WO2013159549A1 - 一种建立和使用浮动网段的方法、装置和系统 - Google Patents

一种建立和使用浮动网段的方法、装置和系统 Download PDF

Info

Publication number
WO2013159549A1
WO2013159549A1 PCT/CN2012/087216 CN2012087216W WO2013159549A1 WO 2013159549 A1 WO2013159549 A1 WO 2013159549A1 CN 2012087216 W CN2012087216 W CN 2012087216W WO 2013159549 A1 WO2013159549 A1 WO 2013159549A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual link
network segment
address
user
floating
Prior art date
Application number
PCT/CN2012/087216
Other languages
English (en)
French (fr)
Inventor
滕新东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013159549A1 publication Critical patent/WO2013159549A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing

Definitions

  • the present invention claims to be submitted to the Chinese Patent Office on April 28, 2012, the application number is CN 201210129898.3, and the invention name is "a method for establishing and using a floating network segment, The priority of the Chinese Patent Application, the entire disclosure of which is incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of communications, and in particular, to a method, apparatus, and system for establishing and using a floating network segment. Background technique
  • PW Pulseudo Wire
  • IP/MPLS Multi-Protocol Label Switching
  • Layer 2 links to simulate Layer 2 data packets (such as Ethernet).
  • the message is transmitted transparently to the opposite end.
  • Figure 1 shows an application scenario of an existing IP RAN (Radio Access Network).
  • UPE user-end provider edge, user-side operator edge device
  • the IP RAN bearer network is formed by the NPE (network provider edge) and the PE (provider edge).
  • the UPE is connected to the base station, and the PE and RNC (radio network controller) are used.
  • the data of the base station is transparently transmitted to the NPE through the PW after being accessed by the UPE, and then the base station data is continuously transmitted through the tunnel according to different types (such as TDM (time division multiplexing) data) or IP/
  • the MPLS (such as IP packets) forwarding is sent to the RNC for processing.
  • Shown in Figure 2 is an embodiment of a prior art primary backup PW protection.
  • the UPE and the two NPEs of the dual-homing establish an active PW and a standby PW, respectively.
  • the primary PW fails, the UPE redirects the data to the standby PW, sends it to the standby PW, and sends it to the peer from the backup port.
  • ⁇ and RNC the primary NPE also quickly perceives the PW fault, and then the corresponding route corresponding to the gateway corresponding to the primary PW is eliminated, so that the data of the RNC returned from the opposite PE can be correspondingly sent to the standby NPE, and the standby NPE will be Data is transparently transmitted to UPE through the standby PW And base station.
  • the standby PW or the standby NPE has actually been switched to the primary PW or the primary NPE.
  • the primary PW corresponding to UPE 2 fails, all routes through the primary NPE will be revoked.
  • the primary PW corresponding to UPE1 is not faulty, but the corresponding route will also be revoked.
  • An object of the embodiments of the present invention is to provide a method, an apparatus, and a system for establishing and using a floating network segment, and allocating a floating network segment associated with a PW to reduce waste of network resources.
  • a method for establishing and using a floating network segment the gateway interface of the edge device PE of the first network core side communicates with the user side PE through the first virtual link; the first network core side PE is configured according to the gateway interface
  • the gateway address and the mask are the user equipments that are in communication with the user-side PE, and the floating network segment is allocated to the first virtual link; the first network core side PE is the floating network.
  • the allocation information of the segment is transmitted to the second network core side PE; when the first virtual link fails, the routing information of the floating network segment is sent to the remote router.
  • a method for establishing and using a floating network segment comprising: the gateway interface of the edge device PE of the first network core side communicates with the user side PE through the first virtual link; and the first network core side PE according to the gateway
  • the gateway address and the mask of the interface are a user network device that is in communication with the user-side PE, and the floating network segment corresponds to the first virtual link;
  • the allocation information of the floating network segment is transmitted to the second network core side PE; when the first virtual link fails, the first network core side PE notifies the second network core side PE to perform handover by using a backup protocol;
  • the second network core side PE sets the second virtual link to an available state, and advertises the route of the floating network segment corresponding to the second virtual link to the remote router, where the second virtual link Is the backup link of the first virtual link.
  • a routing device includes: a gateway interface, a configuration module, a backup module, and a route publishing module; the gateway interface communicates with a corresponding user-side PE through a first virtual link; The gateway address and mask of the interface are in communication with the user side PE.
  • the user equipment allocates a floating network segment, where the floating network segment corresponds to the first virtual link; the backup module transmits the allocation information of the floating network segment to the second network core side PE; When the virtual link is faulty, the route advertisement module sends the routing information of the floating network segment to the remote router.
  • a system for establishing and using a floating network segment where the system includes a first routing device and a second routing device, where a gateway interface of the first routing device can communicate with a user-side PE through a first virtual link; a router allocates a floating network segment to the user equipment that communicates with the user-side PE according to the gateway address and the mask of the gateway interface, where the floating network segment corresponds to the first virtual link; the first route The device is configured to send the allocation information of the floating network segment to the second routing device; when the first virtual link fails, the first routing device sends the routing information of the floating network segment to And the second routing device communicates with the user-side PE through the second virtual link, and issues a route corresponding to the floating network segment of the second virtual link.
  • a system for establishing and using a floating network segment includes a first routing device and a second routing device, where a gateway interface of the first routing device communicates with a user-side PE through a first virtual link, where the second The gateway interface of the routing device communicates with the user-side PE through the second virtual link; the first router allocates a floating network segment to the user equipment that communicates with the user-side PE according to the gateway address and the mask of the gateway interface.
  • the first network device is configured to transmit the allocation information of the floating network segment to the second routing device, where the first routing device is suitable.
  • the second routing device is configured to send the route of the floating network segment corresponding to the second virtual link to the remote
  • the first routing device sends the fault information to the remote router when the first virtual link fails.
  • the user equipment that communicates with the UPE is allocated a floating network segment, and the floating network segment corresponds to each virtual link, and the same gateway is configured (floating
  • the IP address of the device in the network segment belongs to the large network segment defined by the IP address of the gateway. It implements the allocation and management of the floating network segment.
  • a virtual link or virtual link it corresponds to the same active NPE.
  • the route corresponding to the faulty virtual link can be revoked.
  • the waste of network resources can be reduced.
  • FIG. 1 is an application scenario of an IP RAN bearer in the prior art
  • FIG. 2 is a schematic diagram of networking of a primary backup PW protection in the prior art
  • FIG. 3 is a flowchart of a method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of networking in an embodiment of the present invention.
  • Figure 5 is a flowchart of a method according to an embodiment of the present invention.
  • FIG. 6 is a sub-flow diagram of a method according to an embodiment of the present invention.
  • FIG. 7 is a sub-flow diagram of a method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of networking in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of networking in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a router device according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a system in an embodiment of the present invention.
  • FIG 12 is a sub-flow diagram of a method in accordance with an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS In order to make the objects, technical solutions and advantages of the embodiments of the present invention more comprehensible, the present invention will be further described in detail below in conjunction with the accompanying drawings. It is to be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention. Embodiments of the invention include methods of establishing and using floating network segments, routing devices, and systems for establishing and using floating network segments.
  • the method included in the embodiment of the present invention may be implemented by a computer hardware device, and the router device may be understood as a carrier edge device (PE), and the network core side PE or the user side PE is a relative concept, which is relative to the network arrangement. Defined.
  • PE carrier edge device
  • a method for establishing and using a floating network segment starts in step S301, and a gateway interface of a first network core side PE (ie, a primary NPE) passes a first virtual link PW. (ie the primary PW) Connect the corresponding User Side PE (UPE).
  • Figure 4 shows the above The networking diagram of the application mode, the UPE and the NPE form an access network, and the primary NPE is the NPE1, that is, the carrier edge router on the core side of the network communicates with the carrier edge router UPE1 on the user side through the active virtual link PW1.
  • the UPE1 communicates with the carrier edge router NPE2 on the core side of the network through the standby virtual link PW3.
  • the virtual links PW1 and PW3 correspond to the floating network segment 1 and the floating network segment 2, respectively.
  • a floating network segment is a network segment that is assigned to user equipment that is connected to the UPE. Although the user equipment is not shown in FIG. 4, those skilled in the art can understand that the user equipment can be a base station, a routing device, or a user terminal.
  • UPE2 communicates with its primary NPE (NPE1) through the primary virtual link PW2, and UPE2 also communicates with the standby NPE (NPE2) through the alternate virtual link PW4.
  • NPE1 and UPE2 are used to transmit data of different service types
  • PW1 and PW3 are used to transmit service type 1
  • PW2 and PW4 are used to transmit service type 2.
  • the user equipment connected to the UPE uses the NPE as the access gateway.
  • the IP address of the user equipment is obtained through the DHCP protocol or configured in other ways.
  • the user data is transmitted to the NPE through the access network through Layer 2 forwarding or transparent transmission. After Layer 2 is terminated, Layer 3 IP/MPLS forwarding is performed. After the data packet sent by the remote end arrives at the NPE, it is transmitted to the UPE through the access network through the gateway interface in Layer 2 forwarding or transparent transmission.
  • the NPE is deployed in active/standby mode.
  • Figure 4 shows the dual-system backup (one master and one backup).
  • the deployment mode is not limited to the dual-machine backup shown in the figure, and the multi-machine backup (one main multiple standby) can also achieve the object of the present invention.
  • the UPE and the NPE can be Layer 2 Ethernet networks or IP/MPLS networks.
  • IP/MPLS network the UPE and the NPE transparently transmit the user's Layer 2 data through the PW.
  • the UPE and the active and standby NPEs are configured with the active and standby PWs.
  • the packets are transparently transmitted from the primary PW to the active NPE.
  • the PW of the UPE uses one NPE as the primary PW, and the PW that supports the other multiple UPEs uses the other PPE as the primary PW.
  • the gateway interface on the NPE is associated with a virtual local area network (VLAN), PW or VSI, and the user equipment uses the IP address of the gateway interface as the gateway address.
  • the gateway interface is associated with the PW: the gateway interface supports the termination of multiple different PWs at the same time, and configures the same gateway IP address and network segment mask. User data transparently transmitted by different PWs can simultaneously pass through the gateway. Interface processing.
  • the NPE There are two ways for the NPE to advertise the network segment corresponding to the gateway: Only the primary NPE is advertised; or the primary NPE and the standby NPE are advertised, but the primary NPE is a high priority, so that the user traffic returned by the remote end is transmitted to the primary. Use NPE and send it to the user from the primary NPE.
  • the first network core side PE allocates a floating network segment to the user equipment that communicates with the user side PE according to the gateway address and the mask of the gateway interface, where the floating network segment corresponds to the first Virtual link.
  • the NPE manages the IP addresses of the users connected to the UPE through the floating network segment.
  • the UPE can be configured to share the traffic to different NPEs based on the device, interface, VLAN, and PW. Control the active/standby VLAN and the active/standby relationship between the active and standby PWs.
  • the NPEs that process traffic are the primary NPEs.
  • the NPEs are configured with a gateway address. All user devices connected to the UPE are the NPEs. For example, the base station) uses this address as the gateway address.
  • the protocol message passes through the UPE to reach the gateway interface of the NPE, and the NPE can only refer to the related information (VLAN, PW, or UPE MAC/DHCP option information).
  • a predetermined policy such as: based on the device, the IP address of the user-side PE, the MAC address of the user-side PE, the interface, the ID of the VLAN, the ID of the PW, etc.
  • the subnet segment is assigned from the gateway address/mask (called a floating network).
  • the network segment size is specified by the policy, and the user equipment is assigned an IP address from the subnet segment to notify the user equipment through the DHCP protocol.
  • the first network core side PE transmits the allocation information of the floating network segment to the second network core side PE.
  • the backup protocol is run between the active and standby NPEs to notify the remote end of the allocation of the floating network segment.
  • the peer device associates the floating network segment with the corresponding VLAN, PW, UPE MAC/DHCP option.
  • the backup running between the active and standby NPEs is based on the ICCP protocol (Inter-Chassis Communication Protocol for L2VPN PE Redundancy, see the ITEF standards organization d ft-ietf-pwe3-iccp-07 draft).
  • the allocation information includes a floating network segment allocated to the user equipment, and a corresponding relationship between the floating network segment and the virtual link.
  • step S304 when the first virtual link fails, the routing information of the floating network segment is sent to the remote router. Specifically, when the link between the UPE and the NPE (VLAN, PW) fails, the standby NPE corresponding to the corresponding VLAN or PW is used as the active NPE, and the floating network segment route is advertised to guide the remote device to return traffic. Send to the NPE of the standby master. As shown in FIG. 12, in step S1201, the first virtual link (PW) fails, and in step S1202, the first network The core core PE notifies the second network core side PE to perform handover by using the backup protocol.
  • the second network core side PE sets the second virtual link (PW) to an available state, and issues a second virtual link to the remote end.
  • the route corresponds to the route of the floating network segment.
  • the NPE of the standby primary is restored to the standby NPE, and the floating network segment route is revoked. Therefore, the floating network segment of the primary NPE corresponding to the VLAN or PW only appears during the protection switching. Normal conditions are not visible.
  • a fast detection protocol (such as BFD protocol) can detect the fault and trigger protection switching.
  • BFD protocol detects the fault and notifies the UPE and the NPE respectively.
  • the UPE performs PW switching, and the user data is switched to the standby PW and sent to the standby NPE.
  • the backup gateway interface; and the NPE also switches at the same time, the primary NPE informs the opposite end (ie, the standby NPE) that the standby PW is used as the primary use by the backup NPE. At this time, the standby NPE is used as the primary use for the PW.
  • the corresponding floating network segment route is advertised.
  • the NPE of the standby master After the NPE of the standby master receives the user data from the PW of the standby master, it is processed by the corresponding gateway interface and sent to the peer through the IP/MPLS network. The data returned by the peer is routed according to the floating network segment and will be forwarded. The NPE to the standby master is sent to the UPE and the user equipment through the PW of the standby master. This process implements fast protection switching of the network. As the switching time is fast, the user service can be guaranteed not to be interrupted.
  • the user equipment is connected to the unified gateway through the user edge routers (UPE) 803, 804, and 805 of the user side, and the unified gateway is provided in an active/standby manner, including the operation on the core side of the network.
  • the NPEs are the primary NPE 801 and the standby NPE 802, respectively.
  • Each UPE (803, 804, or 805) and the two NPEs (801 and 802) establish an active PW and a standby PW, and the UPE hangs the user equipment.
  • the user equipment can be a directly connected user equipment, or multiple user equipments can be connected through a Layer 2 network.
  • Users connected to the same UPE may have multiple service types. Multiple PWs can be established and associated with interfaces corresponding to each service type.
  • the NPE is configured to transparently transmit the service data to the NPE.
  • the NPE configures the gateway interface (including the gateway IP address and the mask) for each service.
  • the same service type of all users on different UPEs is the same interface on the NPE. Access the gateway interface and configure the same gateway IP address. For example: Establish three active PWs to connect user-side PEs (803, 804, and 805) with the primary network core side PE801. In the load balancing mode, the user service in the part of the UPE is mainly used by one NPE, and the user service in another part of the UPE is used as the other NPE.
  • the floating network segment is used in a similar manner to the case of only one gateway. The following describes the non-load sharing scenario.
  • the virtual interface is associated with the PW of the same type of service corresponding to all the UPEs.
  • the virtual interface is the gateway interface corresponding to the user equipment (the gateway IP address and the mask are configured).
  • the gateway interface of the active NPE is associated with the active PW.
  • the gateway interface of the standby NPE is associated with the standby PW.
  • FIG. 6 is a flowchart of a sub-flow according to an embodiment of the present invention.
  • a user equipment such as a base station
  • the UPE requests an IP address through a DHCP protocol.
  • the address allocation request message is transparently transmitted to the active NPE through the first virtual link (principal PW).
  • the first network core side PE corresponds to the slave network link (ie, the current active PW) according to the size of the floating network segment specified in the predetermined policy. If the floating network segment corresponding to the current active PW already exists, the floating network segment is used.
  • the first network core side PE (primary NPE) allocates an IP address to the user equipment from the floating network segment.
  • the user equipment is notified by the DHCP protocol of the IP address and the gateway address assigned to the user equipment, and the user equipment uses the IP address assigned to the user equipment as the address, and configures the gateway IP address as the gateway interface of the primary NPE. IP address.
  • the primary NPE and the standby NPE establish an active/standby relationship through the backup protocol, and the information is exchanged through the protocol.
  • the primary NPE allocates a floating network segment the information about the floating network segment and the corresponding PW needs to be notified to the standby NPE. Save this information to handle it when the protection is switched.
  • the specific implementation process of the backup protocol is as follows:
  • the active device establishes a TCP connection with the standby device, negotiates the active/standby relationship through the private protocol format, and then can use the TCP connection to transmit data that needs to be backed up.
  • the protocol also supports the hello mechanism. If the hello is not received periodically, the primary device is faulty. When the fault occurs, the backup device is upgraded. All the backup data is in the active state and the packet forwarding is allowed. It is also possible for the primary device to notify the backup device to promote a portion of the service to the primary use.
  • the packet forwarding process includes the following steps:
  • the UPE user-side interface is associated with the active PW.
  • the gateway interface of the primary NPE is associated with the primary PW.
  • the gateway interface performs Layer 2 termination.
  • the routing forwarding table is searched based on the destination IP address to obtain the outgoing interface, and is sent from the outbound interface to the remote edge device and sent to the peer end.
  • User The destination IP address of the data returned by the peer user is the IP address of the local user equipment.
  • the routing table is forwarded according to the gateway route advertised by the local NPE.
  • the NPE of the primary NPE is used as the gateway.
  • the outgoing interface of the primary NPE is the gateway interface.
  • the associated primary PW can be found based on the internal address entries (such as the Address Resolution Protocol).
  • the primary PW sends the packet to the UPE.
  • the UPE sends the packet received from the primary PW directly to the user equipment from the corresponding user-side interface.
  • step S1201 the UPE detects the primary PW failure (such as the corresponding fast detection method of the BFD protocol).
  • the interface of the user-side PE is associated with the second virtual link (standby PW), and the user data is transmitted to the second network core side PE (standby NPE) through the standby PW.
  • the first network core side PE detects the primary PW fault, and the standby NPE is notified by the backup protocol, and the standby NPE sets the corresponding standby PW to the available state, and advertises the corresponding floating network segment route to the remote end.
  • the gateway interface of the standby NPE is associated with the standby PW.
  • the gateway interface When receiving the data of the primary PW, the gateway interface performs Layer 2 termination and sends the data to the peer device through IP/MPLS.
  • the data returned by the peer user its destination IP address.
  • the address is the IP address of the local user equipment.
  • the remote device sends the packet to the local standby NPE according to the route of the floating network segment advertised by the local standby NPE.
  • the standby NPE then transparently transmits the message from the activated standby PW to the UPE.
  • the UPE sends the packet received from the standby PW directly to the user equipment from the corresponding user-side interface.
  • the UPE detects the failure of the primary PW, and associates the user-side interface with the primary PW.
  • the user data is transmitted to the standby NPE through the primary PW.
  • the UPE is notified to switch back the data to the original primary PW.
  • the UPE can also receive the return data from both the primary and backup PWs through special processing.
  • the primary NPE detects the primary PW failure recovery.
  • the backup protocol notifies the standby NPE that the standby NPE revokes the corresponding floating network segment route to the remote end and notifies the primary NPE.
  • the primary NPE notifies the UPE to switch back to the original primary PW.
  • the backup standby PW is re-established. Set to unavailable state.
  • the primary NPE sends the data received from the primary PW to the remote end, and the remote end sends the returned data to the primary NPE after processing the process of canceling the routing of the floating network segment; Will be sent to the standby NPE.
  • the primary NPE and the standby NPE send the received data to the UPE through the corresponding PW.
  • the UPE sends it to the user equipment.
  • the standby NPE sets the standby PW to be unavailable, the UPE will only receive the return data from the primary PW.
  • FIG. 9 The application of the floating network segment in the H-VPLS scheme is shown in Figure 9.
  • an active PW and a standby PW are established between each UPE (903, 904 or 905) and two NPEs (901 and 902), respectively, and the primary PW and the standby PW are respectively used as the primary NPE and the standby NPE.
  • the spoke PW of the virtual switching instance (VSI), the VSI on the primary NPE and the standby NPE respectively serve as the gateway interface (configure the gateway IP address and mask).
  • the NPE is a separate device (such as AGG and NPE, AGG refers to the aggregation device, the AGG is not a Layer 3 termination point).
  • the AGG is configured with a VSI and is connected to the NPE through a VLAN interface (accessed to the VSI).
  • the NPE configures the gateway IP address and mask on the interface corresponding to the VLAN.
  • a gateway interface in accordance with an embodiment of the present invention, in accordance with an embodiment of the present invention, a gateway interface
  • the gateway interface terminates the Layer 2 packets in the VSI, and configures a gateway IP address and a network segment mask. User data transparently transmitted by all spoke PWs in the VSI is processed through the gateway interface.
  • step S701 the user equipment communicating with the user side PE (UPE) obtains an IP address through a DHCP protocol. For example, the user equipment sends an address allocation request to the first network core side PE through the user side PE and the first virtual link.
  • the NPE allocates a floating network segment according to a predetermined policy from the network segment corresponding to the gateway address/mask, and separates the IP addresses for the user equipment from the floating network segment.
  • the gateway interface is difficult to be associated with the PW. Therefore, the UPE needs to notify the NPE of the related information, so that the NPE can allocate the floating network segment according to the information.
  • the active/standby switchover is performed based on the UPE or PW, that is, load balancing is implemented.
  • the user-side PE related information is transmitted to the first network core side PE in the MAC-in-MAC encapsulation format, and the encapsulated outer MAC address is the MAC address of the user-side PE, and the I- The TAG tag identifies information about a predetermined policy assigned by the floating network segment.
  • the active NPE allocates the floating network segment according to the predetermined policy from the network segment corresponding to the gateway address or the mask.
  • the user equipment is assigned an IP address from the floating network segment.
  • MAC-in-MAC encapsulation MAC-in-MAC technology is defined by the IEEE 802.1 ah standard and will be used by users.
  • the Ethernet packet is encapsulated by an Ethernet encapsulation.
  • the outer encapsulated MAC address is used for forwarding on the carrier network, and the inner user Ethernet packet MAC address is used for forwarding on the user network.
  • MAC-in-MAC The encapsulation format also includes an I-TAG tag for identifying service information.
  • the MAC-in-MAC technology is used, and when the UPE receives the user data, the outer layer is encapsulated by the outer layer, and the outer MAC address is the MAC address of the UPE, so that when the packet arrives at the NPE and is forwarded in the VSI, The layer MAC performs learning and table lookup forwarding, and the gateway interface receives the Layer 2 packet containing the outer MAC address. At this time, the NPE can allocate the floating network segment according to the outer MAC address. According to this embodiment, when a fault occurs, the UPE is switched based on the UPE (that is, all the PWs of the same service corresponding to the UPE are switched), and the load sharing at this time can only be implemented based on the UPE.
  • the I-TAG tag of the MAC-in-MAC can be used to represent the PW information, that is, different I-TAG IDs are allocated for different PWs, and the NPE analyzes the outer MAC and I-TAG information.
  • PW-based switching (including the allocation of floating network segments) can be implemented.
  • One of the advantages of using the MAC-in-MAC technology is that the VSI of the NPE only needs to learn the MAC address of the UPE without learning the MAC address of all user equipments, which reduces the number of MAC address entries.
  • the fault switching and fault recovery back-switching process based on the floating network segment is similar to the processing of the active and standby PW solutions.
  • the differences in the data forwarding process are as follows:
  • the UPE user-side interface is associated with the active PW.
  • MAC-in-MAC processing is first performed.
  • the outer MAC address is encapsulated as the UPE MAC address, and the I-TAG ID is assigned according to the VLAN or PW.
  • the message is transparently transmitted to the primary NPE through the primary PW.
  • the active NPE obtains the outbound interface and performs source MAC address learning in the corresponding VSI.
  • the outbound interface obtained by the lookup table will correspond to the gateway interface.
  • the active NPE performs Layer 2 termination through the gateway interface.
  • For DHCP request packets the primary service is used.
  • the NPE will allocate the floating network segment based on the outer MAC and I-TAG information.
  • the other service packets will only terminate the MA: and I-TAG information.
  • the IP routing forwarding table is checked. MPLS forwards to the peer device.
  • the data returned by the peer user arrives at the gateway interface of the local primary NPE, according to internal entries (such as
  • the ARP entry can be used to find the associated outer MAC/I-TAG and inner MAC information.
  • the MAC-in-MAC encapsulation is performed.
  • the MAC address is forwarded in the VSI and sent to the UPE through the primary PW.
  • the UPE will be
  • the packet received by the primary PW is removed from the outer envelope of the MAC-in-MAC and sent to the user equipment from the corresponding user-side interface.
  • the failover process is similar to the active/standby switchover process in the active/standby switchover process.
  • the MAC-in-MAC encapsulation process of the packet is as described above.
  • the failover and failback process is similar to that of the active and standby PWs.
  • the MAC-in-MAC encapsulation process is as described above.
  • the routing device 1010 includes a configuration module 1011, a backup module 1012, a gateway interface 1013, and a route publishing module 1014.
  • the gateway interface 1013 communicates with the user side PE 1030 through the first virtual link PW 1040.
  • the gateway interface 1013 is adapted to receive a request for the user equipment connected to the user equipment of the PE1030 to obtain an IP address through the DHCP protocol, and send the IP address of the user equipment allocated according to the gateway address to the user equipment by using a DHCP protocol.
  • the gateway interface 1013 is a virtual switching interface, and the virtual switching interface is adapted to receive data transmitted by the MAC-in-MAC encapsulation format, where the outer MAC address of the encapsulation is the MAC address of the user-side PE, and the I- The TAG tag identifies the type of service.
  • the configuration module 1011 allocates the IP address of the user equipment connected to the PE1030 on the user side according to the address and mask of the gateway.
  • the configuration module 1011 allocates a floating network segment according to the gateway address and the mask corresponding to the PW1030, and allocates an IP address to the user equipment that communicates with the user side PE1030 according to the floating network segment.
  • the allocation of the floating network segment corresponds to the virtual link--that is, the primary virtual link and the standby virtual link respectively allocate the floating network segment.
  • the standby virtual link and the standby network core side PE may be idle in the standby state, or the standby virtual link and the active virtual link may be used to transmit at least two different types of service data respectively, when the primary virtual link is used.
  • the standby virtual link is responsible for transmitting the at least two different types of service data.
  • the configuration module 1011 stores the allocation information of the floating network segment in the storage unit 1015.
  • the backup module 1012 transmits the allocation information of the floating network segment completed by the configuration module 1011 to the standby network core side PE1020.
  • the route issuing module 1014 sends the routing information of the floating network segment corresponding to the fault link to the remote router.
  • Routing device 1010 also includes a storage unit 1015 for storing predetermined policies for distribution.
  • the configuration module 1011 reads the predetermined policy in the storage unit 1015, and allocates the floating network segment according to the predetermined policy, the gateway address, and the mask, and makes the size of the floating network segment conform to the predetermined policy described above.
  • the configuration module 1011 is configured to send related information of a predetermined policy for floating network segment allocation to a DHCP server through a DHCP relay message, so as to enable DHCP.
  • the server allocates an IP address of the user equipment according to related information of a predetermined policy for the allocation of the floating network segment in the packet.
  • the configuration module 1011 obtains the source IP address when receiving the user IP packet transmitted by the active virtual link, and allocates the user equipment connected by the user side PE in the subnet segment of the floating network segment. IP address.
  • the configuration module 1011 performs NAT replacement on the source IP address of the received user IP packet by using the allocated floating network segment address, and the routing device 1010 provides an external interface to notify the network address replacement relationship.
  • the configuration module 1011 receives a DHCP address allocation request message from the user equipment by using the primary virtual link, where the packet includes information about a predetermined policy added by the user-side PE.
  • the configuration module 1011 parses the packet, obtains information about a predetermined policy allocated by the floating network segment, and allocates a floating network segment according to the predetermined policy.
  • the information about the predetermined policy is selected from the IP address of the user-side PE, the MAC address of the user-side PE, the interface identifier of the user-side PE, and the VLAN ID or PW ID of the active virtual link.
  • the configuration module performs a relay processing on the request packet of the user equipment, and carries the information about the predetermined policy allocated by the floating network segment through the DHCP option.
  • the user equipment includes MAC-IN-MAC encapsulation, where the outer MAC is the MAC of the user-side PE, and the I-TAG indicates the VLAN or PW information; When the PE reaches the user equipment, the corresponding MAC-IN-MAC encapsulation is removed.
  • the system 1100 for establishing and using a floating network segment includes a first routing device 1110 and a second routing device 1120.
  • the gateway interface 1113 of the first routing device 1110 communicates with the corresponding user-side PE1130 through the PW1140.
  • the first routing device 1110 is adapted to transmit the allocation information of the floating network segment to the second network device 1120 through the backup protocol. According to the allocation information of the floating network segment, when the PW1140 fails, the gateway interface of the second network device 1120 communicates with the user-side PE1130 through the second PW1150.
  • the route issuing module 1114 and the second routing device 1110 advertise the gateway routing information corresponding to the PW1140 and the second virtual link to the remote router;
  • the route issuance module 1114 issues the fault information to the remote router and the route corresponding to the faulty network segment, so that the IP packet of the corresponding network segment returned by the remote router does not pass the first a routing device 1110
  • a U-layer and an NPE are Layer 2 Ethernet networks.
  • the UPE and the NPE are forwarded based on the VLAN.
  • the primary and secondary VLANs are configured between the UPE and the active and standby NPEs.
  • the normal secondary VLAN is forwarded from the primary VLAN to the primary NPE.
  • the traffic is load-sharing by using one NPE as the primary VLAN and the other VLANs supporting the different UPEs as the other NPE.
  • the gateway interface is associated with the VLAN: the gateway interface supports the termination of multiple different VLANs at the same time, and configures the same gateway IP address and network segment mask. User data of different VLANs can be processed through the gateway interface at the same time.
  • the NPE when a user connected to the UPE obtains an IP address through static configuration or by other means (such as a private protocol with the RNC), the NPE still uses the policy and related information from the gateway address. Assign a floating network segment to the subnet, and assign an IP address to the user equipment from the subnet. However, the IP address does not need to notify the user equipment, but the NPE establishes the user's real IP address and the NAT replacement entry of the assigned IP address. All the user data is subjected to NAT replacement processing when passing through the NPE, and an external interface is provided to notify the replacement relationship of the IP (for example, when the RNC needs to acquire the real IP of the user equipment, the NPE notifies the RNC). Optionally, the IP replacement relationship is also copied to the backup network core side PE.
  • step S606 the first network core side PE performs NAT replacement on the user IP address.
  • step S607 the first network core side PE provides an external interface to notify the relationship of the IP address replacement.
  • the remote server accesses the user equipment through the corresponding route of the floating network segment after the NAT is replaced.
  • the user side PE receives the DHCP address allocation request message of the user equipment, and the user side PE adds the related information of the predetermined policy to the request message, and transmits the information through the corresponding first virtual link.
  • the mac-in-mac encapsulation is added to all the packets of the user equipment.
  • the outer MAC address is the MAC address of the user-side PE.
  • the I-TAG can indicate other information (such as VLAN and PW). 0
  • the first network device is received from the user equipment. When removing the message, remove it The mac-in-mac package.
  • the first network core side PE parses the packet and obtains the information about the predetermined policy (including the IP address or MAC address of the user-side PE, or the interface identifier of the user-side PE, or the VLAN ID or PW ID corresponding to the first virtual link).
  • the floating network segment is allocated according to the policy.
  • the NPE when the user equipment connected to the UPE obtains an IP address through the DHCP protocol, if the request cannot be allocated by the NPE device, it must be allocated by the external DHCP server, and the NPE functions as a DHCP relay device to generate a DHCP relay report.
  • policy information may include information of a predetermined floating segment (e.g. the first IP address) and information PW ( For example, PW ID), the related information is added to the DHCP option option (you can also extend the private option), and the option is added to the DHCP relay to the DHCP server.
  • PW ID information of a predetermined floating segment
  • the DHCP server allocates the planned floating network segment according to the option option in the text.
  • the IP address is sent to the user device through the NPE.
  • the user side PE adds an allocation policy instead.
  • the DHCP request message of the user equipment is subjected to Relay processing, where the predetermined policy is carried by the DHCP option.
  • the primary NPE sends the information about the predetermined policy to the DHCP server through the DHCP Relay. S502.
  • the DHCP server allocates an IP address of the user equipment connected to the user side PE according to the information about the predetermined policy in the packet. Then, when receiving the DHCP response packet of the primary NPE, the user equipment removes the corresponding DHCP option field.
  • the DHCP option function is the option information added in the DHCP protocol packet, so that the DHCP server can perform corresponding security processing or service differentiation when assigning an IP address. It can include option82 and option60.
  • an option can be added to transfer the allocation policy information of the floating network segment. This option is added by the UPE to receive the DHCP Request message from the user device, including the MAC address, interface, VLAN, or PW information of the UPE.
  • the failover process is as shown in FIG.
  • step S1204 the primary NPE and the standby NPE route the gateway corresponding to the primary virtual link and the standby virtual link.
  • the information is posted to the remote router.
  • step S1201 after the primary virtual link fails.
  • step S1205 the primary NPE advertises the fault information and the route of the floating network segment corresponding to the fault to the remote router, so that the IP packet corresponding to the floating network segment returned by the remote router does not pass the primary NPE.
  • the remote router independently selects available routes.
  • the embodiments of the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product, where the computer software product may be stored in a storage medium, such as a ROM/RAM, a magnetic disk, an optical disk, etc., and includes a plurality of instructions for making a A computer device, or server, or other network device, performs the methods described in various embodiments of the present invention or in some portions of the embodiments.

Abstract

本发明涉及通信领域,公开了一种建立和使用浮动网段的方法、装置和系统,建立主备网络核心侧PE,主备网络核心侧PE分别通过主备虚链路连接用户侧PE,主网络核心侧PE为与用户侧PE通信的用户设备分配与虚拟链路对应的浮动网段;主用网络核心侧PE将浮动网段的分配信息拷贝和保存到备用网络核心侧PE中;当主用虚链路出现故障时,远端路由器通过备用网络核心侧PE和备用虚链路对应的浮动网段的路由与用户设备通信。

Description

一种建立和使用浮动网段的方法、 装置和系统 本申请要求于 2012 年 4 月 28 日提交中国专利局、 申请号为 CN 201210129898.3、发明名称为 "一种建立和使用浮动网段的方法、装置和系统" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信领域, 特别涉及一种建立和使用浮动网段的方法、 装置 和系统。 背景技术
PW (Pseudo wire , 虚链路) 是一种基于 IP/ MPLS (Multi-Protocol Label Switching, 多协议标签交换) 网络的隧道技术, 利用模拟的二层链路, 将二 层数据报文 (如以太报文) 透明地传送到对端。 图 1 所展示的是现有的一种 IP RAN (Radio Access Network, 无线接入网) 载的应用场景:
如图 1所示, UPE (user-end provider edge , 用户侧运营商边缘设备)、
NPE (network provider edge , 网络核心侧运营商边缘设备)、 PE (provider edge , 运营商边缘设备) 共同組成 IP RAN承载网络, 其中, UPE与基站相连, PE 与 RNC (radio network controller , 无线网络控制器) 相连, 基站的数据通过 UPE接入后通过 PW透传到 NPE , ΝΡΕ继续将基站数据才艮据不同类型以隧道 透传 (如 TDM (time division multiplexing, 时分复用) 数据) 或 IP/MPLS (如 IP报文) 转发的方式发送到 RNC处理。
图 2所展示的是现有技术的主备用 PW保护的实施方案。 UPE与双归的 两个 NPE分别建立主用 PW和备用 PW。 当主用 PW发生故障时, 经过相应 的快速检测方法 (如 BFD ( Bidirectional Forwarding Detection , 双向转发检测 ) 协议) 感知, UPE将数据切换到备用 PW, 发送给备用 ΝΡΕ , 并从备用 ΝΡΕ 发送到对端 ΡΕ及 RNC。 同时, 主用 NPE同样快速感知到 PW故障, 则对外 4款消该主用 PW对应的网关对应的路由, 以使得从对端 PE返回的 RNC的数 据能够相应发送到备用 NPE , 备用 NPE再将数据通过备用 PW透传到 UPE 及基站。注意,此时备用 PW或备用 NPE实际已切换为主用 PW或主用 NPE。 如图 2中所示, 当 UPE2对应的主用 PW出现故障时,所有通过主用 NPE 的路由将被撤销, 例如, 此时 UPE1对应的主用 PW没有故障, 但是相应路由 也将被撤销, 替换为备用 NPE经过 UPE1对应的备用 PW透传到 UPE1。 所 以, 当 NPE对应多个用户端 PE和多个 PW时, 某个 PW的故障将导致其它 的正常的 PW的路由被撤销。 在此情况下, 造成了网络资源的浪费。 发明内容 本发明实施例的目的是提供一种建立和使用浮动网段的方法、 装置和系 统, 分配与 PW关联的浮动网段, 以减少网络资源的浪费。
本发明实施例的目的是通过以下技术方案实现的:
一种建立和使用浮动网段的方法,第一网络核心侧运营商边缘设备 PE的 网关接口通过第一虚拟链路与用户侧 PE通信; 所述第一网络核心侧 PE根据 所述网关接口的网关地址和掩码为与所述用户侧 PE 通信的用户设备分配浮 动网段, 所述浮动网段对应于所述的第一虚拟链路; 所述第一网络核心侧 PE 将所述浮动网段的分配信息传送至第二网络核心侧 PE ; 当所述第一虚拟链路 出现故障时, 将所述浮动网段的路由信息发送至远端路由器。
一种建立和使用浮动网段的方法, 包括:第一网络核心侧运营商边缘设备 PE的网关接口通过第一虚拟链路与用户侧 PE通信;所述第一网络核心侧 PE 根据所述网关接口的网关地址和掩码为与所述用户侧 PE 通信的用户设备分 配浮动网段, 所述浮动网段对应于所述的第一虚拟链路; 所述第一网络核心 侧 PE将所述浮动网段的分配信息传送至第二网络核心侧 PE; 当所述第一虚 拟链路出现故障,所述第一网络核心侧 PE通过备份协议通知所述第二网络核 心侧 PE进行切换;所述第二网络核心侧 PE将第二虚拟链路设置为可用状态, 并向所述远端路由器发布所述第二虚拟链路对应的所述浮动网段的路由, 所 述第二虚拟链路是所述第一虚拟链路的备份链路。
一种路由设备, 所述路由设备包括: 网关接口, 配置模块、 备份模块和 路由发布模块; 所述网关接口通过第一虚拟链路与相应的用户侧 PE通信; 所 述配置模块根据所述网关接口的网关地址和掩码为与所述用户侧 PE 通信的 用户设备分配浮动网段, 所述浮动网段对应于所述的第一虚拟链路; 所述备 份模块将所述浮动网段的分配信息传送至第二网络核心侧 PE ; 当所述第一虚 拟链路出现故障时, 所述路由发布模块将浮动网段的路由信息发送至远端路 由器。
一种建立和使用浮动网段的系统, 所述系统包括第一路由设备和第二路 由设备, 所述第一路由设备的网关接口可通过第一虚拟链路与用户侧 PE 通 信; 所述第一路由器根据所述网关接口的网关地址和掩码为与所述用户侧 PE 通信的用户设备分配浮动网段, 所述浮动网段对应于所述的第一虚拟链路; 所述第一路由设备用于将所述浮动网段的分配信息传送至所述第二路由设 备; 当所述第一虚拟链路出现故障时, 所述第一路由设备将所述浮动网段的 路由信息发送至远端路由器; 以及所述第二路由设备通过第二虚拟链路与所 述用户侧 PE通信, 并且发布对应于所述第二虚拟链路的浮动网段的路由。
一种建立和使用浮动网段的系统, 所述系统包括第一路由设备和第二路 由设备, 所述第一路由设备的网关接口通过第一虚拟链路与用户侧 PE通信, 所述第二路由设备的网关接口通过第二虚拟链路与所述的用户侧 PE通信;所 述第一路由器根据其网关接口的网关地址和掩码为与所述用户侧 PE 通信的 用户设备分配浮动网段, 所述浮动网段对应于所述的第一虚拟链路; 所述第 一路由设备适于将所述浮动网段的分配信息传送至所述第二路由设备; 所述 第一路由设备适于将所述第一虚拟链路对应的浮动网段的路由发送至远端路 由器, 所述第二路由设备适于将所述第二虚拟链路对应的浮动网段的路由发 送至所述远端路由器; 以及当所述第一虚拟链路出现故障时, 所述第一路由 设备将故障信息发送至所述远端路由器。
采用本发明的技术方案, NPE 通过不同虚拟链路与 UPE 通信时, 为与 UPE 通信的用户设备分配浮动网段, 浮动网段与每个虚拟链路——对应, 并 配置同一个网关(浮动网段中的设备的 IP属于网关 IP地址所限定的大网段), 实现浮动网段的分配和管理, 当对应同一主用 NPE的部分虚拟链路 (一个虚 拟链路或者多个虚拟链路) 出现故障时, 撤销故障的虚拟链路对应的路由即 可, 相较于现有技术中需要所有通过主用 NPE的路由的方案来说, 可以减少 网络资源的浪费。 另外, 这种方案可以实现流量分担到不同的 NPE , 能充分 利用设备和链路的处理能力, 緩解链路拥塞或设备超过处理能力的情况。 附图说明 图 1为现有技术中 IP RAN承载的应用场景;
图 2为现有技术的主备用 PW保护的組网示意图;
图 3为本发明实施例的方法的流程图;
图 4为本发明实施例中的組网示意图;
图 5为本发明实施例的方法的流程图;
图 6为本发明实施例的方法的子流程图;
图 7为本发明实施例的方法的子流程图;
图 8为本发明实施例中的組网示意图;
图 9为本发明实施例中的組网示意图;
图 10为本发明实施例中的路由器设备示意图;
图 11为本发明实施例中的系统示意图;
图 12为本发明实施例的方法的子流程图。 具体实施方式 为了使本发明实施例的目的、 技术方案及优点更加清楚明白, 以下结合 附图及实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具 体实施例仅用以解释本发明, 并不用于限定本发明。 本发明的具体实施方式 包括建立和使用浮动网段的方法, 路由设备以及建立和使用浮动网段的系统。 本发明的实施方式所包括的方法可由计算机硬件设备实现, 并且路由器设备 可以理解为运营商边缘设备 (PE), 所述的网络核心侧 PE或用户侧 PE为相 对概念, 是相对于网络布置而定义的。
实施例 1:
如图 3 所示, 根据本发明的一个实施方式, 建立和使用浮动网段的方法 起始于步驟 S301, 第一网络核心侧 PE (即主用 NPE) 的网关接口通过第一虚 拟链路 PW (即主用 PW) 连接相应的用户侧 PE (UPE)。 图 4展示了上述实 施方式的組网示意图, UPE与 NPE組成接入网络, 主用 NPE为 NPE1, 即网 络核心侧的运营商边缘路由器, 其通过主用虚链路 PW1与用户侧的运营商边 缘路由器 UPE1通信, 该 UPE1通过备用虚链路 PW3与网络核心侧的运营商 边缘路由器 NPE2通信。虚链路 PW1和 PW3分别对应于浮动网段 1和浮动网 段 2。 浮动网段是分配给 UPE下挂的用户设备的网址网段。 虽然用户设备在 图 4 中并未示出, 但是本领域普通技术人员可以理解用户设备可以是下挂的 基站、 路由设备或用户终端。
UPE2通过主用虚链路 PW2与其主用 NPE (NPE1 ) 通信, UPE2还通过 备用虚链路 PW4与备用 NPE (NPE2) 通信。 可选的, UPE1与 UPE2分别用 于传输不同的业务类型的数据, PW1与 PW3用于传输业务类型 1 ,PW2与 PW4 用于传输业务类型 2。
具体连接方式:
UPE下挂的用户设备以 NPE为接入网关,用户设备的 IP地址通过 DHCP 协议获取或通过其它方式配置, 用户数据通过接入网络以二层转发或透传的 方式传送到 NPE , 通过网关接口终结二层后进行三层 IP/MPLS转发。 远端返 回的数据报文到达 NPE之后, 通过网关接口以二层转发或透传的方式, 经过 接入网络传送到 UPE , 并发送给用户设备。
NPE作为用户网关设备, 以主备方式进行布署, 图 4所示为双机备份(一 主一备)。 本领域技术人员应该理解, 部署方式不限于图中所示的双机备份, 多机备份 (一主多备) 也可实现本发明的目的。
UPE与 NPE之间可以是二层以太网络,或 IP/MPLS网络。对于 IP/MPLS 网络, UPE与 NPE之间通过 PW透传用户二层数据, UPE与主备 NPE之间 配置主备 PW, 正常时报文从主用 PW透传到主用 NPE ; 支持多个不同 UPE 的 PW以一个 NPE为主用 PW, 而支持另外多个不同 UPE的 PW以另一个 NPE为主用 PW, 由此实现流量的负载分担。
NPE上的网关接口与虚拟局域网 ( VLAN ) , PW或 VSI关联, 用户设备 都以该网关接口的 IP地址作为网关地址。 才艮据本发明的一个实施方式, 网关 接口与 PW关联: 网关接口支持同时终结多个不同的 PW, 配置同一个网关 IP 地址及网段掩码, 不同 PW透传的用户数据能够同时通过网关接口处理。 NPE对外发布网关对应的网段路由有两种方式: 只有主用 NPE发布; 或 主用 NPE与备用 NPE都发布, 但主用 NPE为高优先级, 以使远端返回的用 户流量传送到主用 NPE , 并从主用 NPE发送给用户。
如图 3所示,在步驟 S302 , 第一网络核心侧 PE根据网关接口的网关地址 和掩码为与用户侧 PE通信的用户设备分配浮动网段,该浮动网段对应于所述 的第一虚拟链路。 NPE对 UPE下挂的不同用户的 IP地址通过浮动网段进行 管理: UPE上可以配置分担策略,将其下挂用户的数据基于设备、接口、 VLAN、 PW等方式将流量分担到不同的 NPE (从而控制主备 VLAN、 主备 PW的主备 关系), 正常情况下处理流量的 NPE为主用 NPE , 该 NPE上配置一个网关地 址, 以该 NPE 为主的所有 UPE 下挂的所有用户设备 (如基站) 以该地址为 网关地址。
根据本发明的一个实施方式, UPE下挂用户设备通过 DHCP协议获取 IP 地址时,协议消息经过 UPE到达 NPE的网关接口, NPE才艮据相关信息( VLAN、 PW、 或 UPE MAC/DHCP option信息) 及预定策略 (如: 基于设备、 用户侧 PE的 IP地址、 用户侧 PE的 MAC地址、 接口、 VLAN的 ID、 PW的 ID等), 从网关地址 /掩码分配子网段 (称为浮动网段, 网段大小由策略指定), 并从 该子网段为用户设备分配 IP地址, 通过 DHCP协议通知用户设备。
如图 3所示,在步驟 S303 , 第一网络核心侧 PE将所述浮动网段的分配信 息传送至第二网络核心侧 PE。 举例来说, 主备 NPE之间运行备份协议, 将 浮动网段的分配情况通知对端进行热备份, 对端设备将浮动网段与对应的 VLAN, PW、 UPE MAC/DHCP option等关联。 可选的, 主备 NPE之间运行 的备份是基于 ICCP协议 (Inter-Chassis Communication Protocol for L2VPN PE Redundancy, 见 ITEF标准組织 d ft-ietf-pwe3-iccp-07草案)。 可选的, 分配信 息包括为用户设备分配的浮动网段, 以及浮动网段与虚拟链路的对应关系。
如图 3所示, 在步驟 S304 , 当第一虚拟链路出现故障时, 将浮动网段的 路由信息发送至远端路由器。具体而言, UPE与 NPE之间链路(VLAN、 PW) 发生故障时, 相应 VLAN或 PW对应的备用 NPE升为主用, 并对外发布浮动 网段路由, 从而引导远端的设备将返回流量发送到备升主的 NPE。 如附图 12 所示, 在步驟 S1201 , 第一虚拟链路 (PW) 出现故障, 在步驟 S1202 , 第一网 络核心侧 PE通过备份协议通知第二网络核心侧 PE进行切换, 在步驟 S1203 , 第二网络核心侧 PE将第二虚拟链路 (PW) 设置为可用状态, 并向远端发布 第二虚拟链路对应浮动网段的路由。此外,当故障恢复流量切换回原主用 NPE 时, 备升主的 NPE恢复成备用 NPE , 并且对外撤消浮动网段路由, 因此主用 NPE对应 VLAN或 PW的浮动网段只在保护切换时出现, 正常情况不可见。
当网络发生故障时, 通过快速检测协议(如 BFD协议) 可以检测到故障, 并触发保护倒换。当 UPE与 NPE之间的主用 PW路径上的某链路或节点发生 故障时, BFD协议检测到故障分别通知 UPE和 NPE , UPE进行 PW切换, 将用户的数据切换到备用 PW发送到备用 NPE的备用网关接口; 而 NPE也 同时发生切换, 由主用 NPE通过备份协议通知对端 (即备用 NPE) 相应的备 用 PW升为主用, 此时针对该 PW, 备用 NPE升为主用, 向外发布对应的浮 动网段路由。 备升主的 NPE接收备升主的 PW传来的用户数据后, 由相应的 网关接口处理, 通过 IP/MPLS网络发送到对端, 对端返回的数据才艮据浮动网 段路由, 将转发到备升主的 NPE , 并由其通过备升主的 PW发送给 UPE及用 户设备。 此过程实现了网络的快速保护倒换, 由于倒换时间快, 可以保证用 户业务不被中断。
根据本发明的一个实施方式, 如图 8 所示, 用户设备通过用户侧的运营 商边缘路由器 (UPE) 803、 804和 805连接统一网关, 统一网关以主备方式提 供, 包括网络核心侧的运营商边缘路由器 (NPE) 801和 802。 NPE分别为主 用 NPE801和备用 NPE802。 每个 UPE (803、 804或 805) 与两个 NPE (801 和 802) 之间分别建立主用 PW和备用 PW, UPE下挂用户设备。 用户设备可 以是直接连接的用户设备, 或通过二层网络连接多个用户设备, 同一个 UPE 下挂的用户可能存在多种业务类型, 可以建立多个 PW 与每种业务类型对应 的接口相关联, 以将该种业务数据透传到 NPE , NPE对每种业务分别配置网 关接口 (包括网关 IP地址及掩码), 所有不同 UPE下挂用户的同一种业务类 型以 NPE上的同一个接口作为接入网关接口,配置相同的网关 IP地址。例如: 建立 3个主用 PW连接用户侧 PE ( 803、 804和 805)与主用网络核心侧 PE801。 采用负载分担方式, 则部分 UPE 下的用户业务以一个 NPE 为主用, 而另一 部分 UPE下的用户业务则以另一个 NPE 为主用, 为了简化方案, 可以分别 配置成两个网关, 互为主备。 例如, 建立 3个备用 PW 连接用户侧 PE (803、 804和 805) 与备用网络核心侧 PE802。 浮动网段的使用方法与只有一个网关 的情况类似, 以下针对非负载分担的情形进行说明。
NPE上配置虚拟接口与所有 UPE对应的同种业务的 PW相关联, 该虚拟 接口即用户设备对应的网关接口 (配置网关 IP地址和掩码 ) , 主用 NPE的网 关接口与主用 PW关联, 备用 NPE的网关接口与备用 PW关联。
图 6为本发明一个实施方式的子流程的流程图, 在步驟 S601 , 与 UPE通 信的用户设备 (如基站) 通过 DHCP协议请求分配 IP地址。 在步驟 S602 , 地 址分配请求 文经过第一虚拟链路(主用 PW)透传到主用 NPE。在步驟 S603 , 第一网络核心侧 PE (主用 NPE) 根据预定策略中指定的浮动网段大小, 从网 链路(即当前的主用 PW) 对应。 如果当前的主用 PW对应的浮动网段已经存 在, 则使用该浮动网段。 在步驟 S604 , 第一网络核心侧 PE (主用 NPE) 从浮 动网段中为用户设备分配 IP地址。在步驟 S605 , 通过 DHCP协议通知用户设 备上述为用户设备分配的 IP地址和网关地址, 用户设备使用上述为用户设备 分配的 IP地址作为自己的地址, 并配置网关 IP地址为主用 NPE的网关接口 的 IP地址。 此外, 主用 NPE与备用 NPE通过备份协议建立主备关系, 并通 过该协议进行信息交互, 当主用 NPE分配浮动网段时, 需要将浮动网段及对 应 PW的信息通知到备用 NPE, 备用 NPE保存该信息, 以在保护倒换时作相 应处理。 举例来说, 备份协议的具体执行过程为: 主用设备与备用设备建立 TCP连接, 通过私有协议格式协商主备关系, 之后可以利用该 TCP连接传送 需要备份的数据, 该协议还支持 hello机制,如果不能定时收到 hello则认为主 用设备故障, 故障时备升主, 将所有备份的数据置为主用状态, 允许处理报 文转发。 也可以由主用设备通知备用设备将一部分业务升为主用。
根据本实施方式, 报文转发流程包括以下步驟:
正常转发过程: UPE用户侧接口与主用 PW关联, 当接收到用户数据时, 通过主用 PW透传到主用 NPE; 主用 NPE的网关接口与主用 PW关联, 当接 收到主用 PW的数据时, 由网关接口进行二层终结, 根据目的 IP地址查找路 由转发表得到出接口, 并从出接口发送到远端边缘设备, 并由其发送给对端 用户。 对端用户返回的数据, 其目的 IP地址为本地用户设备的 IP地址, 当 ¾ 文发送到远端边缘设备时, 根据本端主用 NPE发布的网关路由, 查找路由转 发表进行报文转发,最后到达本端主用 NPE ,主用 NPE的出接口为网关接口, 才艮据内部表项 (如地址解析协议 ARP (Address Resolution Protocol) 表项) 可 以查到关联的主用 PW,报文经过主用 PW发送到 UPE ; UPE将从主用 PW接 收的报文直接从对应的用户侧接口发送给用户设备。
故障倒换过程: 如图 12所示, 在步驟 S1201 , UPE检测到主用 PW故障 (如 BFD协议相应的快速检测方法)。 在步驟 S1202 , 将用户侧 PE的接口与 第二虚拟链路 (备用 PW) 关联, 将用户数据通过备用 PW传到第二网络核心 侧 PE (备用 NPE)。 在步驟 S1203第一网络核心侧 PE (主用 NPE) 检测到主 用 PW故障, 通过备份协议通知备用 NPE , 备用 NPE将对应的备用 PW置为 可用状态,并向远端发布对应浮动网段路由;备用 NPE的网关接口与备用 PW 关联,当接收到主用 PW的数据时,由网关接口进行二层终结,并通过 IP/MPLS 发送到对端设备; 对端用户返回的数据, 其目的 IP地址为本地用户设备的 IP 地址, 远端设备根据本端备用 NPE发布的浮动网段路由将报文发送到本端备 用 NPE; 备用 NPE再将 ¾_文从激活的备用 PW透传到 UPE; UPE将从备用 PW接收的报文直接从对应的用户侧接口发送给用户设备。
故障回切过程: UPE检测到主用 PW故障恢复,将用户侧接口与主用 PW 关联, 将用户数据通过主用 PW传到备用 NPE ; 注意为了保证此时 NPE已经 回切,可以在 NPE完成回切过程之后通知 UPE将数据回切到原主用 PW传送; 另外, UPE也可通过特殊处理, 允许从主用和备用 PW都能接收返回数据; 主用 NPE检测到主用 PW故障恢复,通过备份协议通知备用 NPE ,备用 NPE 向远端撤消对应的浮动网段路由, 并通知主用 NPE , 主用 NPE通知 UPE切 换回原主用 PW, 备用 NPE在一段延时之后, 将对应的备用 PW重新置为不 可用状态。
可选的, 主用 NPE将从主用 PW接收的数据发送到远端, 远端在处理完 成撤消浮动网段路由的过程之后, 将返回的数据重新发给主用 NPE; 其间可 能有一部分数据会发给备用 NPE。
可选的,主用 NPE和备用 NPE都将收到的数据通过相应的 PW发给 UPE , UPE将其发送给用户设备, 当备用 NPE将备用 PW置为不可用之后, UPE将 只从主用 PW接收返回数据。
实施例 2 :
浮动网段在 H-VPLS方案中的应用如图 9所示。 如图, 每个 UPE (903、 904或 905) 与两个 NPE (901和 902) 之间分别建立主用 PW和备用 PW, 该 主用 PW和备用 PW分别作为主用 NPE和备用 NPE上的虚拟交换实例(VSI) 的 spoke PW, 主用 NPE和备用 NPE上的 VSI分别作为网关接口 (配置网关 IP地址和掩码)。 如果 NPE为两个分离的设备 (比如 AGG和 NPE , AGG指 汇聚设备, 与 NPE不同的是 AGG不是三层终结点), 其中 AGG配置 VSI, 并通过一个 VLAN接口 (接入到 VSI) 与 NPE关联, NPE在该 VLAN对应的 接口上配置网关 IP和掩码。
根据本发明的一个实施方式, 根据本发明的一个实施方式, 网关接口与
VSI关联 (参考前文 H-VPLS方案): 网关接口终结 VSI 内的二层报文, 配置 一个网关 IP地址及网段掩码, VSI内所有 spoke PW透传的用户数据都通过网 关接口处理。
根据本发明的一个实施方式的子流程的流程图如图 7所示。在步驟 S701 , 与用户侧 PE (UPE) 通信的用户设备通过 DHCP协议获取 IP地址。 举例来 说, 用户设备通过用户侧 PE和第一虚拟链路向第一网络核心侧 PE发送地址 分配请求。 NPE从网关地址 /掩码对应的网段中才艮据预定策略分配浮动网段, 并从浮动网段中为用户设备分别 IP地址。 由于此时 NPE上为 VSI接入 PW , 网关接口难以与 PW关联, 因此需要 UPE将相关信息通知给 NPE , 以便 NPE 根据该信息进行浮动网段的分配, 这些信息可以实现流量在倒换过程中能基 于 UPE或 PW进行主备切换, 即实现负载分担。 如图 , 所示步驟 S702 , 用 MAC-in-MAC封装格式, 将用户侧 PE相关信息传输至第一网络核心侧 PE , 封装的外层 MAC地址为用户侧 PE的 MAC地址, 并使用 I-TAG标签标识浮 动网段分配的预定策略的相关信息。 在步驟 S703 , 主用 NPE从网关地址或掩 码对应的网段中才艮据预定策略分配浮动网段。 在步驟 S704 , 从浮动网段中为 所述用户设备分配 IP地址。
MAC-in-MAC封装: MAC-in-MAC技术由 IEEE 802.1 ah标准定义, 将用户 的以太报文增加一层以太封装, 其中外层封装的 MAC地址用于在运营商网络 进行转发, 而内层的用户以太报文的 MAC 地址用于在用户网络进行转发, MAC-in-MAC封装格式还包括 I-TAG标签, 用于标识业务信息。 本实施方式 利用 MAC-in-MAC技术, 由 UPE在接收用户数据时, 增加外层以太封装, 其 中外层 MAC地址为 UPE的 MAC地址,这样报文到达 NPE在 VSI内转发时, 将根据外层 MAC进行学习和查表转发, 而网关接口接收到包含外层 MAC的 二层报文, 此时 NPE可以根据该外层 MAC进行浮动网段的分配。 根据本实 施方式, 在故障发生时, 将基于 UPE进行倒换(即该 UPE对应的所有同业务 的 PW都会倒换), 此时的负载分担只能基于 UPE 实现。 可选的, 可以利用 MAC-in-MAC的 I-TAG标签来表示 PW信息, 即对于不同的 PW , 分配不同的 I-TAG ID来表示, 此时 NPE通过分析外层 MAC和 I-TAG信息, 可以实现基 于 PW 的倒换 (包括浮动网段的分配)。 采用 MAC-in-MAC 技术的优点之一 是: NPE的 VSI内只需要学习 UPE的 MAC地址, 而无需学习所有用户设备的 MAC地址, 减少了对 MAC地址表项数量的需求。
基于浮动网段的故障倒换和故障恢复回切过程与主备 PW 方案的处理过 程类似。 数据转发过程中的不同点如下:
正常转发过程: UPE用户侧接口与主用 PW关联, 当接收到用户数据时, 首先进行 MAC-in-MAC处理(外层 MAC封装为 UPE的 MAC地址,根据 VLAN 或 PW分配 I-TAG ID ) , 然后将报文通过主用 PW透传到主用 NPE。
主用 NPE在对应 VSI内查目的 MAC得到出接口并进行源 MAC学习,查 表得到的出接口将对应到网关接口, 主用 NPE通过网关接口进行二层终结, 对于 DHCP请求报文, 主用 NPE将根据外层 MAC和 I-TAG信息进行浮动网 段的分配, 其它业务报文则只终结不再处理 MA:、 I-TAG信息; 报文二层终 结后查 IP路由转发表通过 IP/MPLS转发到对端设备。
对端用户返回的数据,到达本地主用 NPE的网关接口,根据内部表项(如
ARP 表项) 可以查到关联的外层 MAC/I-TAG、 内层 MAC 信息, 文进行 MAC-in-MAC封装,并在 VSI内查 MAC转发,经过主用 PW发送到 UPE; UPE 将从主用 PW接收的报文去掉 MAC-in-MAC的外层封装, 并从对应的用户侧 接口发送给用户设备。 故障倒换过程与主备倒换过程参考主备 PW方案类似, 报 文 的 MAC-in-MAC封装处理如前述转发过程。故障恢复回切过程与主备 PW方案类 似, 文的 MAC-in-MAC封装处理如前述转发过程。
路由器装置和系统:
根据本发明的一个实施方式,一种路由设备,如图 10所示。路由设备 1010 包括配置模块 1011 , 备份模块 1012 , 网关接口 1013和路由发布模块 1014。
网关接口 1013通过第一虚拟链路 PW1040与用户侧 PE1030通信。网关接 口 1013适于接收用户侧 PE1030下挂的用户设备通过 DHCP协议获取 IP地址 的请求, 以及通过 DHCP协议将根据所述网关地址分配的用户设备的 IP地址 发送给所述用户设备。 可选的, 网关接口 1013为虚拟交换接口, 并且虚拟交 换接口适于接收 MAC-in-MAC封装格式传输的数据,所述封装的外层 MAC地 址为用户侧 PE的 MAC地址, 并使用 I-TAG标签标识业务类型。
配置模块 1011根据网关的地址和掩码分配用户侧 PE1030下挂的用户设 备的 IP地址。 配置模块 1011才艮据 PW1030对应的网关地址和掩码分配浮动网 段, 并根据浮动网段为与用户侧 PE1030通信的用户设备分配 IP地址。 浮动 网段的分配与虚拟链路——对应, 即主用虚拟链接与备用虚拟链接分别分配 浮动网段。 举例而言, 备用虚拟链路和备用网络核心侧 PE可以在备用状态时 闲置, 或者备用虚拟链路与主用虚拟链路可分别用于传输至少两种不同类型 的业务数据, 当主用虚拟链路故障时, 备用虚拟链路负责传输该至少两种不 同类型的业务数据。 配置模块 1011 将浮动网段的分配信息存储在存储单元 1015中。
备份模块 1012将配置模块 1011所完成的浮动网段的分配信息传送至备用 的网络核心侧 PE1020。 当 PW1040出现故障时, 路由发布模块 1014将故障链 路对应的浮动网段的路由信息发送至远端路由器。
路由设备 1010还包括存储单元 1015 , 用于存储用于分配的预定策略。 配 置模块 1011读取存储单元 1015中的预定策略, 并根据预定策略、 网关地址和 掩码分配浮动网段, 并且使浮动网段的大小符合上述预定策略。
根据本发明的一个实施方式, 配置模块 1011用于将用于浮动网段分配的 预定策略的相关信息通过 DHCP Relay报文发送至 DHCP服务器,以便 DHCP 服务器根据所述报文中的用于浮动网段分配的预定策略的相关信息分配用户 设备的 IP地址。
根据本发明的一个实施方式, 配置模块 1011接收到主用虚拟链路传送的 用户 IP报文时, 获取源 IP地址, 在该浮动网段的子网段中, 分配用户侧 PE 连接的用户设备的 IP地址。 配置模块 1011对所述接收到的用户 IP报文使用 分配的浮动网段对址对源 IP进行 NAT替换, 路由设备 1010对外提供接口, 通知网络地址替换的关系。
根据本发明的一个实施方式, 配置模块 1011通过主用虚拟链路接收来自 用户设备的 DHCP地址分配请求报文, 报文中包括用户侧 PE所添加的预定 策略的相关信息。 配置模块 1011解析报文、 获取浮动网段分配的预定策略的 相关信息, 并根据该预定策略分配浮动网段。 预定策略的相关信息选自用户 侧 PE的 IP地址、 用户侧 PE的 MAC地址、 用户侧 PE对应接口标识、 主用 虚拟链路对应的 VLAN ID或 PW ID。
根据本发明的一个实施方式, 配置模块对用户设备的请求报文作 Relay处 理, 通过 DHCP option携带浮动网段分配的预定策略的相关信息。
才艮据本发明的一个实施方式, 用户设备的 文包括 MAC-IN-MAC封装, 其中外层 MAC为用户侧 PE的 MAC , I-TAG表示 VLAN或 PW信息;在收到 第一网络核心侧 PE到用户设备的 文时, 去掉相应的 MAC-IN-MAC封装。
根据本发明的一个实施方式,建立和使用浮动网段的系统如附图 11所示。 建立和使用浮动网段的系统 1100 包括第一路由设备 1110 和第二路由设备 1120ο 第一路由设备 1110 的网关接口 1113 通过 PW1140 与相应的用户侧 PE1130通信。第一路由设备 1110适于通过备份协议将浮动网段的分配信息传 送至第二网络设备 1120。 根据浮动网段的分配信息, 当 PW1140出现故障时, 第二网络设备 1120 的网关接口通过第二 PW1150 与所述的用户侧 PE1130通 信。
可选的, 路由发布模块 1114和第二路由设备 1110将 PW1140和第二虚拟 链路对应的网关路由信息发布至所述远端路由器;
当 PW1140故障时, 路由发布模块 1114向远端路由器发布故障信息以及 故障对应浮动网段的路由, 使远端路由器返回的对应网段的 IP报文不经过第 一路由设备 1110
实施例 3 :
才艮据本发明的一个实施方式, UPE与 NPE之间是二层以太网络。 对于二 层网络, UPE与 NPE之间基于 VLAN转发, UPE与主备 NPE之间配置主备 VLAN , 正常时 ¾_文从主用 VLAN二层转发到主用 NPE; 支持多个不同 UPE 的 VLAN以一个 NPE为主用 VLAN , 而支持另外多个不同 UPE的 VLAN以 另一个 NPE为主用 VLAN , 由此实现流量的负载分担。
根据本发明的一个实施方式, 网关接口与 VLAN 关联: 网关接口支持同 时终结多个不同的 VLAN , 配置同一个网关 IP地址及网段掩码, 不同 VLAN 的用户数据能够同时通过网关接口处理。
实施例 4 :
才艮据本发明的一个实施方式, UPE 下挂的用户通过静态配置、 或由其它 方式 (如与 RNC之间的私有协议) 获取 IP地址时, NPE仍然才艮据策略及相 关信息从网关地址 /掩码中分配浮动网段, 并从该子网段为用户设备分配 IP 地址, 但是该 IP地址不需通知用户设备, 而在 NPE建立用户真实 IP与该分 配 IP的 NAT替换表项, 对所有的用户数据在经过 NPE时进行 NAT替换处 理, 并对外提供接口通知该 IP 的替换关系 (如当 RNC 需要获取用户设备的 真实 IP时通知由 NPE通知 RNC)。可选的, IP的替换关系也拷贝至备用网络 核心侧 PE。
如图 6所示, 在步驟 S606, 第一网络核心侧 PE对用户 IP地址进行 NAT 替换。 在步驟 S607 , 第一网络核心侧 PE对外提供接口, 通知所述 IP地址替 换的关系。 在此基础上, 远端服务器通过 NAT替换后的浮动网段的对应路由 访问用户设备。
实施例 5 :
根据本发明的另一个实施方式, 用户侧 PE接收到用户设备的 DHCP地 址分配请求报文, 用户侧 PE添加预定策略的相关信息到该请求报文中, 并通 过对应的第一虚拟链路传送至第一网络核心侧 PE。 对于用户设备的所有报文 添加 mac-in-mac封装, 其中外层 MAC为用户侧 PE的 MAC , I-TAG可以表示 其它信息 (如 VLAN、 PW) 0 在收到第一网络设备到用户设备的报文时, 去掉 才目应的 mac-in-mac封装。
第一网络核心侧 PE 解析报文、 获取预定策略的相关信息 (包括用户侧 PE的 IP地址或 MAC、 或者用户侧 PE对应接口标识、 或者第一虚拟链路对 应的 VLAN ID或 PW ID ), 并才艮据该策略分配浮动网段。
实施例 6 :
根据本发明的一个实施方式, UPE下挂的用户设备通过 DHCP协议获取 IP地址时,如果要求不能由本 NPE设备分配,必须由外部 DHCP server分配, 此时 NPE作为 DHCP中继设备, 生成 DHCP Relay报文发送给 DHCP server 0 NPE仍然根据预定策略及相关信息从网关地址 /掩码中分配浮动网段,预定策 略的相关信息可包括浮动网段的信息(如第一个 IP地址)及 PW信息(如 PW ID) , 相关信息加入 DHCP option选项 (也可以扩充私有选项), 并将该选项 加入到 DHCP Relay 文发给 DHCP server , DHCP server才艮据 文中的 option 选项分配规划好的浮动网段内的 IP地址, 并通过 NPE发送给用户设备。
才艮据本发明的一个实施方式, 用户侧 PE添加分配策略的替代方式如下: 如图 5所示, 在步驟 S501 , 对于用户设备的 DHCP请求报文作 Relay处 理, 其中通过 DHCP option携带预定策略的相关信息。 主用 NPE将预定策略 的相关信息通过 DHCP Relay ¾_文发送至 DHCP服务器在步驟。 S502 , DHCP 服务器根据所述报文中的预定策略的相关信息分配用户侧 PE 连接的用户设 备的 IP地址。 然后, 用户设备收到主用 NPE的 DHCP响应报文时, 去掉其 中相应的 DHCP option字段。
DHCP option信息: DHCP option功能是标准规定的在 DHCP协议报文中 增加的选项信息, 以便 DHCP server在分配 IP地址时能作相应的安全处理或 业务区分, 可包括 option82和 option60 两个选项。 本方案中可以增加一个选 项, 用于传递浮动网段的分配策略信息。 该选项由 UPE在接收到用户设备的 DHCP请求报文中添加, 其中包含 UPE的 MAC地址、 接口、 VLAN或 PW信 息。
实施例 7 :
根据本发明的一个实施方式,在故障切换过程如图 12所示。在步驟 S 1204, 主用 NPE和备用 NPE将主用虚拟链路和备用虚拟链路所对应的网关路由信 息发布至远端路由器。在步驟 S1201 ,主用虚拟链路出现故障后。在步驟 S1205 , 主用 NPE向远端路由器发布故障信息以及故障对应的浮动网段的路由, 使所 述远端路由器返回的对应所述浮动网段的 IP报文不经过主用 NPE。 可选的, 远端路由器自主选择可用的路由。
通过以上的实施方式的描述, 本领域的普通技术人员可以清楚地了解到 本发明实施例可借助软件加必需的通用硬件平台的方式来实现, 当然也可以 通过硬件来实现。 基于这样的理解, 本发明实施例的技术方案可以以软件产 品的形式体现出来, 该计算机软件产品可以存储在存储介质中, 如 ROM/RAM, 磁碟、 光盘等, 包括若干指令用以使得一台计算机设备、 或者服 务器、 或者其他网络设备执行本发明各个实施例或者实施例的某些部分所述 的方法。
以上仅为本发明的较佳实施例, 并非用于限定本发明的保护范围。 凡在 本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含 在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种建立和使用浮动网段的方法, 其特征在于, 包括:
第一网络核心侧运营商边缘设备 PE 的网关接口通过第一虚拟链路与 用户侧 PE通信;
所述第一网络核心侧 PE 才艮据所述网关接口的网关地址和掩码为与所 述用户侧 PE通信的用户设备分配浮动网段,所述浮动网段对应于所述的第一 虚拟链路;
所述第一网络核心侧 PE 将所述浮动网段的分配信息传送至第二网络 核心侧 PE ;
当所述第一虛拟链路出现故障时, 将所述浮动网段的路由信息发送至 远端路由器。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述虚拟链路选自 PW 或 VLAN虚拟链路。
3、 根据权利要求 2 所述的方法, 其特征在于, 所述第一网络核心侧 PE 通过动态主机设置协议 DHCP分配所述浮动网段; 所述分配所述浮动网段的 步驟包括:
通过所述第一虚拟链路接收来自所述用户设备的 DHCP相关的地址分配 请求;
才艮据所述第一虚拟链路对应的网关地址和掩码, 分配子网段作为所述浮 动网段;
在所述浮动网段中为所述用户设备分配 IP地址;
将分配的 IP地址通过 DHCP协议消息通知所述用户设备。
4、 根据权利要求 2所述的方法, 其特征在于, 还包括:
所述第一网络核心侧 PE 将所述浮动网段的分配信息通过 DHCP 中继 Relay报文发送至 DHCP服务器,所述 DHCP服务器根据所述报文中的浮动网 段的分配信息为所述用户设备分配 IP地址。
5、 根据权利要求 2所述的方法, 其特征在于, 还包括:
接收到所述第一虚拟链路传送的用户 IP报文时, 获取源 IP地址,在所述 浮动网段中, 为所述用户设备分配 IP地址;
所述第一网络核心侧 PE用所述分配的所述用户设备的 IP地址替换所述 源 IP地址; 以及
所述第一网络核心侧 PE对外提供接口, 通知所述 IP地址替换的关系。
6、 根据权利要求 2所述的方法, 其特征在于, 所述浮动网段的分配基于 预定策略, 所述浮动网段的大小由所述预定策略指定。
7、 根据权利要求 6所述的方法, 其特征在于, 还包括:
所述用户侧 PE接收来自所述用户设备的 DHCP地址分配请求 文; 所述用户侧 PE 添加所述预定策略的相关信息到所述地址分配请求 ¾_文 中, 并通过所述第一虚拟链路传送至所述第一网络核心侧 PE ; 以及
所述预定策略的相关信息选自:
所述用户侧 PE的 IP地址,
所述用户侧 PE的介质访问控制 MAC地址,
所述用户侧 PE对应的接口标识,
所述第一虚拟链路对应的 VLAN 标识 ID , 或
所述第一虚拟链路对应的 PW标识 ID。
8、 才艮据权利要求 7所述的方法, 其特征在于, 所述用户侧 PE添加所述 预定策略的相关信息到所述地址分配请求报文中, 包括:
对所述 DHCP地址分配请求请求 ¾_文作代理处理,通过 DHCP 选项 option 携带所述预定策略的相关信息。
9、 才艮据权利要求 7所述的方法, 其特征在于, 所述用户侧 PE添加所述 预定策略的相关信息到所述地址分配请求报文中, 包括:
对所述 DHCP地址分配请求 文添加 MAC-IN-MAC封装,其中外层 MAC 为所述用户侧 PE的 MAC , I-TAG表示所述接口或所述 VLAN或所述 PW信 息; 在收到所述第一网络核心侧 PE发送到所述用户设备的报文时, 去掉所述 MAC-IN-MAC封装。
10、 根据权利要求 2所述的方法, 其特征在于, 还包括: 所述第一网络核 心侧 PE将所述第一虚拟链路对应的网关路由信息发布至所述远端路由器; 所述第二网络核心侧 PE 将第二虚拟链路对应的网关路由信息发布至所 述远端路由器, 所述第二虚拟链路是所述第一虚拟链路的备份链路; 所述第一虚拟链路故障时,所述第一网络核心侧 ΡΕ向所述远端路由器发 布故障信息以及浮动网段的路由, 使所述远端路由器返回的对应所述浮动网 段的 IP报文不经过所述第一网络核心侧 PE。
11、 一种建立和使用浮动网段的方法, 其特征在于, 包括:
第一网络核心侧运营商边缘设备 PE 的网关接口通过第一虚拟链路与 用户侧 PE通信;
所述第一网络核心侧 PE 才艮据所述网关接口的网关地址和掩码为与所 述用户侧 PE通信的用户设备分配浮动网段,所述浮动网段对应于所述的第一 虚拟链路;
所述第一网络核心侧 PE 将所述浮动网段的分配信息传送至第二网络 核心侧 PE;
当所述第一虚拟链路出现故障,所述第一网络核心侧 PE通过备份协议通 知所述第二网络核心侧 PE进行切换; 以及
所述第二网络核心侧 PE将第二虚拟链路设置为可用状态,并向所述远端 路由器发布所述第二虚拟链路对应的所述浮动网段的路由, 所述第二虚拟链 路是所述第一虚拟链路的备份链路。
12、 一种路由设备, 其特征在于, 所述路由设备包括: 网关接口, 配置 模块、 备份模块和路由发布模块;
所述网关接口用于通过第一虚拟链路与用户侧 PE通信;
所述配置模块用于根据所述网关接口的网关地址和掩码为与所述用户侧 PE通信的用户设备分配浮动网段,所述浮动网段对应于所述的第一虚拟链路; 所述备份模块用于将所述浮动网段的分配信息传送至第二网络核心侧
PE;
当所述第一虚拟链路出现故障时, 所述路由发布模块用于将所述浮动网 段的路由信息发送至远端路由器。
13、 根据权利要求 12所述的路由设备, 其特征在于, 所述虚拟链路选自 PW 或 VLAN虚拟链路。
14、 根据权利要求 13所述的路由设备, 其特征在于, 所述配置模块通过 DHCP协议分配所述浮动网段; 所述通过 DHCP协议分配所述浮动网段分配 所述浮动网段包括:
所述路由设备通过所述第一虚拟链路接收来自所述用户设备的 DHCP地 址分配请求报文;
所述配置模块才艮据所述第一虚拟链路对应的网关地址和掩码, 分配子网 段作为所述浮动网段;
所述配置模块在所述浮动网段中为所述用户设备分配 IP地址;
所述配置模块将分配的 IP地址通过 DHCP协议消息通知所述用户设备。
15、 根据权利要求 13所述的路由设备, 其特征在于, 所述配置模块还用 于将所述浮动网段的分配信息通过 DHCP Relay报文发送至 DHCP服务器,以 便所述 DHCP服务器根据所述报文中的浮动网段的分配信息为所述的用户设 备分配 IP地址。
16、 根据权利要求 13所述的路由设备, 其特征在于, 所述配置模块还用 于当接收到第一虚拟链路传送的用户 IP报文时, 获取源 IP地址,在所述浮动 网段, 为所述用户设备分配 IP地址;
所述配置模块用所述分配的所述用户设备的 IP地址替换所述源 IP地址; 以及
所述路由设备对外提供接口, 通知所述 IP地址替换的关系。
17、 根据权利要求 13所述的路由设备, 其特征在于, 所述路由设备还包 括存储单元, 所述存储单元用于存储预定策略;
所述配置模块还用于读取存储单元中存储的预定策略, 所述浮动网段的 大小由所述预定策略指定。
18、 根据权利要求 14或 17所述的路由设备, 其特征在于, 所述配置模块 通过所述第一虚拟链路接收来自所述用户设备的 DHCP地址分配请求报文, 所述地址分配请求 文中包括用户侧 PE所添加的所述预定策略的相关信息; 所述配置模块解析所述地址分配请求报文, 获取所述预定策略的相关信 息, 根据所述预定策略分配浮动网段, 并存储所述预定策略于存储单元内; 以及
所述预定策略的相关信息选自: 所述用户侧 PE的 IP地址,
所述用户侧 PE的 IPMAC地址,
所述用户侧 PE对应的接口标识,
所述第一虚拟链路对应的 VLAN ID , 或
所述第一虚拟链路对应的 PW ID。
19、 根据权利要求 18所述的路由设备, 其特征在于, 所述配置模块对 来自所述用户设备的所述地址分配请求 ¾_文作代理处理, 通过 DHCP option 携带所述预定策略的相关信息。
20、 根据权利要求 18所述的路由设备, 其特征在于, 所述地址分配请求 报文报文包括 MAC-IN-MAC封装,其中外层 MAC为用户侧 PE的 MAC , I-TAG 表示 VLAN或 PW信息。
21、 根据权利要求 12或 13所述的路由设备, 其特征在于, 当所述第一虚 拟链路出现故障, 所述备份模块还用于通过备份协议通知第二网络核心侧 PE 进行切换。
22、 根据权利要求 12或 13所述的路由设备, 其特征在于, 所述路由发布 模块还用于将所述第一虚拟链路对应的网关路由信息发布至所述远端路由 所述第一虚拟链路故障时, 所述路由发布模块向远端路由器发布故障信 息以及浮动网段的路由, 使所述远端路由器返回的对应所述浮动网段的 IP报 文不经过所述路由设备。
23、 一种建立和使用浮动网段的系统, 其特征在于, 所述系统包括第一 路由设备和第二路由设备,
所述第一路由设备的网关接口可通过第一虚拟链路与用户侧 PE通信; 所述第一路由器根据所述网关接口的网关地址和掩码为与所述用户侧 PE 通信的用户设备分配浮动网段, 所述浮动网段对应于所述的第一虚拟链路; 所述第一路由设备用于将所述浮动网段的分配信息传送至所述第二路由 设备, 所述第二路由设备通过第二虚拟链路与所述用户侧 PE通信, 所述第二 虚拟链路是所述第一虚拟链路的备份链路;
当所述第一虚拟链路出现故障时, 所述第一路由设备将所述浮动网段的 路由信息发送至远端路由器, 以及所述第二路由设备将所述第二虚拟链路设 置为可用状态, 并且发布对应于所述第二虚拟链路的浮动网段的路由。
24、 一种建立和使用浮动网段的系统, 其特征在于, 所述系统包括第一 路由设备和第二路由设备,
所述第一路由设备的网关接口通过第一虚拟链路与用户侧 PE通信,所述 第二路由设备的网关接口通过第二虚拟链路与所述的用户侧 PE通信,所述第 二虚拟链路是所述第一虚拟链路的备份链路;
所述第一路由器才艮据其网关接口的网关地址和掩码为与所述用户侧 PE 通信的用户设备分配浮动网段, 所述浮动网段对应于所述的第一虚拟链路; 所述第一路由设备用于将所述浮动网段的分配信息传送至所述第二路由 设备;
所述第一路由设备用于将所述第一虚拟链路对应的浮动网段的路由发送 至远端路由器, 所述第二路由设备适于将所述第二虚拟链路对应的浮动网段 的路由发送至所述远端路由器; 以及
当所述第一虚拟链路出现故障时, 所述第一路由设备将故障信息发送至 所述远端路由器。
PCT/CN2012/087216 2012-04-28 2012-12-22 一种建立和使用浮动网段的方法、装置和系统 WO2013159549A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210129898.3A CN102651711B (zh) 2012-04-28 2012-04-28 一种建立和使用浮动网段的方法、装置和系统
CN201210129898.3 2012-04-28

Publications (1)

Publication Number Publication Date
WO2013159549A1 true WO2013159549A1 (zh) 2013-10-31

Family

ID=46693606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087216 WO2013159549A1 (zh) 2012-04-28 2012-12-22 一种建立和使用浮动网段的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN102651711B (zh)
WO (1) WO2013159549A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199430A4 (en) * 2020-08-19 2024-03-06 Huawei Tech Co Ltd ACCESS CONTROL METHOD AND APPARATUS

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651711B (zh) * 2012-04-28 2016-09-28 华为技术有限公司 一种建立和使用浮动网段的方法、装置和系统
EP2985952B1 (en) 2013-04-09 2018-09-26 Huawei Technologies Co., Ltd. Method and device for protecting service reliability, and network virtualization system
CN103581025B (zh) * 2013-10-23 2017-02-22 华为技术有限公司 路由信息处理方法、设备及系统
CN113965506B (zh) * 2021-11-01 2023-02-28 南京熊猫汉达科技有限公司 一种网关备份方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1456979A (zh) * 2002-05-10 2003-11-19 智旺全球科技股份有限公司 利用非固定ip在互联网上提供网路服务的方法
CN1770733A (zh) * 2004-10-27 2006-05-10 摩根士丹利公司 容错网络构架
CN1801790A (zh) * 2005-01-07 2006-07-12 华为技术有限公司 使用浮动ip地址提高数据通信可靠性的方法
CN102651711A (zh) * 2012-04-28 2012-08-29 华为技术有限公司 一种建立和使用浮动网段的方法、装置和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281158A (zh) * 2011-08-23 2011-12-14 大唐移动通信设备有限公司 一种线路故障处理的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1456979A (zh) * 2002-05-10 2003-11-19 智旺全球科技股份有限公司 利用非固定ip在互联网上提供网路服务的方法
CN1770733A (zh) * 2004-10-27 2006-05-10 摩根士丹利公司 容错网络构架
CN1801790A (zh) * 2005-01-07 2006-07-12 华为技术有限公司 使用浮动ip地址提高数据通信可靠性的方法
CN102651711A (zh) * 2012-04-28 2012-08-29 华为技术有限公司 一种建立和使用浮动网段的方法、装置和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199430A4 (en) * 2020-08-19 2024-03-06 Huawei Tech Co Ltd ACCESS CONTROL METHOD AND APPARATUS

Also Published As

Publication number Publication date
CN102651711B (zh) 2016-09-28
CN102651711A (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
US11206208B2 (en) Host routed overlay with deterministic host learning and localized integrated routing and bridging
US10917262B2 (en) VXLAN packet forwarding method, device, and system
US10673781B2 (en) Dedicated virtual local area network for peer-to-peer traffic transmitted between switches
JP4729119B2 (ja) ラベルスイッチングネットワークにおける通信装置
US9781032B1 (en) MPLS label usage in ethernet virtual private networks
EP3691185B1 (en) Method for processing message, device, and system
US8694664B2 (en) Active-active multi-homing support for overlay transport protocol
WO2016015497A1 (zh) 一种报文转发的方法、设备及系统
US9178816B1 (en) Control plane messaging in all-active multi-homed ethernet virtual private networks
EP2846498B1 (en) Label distribution method and device
WO2015131560A1 (zh) 一种分配分段路由标记的方法和分段路由节点
CN108574616A (zh) 一种处理路由的方法、设备及系统
CN102611618B (zh) 路由保护切换方法及装置
WO2012028029A1 (zh) 一种切换方法及系统
WO2012075731A1 (zh) 基于arp交互的链路故障检测与恢复的方法和设备
WO2012130034A1 (zh) 一种vpls快速重路由方法和设备
WO2011060667A1 (zh) 一种虚拟专用局域网络中链路保护的方法及设备
WO2016121293A1 (ja) ネットワーク中継装置、ゲートウェイ冗長化システム、プログラム、および冗長化方法
WO2013139159A1 (zh) 在网络中转发报文的方法和运营商边缘设备
WO2018171529A1 (zh) 一种实现双控制平面的方法、装置、计算机存储介质
KR102245989B1 (ko) 가상사설망의 이중화 관리 방법 및 그 방법이 구현된 네트워크 스위칭장치
WO2013159549A1 (zh) 一种建立和使用浮动网段的方法、装置和系统
WO2013139270A1 (zh) 实现三层虚拟专用网络的方法、设备及系统
WO2013190528A1 (en) Internetworking and ip address management in unified mpls and ip networks
WO2013037280A1 (zh) 一种标签分配方法及聚合设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875404

Country of ref document: EP

Kind code of ref document: A1