WO2013159568A1 - 一种立体视频对产生方法及装置 - Google Patents

一种立体视频对产生方法及装置 Download PDF

Info

Publication number
WO2013159568A1
WO2013159568A1 PCT/CN2013/000466 CN2013000466W WO2013159568A1 WO 2013159568 A1 WO2013159568 A1 WO 2013159568A1 CN 2013000466 W CN2013000466 W CN 2013000466W WO 2013159568 A1 WO2013159568 A1 WO 2013159568A1
Authority
WO
WIPO (PCT)
Prior art keywords
video
video sequence
pair
stereoscopic
virtual
Prior art date
Application number
PCT/CN2013/000466
Other languages
English (en)
French (fr)
Inventor
虞露
赵寅
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US14/397,123 priority Critical patent/US9888222B2/en
Priority to EP13780677.4A priority patent/EP2843948B1/en
Publication of WO2013159568A1 publication Critical patent/WO2013159568A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/003Aspects relating to the "2D+depth" image format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/007Aspects relating to detection of stereoscopic image format, e.g. for adaptation to the display format

Definitions

  • the present invention relates to the field of multimedia communications, and in particular, to a method and device for generating stereoscopic video pairs. Background technique
  • a 3D video sequence includes a multiplexed (usually 2 way) video sequence (corresponding to texture information), a corresponding depth sequence (corresponding to depth information), and is also commonly referred to as MVD (multi-view video) Plus depth) format; each video sequence is usually captured by a camera, so it is called a camera viewpoint video sequence, and its corresponding viewpoint is called camera view o
  • the 3D video sequence also contains the camera parameters of each viewpoint. And other information.
  • 3D video produces a virtual view video sequence through view synthesis techniques, the corresponding view of which is called a virtual view.
  • Traditional stereoscopic video consists of only two video sequences of fixed viewpoints (ie, left and right viewpoints), also known as a stereo pair.
  • a stereoscopic video pair obtained by a binocular camera may have a problem that the parallax of the two-view image is excessive. Watching such stereoscopic video pairs can cause more severe visual fatigue, or such stereoscopic video pairs are not suitable for stereoscopic viewing.
  • a video sequence in the stereo video pair and a synthesized virtual view video sequence can be used to form a stereo video pair more suitable for binocular stereo viewing.
  • the parallax of N pixels corresponds to a different depth perception.
  • Virtual view video sequences are generated by view synthesis techniques.
  • Viewpoint synthesis uses depth-image-based rendering (DIBR) technology to pass pixels of a camera viewpoint image through its corresponding depth value and corresponding camera parameters (eg, focal length, coordinate position, etc. of each viewpoint) Projecting onto another virtual viewpoint to generate a projected image; then through hole filling.
  • DIBR depth-image-based rendering
  • Processing such as filtering, resampling, etc. produces a virtual view video sequence that is ultimately used for display.
  • Viewpoint synthesis can also synthesize an image of a virtual viewpoint based on a plurality of camera viewpoints, that is, respectively project images of a plurality of camera viewpoints to the virtual viewpoint, and fuse the projection images, which is called view merging, and then merge The image is filled, filtered, sampled, etc., to obtain a virtual view video sequence for display.
  • a stereo video pair consists of two video sequences, a left-view video sequence (for display to the left eye) Watch) and right view video sequence (for display to the right eye).
  • a method of horizontally shifting the stereoscopic video pair image can generally be employed to adjust the parallax range presented on the display.
  • the left viewpoint image ie, the image of the left viewpoint video sequence
  • the negative parallax increases, the positive parallax decreases; when the left view image is relative to the right view image
  • the negative parallax decreases and the positive parallax increases.
  • the left view image is shifted to the right by N pixels with respect to the right view image.
  • the usual method is to sequentially copy the i-th column of the left view image (from left to right) to the i+N/2 column, and simultaneously The i-th column of the right-view image is copied to the i-th column; or the right-view image remains unchanged, and the image of the i-th column of the left-view image is copied to the i+Nth column.
  • Translating the left viewpoint image to the left by N pixels relative to the right viewpoint image is similar to the above method.
  • the physical resolution of the display screen ie the physical resolution of the pixels on the display panel, is a parameter that is inherent to the display, meaning that the display supports up to the number of pixels in the horizontal and vertical directions.
  • the display can also not work at the highest resolution determined by physical resolution. For example, a display with a physical resolution of 1920*1080 can be set to work at other screen resolutions such as 1600*900 or 1024*768. Therefore, the working resolution of the display is the screen resolution in the working state of the display, and is not necessarily the physical resolution of the display screen. In applications such as television and movies, the display displays the input image in full screen.
  • the actual effective horizontal width (referred to as the actual width) or horizontal size of the display screen is equal to the physical width of the display.
  • the display usually zooms the input image up to the full-screen format display (that is, often said The extended display), the content displayed by the display corresponds to all the pixels in the input image, so the actual resolution of the display at this time can be considered as the resolution of the input image, not the physical resolution or working resolution of the display. If the resolution of the input image is higher than the current working resolution of the display, the display usually reduces the down-sampling of the input image to the full-screen format display. At this time, the content displayed by the display also corresponds to all the pixels in the input image, so the display at this time The actual resolution can also be considered as the resolution of the input image.
  • the input image is not displayed in full screen, but the input image is displayed in an area of the screen according to the actual resolution under the working state of the display.
  • the actual width of the display screen can be uniformly described as the physical width of the area actually used to display the image, and the actual resolution of the display can be considered to be the resolution of the input image.
  • the actual width of the display screen at this time can be regarded as the width X of the display image area, and the actual horizontal resolution of the display is the horizontal pixel number M of Y.
  • the above actual width can also be replaced by an approximation thereof, and does not necessarily have to be a high-precision value, for example, the error between the approximation and the actual width does not exceed 10°/. Just fine.
  • the resolution in the present invention is represented by the number of pixels in the horizontal and vertical directions, and the actual resolution of the display refers to the resolution corresponding to the partial region image actually used for display in the input image;
  • the actual width or horizontal size of the display screen refers to the physical width of the portion of the screen area that is actually used to display the input image.
  • the resolution of the input image is equal to the physical resolution of the display
  • the working resolution of the display is equal to the physical resolution
  • the image is displayed in full screen
  • the actual resolution of the display is equal to the physical resolution of the screen
  • the actual width of the display is equal to the display.
  • the physical width is assumed to the display.
  • an object of the present invention is to process a reconstructed three-dimensional video sequence according to display auxiliary information (including resolution and screen width of a stereoscopic display for displaying a stereoscopic video pair), to obtain a suitable The stereoscopic video pair viewed by the target stereoscopic display, thereby improving the visual experience of the final three-dimensional display.
  • display auxiliary information including resolution and screen width of a stereoscopic display for displaying a stereoscopic video pair
  • a first technical solution of the present invention discloses a method for generating a stereoscopic video pair, which processes a three-dimensional video sequence by displaying auxiliary information to obtain a stereoscopic video pair; the stereoscopic video pair is displayed on the stereoscopic display D1;
  • the display auxiliary information includes camera viewpoint position information, virtual viewpoint position information, and display end scaling coefficient S1;
  • the camera viewpoint position information indicates a position of a camera viewpoint c in the three-dimensional video sequence;
  • the virtual viewpoint position information indicates a position of a virtual viewpoint P1;
  • the processing the three-dimensional video sequence to obtain a stereoscopic video pair includes:
  • said display assistance information further comprises image translation information, said image translation information indicating a number of pixels X for horizontally translating images of two video sequences of said stereo video pairs consisting of said C and P1 viewpoint video sequences ;
  • a second technical solution of the present invention discloses a stereoscopic video pair generating method, which processes a three-dimensional video sequence by input display auxiliary information to obtain a stereoscopic video pair; the stereoscopic video pair is displayed on the stereoscopic display D1;
  • the display auxiliary information includes camera viewpoint position information, virtual viewpoint position information, display end scaling coefficient S1, and source end scaling coefficient S2;
  • the camera viewpoint position information indicates a position of a camera viewpoint C in the three-dimensional video sequence;
  • the virtual viewpoint position information indicates a position of a virtual viewpoint P1;
  • the processing the three-dimensional video sequence to obtain a stereoscopic video pair includes:
  • said display assistance information further comprises image translation information, said image translation information indicating a number of pixels X for horizontally translating images of two video sequences of said stereo video pairs consisting of said C and P1 viewpoint video sequences ;
  • a third aspect of the present invention discloses a stereoscopic video pair generating device, which includes the following two modules: a camera viewpoint video sequence selecting module, the input thereof includes a three-dimensional video sequence and camera viewpoint position information, and the camera viewpoint position information indicates a three-dimensional video. a position of a camera viewpoint C in the sequence; the output of the camera viewpoint video sequence selection module includes a video sequence VI in the stereo video pair; the processing performed by the camera viewpoint video sequence selection module includes selecting the three-dimensional video sequence a video sequence of the view point C as a video sequence VI in the stereoscopic video pair;
  • a virtual view video sequence synthesis module the input thereof includes a three-dimensional video sequence, virtual view position information, and a display end zoom factor S1;
  • the virtual view position information indicates a position of a virtual view point P1;
  • the display end zoom factor S1 is the stereo
  • the ratio of the horizontal resolution Resl of the display D1 to the horizontal width W1, that is, Sl Resl/Wl;
  • the output of the virtual view video sequence synthesis module includes one video sequence V2 in the stereo video pair;
  • the virtual view video sequence synthesis module The completed processing includes determining a virtual view point P2, synthesizing a virtual view video sequence of the virtual view point P2 as a video sequence V2 in the stereoscopic video pair, the virtual view point P2 being connected to the camera view point C and the virtual view point P1 On the line, and the distance from the camera viewpoint C is S1/ ⁇ times the distance between the camera viewpoint C and the virtual viewpoint P1, where K is a constant.
  • the stereoscopic video pair generating device further comprises an image translation module, the input comprising a stereoscopic video pair Q1 composed of the video sequence VI and the video sequence V2, the display terminal scaling factor S1 and image translation information,
  • the image translation information indicates a number of pixels X that horizontally shifts an image of two video sequences of the stereo video pair composed of the C and P1 viewpoint video sequences; the output thereof includes a translating stereoscopic video pair Q2;
  • a fourth aspect of the present invention discloses a stereoscopic video pair generating device, which includes the following two modules: a camera viewpoint video sequence selecting module, the input thereof includes a three-dimensional video sequence and camera viewpoint position information, and the camera viewpoint position information indicates a three-dimensional video. a position of a camera viewpoint c in the sequence; the output of the camera viewpoint video sequence selection module includes a video sequence VI in the stereo video pair; the processing performed by the camera viewpoint video sequence selection module includes selecting the three-dimensional video sequence a video sequence of the view point C as a video sequence VI in the stereoscopic video pair;
  • Virtual view video sequence synthesis module the input thereof includes a three-dimensional video sequence, a virtual view location letter Information, a display side scaling factor SI and a source end scaling factor S2, the virtual view point position information indicating a position of a virtual view point P1, the display end zoom factor S1 being a horizontal resolution Resl and a horizontal width W1 of the stereoscopic display D1
  • the virtual view video sequence synthesis module The output includes a video sequence V2 in the stereo video pair;
  • the processing performed by the virtual visual video sequence synthesizing module includes determining a virtual visual point P2, synthesizing a virtual visual point video sequence of the virtual visual point P2 as a video in the stereoscopic video pair Sequence V2, the virtual viewpoint P2 is on the line connecting the camera viewpoint C and the virtual viewpoint P1, and the distance from the camera viewpoint C is
  • the stereoscopic video pair generating device further comprises an image shifting module, the input comprising a stereoscopic video pair Q1, a display end scaling factor S1, a source scaling factor S2 and an image shift formed by the video sequence VI and the video sequence V2 Information, the image panning information indicating a number of pixels X for horizontally panning an image of two video sequences of the stereo video pair composed of the C and P1 view position video sequences; the output thereof includes a panned stereo pair Q2;
  • the stereoscopic video pair generating method and device of the present invention provides a stereoscopic video pair suitable for binocular stereo viewing according to parameters of the display device, thereby improving The visual experience of the final three-dimensional display.
  • FIG. 1 is a schematic structural diagram of a stereoscopic video pair generating device according to an embodiment of the present invention
  • FIG. 2 is another schematic structural diagram of a stereoscopic video pair generating device according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of still another structure of a stereoscopic video pair generating device according to an embodiment of the present invention.
  • the display auxiliary information includes camera viewpoint position information, virtual viewpoint position information, and display end Scaling factor S;
  • the camera viewpoint position information indicates a position of a camera viewpoint c in the three-dimensional video sequence;
  • the virtual viewpoint position information indicates a position of a virtual viewpoint P1;
  • the display auxiliary information further includes one of a source scaling factor S2 or a translation pixel information, or both;
  • the image panning information indicates the number of pixels X that are horizontally shifted to the images of the two video sequences in the stereoscopic video pair.
  • a first embodiment of the present invention relates to a stereoscopic video pair generating method.
  • the three-dimensional video sequence is processed by the input display auxiliary information to obtain a stereo video pair P for playing on the stereoscopic display D1;
  • the display auxiliary information includes camera viewpoint position information, virtual viewpoint position information, and display end scaling coefficient S1;
  • the camera viewpoint position information indicates a position of a camera viewpoint c in the three-dimensional video sequence;
  • the virtual viewpoint position information indicates a position of a virtual viewpoint P1;
  • the display end scaling factor S1 is a ratio of the horizontal resolution Resl of the stereoscopic display D1 for playing a stereoscopic video pair to the horizontal width W1, that is, S1 2 Resl/Wl; the horizontal width is an approximation of the actual width of the display screen.
  • the processing of the three-dimensional video sequence to obtain a stereo video pair includes the following processing:
  • the horizontal width of the screen is 10°/.), for example, the actual horizontal size of the display screen is 1103, which can be approximately 1100 or 1050.
  • the viewpoint synthesis processing of the virtual view video sequence of the synthesized virtual view point P2 may adopt a depth-image-based rendering (DIBR) technology to pass pixels of a camera view image through the pixel
  • DIBR depth-image-based rendering
  • Corresponding depth values and corresponding camera parameters are projected onto another virtual view to generate a projected image; then through hole filling, filtering ( Filtering)
  • Viewpoint synthesis can also synthesize an image of a virtual viewpoint based on a plurality of camera viewpoints, that is, respectively project images of a plurality of camera viewpoints in the three-dimensional video sequence to the virtual viewpoint, and fuse the projection image, which is called viewpoint fusion.
  • a second embodiment of the present invention relates to a stereoscopic video pair generating method.
  • the display auxiliary information further includes a source scaling factor S2;
  • the source scaling factor S2 is a ratio of a horizontal resolution Res2 of a stereoscopic display D2 to a horizontal width W2, that is, S2 II Res2 /W2.
  • the source scaling factor is usually set when the video content is generated, and the stereoscopic display D2 can be a stereoscopic display of a recommended size, for example, a 3D video sequence for a mobile phone, a D2 is a 5-inch screen, and a 3D video sequence for home entertainment, D2 is 47-inch screen.
  • the horizontal width W2 described therein is an approximation of the horizontal width of the screen of the display D2.
  • the processing of the three-dimensional video sequence to obtain a stereo video pair includes the following processing:
  • Example 3 2) determining a virtual view point P2, synthesizing a virtual view point video sequence of the virtual view point P2 as a video sequence V2 in the stereoscopic video pair; connecting the virtual view point P2 to the camera view point C and the virtual view point P1
  • the distance from the camera viewpoint C is S1/S2 times the distance between the camera viewpoint C and the virtual viewpoint P1.
  • a third embodiment of the present invention relates to a stereoscopic video pair generating method.
  • the three-dimensional video sequence is processed by the input display auxiliary information to obtain a stereo video pair for playing on the stereoscopic display D1;
  • the display auxiliary information includes camera viewpoint position information, virtual viewpoint position information, display end scaling factor Sl, and image translation information;
  • the camera viewpoint position information indicates a position of a camera viewpoint C in the three-dimensional video sequence;
  • the virtual viewpoint position information indicates a position of a virtual viewpoint P1;
  • the image panning information indicates a number of pixels X that horizontally shifts an image of two video sequences in a stereo video pair composed of the C and P1 view position video sequences;
  • the processing of the three-dimensional video sequence to obtain a stereo video pair includes the following processing:
  • X' is a positive value indicating that the left viewpoint image (ie, the image of the left viewpoint video sequence) is shifted to the right (or left) relative to the right viewpoint image by X' pixels;
  • X' is a negative value indicating the left viewpoint image (ie, the left viewpoint)
  • the image of the video sequence) X' pixels are translated to the left (or right) relative to the right viewpoint image. For example, if the left viewpoint image is shifted to the right by N (N is a positive integer) pixels, the usual method is one of the following three.
  • a fourth embodiment of the present invention relates to a stereoscopic video pair generating method.
  • the display auxiliary information further includes a source scaling factor S2;
  • the processing of the three-dimensional video sequence to obtain a stereo video pair includes the following processing:
  • a fifth embodiment of the present invention relates to a stereoscopic video pair generating device.
  • 1 is a schematic structural view of an embodiment of a stereoscopic video pair generating device.
  • the device consists of two modules:
  • a camera viewpoint video sequence selection module the input thereof includes a three-dimensional video sequence and camera viewpoint position information; the camera viewpoint position information indicates a position of a camera viewpoint C in the three-dimensional video sequence; and the output of the camera viewpoint video sequence selection module includes a video sequence of the camera view point C, that is, a video sequence VI of the stereoscopic video pair; the function and implementation manner of the camera view video sequence selection module and the stereoscopic video pair generation method
  • the video sequence of view C in the video sequence is the same as the function and implementation of one of the stereo video pairs.
  • a virtual view video sequence synthesis module the input thereof comprising a three-dimensional video sequence, virtual view position information and a display end scaling factor S1; the virtual view position information indicating a bit of a virtual view point P1
  • the display end scaling factor S1 is a ratio of the horizontal resolution Resl of the stereoscopic display D1 to the horizontal width W1, that is, S1 2 Resl/Wl
  • the output of the virtual view video sequence synthesis module includes a virtual viewpoint a video sequence, that is, a video sequence V2 in the stereoscopic video pair; a function and an implementation manner of the virtual visual point video sequence synthesizing module, and a virtual visual point P2 in the stereoscopic video pair generating method, and a synthetic virtual visual point P2 a virtual view video sequence, which has the same function and implementation as a video sequence V2 in the stereoscopic video pair; the virtual view point P2 is on the line connecting the camera view C and the virtual view point P1, and is connected to the camera view C
  • the distance is
  • a sixth embodiment of the present invention relates to a stereoscopic video pair generating device.
  • 2 is a schematic structural view of another embodiment of a stereoscopic video pair generating device.
  • the device differs from the device described in Embodiment 5 in the following two points:
  • the input of the virtual view video sequence synthesis module further includes a source scaling factor S2;
  • the function and implementation manner of the virtual visual point video sequence synthesizing module and the stereoscopic video pair generating method determine a virtual visual point P2, and synthesize a virtual visual point video sequence of the virtual visual point P2 as a video in the stereoscopic video pair
  • the function of the sequence V2 is the same as that of the embodiment; the virtual viewpoint P2 is on the line connecting the camera viewpoint C and the virtual viewpoint P1, and the distance from the camera viewpoint C is the distance S1 between the camera viewpoint C and the virtual viewpoint P1. /S2 times.
  • FIG. 3 is a schematic structural diagram of still another embodiment of a stereoscopic video pair generating device.
  • the device includes the following three modules:
  • a camera viewpoint video sequence selection module the input thereof includes a three-dimensional video sequence and camera viewpoint position information; the camera viewpoint position information indicates a position of a camera viewpoint C in the three-dimensional video sequence; and the output of the camera viewpoint video sequence selection module includes a video sequence of the camera view point C, that is, a video sequence VI of the stereoscopic video pair; the function and implementation manner of the camera view video sequence selection module and the stereoscopic video pair generation method
  • the video sequence of view C in the video sequence is the same as the function and implementation of one of the stereo video pairs.
  • 2013/000466 virtual view point video sequence synthesis module the input thereof comprises a three-dimensional video sequence, virtual view point position information and a display end zoom coefficient S1;
  • the virtual view point position information indicates a position of a virtual view point P1;
  • the output of the virtual view video sequence synthesis module includes a virtual view video sequence, that is, the stereoscopic video.
  • a video sequence V2 of the pair a function and an implementation manner of the virtual view video sequence synthesis module, and a virtual view point video sequence of the virtual view point P2, and a virtual view video sequence of the virtual view point P2
  • the function and implementation manner of one video sequence V2 in the stereo video pair is the same; the virtual viewpoint P2 is on the line connecting the camera viewpoint C and the virtual viewpoint P1, and the distance from the camera viewpoint C is the camera viewpoint C and virtual S1 / ⁇ times the distance between the viewpoints P1, where K is a constant.
  • An image translation module the input comprising a stereo video pair Q1, a display end scaling factor S1 and image translation information composed of the video sequence VI and the video sequence V2, the image translation information indicating a position of the viewpoint by the C and P1
  • the function of the video pair generation method for horizontally translating the images of the two video sequences in the stereo video pair and shifting the number of pixels X′ to the S1/ ⁇ times of the number of pixels X is the same as K, where K is a constant.
  • An eighth embodiment of the present invention relates to a stereoscopic video pair generating device.
  • 4 is a schematic structural diagram of still another embodiment of a stereoscopic video pair generating device. The device differs from the device described in Embodiment 7 in the following four points:
  • the input of the virtual view video sequence synthesis module further includes a source scaling factor S2;
  • the function and implementation manner of the virtual visual point video sequence synthesizing module and the stereoscopic video pair generating method determine a virtual visual point P2, and synthesize a virtual visual point video sequence of the virtual visual point P2 as a video in the stereoscopic video pair
  • the function of the sequence is the same as the implementation manner;
  • the virtual viewpoint P2 is on the line connecting the camera viewpoint C and the virtual viewpoint P1, and the distance from the camera viewpoint C is the S1/the distance between the camera viewpoint C and the virtual viewpoint P1. S2 times;
  • the input of the image translation module further includes the source scaling factor S2; 4)
  • the function and implementation performed by the image translation module and the image of the two video sequences in the stereo video pair in the stereoscopic video pair generation method described above, and the number of pixels X′ of the translation is the S1 of the pixel number X
  • the stereoscopic video pair generating device can be implemented in various ways, for example:
  • Method 1 The electronic computer is used as a hardware to add a software program having the same function as the stereoscopic video pair generation method.
  • Method 2 The single-chip microcomputer is used as a hardware to add a software program having the same function as the stereoscopic video pair generation method.
  • Method 3 The digital signal processor is used as a hardware to add a software program having the same function as the stereo video pair generation method.
  • Method 4 The design is implemented by the same function as the stereoscopic video pair generation method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本发明公开了一种应用于多媒体通信领域的立体视频对产生方法,由显示辅助信息对三维视频序列进行处理,得到一个立体视频对;立体视频对在立体显示器D1上显示;显示辅助信息包括摄像机视点位置信息、虚拟视点位置信息和显示端缩放系数S1;摄像机视点位置信息指示三维视频序列中一个摄像机视点C的位置;虚拟视点位置信息指示一个虚拟视点P1的位置;显示端缩放系数S1为所述立体显示器D1的水平分辨率Res1与水平宽度W1的比值;本发明还公开了立体视频对产生装置。本发明改善最终三维立体显示的视觉感受。

Description

一种立体视频对产生方法及装置
技术领域
本发明涉及一种多媒体通信领域, 具体涉及一种立体视频对产生方法及装 置。 背景技术
三维视频(3D video)序列包括多路(通常为 2路)视频序列 (对应于纹理 信息)、 对应的深度 (depth) 序列 (对应于深度信息), 通常也被称为 MVD (multi-view video plus depth) 格式; 每一路视频序列, 通常由一个摄像机拍摄 获得,所以称为一个摄像机视点视频序列,其对应的视点称为摄像机视点 (camera view) o 三维视频序列也包含每个视点的摄像机参数等信息。 三维视频通过视点 合成(view synthesis)技术产生一个虚拟视点视频序列, 其对应的视点称为虚拟 视点 (virtual view)。 传统的双目立体视频(stereoscopic video)仅由两个固定视 点(即左视点和右视点)的视频序列构成,也称为一个立体视频对(stereos pair)。 由双目摄像机获得的立体视频对可能存在两视图像视差过大的问题。 观看这样 的立体视频对会引起较严重的视觉疲劳, 或者说这样的立体视频对并不适合于 双目立体观看(stereoscopic viewing)。 引入虚拟视点视频序列后, 可以利用立体 视频对中的一个视频序列和一个合成的虚拟视点视频序列构成一个更适合双目 立体观看的立体视频对。 对于不同显示器 (不同分辨率或不同宽度), N个像素 的视差对应于不同的深度感受。
虚拟视点视频序列通过视点合成(view synthesis)技术产生。视点合成采用 基于深度和图像渲染 (depth-image-based rendering, 简称 DIBR) 技术, 将一个 摄像机视点图像的像素通过其对应的深度值和相应的摄像机参数 (例如每个视 点的焦距、 坐标位置等), 投影到另一虚拟视点上, 从而生成投影图像; 再通过 空洞填充 (hole filling). 滤波 (filtering)、 变采样 (resampling) 等处理产生最 终用于显示的虚拟视点视频序列。 视点合成还可以基于多个摄像机视点合成一 个虚拟视点的图像, 即分别将多个摄像机视点的图像投影到该虚拟视点, 并把 投影图像融合起来, 称为视点融合 (view merging), 再在融合的图像上进行空 洞填充、 滤波、 变采样等处理, 获得用于显示的虚拟视点视频序列。
一个立体视频对包括两个视频序列, 即左视点视频序列 (用于显示给左眼 观看)和右视点视频序列 (用于显示给右眼观看)。 为了改善立体视频对的立体 感觉, 通常可以采用水平平移 (shifting)立体视频对图像的方法来调节显示器 上呈现的视差 (parallax) 范围。 当左视点图像 (即左视点视频序列的图像)相 对于右视点图像向右平移时, 负视差(negative parallax)增大, 正视差(positive parallax) 减小; 当左视图像相对于右视图像向左平移时, 负视差 (negative parallax)减小, 正视差(positive parallax)增大。 以左视点图像相对于右视点图 像向右平移 N个像素为例, 通常的方法有, 依次将左视点图像中 (从左向右) 第 i列像素拷贝给第 i+N/2列, 同时将右视点图像第 i列像素拷贝给第 i-N/2列; 或者右视点图像保持不变,左视点图像的第 i列的图像拷贝给第 i+N列。将左视 点图像相对于右视点图像向左平移 N个像素与上述方法类似。
显示器屏幕的物理分辨率, 即显示面板上像素的物理分辨率, 是显示器固 有的参数, 其含义指显示屏最高支持显示的水平和竖直方向像素数。 显示器也 可以不工作在这个由物理分辨率决定的最高分辨率下, 例如可以将一个物理分 辨率为 1920*1080的显示器设置在 1600*900或 1024*768等其它的屏幕分辨率 下工作。 因此, 显示器的工作分辨率为显示器所处工作状态下的屏幕分辨率, 而并不一定为显示器屏幕的物理分辨率。 在电视、 电影等应用中, 显示器全屏 显示输入图像, 此时显示器屏幕实际有效的水平宽度 (简称实际宽度) 或水平 尺寸即等于显示器的物理宽度。 如果输入图像的分辨率, 即输入显示器的图像 的水平和竖直方向像素数, 低于显示器当前工作分辨率时, 则显示器通常会将 输入图像上采样拉伸放大到全屏画幅显示(即常说的扩展显示), 此时显示器显 示的内容对应于输入图像中的所有像素, 所以此时显示器的实际分辨率可以认 为是输入图像的分辨率, 而不是显示器的物理分辨率或工作分辨率。 如果输入 图像的分辨率高于显示器当前工作分辨率, 则显示器通常会将输入图像下采样 缩小到全屏画幅显示, 此时显示器显示的内容也对应于输入图像中的所有像素, 所以此时显示器的实际分辨率也可以认为是输入图像的分辨率。
但是, 在有些应用中, 例如常见的 "画中画"和窗口显示等, 输入图像并 不全屏显示, 而是按照显示器工作状态下的实际分辨率, 将输入图像显示在屏 幕中的一个区域, 例如位于屏幕中心或靠近右下角的一个矩形区域。 因此, 显 示器屏幕的实际宽度可以统一地描述为实际用于显示图像的区域的物理宽度, 显示器的实际分辨率可以认为是输入图像的分辨率。 另外, 显示应用中也有可 能在显示屏幕上一个宽度为 X的区域内仅显示输入图像的一部分 Y, 其中 Y的 水平像素数记为 M, 则此时显示器屏幕的实际宽度可以认为是显示图像区域的 宽度 X, 显示器的实际水平分辨率为 Y的水平像素数 M。 上述实际宽度也可以 用它的一个近似值来代替, 并不一定要为高精确度的数值, 例如该近似值与实 际宽度的误差不超过 10°/。即可。
综上, 为了统一简化描述, 本发明中分辨率以水平和竖直方向的像素数来 表示, 显示器的实际分辨率指输入图像中实际上被用于显示的那部分区域图像 对应的分辨率; 显示器屏幕的实际宽度或水平尺寸是指实际上用于显示输入图 像的那部分屏幕区域的物理宽度。 特别的, 当输入图像的分辨率等于显示器的 物理分辨率、 显示器工作分辨率也等于物理分辨率且图像被全屏显示时, 显示 器的实际分辨率等于屏幕的物理分辨率, 显示器的实际宽度等于显示器的物理 宽度。 发明内容
为克服现有技术的上述缺陷, 本发明的目的在于根据显示辅助信息 (包含 用于显示立体视频对的立体显示器的分辨率和屏幕宽度), 对重建的三维视频序 列进行处理, 得到一个适合通过目标立体显示器观看的立体视频对, 从而改善 最终三维立体显示的视觉感受。
本发明第一技术方案是公开一种立体视频对产生方法, 由显示辅助信息对 三维视频序列进行处理, 得到一个立体视频对; 所述立体视频对在立体显示器 D1上显示;
所述显示辅助信息包括摄像机视点位置信息、 虚拟视点位置信息和显示端 縮放系数 S1 ;
所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 c的位置; 所述虚拟视点位置信息指示一个虚拟视点 P1的位置;
所述显示端缩放系数 S1为所述立体显示器 D1的水平分辨率 Resl与水平宽 度 W1 的比值, 即 Sl =Resl/Wl, 所述水平宽度为显示器屏幕实际宽度的近似 值;
所述对三维视频序列进行处理, 得到一个立体视频对包括:
1 )选择所述三维视频序列中所述摄像机视点 C的视频序列作为所述立体视 频对中的一个视频序列 VI;
2)确定一个虚拟视点 P2, 合成虚拟视点 P2的虚拟视点视频序列, 作为所 述立体视频对中的一个视频序列 V2, 所述虚拟视点 P2在摄像机视点 C和虚拟 视点 P1的连线上,且与所述摄像机视点 C的距离为所述摄像机视点 C和虚拟视 点 P1之间距离的 Sl/Κ倍, 其中 K为一个常数。
作为优选, 所述显示辅助信息还包括图像平移信息, 所述图像平移信息指 示对由所述 C和 P1视点位置视频序列构成的立体视频对中两个视频序列的图像 进行水平平移的像素数 X;
所述"对三维视频序列进行处理, 得到一个立体视频对 "还包括对所述立体 视频对中两个视频序列的图像进行水平平移, 且平移的像素数 X'为所述像素数 X的 Sl Κ倍, 即 X, = XS1/K。
本发明第二技术方案是公开一种立体视频对产生方法, 由输入的显示辅助 信息对三维视频序列进行处理, 得到一个立体视频对; 所述的立体视频对在立 体显示器 D1上显示;
所述显示辅助信息包括摄像机视点位置信息、 虚拟视点位置信息、 显示端 缩放系数 S1和源端缩放系数 S2;
所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的位置; 所述虚拟视点位置信息指示一个虛拟视点 P1的位置;
所述显示端缩放系数 S1为所述立体显示器 D1的水平分辨率 Resl与水平宽 度 W1的比值, 即 Sl =Resl/Wl ;
所述源端缩放系数 S2为一个立体显示器 D2的水平分辨率 Res2与水平宽度 W2的比值, 即 S2=Res2/W2;
所述对三维视频序列进行处理, 得到一个立体视频对包括:
1 )选择所述三维视频序列中所述视点 C的视频序列作为所述立体视频对中 的一个视频序列 VI;
2) 确定一个虚拟视点 P2, 合成虚拟视点 P2的虛拟视点视频序列, 作为所 述立体视频对中的一个视频序列 V2, 所述虚拟视点 P2在摄像机视点 C和虚拟 视点 P1的连线上,且与所述摄像机视点 C的距离为所述摄像机视点 C和虚拟视 点 P1之间距离的 S1/S2倍。
作为优选, 所述显示辅助信息还包括图像平移信息, 所述图像平移信息指 示对由所述 C和 P1视点位置视频序列构成的立体视频对中两个视频序列的图像 进行水平平移的像素数 X;
所述"对三维视频序列进行处理, 得到一个立体视频对 "还包括对所述立体 视频对中两个视频序列的图像进行水平平移, 且平移的像素数 X'为所述像素数 X的 S1/S2倍, 即 X, = XS1/S2。
本发明第三技术方案是公开一种立体视频对产生装置, 包括以下两个模块: 摄像机视点视频序列选取模块, 其输入包括三维视频序列和摄像机视点位 置信息, 所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的位 置; 所述摄像机视点视频序列选取模块的输出包括立体视频对中的一个视频序 列 VI; 所述摄像机视点视频序列选取模块完成的处理包括选择所述三维视频序 列中所述视点 C的视频序列作为所述立体视频对中的一个视频序列 VI;
虚拟视点视频序列合成模块, 其输入包括三维视频序列、 虚拟视点位置信 息和显示端缩放系数 S1 ; 所述虚拟视点位置信息指示一个虛拟视点 P1的位置; 所述显示端缩放系数 S1为所述立体显示器 D1 的水平分辨率 Resl与水平宽度 W1的比值, 即 Sl =Resl/Wl ; 所述虚拟视点视频序列合成模块的输出包括立体 视频对中的一个视频序列 V2; 所述虚拟视点视频序列合成模块完成的处理包括 确定一个虚拟视点 P2,合成虚拟视点 P2的虚拟视点视频序列,作为所述立体视 频对中的一个视频序列 V2, 所述虚拟视点 P2在所述摄像机视点 C和虚拟视点 P1 的连线上, 且与所述摄像机视点 C的距离为所述摄像机视点 C和虚拟视点 P1之间距离的 Sl/Κ倍, 其中 K为一个常数。
作为优选, 所述立体视频对产生装置还包括图像平移模块, 其输入包括由 所述视频序列 VI和视频序列 V2构成的立体视频对 Q1、所述的显示端缩放系数 S1和图像平移信息, 所述图像平移信息指示对由所述 C和 P1视点位置视频序 列构成的立体视频对中两个视频序列的图像进行水平平移的像素数 X; 其输出 包括一个经过平移处理的立体视频对 Q2; 所述图像平移模块完成的处理包括对 立体视频对中两个视频序列的图像进行水平平移, 且平移的像素数 X'为所述像 素数 X的 Sl/Κ倍, 即 X' = XS1/K。
本发明第四技术方案是公开一种立体视频对产生装置, 包括以下两个模块: 摄像机视点视频序列选取模块, 其输入包括三维视频序列和摄像机视点位 置信息, 所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 c的位 置; 所述摄像机视点视频序列选取模块的输出包括立体视频对中的一个视频序 列 VI; 所述摄像机视点视频序列选取模块完成的处理包括选择所述三维视频序 列中所述视点 C的视频序列作为所述立体视频对中的一个视频序列 VI;
虚拟视点视频序列合成模块, 其输入包括三维视频序列、 虚拟视点位置信 息、显示端缩放系数 SI和源端缩放系数 S2,所述虚拟视点位置信息指示一个虚 拟视点 P1的位置,所述显示端缩放系数 S1为所述立体显示器 D1的水平分辨率 Resl与水平宽度 W1的比值, 即 Sl =Resl/Wl,所述源端缩放系数 S2为一个立 体显示器 D2的水平分辨率 Res2与水平宽度 W2的比值, 即 S2=Res2/W2; 所 述虚拟视点视频序列合成模块的输出包括立体视频对中的一个视频序列 V2; 所 述虚拟视点视频序列合成模块完成的处理包括确定一个虚拟视点 P2, 合成虚拟 视点 P2的虚拟视点视频序列, 作为所述立体视频对中的一个视频序列 V2, 所 述虚拟视点 P2在所述摄像机视点 C和虚拟视点 P1的连线上, 且与所述摄像机 视点 C的距离为所述摄像机视点 C和虚拟视点 P1之间距离的 S1/S2倍。
作为优选, 所述立体视频对产生装置还包括图像平移模块, 其输入包括由 所述视频序列 VI和视频序列 V2构成的立体视频对 Ql、 显示端缩放系数 Sl、 源端缩放系数 S2和图像平移信息, 所述图像平移信息指示对由所述 C和 P1视 点位置视频序列构成的立体视频对中两个视频序列的图像进行水平平移的像素 数 X; 其输出包括一个经过平移处理的立体视频对 Q2; 所述图像平移模块完成 的处理包括对立体视频对中两个视频序列的图像进行水平平移, 且平移的像素 数 X'为所述像素数 X的 S1/S2倍, 即 X' = XS1/S2。
采用本发明的技术方案, 具有如下有益效果: 与现有技术相比, 本发明的 立体视频对产生方法及装置根据显示设备的参数为其提供一个适合双目立体观 看的立体视频对, 从而改善最终三维立体显示的视觉感受。 附图说明
结合附图, 本发明的其他特点和优点可从下面通过举例来对本发明的原理 进行解释的优选实施方式的说明中变得更清楚。
图 1为本发明的实施例中立体视频对产生装置的一种结构示意图; 图 2为本发明的实施例中立体视频对产生装置的另一结构示意图; 图 3为本发明的实施例中立体视频对产生装置的又一结构示意图; 图 4为本发明的实施例中立体视频对产生装置的再一结构示意图。 具体实施方式
下面将结合附图对本发明的实施方式进行详细描述- 所述显示辅助信息包括摄像机视点位置信息、 虚拟视点位置信息、 显示端 缩放系数 S;
所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 c的位置; 所述虚拟视点位置信息指示一个虛拟视点 P1的位置;
所述显示端缩放系数 S1为用于播放立体视频对的立体显示器 D1的水平分 辨率 Resl与水平宽度 W1的比值, 即 Sl =Resl/Wl ; 所述的水平宽度为显示器 屏幕实际宽度的近似值。
所述显示辅助信息还包括源端缩放系数 S2或平移像素信息之一,或其两者; 所述源端缩放系数 S2为一个立体显示器 D2的水平分辨率 Res2与水平宽度 W2的比值, 即 S2=Res2/W2;
所述图像平移信息指示对所述立体视频对中两个视频序列的图像进行水平 平移 (shifting) 的像素数 X。
实施例 1
本发明的第一实施方式涉及一种立体视频对产生方法。 由输入的显示辅助 信息, 对三维视频序列进行处理, 得到一个立体视频对 P, 用于在立体显示器 D1上播放;
所述的显示辅助信息包括摄像机视点位置信息、 虚拟视点位置信息、 显示 端缩放系数 S1 ;
所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 c的位置; 所述虚拟视点位置信息指示一个虚拟视点 P1的位置;
所述显示端缩放系数 S1为用于播放立体视频对的立体显示器 D1的水平分 辨率 Resl与水平宽度 W1的比值, 即 S1二 Resl/Wl ; 所述的水平宽度为显示器 屏幕实际宽度的近似值。
所述的对三维视频序列进行处理, 得到一个立体视频对包括以下处理:
1 )选择所述三维视频序列中由所述的摄像机视点位置信息指示的所述视点 C的视频序列作为所述立体视频对中的一个视频序列 VI;
2) 确定一个虚拟视点 P2, 合成虚拟视点 P2的虚拟视点视频序列, 作为所 述立体视频对中的一个视频序列 V2; 所述的虚拟视点 P2在所述摄像机视点 C 和虚拟视点 P1 的连线上, 且与所述摄像机视点 C的距离为所述摄像机视点 C 和虚拟视点 P1之间距离的 Sl/Κ倍, 其中 K为一个常数。 即由 P2和 C构成的 矢量 Vec2为由 P1和 C构成的矢量 Vecl的 Sl/Κ倍(Vec2= VeclSl/K)。 K可以 为一个固定的显示器 D3的水平分辨率 Res3与其水平宽度 W3的比值, 即 K= Res3/W3; 其中所述的水平宽度 Wl和 W3为显示器 D1和 D3的屏幕水平宽度 的近似值 (近似误差例如小于 10%, 即 W1或 W3与 D1或 D3的真实屏幕水平 宽度的差值小于真实屏幕水平宽度的 10°/。), 例如显示器屏幕的实际水平尺寸为 1103, 其可近似为 1100或者 1050等。 所述的 Res3和 W3例如 Res3=1920, W3=1000厘米, 或者 Res3=1920, W3=1100厘米, 或者 Res3=1680, W3=500 厘米。
所述的合成虚拟视点 P2的虚拟视点视频序列的视点合成处理,可采用基于 深度和图像渲染 (depth-image-based rendering, 简称 DIBR) 技术, 将一个摄像 机视点(camera view)图像的像素通过其对应的深度值和相应的摄像机参数(例 如每个视点的焦距、 坐标位置等), 投影到另一虚拟视点 (virtual view)上, 从而 生成投影图像; 再通过空洞填充 (hole filling ) , 滤波 (filtering )、 变采样
(resampling) 等处理产生最终用于显示的虚拟视点视频序列。 视点合成还可以 基于多个摄像机视点合成一个虚拟视点的图像, 即分别将三维视频序列中多个 摄像机视点的图像投影到该虚拟视点, 并把投影图像融合起来, 称为视点融合
(view merging), 再在融合的图像上进行空洞填充、 滤波、 变采样等处理, 获 得用于显示的虚拟视点视频序列。
实施例 2
本发明的第二实施方式涉及一种立体视频对产生方法。 与实施例 1 不同的 是,所述的显示辅助信息还包括源端缩放系数 S2;所述源端缩放系数 S2为一个 立体显示器 D2的水平分辨率 Res2与水平宽度 W2的比值, 即 S2二 Res2/W2。 源端縮放系数通常由视频内容生成时设定,立体显示器 D2可以为一个推荐尺寸 的立体显示器, 例如对于手机播放的三维视频序列, D2为 5英寸屏幕, 对家庭 娱乐的三维视频序列, D2为 47英寸屏幕。 其中所述的水平宽度 W2为显示器 D2的屏幕水平宽度的近似值。
所述的对三维视频序列进行处理, 得到一个立体视频对包括以下处理:
1 )选择所述三维视频序列中所述视点 C的视频序列作为所述立体视频对中 的一个视频序列 VI;
2) 确定一个虚拟视点 P2, 合成虚拟视点 P2的虚拟视点视频序列, 作为所 述立体视频对中的一个视频序列 V2; 所述的虚拟视点 P2在所述摄像机视点 C 和虚拟视点 P1 的连线上, 且与所述摄像机视点 C的距离为所述摄像机视点 C 和虚拟视点 P1之间距离的 S1/S2倍。 实施例 3
本发明的第三实施方式涉及一种立体视频对产生方法。 由输入的显示辅助 信息, 对三维视频序列进行处理, 得到一个立体视频对, 用于在立体显示器 D1 上播放;
所述的显示辅助信息包括摄像机视点位置信息、 虚拟视点位置信息、 显示 端縮放系数 Sl、 图像平移信息;
所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的位置; 所述虚拟视点位置信息指示一个虚拟视点 P1的位置;
所述显示端缩放系数 S1为立体显示器 D1 的水平分辨率 Resl与水平宽度 W1的比值, 即 Sl =Resl/Wl ;
所述图像平移信息指示对由所述 C和 P1视点位置视频序列构成的立体视频 对中两个视频序列的图像进行水平平移 (shifting) 的像素数 X;
所述的对三维视频序列进行处理, 得到一个立体视频对包括以下处理:
1 )选择所述三维视频序列中所述视点 C的视频序列作为所述立体视频对中 的一个视频序列 VI;
2) 确定一个虚拟视点 P2, 合成虚拟视点 P2的虚拟视点视频序列, 作为所 述立体视频对中的一个视频序列 V2; 所述的虚拟视点 P2在摄像机视点 C和虚 拟视点 P1的连线上,且与摄像机视点 C的距离为所述摄像机视点 C和虚拟视点 P1之间距离的 Sl/ 倍, 其中 K为一个常数。 即由 P2和 C构成的矢量 Vec2为 由 P1和 C构成的矢量 Vecl的 Sl 倍 (Vec2= VeclSl K)。 K可以为一个固定 的显示器的水平分辨率 Res3与其水平宽度 W3的比值, 即 K=Res3/W3, 例如 Res3=1024, W3=300厘米, 或者 Res3=1280, W3=375厘米。
3 )对立体视频对中两个视频序列的图像进行水平平移,且平移的像素数 X, 为所述像素数 X的 Sl/K倍, 其中 K为一个常数, 即 X, = XS1/K。 当 X'由 X,= XSl/ 计算为非整数时, 将 X,舍入为整数。 X'为正值表示左视点图像 (即左视 点视频序列的图像) 相对于右视点图像向右 (或向左) 平移时 X'个像素; X'为 负值表示左视点图像 (即左视点视频序列的图像) 相对于右视点图像向左 (或 向右) 平移时 X'个像素。 以左视点图像相对于右视点图像向右平移 N (N为正 整数) 个像素为例, 通常的方法有以下三种之一,
1 )依次将左视点图像中(从左向右)第 i列像素拷贝给左视点图像中第 i+N/2 列, 同时将右视点图像第 i列像素拷贝给右视点图像中第 i-N/2列; 2) 右视点图像保持不变, 左视点图像的第 i列的图像拷贝给左视点图像中 第 i+N列;
3 ) 左视点图像保持不变, 右视点图像的第 i列的图像拷贝给右视点图像中 第 i-N列。
将左视点图像相对于右视点图像向左平移 N个像素与上述方法类似。
实施例 4
本发明的第四实施方式涉及一种立体视频对产生方法。 与实施例 3 不同的 是,所述的显示辅助信息还包括源端缩放系数 S2;所述源端縮放系数 S2为一个 立体显示器 D2的水平分辨率 Res2与水平宽度 W2的比值, 即 S2=Res2/W2。
所述的对三维视频序列进行处理, 得到一个立体视频对包括以下处理:
1 )选择所述三维视频序列中所述视点 C的视频序列作为所述立体视频对中 的一个视频序列 VI;
2) 确定一个虚拟视点 P2, 合成虚拟视点 P2的虚拟视点视频序列, 作为所 述立体视频对中的一个视频序列 V2; 所述的虚拟视点 P2在摄像机视点 C和虚 拟视点 P1的连线上,且与摄像机视点 C的距离为所述摄像机视点 C和虚拟视点 P1之间距离的 S1/S2倍;
3 )对所述的立体视频对中两个视频序列的图像进行水平平移, 其平移的像 素数 X,为所述像素数 X的 S1/S2倍, 即 X, = XS1/S2。 当 X,由 X, = XS1/S2计算 为非整数时, 将 X'舍入为整数。
实施例 5
本发明的第五实施方式涉及一种立体视频对产生装置。 图 1 为立体视频对 产生装置一种实施例的结构示意图。 该装置包括两个模块:
摄像机视点视频序列选取模块, 其输入包括三维视频序列和摄像机视点位 置信息; 所述的摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的 位置; 所述的摄像机视点视频序列选取模块的输出包括所述摄像机视点 C的视 频序列, 即所述的立体视频对中的一个视频序列 VI; 所述的摄像机视点视频序 列选取模块完成的功能和实施方式与上述立体视频对产生方法中选择所述三维 视频序列中所述视点 C 的视频序列作为所述立体视频对中的一个视频序列 VI 的功能和实施方式相同。
虚拟视点视频序列合成模块, 其输入包括三维视频序列、 虚拟视点位置信 息和显示端缩放系数 S1 ; 所述的虚拟视点位置信息指示一个虚拟视点 P1 的位 置;所述的显示端缩放系数 S1为所述立体显示器 D1的水平分辨率 Resl与水平 宽度 W1 的比值, 即 S1二 Resl/Wl ; 所述的虚拟视点视频序列合成模块的输出 包括一个虚拟视点视频序列, 即所述的立体视频对中的一个视频序列 V2; 所述 的虚拟视点视频序列合成模块完成的功能和实施方式与上述立体视频对产生方 法中确定一个虚拟视点 P2,合成虚拟视点 P2的虚拟视点视频序列,作为所述立 体视频对中的一个视频序列 V2的功能和实施方式相同; 所述的虚拟视点 P2在 摄像机视点 C和虚拟视点 P1的连线上,且与摄像机视点 C的距离为所述摄像机 视点 C和虚拟视点 P1之间距离的 Sl Κ倍, 其中 K为一个常数, 例如 K= 1.92 或 K= l。
实施例 6
本发明的第六实施方式涉及一种立体视频对产生装置。 图 2为立体视频对 产生装置另一种实施例的结构示意图。 该装置与实施例 5 中所述装置不同在于 以下两点:
1 )所述虚拟视点视频序列合成模块的输入还包括源端缩放系数 S2;所述源 端縮放系数 S2为一个立体显示器 D2的水平分辨率 Res2与水平宽度 W2的比值, 即 S2=Res2/W2;
2)所述虚拟视点视频序列合成模块完成的功能和实施方式与上述立体视频 对产生方法中确定一个虚拟视点 P2,合成虚拟视点 P2的虚拟视点视频序列,作 为所述立体视频对中的一个视频序列 V2的功能和实施方式相同;所述的虚拟视 点 P2在摄像机视点 C和虚拟视点 P1的连线上, 且与摄像机视点 C的距离为所 述摄像机视点 C和虚拟视点 P1之间距离的 S1/S2倍。
实施例 7
本发明的第七实施方式涉及一种立体视频对产生装置。 图 3 为立体视频对 产生装置又一种实施例的结构示意图。 该装置包括以下三个模块:
摄像机视点视频序列选取模块, 其输入包括三维视频序列和摄像机视点位 置信息; 所述的摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的 位置; 所述的摄像机视点视频序列选取模块的输出包括所述摄像机视点 C的视 频序列, 即所述的立体视频对中的一个视频序列 VI; 所述的摄像机视点视频序 列选取模块完成的功能和实施方式与上述立体视频对产生方法中选择所述三维 视频序列中所述视点 C 的视频序列作为所述立体视频对中的一个视频序列 VI 的功能和实施方式相同。 2013/000466 虚拟视点视频序列合成模块, 其输入包括三维视频序列、 虚拟视点位置信 息和显示端缩放系数 S1 ; 所述的虚拟视点位置信息指示一个虚拟视点 P1 的位 置;所述的显示端縮放系数 S1为所述立体显示器 D1的水平分辨率 Resl与水平 宽度 W1 的比值, 即 Sl =Resl/Wl ; 所述的虚拟视点视频序列合成模块的输出 包括一个虚拟视点视频序列, 即所述的立体视频对中的一个视频序列 V2; 所述 的虚拟视点视频序列合成模块完成的功能和实施方式与上述立体视频对产生方 法中确定一个虚拟视点 P2,合成虚拟视点 P2的虚拟视点视频序列,作为所述立 体视频对中的一个视频序列 V2的功能和实施方式相同; 所述的虚拟视点 P2在 摄像机视点 C和虚拟视点 P1的连线上,且与摄像机视点 C的距离为所述摄像机 视点 C和虚拟视点 P1之间距离的 Sl/Κ倍, 其中 K为一个常数。
图像平移模块, 其输入包括由所述的视频序列 VI和视频序列 V2构成的立 体视频对 Ql、 显示端缩放系数 S1和图像平移信息, 所述图像平移信息指示对 由所述 C和 P1视点位置视频序列构成的立体视频对中两个视频序列的图像进行 水平平移的像素数 X, 其输出包括一个经过平移处理的立体视频对 Q2; 所述的 图像平移模块完成的功能和实施方式与上述立体视频对产生方法中对立体视频 对中两个视频序列的图像进行水平平移且平移的像素数 X'为所述像素数 X 的 Sl/Κ倍的功能和实施方式相同, 其中 K 为一个常数, X 为整数 (即有 X' = XSl/K) o 当 X,由 X, = XS1/ 计算为非整数时, 将 X'舍入为整数。
实施例 8
本发明的第八实施方式涉及一种立体视频对产生装置。 图 4为立体视频对 产生装置再一种实施例的结构示意图。 该装置与实施例 7 中所述装置不同之处 在于以下四点:
1 )所述虚拟视点视频序列合成模块的输入还包括源端缩放系数 S2;所述源 端縮放系数 S2为一个立体显示器 D2的水平分辨率 Res2与水平宽度 W2的比值, 即 S2=Res2/W2;
2)所述虚拟视点视频序列合成模块完成的功能和实施方式与上述立体视频 对产生方法中确定一个虚拟视点 P2,合成虚拟视点 P2的虚拟视点视频序列,作 为所述立体视频对中的一个视频序列的功能和实施方式相同; 所述的虚拟视点 P2在摄像机视点 C和虚拟视点 P1的连线上, 且与摄像机视点 C的距离为所述 摄像机视点 C和虚拟视点 P1之间距离的 S1/S2倍;
3) 所述图像平移模块的输入还包括所述的源端缩放系数 S2; 4)所述图像平移模块完成的功能和实施方式与上述立体视频对产生方法中 对立体视频对中两个视频序列的图像进行水平平移且平移的像素数 X'为所述像 素数 X的 S1/S2倍(即有 X' = XS1/S2)的功能和实施方式相同,其中当 X'由 X' = XS1/ 计算为非整数时, 将 X'舍入为整数。。
所述的立体视频对产生装置可以由多种方式实现, 例如:
方法一: 以电子计算机为硬件附加与所述立体视频对产生方法功能相同的 软件程序来实现。
方法二: 以单片机为硬件附加与所述立体视频对产生方法功能相同的软件 程序来实现。
方法三: 以数字信号处理器为硬件附加与立体视频对产生方法功能相同的 软件程序来实现。
方法四: 设计与所述立体视频对产生方法功能相同的电路来实现。
实现所述的立体视频对产生装置的方法还可以有其它的方法, 不仅限于上 述四种。 虽然结合附图描述了本发明的实施方式, 但是本领域普通技术人员可以在 所附权利要求的范围内作出各种变形或修改。

Claims

权利 要 求
1、 一种立体视频对产生方法, 其特征在于, 由显示辅助信息对三维视频序 列进行处理, 得到一个立体视频对; 所述立体视频对在立体显示器 D1上显示; 所述显示辅助信息包括摄像机视点位置信息、 虚拟视点位置信息和显示端 缩放系数 S1 ;
所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的位置; 所述虚拟视点位置信息指示一个虚拟视点 P1的位置;
所述显示端缩放系数 S1为所述立体显示器 D1的水平分辨率 Resl与水平宽 度 W1的比值;
所述对三维视频序列进行处理, 得到一个立体视频对包括:
1 )选择所述三维视频序列中所述摄像机视点 C的视频序列作为所述立体视 频对中的一个视频序列 VI;
2) 确定一个虚拟视点 P2, 合成虚拟视点 P2的虚拟视点视频序列, 作为所 述立体视频对中的一个视频序列 V2, 所述虚拟视点 P2在摄像机视点 C和虚拟 视点 P1的连线上,且与所述摄像机视点 C的距离为所述摄像机视点 C和虚拟视 点 P1之间距离的 Sl/Κ倍, 其中 K为一个常数。
2、 如权利要求 1所述的立体视频对产生方法, 其特征在于, 所述显示辅助 信息还包括图像平移信息,所述图像平移信息指示对由所述 C和 P1视点位置视 频序列构成的立体视频对中两个视频序列的图像进行水平平移的像素数 X; 所述 "对三维视频序列进行处理, 得到一个立体视频对"还包括对所述立 体视频对中两个视频序列的图像进行水平平移, 且平移的像素数 X'为所述像素 数 X的 Sl/Κ倍, 即 X, = XS1/K。
3、 一种立体视频对产生方法, 其特征在于, 由输入的显示辅助信息对三维 视频序列进行处理, 得到一个立体视频对; 所述的立体视频对在立体显示器 D1 上显示;
所述显示辅助信息包括摄像机视点位置信息、 虚拟视点位置信息、 显示端 缩放系数 S1和源端缩放系数 S2;
所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的位置; 所述虚拟视点位置信息指示一个虚拟视点 P1的位置;
所述显示端縮放系数 S1为所述立体显示器 D1的水平分辨率 Resl与水平宽 度 W1的比值; 所述源端缩放系数 S2为一个立体显示器 D2的水平分辨率 Res2与水平宽度 W2的比值;
所述对三维视频序列进行处理, 得到一个立体视频对包括:
1 )选择所述三维视频序列中所述视点 C的视频序列作为所述立体视频对中 的一个视频序列 VI;
2) 确定一个虛拟视点 P2, 合成虚拟视点 P2的虚拟视点视频序列, 作为所 述立体视频对中的一个视频序列 V2, 所述虚拟视点 P2在摄像机视点 C和虚拟 视点 P1的连线上,且与所述摄像机视点 C的距离为所述摄像机视点 C和虚拟视 点 P1之间距离的 S1/S2倍。
4、 如权利要求 3所述的立体视频对产生方法, 其特征在于, 所述显示辅助 信息还包括图像平移信息,所述图像平移信息指示对由所述 C和 P1视点位置视 频序列构成的立体视频对中两个视频序列的图像进行水平平移的像素数 X; 所述 "对三维视频序列进行处理, 得到一个立体视频对"还包括对所述立 体视频对中两个视频序列的图像进行水平平移, 且平移的像素数 X'为所述像素 数 X的 S1/S2倍, 即 X, = XS1/S2。
5、 一种立体视频对产生装置, 其特征在于包括以下两个模块:
摄像机视点视频序列选取模块, 其输入包括三维视频序列和摄像机视点位 置信息, 所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的位 置; 所述摄像机视点视频序列选取模块的输出包括立体视频对中的一个视频序 列 VI; 所述摄像机视点视频序列选取模块完成的处理包括选择所述三维视频序 列中所述视点 C的视频序列作为所述立体视频对中的一个视频序列 VI;
虚拟视点视频序列合成模块, 其输入包括三维视频序列、 虚拟视点位置信 息和显示端縮放系数 S1 ; 所述虚拟视点位置信息指示一个虚拟视点 P1的位置; 所述显示端縮放系数 S1为一个立体显示器 D1 的水平分辨率 Resl与水平宽度 W1的比值;所述虚拟视点视频序列合成模块的输出包括立体视频对中的一个视 频序列 V2; 所述虚拟视点视频序列合成模块完成的处理包括确定一个虚拟视点 P2, 合成虚拟视点 P2的虚拟视点视频序列, 作为所述立体视频对中的一个视频 序列 V2, 所述虚拟视点 P2在所述摄像机视点 C和虚拟视点 P1的连线上,且与 所述摄像机视点 C的距离为所述摄像机视点 C和虚拟视点 P1之间距离的 S1/ 倍, 其中 K为一个常数。
6、 如权利要求 5所述的一种立体视频对产生装置, 其特征在于还包括图像 平移模块,其输入包括由所述视频序列 VI和视频序列 V2构成的立体视频对 Q1、 所述的显示端缩放系数 S1和图像平移信息, 所述图像平移信息指示对由所述 C 和 P1视点位置视频序列构成的立体视频对中两个视频序列的图像进行水平平移 的像素数 X; 其输出包括一个经过平移处理的立体视频对 Q2; 所述图像平移模 块完成的处理包括对立体视频对中两个视频序列的图像进行水平平移, 且平移 的像素数 X'为所述像素数 X的 Sl/Κ倍, 即 X' = XS1/K。
7、 一种立体视频对产生装置, 其特征在于包括以下两个模块:
摄像机视点视频序列选取模块, 其输入包括三维视频序列和摄像机视点位 置信息, 所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的位 置; 所述摄像机视点视频序列选取模块的输出包括立体视频对中的一个视频序 列 VI; 所述摄像机视点视频序列选取模块完成的处理包括选择所述三维视频序 列中所述视点 C的视频序列作为所述立体视频对中的一个视频序列 VI;
虚拟视点视频序列合成模块, 其输入包括三维视频序列、 虚拟视点位置信 息、显示端缩放系数 S1和源端缩放系数 S2,所述虚拟视点位置信息指示一个虚 拟视点 P1的位置,所述显示端缩放系数 S1为一个立体显示器 D1的水平分辨率 Resl与水平宽度 W1的比值, 即 Sl =Resl/Wl, 所述源端缩放系数 S2为一个立 体显示器 D2的水平分辨率 Res2与水平宽度 W2的比值, 即 S2=Res2/W2; 所 述虚拟视点视频序列合成模块的输出包括立体视频对中的一个视频序列 V2; 所 述虚拟视点视频序列合成模块完成的处理包括确定一个虚拟视点 P2, 合成虚拟 视点 P2的虚拟视点视频序列, 作为所述立体视频对中的一个视频序列 V2, 所 述虚拟视点 P2在所述摄像机视点 C和虚拟视点 P1的连线上, 且与所述摄像机 视点 C的距离为所述摄像机视点 C和虚拟视点 P1之间距离的 S1/S2倍。
8、 如权利要求 7所述的一种立体视频对产生装置, 其特征在于还包括图像 平移模块,其输入包括由所述视频序列 VI和视频序列 V2构成的立体视频对 Q1、 显示端缩放系数 Sl、源端缩放系数 S2和图像平移信息,所述图像平移信息指示 对由所述 C和 P1视点位置视频序列构成的立体视频对中两个视频序列的图像进 行水平平移的像素数 X; 其输出包括一个经过平移处理的立体视频对 Q2; 所述 图像平移模块完成的处理包括对立体视频对中两个视频序列的图像进行水平平 移, 且平移的像素数 X'为所述像素数 X的 S1/S2倍, 即 X' = XS1/S2。
9、 一种立体视频对产生方法, 其特征在于, 由显示辅助信息对三维视频序 列进行处理, 得到一个立体视频对; 所述立体视频对在立体显示器 D1上显示; 所述显示辅助信息包括摄像机视点位置信息、 虚拟视点位置信息; 所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的位置; 所述虚拟视点位置信息指示一个虚拟视点 P1的位置;
所述对三维视频序列进行处理, 得到一个立体视频对包括:
1 )选择所述三维视频序列中所述摄像机视点 c的视频序列作为所述立体视 频对中的一个视频序列 VI;
2)确定一个虚拟视点 P2, 合成虚拟视点 P2的虚拟视点视频序列, 作为所 述立体视频对中的一个视频序列 V2, 所述虚拟视点 P2在摄像机视点 C和虚拟 视点 P1的连线上,且与所述摄像机视点 C的距离为所述摄像机视点 C和虚拟视 点 P1之间距离的 Sl/Κ倍; 其中, K为一个常数, S1为显示端缩放系数, 所述 S1为所述立体显示器 D1的水平分辨率 Resl与水平宽度 W1的比值。
10、 如权利要求 9所述的立体视频对产生方法, 其特征在于, 所述显示辅 助信息还包括图像平移信息,所述图像平移信息指示对由所述 C和 P1视点位置 视频序列构成的立体视频对中两个视频序列的图像进行水平平移的像素数 X; 所述 "对三维视频序列进行处理, 得到一个立体视频对"还包括对所述立 体视频对中两个视频序列的图像进行水平平移, 且平移的像素数 X'为所述像素 数 X的 Sl/Κ倍, 即 X, = XS1/K。
11、 一种立体视频对产生方法, 其特征在于, 由输入的显示辅助信息对三 维视频序列进行处理, 得到一个立体视频对; 所述的立体视频对在立体显示器
D1上显示;
所述显示辅助信息包括摄像机视点位置信息、 虚拟视点位置信息; 所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 c的位置; 所述虚拟视点位置信息指示一个虚拟视点 P1的位置;
所述对三维视频序列进行处理, 得到一个立体视频对包括:
1 )选择所述三维视频序列中所述视点 c的视频序列作为所述立体视频对中 的一个视频序列 VI;
2) 确定一个虚拟视点 P2, 合成虚拟视点 P2的虚拟视点视频序列, 作为所 述立体视频对中的一个视频序列 V2, 所述虚拟视点 P2在摄像机视点 C和虚拟 视点 P1的连线上,且与所述摄像机视点 C的距离为所述摄像机视点 C和虚拟视 点 P1之间距离的 S1/S2倍; 其中, S1为显示端縮放系数, 所述 S1为所述立体 显示器 D1的水平分辨率 Resl与水平宽度 W1的比值, S2为源端缩放系数, 所 述 S2为一个立体显示器 D2的水平分辨率 Res2与水平宽度 W2的比值。
12、 如权利要求 11所述的立体视频对产生方法, 其特征在于, 所述显示辅 助信息还包括图像平移信息,所述图像平移信息指示对由所述 C和 P1视点位置 视频序列构成的立体视频对中两个视频序列的图像进行水平平移的像素数 X; 所述 "对三维视频序列进行处理, 得到一个立体视频对"还包括对所述立 体视频对中两个视频序列的图像进行水平平移, 且平移的像素数 X'为所述像素 数 X的 S1/S2倍, 即 X, = XS1/S2。
13、 一种立体视频对产生装置, 其特征在于包括以下两个模块:
摄像机视点视频序列选取模块, 其输入包括三维视频序列和摄像机视点位 置信息, 所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的位 置; 所述摄像机视点视频序列选取模块的输出包括立体视频对中的一个视频序 列 VI; 所述摄像机视点视频序列选取模块完成的处理包括选择所述三维视频序 列中所述视点 C的视频序列作为所述立体视频对中的一个视频序列 VI;
虚拟视点视频序列合成模块, 其输入包括三维视频序列、 虚拟视点位置信 息; 所述虚拟视点位置信息指示一个虚拟视点 P1的位置; 所述虚拟视点视频序 列合成模块的输出包括立体视频对中的一个视频序列 V2; 所述虚拟视点视频序 列合成模块完成的处理包括确定一个虚拟视点 P2,合成虚拟视点 P2的虚拟视点 视频序列, 作为所述立体视频对中的一个视频序列 V2, 所述虚拟视点 P2在所 述摄像机视点 C和虚拟视点 P1的连线上,且与所述摄像机视点 C的距离为所述 摄像机视点 C和虚拟视点 P1之间距离的 Sl/Κ倍;其中, S1为显示端缩放系数, 所述 S1为一个立体显示器 D1的水平分辨率 Resl与水平宽度 W1的比值, K为 一个常数。
14、 如权利要求 13所述的一种立体视频对产生装置, 其特征在于还包括图 像平移模块, 其输入包括由所述视频序列 VI和视频序列 V2构成的立体视频对 Q1和图像平移信息, 所述图像平移信息指示对由所述 C和 P1视点位置视频序 列构成的立体视频对中两个视频序列的图像进行水平平移的像素数 X; 其输出 包括一个经过平移处理的立体视频对 Q2; 所述图像平移模块完成的处理包括对 立体视频对中两个视频序列的图像进行水平平移, 且平移的像素数 X'为所述像 素数 X的 Sl/Κ倍, 即 X, = XS1/K。
15、 一种立体视频对产生装置, 其特征在于包括以下两个模块:
摄像机视点视频序列选取模块, 其输入包括三维视频序列和摄像机视点位 置信息, 所述摄像机视点位置信息指示三维视频序列中一个摄像机视点 C的位 置; 所述摄像机视点视频序列选取模块的输出包括立体视频对中的一个视频序 列 VI; 所述摄像机视点视频序列选取模块完成的处理包括选择所述三维视频序 列中所述视点 C的视频序列作为所述立体视频对中的一个视频序列 VI;
虚拟视点视频序列合成模块, 其输入包括三维视频序列、 虚拟视点位置信 息, 所述虚拟视点位置信息指示一个虚拟视点 P1的位置; 所述虚拟视点视频序 列合成模块的输出包括立体视频对中的一个视频序列 V2; 所述虚拟视点视频序 列合成模块完成的处理包括确定一个虚拟视点 P2,合成虚拟视点 P2的虚拟视点 视频序列, 作为所述立体视频对中的一个视频序列 V2, 所述虚拟视点 P2在所 述摄像机视点 C和虚拟视点 P1的连线上,且与所述摄像机视点 C的距离为所述 摄像机视点 C和虚拟视点 P1之间距离的 S1/S2倍, 其中, S1为显示端缩放系 数, 所述 S1为一个立体显示器 D1的水平分辨率 Resl与水平宽度 W1的比值, S2为源端缩放系数, 所述 S2为一个立体显示器 D2的水平分辨率 Res2与水平 宽度 W2的比值。
16、 如权利要求 15所述的一种立体视频对产生装置, 其特征在于还包括图 像平移模块, 其输入包括由所述视频序列 VI和视频序列 V2构成的立体视频对 Q1和图像平移信息, 所述图像平移信息指示对由所述 C和 P1视点位置视频序 列构成的立体视频对中两个视频序列的图像进行水平平移的像素数 X; 其输出 包括一个经过平移处理的立体视频对 Q2; 所述图像平移模块完成的处理包括对 立体视频对中两个视频序列的图像进行水平平移, 且平移的像素数 X'为所述像 素数 X的 S1/S2倍, 即 X, = XS1/S2。
PCT/CN2013/000466 2012-04-25 2013-04-24 一种立体视频对产生方法及装置 WO2013159568A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/397,123 US9888222B2 (en) 2012-04-25 2013-04-24 Method and device for generating stereoscopic video pair
EP13780677.4A EP2843948B1 (en) 2012-04-25 2013-04-24 Method and device for generating stereoscopic video pair

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210125010.9 2012-04-25
CN201210125010.9A CN103379355B (zh) 2012-04-25 2012-04-25 一种立体视频对产生方法及装置

Publications (1)

Publication Number Publication Date
WO2013159568A1 true WO2013159568A1 (zh) 2013-10-31

Family

ID=49463839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000466 WO2013159568A1 (zh) 2012-04-25 2013-04-24 一种立体视频对产生方法及装置

Country Status (4)

Country Link
US (1) US9888222B2 (zh)
EP (1) EP2843948B1 (zh)
CN (1) CN103379355B (zh)
WO (1) WO2013159568A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105282321A (zh) * 2015-08-28 2016-01-27 上海健保科技有限公司 一种应用软件用户界面与显示设备的适配方法
GB2571306A (en) * 2018-02-23 2019-08-28 Sony Interactive Entertainment Europe Ltd Video recording and playback systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476850B1 (en) * 1998-10-09 2002-11-05 Kenneth Erbey Apparatus for the generation of a stereoscopic display
CN101742347A (zh) * 2010-01-04 2010-06-16 中国电信股份有限公司 实现立体显示的方法、显示装置及显示系统
JP2011151676A (ja) * 2010-01-22 2011-08-04 Panasonic Electric Works Co Ltd 映像表示システム
CN102263977A (zh) * 2011-08-01 2011-11-30 清华大学 一种用于移动终端的立体视频获取的方法和装置
CN102325259A (zh) * 2011-09-09 2012-01-18 青岛海信数字多媒体技术国家重点实验室有限公司 多视点视频中虚拟视点合成方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1862969A1 (en) * 2006-06-02 2007-12-05 Eidgenössische Technische Hochschule Zürich Method and system for generating a representation of a dynamically changing 3D scene
US8106924B2 (en) * 2008-07-31 2012-01-31 Stmicroelectronics S.R.L. Method and system for video rendering, computer program product therefor
JP4793451B2 (ja) * 2009-01-21 2011-10-12 ソニー株式会社 信号処理装置、画像表示装置、信号処理方法およびコンピュータプログラム
JP5820276B2 (ja) * 2009-02-17 2015-11-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 3d画像及びグラフィカル・データの結合
KR101629479B1 (ko) * 2009-11-04 2016-06-10 삼성전자주식회사 능동 부화소 렌더링 방식 고밀도 다시점 영상 표시 시스템 및 방법
GB2479784B (en) * 2010-04-23 2012-11-07 Nds Ltd Image scaling
CN102860017B (zh) * 2010-04-28 2015-06-10 富士胶片株式会社 立体摄像装置及其制造方法
EP2395765B1 (en) * 2010-06-14 2016-08-24 Nintendo Co., Ltd. Storage medium having stored therein stereoscopic image display program, stereoscopic image display device, stereoscopic image display system, and stereoscopic image display method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476850B1 (en) * 1998-10-09 2002-11-05 Kenneth Erbey Apparatus for the generation of a stereoscopic display
CN101742347A (zh) * 2010-01-04 2010-06-16 中国电信股份有限公司 实现立体显示的方法、显示装置及显示系统
JP2011151676A (ja) * 2010-01-22 2011-08-04 Panasonic Electric Works Co Ltd 映像表示システム
CN102263977A (zh) * 2011-08-01 2011-11-30 清华大学 一种用于移动终端的立体视频获取的方法和装置
CN102325259A (zh) * 2011-09-09 2012-01-18 青岛海信数字多媒体技术国家重点实验室有限公司 多视点视频中虚拟视点合成方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2843948A4 *

Also Published As

Publication number Publication date
CN103379355B (zh) 2015-10-28
US9888222B2 (en) 2018-02-06
EP2843948B1 (en) 2019-09-04
US20150334364A1 (en) 2015-11-19
EP2843948A1 (en) 2015-03-04
CN103379355A (zh) 2013-10-30
EP2843948A4 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
US9525858B2 (en) Depth or disparity map upscaling
JP4994622B2 (ja) 立体映像信号の発生方法及びそれに適したスケーリング方法
TWI444036B (zh) 2d至3d使用者介面內容資料轉換
TWI488470B (zh) Dimensional image processing device and stereo image processing method
TWI428007B (zh) 視訊處理裝置及方法
US20140333739A1 (en) 3d image display device and method
US20110026809A1 (en) Fast multi-view three-dimensional image synthesis apparatus and method
JP2010273333A5 (zh)
WO2015161541A1 (zh) 一种针对多视点裸眼3d显示的并行同步缩放引擎及方法
US20120069159A1 (en) Stereoscopic image display device
JP2009294988A (ja) 立体視画像生成装置、立体視画像生成方法およびプログラム
CN102014293B (zh) 平面视频的立体渲染方法
US20120044241A1 (en) Three-dimensional on-screen display imaging system and method
JP4748251B2 (ja) 映像変換方法および映像変換装置
JP5521608B2 (ja) 画像処理装置、および画像処理方法、並びにプログラム
JP6033625B2 (ja) 多視点画像生成装置、画像生成方法、表示装置、プログラム、及び、記録媒体
WO2013159568A1 (zh) 一种立体视频对产生方法及装置
CN109345444A (zh) 深度感知增强的超分辨率立体图像构建方法
CN103002295A (zh) 多视点裸眼三维显示设备的二维图像显示方法及系统
WO2012132267A1 (ja) 全方向ステレオ画像出力装置
CN108124148A (zh) 一种单个视图影像转换多个视图影像的方法及装置
Jiufei et al. A new virtual view rendering method based on depth image
KR20130094905A (ko) 디스플레이장치 및 그 입체감 조정방법
US20120163700A1 (en) Image processing device and image processing method
Liu et al. Deinterlacing of depth-image-based three-dimensional video for a depth-image-based rendering system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14397123

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013780677

Country of ref document: EP