WO2013161468A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2013161468A1
WO2013161468A1 PCT/JP2013/058351 JP2013058351W WO2013161468A1 WO 2013161468 A1 WO2013161468 A1 WO 2013161468A1 JP 2013058351 W JP2013058351 W JP 2013058351W WO 2013161468 A1 WO2013161468 A1 WO 2013161468A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
general formula
hydrocarbon ring
aromatic hydrocarbon
Prior art date
Application number
PCT/JP2013/058351
Other languages
French (fr)
Japanese (ja)
Inventor
寛人 伊藤
邦夫 谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014512426A priority Critical patent/JP6011616B2/en
Priority to KR1020147029171A priority patent/KR101701584B1/en
Publication of WO2013161468A1 publication Critical patent/WO2013161468A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to an organic electroluminescence element.
  • An organic electroluminescence element (hereinafter also referred to as an organic EL element) has a configuration in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode, and is injected from the anode by applying an electric field.
  • An organic EL element is an all-solid-state element composed of an organic material film having a thickness of only a submicron between electrodes, and can emit light at a voltage in the range of several volts to several tens of volts. Therefore, it is expected to be used for next-generation flat display and lighting.
  • Non-Patent Document 1 As for development of organic EL elements for practical use, Princeton University has reported organic EL elements that use phosphorescence emission from excited triplets (see, for example, Non-Patent Document 1), and since then phosphorescence at room temperature. Research on materials exhibiting the above has become active (see, for example, Non-Patent Document 2).
  • organic EL elements that utilize phosphorescence emission can in principle achieve a light emission efficiency that is approximately four times that of organic EL elements that utilize previous fluorescence emission.
  • Research and development of device layer configurations and electrodes are performed all over the world. For example, many compounds have been studied focusing on heavy metal complexes such as iridium complexes (see Non-Patent Document 3, for example).
  • the phosphorescence emission method is a method having a very high potential.
  • an organic EL element using phosphorescence emission is greatly different from an organic EL element using fluorescence emission, and the position of the emission center is controlled.
  • the method particularly how to recombine within the light emitting layer and how to stably emit light, is an important technical issue in improving the efficiency and lifetime of the device.
  • a multi-layered element having a hole transport layer located on the anode side of the light emitting layer and an electron transport layer located on the cathode side of the light emitting layer in a form adjacent to the light emitting layer is well known.
  • a mixed layer using a host compound and a phosphorescent compound as a dopant is often used for the light emitting layer.
  • the host compound which is an electron transport medium
  • the light emitting dopant which is a hole transport medium
  • the hole transportability can be improved by increasing the concentration of the luminescent dopant, it is very difficult to obtain high luminescent properties at low power by quenching the concentration due to aggregation / association of the luminescent dopant itself. There is a problem that the lifetime is shortened by increasing the concentration of.
  • Patent Documents 1 and 2 disclose that the emission lifetime of an organic EL element is improved by using a metal complex having a specific ligand as a blue phosphorescent dopant having a high potential.
  • the present invention has been made in view of the above problems and situations, and a solution to the problem is to provide an organic electroluminescence device having high luminous efficiency and improved lifetime when emitting light with high luminance. It is.
  • the present inventor relates to the present invention even if a phosphorescent dopant is contained in the light emitting layer at a high concentration.
  • concentration quenching was suppressed, and it was found that the lifetime was long when lit with high luminance, and the present invention was achieved.
  • the said subject which concerns on this invention is solved by the following means. 1.
  • an organic electroluminescence device in which an organic layer including a light emitting layer is sandwiched between an anode and a cathode, the light emitting layer contains a host compound and a phosphorescent dopant represented by the following general formula (1), and the light emission
  • an organic electroluminescence device wherein the content of the phosphorescent dopant in the layer is in the range of 8 to 35% by volume with respect to the content of the host compound.
  • Ring Am, Ring An, Ring Bm and Ring Bn represent a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle.
  • Ar represents an aromatic hydrocarbon ring, an aromatic heterocycle, a non-aromatic hydrocarbon ring or a non-aromatic heterocycle.
  • R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, Furthermore, you may have a substituent.
  • Each Ra is independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic hydrocarbon ring
  • Rb and Rc are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic carbonization Represents a hydrogen ring group or a non-aromatic heterocyclic group.
  • Ra, Rb and Rc may further have a substituent.
  • na and nc represent 1 or 2
  • nb represents an integer of 1 to 4.
  • m represents 1 or 2.
  • n represents 1 or 2.
  • m + n is 3. Note that the structures of the three ligands coordinated to Ir are not all the same. ] 2. 2.
  • the organic electroluminescence device according to claim 1, wherein the content of the phosphorescent dopant in the light emitting layer is in the range of 16 to 30% by volume with respect to the content of the host compound.
  • the phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (2), wherein the organic electroluminescent element according to the first or second item is characterized.
  • Ar represents an aromatic hydrocarbon ring, an aromatic heterocyclic ring, a non-aromatic hydrocarbon ring or a non-aromatic heterocyclic ring.
  • R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, Furthermore, you may have a substituent.
  • Each Ra is independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic hydrocarbon ring
  • Rc each independently represents a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic hydrocarbon ring Represents a group or a non-aromatic heterocyclic group.
  • Ra and Rc may further have a substituent.
  • na and nc represent 1 or 2.
  • m represents 1 or 2.
  • n represents 1 or 2.
  • m + n is 3. Note that the structures of the three ligands coordinated to Ir are not all the same. ] 4).
  • the phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (3), The organic electroluminescent element according to the first or second item.
  • R1m, R2m, R1n and R2n are each independently an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or It represents a non-aromatic heterocyclic group and may further have a substituent.
  • Ra, Rc and Ra 3 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non- Represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group; Ra, Ra 3 and Rc may further have a substituent.
  • na and nc represent 1 or 2.
  • nR3 represents an integer of 1 to 5.
  • m represents 1 or 2.
  • n represents 1 or 2.
  • m + n is 3. Note that the structures of the three ligands coordinated to Ir are not all the same. ] 5.
  • the phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (4), The organic electroluminescent element according to the first or second item.
  • R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic group. Represents an aromatic heterocyclic group and may further have a substituent.
  • Ra, Rc and Ra 3 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non- It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
  • na and nc represent 1 or 2.
  • nR3 represents an integer of 1 to 4.
  • X represents O, S, SiRz1Rz2, NRz1 or CRz1Rz2.
  • Rz1 and Rz2 represent an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or a non-aromatic heterocyclic group.
  • m represents 1 or 2.
  • n represents 1 or 2.
  • m + n is 3. ] 6).
  • the phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (5), wherein the organic electroluminescent element according to the first or second item is characterized.
  • R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic group. Represents an aromatic heterocyclic group and may further have a substituent.
  • Ra, Rc and Ra 3 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non- It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent.
  • na and nc represent 1 or 2.
  • nR3 represents an integer of 1 to 4.
  • X represents O, S, SiRz1Rz2, NRz1 or CRz1Rz2.
  • Rz1 and Rz2 represent an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or a non-aromatic heterocyclic group.
  • m represents 1 or 2.
  • n represents 1 or 2.
  • m + n is 3. ]
  • the phosphorescent dopant according to the present invention has a substituent large enough to interfere with the imidazole ring in the ring bonded to the nitrogen atom of the imidazole ring. Therefore, it is considered that crystallization is suppressed and the lifetime is improved even when exposed to a high-temperature environment when emitting light with high brightness.
  • Schematic diagram showing an example of a display device composed of organic EL elements Schematic diagram of display part A Schematic diagram of pixels
  • Schematic diagram of passive matrix type full color display device Schematic of lighting device
  • Schematic diagram of lighting device Relationship between doping rate and life when initially lit at 1000 cd / m 2 Relationship between doping rate and life when initially lit at 3000 cd / m 2
  • an organic layer including a light emitting layer is sandwiched between an anode and a cathode, and the light emitting layer contains a host compound and a phosphorescent dopant represented by the general formula (1).
  • the phosphorescent dopant content in the light emitting layer is in the range of 8 to 35% by volume with respect to the host compound content.
  • the content of the phosphorescent dopant is in the range of 16 to 30% by volume with respect to the content of the host compound. Is preferred. Moreover, it is preferable from a viewpoint of the effect expression of this invention that the phosphorescence dopant represented by the said General formula (1) is a phosphorescence dopant represented by the said General formula (2).
  • the phosphorescent dopant represented by the general formula (1) is preferably a phosphorescent dopant represented by the general formula (3), (4) or (5). Thereby, the further effect of this invention is acquired.
  • the organic electroluminescence element of the present invention can be suitably included in display devices, displays, and various light emission sources.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the light emitting layer unit may have a non-light emitting intermediate layer between a plurality of light emitting layers, and the intermediate layer is charged.
  • a multi-photon unit configuration that is a generation layer may be used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO 2 TiN, ZrN, HfN, TiO x , VO x , CuI, InN, GaN, CuAlO 2 are used.
  • the light emitting layer in the organic EL element of the present invention is preferably a white light emitting layer, and an illumination device using these is preferable.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode or the electron transport layer and the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
  • the total thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing application of unnecessary high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferably adjusted in the range of 2 nm to 5 ⁇ m, more preferably adjusted in the range of 2 to 200 nm, particularly preferably in the range of 5 to 100 nm.
  • a light-emitting dopant or a host compound which will be described later, is used. And the like can be formed by a method, an inkjet method, a printing method, a spray coating method, a curtain coating method, an LB method (Langmuir Brodgett method, etc.).
  • the light emitting layer of the organic EL device of the present invention contains a phosphorescent dopant (also referred to as a phosphorescent dopant) and a light emitting host compound.
  • a phosphorescent dopant also referred to as a phosphorescent dopant
  • a light emitting host compound also referred to as a phosphorescent dopant
  • the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield is 25 ° C.
  • the phosphorescence quantum yield is preferably 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
  • the content of the phosphorescent dopant represented by the general formula (1) according to the present invention is in the range of 8 to 35% by volume with respect to the content of the host compound.
  • the content of the phosphorescent dopant in the light emitting layer is within the range of 8 to 35% by volume with respect to the content of the host compound. This means that when the light emitting layer is formed by co-evaporation of both, Under these conditions, the ratio of the film thickness increase rate when the phosphorescent dopant is vapor-deposited alone to the film thickness increase rate when the host compound is vapor-deposited alone (also referred to as vapor deposition rate) is 8 to 35% by volume. It means to be within the range.
  • the specific gravity is obtained from the mass and thickness of the layer formed by vapor-depositing the phosphorescent dopant and the host compound individually.
  • the value obtained by dividing the value of the ratio of the phosphorescent dopant mass to the mass of the host compound added to the wet process coating liquid by the ratio of the specific gravity of the phosphorescent dopant to the specific gravity of the host compound is the value of the phosphorescent dopant relative to the host compound.
  • the volume ratio is the volume ratio.
  • the phosphorescent dopant There are two types of light emission of the phosphorescent dopant in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate the excited state of the luminescent host compound, and this energy is used as the phosphorescent dopant. It is an energy transfer type in which light emission from a phosphorescent dopant is obtained by moving to. The other is a carrier trap type in which a phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
  • the present inventors have added the phosphorescent dopant represented by the general formula (1) as a host compound to the organic layer of the organic EL element.
  • the light emission efficiency of the organic EL device and the lifetime when emitting light with high luminance can be improved by adding the content in the range of 8 to 35% by volume.
  • the improvement of the luminous efficiency and the lifetime is achieved by making any one of a plurality of ligands coordinated to an iridium atom different from each other and changing R1m, R2m, R1n and R2n in the general formula (1) to 2 carbon atoms.
  • the organic EL device of the present invention is configured such that the phosphorescent dopant represented by the general formula (1) is contained in the light emitting layer in the range of 8 to 35% by volume with respect to the host compound. Preferably, it is contained within the range of 16 to 30% by volume.
  • Phosphorescent dopant represented by general formula (1) The phosphorescent dopant contained as an organic EL element material in the organic EL element of the present invention will be described.
  • the phosphorescent dopant according to the present invention is represented by the following general formula (1).
  • ring An, ring Am, ring Bn, and ring Bm represent a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle.
  • examples of the 5-membered or 6-membered aromatic hydrocarbon ring represented by the ring An, the ring Am, the ring Bn, and the ring Bm include a benzene ring.
  • examples of the 5-membered or 6-membered aromatic heterocycle represented by ring An, ring Am, ring Bn and ring Bm include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, and a pyridine.
  • At least one of rings Bn and Bm is a benzene ring, more preferably at least one of rings An and Am is a benzene ring.
  • Ar represents an aromatic hydrocarbon ring, an aromatic heterocycle, a non-aromatic hydrocarbon ring or a non-aromatic heterocycle.
  • examples of the aromatic hydrocarbon ring represented by Ar include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, and triphenylene.
  • examples of the aromatic heterocycle represented by Ar include a silole ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring.
  • Oxadiazole ring triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, aza Carbazole ring (represents any one or more of the carbon atoms constituting the carbazole ring replaced by a nitrogen atom), dibenzosilole ring, dibenzofuran ring, dibenzothiophene ring, benzothiophene ring or dibenzofuran ring Any one Rings substituted with nitrogen atom, benzodifuran ring, benzodithiophene ring, acridine ring, benzoquinoline ring, phenazine ring, phenanthridine ring, phenan
  • examples of the non-aromatic hydrocarbon ring represented by Ar include cycloalkane (eg, cyclopentane ring, cyclohexane ring, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group).
  • a cycloalkylthio group for example, a cyclopentylthio group, a cyclohexylthio group, etc.
  • a cyclohexylaminosulfonyl group for example, a tetrahydronaphthalene ring, a 9,10-dihydroanthracene ring, a biphenylene ring and the like.
  • examples of the non-aromatic heterocycle represented by Ar include an epoxy ring, an aziridine ring, a thiirane ring, an oxetane ring, an azetidine ring, a thietane ring, a tetrahydrofuran ring, a dioxolane ring, a pyrrolidine ring, and a pyrazolidine.
  • these rings represented by Ar may have a substituent, and the substituents may be bonded to each other to form a ring.
  • Ar is preferably an aromatic hydrocarbon ring or an aromatic heterocyclic ring, more preferably an aromatic hydrocarbon ring, and still more preferably a benzene ring.
  • R1m and R2m are each independently an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or a non-aromatic heterocyclic ring. Represents a group, and may further have a substituent.
  • examples of the alkyl group represented by R1m and R2m include an ethyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-hexyl group, a 2-methylhexyl group, and a pentyl group.
  • the aromatic hydrocarbon ring group, aromatic heterocyclic group, non-aromatic hydrocarbon ring group or non-aromatic heterocyclic group represented by R1m and R2m is the above-described general formula (1 ), A monovalent group derived from an aromatic hydrocarbon ring, an aromatic heterocyclic ring, a non-aromatic hydrocarbon ring or a non-aromatic heterocyclic ring represented by Ar.
  • substituents include a halogen atom, a cyano group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, a silyl group, an arylalkyl group, an aryl group, a heteroaryl group, a non-aryl group, An aromatic hydrocarbon ring group or a non-aromatic heterocyclic group is exemplified.
  • R1m and R2m are both an alkyl group or a cycloalkyl group having 2 or more carbon atoms, and one of R1m and R2m is a branched alkyl group having 3 or more carbon atoms. It is also preferable. More preferably, both R1m and R2m are branched alkyl groups having 3 or more carbon atoms.
  • R1n and R2n have the same meanings as R1m and R2m in the general formula (1).
  • each Ra is independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group , A non-aromatic hydrocarbon ring group, a non-aromatic heterocyclic group or a linking group that forms a ring with Ar.
  • Rb and Rc are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic Represents a hydrocarbon ring group or a non-aromatic heterocyclic group.
  • Ra, Rb and Rc may further have a substituent.
  • a substituent here means what may have in the range which does not inhibit the function of the compound based on this invention. The same applies to the following.
  • the aryl group and heteroaryl group represented by Ra, Rb and Rc are derived from the aromatic hydrocarbon ring and aromatic heterocycle represented by Ar in the above general formula (1). And a monovalent group.
  • the non-aromatic hydrocarbon ring group and non-aromatic heterocyclic group represented by Ra, Rb and Rc the non-aromatic carbon represented by Ar in the above-mentioned general formula (1) And monovalent groups derived from a hydrogen ring and a non-aromatic heterocyclic ring.
  • Ra preferably represents a linking group that forms a ring together with an alkyl group, a hydrogen atom, a halogen atom, a cyano group, an aryl group, or Ar, and when Ra represents a linking group, , Ra represents O, S, SiRz1Rz2, NRz1 or CRz1Rz2.
  • Rb and Rc preferably represent an alkyl group, a hydrogen atom, a halogen atom, a cyano group or an aryl group, and particularly preferably represent a methyl group, a hydrogen atom, a fluorine atom, a cyano group or a phenyl group.
  • Rz1 and Rz2 represent an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or a non-aromatic heterocyclic group.
  • na and nc represent 1 or 2
  • nb represents an integer of 1 to 4.
  • n 1 or 2
  • m + n 3
  • the phosphorescent dopant represented by the general formula (2) is preferably represented by the following general formula (2).
  • Ar, R1m, R2m, R1n, R2n, Ra, Rc, na, nc, m, and n are Ar, R1m, R2m, R1n, R2n, Ra, Rc, It is synonymous with na, nc, m and n.
  • the phosphorescent dopants represented by the general formulas (1) and (2) according to the present invention can be synthesized by referring to known methods described in International Publication No. 2006/121811, etc.
  • the phosphorescent dopant represented by the general formula (3) The phosphorescent dopant represented by the above general formula (1) or (2) is preferably represented by the following general formula (3).
  • R1m, R2m, R1n, R2n, Rc, na, nc, m, and n are R1m, R2m, R1n, R2n, Rc, na, nc, m, and n in the general formula (1). It is synonymous.
  • Ra is synonymous with Rc in General formula (1).
  • Ra 3 has the same meaning as Rb and Rc in the general formula (1).
  • nR3 represents an integer of 1 to 5.
  • the phosphorescent dopant represented by the general formula (4) is preferably represented by the following general formula (4).
  • R1m, R2m, R1n, R2n, Ra, Rc, na, nc, m and n are R1m, R2m, R1n, R2n, Ra, Rc, na, nc, general formula (3). It is synonymous with m and n.
  • Ra 3 has the same meaning as Rb and Rc in the general formula (1).
  • nR3 represents an integer of 1 to 4.
  • X represents O, S, SiRz1Rz2, NRz1, CRz1Rz2, and Rz1 and Rz2 are an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or Represents a non-aromatic heterocyclic group.
  • the aromatic hydrocarbon ring group, aromatic heterocyclic group, non-aromatic hydrocarbon ring group or non-aromatic heterocyclic group represented by Rz1 and Rz2 is represented by Ar in the above general formula (1).
  • monovalent groups derived from an aromatic hydrocarbon ring, an aromatic heterocycle, a non-aromatic hydrocarbon ring, or a non-aromatic hydrocarbon ring is represented by Ar in the above general formula (1).
  • the phosphorescent dopant represented by the general formula (5) is preferably represented by the following general formula (5).
  • R1m, R2m, R1n, R2n, Ra, Rc, na, nc, m, and n are R1m, R2m, R1n, R2n, Ra, Rc, na, nc, in the general formula (3). It is synonymous with m and n.
  • Ra 3 have the same meanings as Rb and Rc in formula (1).
  • nR3 and X are synonymous with nR3 and X in general formula (4).
  • a phosphorescent dopant in which m is 1 and n is 2 is particularly preferable because a long lifetime can be obtained.
  • DP-1 can be synthesized according to the following scheme.
  • the precipitated crystals were collected by filtration, and the collected crystals were washed with methanol and then washed with water to obtain 2.8 g of Intermediate C.
  • the precipitated crystals were collected by filtration, and the collected crystals were washed with methanol and separated and purified by silica gel chromatography to obtain 0.7 g of DP-1.
  • the compound as described in the following literature is mentioned as a conventionally well-known luminescent dopant which may be used together with the phosphorescence dopant represented by General formula (1) which concerns on this invention.
  • the host compound has a mass ratio of 20% or more in the layer, and the phosphorescence quantum yield of phosphorescence emission is 0 at room temperature (25 ° C.). Defined as less than 1 compound.
  • the phosphorescence quantum yield is preferably less than 0.01.
  • the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • the light-emitting host that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL devices can be used.
  • a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being long-wavelength, and has a high Tg (glass transition temperature) is preferable. .
  • a conventionally known light emitting host may be used alone, or a plurality of types may be used in combination.
  • the movement of charges can be adjusted, and the organic EL element can be made highly efficient.
  • it becomes possible to mix different light emission by using multiple types of the metal complex of this invention used as the said phosphorescence dopant, and / or a conventionally well-known compound, and, thereby, arbitrary luminescent colors can be obtained.
  • the light emitting host used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emitting host). Of course, one or more of such compounds may be used. Specific examples of the known light-emitting host include compounds described in the following documents.
  • Preferred as the light emitting host of the light emitting layer of the organic EL device of the present invention is a compound represented by the following general formula (B) or general formula (E).
  • Xa represents O or S
  • Xb, Xc, Xd and Xe each represents a hydrogen atom, a substituent or a group represented by the following general formula (C)
  • At least one of Xb, Xc, Xd and Xe represents a group represented by the following general formula (C)
  • at least one of the groups represented by the following general formula (C) is substituted with Ar.
  • a carbazolyl group which may have
  • L 4 represents a divalent linking group derived from an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • n represents an integer of 0 to 3, and when n is 2 or more, the plurality of L 4 may be the same or different.
  • * Represents a linking site with the general formula (B) or (E).
  • Ar represents a group represented by the following general formula (D).
  • Xf represents N (R ′′), O or S
  • E 1 to E 8 represent C (R ′′ 1 ) or N
  • R ′′ and R ′′ 1 are hydrogen atoms, substituents or it represents a linking site with L 4 in formula (C).
  • * Represents a linking site with L 4 in the general formula (C).
  • a compound represented by the following general formula (B ′) is particularly preferably used as a light emitting host of the light emitting layer of the organic EL device of the present invention.
  • Xa represents O or S
  • Xb and Xc each represents a substituent or a group represented by general formula (C).
  • At least one of Xb and Xc represents the group represented by the general formula (C), and at least one of the groups represented by the general formula (C) has a substituent. Represents a good carbazolyl group.
  • Ar in the general formula (C) represents a carbazolyl group linked to L 4 in the general formula (C) at the N position.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided with a single layer or a plurality of layers.
  • the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and as a constituent material of the electron transport layer, any one of conventionally known compounds may be selected and used in combination. Is also possible.
  • electron transport materials examples include polycyclic aromatic hydrocarbons such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, Heterocyclic tetracarboxylic anhydride, carbodiimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxadiazole derivative, carboline derivative, or carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative Derivatives having a ring structure in which at least one is substituted with a nitrogen atom, hexaazatriphenylene derivatives, and the like can be mentioned.
  • polycyclic aromatic hydrocarbons such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, Heterocyclic tetrac
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those in which the terminal is substituted with an alkyl group or a sulfonic acid group can also be used as the electron transport material.
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
  • the thickness of the electron transport layer is not particularly limited, but is usually in the range of 5 nm to 5000 nm, preferably in the range of 5 nm to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an n-type dopant such as a metal compound such as a metal complex or a metal halide may be doped.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, aluminum, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture and the like are suitable.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected within the range of 10 nm to 5 ⁇ m, preferably within the range of 50 to 200 nm.
  • the emission luminance is improved, which is convenient.
  • a transparent transparent or semi-transparent cathode is prepared by forming a conductive transparent material mentioned in the description of the anode described later on the cathode.
  • Injection layer electron injection layer (cathode buffer layer), hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) ) ”, Chapter 2,“ Electrode Materials ”(pages 123 to 166), which has a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by, alkali metal compound buffer layer typified by lithium fluoride and potassium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride and cesium fluoride, typified by aluminum oxide Examples thereof include an oxide buffer layer.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and a very small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved.
  • the structure of the electron transport layer described above can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer includes a carbazole derivative, a carboline derivative, a diazacarbazole derivative (the diazacarbazole derivative is a nitrogen atom in which any one of carbon atoms constituting the carboline ring is mentioned as the host compound described above. It is preferable to contain (represented by).
  • the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
  • the ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied orbital) level of the compound to the vacuum level, and can be determined by, for example, the following method.
  • Gaussian 98 Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.
  • a molecular orbital calculation software manufactured by Gaussian, USA As a value (eV unit converted value) calculated by performing structure optimization using B3LYP / 6-31G *. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.
  • the ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy.
  • a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the hole transport layer described later can be used as an electron blocking layer as necessary.
  • the film thickness of the hole blocking layer and the electron transport layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • azatriphenylene derivatives as described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as the hole transport material.
  • hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can be used as the hole injection material and the hole transport material.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can do.
  • the thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 nm to 200 nm.
  • This hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175. Appl. Phys. 95, 5773 (2004), and the like.
  • a hole transport layer having such a high p property because a device with lower power consumption can be produced.
  • anode As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • IDIXO In 2 O 3 —ZnO
  • a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not required (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance be greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness is usually selected within the range of 10 nm to 1000 nm, preferably within the range of 10 nm to 200 nm.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the material of the transparent support substrate that is preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propio.
  • Cellulose esters such as nate (CAP), cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone , Polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfur Cycloolefins such as amines, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or abortion (trade name, manufactured by Mitsui Chemicals) Based resins and the like.
  • CAP nate
  • CAP nate
  • cellulose acetate phthalate cellulose nitrate or derivatives thereof
  • polyvinylidene chloride polyvinyl alcohol
  • polyethylene vinyl alcohol
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
  • oxygen relative humidity (90 ⁇ 2)% RH) is preferably a barrier film of 0.01g / (m 2 ⁇ 24h) or less, and still more, as measured by the method based on JIS K 7126-1987
  • a high barrier film having a permeability of 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
  • the material for forming the barrier film may be any material that has a function of suppressing the entry of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, and the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the luminous efficiency of the organic EL device of the present invention at room temperature is preferably 1% or more, and more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • a thin film made of a desired electrode material for example, an anode material, is formed on a suitable substrate so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, thereby producing an anode.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, or a cathode buffer layer, which is an element material, is formed thereon.
  • a thin film can be formed by a vacuum deposition method, a wet method (also referred to as a wet process), or the like.
  • Wet methods include spin coating, casting, die coating, blade coating, roll coating, ink jet, printing, spray coating, curtain coating, and LB, but precise thin films can be formed.
  • a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable. Different film formation methods may be applied for each layer.
  • liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • fatty acid esters such as ethyl acetate
  • halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane
  • organic solvents such as DMF and DMSO
  • a dispersion method it can be dispersed by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion.
  • a thin film made of a cathode material is formed thereon so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a desired organic EL device can be obtained by providing a cathode. .
  • the cathode, cathode buffer layer, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be formed in the reverse order.
  • the organic EL device of the present invention is produced by a vacuum deposition method, it is preferable to produce from the hole injection layer to the cathode consistently by a single vacuum drawing, but even if it is taken out halfway and subjected to different film formation methods. I do not care. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
  • a sealing means used in the present invention for example, a sealing member such as a glass cover as shown in FIG. 6 and a glass substrate for sealing or a support substrate for an organic EL element are bonded with an adhesive. Can be mentioned.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • examples of the polymer plate include those formed from polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like.
  • the metal plate examples include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured in (1) is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • the method for forming these films is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil
  • a vacuum is also possible.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the glass plate, polymer plate / film, metal plate / film, etc., mentioned as specific examples of the sealing member can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light undergoes total reflection between the light and the light, and the light is guided through the transparent electrode or the light emitting layer.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), condensing on the substrate.
  • a method of improving the efficiency by imparting a property Japanese Patent Laid-Open No. 63-314795
  • a method of forming a reflective surface on the side surface of the element Japanese Patent Laid-Open No. 1-220394
  • Japanese Patent Laid-Open No. 1-220394 Japanese Patent Laid-Open No. 1-220394
  • Japanese Patent Laid-Open No. 1-220394 Japanese Patent Laid-Open No. 1-220394
  • Japanese Patent Laid-Open No. 2001-202827 Japanese Patent Laid-Open No. 2001-202827
  • Japanese Patent Laid-Open No. 11-283951 Japanese Patent Laid-Open No. 11-283951
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction.
  • Light that cannot be emitted due to total internal reflection, etc. is diffracted by introducing a diffraction grating in any layer or medium (in the transparent substrate or transparent electrode), and the light is emitted outside. I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
  • the refractive index distribution By making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases.
  • the position where the diffraction grating is introduced may be in any interlayer or medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention can be processed on the light extraction side of the substrate, for example, by providing a microlens array-like structure, or combined with a so-called condensing sheet, for example, in a specific direction, for example, the device light emitting surface.
  • luminance in a specific direction can be raised by condensing in a front direction.
  • a quadrangular pyramid having a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably within a range of 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Optics Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • Display device A display device that can be manufactured using the organic EL element of the present invention will be described.
  • the display device comprises the organic EL element of the present invention.
  • the display device may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a cast method, a spin coat method, an inkjet method, a printing method, or the like.
  • the method is not limited, but is preferably a vapor deposition method, an inkjet method, a spin coating method, or a printing method.
  • the configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown in the one aspect
  • a DC voltage When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage in the range of 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, and various light sources.
  • a display device or display full-color display is possible by using three types of organic EL elements that emit blue, red, and green light.
  • Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc.
  • the present invention is not limited to these examples.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal.
  • the image information is sequentially emitted to scan the image and display the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate.
  • the main members of the display unit A will be described below.
  • FIG. 2 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
  • the pixel 3 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
  • a full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the charged potential of the image data signal even if the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the present invention not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
  • FIG. 4 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the lighting device of the present invention will be described.
  • the illuminating device of this invention has the said organic EL element.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • the purpose of use of the organic EL element having such a resonator structure is as follows.
  • the light source of a machine, the light source of an optical communication processing machine, the light source of a photosensor, etc. are mentioned, However, It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • the organic EL element of the present invention can be an organic EL element that emits substantially white light as a lighting device.
  • An organic EL element has a plurality of light emitting materials, and a plurality of light emission colors can be emitted simultaneously to obtain white light emission by color mixing.
  • a combination of a plurality of emission colors those containing the three emission maximum wavelengths of the three primary colors of red, green and blue may be used, or two emission using the complementary colors such as blue and yellow, blue green and orange, etc. It may contain a maximum wavelength.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent light emitting materials, a phosphorescent light emitting material, and light from the light emitting material as excitation light. Any combination with a dye material that emits light may be used, but in the white organic EL device according to the present invention, it is only necessary to mix and mix a plurality of light-emitting dopants.
  • the elements themselves are luminescent white.
  • a luminescent material used for a light emitting layer For example, if it is a backlight in a liquid crystal display element, the phosphorescence dopant which concerns on this invention so that it may adapt to the wavelength range corresponding to CF (color filter) characteristic, and Any one of known luminescent materials may be selected and combined to whiten.
  • CF color filter
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass cover, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photo-curing adhesive (LUX Track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS.
  • a device can be formed.
  • FIG. 5 shows a schematic diagram of the lighting apparatus 101, and the organic EL element of the present invention is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is performed without bringing the organic EL element into contact with the atmosphere. (This was performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more)).
  • FIG. 6 shows a cross-sectional view of the lighting device shown in FIG. 5.
  • 105 is a cathode
  • 106 is an organic layer (from the anode side, hole injection layer / hole transport layer / light emitting layer / hole blocking).
  • 107 indicates a transparent glass substrate with an anode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • a thin film was formed by spin coating under conditions of 3000 rpm and 30 seconds, and then dried at 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 20 nm.
  • the transparent support substrate provided with the hole injection layer as described above was fixed to a substrate holder of a commercially available vacuum deposition apparatus, while 200 mg of ⁇ -NPD was added as a hole transport material to a resistance heating boat made of molybdenum, and another molybdenum 200 mg of OC-30 as a host compound is put into a resistance heating boat made of 200, 200 mg of ET-8 as an electron transport material is put into another resistance heating boat made of molybdenum, and 100 mg of Comparative 1 as a phosphorescent dopant is put into another resistance heating boat made of molybdenum. And attached to a vacuum deposition apparatus.
  • the pressure in the vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, and the heating boat containing ⁇ -NPD was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second.
  • a 20 nm hole transport layer was provided.
  • the heating boat containing OC-30 as the host compound and the heating boat containing Comparative 1 as the phosphorescent dopant were energized and heated, and the deposition rates were 0.1 nm / second and 0.004 nm / second, respectively.
  • a 40 nm-thick luminescent layer was provided by co-evaporation on the hole transport layer. From the vapor deposition rate, the content of the phosphorescent dopant with respect to the content of the host compound is a volume ratio of 4% by volume.
  • the value of the volume ratio of the phosphorescent dopant to the host compound when the host compound and the phosphorescent dopant are co-evaporated is the deposition rate (thickness increase rate) when the host compound is vapor-deposited alone under the above-mentioned co-deposition conditions. It means the value of the ratio of the deposition rate (thickness increase rate) when the phosphorescent dopant is deposited alone.
  • the volume ratio of the phosphorescent dopant with respect to said host compound is also called a doping rate.
  • the heating boat containing ET-8 was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 30 nm.
  • lithium fluoride was vapor-deposited to form a cathode buffer layer having a thickness of 0.5 nm, and aluminum was further vapor-deposited to form a cathode having a thickness of 110 nm.
  • an organic EL element 1 was produced.
  • the substrate temperature at the time of vapor deposition of the said positive hole transport layer, the said light emitting layer, the said electron carrying layer, the said cathode buffer layer, and the said cathode was room temperature.
  • the phosphorescent dopants described in the electron transport material ET-8 and Table 1 are shown below.
  • External extraction quantum efficiency also referred to as light emission efficiency or efficiency
  • the organic EL element is turned on at room temperature (within a range of about 23 to 25 ° C.) under a constant current condition of 2.5 mA / cm 2 , and the emission luminance (L) [cd / m 2 ] immediately after the start of lighting is measured.
  • the external extraction quantum efficiency ( ⁇ ) was calculated.
  • the measurement of emission luminance was performed using CS-1000 (manufactured by Konica Minolta Optics), and the efficiency was expressed as a relative value where the organic EL element 1 was 100.
  • the half-life was expressed as a relative value with the organic EL element 1 having an initial luminance of 1000 cd / m 2 as 100.
  • the organic EL devices 1 to 13 using the phosphorescent dopant “Comparative 1” shown in Table 1, the organic EL devices 14 to 26 using the phosphorescent dopant “Comparative 2”, and the phosphorescent dopant DP-38 shown in Table 2 were used.
  • the lifetimes of the organic EL elements 40 to 52 and the organic EL elements 53 to 65 using the phosphorescent dopant DP-1 when lighted at an initial luminance of 1000 cd / m 2 were plotted against the phosphorescent dopant content. The results are shown in FIG. 7, and the results of plotting the lifetime when lighted at an initial luminance of 3000 cd / m 2 against the phosphorescent dopant content are shown in FIG. 8.
  • the organic EL device of the present invention has significant improvements in both efficiency and half life from the region where the doping rate exceeds 8% by volume compared to the organic EL device of the comparative example. Is recognized. Further, in the organic EL element of the comparative example, when the doping rate is about 15% by volume or more, the light emission efficiency and the half life are significantly reduced, whereas the organic EL element of the present invention has a doping rate of about 35 volume. It can be seen that there is little decrease in power efficiency and half-life to 50%.
  • the difference between the half life when lighting at an initial luminance of 1000 cd / m 2 and the half life when lighting at an initial luminance of 3000 cd / m 2 is small. It can be seen that the lifetime is long even when light is emitted with high luminance.
  • an element in which the content of the phosphorescent dopant of the present invention is within the range of 8 to 35% by volume with respect to the host compound is high in luminous efficiency and excellent in luminous stability (lifetime) under high luminance. It turns out that it is an electroluminescent element.
  • the organic EL element of the present invention has a high luminous efficiency and a long lifetime, it can be used for a display device and a lighting device.

Abstract

The present invention addresses the problem of providing an organic electroluminescent element which has high luminous efficiency and improved service life in cases where the element is caused to emit light with high luminance. An organic electroluminescent element of the present invention comprises an organic layer that is held between the positive electrode and the negative electrode and includes a light emitting layer. The organic electroluminescent element is characterized in that: the light emitting layer contains a host compound and a phosphorescent dopant represented by general formula (1); and the content of the phosphorescent dopant in the light emitting layer is within the range of 8-35% by volume relative to the content of the host compound.

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element.
 有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)は、発光する化合物を含有する発光層を、陰極と陽極とで挟んだ構成を有し、電界を印加することにより、陽極から注入された正孔と陰極から注入された電子を発光層内で再結合させることで励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光又はリン光)を利用した発光素子である。また、有機EL素子は、電極と電極の間を厚さ僅かサブミクロン程度の有機材料の膜で構成する全固体素子であり、数V~数十Vの範囲内程度の電圧で発光が可能であることから、次世代の平面ディスプレイや照明への利用が期待されている。 An organic electroluminescence element (hereinafter also referred to as an organic EL element) has a configuration in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode, and is injected from the anode by applying an electric field. A light emitting device using excitons (excitons) by recombining electrons injected from holes and cathodes in the light emitting layer, and using light emission (fluorescence or phosphorescence) when the excitons are deactivated It is. An organic EL element is an all-solid-state element composed of an organic material film having a thickness of only a submicron between electrodes, and can emit light at a voltage in the range of several volts to several tens of volts. Therefore, it is expected to be used for next-generation flat display and lighting.
 実用化に向けた有機EL素子の開発としては、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告がされ(例えば、非特許文献1参照)、以来、室温でリン光を示す材料の研究が活発になってきている(例えば、非特許文献2参照)。 As for development of organic EL elements for practical use, Princeton University has reported organic EL elements that use phosphorescence emission from excited triplets (see, for example, Non-Patent Document 1), and since then phosphorescence at room temperature. Research on materials exhibiting the above has become active (see, for example, Non-Patent Document 2).
 更に、リン光発光を利用する有機EL素子は、以前の蛍光発光を利用する有機EL素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。例えば、イリジウム錯体系等重金属錯体を中心に多くの化合物が合成検討されている(例えば、非特許文献3参照)。 Furthermore, organic EL elements that utilize phosphorescence emission can in principle achieve a light emission efficiency that is approximately four times that of organic EL elements that utilize previous fluorescence emission. Research and development of device layer configurations and electrodes are performed all over the world. For example, many compounds have been studied focusing on heavy metal complexes such as iridium complexes (see Non-Patent Document 3, for example).
 このように、リン光発光方式は大変ポテンシャルの高い方式であるが、リン光発光を利用する有機EL素子においては、蛍光発光を利用する有機EL素子とは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命を改善する上で重要な技術的な課題となっている。 As described above, the phosphorescence emission method is a method having a very high potential. However, an organic EL element using phosphorescence emission is greatly different from an organic EL element using fluorescence emission, and the position of the emission center is controlled. The method, particularly how to recombine within the light emitting layer and how to stably emit light, is an important technical issue in improving the efficiency and lifetime of the device.
 そこで近年、発光層に隣接する形で、発光層の陽極側に位置する正孔輸送層と発光層の陰極側に位置する電子輸送層とを備えた多層積層型の素子が良く知られている。また、発光層にはホスト化合物とドーパントとしてのリン光発光性化合物とを用いた混合層が多く用いられている。 Therefore, in recent years, a multi-layered element having a hole transport layer located on the anode side of the light emitting layer and an electron transport layer located on the cathode side of the light emitting layer in a form adjacent to the light emitting layer is well known. . In addition, a mixed layer using a host compound and a phosphorescent compound as a dopant is often used for the light emitting layer.
 一方、材料の観点からは高いキャリア輸送性や熱的、電気的に安定な材料が求められている。特に青色リン光発光を利用するにあたっては、青色リン光発光性化合物自身が高い三重項励起状態のエネルギー(T1)を有しているために、適用可能な周辺材料の開発と精密な発光中心の制御が強く求められている。 On the other hand, from the viewpoint of materials, high carrier transportability and thermally and electrically stable materials are demanded. In particular, when utilizing blue phosphorescence, since the blue phosphorescent compound itself has high triplet excited state energy (T1), the development of applicable peripheral materials and the precise emission center There is a strong demand for control.
 消費電力を低減し発光効率を向上する方法として、発光層中のキャリア輸送を向上させることが挙げられる。電子輸送媒体であるホスト化合物は高濃度で発光層に存在するため、容易に電子が移動できるが、ホール輸送媒体である発光ドーパントは、低濃度であるためキャリアが停滞しやすく電圧上昇の要因となっている。発光ドーパントを高濃度化することでホール輸送性を向上できるが、発光ドーパント自身の凝集・会合により、濃度消光し、低電力で高い発光性を得ることは非常に困難であり、また、発光ドーパントを高濃度化することで寿命が短くなるという問題を有していた。 As a method for reducing power consumption and improving luminous efficiency, improving carrier transport in the light emitting layer can be mentioned. Since the host compound, which is an electron transport medium, exists in the light emitting layer at a high concentration, electrons can easily move. However, the light emitting dopant, which is a hole transport medium, has a low concentration, and carriers are likely to stagnate, causing a voltage increase. It has become. Although the hole transportability can be improved by increasing the concentration of the luminescent dopant, it is very difficult to obtain high luminescent properties at low power by quenching the concentration due to aggregation / association of the luminescent dopant itself. There is a problem that the lifetime is shortened by increasing the concentration of.
 近年、高いポテンシャルを有する青色リン光ドーパントとして、特定の配位子を有する金属錯体を用いることにより有機EL素子の発光寿命が改善されることが特許文献1及び2で開示されている。 Recently, Patent Documents 1 and 2 disclose that the emission lifetime of an organic EL element is improved by using a metal complex having a specific ligand as a blue phosphorescent dopant having a high potential.
 しかしながら、上記特許文献1及び2に記載の技術にあっては、低輝度発光させたときの有機EL素子の発光寿命は改善されているが、高輝度発光させたときの有機EL素子の寿命が短いことが問題であった。 However, in the techniques described in Patent Documents 1 and 2, the light emission lifetime of the organic EL element when emitting light with low luminance is improved, but the life of the organic EL element when emitting light with high luminance is improved. Short was the problem.
米国特許出願公開第2011/0057559号明細書US Patent Application Publication No. 2011/0057559 米国特許出願公開第2011/0204333号明細書US Patent Application Publication No. 2011/0204333
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、高い発光効率を有し、高輝度で発光させたときの寿命が改善された有機エレクトロルミネッセンス素子を提供することである。 The present invention has been made in view of the above problems and situations, and a solution to the problem is to provide an organic electroluminescence device having high luminous efficiency and improved lifetime when emitting light with high luminance. It is.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、ホール輸送性を向上させるため、発光層にリン光ドーパントを高濃度で含有させても、本発明に係るリン光ドーパントを用いた場合は、濃度消光が抑制され、高輝度で点灯したときの寿命が長いことを見いだし本発明に至った。 In order to improve the hole transportability in the process of studying the cause of the above problems, etc., in order to solve the above problems, the present inventor relates to the present invention even if a phosphorescent dopant is contained in the light emitting layer at a high concentration. In the case of using a phosphorescent dopant, concentration quenching was suppressed, and it was found that the lifetime was long when lit with high luminance, and the present invention was achieved.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
1.陽極と陰極の間に、発光層を含む有機層が挟持された有機エレクトロルミネッセンス素子において、前記発光層が、ホスト化合物及び下記一般式(1)で表されるリン光ドーパントを含有し、該発光層内の該リン光ドーパントの含有量が、該ホスト化合物の含有量に対し、8~35体積%の範囲内であることを特徴とする有機エレクトロルミネッセンス素子。
That is, the said subject which concerns on this invention is solved by the following means.
1. In an organic electroluminescence device in which an organic layer including a light emitting layer is sandwiched between an anode and a cathode, the light emitting layer contains a host compound and a phosphorescent dopant represented by the following general formula (1), and the light emission An organic electroluminescence device, wherein the content of the phosphorescent dopant in the layer is in the range of 8 to 35% by volume with respect to the content of the host compound.
Figure JPOXMLDOC01-appb-C000006
〔一般式(1)中、環Am、環An、環Bm及び環Bnは5員又は6員の芳香族炭化水素環又は芳香族複素環を表す。Arは、芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環又は非芳香族複素環を表す。R1m、R2m、R1n及びR2nは、それぞれ独立に炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。Raは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基、非芳香族複素環基又はArと環を形成する連結基を表す。Rb及びRcは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表す。Ra、Rb及びRcは、更に置換基を有していても良い。na及びncは、1又は2を表し、nbは1~4の整数を表す。mは、1又は2を表す。nは、1又は2を表す。m+nは、3である。なお、Irに配位している三つの配位子の構造が全て同じであることはない。〕
2.前記発光層内の前記リン光ドーパントの含有量が前記ホスト化合物の含有量に対し、16~30体積%の範囲内であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
3.前記一般式(1)で表されるリン光ドーパントが、下記一般式(2)で表されるリン光ドーパントであることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000006
[In General Formula (1), Ring Am, Ring An, Ring Bm and Ring Bn represent a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle. Ar represents an aromatic hydrocarbon ring, an aromatic heterocycle, a non-aromatic hydrocarbon ring or a non-aromatic heterocycle. R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, Furthermore, you may have a substituent. Each Ra is independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic hydrocarbon ring Represents a linking group that forms a ring with a group, a non-aromatic heterocyclic group or Ar. Rb and Rc are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic carbonization Represents a hydrogen ring group or a non-aromatic heterocyclic group. Ra, Rb and Rc may further have a substituent. na and nc represent 1 or 2, and nb represents an integer of 1 to 4. m represents 1 or 2. n represents 1 or 2. m + n is 3. Note that the structures of the three ligands coordinated to Ir are not all the same. ]
2. 2. The organic electroluminescence device according to claim 1, wherein the content of the phosphorescent dopant in the light emitting layer is in the range of 16 to 30% by volume with respect to the content of the host compound.
3. The phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (2), wherein the organic electroluminescent element according to the first or second item is characterized.
Figure JPOXMLDOC01-appb-C000007
〔一般式(2)中、Arは、芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環又は非芳香族複素環を表す。R1m、R2m、R1n及びR2nは、それぞれ独立に炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。Raは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基、非芳香族複素環基又はArと環を形成する連結基を表す。Rcは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表す。Ra及びRcは、更に置換基を有していても良い。na及びncは、1又は2を表す。mは、1又は2を表す。nは、1又は2を表す。m+nは、3である。なお、Irに配位している三つの配位子の構造が全て同じであることはない。〕
4.前記一般式(1)で表されるリン光ドーパントが、下記一般式(3)で表されるリン光ドーパントであることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000007
[In General Formula (2), Ar represents an aromatic hydrocarbon ring, an aromatic heterocyclic ring, a non-aromatic hydrocarbon ring or a non-aromatic heterocyclic ring. R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, Furthermore, you may have a substituent. Each Ra is independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic hydrocarbon ring Represents a linking group that forms a ring with a group, a non-aromatic heterocyclic group or Ar. Rc each independently represents a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic hydrocarbon ring Represents a group or a non-aromatic heterocyclic group. Ra and Rc may further have a substituent. na and nc represent 1 or 2. m represents 1 or 2. n represents 1 or 2. m + n is 3. Note that the structures of the three ligands coordinated to Ir are not all the same. ]
4). The phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (3), The organic electroluminescent element according to the first or second item.
Figure JPOXMLDOC01-appb-C000008
〔一般式(3)中、R1m、R2m、R1n及びR2nは、それぞれ独立に、炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。Ra、Rc及びRaは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表す。Ra、Ra及びRcは、更に置換基を有していても良い。na及びncは、1又は2を表す。nR3は、1~5の整数を表す。mは、1又は2を表す。nは、1又は2を表す。m+nは、3である。なお、Irに配位している三つの配位子の構造が全て同じであることはない。〕
5.前記一般式(1)で表されるリン光ドーパントが、下記一般式(4)で表されるリン光ドーパントであることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000008
[In General Formula (3), R1m, R2m, R1n and R2n are each independently an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or It represents a non-aromatic heterocyclic group and may further have a substituent. Ra, Rc and Ra 3 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non- Represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group; Ra, Ra 3 and Rc may further have a substituent. na and nc represent 1 or 2. nR3 represents an integer of 1 to 5. m represents 1 or 2. n represents 1 or 2. m + n is 3. Note that the structures of the three ligands coordinated to Ir are not all the same. ]
5. The phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (4), The organic electroluminescent element according to the first or second item.
Figure JPOXMLDOC01-appb-C000009
〔一般式(4)中、R1m、R2m、R1n及びR2nは、それぞれ独立に炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。Ra、Rc及びRaは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。na及びncは、1又は2を表す。nR3は、1~4の整数を表す。Xは、O、S、SiRz1Rz2、NRz1又はCRz1Rz2を表す。Rz1及びRz2は、アルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表す。mは、1又は2を表す。nは、1又は2を表す。m+nは、3である。〕
6.前記一般式(1)で表されるリン光ドーパントが、下記一般式(5)で表されるリン光ドーパントであることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000009
[In General Formula (4), R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic group. Represents an aromatic heterocyclic group and may further have a substituent. Ra, Rc and Ra 3 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non- It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. na and nc represent 1 or 2. nR3 represents an integer of 1 to 4. X represents O, S, SiRz1Rz2, NRz1 or CRz1Rz2. Rz1 and Rz2 represent an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or a non-aromatic heterocyclic group. m represents 1 or 2. n represents 1 or 2. m + n is 3. ]
6). The phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (5), wherein the organic electroluminescent element according to the first or second item is characterized.
Figure JPOXMLDOC01-appb-C000010
〔一般式(5)中、R1m、R2m、R1n及びR2nは、それぞれ独立に炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。Ra、Rc及びRaは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。na及びncは、1又は2を表す。nR3は、1~4の整数を表す。Xは、O、S、SiRz1Rz2、NRz1又はCRz1Rz2を表す。Rz1及びRz2は、アルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表す。mは、1又は2を表す。nは、1又は2を表す。m+nは、3である。〕
Figure JPOXMLDOC01-appb-C000010
[In General Formula (5), R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic group. Represents an aromatic heterocyclic group and may further have a substituent. Ra, Rc and Ra 3 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non- It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. na and nc represent 1 or 2. nR3 represents an integer of 1 to 4. X represents O, S, SiRz1Rz2, NRz1 or CRz1Rz2. Rz1 and Rz2 represent an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or a non-aromatic heterocyclic group. m represents 1 or 2. n represents 1 or 2. m + n is 3. ]
 本発明の上記手段により、発光効率が高く、高輝度で発光させたときの寿命の長い有機エレクトロルミネッセンス素子を提供することができる。 By the above means of the present invention, it is possible to provide an organic electroluminescence device having high emission efficiency and a long lifetime when emitting light with high luminance.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 有機エレクトロルミネッセンス素子を高輝度で発光させた場合、素子の寿命の低下が激しいが、その理由の一つとして、高輝度発光により素子が高温となり、リン光ドーパントが熱により劣化することが考えられる。初期には、非結晶状態であったリン光ドーパントが、加熱により微細な結晶となりやすい。 When an organic electroluminescence device emits light with high luminance, the lifetime of the device is drastically reduced. One reason is that the device becomes high temperature due to high luminance light emission and the phosphorescent dopant is deteriorated by heat. . Initially, the phosphorescent dopant that was in an amorphous state tends to become fine crystals by heating.
 本発明に係るリン光ドーパントは、イミダゾール環の窒素原子に結合する環がイミダゾール環に干渉するのに充分な大きさの置換基を有するため、両環は同一平面に並ばず結晶化しにくい。そのため、高輝度発光したときの高温の環境にさらされても、結晶化が抑制され、寿命が改善されるものと考えられる。 The phosphorescent dopant according to the present invention has a substituent large enough to interfere with the imidazole ring in the ring bonded to the nitrogen atom of the imidazole ring. Therefore, it is considered that crystallization is suppressed and the lifetime is improved even when exposed to a high-temperature environment when emitting light with high brightness.
 また、もともと結晶化しにくいため、濃度消光も起こりにくいと考えられる。 Also, it is considered that concentration quenching is unlikely to occur because it is difficult to crystallize.
有機EL素子から構成される表示装置の一例を示した模式図Schematic diagram showing an example of a display device composed of organic EL elements 表示部Aの模式図Schematic diagram of display part A 画素の模式図Schematic diagram of pixels パッシブマトリクス方式フルカラー表示装置の模式図Schematic diagram of passive matrix type full color display device 照明装置の概略図Schematic of lighting device 照明装置の模式図Schematic diagram of lighting device 初期1000cd/mで点灯したときのドープ率と寿命の関係Relationship between doping rate and life when initially lit at 1000 cd / m 2 初期3000cd/mで点灯したときのドープ率と寿命の関係Relationship between doping rate and life when initially lit at 3000 cd / m 2
 本発明の有機エレクトロルミネッセンス素子は、陽極と陰極の間に、発光層を含む有機層が挟持され、前記発光層が、ホスト化合物及び前記一般式(1)で表されるリン光ドーパントを含有し、該発光層内の該リン光ドーパントの含有量が、該ホスト化合物の含有量に対し、8~35体積%の範囲内であることを特徴とする。この特徴は、請求項1から請求項6までの請求項に係る発明に共通する技術的特徴である。 In the organic electroluminescence device of the present invention, an organic layer including a light emitting layer is sandwiched between an anode and a cathode, and the light emitting layer contains a host compound and a phosphorescent dopant represented by the general formula (1). The phosphorescent dopant content in the light emitting layer is in the range of 8 to 35% by volume with respect to the host compound content. This feature is a technical feature common to the inventions according to claims 1 to 6.
 本発明の実施態様としては、高輝度発光による寿命の低下をさらに抑制できることから、前記リン光ドーパントの含有量が、前記ホスト化合物の含有量に対し、16~30体積%の範囲内であることが好ましい。また、前記一般式(1)で表されるリン光ドーパントが、前記一般式(2)で表されるリン光ドーパントであることが、本発明の効果発現の観点から、好ましい。 In an embodiment of the present invention, since the lifetime reduction due to high-luminance emission can be further suppressed, the content of the phosphorescent dopant is in the range of 16 to 30% by volume with respect to the content of the host compound. Is preferred. Moreover, it is preferable from a viewpoint of the effect expression of this invention that the phosphorescence dopant represented by the said General formula (1) is a phosphorescence dopant represented by the said General formula (2).
 さらに、本発明においては、前記一般式(1)で表されるリン光ドーパントが、前記一般式(3)、(4)又は(5)で表されるリン光ドーパントであることが好ましい。これにより、一層の本発明の効果が得られる。 Furthermore, in the present invention, the phosphorescent dopant represented by the general formula (1) is preferably a phosphorescent dopant represented by the general formula (3), (4) or (5). Thereby, the further effect of this invention is acquired.
 本発明の有機エレクトロルミネッセンス素子は、表示デバイス、ディスプレイ、各種発光光源に好適に具備され得る。 The organic electroluminescence element of the present invention can be suitably included in display devices, displays, and various light emission sources.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《有機EL素子の構成層》
 本発明の有機EL素子の構成層について説明する。本発明の有機EL素子において、陽極と陰極との間に挟持される各種有機層の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
<< Constituent layers of organic EL elements >>
The constituent layers of the organic EL element of the present invention will be described. In the organic EL device of the present invention, preferred specific examples of the layer structure of various organic layers sandwiched between the anode and the cathode are shown below, but the present invention is not limited thereto.
 (i)陽極/発光層ユニット/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層ユニット/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 更に、発光層ユニットは、複数の発光層の間に非発光性の中間層を有していてもよく、該中間層が電荷発生層であるようなマルチフォトンユニット構成であってもよい。この場合、電荷発生層としては、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiO、VO、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられる。
(I) Anode / light emitting layer unit / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer unit / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer unit / hole blocking Layer / electron transport layer / cathode (iv) anode / hole transport layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) anode / anode buffer layer / hole transport layer / light emission Layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode Further, the light emitting layer unit may have a non-light emitting intermediate layer between a plurality of light emitting layers, and the intermediate layer is charged. A multi-photon unit configuration that is a generation layer may be used. In this case, as the charge generation layer, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, GaN, CuAlO 2 are used. , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 and other conductive inorganic compound layers, Au / Bi 2 O 3 and other two-layer films, SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 and other multilayer films, C60 and other fullerenes, conductive organic layers such as oligothiophene, metal phthalocyanine , Conductive organic compound layers such as metal-free phthalocyanines, metal porphyrins, metal-free porphyrins, and the like.
 本発明の有機EL素子における発光層としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。 The light emitting layer in the organic EL element of the present invention is preferably a white light emitting layer, and an illumination device using these is preferable.
 本発明の有機EL素子を構成する各層について以下説明する。 Each layer constituting the organic EL element of the present invention will be described below.
 《発光層》
 本発明に係る発光層は、電極又は電子輸送層及び正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode or the electron transport layer and the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
 発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加することを防止し、且つ、駆動電流に対する発光色の安定性向上の観点から、好ましくは2nm~5μmの範囲に調整され、更に好ましくは2~200nmの範囲に調整され、特に好ましくは5~100nmの範囲に調整される。 The total thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing application of unnecessary high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferably adjusted in the range of 2 nm to 5 μm, more preferably adjusted in the range of 2 to 200 nm, particularly preferably in the range of 5 to 100 nm.
 発光層の作製には、後述する発光ドーパントやホスト化合物を用いて、例えば、真空蒸着法、湿式法(ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法))等を挙げることができる。)等により成膜して形成することができる。 For the production of the light-emitting layer, a light-emitting dopant or a host compound, which will be described later, is used. And the like can be formed by a method, an inkjet method, a printing method, a spray coating method, a curtain coating method, an LB method (Langmuir Brodgett method, etc.).
 本発明の有機EL素子の発光層には、リン光ドーパント(リン光発光性ドーパントともいう。)と、発光ホスト化合物とを含有する。 The light emitting layer of the organic EL device of the present invention contains a phosphorescent dopant (also referred to as a phosphorescent dopant) and a light emitting host compound.
 (リン光ドーパント)
 本発明に係るリン光ドーパントについて説明する。
(Phosphorescent dopant)
The phosphorescent dopant according to the present invention will be described.
 本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield is 25 ° C. The phosphorescence quantum yield is preferably 0.1 or more.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
 発光層内において、本発明に係る前記一般式(1)で表されるリン光ドーパントの含有量は、ホスト化合物の含有量に対し、8~35体積%の範囲内である。 In the light emitting layer, the content of the phosphorescent dopant represented by the general formula (1) according to the present invention is in the range of 8 to 35% by volume with respect to the content of the host compound.
 発光層のリン光ドーパントの含有量を、ホスト化合物の含有量に対して、8~35体積%の範囲内にするということは、両者を共蒸着して発光層を形成する場合、前記共蒸着の条件で、ホスト化合物を単独で蒸着したときの膜厚増加速度(蒸着速度ともいう。)に対するリン光ドーパントを単独で蒸着したときの膜厚増加速度の比の値を8~35体積%の範囲内にするということを意味する。 The content of the phosphorescent dopant in the light emitting layer is within the range of 8 to 35% by volume with respect to the content of the host compound. This means that when the light emitting layer is formed by co-evaporation of both, Under these conditions, the ratio of the film thickness increase rate when the phosphorescent dopant is vapor-deposited alone to the film thickness increase rate when the host compound is vapor-deposited alone (also referred to as vapor deposition rate) is 8 to 35% by volume. It means to be within the range.
 また、発光層をウェットプロセスで作製する場合は、リン光ドーパントとホスト化合物をそれぞれ単独で蒸着して形成した層の質量と厚さから、それぞれの比重を求める。ウェットプロセスの塗布液に添加したホスト化合物の質量に対するリン光ドーパントの質量の比の値を、ホスト化合物の比重に対するリン光ドーパントの比重の比の値で除した値をホスト化合物に対するリン光ドーパントの体積比率とする。 Also, when the light emitting layer is produced by a wet process, the specific gravity is obtained from the mass and thickness of the layer formed by vapor-depositing the phosphorescent dopant and the host compound individually. The value obtained by dividing the value of the ratio of the phosphorescent dopant mass to the mass of the host compound added to the wet process coating liquid by the ratio of the specific gravity of the phosphorescent dopant to the specific gravity of the host compound is the value of the phosphorescent dopant relative to the host compound. The volume ratio.
 リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こって発光性ホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission of the phosphorescent dopant in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate the excited state of the luminescent host compound, and this energy is used as the phosphorescent dopant. It is an energy transfer type in which light emission from a phosphorescent dopant is obtained by moving to. The other is a carrier trap type in which a phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
 ここで、本発明者らは、上記本発明の目的を達成するために鋭意研究を重ねた結果、有機EL素子の有機層に、前記一般式(1)で表されるリン光ドーパントをホスト化合物に対し8~35体積%の範囲で含有させることで、有機EL素子の発光効率と高輝度発光させたときの寿命を向上できることを明らかにした。 Here, as a result of intensive studies in order to achieve the object of the present invention, the present inventors have added the phosphorescent dopant represented by the general formula (1) as a host compound to the organic layer of the organic EL element. In contrast, it has been clarified that the light emission efficiency of the organic EL device and the lifetime when emitting light with high luminance can be improved by adding the content in the range of 8 to 35% by volume.
 上記発光効率と寿命の改善は、イリジウム原子に配位する複数の配位子のうちのいずれかの構造を互いに異ならせ、且つ一般式(1)におけるR1m、R2m、R1n及びR2nを炭素数2以上の置換基とすることで、イリジウム錯体間の相互作用を緩和して高濃度であっても凝集や会合が抑制され、濃度消光の改善及び高輝度発光で発生する熱による劣化を防止することにより達成されたと推察される。これにより、有機EL素子の発光効率を向上することができた。更に、当該リン光ドーパントが有機EL素子に含有されていることで、有機EL素子の高輝度発光における発光寿命の向上を達成できることを見いだした。 The improvement of the luminous efficiency and the lifetime is achieved by making any one of a plurality of ligands coordinated to an iridium atom different from each other and changing R1m, R2m, R1n and R2n in the general formula (1) to 2 carbon atoms. By using the above substituents, the interaction between iridium complexes is relaxed and aggregation and association are suppressed even at high concentrations, improving concentration quenching and preventing deterioration due to heat generated by high-intensity luminescence. It is surmised that this was achieved. Thereby, the luminous efficiency of the organic EL element was able to be improved. Furthermore, it discovered that the improvement in the light emission lifetime in the high-intensity light emission of an organic EL element was achieved because the said phosphorescence dopant was contained in the organic EL element.
 よって、本発明の有機EL素子は、発光層に、前記一般式(1)で表されるリン光ドーパントが、ホスト化合物に対し8~35体積%の範囲内で含有されて構成されているものであり、好ましくは、16~30体積%の範囲内で含有されて構成されているものである。 Therefore, the organic EL device of the present invention is configured such that the phosphorescent dopant represented by the general formula (1) is contained in the light emitting layer in the range of 8 to 35% by volume with respect to the host compound. Preferably, it is contained within the range of 16 to 30% by volume.
 (1)一般式(1)で表されるリン光ドーパント
 本発明の有機EL素子に、有機EL素子材料として含有されるリン光ドーパントについて説明する。本発明に係るリン光ドーパントは下記一般式(1)で表される。
(1) Phosphorescent dopant represented by general formula (1) The phosphorescent dopant contained as an organic EL element material in the organic EL element of the present invention will be described. The phosphorescent dopant according to the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(1)において、環An、環Am、環Bn及び環Bmは、5員又は6員の芳香族炭化水素環又は芳香族複素環を表す。 In general formula (1), ring An, ring Am, ring Bn, and ring Bm represent a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle.
 一般式(1)において、環An、環Am、環Bn及び環Bmで表される5員又は6員の芳香族炭化水素環としては、例えば、ベンゼン環が挙げられる。 In the general formula (1), examples of the 5-membered or 6-membered aromatic hydrocarbon ring represented by the ring An, the ring Am, the ring Bn, and the ring Bm include a benzene ring.
 一般式(1)において、環An、環Am、環Bn及び環Bmで表される5員又は6員の芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環等が挙げられる。 In the general formula (1), examples of the 5-membered or 6-membered aromatic heterocycle represented by ring An, ring Am, ring Bn and ring Bm include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, and a pyridine. A ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, a pyrazole ring, a thiazole ring, and the like.
 好ましくは環Bn及びBmの少なくとも一方がベンゼン環であり、より好ましくは環An及びAmの少なくとも一方がベンゼン環である。 Preferably, at least one of rings Bn and Bm is a benzene ring, more preferably at least one of rings An and Am is a benzene ring.
 一般式(1)において、Arは、芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環又は非芳香族複素環を表す。 In the general formula (1), Ar represents an aromatic hydrocarbon ring, an aromatic heterocycle, a non-aromatic hydrocarbon ring or a non-aromatic heterocycle.
 一般式(1)において、Arで表される芳香族炭化水素環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。 In the general formula (1), examples of the aromatic hydrocarbon ring represented by Ar include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, and triphenylene. Ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene Ring, pyranthrene ring, anthraanthrene ring and the like.
 一般式(1)において、Arで表される芳香族複素環としては、例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等が挙げられる。 In the general formula (1), examples of the aromatic heterocycle represented by Ar include a silole ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring. , Oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, aza Carbazole ring (represents any one or more of the carbon atoms constituting the carbazole ring replaced by a nitrogen atom), dibenzosilole ring, dibenzofuran ring, dibenzothiophene ring, benzothiophene ring or dibenzofuran ring Any one Rings substituted with nitrogen atom, benzodifuran ring, benzodithiophene ring, acridine ring, benzoquinoline ring, phenazine ring, phenanthridine ring, phenanthroline ring, cyclazine ring, kindrin ring, tepenidine ring, quinindrine ring, triphenodithia Gin ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, naphthofuran ring, naphthothiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, anthrathiophene ring, anthradithiophene Ring, thianthrene ring, phenoxathiin ring, dibenzocarbazole ring, indolocarbazole ring, dithienobenzene ring and the like.
 一般式(1)において、Arで表される非芳香族炭化水素環としては、例えば、シクロアルカン(例えば、シクロペンタン環、シクロヘキサン環等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、シクロヘキシルアミノスルホニル基、テトラヒドロナフタレン環、9,10-ジヒドロアントラセン環、ビフェニレン環等が挙げられる。 In the general formula (1), examples of the non-aromatic hydrocarbon ring represented by Ar include cycloalkane (eg, cyclopentane ring, cyclohexane ring, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group). Etc.), a cycloalkylthio group (for example, a cyclopentylthio group, a cyclohexylthio group, etc.), a cyclohexylaminosulfonyl group, a tetrahydronaphthalene ring, a 9,10-dihydroanthracene ring, a biphenylene ring and the like.
 一般式(1)において、Arで表される非芳香族複素環としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環、フェノキサジン環、フェノチアジン環、オキサントレン環、チオキサンテン環、フェノキサチイン環等が挙げられる。 In the general formula (1), examples of the non-aromatic heterocycle represented by Ar include an epoxy ring, an aziridine ring, a thiirane ring, an oxetane ring, an azetidine ring, a thietane ring, a tetrahydrofuran ring, a dioxolane ring, a pyrrolidine ring, and a pyrazolidine. Ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ε-caprolactone ring, ε-caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran Ring, 1,3-dioxane ring, 1,4-dioxane ring, trioxane ring, tetrahydrothiopyran ring, thiomorpholine ring, thiomorpholine-1,1-dioxide ring, pyranose ring, diazabicyclo [2,2,2]- Octane ring Examples include enoxazine ring, phenothiazine ring, oxanthrene ring, thioxanthene ring, phenoxathiin ring and the like.
 一般式(1)において、Arで表されるこれらの環は、置換基を有していてもよく、更に当該置換基同士が互いに結合して環を形成してもよい。 In the general formula (1), these rings represented by Ar may have a substituent, and the substituents may be bonded to each other to form a ring.
 一般式(1)において、Arは、好ましくは芳香族炭化水素環又は芳香族複素環であり、より好ましくは芳香族炭化水素環であり、更に好ましくはベンゼン環である。 In the general formula (1), Ar is preferably an aromatic hydrocarbon ring or an aromatic heterocyclic ring, more preferably an aromatic hydrocarbon ring, and still more preferably a benzene ring.
 一般式(1)において、R1m及びR2mは、それぞれ独立に、炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。 In general formula (1), R1m and R2m are each independently an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or a non-aromatic heterocyclic ring. Represents a group, and may further have a substituent.
 一般式(1)において、R1m及びR2mで表されるアルキル基としては、例えば、エチル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、2-メチルヘキシル基、ペンチル基、アダマンチル基、n-デシル基、n-ドデシル基等が挙げられる。 In the general formula (1), examples of the alkyl group represented by R1m and R2m include an ethyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-hexyl group, a 2-methylhexyl group, and a pentyl group. Adamantyl group, n-decyl group, n-dodecyl group and the like.
 一般式(1)において、R1m及びR2mで表される芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基としては、上述の一般式(1)においてArで表される芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環又は非芳香族複素環から導出される1価の基が挙げられる。 In the general formula (1), the aromatic hydrocarbon ring group, aromatic heterocyclic group, non-aromatic hydrocarbon ring group or non-aromatic heterocyclic group represented by R1m and R2m is the above-described general formula (1 ), A monovalent group derived from an aromatic hydrocarbon ring, an aromatic heterocyclic ring, a non-aromatic hydrocarbon ring or a non-aromatic heterocyclic ring represented by Ar.
 一般式(1)において、R1m及びR2mで表される炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基が更に有していても良い置換基としては、例えば、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基等が挙げられる。 In the general formula (1), an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group represented by R1m and R2m Further, examples of the substituent that may be included include a halogen atom, a cyano group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, a silyl group, an arylalkyl group, an aryl group, a heteroaryl group, a non-aryl group, An aromatic hydrocarbon ring group or a non-aromatic heterocyclic group is exemplified.
 一般式(1)においては、R1m及びR2mが共に炭素原子数2以上のアルキル基又はシクロアルキル基であることが好ましく、また、R1m及びR2mのいずれか一方が炭素原子数3以上の分岐アルキル基であることも好ましい。また、R1m及びR2mが共に炭素原子数3以上の分岐アルキル基であることが更に好ましい。 In the general formula (1), it is preferable that R1m and R2m are both an alkyl group or a cycloalkyl group having 2 or more carbon atoms, and one of R1m and R2m is a branched alkyl group having 3 or more carbon atoms. It is also preferable. More preferably, both R1m and R2m are branched alkyl groups having 3 or more carbon atoms.
 一般式(1)において、R1n及びR2nは、上述の一般式(1)におけるR1m及びR2mと同義である。 In the general formula (1), R1n and R2n have the same meanings as R1m and R2m in the general formula (1).
 一般式(1)において、Raは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基、非芳香族複素環基又はArとともに環を形成する連結基を表す。Rb及びRcは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表す。Ra、Rb及びRcは、更に置換基を有していても良い。なお、ここでいう置換基は、本発明に係る化合物の機能を阻害しない範囲で有してもよいものをいう。以下においても同様である。 In the general formula (1), each Ra is independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group , A non-aromatic hydrocarbon ring group, a non-aromatic heterocyclic group or a linking group that forms a ring with Ar. Rb and Rc are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic Represents a hydrocarbon ring group or a non-aromatic heterocyclic group. Ra, Rb and Rc may further have a substituent. In addition, a substituent here means what may have in the range which does not inhibit the function of the compound based on this invention. The same applies to the following.
 一般式(1)において、Ra、Rb及びRcで表されるアリール基及びヘテロアリール基としては、上述の一般式(1)においてArで表される芳香族炭化水素環及び芳香族複素環から導出される1価の基が挙げられる。 In the general formula (1), the aryl group and heteroaryl group represented by Ra, Rb and Rc are derived from the aromatic hydrocarbon ring and aromatic heterocycle represented by Ar in the above general formula (1). And a monovalent group.
 一般式(1)において、Ra、Rb及びRcで表される非芳香族炭化水素環基及び非芳香族複素環基としては、上述の一般式(1)においてArで表される非芳香族炭化水素環及び非芳香族複素環から導出される1価の基が挙げられる。 In the general formula (1), as the non-aromatic hydrocarbon ring group and non-aromatic heterocyclic group represented by Ra, Rb and Rc, the non-aromatic carbon represented by Ar in the above-mentioned general formula (1) And monovalent groups derived from a hydrogen ring and a non-aromatic heterocyclic ring.
 一般式(1)において、Raは、好ましくは、アルキル基、水素原子、ハロゲン原子、シアノ基又はアリール基又はArとともに環を形成する連結基を表し、Raが連結基を表す場合は、好ましくは、Raは、O、S、SiRz1Rz2、NRz1又はCRz1Rz2を表す。Rb及びRcは、好ましくは、アルキル基、水素原子、ハロゲン原子、シアノ基又はアリール基を表し、特に好ましくは、メチル基、水素原子、フッ素原子、シアノ基又はフェニル基を表す。Rz1及びRz2は、アルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表す。 In the general formula (1), Ra preferably represents a linking group that forms a ring together with an alkyl group, a hydrogen atom, a halogen atom, a cyano group, an aryl group, or Ar, and when Ra represents a linking group, , Ra represents O, S, SiRz1Rz2, NRz1 or CRz1Rz2. Rb and Rc preferably represent an alkyl group, a hydrogen atom, a halogen atom, a cyano group or an aryl group, and particularly preferably represent a methyl group, a hydrogen atom, a fluorine atom, a cyano group or a phenyl group. Rz1 and Rz2 represent an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or a non-aromatic heterocyclic group.
 一般式(1)において、na及びncは1又は2を表し、nbは1~4の整数を表す。 In the general formula (1), na and nc represent 1 or 2, and nb represents an integer of 1 to 4.
 一般式(1)において、mは1又は2を表し、nは1又は2を表し、m+nは3である。本発明に係るリン光ドーパントとして、更に長寿命を達成できることから、一般式(1)において、mが1を表し、nが2を表すリン光ドーパントを用いることが好ましい。 In the general formula (1), m represents 1 or 2, n represents 1 or 2, and m + n is 3. Since a longer lifetime can be achieved as the phosphorescent dopant according to the present invention, it is preferable to use a phosphorescent dopant in which m represents 1 and n represents 2 in the general formula (1).
 なお、一般式(1)において、Irに配位している三つの配位子の構造が全て同じであることはない。 In the general formula (1), the structures of the three ligands coordinated to Ir are not all the same.
 (2)一般式(2)で表されるリン光ドーパント
 上述の一般式(1)で表されるリン光ドーパントは、下記一般式(2)で表されることが好ましい。
(2) The phosphorescent dopant represented by the general formula (2) The phosphorescent dopant represented by the general formula (1) is preferably represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(2)において、Ar、R1m、R2m、R1n、R2n、Ra、Rc、na、nc、m及びnは、一般式(1)におけるAr、R1m、R2m、R1n、R2n、Ra、Rc、na、nc、m及びnと同義である。 In the general formula (2), Ar, R1m, R2m, R1n, R2n, Ra, Rc, na, nc, m, and n are Ar, R1m, R2m, R1n, R2n, Ra, Rc, It is synonymous with na, nc, m and n.
 なお、一般式(2)において、Irに配位している三つの配位子の構造が全て同じであることはない。 In the general formula (2), the structures of the three ligands coordinated to Ir are not all the same.
 また、本発明に係る一般式(1)、(2)で各々表されるリン光ドーパントは、国際公開第2006/121811号等に記載の公知の方法を参照することにより合成可能である。 The phosphorescent dopants represented by the general formulas (1) and (2) according to the present invention can be synthesized by referring to known methods described in International Publication No. 2006/121811, etc.
 (3)一般式(3)で表されるリン光ドーパント
 上述の一般式(1)又は(2)で表されるリン光ドーパントは、下記一般式(3)で表されることが好ましい。
(3) The phosphorescent dopant represented by the general formula (3) The phosphorescent dopant represented by the above general formula (1) or (2) is preferably represented by the following general formula (3).
 一般式(3)において、R1m、R2m、R1n、R2n、Rc、na、nc、m及びnは、一般式(1)におけるR1m、R2m、R1n、R2n、Rc、na、nc、m及びnと同義である。一般式(3)において、Raは、一般式(1)におけるRcと同義である。 In the general formula (3), R1m, R2m, R1n, R2n, Rc, na, nc, m, and n are R1m, R2m, R1n, R2n, Rc, na, nc, m, and n in the general formula (1). It is synonymous. In General formula (3), Ra is synonymous with Rc in General formula (1).
 一般式(3)において、Raは、一般式(1)におけるRb及びRcと同義である。 In the general formula (3), Ra 3 has the same meaning as Rb and Rc in the general formula (1).
 一般式(3)において、nR3は、1~5の整数を表す。 In the general formula (3), nR3 represents an integer of 1 to 5.
 なお、一般式(3)において、Irに配位している三つの配位子の構造が全て同じであることはない。 In the general formula (3), the structures of the three ligands coordinated to Ir are not all the same.
 (4)一般式(4)で表されるリン光ドーパント
 上述の一般式(1)で表されるリン光ドーパントは、下記一般式(4)で表されることが好ましい。
(4) The phosphorescent dopant represented by the general formula (4) The phosphorescent dopant represented by the above general formula (1) is preferably represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(4)において、R1m、R2m、R1n、R2n、Ra、Rc、na、nc、m及びnは、一般式(3)におけるR1m、R2m、R1n、R2n、Ra、Rc、na、nc、m及びnと同義である。 In the general formula (4), R1m, R2m, R1n, R2n, Ra, Rc, na, nc, m and n are R1m, R2m, R1n, R2n, Ra, Rc, na, nc, general formula (3). It is synonymous with m and n.
 一般式(4)において、Raは、一般式(1)におけるRb及びRcと同義である。 In the general formula (4), Ra 3 has the same meaning as Rb and Rc in the general formula (1).
 一般式(4)において、nR3は、1~4の整数を表す。 In the general formula (4), nR3 represents an integer of 1 to 4.
 一般式(4)において、Xは、O、S、SiRz1Rz2、NRz1、CRz1Rz2を表し、Rz1及びRz2はアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表す。 In the general formula (4), X represents O, S, SiRz1Rz2, NRz1, CRz1Rz2, and Rz1 and Rz2 are an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or Represents a non-aromatic heterocyclic group.
 Rz1及びRz2で表される芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基としては、上述の一般式(1)においてArで表される芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環又は非芳香族炭化水素環から導出される1価の基が挙げられる。 The aromatic hydrocarbon ring group, aromatic heterocyclic group, non-aromatic hydrocarbon ring group or non-aromatic heterocyclic group represented by Rz1 and Rz2 is represented by Ar in the above general formula (1). And monovalent groups derived from an aromatic hydrocarbon ring, an aromatic heterocycle, a non-aromatic hydrocarbon ring, or a non-aromatic hydrocarbon ring.
 (5)一般式(5)で表されるリン光ドーパント
 上述の一般式(1)で表されるリン光ドーパントは、下記一般式(5)で表されることが好ましい。
(5) The phosphorescent dopant represented by the general formula (5) The phosphorescent dopant represented by the above general formula (1) is preferably represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(5)において、R1m、R2m、R1n、R2n、Ra、Rc、na、nc、m及びnは、一般式(3)におけるR1m、R2m、R1n、R2n、Ra、Rc、na、nc、m及びnと同義である。 In the general formula (5), R1m, R2m, R1n, R2n, Ra, Rc, na, nc, m, and n are R1m, R2m, R1n, R2n, Ra, Rc, na, nc, in the general formula (3). It is synonymous with m and n.
 一般式(5)において、Raは、一般式(1)におけるRb及びRcと同義である。 In the general formula (5), Ra 3 have the same meanings as Rb and Rc in formula (1).
 一般式(5)において、nR3及びXは、一般式(4)におけるnR3及びXと同義である。 In general formula (5), nR3 and X are synonymous with nR3 and X in general formula (4).
 一般式(1)~(5)において、特にmが1であり、nが2であるリン光ドーパントが、長い寿命を得られることから好ましい。 In general formulas (1) to (5), a phosphorescent dopant in which m is 1 and n is 2 is particularly preferable because a long lifetime can be obtained.
 (6)具体例
 以下に、一般式(1)~(5)で表されるリン光ドーパントの具体例を挙げるが、本発明はこれらに限定されるものではない。
(6) Specific Examples Specific examples of phosphorescent dopants represented by the general formulas (1) to (5) are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 (7)合成例
 以下に、一般式(1)~(5)で表される化合物の合成例を説明するが、本発明はこれに限定されるものではない。上記した具体例のうちDP-1の合成方法を例にとって以下に説明する。
(7) Synthesis Example Hereinafter, synthesis examples of the compounds represented by the general formulas (1) to (5) will be described, but the present invention is not limited thereto. Of the specific examples described above, the DP-1 synthesis method will be described below as an example.
 DP-1は、以下のスキームに従って合成できる。 DP-1 can be synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 (工程1)
 3頭フラスコに、中間体Aを5g、塩化イリジウムを1.9g、エトキシエタノールを100ml、水を30ml入れ、窒素雰囲気下にて100℃で4時間加熱撹拌した。
(Process 1)
A three-headed flask was charged with 5 g of intermediate A, 1.9 g of iridium chloride, 100 ml of ethoxyethanol, and 30 ml of water, and heated and stirred at 100 ° C. for 4 hours in a nitrogen atmosphere.
 析出した結晶を濾取し、濾取した結晶をメタノール洗浄して、中間体Bを4.5g得た。 The precipitated crystals were collected by filtration, and the collected crystals were washed with methanol to obtain 4.5 g of Intermediate B.
 (工程2)
 3頭フラスコに、工程1で得られた中間体Bを4.0g、アセチルアセトンを2.5g、炭酸カリウムを7g、エトキシエタノールを100ml入れ、窒素雰囲気下にて80℃で5時間加熱撹拌した。
(Process 2)
In a three-headed flask, 4.0 g of the intermediate B obtained in Step 1, 2.5 g of acetylacetone, 7 g of potassium carbonate, and 100 ml of ethoxyethanol were placed and heated and stirred at 80 ° C. for 5 hours under a nitrogen atmosphere.
 析出した結晶を濾取し、濾取した結晶をメタノール洗浄した後、水洗し、中間体Cを2.8g得た。 The precipitated crystals were collected by filtration, and the collected crystals were washed with methanol and then washed with water to obtain 2.8 g of Intermediate C.
 (工程3)
 3頭フラスコに、工程2で得られた中間体Cを2.8g、中間体Dを1.6g、エチレングリコールを50ml入れ、窒素雰囲気下にて150℃で7時間加熱撹拌した。
(Process 3)
In a three-headed flask, 2.8 g of intermediate C obtained in step 2, 1.6 g of intermediate D and 50 ml of ethylene glycol were placed, and the mixture was heated and stirred at 150 ° C. for 7 hours in a nitrogen atmosphere.
 析出した結晶を濾取し、濾取した結晶をメタノール洗浄した後、シリカゲルクロマトグラフィーで分離精製しDP-1を0.7g得た。 The precipitated crystals were collected by filtration, and the collected crystals were washed with methanol and separated and purified by silica gel chromatography to obtain 0.7 g of DP-1.
 化合物例DP-1の構造は、マススペクトル及びH-NMRで確認した。 The structure of Compound Example DP-1 was confirmed by mass spectrum and 1 H-NMR.
 MASS spectrum(ESI):m/z=1179[M
 H-NMR(CDCl,400MHz)δ:7.71(2H,d,J=28.3Hz),7.42(1H,t,J=28.3Hz),7.33-7.57(6H,m),7.34(4H,t,J=33.2Hz),6.96(2H,S),6.81-6.86(6H,m),6.69(2H,d,J=33.2Hz),6.56-6.60(2H,m),6.44(1H,t,J=23.4Hz),6.38(2H,d,J=17.6Hz),6.32(1H,d,J=23.4Hz),6.16(2H,d,J=44.9Hz),2.65-2.80(3H,m,CH of iso-Pr),2.29-2.41(3H,m,CH of iso-Pr),1.26(3H,d,J=26.3Hz,CH of iso-Pr),1.21(6H,d,J=20.5Hz,CHof iso-Pr),0.92-1.08(m,27H,CH of iso-Pr)
 (8)従来公知のドーパントとの併用
 また、本発明に係るリン光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。
MASS spectrum (ESI): m / z = 1179 [M + ]
1 H-NMR (CD 2 Cl 2, 400MHz) δ: 7.71 (2H, d, J = 28.3Hz), 7.42 (1H, t, J = 28.3Hz), 7.33-7. 57 (6H, m), 7.34 (4H, t, J = 33.2 Hz), 6.96 (2H, S), 6.81-6.86 (6H, m), 6.69 (2H, d, J = 33.2 Hz), 6.56-6.60 (2H, m), 6.44 (1H, t, J = 23.4 Hz), 6.38 (2H, d, J = 17.6 Hz) ), 6.32 (1H, d, J = 23.4 Hz), 6.16 (2H, d, J = 44.9 Hz), 2.65-2.80 (3H, m, CH of iso-Pr) , 2.29-2.41 (3H, m, CH of iso-Pr), 1.26 (3H, d, J = 26.3Hz, CH 3 of iso-Pr), 1 21 (6H, d, J = 20.5Hz, CH 3 of iso-Pr), 0.92-1.08 (m, 27H, CH 3 of iso-Pr)
(8) Combined use with conventionally known dopants Further, the phosphorescent dopant according to the present invention may be used in combination with a plurality of types of compounds, a combination of phosphorescent dopants having different structures, or a phosphorescent dopant and fluorescence. A combination of dopants may be used.
 ここで、発光ドーパントとして、本発明に係る一般式(1)で表されるリン光ドーパントと併用して用いてもよい従来公知の発光ドーパントとしては、以下の文献に記載の化合物が挙げられる。 Here, as a luminescent dopant, the compound as described in the following literature is mentioned as a conventionally well-known luminescent dopant which may be used together with the phosphorescence dopant represented by General formula (1) which concerns on this invention.
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chern.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許公開第2006/835469号、米国特許公開第2006/0202194号、米国特許公開第2007/0087321号、米国特許公開第2005/0244673号、Inorg.Chern.40,1704(2001)、Chern.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chern.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chern.Lett.34,592(2005)、Chern.Commun.2906(2005)、Inorg.Chern.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許公開第2002/0034656号、米国特許第7332232号、米国特許公開第2009/0108737号、米国特許公開第2009/0039776号、米国特許第6921915号、米国特許第6687266号、米国特許公開第2007/0190359号、米国特許公開第2006/0008670号、米国特許公開第2009/0165846号、米国特許公開第2008/0015355号、米国特許第7250226号、米国特許第7396598号、米国特許公開第2006/0263635号、米国特許公開第2003/0138657号、米国特許公開第2003/0152802号、米国特許第7090928号、Angew.Chern.lnt.Ed.47,1(2008)、Chern.Mater.18,5119(2006)、Inorg.Chern.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第200/5123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許公開第2006/0251923号、米国特許公開第2005/0260441号、米国特許第7393599号、米国特許第7534505号、米国特許第7445855号、米国特許公開第2007/0190359号、米国特許公開第2008/0297033号、米国特許第7338722号、米国特許公開第2002/0134984号、米国特許第7279704号、米国特許公開第2006/098120号、米国特許公開第2006/103874号、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、特開2012-069737号、特願2011-181303号、特開2009-114086号、特開2003-81988号、特開2002-302671号、特開2002-363552号等。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chern. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Publication No. 2006/835469, US Patent Publication No. 2006/020202194, United States of America. Patent Publication No. 2007/0087321, US Patent Publication No. 2005/0244673, Inorg. Chern. 40, 1704 (2001), Chern. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chern. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chern. Lett. 34, 592 (2005), Chern. Commun. 2906 (2005), Inorg. Chern. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Publication No. 2002/0034656, US Patent No. 7332232, US Patent Publication No. 2009/0108737, US Patent Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Publication No. 2007/0190359, US Patent Publication No. 2006/0008670, US Patent Publication No. 2009 / No. 065846, U.S. Patent Publication No. 2008/0015355, U.S. Pat. No. 7,250,226, U.S. Pat. No. 7,396,598, U.S. Pat. Publication No. 2006/0263635, U.S. Patent Publication No. 2003/0138657, U.S. Patent Publication. No. 2003/0152802, US Patent No. 7090928, Angew. Chern. lnt. Ed. 47, 1 (2008), Chern. Mater. 18, 5119 (2006), Inorg. Chern. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 200/5123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Publication No. 2006/0251923, US Publication No. 2005/0260441, US Pat. No. 7,393,599, US Pat. No. 7,534,505. U.S. Patent No. 7,445,855, U.S. Patent Publication No. 2007/0190359, U.S. Patent Publication No. 2008/0297033, U.S. Patent No. 7,338,722, U.S. Patent Publication No. 2002/0134984, U.S. Patent No. 7,279,704, National Patent Publication No. 2006/098120, US Patent Publication No. 2006/103874, International Publication No. 2005/076380, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431; International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication No. 2009/113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, WO 2011/073149, JP 2012-069737, JP 2011-181303, JP 2009-1114086, JP 2003-81988, JP 2002-302671, JP Open 2 Such as No. 02-363552.
 (ホスト化合物(発光ホスト、発光ホスト化合物ともいう。)
 本発明においてホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
(Host compound (also referred to as light-emitting host or light-emitting host compound)
In the present invention, among the compounds contained in the light emitting layer, the host compound has a mass ratio of 20% or more in the layer, and the phosphorescence quantum yield of phosphorescence emission is 0 at room temperature (25 ° C.). Defined as less than 1 compound. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
 本発明に用いることができる発光ホストとしては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、又は、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。 The light-emitting host that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL devices can be used. Typically, a carbazole derivative, a triarylamine derivative, an aromatic derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligoarylene compound or the like having a basic skeleton, or a carboline derivative or a diazacarbazole derivative (here And the diazacarbazole derivative represents one in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom.
 本発明に用いることができる公知の発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。 As the known light-emitting host that can be used in the present invention, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being long-wavelength, and has a high Tg (glass transition temperature) is preferable. .
 また、本発明においては、従来公知の発光ホストを単独で用いてもよく、又は複数種併用して用いてもよい。発光ホストを複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、前記リン光ドーパントとして用いられる本発明の金属錯体及び/又は従来公知の化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 In the present invention, a conventionally known light emitting host may be used alone, or a plurality of types may be used in combination. By using a plurality of types of light-emitting hosts, the movement of charges can be adjusted, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of the metal complex of this invention used as the said phosphorescence dopant, and / or a conventionally well-known compound, and, thereby, arbitrary luminescent colors can be obtained.
 また、本発明に用いられる発光ホストとしては、低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性発光ホスト)でもよく、このような化合物を1種又は複数種用いても良い。公知の発光ホストの具体例としては、以下の文献に記載の化合物が挙げられる。 The light emitting host used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emitting host). Of course, one or more of such compounds may be used. Specific examples of the known light-emitting host include compounds described in the following documents.
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許公開第2003/0175553号、米国特許公開第2006/0280965号、米国特許公開第2005/0112407号、米国特許公開第2009/0017330号、米国特許公開第2009/0030202号、米国特許公開第2005/0238919号、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、特開2007-254297号、EP2034538等である。 JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003-3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002-299060, 2002 -302516, 2002-305083, 2002-305084, 2002-308837, US Patent Publication No. 2003/0175553, US Patent Publication No. 2006/0280965, US Patent Publication No. 2005 / 0112407, US Patent Publication No. 2009/0017330, US Patent Publication No. 2009/0030202, US Patent Publication No. 2005/0238919, International Publication No. 2001/039234, International Publication No. 2009/021126. International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Publication No. 2007/063796, International Publication No. 2007/063754, International Publication No. 2004/107822, International Publication No. JP 2005/030900 A, JP 2007-254297 A, EP 2034538, and the like.
 本発明の有機EL素子の発光層の発光ホストとして好ましいものは、下記一般式(B)又は一般式(E)で表される化合物である。 Preferred as the light emitting host of the light emitting layer of the organic EL device of the present invention is a compound represented by the following general formula (B) or general formula (E).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 一般式(B)及び(E)中、Xaは、O又はSを表し、Xb、Xc、Xd及びXeは、各々水素原子、置換基又は下記一般式(C)で表される基を表し、Xb、Xc、Xd及びXeのうち少なくとも一つは、下記一般式(C)で表される基を表し、下記一般式(C)で表される基のうち少なくとも一つは、Arが置換基を有していてもよいカルバゾリル基を表す。 In the general formulas (B) and (E), Xa represents O or S, Xb, Xc, Xd and Xe each represents a hydrogen atom, a substituent or a group represented by the following general formula (C), At least one of Xb, Xc, Xd and Xe represents a group represented by the following general formula (C), and at least one of the groups represented by the following general formula (C) is substituted with Ar. A carbazolyl group which may have
  一般式(C)
  Ar-(L-*
 一般式(C)中、Lは、芳香族炭化水素環又は芳香族複素環から導出される2価の連結基を表す。nは、0~3の整数を表し、nが2以上の場合、複数のLは同じでも異なっていてもよい。*は、一般式(B)又は(E)との連結部位を表す。Arは、下記一般式(D)で表される基を表す。
General formula (C)
Ar- (L 4 ) n- *
In General Formula (C), L 4 represents a divalent linking group derived from an aromatic hydrocarbon ring or an aromatic heterocyclic ring. n represents an integer of 0 to 3, and when n is 2 or more, the plurality of L 4 may be the same or different. * Represents a linking site with the general formula (B) or (E). Ar represents a group represented by the following general formula (D).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 一般式(D)中、XfはN(R″)、O又はSを表し、E~EはC(R″)又はNを表し、R″及びR″は水素原子、置換基又は一般式(C)におけるLとの連結部位を表す。*は一般式(C)におけるLとの連結部位を表す。 In the general formula (D), Xf represents N (R ″), O or S, E 1 to E 8 represent C (R ″ 1 ) or N, R ″ and R ″ 1 are hydrogen atoms, substituents or it represents a linking site with L 4 in formula (C). * Represents a linking site with L 4 in the general formula (C).
 上記一般式(B)で表される化合物においては、好ましくは、Xb、Xc、Xd及びXeのうち少なくとも二つが一般式(C)で表され、より好ましくはXcが一般式(C)で表され且つ一般式(C)のArが置換基を有していてもよいカルバゾリル基を表す。 In the compound represented by the general formula (B), preferably, at least two of Xb, Xc, Xd and Xe are represented by the general formula (C), and more preferably Xc is represented by the general formula (C). And Ar in the general formula (C) represents a carbazolyl group which may have a substituent.
 また、本発明の有機EL素子の発光層の発光ホストとして、下記一般式(B′)で表される化合物が、特に好ましく用いられる。 In addition, a compound represented by the following general formula (B ′) is particularly preferably used as a light emitting host of the light emitting layer of the organic EL device of the present invention.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 一般式(B′)中、XaはO又はSを表し、Xb及びXcは、各々置換基又は上記した一般式(C)で表される基を表す。 In general formula (B ′), Xa represents O or S, and Xb and Xc each represents a substituent or a group represented by general formula (C).
 Xb及びXcのうち少なくとも一つは上記した一般式(C)で表される基を表し、該一般式(C)で表される基のうち少なくとも一つはArが置換基を有していてもよいカルバゾリル基を表す。 At least one of Xb and Xc represents the group represented by the general formula (C), and at least one of the groups represented by the general formula (C) has a substituent. Represents a good carbazolyl group.
 上記一般式(B′)で表される化合物においては、好ましくは、一般式(C)のArが、N位で一般式(C)におけるLと連結したカルバゾリル基を表す。 In the compound represented by the general formula (B ′), preferably, Ar in the general formula (C) represents a carbazolyl group linked to L 4 in the general formula (C) at the N position.
 本発明の有機EL素子の発光層のホスト化合物(発光ホストともいう。)として好ましく用いられる一般式(B)又は一般式(B′)で表される化合物としては、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-74939号、特開2012-231146号、特開2007-288035等に記載の具体的化合物が挙げられる。 As a compound represented by the general formula (B) or the general formula (B ′) preferably used as a host compound (also referred to as a light emitting host) of the light emitting layer of the organic EL device of the present invention, International Publication No. 2006/114966. , International Publication No. 2009/086028, International Publication No. 2009/003898, International Publication No. 2012/023947, Japanese Unexamined Patent Publication No. 2008-74939, Japanese Unexamined Patent Publication No. 2012-231146, Japanese Unexamined Patent Publication No. 2007-288035, etc. Compounds.
 以下、本発明の有機EL素子の発光層の発光ホストとして好ましく用いられる一般式(B)又は一般式(B′)で表される化合物の具体例を挙げるが、本発明はこれらに限定されない。 Hereinafter, specific examples of the compound represented by the general formula (B) or the general formula (B ′) that are preferably used as the light-emitting host of the light-emitting layer of the organic EL device of the present invention will be given, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 《電子輸送層》
 電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層若しくは複数層を設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided with a single layer or a plurality of layers.
 電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、電子輸送層の構成材料としては従来公知の化合物の中から任意のものを選択し併用することも可能である。 The electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and as a constituent material of the electron transport layer, any one of conventionally known compounds may be selected and used in combination. Is also possible.
 電子輸送層に用いられる従来公知の材料(以下、電子輸送材料という。)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の多環芳香族炭化水素、複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、カルボリン誘導体、又は、該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体、ヘキサアザトリフェニレン誘導体等が挙げられる。 Examples of conventionally known materials used for the electron transport layer (hereinafter referred to as electron transport materials) include polycyclic aromatic hydrocarbons such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, Heterocyclic tetracarboxylic anhydride, carbodiimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxadiazole derivative, carboline derivative, or carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative Derivatives having a ring structure in which at least one is substituted with a nitrogen atom, hexaazatriphenylene derivatives, and the like can be mentioned.
 更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。 Furthermore, in the oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
 これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 It is also possible to use a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も電子輸送材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子輸送材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those in which the terminal is substituted with an alkyl group or a sulfonic acid group can also be used as the electron transport material.
 また、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 Further, inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
 電子輸送層の膜厚については特に制限はないが、通常は5nm~5000nmの範囲内程度、好ましくは5nm~200nmの範囲内である。この電子輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。 The thickness of the electron transport layer is not particularly limited, but is usually in the range of 5 nm to 5000 nm, preferably in the range of 5 nm to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントをドープして用いてもよい。 Further, an n-type dopant such as a metal compound such as a metal complex or a metal halide may be doped.
 以下、本発明の有機EL素子の電子輸送層の形成に好ましく用いられる従来公知の化合物(電子輸送材料)の具体例としては、以下の文献に記載の化合物が挙げられる。 Hereinafter, specific examples of conventionally known compounds (electron transport materials) preferably used for forming the electron transport layer of the organic EL device of the present invention include compounds described in the following documents.
 米国特許第6528187号、米国特許第7230107号、米国特許公開第2005/0025993号、米国特許公開第2004/0036077号、米国特許公開第2009/0115316号、米国特許公開第2009/0101870号、米国特許公開第2009/0179554号、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号、米国特許公開第2009/030202号、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、EP2311826号、特開2010-251675号、特開2009-209133号、特開2009-124114号、特開2008-277810号、特開2006-156445号、特開2005-340122号、特開2003-45662号、特開2003-31367号、特開2003-282270号、国際公開第2012/115034号。 US Pat. No. 6,528,187, US Pat. No. 7,230,107, US Patent Publication No. 2005/0025993, US Patent Publication No. 2004/0036077, US Patent Publication No. 2009/0115316, US Patent Publication No. 2009/01101870, US Patent Publication No. 2009/0179554, International Publication No. 2003/060956, International Publication No. 2008/132805, Appl. Phys. Lett. 75, 4 (1999), Appl. Phys. Lett. 79, 449 (2001), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 79,156 (2001), U.S. Patent No. 7964293, U.S. Patent Publication No. 2009/030202, International Publication No. 2004/080975, International Publication No. 2004/063159, International Publication No. 2005/085387, International Publication No. 2006. No. 067931, International Publication No. 2007/085652, International Publication No. 2008/114690, International Publication No. 2009/066942, International Publication No. 2009/066779, International Publication No. 2009/054253, International Publication No. 2011/086935. No., International Publication No. 2010/150593, International Publication No. 2010/047707, EP23111826, JP2010-251675A, JP2009-209133A, JP2009-124114A, JP2008-277810A. Japanese Unexamined Patent Publication No. 2006-156445, Japanese Unexamined Patent Publication No. 2005-340122, Japanese Unexamined Patent Publication No. 2003-45662, Japanese Unexamined Patent Publication No. 2003-31367, Japanese Unexamined Patent Publication No. 2003-282270, International Publication No. WO 2012/115034.
 《陰極》
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、アルミニウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物等が好適である。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, aluminum, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture and the like are suitable.
 陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μmの範囲内、好ましくは50~200nmの範囲で選ばれる。 The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected within the range of 10 nm to 5 μm, preferably within the range of 50 to 200 nm.
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光輝度が向上し好都合である。 In addition, in order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is improved, which is convenient.
 また、陰極に上記金属を1~20nmの範囲内の膜厚で作製した後に、後述する陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In addition, after forming the above metal on the cathode with a film thickness in the range of 1 to 20 nm, a transparent transparent or semi-transparent cathode is prepared by forming a conductive transparent material mentioned in the description of the anode described later on the cathode. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
 《注入層:電子注入層(陰極バッファー層)、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer (cathode buffer layer), hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123頁~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) ) ”, Chapter 2,“ Electrode Materials ”(pages 123 to 166), which has a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、特表2003-519432や特開2006-135145等に記載されているようなヘキサアザトリフェニレン誘導体バッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Representative phthalocyanine buffer layer, hexaazatriphenylene derivative buffer layer, oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polyaniline as described in JP-T-2003-519432 and JP-A-2006-135145 Examples thereof include a polymer buffer layer using a conductive polymer such as (emeraldine) and polythiophene, and an orthometalated complex layer typified by a tris (2-phenylpyridine) iridium complex.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウム、フッ化カリウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウム、フッ化セシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。 The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by, alkali metal compound buffer layer typified by lithium fluoride and potassium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride and cesium fluoride, typified by aluminum oxide Examples thereof include an oxide buffer layer. The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm, although it depends on the material.
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記のごとく有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
As described above, the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
 正孔阻止層とは、広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。 The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and a very small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved.
 また、前述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。 Moreover, the structure of the electron transport layer described above can be used as a hole blocking layer according to the present invention, if necessary.
 本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
 正孔阻止層には、前述のホスト化合物として挙げた、カルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン環を構成する炭素原子のいずれかひとつが窒素原子で置き換わったものを示す)を含有することが好ましい。 The hole blocking layer includes a carbazole derivative, a carboline derivative, a diazacarbazole derivative (the diazacarbazole derivative is a nitrogen atom in which any one of carbon atoms constituting the carboline ring is mentioned as the host compound described above. It is preferable to contain (represented by).
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。 In the present invention, when a plurality of light emitting layers having different light emission colors are provided, the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers. In this case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode. Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
 イオン化ポテンシャルは化合物のHOMO(最高占有軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。 The ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied orbital) level of the compound to the vacuum level, and can be determined by, for example, the following method.
 (1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6-31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)として求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。 (1) Using Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), a molecular orbital calculation software manufactured by Gaussian, USA As a value (eV unit converted value) calculated by performing structure optimization using B3LYP / 6-31G *. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.
 (2)イオン化ポテンシャルは、光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC-1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。 (2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
 一方、電子阻止層とは、広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons. The probability of recombination of electrons and holes can be improved by blocking.
 また、後述する正孔輸送層の構成を、必要に応じて電子阻止層として用いることができる。正孔阻止層、電子輸送層の膜厚としては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。 Moreover, the structure of the hole transport layer described later can be used as an electron blocking layer as necessary. The film thickness of the hole blocking layer and the electron transport layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 《正孔輸送層》
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 Further, azatriphenylene derivatives as described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as the hole transport material.
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベン;N-フェニルカルバゾール、更には米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(α-NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbene; N-phenylcarbazole, and also two fused aromatic rings described in US Pat. No. 5,061,569 In the molecule, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD), JP-A-4-308688 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA ) And the like.
 更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Also, inorganic compounds such as p-type-Si and p-type-SiC can be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。 The hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can do.
 正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μmの範囲内程度、好ましくは5nm~200nmの範囲内である。この正孔輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。 The thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 μm, preferably in the range of 5 nm to 200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
 また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not required (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm~1000nmの範囲内、好ましくは10nm~200nmの範囲で選ばれる。 Alternatively, when a material that can be applied such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although depending on the material, the film thickness is usually selected within the range of 10 nm to 1000 nm, preferably within the range of 10 nm to 200 nm.
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板の材料としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the material of the transparent support substrate that is preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムの樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin for the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propio. Cellulose esters such as nate (CAP), cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone , Polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfur Cycloolefins such as amines, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or appel (trade name, manufactured by Mitsui Chemicals) Based resins and the like.
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m・24h・atm)以下、水蒸気透過度が、10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。 The surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. oxygen relative humidity (90 ± 2)% RH) is preferably a barrier film of 0.01g / (m 2 · 24h) or less, and still more, as measured by the method based on JIS K 7126-1987 A high barrier film having a permeability of 10 −3 ml / (m 2 · 24 h · atm) or less and a water vapor permeability of 10 −5 g / (m 2 · 24 h) or less is preferable.
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film may be any material that has a function of suppressing the entry of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, and the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
 本発明の有機EL素子の発光の室温における発光効率(外部取り出し量子効率ともいう。)は、1%以上であることが好ましく、5%以上であるとより好ましい。 The luminous efficiency of the organic EL device of the present invention at room temperature (also referred to as external extraction quantum efficiency) is preferably 1% or more, and more preferably 5% or more.
 ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。 Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。 Also, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.
 《有機EL素子の作製方法》
 有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層)/陰極からなる素子の作製方法について説明する。
<< Method for producing organic EL element >>
As an example of a method for producing an organic EL device, a device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode Will be described.
 まず、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲内の膜厚になるように形成させ、陽極を作製する。 First, a thin film made of a desired electrode material, for example, an anode material, is formed on a suitable substrate so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm, thereby producing an anode.
 次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極バッファー層等の有機化合物を含有する薄膜を形成させる。 Next, a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, or a cathode buffer layer, which is an element material, is formed thereon.
 薄膜の形成方法としては、例えば、真空蒸着法、湿式法(ウェットプロセスともいう。)等により成膜して形成することができる。 As a method for forming a thin film, for example, a thin film can be formed by a vacuum deposition method, a wet method (also referred to as a wet process), or the like.
 湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法等があるが、精密な薄膜が形成可能で、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。また、層ごとに異なる成膜法を適用してもよい。 Wet methods include spin coating, casting, die coating, blade coating, roll coating, ink jet, printing, spray coating, curtain coating, and LB, but precise thin films can be formed. In view of high productivity, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable. Different film formation methods may be applied for each layer.
 本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。 Examples of the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 Further, as a dispersion method, it can be dispersed by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion.
 これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように形成させ、陰極を設けることにより所望の有機EL素子が得られる。 After these layers are formed, a thin film made of a cathode material is formed thereon so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a desired organic EL device can be obtained by providing a cathode. .
 また、順序を逆にして、陰極、陰極バッファー層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。 Also, the cathode, cathode buffer layer, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be formed in the reverse order.
 本発明の有機EL素子を真空蒸着法で作製する場合、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。 When the organic EL device of the present invention is produced by a vacuum deposition method, it is preferable to produce from the hole injection layer to the cathode consistently by a single vacuum drawing, but even if it is taken out halfway and subjected to different film formation methods. I do not care. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
 《封止》
 本発明に用いられる封止手段としては、例えば、図6に示すようなガラスカバー等の封止部材と、封止用のガラス基板又は有機EL素子の支持基板とを、接着剤で接着する方法を挙げることができる。
<Sealing>
As a sealing means used in the present invention, for example, a sealing member such as a glass cover as shown in FIG. 6 and a glass substrate for sealing or a support substrate for an organic EL element are bonded with an adhesive. Can be mentioned.
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。 The sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
 また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等から形成されたものを挙げることができる。 Also, examples of the polymer plate include those formed from polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like.
 金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。 Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。 In the present invention, a polymer film and a metal film can be preferably used because the element can be thinned.
 更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のものであることが好ましい。 Furthermore, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured in (1) is 1 × 10 −3 g / (m 2 · 24 h) or less.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。 In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. . In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
 更に、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 Furthermore, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止部材の具体例として挙げたガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the glass plate, polymer plate / film, metal plate / film, etc., mentioned as specific examples of the sealing member can be used, but the polymer film is light and thin. Is preferably used.
 《光の取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light undergoes total reflection between the light and the light, and the light is guided through the transparent electrode or the light emitting layer.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。 As a technique for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), condensing on the substrate. A method of improving the efficiency by imparting a property (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of the element (Japanese Patent Laid-Open No. 1-220394), and between the substrate and the light emitter A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index (Japanese Patent Laid-Open No. 62-172691), and introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter. A method (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283951), and the like. is there.
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。 In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。 In the present invention, by combining these means, it is possible to obtain an element having higher brightness or durability.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。 When a medium with a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. .
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7の範囲内程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。 Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
 また、低屈折率媒質の厚さは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。 Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
 全反射を起こす界面若しくはいずれかの媒質中に回折格子を導入する方法は、光の取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が一次の回折や二次の回折といったいわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction. Light that cannot be emitted due to total internal reflection, etc. is diffracted by introducing a diffraction grating in any layer or medium (in the transparent substrate or transparent electrode), and the light is emitted outside. I want to take it out.
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
 屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 By making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases.
 回折格子を導入する位置としては前述のとおり、いずれかの層間若しくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。 As described above, the position where the diffraction grating is introduced may be in any interlayer or medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍の範囲内程度が好ましい。 At this time, the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。 The arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
 《集光シート》
 本発明の有機EL素子は基板の光の取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいはいわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
<Condenser sheet>
The organic EL device of the present invention can be processed on the light extraction side of the substrate, for example, by providing a microlens array-like structure, or combined with a so-called condensing sheet, for example, in a specific direction, for example, the device light emitting surface. On the other hand, the brightness | luminance in a specific direction can be raised by condensing in a front direction.
 マイクロレンズアレイの例としては、基板の光の取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10μm~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると有機EL素子が厚くなり好ましくない。 As an example of the microlens array, a quadrangular pyramid having a side of 30 μm and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate. One side is preferably within a range of 10 μm to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and when too large, an organic EL element will become thick and is unpreferable.
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。 As the condensing sheet, it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
 プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。 As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。 Further, in order to control the light emission angle from the light emitting element, a light diffusion plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタオプティクス(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Optics Co., Ltd.) is applied to the CIE chromaticity coordinates.
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。 When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
 《表示装置》
 本発明の有機EL素子を用いて作製することができる表示装置について説明する。表示装置は、本発明の有機EL素子を具備したものである。表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
<Display device>
A display device that can be manufactured using the organic EL element of the present invention will be described. The display device comprises the organic EL element of the present invention. The display device may be single color or multicolor, but here, the multicolor display device will be described.
 多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。 In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a cast method, a spin coat method, an inkjet method, a printing method, or the like.
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。 In the case of patterning only the light emitting layer, the method is not limited, but is preferably a vapor deposition method, an inkjet method, a spin coating method, or a printing method.
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。 The configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
 また、有機EL素子の製造方法は、上記の有機EL素子の製造の一態様に示したとおりである。 Moreover, the manufacturing method of an organic EL element is as having shown in the one aspect | mode of manufacture of said organic EL element.
 このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40Vの範囲内程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage in the range of 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑の発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。 The multicolor display device can be used as a display device, a display, and various light sources. In a display device or display, full-color display is possible by using three types of organic EL elements that emit blue, red, and green light.
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。 Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。 Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. The present invention is not limited to these examples.
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。 Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
 図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。 FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。 The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
 制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。 The control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal. The image information is sequentially emitted to scan the image and display the image information on the display unit A.
 図2は表示部Aの模式図である。 FIG. 2 is a schematic diagram of the display unit A.
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。 The display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate. The main members of the display unit A will be described below.
 図2においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。 FIG. 2 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。 The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。 A full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
 次に、画素の発光プロセスを説明する。図3は画素の模式図である。 Next, the light emission process of the pixel will be described. FIG. 3 is a schematic diagram of a pixel.
 画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。 The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
 図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスタ12のゲートに伝達される。 3, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
 画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the charged potential of the image data signal even if the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
 即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。 That is, the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out. Such a light emitting method is called an active matrix method.
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。 Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good. The potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。 In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
 図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。 FIG. 4 is a schematic view of a passive matrix display device. In FIG. 4, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。 When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。 In the passive matrix method, there is no active element in the pixel 3, and the manufacturing cost can be reduced.
 《照明装置》
 本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。
《Lighting device》
The lighting device of the present invention will be described. The illuminating device of this invention has the said organic EL element.
 本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。 The organic EL element of the present invention may be used as an organic EL element having a resonator structure. The purpose of use of the organic EL element having such a resonator structure is as follows. The light source of a machine, the light source of an optical communication processing machine, the light source of a photosensor, etc. are mentioned, However, It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
 また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。 Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 The drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
 また、本発明の有機EL素子は照明装置として、実質白色の発光を生じる有機EL素子とすることができる。有機EL素子が複数の発光材料を有し、複数の発光色を同時に発光させて混色により白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色、青色の三原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。 Also, the organic EL element of the present invention can be an organic EL element that emits substantially white light as a lighting device. An organic EL element has a plurality of light emitting materials, and a plurality of light emission colors can be emitted simultaneously to obtain white light emission by color mixing. As a combination of a plurality of emission colors, those containing the three emission maximum wavelengths of the three primary colors of red, green and blue may be used, or two emission using the complementary colors such as blue and yellow, blue green and orange, etc. It may contain a maximum wavelength.
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、リン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent light emitting materials, a phosphorescent light emitting material, and light from the light emitting material as excitation light. Any combination with a dye material that emits light may be used, but in the white organic EL device according to the present invention, it is only necessary to mix and mix a plurality of light-emitting dopants.
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。 According to this method, unlike the white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
 発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係るリン光ドーパント及び公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。 There is no restriction | limiting in particular as a luminescent material used for a light emitting layer, For example, if it is a backlight in a liquid crystal display element, the phosphorescence dopant which concerns on this invention so that it may adapt to the wavelength range corresponding to CF (color filter) characteristic, and Any one of known luminescent materials may be selected and combined to whiten.
 《照明装置の一態様》
 本発明の有機EL素子を具備した、照明装置の一態様について説明する。
<< One aspect of lighting device >>
One mode of a lighting device including the organic EL element of the present invention will be described.
 本発明の有機EL素子の非発光面をガラスカバーで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。 The non-light emitting surface of the organic EL device of the present invention is covered with a glass cover, a 300 μm thick glass substrate is used as a sealing substrate, and an epoxy photo-curing adhesive (LUX Track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS. A device can be formed.
 図5は、照明装置101の概略図を示し、本発明の有機EL素子はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。 FIG. 5 shows a schematic diagram of the lighting apparatus 101, and the organic EL element of the present invention is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is performed without bringing the organic EL element into contact with the atmosphere. (This was performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more)).
 図6は、図5に示した照明装置の断面図を示し、図6において、105は陰極、106は有機層(陽極側から、正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層))、107は透明な陽極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 6 shows a cross-sectional view of the lighting device shown in FIG. 5. In FIG. 6, 105 is a cathode, 106 is an organic layer (from the anode side, hole injection layer / hole transport layer / light emitting layer / hole blocking). Layer / electron transport layer / cathode buffer layer (electron injection layer)), 107 indicates a transparent glass substrate with an anode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 《有機EL素子1の作製》
 支持基板として100mm×100mm×1.1mmのガラス基板を用い、該ガラス基板上に、陽極としてITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けたガラス基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
<< Production of Organic EL Element 1 >>
After a 100 mm × 100 mm × 1.1 mm glass substrate was used as the support substrate, and a substrate (NA Techno Glass NA45) was formed on the glass substrate by depositing 100 nm of ITO (indium tin oxide) as the anode. The glass substrate provided with this ITO transparent electrode was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、H.C. スタルク社製、CLEVIO P VP AI 4083)を純水で70%に希釈した溶液を用い、3000rpm、30秒の条件でスピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚20nmの正孔注入層を設けた。 A solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, manufactured by HC Starck Co., Ltd., CLEVIO P VP AI 4083) with pure water on this transparent support substrate to 70%. A thin film was formed by spin coating under conditions of 3000 rpm and 30 seconds, and then dried at 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 20 nm.
 上記により正孔注入層が設けられた透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔輸送材料としてα-NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてOC-30を200mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料としてET-8を200mg入れ、別のモリブデン製抵抗加熱ボートにリン光ドーパントとして比較1を100mg入れ、真空蒸着装置に取り付けた。 The transparent support substrate provided with the hole injection layer as described above was fixed to a substrate holder of a commercially available vacuum deposition apparatus, while 200 mg of α-NPD was added as a hole transport material to a resistance heating boat made of molybdenum, and another molybdenum 200 mg of OC-30 as a host compound is put into a resistance heating boat made of 200, 200 mg of ET-8 as an electron transport material is put into another resistance heating boat made of molybdenum, and 100 mg of Comparative 1 as a phosphorescent dopant is put into another resistance heating boat made of molybdenum. And attached to a vacuum deposition apparatus.
 次いで真空槽を4×10-4Paまで減圧した後、α-NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、膜厚20nmの正孔輸送層を設けた。 Next, the pressure in the vacuum chamber was reduced to 4 × 10 −4 Pa, and the heating boat containing α-NPD was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second. A 20 nm hole transport layer was provided.
 更に、ホスト化合物としてOC-30の入った前記加熱ボートと、リン光ドーパントとして比較1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.004nm/秒で前記正孔輸送層上に共蒸着して膜厚40nmの発光層を設けた。上記蒸着速度から、ホスト化合物の含有量に対するリン光ドーパントの含有量は4体積%の体積比率の値となる。 Further, the heating boat containing OC-30 as the host compound and the heating boat containing Comparative 1 as the phosphorescent dopant were energized and heated, and the deposition rates were 0.1 nm / second and 0.004 nm / second, respectively. A 40 nm-thick luminescent layer was provided by co-evaporation on the hole transport layer. From the vapor deposition rate, the content of the phosphorescent dopant with respect to the content of the host compound is a volume ratio of 4% by volume.
 なお、ホスト化合物とリン光ドーパントを共蒸着した場合のホスト化合物に対するリン光ドーパントの体積比率の値は、前記共蒸着の条件でホスト化合物を単独で蒸着したときの蒸着速度(膜厚増加速度)に対するリン光ドーパントを単独で蒸着したときの蒸着速度(膜厚増加速度)の比の値を意味する。また、上記のホスト化合物に対するリン光ドーパントの体積比率をドープ率とも呼ぶ。 In addition, the value of the volume ratio of the phosphorescent dopant to the host compound when the host compound and the phosphorescent dopant are co-evaporated is the deposition rate (thickness increase rate) when the host compound is vapor-deposited alone under the above-mentioned co-deposition conditions. It means the value of the ratio of the deposition rate (thickness increase rate) when the phosphorescent dopant is deposited alone. Moreover, the volume ratio of the phosphorescent dopant with respect to said host compound is also called a doping rate.
 更にET-8が入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層上に蒸着して膜厚30nmの電子輸送層を設けた。 Furthermore, the heating boat containing ET-8 was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 30 nm.
 引き続き、フッ化リチウムを蒸着して膜厚0.5nmの陰極バッファー層を形成し、更にアルミニウムを蒸着して膜厚110nmの陰極を形成し、有機EL素子1を作製した。 Subsequently, lithium fluoride was vapor-deposited to form a cathode buffer layer having a thickness of 0.5 nm, and aluminum was further vapor-deposited to form a cathode having a thickness of 110 nm. Thus, an organic EL element 1 was produced.
 なお、前記正孔輸送層、前記発光層、前記電子輸送層、前記陰極バッファー層及び前記陰極の蒸着時の基板温度は室温であった。 In addition, the substrate temperature at the time of vapor deposition of the said positive hole transport layer, the said light emitting layer, the said electron carrying layer, the said cathode buffer layer, and the said cathode was room temperature.
 《有機EL素子2~117の作製》
 有機EL素子1の作製において、発光層におけるホスト化合物及びリン光ドーパントを表1、2及び3に記載の化合物に変更し、ホスト化合物に対する発光ドーパントの体積比率(体積%)(ドープ率ともいう。)が表1、2及び3に示したようになるように、蒸着速度を変えて共蒸着したほかは、同様にして有機EL素子2~117を各々作製した。
<< Preparation of organic EL elements 2 to 117 >>
In the production of the organic EL element 1, the host compound and phosphorescent dopant in the light emitting layer are changed to the compounds shown in Tables 1, 2 and 3, and the volume ratio (volume%) of the light emitting dopant to the host compound (also referred to as the doping rate). As shown in Tables 1, 2 and 3, organic EL elements 2 to 117 were produced in the same manner except that the co-evaporation was carried out at different deposition rates.
 電子輸送材料ET-8及び表1に記載のリン光ドーパントを以下に示す。 The phosphorescent dopants described in the electron transport material ET-8 and Table 1 are shown below.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 《有機EL素子1~117の評価》
 得られた有機EL素子1~117を評価するに際しては、図5及び6に示したように、作製後の各有機EL素子の非発光面をガラスカバー102で覆い、発光面を厚さ300μmの封止用ガラス基板103で覆い、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、封止用ガラス基板側からUV光を照射して硬化させて封止して、それぞれ照明装置を作製した。上記により作製した照明装置を用いて、有機EL素子1~117を下記の評価方法により評価した。評価結果を表1、2及3に示す。
<< Evaluation of organic EL elements 1-117 >>
When evaluating the obtained organic EL elements 1 to 117, as shown in FIGS. 5 and 6, the non-light-emitting surface of each organic EL element after fabrication was covered with a glass cover 102, and the light-emitting surface was 300 μm thick. Cover with a glass substrate for sealing 103, apply an epoxy photo-curing adhesive (Luxtrac LC0629B, manufactured by Toagosei Co., Ltd.) as a sealing material, and cure by irradiating with UV light from the side of the glass substrate for sealing. Sealing was performed to manufacture each lighting device. Using the lighting device produced as described above, the organic EL elements 1 to 117 were evaluated by the following evaluation methods. The evaluation results are shown in Tables 1, 2 and 3.
 《評価方法》
 (1)外部取り出し量子効率(発光効率又は効率ともいう。)
 有機EL素子を室温(約23~25℃の範囲内)、2.5mA/cmの定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m]を測定することにより、外部取り出し量子効率(η)を算出した。
"Evaluation methods"
(1) External extraction quantum efficiency (also referred to as light emission efficiency or efficiency)
The organic EL element is turned on at room temperature (within a range of about 23 to 25 ° C.) under a constant current condition of 2.5 mA / cm 2 , and the emission luminance (L) [cd / m 2 ] immediately after the start of lighting is measured. Thus, the external extraction quantum efficiency (η) was calculated.
 ここで、発光輝度の測定はCS-1000(コニカミノルタオプティクス製)を用いて行い、効率は有機EL素子1を100とする相対値で表した。 Here, the measurement of emission luminance was performed using CS-1000 (manufactured by Konica Minolta Optics), and the efficiency was expressed as a relative value where the organic EL element 1 was 100.
 (2)半減寿命
 下記に示す測定法に従って、半減寿命(単に「寿命」ともいう。)の評価を行った。
(2) Half-life In accordance with the measurement method shown below, half-life (also simply referred to as “life”) was evaluated.
 各有機EL素子を初期輝度1000cd/mを与える電流で定電流駆動して、初期輝度の1/2(500cd/m)になる時間を求め、これを半減寿命の尺度とした。 Each organic EL device driven with a constant current at a current giving an initial luminance 1000 cd / m 2, obtains the time to be 1/2 (500cd / m 2) of the initial luminance, which was used as a measure of the half-life.
 また、初期輝度3000cd/mにおける半減寿命についても同様に評価した。 Further, the half life at an initial luminance of 3000 cd / m 2 was also evaluated in the same manner.
 なお、半減寿命は、初期輝度1000cd/mでの有機EL素子1を100とする相対値で表した。 The half-life was expressed as a relative value with the organic EL element 1 having an initial luminance of 1000 cd / m 2 as 100.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表1に示したリン光ドーパント「比較1」を用いた有機EL素子1~13及びリン光ドーパント「比較2」を用いた有機EL素子14~26並びに表2示したリン光ドーパントDP-38を用いた有機EL素子40~52及びリン光ドーパントDP-1を用いた有機EL素子53~65を、初期輝度1000cd/mで点灯したときの寿命をリン光ドーパントの含有量に対してプロットした結果を図7に、初期輝度3000cd/mで点灯したときの寿命をリン光ドーパントの含有量に対してプロットした結果を図8に示す。 The organic EL devices 1 to 13 using the phosphorescent dopant “Comparative 1” shown in Table 1, the organic EL devices 14 to 26 using the phosphorescent dopant “Comparative 2”, and the phosphorescent dopant DP-38 shown in Table 2 were used. The lifetimes of the organic EL elements 40 to 52 and the organic EL elements 53 to 65 using the phosphorescent dopant DP-1 when lighted at an initial luminance of 1000 cd / m 2 were plotted against the phosphorescent dopant content. The results are shown in FIG. 7, and the results of plotting the lifetime when lighted at an initial luminance of 3000 cd / m 2 against the phosphorescent dopant content are shown in FIG. 8.
 表1~3、図7及び図8から、本発明の有機EL素子は、比較例の有機EL素子に対して、各々ドープ率が8体積%を超える領域から効率、半減寿命共に有意な改良が認められる。また、比較例の有機EL素子では、ドープ率がおよそ15体積%以上になると発光効率、半減寿命の大幅な低下がみられるのに対し、本発明の有機EL素子は、ドープ率がおよそ35体積%まで電力効率及び半減寿命の低下が少ないことが分かる。更に、比較例の有機EL素子に対し、本発明の有機EL素子では、初期輝度1000cd/mで点灯したときの半減寿命と初期輝度3000cd/mで点灯したときの半減寿命の差が少なく、高輝度で発光させても寿命が長いことが分かる。 From Tables 1 to 3 and FIGS. 7 and 8, the organic EL device of the present invention has significant improvements in both efficiency and half life from the region where the doping rate exceeds 8% by volume compared to the organic EL device of the comparative example. Is recognized. Further, in the organic EL element of the comparative example, when the doping rate is about 15% by volume or more, the light emission efficiency and the half life are significantly reduced, whereas the organic EL element of the present invention has a doping rate of about 35 volume. It can be seen that there is little decrease in power efficiency and half-life to 50%. Furthermore, compared with the organic EL element of the comparative example, in the organic EL element of the present invention, the difference between the half life when lighting at an initial luminance of 1000 cd / m 2 and the half life when lighting at an initial luminance of 3000 cd / m 2 is small. It can be seen that the lifetime is long even when light is emitted with high luminance.
 以上、本発明のリン光ドーパントの含有量を、ホスト化合物に対し8~35体積%の範囲内とした素子が、発光効率が高く、更に高輝度下での発光安定性(寿命)に優れる有機エレクトロルミネッセンス素子であることが分かる。 As described above, an element in which the content of the phosphorescent dopant of the present invention is within the range of 8 to 35% by volume with respect to the host compound is high in luminous efficiency and excellent in luminous stability (lifetime) under high luminance. It turns out that it is an electroluminescent element.
 本発明の有機EL素子は、高い発光効率を有し長寿命であるため、表示装置及び照明装置に利用可能である。 Since the organic EL element of the present invention has a high luminous efficiency and a long lifetime, it can be used for a display device and a lighting device.
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサー
101 照明装置
102 ガラスカバー
103 封止用ガラス基板
105 陰極
106 有機層
107 透明な陽極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
L 光
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line 7 Power line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor 101 Illumination device 102 Glass cover 103 Glass substrate for sealing 105 Cathode 106 Organic layer 107 Glass substrate 108 with a transparent anode Nitrogen gas 109 Water trapping agent A Display part B Control part L Light

Claims (6)

  1.  陽極と陰極の間に、発光層を含む有機層が挟持された有機エレクトロルミネッセンス素子であって、前記発光層が、ホスト化合物及び下記一般式(1)で表されるリン光ドーパントを含有し、該発光層内の該リン光ドーパントの含有量が、該ホスト化合物の含有量に対し、8~35体積%の範囲内であることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001

    〔一般式(1)中、環Am、環An、環Bm及び環Bnは5員又は6員の芳香族炭化水素環又は芳香族複素環を表す。Arは、芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環又は非芳香族複素環を表す。R1m、R2m、R1n及びR2nは、それぞれ独立に炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。Raは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基、非芳香族複素環基又はArと環を形成する連結基を表す。Rb及びRcは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表す。Ra、Rb及びRcは、更に置換基を有していても良い。na及びncは、1又は2を表し、nbは1~4の整数を表す。mは、1又は2を表す。nは、1又は2を表す。m+nは、3である。なお、Irに配位している三つの配位子の構造が全て同じであることはない。〕
    An organic electroluminescence device in which an organic layer including a light emitting layer is sandwiched between an anode and a cathode, wherein the light emitting layer contains a host compound and a phosphorescent dopant represented by the following general formula (1), An organic electroluminescence device, wherein a content of the phosphorescent dopant in the light emitting layer is in a range of 8 to 35% by volume with respect to a content of the host compound.
    Figure JPOXMLDOC01-appb-C000001

    [In General Formula (1), Ring Am, Ring An, Ring Bm and Ring Bn represent a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle. Ar represents an aromatic hydrocarbon ring, an aromatic heterocycle, a non-aromatic hydrocarbon ring or a non-aromatic heterocycle. R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, Furthermore, you may have a substituent. Each Ra is independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic hydrocarbon ring Represents a linking group that forms a ring with a group, a non-aromatic heterocyclic group or Ar. Rb and Rc are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic carbonization Represents a hydrogen ring group or a non-aromatic heterocyclic group. Ra, Rb and Rc may further have a substituent. na and nc represent 1 or 2, and nb represents an integer of 1 to 4. m represents 1 or 2. n represents 1 or 2. m + n is 3. Note that the structures of the three ligands coordinated to Ir are not all the same. ]
  2.  前記発光層内の前記リン光ドーパントの含有量が、前記ホスト化合物の含有量に対し、16~30体積%の範囲内であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein the content of the phosphorescent dopant in the light emitting layer is in the range of 16 to 30% by volume with respect to the content of the host compound.
  3.  前記一般式(1)で表されるリン光ドーパントが、下記一般式(2)で表されるリン光ドーパントであることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002

    〔一般式(2)中、Arは、芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環又は非芳香族複素環を表す。R1m、R2m、R1n及びR2nは、それぞれ独立に炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。Raは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基、非芳香族複素環基又はArと環を形成する連結基を表す。Rcは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表す。Ra及びRcは、更に置換基を有していても良い。na及びncは、1又は2を表す。mは、1又は2を表す。nは、1又は2を表す。m+nは、3である。なお、Irに配位している三つの配位子の構造が全て同じであることはない。〕
    3. The organic electroluminescence device according to claim 1, wherein the phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002

    [In General Formula (2), Ar represents an aromatic hydrocarbon ring, an aromatic heterocyclic ring, a non-aromatic hydrocarbon ring or a non-aromatic heterocyclic ring. R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, Furthermore, you may have a substituent. Each Ra is independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic hydrocarbon ring Represents a linking group that forms a ring with a group, a non-aromatic heterocyclic group or Ar. Rc each independently represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, a silyl group, an arylalkyl group, an aryl group, a heteroaryl group, or a non-aromatic hydrocarbon ring. Represents a group or a non-aromatic heterocyclic group. Ra and Rc may further have a substituent. na and nc represent 1 or 2. m represents 1 or 2. n represents 1 or 2. m + n is 3. Note that the structures of the three ligands coordinated to Ir are not all the same. ]
  4.  前記一般式(1)で表されるリン光ドーパントが、下記一般式(3)で表されるリン光ドーパントであることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003

    〔一般式(3)中、R1m、R2m、R1n及びR2nは、それぞれ独立に、炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。Ra、Rc及びRaは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表す。Ra、Ra及びRcは、更に置換基を有していても良い。na及びncは、1又は2を表す。nR3は、1~5の整数を表す。mは、1又は2を表す。nは、1又は2を表す。m+nは、3である。なお、Irに配位している三つの配位子の構造が全て同じであることはない。〕
    3. The organic electroluminescent device according to claim 1, wherein the phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003

    [In General Formula (3), R1m, R2m, R1n and R2n are each independently an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or It represents a non-aromatic heterocyclic group and may further have a substituent. Ra, Rc and Ra 3 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non- Represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group; Ra, Ra 3 and Rc may further have a substituent. na and nc represent 1 or 2. nR3 represents an integer of 1 to 5. m represents 1 or 2. n represents 1 or 2. m + n is 3. Note that the structures of the three ligands coordinated to Ir are not all the same. ]
  5.  前記一般式(1)で表されるリン光ドーパントが、下記一般式(4)で表されるリン光ドーパントであることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004

    〔一般式(4)中、R1m、R2m、R1n及びR2nは、それぞれ独立に炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。Ra、Rc及びRaは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。na及びncは、1又は2を表す。nR3は、1~4の整数を表す。Xは、O、S、SiRz1Rz2、NRz1又はCRz1Rz2を表す。Rz1及びRz2は、アルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表す。mは、1又は2を表す。nは、1又は2を表す。m+nは、3である。〕
    3. The organic electroluminescent device according to claim 1, wherein the phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000004

    [In General Formula (4), R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic group. Represents an aromatic heterocyclic group and may further have a substituent. Ra, Rc and Ra 3 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non- It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. na and nc represent 1 or 2. nR3 represents an integer of 1 to 4. X represents O, S, SiRz1Rz2, NRz1 or CRz1Rz2. Rz1 and Rz2 represent an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or a non-aromatic heterocyclic group. m represents 1 or 2. n represents 1 or 2. m + n is 3. ]
  6.  前記一般式(1)で表されるリン光ドーパントが、下記一般式(5)で表されるリン光ドーパントであることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005

    〔一般式(5)中、R1m、R2m、R1n及びR2nは、それぞれ独立に炭素数2以上のアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。Ra、Rc及びRaは、それぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有していても良い。na及びncは、1又は2を表す。nR3は、1~4の整数を表す。Xは、O、S、SiRz1Rz2、NRz1又はCRz1Rz2を表す。Rz1及びRz2は、アルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表す。mは、1又は2を表す。nは、1又は2を表す。m+nは、3である。〕
    3. The organic electroluminescent device according to claim 1, wherein the phosphorescent dopant represented by the general formula (1) is a phosphorescent dopant represented by the following general formula (5).
    Figure JPOXMLDOC01-appb-C000005

    [In General Formula (5), R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic group. Represents an aromatic heterocyclic group and may further have a substituent. Ra, Rc and Ra 3 are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non- It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent. na and nc represent 1 or 2. nR3 represents an integer of 1 to 4. X represents O, S, SiRz1Rz2, NRz1 or CRz1Rz2. Rz1 and Rz2 represent an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or a non-aromatic heterocyclic group. m represents 1 or 2. n represents 1 or 2. m + n is 3. ]
PCT/JP2013/058351 2012-04-23 2013-03-22 Organic electroluminescent element WO2013161468A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014512426A JP6011616B2 (en) 2012-04-23 2013-03-22 Organic electroluminescence device
KR1020147029171A KR101701584B1 (en) 2012-04-23 2013-03-22 Organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-097506 2012-04-23
JP2012097506 2012-04-23

Publications (1)

Publication Number Publication Date
WO2013161468A1 true WO2013161468A1 (en) 2013-10-31

Family

ID=49482805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058351 WO2013161468A1 (en) 2012-04-23 2013-03-22 Organic electroluminescent element

Country Status (3)

Country Link
JP (1) JP6011616B2 (en)
KR (1) KR101701584B1 (en)
WO (1) WO2013161468A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088354A1 (en) * 2014-12-05 2016-06-09 出光興産株式会社 Metal complex compound, material for organic electroluminescent element, composition, organic electroluminescent element, and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045466A1 (en) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
JP2006523231A (en) * 2003-03-24 2006-10-12 ザ ユニバーシティ オブ サザン カリフォルニア Phenyl and fluorenyl substituted phenyl-pyrazole complexes of iridium (Ir)
JP2009542023A (en) * 2006-07-04 2009-11-26 ノヴァレッド・アクチエンゲゼルシャフト Isonitrile-metal complex oligomers as triplet emitters for OLED applications
US20110057559A1 (en) * 2007-12-28 2011-03-10 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
US20110204333A1 (en) * 2010-02-25 2011-08-25 Universal Display Corporation Phosphorescent emitters
JP2013048192A (en) * 2011-08-29 2013-03-07 Konica Minolta Holdings Inc Organic electroluminescent element, lighting device, and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045466A1 (en) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
JP2006523231A (en) * 2003-03-24 2006-10-12 ザ ユニバーシティ オブ サザン カリフォルニア Phenyl and fluorenyl substituted phenyl-pyrazole complexes of iridium (Ir)
JP2009542023A (en) * 2006-07-04 2009-11-26 ノヴァレッド・アクチエンゲゼルシャフト Isonitrile-metal complex oligomers as triplet emitters for OLED applications
US20110057559A1 (en) * 2007-12-28 2011-03-10 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
US20110204333A1 (en) * 2010-02-25 2011-08-25 Universal Display Corporation Phosphorescent emitters
JP2013048192A (en) * 2011-08-29 2013-03-07 Konica Minolta Holdings Inc Organic electroluminescent element, lighting device, and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088354A1 (en) * 2014-12-05 2016-06-09 出光興産株式会社 Metal complex compound, material for organic electroluminescent element, composition, organic electroluminescent element, and electronic device

Also Published As

Publication number Publication date
JPWO2013161468A1 (en) 2015-12-24
JP6011616B2 (en) 2016-10-19
KR101701584B1 (en) 2017-02-01
KR20140145164A (en) 2014-12-22

Similar Documents

Publication Publication Date Title
JP5978843B2 (en) Iridium complex compound, organic electroluminescence device material, organic electroluminescence device, lighting device and display device
JP6119754B2 (en) Organic electroluminescence element, lighting device and display device
JP5880274B2 (en) Organic electroluminescence element, lighting device and display device
JP5747736B2 (en) Organic electroluminescence element, display device and lighting device
JP6428267B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
WO2013168688A1 (en) Organic electroluminescence element, illumination device, and display device
JP5742581B2 (en) Organic electroluminescence element, display device, lighting device
JP6146415B2 (en) Organic electroluminescence element, lighting device and display device
JP6065557B2 (en) Iridium complex, organic electroluminescence element material, and organic electroluminescence element using the same
JP6011542B2 (en) Organic electroluminescence element, display device and lighting device
WO2016175068A1 (en) Material for organic electroluminescent elements, organic electroluminescent element, display device and lighting device
WO2016056562A1 (en) Iridium complex, organic electroluminescence material, organic electroluminescence element, display device, and illumination device
JP6020473B2 (en) Iridium complex compound, organic electroluminescence device material, organic electroluminescence device, lighting device and display device
WO2015046452A1 (en) Iridium complex, method for producing iridium complex, organic electroluminescence element, display device and illumination device
JP6020466B2 (en) Organic electroluminescence element, display device and lighting device
JP5817640B2 (en) Organic electroluminescence element, lighting device and display device
JP2014179493A (en) Organic electroluminescent element, display device and luminaire
JP6036313B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE HAVING THE SAME
JP6011616B2 (en) Organic electroluminescence device
JP5924401B2 (en) Organic electroluminescence element, lighting device and display device
JP2017031184A (en) Iridium complex, organic electroluminescent element material and organic electroluminescence element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512426

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147029171

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781094

Country of ref document: EP

Kind code of ref document: A1