoelectric conversion element 23B. When the difference between the different output values detected by the two magnetoelectric conversion elements 23 (23A, 23B) is calculated by the calculation device 17, the influence of noise caused by electrostatic coupling can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected. Therefore, it is possible to provide the current sensor 102 that can measure the current value with high accuracy.
 また、電流路CBと磁性体コア21との間に誘電体24(第1の誘電体24A及び第2の誘電体24B)を設けるので、この誘電体24(第1の誘電体24A及び第2の誘電体24B)の誘電率や大きさを変えることにより、電流路CBと第1の磁電変換素子23Aとの間の総合の静電容量C3と、電流路CBと第2の磁電変換素子23Bとの間の総合の静電容量C4とを等しくする前述した調整が容易にでき、それぞれの総合の静電容量(C3とC4)をより等しくすることができる。このため、2つの磁電変換素子23(23A、23B)で検出される異なる出力値の差分を演算装置17で演算する際に、静電容量に起因するノイズの影響をより正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響をより低減することができ、信号のみをより正確に検出することができる。 Further, since the dielectric 24 (first dielectric 24A and second dielectric 24B) is provided between the current path CB and the magnetic core 21, the dielectric 24 (first dielectric 24A and second dielectric 24A) is provided. By changing the dielectric constant and size of the dielectric 24B), the total capacitance C3 between the current path CB and the first magnetoelectric conversion element 23A, and the current path CB and the second magnetoelectric conversion element 23B are changed. The above-described adjustment to make the total electrostatic capacity C4 between the two terminals equal to each other can be facilitated, and the respective total electrostatic capacity (C3 and C4) can be made more equal. For this reason, when calculating the difference between the different output values detected by the two magnetoelectric conversion elements 23 (23A, 23B) by the calculation device 17, it is possible to subtract the influence of noise caused by the capacitance more accurately. . As a result, the influence of noise that enters at the same timing can be further reduced, and only the signal can be detected more accurately.
 また、第1磁界の向きM21と第1感磁方向S21とが平行であるとともに、第2磁界の向きM22と第2感磁方向S22とが直交するので、第2の磁電変換素子23Bが受ける誘導磁界は0になり、つまり、第2磁界の向きM22の磁界を感じなくなり、第1の磁電変換素子23A及び第2の磁電変換素子23Bがそれぞれ違う角度で受ける外部磁場はそれぞれ違うようになる。このことにより、第1の磁電変換素子23Aと第2の磁電変換素子23Bとを比較することで、外部磁場の影響を算出して相殺でき、外部磁場からの影響を低減することが容易にできる。 In addition, since the first magnetic field direction M21 and the first magnetic sensing direction S21 are parallel and the second magnetic field direction M22 and the second magnetic sensing direction S22 are orthogonal to each other, the second magnetoelectric conversion element 23B receives the magnetic field. The induced magnetic field becomes 0, that is, the magnetic field of the second magnetic field direction M22 is not felt, and the external magnetic fields received at different angles by the first magnetoelectric transducer 23A and the second magnetoelectric transducer 23B are different. . Thereby, by comparing the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B, the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced. .
 また、電流路CBと第1の磁電変換素子23A及び第2の磁電変換素子23Bとの距離及び対向面積が等しいとともに、磁性体コア21と第1の磁電変換素子23A及び第2の磁電変換素子23Bとの距離及び対向面積が等しいので、それぞれの磁電変換素子23(23A、23B)と電流路CB、それぞれの磁電変換素子23(23A、23B)と磁性体コア21との静電容量が同等になる。このことにより、それぞれの磁電変換素子23(23A、23B)に重畳される浮遊容量である静電容量がより同等になるので、電流センサ102を作製する際に、それぞれの磁電変換素子23(23A、23B)の総合の静電容量(C3、C4)をより等しくすることが容易であり、静電結合に起因するノイズの影響をより一層低減することができる。 Further, the distance and the facing area between the current path CB and the first and second magnetoelectric conversion elements 23A and 23B are equal, and the magnetic core 21, the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element Since the distance and the facing area to 23B are equal, the respective magnetoelectric transducers 23 (23A, 23B) and current paths CB, the respective magnetoelectric transducers 23 (23A, 23B) and the magnetic core 21 have the same capacitance. become. As a result, the electrostatic capacitance, which is the stray capacitance superimposed on each of the magnetoelectric conversion elements 23 (23A, 23B), becomes more equal. Therefore, when the current sensor 102 is manufactured, each of the magnetoelectric conversion elements 23 (23A) 23B), it is easy to make the total capacitance (C3, C4) more equal, and the influence of noise caused by electrostatic coupling can be further reduced.
 [第3実施形態]
 図9は、本発明の第3実施形態の電流センサ103を説明する斜視図である。図10は、本発明の第3実施形態の電流センサ103を説明する図であって、図10Aは、図9に示すY2側から見た正面図であり、図10Bは、図9に示すX1側から見た側面図であり、図10Cは、図9に示すZ1側から見た上面図である。なお、説明を容易にするため、図10Cでは、第2基板39B及び第2の磁電変換素子33Bを省略している。図11は、本発明の第3実施形態の電流センサにおける静電容量を示した模式図である。図12は、本発明の第3実施形態の電流センサにおける誘導磁界の向きと磁電変換素子33の感磁方向を示した模式図である。第3実施形態の電流センサ103は、第1実施形態に対し、磁性体コア31の空隙K33及び磁電変換素子33の配設位置が主に異なる。なお、第1実施形態と同一構成については、同一符号を付して詳細な説明は省略する。
[Third Embodiment]
FIG. 9 is a perspective view illustrating the current sensor 103 according to the third embodiment of the present invention. 10A and 10B are diagrams illustrating the current sensor 103 according to the third embodiment of the present invention. FIG. 10A is a front view seen from the Y2 side shown in FIG. 9, and FIG. 10B is X1 shown in FIG. 10C is a side view seen from the side, and FIG. 10C is a top view seen from the Z1 side shown in FIG. 9. For ease of explanation, the second substrate 39B and the second magnetoelectric transducer 33B are omitted in FIG. 10C. FIG. 11 is a schematic diagram illustrating the capacitance in the current sensor according to the third embodiment of the present invention. FIG. 12 is a schematic diagram showing the direction of the induced magnetic field and the magnetosensitive direction of the magnetoelectric transducer 33 in the current sensor according to the third embodiment of the present invention. The current sensor 103 of the third embodiment is mainly different from the first embodiment in the arrangement positions of the gap K33 of the magnetic core 31 and the magnetoelectric conversion element 33. In addition, about the same structure as 1st Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 本発明の第3実施形態の電流センサ103は、図9及び図10に示すように、被測定電流が流れる電流路CBと、中空の矩形で電流路CBを囲む位置に配設された磁性体コア31と、電流路CBに流れる電流によって発生する誘導磁界の磁気を検出する2つの磁電変換素子33(第1の磁電変換素子33A及び第2の磁電変換素子33B)と、第1の磁電変換素子33Aと第2の磁電変換素子33Bとの出力の差分を演算する演算装置17と、を備えて構成される。他に、第1の磁電変換素子33A及び演算装置17を搭載している第1基板39Aと、第2の磁電変換素子33Bを搭載している第2基板39Bと、を備えている。なお、第1基板39A及び第2基板39Bには、第1の磁電変換素子33A及び第2の磁電変換素子33Bからの出力値を演算装置17に伝送するための配線パターン(図示していない)が設けられている。 As shown in FIGS. 9 and 10, the current sensor 103 according to the third embodiment of the present invention includes a current path CB through which a current to be measured flows and a magnetic body disposed at a position surrounding the current path CB with a hollow rectangle. Core 31, two magnetoelectric conversion elements 33 (first magnetoelectric conversion element 33 </ b> A and second magnetoelectric conversion element 33 </ b> B) for detecting the magnetism of the induced magnetic field generated by the current flowing in current path CB, and the first magnetoelectric conversion And an arithmetic device 17 that calculates a difference in output between the element 33A and the second magnetoelectric conversion element 33B. In addition, a first substrate 39A on which the first magnetoelectric conversion element 33A and the arithmetic unit 17 are mounted, and a second substrate 39B on which the second magnetoelectric conversion element 33B is mounted are provided. A wiring pattern (not shown) for transmitting output values from the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B to the arithmetic unit 17 is provided on the first substrate 39A and the second substrate 39B. Is provided.
 磁性体コア31は、軟磁性体、例えばパーマロイ(Fe-Ni合金)を用い、図9及び図10に示すように、中空の矩形に形成され、磁性体コア31には、その一辺側に空隙K33が設けられて構成されている。そして、金属製の電流路CBを囲むように磁性体コア31が配設され、電流路CBの回りに発生する磁束を集束している。なお、電流路CBの配設及び固定には、図示はしていないが、保持部材等を用いて電流路CBを保持することによって容易に達成できる。また、磁性体コア21にパーマロイ(Fe-Ni合金)を用いたが、軟磁性材料であれば良く、他の鉄系材料であるセンダスト(Fe-Si-Al合金)、珪素鋼等や、非鉄系のアモルファス磁性合金等、酸化物のフェライトなどでも良い。 The magnetic core 31 is made of a soft magnetic material, such as permalloy (Fe—Ni alloy), and is formed into a hollow rectangle as shown in FIGS. 9 and 10, and the magnetic core 31 has a gap on one side thereof. K33 is provided and configured. And the magnetic body core 31 is arrange | positioned so that the metal current path CB may be enclosed, and the magnetic flux which generate | occur | produces around the current path CB is converged. Although not shown, the arrangement and fixing of the current path CB can be easily achieved by holding the current path CB using a holding member or the like. In addition, although permalloy (Fe—Ni alloy) is used for the magnetic core 21, any soft magnetic material may be used, such as Sendust (Fe—Si—Al alloy), silicon steel, etc., other non-ferrous materials, non-ferrous Amorphous magnetic alloy, oxide ferrite, etc. may be used.
 磁電変換素子33は、電流路CBに電流が流れたときに発生する磁気を検出する電流のセンサであって、例えば、巨大磁気抵抗効果を用いた磁気抵抗素子(GMR(Giant Magneto Resistive)素子と言う)を用いている。GMR素子は、例えば、反強磁性層がα-Fe層、ピン層がNiFe層、中間層がCu層、フリー層がNiFe層から形成されている。そして、この磁電変換素子33は、GMR素子をシリコン基板上に作製し、切り出されたGMRチップを熱硬化性の合成樹脂でパッケージングしている。また、磁電変換素子33は、図9及び図10に示すように、2つの磁電変換素子33、つまり第1の磁電変換素子33Aと第2の磁電変換素子33Bとを備えている。なお、第1の磁電変換素子33Aと第2の磁電変換素子33Bの外形(パッケージングサイズ)は、同じサイズのものを選定している。 The magnetoelectric conversion element 33 is a current sensor for detecting magnetism generated when a current flows through the current path CB. For example, the magnetoelectric conversion element 33 is a magnetoresistive element (GMR (Giant Magneto Resistive) element using a giant magnetoresistive effect). Say). In the GMR element, for example, an antiferromagnetic layer is formed of an α-Fe 2 O 3 layer, a pinned layer is formed of a NiFe layer, an intermediate layer is formed of a Cu layer, and a free layer is formed of a NiFe layer. In the magnetoelectric conversion element 33, a GMR element is produced on a silicon substrate, and the cut out GMR chip is packaged with a thermosetting synthetic resin. Further, as shown in FIGS. 9 and 10, the magnetoelectric conversion element 33 includes two magnetoelectric conversion elements 33, that is, a first magnetoelectric conversion element 33A and a second magnetoelectric conversion element 33B. Note that the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B have the same outer shape (packaging size).
 また、図9及び図10に示すように、第1の磁電変換素子33Aがプリント配線板(PCB:Printed Circuit Board)等の第1基板39Aに搭載され、第2の磁電変換素子33Bがプリント配線板(PCB:Printed Circuit Board)等の第2基板39Bに搭載され、空隙K33に磁性体コア31の厚み方向に配設されるとともに、電流路CBに対して等距離になるように縦に並べて配設されている。これにより、図11に示すように、第1の磁電変換素子33Aと磁性体コア31との間に静電容量がC17及びC18として生じ、第1の磁電変換素子33Aと電流路CBとの間に静電容量がC19として生じ、磁性体コア31と電流路CBとの間に静電容量がC37として生じて、結果として、電流路CBと第1の磁電変換素子33Aとの間の総合の静電容量C5は次式のようになる。 Further, as shown in FIGS. 9 and 10, the first magnetoelectric conversion element 33A is mounted on a first substrate 39A such as a printed circuit board (PCB), and the second magnetoelectric conversion element 33B is printed wiring. It is mounted on a second substrate 39B such as a printed circuit board (PCB), and is arranged in the gap K33 in the thickness direction of the magnetic core 31 and arranged vertically so as to be equidistant from the current path CB. It is arranged. As a result, as shown in FIG. 11, capacitances are generated as C 17 and C 18 between the first magnetoelectric conversion element 33A and the magnetic core 31, and the first magnetoelectric conversion element 33A and the current path CB resulting capacitance as C 19 between the electrostatic capacitance between the magnetic core 31 and the current path CB is generated as C 37, as a result, a current path CB and the first electromagnetic element 33A The total capacitance C5 in the meantime is as follows.
 C5=C19+C37×C17/(C37+C17)+C37×C18/(C37+C18 C5 = C 19 + C 37 × C 17 / (C 37 + C 17) + C 37 × C 18 / (C 37 + C 18)
 同様にして、第2の磁電変換素子33Bと磁性体コア31との間に静電容量がC27及びC28として生じ、第2の磁電変換素子33Bと電流路CBとの間に静電容量がC29として生じて、結果として、電流路CBと第2の磁電変換素子33Bとの間の総合の静電容量C6は次式にようになる。 Similarly, the capacitance between the second magneto-electric conversion element 33B and the magnetic core 31 is produced as a C 27 and C 28, the capacitance between the second magneto-electric conversion element 33B and the current path CB There occurs as C 29, as a result, the capacitance C6 of the total between the current paths CB and second magnetoelectric conversion element 33B are as the following equation.
 C6=C29+C37×C27/(C37+C27)+C37×C28/(C37+C28 C6 = C 29 + C 37 × C 27 / (C 37 + C 27) + C 37 × C 28 / (C 37 + C 28)
 また、図12に示すように、第1の磁電変換素子33Aが検出する感磁方向が第1感磁方向S31になるように配設されるとともに、第2の磁電変換素子33Bが検出する感磁方向が第1感磁方向S31とは逆向きの第2感磁方向S32になるように配設されている。ここでいう感磁方向とは、磁電変換素子33が検出する値がプラスになる向きを示している。一方、図12に示すように、第1の磁電変換素子33A及び第2の磁電変換素子33Bが配設される空隙K33における磁界の向きが、誘導磁界である磁界の向きM33となっている。このため、第1の磁電変換素子33Aに加わる磁界の向きM33と第1の磁電変換素子33Aが検出する第1感磁方向S31とがなす角、つまり0°と、第2の磁電変換素子33Bに加わる磁界の向きM33と第2の磁電変換素子33Bが検出する第2感磁方向S32とがなす角、つまり180°と、異なっている。これにより、2つの磁電変換素子33(33A、33B)で検出される出力値が異なるので、この2つの磁電変換素子33(33A、33B)で検出される出力値の差分を演算装置17で演算して比較することができる。 Further, as shown in FIG. 12, the magnetic sensing direction detected by the first magnetoelectric conversion element 33A is arranged to be the first magnetic sensing direction S31, and the sensitivity detected by the second magnetoelectric conversion element 33B. The magnetic direction is arranged to be a second magnetic sensing direction S32 opposite to the first magnetic sensing direction S31. The magnetosensitive direction here indicates a direction in which the value detected by the magnetoelectric conversion element 33 is positive. On the other hand, as shown in FIG. 12, the direction of the magnetic field in the gap K33 in which the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B are disposed is a magnetic field direction M33 that is an induction magnetic field. Therefore, the angle formed by the direction M33 of the magnetic field applied to the first magnetoelectric conversion element 33A and the first magnetosensitive direction S31 detected by the first magnetoelectric conversion element 33A, that is, 0 °, and the second magnetoelectric conversion element 33B. Is different from an angle formed by the direction M33 of the magnetic field applied to the second magnetic sensing direction S32 detected by the second magnetoelectric transducer 33B, that is, 180 °. As a result, the output values detected by the two magnetoelectric conversion elements 33 (33A, 33B) are different, so the difference between the output values detected by the two magnetoelectric conversion elements 33 (33A, 33B) is calculated by the arithmetic unit 17. Can be compared.
 更に、本発明の第3実施形態では、電流路CBと第1の磁電変換素子33Aとの間の総合の静電容量C5と、電流路CBと第2の磁電変換素子33Bとの間の総合の静電容量C6とが等しくなるように調整されている。これにより、それぞれの磁電変換素子33(33A、33B)に付加された静電容量を正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響を低減することができ、信号のみを正確に検出することができる。また、この調整は、電流路CBの配設位置を少し移動させることや、場合によっては、磁電変換素子33と磁性体コア31との間に誘電体を入れること等によって行われる。 Further, in the third embodiment of the present invention, the total capacitance C5 between the current path CB and the first magnetoelectric conversion element 33A and the total capacitance between the current path CB and the second magnetoelectric conversion element 33B. The capacitance C6 is adjusted to be equal. Thereby, the electrostatic capacitance added to each magnetoelectric conversion element 33 (33A, 33B) can be accurately subtracted. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected. Further, this adjustment is performed by slightly moving the arrangement position of the current path CB, or by inserting a dielectric between the magnetoelectric conversion element 33 and the magnetic core 31 in some cases.
 また、本発明の第3実施形態では、図10及び図11に示すように、磁性体コア31の厚み方向に配設された第1の磁電変換素子33A及び第2の磁電変換素子33Bが電流路CBに対して等距離になるように縦に並べて配設されるので、電流路CBと第1の磁電変換素子33Aとの間の総合の静電容量C5と、電流路CBと第2の磁電変換素子33Bとの間の総合の静電容量C6とをより等しくすることができる。このため、2つの磁電変換素子33(33A、33B)で検出される異なる出力値の差分を演算装置17で演算する際に、静電容量に起因するノイズの影響をより正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響をより低減することができ、信号のみをより正確に検出することができる。 Moreover, in 3rd Embodiment of this invention, as shown in FIG.10 and FIG.11, the 1st magnetoelectric conversion element 33A and the 2nd magnetoelectric conversion element 33B which were arrange | positioned in the thickness direction of the magnetic body core 31 are electric current. Since they are arranged vertically so as to be equidistant with respect to the path CB, the total capacitance C5 between the current path CB and the first magnetoelectric transducer 33A, the current path CB and the second path The total capacitance C6 between the magnetoelectric conversion element 33B can be made more equal. For this reason, when calculating the difference between the different output values detected by the two magnetoelectric conversion elements 33 (33A, 33B) by the calculation device 17, it is possible to subtract the influence of noise caused by the capacitance more accurately. . As a result, the influence of noise that enters at the same timing can be further reduced, and only the signal can be detected more accurately.
 また、本発明の第3実施形態では、図12に示すように、磁界の向きM33と第1感磁方向S31とが平行であるとともに、磁界の向きM33と第2感磁方向S32とが平行であるので、第1の磁電変換素子33A及び第2の磁電変換素子33Bが受けるそれぞれの誘導磁界は絶対値として同じになり、第1の磁電変換素子33A及び第2の磁電変換素子33Bがそれぞれ違う角度で受ける外部磁場はそれぞれ違うようになる。このことにより、第1の磁電変換素子33Aと第2の磁電変換素子33Bとを比較することで、外部磁場の影響を算出して相殺でき、外部磁場からの影響を低減することが容易にできる。 In the third embodiment of the present invention, as shown in FIG. 12, the magnetic field direction M33 and the first magnetic sensing direction S31 are parallel, and the magnetic field direction M33 and the second magnetic sensing direction S32 are parallel. Therefore, the induction magnetic fields received by the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B are the same as absolute values, and the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B are respectively External magnetic fields received at different angles will be different. Thereby, by comparing the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B, the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced. .
 以上により、本発明の電流センサ103は、磁界の向きM33と第1感磁方向S31とがなす角と、磁界の向きM33と第2感磁方向S32とがなす角と、が異なるので、2つの磁電変換素子33(33A、33B)で検出される出力値が異なり、2つの磁電変換素子33(33A、33B)で検出される出力値の差分を演算装置17で演算して比較することができる。さらに、電流路CBと第1の磁電変換素子33Aとの間の総合の静電容量C5と、電流路CBと第2の磁電変換素子33Bとの間の総合の静電容量C6とが等しいので、静電結合に起因するノイズの影響を正確に打ち消すことができる。このことにより、同じタイミングで入ってくるノイズの影響を低減することができ、信号のみを正確に検出することができる。したがって、精度の高い電流値の計測ができる電流センサ103を提供することができる。 As described above, the current sensor 103 of the present invention is different in the angle formed between the magnetic field direction M33 and the first magnetic sensing direction S31 and the angle formed between the magnetic field direction M33 and the second magnetic sensitive direction S32. The output values detected by the two magnetoelectric conversion elements 33 (33A, 33B) are different, and the difference between the output values detected by the two magnetoelectric conversion elements 33 (33A, 33B) is calculated by the arithmetic unit 17 and compared. it can. Furthermore, the total capacitance C5 between the current path CB and the first magnetoelectric conversion element 33A is equal to the total capacitance C6 between the current path CB and the second magnetoelectric conversion element 33B. Thus, it is possible to accurately cancel the influence of noise caused by electrostatic coupling. As a result, the influence of noise entering at the same timing can be reduced, and only the signal can be accurately detected. Therefore, it is possible to provide the current sensor 103 that can measure the current value with high accuracy.
 また、磁性体コア31の厚み方向に配設された第1の磁電変換素子33A及び第2の磁電変換素子33Bが電流路CBに対して等距離になるように縦に並べて配設されるので、電流路CBと第1の磁電変換素子33Aとの間の総合の静電容量C5と、電流路CBと第2の磁電変換素子33Bとの間の総合の静電容量C6とをより等しくすることができる。このため、2つの磁電変換素子33(33A、33B)で検出される異なる出力値の差分を演算装置17で演算する際に、静電容量に起因するノイズの影響をより正確に差し引くことができる。このことにより、同じタイミングで入ってくるノイズの影響をより低減することができ、信号のみをより正確に検出することができる。 In addition, the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B arranged in the thickness direction of the magnetic core 31 are arranged vertically so as to be equidistant from the current path CB. The total capacitance C5 between the current path CB and the first magnetoelectric conversion element 33A and the total capacitance C6 between the current path CB and the second magnetoelectric conversion element 33B are made more equal. be able to. For this reason, when calculating the difference between the different output values detected by the two magnetoelectric conversion elements 33 (33A, 33B) by the calculation device 17, it is possible to subtract the influence of noise caused by the capacitance more accurately. . As a result, the influence of noise that enters at the same timing can be further reduced, and only the signal can be detected more accurately.
 また、磁界の向きM33と第1感磁方向S31とが平行であるとともに、磁界の向きM33と第2感磁方向S32とが平行であるので、第1の磁電変換素子33A及び第2の磁電変換素子33Bが受けるそれぞれの誘導磁界は絶対値として同じになり、第1の磁電変換素子33A及び第2の磁電変換素子33Bがそれぞれ違う角度で受ける外部磁場はそれぞれ違うようになる。このことにより、第1の磁電変換素子33Aと第2の磁電変換素子33Bとを比較することで、外部磁場の影響を算出して相殺でき、外部磁場からの影響を低減することが容易にできる。 Further, since the magnetic field direction M33 and the first magnetic sensing direction S31 are parallel, and the magnetic field direction M33 and the second magnetic sensing direction S32 are parallel, the first magnetoelectric transducer 33A and the second magnetoelectric element 33A. The induction magnetic fields received by the conversion element 33B are the same in absolute value, and the external magnetic fields received by the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B at different angles are different. Thereby, by comparing the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B, the influence of the external magnetic field can be calculated and canceled, and the influence from the external magnetic field can be easily reduced. .
 なお、本発明は上記実施形態に限定されるものではなく、例えば次のように変形して実施することができ、これらの実施形態も本発明の技術的範囲に属する。 It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented by being modified as follows, for example, and these embodiments also belong to the technical scope of the present invention.
 図13は、本発明の第1実施形態の電流センサ101の変形例を説明する図であって、図13Aは、磁電変換素子13(13A、13B)の配設位置を変えた変形例1の電流センサC101であって、図13Bは、磁電変換素子13(13B)の配設位置を変えた変形例2の電流センサC201である。図14は、本発明の第1実施形態及び第2実施形態の電流センサ(101、102)の変形例を説明する模式図であって、図14Aは、第1実施形態の磁電変換素子13の配設位置を変えた変形例3であって、図14Bは、第2実施形態の磁電変換素子23の配設位置を変えた変形例4である。図15は、本発明の第1実施形態及び第2実施形態の電流センサ(101、102)の変形例を説明する図であって、図15Aは、第1実施形態の電流路CB及び磁性体コア11を変えた変形例5であって、図15Bは、第2実施形態の電流路CB及び磁性体コア21を変えた変形例6である。図16は、本発明の第2実施形態の電流センサ102の変形例を説明する図であって、磁電変換素子23の配設位置を変えた変形例9の電流センサD102である。図17は、本発明の第3実施形態の電流センサ103の変形例を説明する上面図であって、図17Aは、第3実施形態の磁電変換素子33の配設位置を変えた変形例10の電流センサD113であって、図17Bは、第3実施形態の磁電変換素子33の配設位置を変えた変形例11の電流センサD123である。 FIG. 13 is a diagram for explaining a modification of the current sensor 101 according to the first embodiment of the present invention. FIG. 13A shows a modification 1 in which the arrangement position of the magnetoelectric transducer 13 (13A, 13B) is changed. FIG. 13B is a current sensor C101 of Modification 2 in which the arrangement position of the magnetoelectric conversion element 13 (13B) is changed. FIG. 14 is a schematic diagram for explaining a modification of the current sensors (101, 102) of the first embodiment and the second embodiment of the present invention. FIG. 14A shows the magnetoelectric conversion element 13 of the first embodiment. FIG. 14B is a fourth modification in which the arrangement position of the magnetoelectric transducer 23 of the second embodiment is changed. FIG. 15 is a diagram for explaining a modification of the current sensors (101, 102) according to the first and second embodiments of the present invention. FIG. 15A shows the current path CB and the magnetic body according to the first embodiment. FIG. 15B is a sixth modification in which the core 11 is changed, and FIG. 15B is a sixth modification in which the current path CB and the magnetic core 21 of the second embodiment are changed. FIG. 16 is a diagram for explaining a modification of the current sensor 102 according to the second embodiment of the present invention, and is a current sensor D102 of the modification 9 in which the arrangement position of the magnetoelectric conversion element 23 is changed. FIG. 17 is a top view illustrating a modification of the current sensor 103 according to the third embodiment of the present invention. FIG. 17A illustrates a modification 10 in which the arrangement position of the magnetoelectric transducer 33 according to the third embodiment is changed. FIG. 17B is a current sensor D123 of Modification 11 in which the arrangement position of the magnetoelectric conversion element 33 of the third embodiment is changed.
 <変形例1>
 上記第1実施形態では、第1の磁電変換素子13A及び第2の磁電変換素子13Bを第1の空隙K11と第2の空隙K12の各々の空隙(K11、K12)の中心に位置するように配設して、磁性体コア11と第1の磁電変換素子13A及び第2の磁電変換素子13Bとの静電容量、C11とC21、及びC12とC22が同等になるように好適に構成したが、各々ずらして配設しても良い。なお、図13Aに示すように、第1の磁電変換素子13A及び第2の磁電変換素子13Bを第1の空隙K11と第2の空隙K12の各々の空隙(K11、K12)に対して、相対的位置関係を同等にすれば、同様な効果を有する。
<Modification 1>
In the first embodiment, the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are positioned at the centers of the respective gaps (K11, K12) of the first gap K11 and the second gap K12. by disposing the capacitance of the magnetic core 11 and the first electromagnetic element 13A and the second magneto-electric conversion element 13B, C 11 and C 21, and C 12 and preferably as C 22 is equal to However, they may be shifted from each other. As shown in FIG. 13A, the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are relative to each of the first gap K11 and the second gap K12 (K11, K12). If the target positional relationship is made equal, the same effect is obtained.
 <変形例2>
 上記第1実施形態では、第1の空隙K11と第2の空隙K12とが電流路CBの中心軸Ajに対して対称になるように磁性体コア11を構成したが、第1の空隙K11と第2の空隙K12との配設角度を変えて構成しても良い。図13Bに示す例では、磁性体コアC11の第1の空隙K11及び第2の空隙CK12との配設角度は135°である。
<Modification 2>
In the first embodiment, the magnetic core 11 is configured such that the first gap K11 and the second gap K12 are symmetrical with respect to the central axis Aj of the current path CB. The arrangement angle with the second gap K12 may be changed. In the example shown in FIG. 13B, the arrangement angle of the magnetic core C11 with the first gap K11 and the second gap CK12 is 135 °.
 <変形例3>
 上記第1実施形態では、第1磁界の向きM11と第1感磁方向S11とが平行であり、第2磁界の向きM12と第2感磁方向S12とが平行になるように、第1の磁電変換素子13A及び第2の磁電変換素子13Bを配設して好適に構成したが、第1の磁電変換素子13A及び第2の磁電変換素子13Bの感磁方向を変えて構成しても良い。図14Aに示す例では、第1の磁電変換素子13Aに加わる誘導磁界の第1磁界の向きM11と第1の磁電変換素子13Aが検出する第1感磁方向CS11とがなす角、つまり15°と、第2の磁電変換素子13Bに加わる誘導磁界の第2磁界の向きM12と第2の磁電変換素子13Bが検出する第2感磁方向CS12とがなす角、つまり75°と、異なっている。
<Modification 3>
In the first embodiment, the first magnetic field direction M11 and the first magnetic sensing direction S11 are parallel, and the second magnetic field direction M12 and the second magnetic sensing direction S12 are parallel. Although the magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B are preferably arranged and configured, the magnetosensitive directions of the first magnetoelectric conversion element 13A and the second magnetoelectric conversion element 13B may be changed. . In the example shown in FIG. 14A, the angle formed by the first magnetic field direction M11 of the induced magnetic field applied to the first magnetoelectric transducer 13A and the first magnetosensitive direction CS11 detected by the first magnetoelectric transducer 13A, that is, 15 °. And the angle formed by the second magnetic direction CS12 detected by the second magnetoelectric conversion element 13B and the direction M12 of the second magnetic field of the induced magnetic field applied to the second magnetoelectric conversion element 13B, that is, 75 °. .
 <変形例4>
 上記第2実施形態では、第1磁界の向きM21と第1感磁方向S21とが平行であり、第2磁界の向きM22と第2感磁方向S22とが直交になるように、第1の磁電変換素子23A及び第2の磁電変換素子23Bを配設して好適に構成したが、第1の磁電変換素子23A及び第2の磁電変換素子23Bの感磁方向を変えて構成しても良い。図14Bに示す例では、第1の磁電変換素子23Aに加わる誘導磁界の第1磁界の向きM21と第1の磁電変換素子23Aが検出する第1感磁方向CS21とがなす角、つまり30°と、第2の磁電変換素子23Bに加わる誘導磁界の第2磁界の向きM22と第2の磁電変換素子23Bが検出する第2感磁方向CS22とがなす角、つまり60°と、異なっている。
<Modification 4>
In the second embodiment, the first magnetic field direction M21 and the first magnetosensitive direction S21 are parallel, and the second magnetic field direction M22 and the second magnetic sensitive direction S22 are orthogonal to each other. The magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B are preferably arranged, but may be configured by changing the magnetic sensitive direction of the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B. . In the example shown in FIG. 14B, the angle formed by the first magnetic field direction M21 of the induced magnetic field applied to the first magnetoelectric transducer 23A and the first magnetosensitive direction CS21 detected by the first magnetoelectric transducer 23A, that is, 30 °. And the angle formed by the second magnetic direction CS22 detected by the second magnetoelectric conversion element 23B and the direction M22 of the second magnetic field of the induced magnetic field applied to the second magnetoelectric conversion element 23B, that is, 60 °. .
 <変形例5及び変形例6>
 上記第1実施形態及び第2実施形態では、電流路CBの断面形状が円形状のものを用いたが、断面形状が矩形状の電流路CCBを用いても良い。その際には、図15Aに示すように、電流センサC501の磁性体コアC12を楕円形状にすると良い。同様にして、図15Bに示すように、電流センサC602の磁性体コアC21を長方形の形状にすると良い。
<Modification 5 and Modification 6>
In the first embodiment and the second embodiment, the current path CB has a circular cross section, but a current path CCB having a rectangular cross section may be used. In that case, as shown to FIG. 15A, it is good to make the magnetic body core C12 of the current sensor C501 into an elliptical shape. Similarly, as shown in FIG. 15B, the magnetic core C21 of the current sensor C602 may be rectangular.
 <変形例7>
 上記第1実施形態及び第2実施形態では、電流路CBと磁性体コア(11、21)との間に、2つの誘電体(14、24)を用いて構成したが、1つ或いは2つ以上の誘電体を用いて構成しても良い。或いは、誘電体を用いない構成でも良い。
<Modification 7>
In the first and second embodiments, two dielectrics (14, 24) are used between the current path CB and the magnetic cores (11, 21). You may comprise using the above dielectric material. Or the structure which does not use a dielectric material may be sufficient.
 <変形例8>
 上記第1実施形態及び第2実施形態では、電流路CBと磁性体コア(11、21)との間に、2つの誘電体(14、24)を用いて構成したが、磁電変換素子(13、23)と磁性体コア(11、21)との間に、誘電体を用いて構成しても良い。この場合、同じ効果が得られる。
<Modification 8>
In the first embodiment and the second embodiment, two dielectrics (14, 24) are used between the current path CB and the magnetic cores (11, 21). However, the magnetoelectric conversion element (13 23) and the magnetic core (11, 21) may be configured using a dielectric. In this case, the same effect can be obtained.
 <変形例9>
 上記第2実施形態では、第1の空隙K21と第2の空隙K22とが電流路CBの中心軸Ajに対して90°になるように配設して構成したが、図16に示すように、磁性体コアC71の矩形状の角の近傍に、第1の空隙CK21と第2の空隙CK22を配設して構成しても良い。このため、第1の磁電変換素子23A及び第2の磁電変換素子23Bを近づけて配設することができるので、外部磁場の発生源が比較的近くにある場合でも、外部磁場を同じタイミングで入ってくるノイズの影響を低減することができ、外部磁場からの影響をより確実に低減することができる。
<Modification 9>
In the second embodiment, the first gap K21 and the second gap K22 are arranged to be 90 ° with respect to the central axis Aj of the current path CB. However, as shown in FIG. The first gap CK21 and the second gap CK22 may be disposed in the vicinity of the rectangular corner of the magnetic core C71. For this reason, since the first magnetoelectric conversion element 23A and the second magnetoelectric conversion element 23B can be disposed close to each other, the external magnetic field is entered at the same timing even when the source of the external magnetic field is relatively close. The influence of the incoming noise can be reduced, and the influence from the external magnetic field can be more reliably reduced.
 <変形例10および変形例11>
 上記第3実施形態では、第1の磁電変換素子33Aと第2の磁電変換素子33Bが磁性体コア31の厚み方向で縦に並んで配設して構成したが、図17Aに示すように、同一平面上で縦列に並んで配設して構成しても良い。また、図17Bに示すように、同一平面上で並列に並んで配設して構成しても良い。
<Modification 10 and Modification 11>
In the third embodiment, the first magnetoelectric conversion element 33A and the second magnetoelectric conversion element 33B are arranged vertically in the thickness direction of the magnetic core 31, but as shown in FIG. 17A, You may arrange | position and arrange in a line on the same plane. Further, as shown in FIG. 17B, the same plane may be arranged in parallel.
 本発明は上記実施の形態に限定されず、本発明の目的の範囲を逸脱しない限りにおいて適宜変更することが可能である。 The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the scope of the object of the present invention.
 本出願は、2012年4月27日出願の特願2012-103292に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2012-103292 filed on April 27, 2012. All this content is included here.

Claims (9)

  1.  被測定電流が流れる電流路と、
    前記電流路に流れる電流によって発生する誘導磁界の磁気を検出する電流センサであって、
     前記電流路を囲むとともに、第1の空隙と第2の空隙が設けられた磁性体コアと、
    前記磁性体コアの前記第1の空隙内に設けられた第1の磁電変換素子と、
    前記磁性体コアの前記第2の空隙内に設けられた第2の磁電変換素子と、
    前記第1の磁電変換素子と前記第2の磁電変換素子との出力の差分を演算する演算装置と、を備え、
     前記第1の磁電変換素子に加わる前記誘導磁界の第1磁界の向きと前記第1の磁電変換素子が検出する第1感磁方向とがなす角と、前記第2の磁電変換素子に加わる前記誘導磁界の第2磁界の向きと前記第2の磁電変換素子が検出する第2感磁方向とがなす角と、が異なり、
     前記電流路と前記第1の磁電変換素子との間の総合の静電容量と、前記電流路と前記第2の磁電変換素子との間の総合の静電容量とが等しいことを特徴とする電流センサ。
    A current path through which the current to be measured flows;
    A current sensor for detecting magnetism of an induced magnetic field generated by a current flowing in the current path,
    A magnetic core surrounding the current path and provided with a first gap and a second gap;
    A first magnetoelectric conversion element provided in the first gap of the magnetic core;
    A second magnetoelectric transducer provided in the second gap of the magnetic core;
    An arithmetic device that calculates a difference in output between the first magnetoelectric conversion element and the second magnetoelectric conversion element,
    The angle formed by the direction of the first magnetic field of the induced magnetic field applied to the first magnetoelectric transducer and the first magnetosensitive direction detected by the first magnetoelectric transducer, and the second magnetoelectric transducer applied to the second magnetoelectric transducer The angle formed by the direction of the second magnetic field of the induced magnetic field and the second magnetosensitive direction detected by the second magnetoelectric transducer is different,
    A total capacitance between the current path and the first magnetoelectric conversion element is equal to a total capacitance between the current path and the second magnetoelectric conversion element. Current sensor.
  2.  前記電流路と前記磁性体コアとの間に誘電体を設けることを特徴とする請求項1に記載の電流センサ。 The current sensor according to claim 1, wherein a dielectric is provided between the current path and the magnetic core.
  3.  前記第1磁界の向きと前記第1感磁方向とが平行であり、
     前記第2磁界の向きと前記第2感磁方向とが平行であることを特徴とする請求項1または請求項2に記載の電流センサ。
    The direction of the first magnetic field and the first magnetosensitive direction are parallel;
    The current sensor according to claim 1, wherein the direction of the second magnetic field is parallel to the second magnetic sensing direction.
  4.  前記第1磁界の向きと前記第2磁界の向きとが逆向きであることを特徴とする請求項3に記載の電流センサ。 4. The current sensor according to claim 3, wherein the direction of the first magnetic field is opposite to the direction of the second magnetic field.
  5.  前記第1磁界の向きと前記第1感磁方向とが平行であり、
     前記第2磁界の向きと前記第2感磁方向とが直交することを特徴とする請求項1または請求項2に記載の電流センサ。
    The direction of the first magnetic field and the first magnetosensitive direction are parallel;
    3. The current sensor according to claim 1, wherein the direction of the second magnetic field is orthogonal to the second magnetosensitive direction. 4.
  6.  被測定電流が流れる電流路と、
    前記電流路に流れる電流によって発生する誘導磁界の磁気を検出する電流センサであって、
     前記電流路を囲むとともに、空隙が設けられた磁性体コアと、
    前記磁性体コアの前記空隙内に設けられた第1の磁電変換素子と、
    前記磁性体コアの前記空隙内に設けられた第2の磁電変換素子と、
    前記第1の磁電変換素子と前記第2の磁電変換素子との出力の差分を演算する演算装置と、を備え、
     前記第1の磁電変換素子に加わる前記誘導磁界である磁界の向きと前記第1の磁電変換素子が検出する第1感磁方向とがなす角と、前記第2の磁電変換素子に加わる前記誘導磁界である磁界の向きと前記第2の磁電変換素子が検出する第2感磁方向とがなす角と、が異なり、
     前記電流路と前記第1の磁電変換素子との間の総合の静電容量と、前記電流路と前記第2の磁電変換素子との間の総合の静電容量とが等しいことを特徴とする電流センサ。
    A current path through which the current to be measured flows;
    A current sensor for detecting magnetism of an induced magnetic field generated by a current flowing in the current path,
    A magnetic core that surrounds the current path and is provided with a gap;
    A first magnetoelectric transducer provided in the gap of the magnetic core;
    A second magnetoelectric conversion element provided in the gap of the magnetic core;
    An arithmetic device that calculates a difference in output between the first magnetoelectric conversion element and the second magnetoelectric conversion element,
    The angle formed by the direction of the magnetic field, which is the induction magnetic field applied to the first magnetoelectric conversion element, and the first magnetosensitive direction detected by the first magnetoelectric conversion element, and the induction applied to the second magnetoelectric conversion element The angle formed by the direction of the magnetic field that is a magnetic field and the second magnetosensitive direction detected by the second magnetoelectric transducer is different,
    A total capacitance between the current path and the first magnetoelectric conversion element is equal to a total capacitance between the current path and the second magnetoelectric conversion element. Current sensor.
  7.  前記第1の磁電変換素子及び前記第2の磁電変換素子は、前記磁性体コアの厚み方向に配設されるとともに、前記電流路に対して等距離になるように並べて配設されることを特徴とする請求項6に記載の電流センサ。 The first magnetoelectric conversion element and the second magnetoelectric conversion element are arranged in the thickness direction of the magnetic core and arranged side by side so as to be equidistant from the current path. The current sensor according to claim 6.
  8.  前記磁界の向きと前記第1感磁方向とが平行であり、
     前記磁界の向きと前記第2感磁方向とが平行であることを特徴とする請求項6または請求項7に記載の電流センサ。
    The direction of the magnetic field and the first magnetosensitive direction are parallel,
    The current sensor according to claim 6 or 7, wherein a direction of the magnetic field and the second magnetic sensing direction are parallel.
  9.  前記電流路と前記第1の磁電変換素子との距離及び対向面積と、前記電流路と前記第2の磁電変換素子との距離及び対向面積と、が等しいとともに、
     前記磁性体コアと前記第1の磁電変換素子との距離及び対向面積と、前記磁性体コアと前記第2の磁電変換素子との距離及び対向面積と、が等しいことを特徴とする請求項1ないし請求項8のいずれかに記載の電流センサ。
    The distance and the facing area between the current path and the first magnetoelectric transducer and the distance and the facing area between the current path and the second magnetoelectric transducer are equal,
    The distance and the facing area between the magnetic core and the first magnetoelectric conversion element are equal to the distance and the facing area between the magnetic core and the second magnetoelectric conversion element. The current sensor according to claim 8.
PCT/JP2013/059094 2012-04-27 2013-03-27 Current sensor WO2013161496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-103292 2012-04-27
JP2012103292 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161496A1 true WO2013161496A1 (en) 2013-10-31

Family

ID=49482830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059094 WO2013161496A1 (en) 2012-04-27 2013-03-27 Current sensor

Country Status (1)

Country Link
WO (1) WO2013161496A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015133621A1 (en) * 2014-03-07 2017-04-06 日立金属株式会社 Current detector
CN110446933A (en) * 2016-12-14 2019-11-12 韩国标准科学研究院 More clamp current measuring devices and current measurement system
EP3657180A1 (en) * 2018-11-22 2020-05-27 Valeo Siemens eAutomotive France SAS Magnetic core for current measuring sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871681A (en) * 1971-12-28 1973-09-27
JPS57128854A (en) * 1981-02-02 1982-08-10 Mitsubishi Electric Corp Current transformer
JPH04250365A (en) * 1991-01-28 1992-09-07 Akutasu Power Drive Kk Current detector
JP2003315376A (en) * 2002-04-18 2003-11-06 Aichi Micro Intelligent Corp Current sensor
JP2011158337A (en) * 2010-01-29 2011-08-18 Aichi Micro Intelligent Corp Current sensor
JP2012047564A (en) * 2010-08-26 2012-03-08 Sumitomo Wiring Syst Ltd Current detection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871681A (en) * 1971-12-28 1973-09-27
JPS57128854A (en) * 1981-02-02 1982-08-10 Mitsubishi Electric Corp Current transformer
JPH04250365A (en) * 1991-01-28 1992-09-07 Akutasu Power Drive Kk Current detector
JP2003315376A (en) * 2002-04-18 2003-11-06 Aichi Micro Intelligent Corp Current sensor
JP2011158337A (en) * 2010-01-29 2011-08-18 Aichi Micro Intelligent Corp Current sensor
JP2012047564A (en) * 2010-08-26 2012-03-08 Sumitomo Wiring Syst Ltd Current detection apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015133621A1 (en) * 2014-03-07 2017-04-06 日立金属株式会社 Current detector
CN110446933A (en) * 2016-12-14 2019-11-12 韩国标准科学研究院 More clamp current measuring devices and current measurement system
EP3557267A4 (en) * 2016-12-14 2020-07-29 Korea Research Institute of Standards and Science Multi-clamp measurement device and current measurement system
EP3657180A1 (en) * 2018-11-22 2020-05-27 Valeo Siemens eAutomotive France SAS Magnetic core for current measuring sensor
FR3089013A1 (en) * 2018-11-22 2020-05-29 Valeo Siemens Eautomotive France Sas MAGNETIC CORE FOR CURRENT MEASUREMENT SENSOR
CN111289790A (en) * 2018-11-22 2020-06-16 维洛西门子新能源汽车法国简式股份公司 Magnetic core for current measuring sensor

Similar Documents

Publication Publication Date Title
JP5482736B2 (en) Current sensor
US9372240B2 (en) Current sensor
JP6477684B2 (en) Current detector
WO2013080557A1 (en) Current sensor
JP6597370B2 (en) Magnetic sensor
JP2018004618A (en) Magnetic sensor
US9599642B2 (en) Current sensor
KR101629818B1 (en) Magnetic detecting device
JPWO2008105228A1 (en) Magnetic sensor module and piston position detection device
WO2013161496A1 (en) Current sensor
JPWO2018116852A1 (en) Current sensor
WO2011155261A1 (en) Magnetic balance current sensor
JP5413866B2 (en) Current sensor with magnetic sensing element
WO2012029439A1 (en) Current sensor
JP5678285B2 (en) Current sensor
JP2013171013A (en) Current sensor
JP5504483B2 (en) Current sensor
JP6361740B2 (en) Current sensor
TW201418741A (en) Triaxial magnetic field sensor with fluxguide
JP5703470B2 (en) Current sensor
JP5139822B2 (en) Magnetic field probe
WO2021149726A1 (en) Magnetic sensor using magnetoresistance effect element, and current sensor
JP2014202737A (en) Current sensor
JP6051459B2 (en) Current sensor
JP2013096850A (en) Current sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP