WO2015131560A1 - 一种分配分段路由标记的方法和分段路由节点 - Google Patents

一种分配分段路由标记的方法和分段路由节点 Download PDF

Info

Publication number
WO2015131560A1
WO2015131560A1 PCT/CN2014/091800 CN2014091800W WO2015131560A1 WO 2015131560 A1 WO2015131560 A1 WO 2015131560A1 CN 2014091800 W CN2014091800 W CN 2014091800W WO 2015131560 A1 WO2015131560 A1 WO 2015131560A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
sid
information
management
network
Prior art date
Application number
PCT/CN2014/091800
Other languages
English (en)
French (fr)
Inventor
廖婷
曲延锋
刘国满
吴波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015131560A1 publication Critical patent/WO2015131560A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/03Topology update or discovery by updating link state protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing

Definitions

  • the present invention relates to IP-based Transport Network (IP RAN) technology, and more particularly to a method of assigning a Segmentation Route Mark (SID) and a Segment Routing (SR) node.
  • IP RAN IP-based Transport Network
  • SID Segmentation Route Mark
  • SR Segment Routing
  • IP RAN IP-based transport network
  • DCN Data Communication Network
  • OSPF Open Shortest Path First
  • ARP Address Resolution Protocol
  • LLDP Link Layer Discovery Protocol
  • the extension implements learning of the management IP address, DCN port, and media access control (MAC) address between each node, thereby realizing automatic establishment and configuration of the DCN channel.
  • MAC media access control
  • the SR extension (SR ID, Segment Routing ID, also abbreviated as SID) is carried through the SR extension on the IGP protocol, and the algorithm of the IGP is adopted.
  • the shortest path to each SID is calculated; and the SID stack information in the packet header package can guide the message to be forwarded according to the package stack path. In this way, the configuration of the corresponding LDP protocol and pseudowire information can be greatly reduced.
  • the related technical solution does not show a specific implementation scheme of how to implement the SID allocation by using the SR extension on the IGP protocol, nor can the automatic establishment of the service channel be achieved.
  • the embodiment of the present invention provides a method for allocating a SID and an SR node, which can implement automatic allocation of the SID.
  • an embodiment of the present invention provides a method for allocating a segmentation route identifier SID, including: a segmentation route SR management node learns address information of an SR node in a network, and allocates SID information to the SR node;
  • the SR management node sends the allocated SID information to each of the other SR nodes except the SR management node in the network by extending the internal gateway protocol IGP packet or configuration management packet.
  • the sending includes:
  • the SR management node multicasts the SID information by using the extended IGP packet to carry the SID information corresponding to the SR node address information, and the SID information is multicast, and the SID information is sent to each of the SR nodes.
  • the number is one or more.
  • the extended SID information is carried by an intermediate system to an intermediate system ISIS or an open shortest path first OSPF SID allocation type length value TLV field.
  • the sending further includes:
  • the SR management node by extending the configuration management message, carries the SID information corresponding to the SR node address information by configuring the management channel, and sends the SID information to each SR node, the number of the SID information. For one or more.
  • the method further includes:
  • each SR node in the network After receiving the SID information, each SR node in the network floods the network with its own SID information by flooding multicast packets.
  • the method further includes: before sending the allocated SID information to each of the SR nodes in the network except the SR management node, the SR management node is outside the SR management node in the network.
  • the SR management node is outside the SR management node in the network.
  • Each of the other SR nodes sends an advertisement that has its own SID allocation capability.
  • the notification that the SR management node sends its own SID allocation capability to each of the SR nodes except the SR management node in the network includes:
  • the SR management node passes an OSPF or ISIS message with an allocation capability identification field or The configuration management message advertises each of the SR nodes except the SR management node in the network.
  • the method further includes: when the SR management node includes two or more,
  • the SR node that receives the advertisement selects an SR management node that sends an advertisement as a final SR management node according to a preset policy.
  • the method further includes: after the SR node other than the SR management node in the network acquires the allocation capability of the SR management node, calculate a default of the SR node to the SR management node. SR business channel.
  • the SID tag information includes one or more of the following: a tag range, an index, and a global tag.
  • the method further includes: when a new SR node is accessed in the network,
  • the SR management node is extended by the multicast or unicast mode, and assigns an SID to the address information of the newly added SR node, and the extension also carries the original allocation in the network to which the newly added SR node joins. SID information of other nodes;
  • each of the SR nodes except the SR management node in the network updates the mapping relationship between the SID allocation information and the address information according to the information from the SR management node.
  • the method further includes: when there is an SR node failure in the network,
  • the SID information allocated to the failed SR node address information is revoked and flooded to each of the other SR nodes except the SR management node in the network;
  • each SR node except the SR management node in the network recalculates through the SPF algorithm, and deletes the SR forwarding entry to the failed SR node.
  • an embodiment of the present invention further provides a segment routing RS node, including a configuration management module, an allocation processing module, and an establishing module, where
  • the configuration management module is set to automatically establish a configuration management channel
  • the allocation processing module is configured to receive the allocated segmentation route identifier SID information by using the extended internal gateway protocol IGP packet or the configuration management packet; and the SID information of the local node is flooded to the network through the management channel.
  • the SR node further includes an establishing module, configured to calculate a default SR service channel to the SR management node.
  • the SR node further includes an allocation module, and a processing module, where
  • the allocation module is configured to: when the SR node is an SR management node, use the management channel establishment process to learn the SR node address information of the access network and allocate the SID information; and allocate the IGP packet or the configuration management packet by using the extension. Good SID information is sent to each of the SR nodes in the network except the SR management node;
  • the processing module is configured to: when the SR node is an SR management node, obtain a network topology relationship by learning, and output the SID information and the entire network topology relationship to the establishing module.
  • the allocating module is configured to: in the multicast manner, send the allocated SID information to each of the other SR nodes except the SR management node by using an extension of the IGP packet; or By configuring the extension of the management message, the allocated SID information is sent to each of the SR nodes in the network except the SR management node in a unicast manner.
  • the SR node further includes an advertisement module, configured to send, when the SR node is an SR management node, an advertisement that has its own SID allocation capability to each SR node in the network.
  • an advertisement module configured to send, when the SR node is an SR management node, an advertisement that has its own SID allocation capability to each SR node in the network.
  • the allocating module is further configured to: allocate an SID information for accessing the newly added SR node;
  • the establishing module is further configured to: after receiving the extended mode notification message, update the mapping relationship between the SID information and the address information according to the information from the SR management node.
  • the allocating module is further configured to: sense the failed SR node, revoke the SID information allocated to the failed SR node, and flood the other SR nodes in the network except the SR management node;
  • the establishing module is further configured to: after receiving the revocation information, recalculate through the shortest path first SPF algorithm, and delete the SR forwarding entry to the failed SR node.
  • the embodiment of the present invention includes that the SR management node learns the address information of the SR node in the network and allocates the SID information to the SR node; the SR management node uses the multicast mode of the IGP packet or the configuration management packet to be extended.
  • the assigned SID information is sent to each SR node in the network.
  • the configuration of the SID information of the SR node of the unnumbered interface is automatically allocated and learned without performing IP configuration and SID configuration on the nodes or ports on the network.
  • the method of the embodiment of the present invention establishes a service channel between the SR management node and each SR node in the network, thereby realizing the automatic establishment of the service channel between the SR control node and each SR node, which greatly simplifies the establishment of the service channel. And the complexity of the configuration.
  • the method of the embodiment of the present invention also performs the switching of the service path in time when the original SR service channel is faulty, and implements the rapid protection of the SR service channel.
  • FIG. 1 is a flowchart of a method for allocating a SID according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a data frame encapsulation format of a unicast packet allocated by a SID according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a format of a flooding multicast packet according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a structure of an SR node according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a network architecture according to a first application example of the present invention.
  • FIG. 6 is a schematic diagram of a network architecture of a second application example of the present invention.
  • FIG. 7 is a schematic diagram of forwarding of an IP RAN network according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of adding and forwarding an embodiment of adding an SR node according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of deletion and forwarding of an embodiment of deleting an SR node according to an embodiment of the present invention.
  • the SR management node described in the embodiment of the present invention is an SR node with an aggregation management function elected in the network, and the SR node is another SR node except the SR management node in the network.
  • the specific implementation of the present invention is not limited to the scope of protection of the present invention, and details are not described herein again.
  • FIG. 1 is a flowchart of a method for allocating a SID according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step 100 The SR management node learns the address information of the SR node in the network and allocates SID information to the SR node.
  • the SR management node can learn the router IDs of all the SR nodes in the network and the management loopback IP addresses.
  • the DCN management channel establishment process is a well-known technology of the present invention, and the specific implementation is not limited to the scope of protection of the present invention, and details are not described herein again.
  • the SR management node in this step allocates SID information including:
  • the SR management node generates the SID information according to the pre-planning (generated by the network default rule, such as setting the SID value in the SID area divided by the low to high according to the router ID size) or configuring (such as the administrator pre-configured SID value).
  • SID information is assigned to each SR node in the network and the SR management node itself.
  • the SID information includes an IPv6 Router ID or SID label information (Label), where the SID Label includes one or more of the following: a label range, an index, and a global label.
  • Step 102 The SR management node sends the allocated SID information to each SR node in the network by extending the IGP packet or the configuration management packet.
  • the SR management node sends the allocated SID information to each SR node in the network in a multicast manner by extending the IGP packet, including:
  • the SR management node multicasts the SID information corresponding to one or more SR node address information and sends it to each SR node in the network through the extension of the intermediate system to the intermediate system (ISIS) or OSPF. It can be carried by the SID Allocation TLV field of ISIS or OSPF.
  • the value in the extension field, that is, the SID allocation information includes, but is not limited to, a router ID or a loopback IP address carrying the SR node, and SID label information (SID Lable) of the allocated SID; wherein the SID Lable includes one or more of the following : label range, Index and global label.
  • the SID Allocation TLV field is extended in advance to carry OSPF or ISIS to carry the SR SID allocation information of the corresponding prefix to the node. That is to say, similar to the Prefix SID Sub-TLV format carried in the OSPF extended prefix TLV, or the ISIS SID Sub-TLV format, a new SID Allocation TLV field is added to carry the SID information;
  • the SR management node sends the IGP protocol packet with the SID Allocation TLV field to each SR node in the network in multicast mode (for example, 224.0.0.5).
  • the SID information of each SR node in the network is encapsulated into the newly added SID Allocation TLV field of the OSPF prefix TLV format or the newly added SID Allocation TLV field of the ISIS SID Sub-TLV format by using the TLV mode, where The value in the new SID Allocation TLV field is used to carry the router ID or loopback IP address of the SR node, and the SID Lable (one or more of the label range, index, and global label) of the assigned SID.
  • each SR node in the network After receiving the IGP protocol packet, each SR node in the network obtains the SID Label information assigned by the router ID corresponding to the node according to the router ID carried in the SID Allocation TLV field of the IGP protocol packet.
  • the SR management node sends the allocated SID information to each SR node in the network by configuring the management channel by extending the configuration management packet.
  • the SR management node is configured in the network by configuring the management channel.
  • the SID information allocated by each SR node carries SID information corresponding to one or more SR node address information, and is separately sent to each SR node in a unicast manner.
  • the SR management node sends a unicast message through the SID to each of the SR nodes in the network through the configuration management channel, such as the DCN management channel.
  • the DCN management channel learns the OSPF flooding message through the OSPF process loaded by default, and learns the topology connection between the nodes.
  • the management node obtains all the node address information in the network, and directly through the node address information and the network.
  • the configuration management packet is sent by the node for IP interaction. If the corresponding configuration is sent to the SR node by using NETCONF or Simple Network Management Protocol (SNMP), the user datagram protocol is generated according to the configuration application modules on the SR management node.
  • SNMP Simple Network Management Protocol
  • Packets in UDP or Transmission Control Protocol (TCP) format are encapsulated and sent through the DCN management channel to the corresponding nodes to be configured.
  • TCP Transmission Control Protocol
  • the node After receiving the packet, the node needs to parse the information carried in the configuration management packet and send it to the configuration management.
  • the module performs parsing, and the configuration management module parses the configuration information to the corresponding configuration protocol, and sends the configuration information to the relevant protocol process for processing.
  • the SID allocation unicast packet data frame encapsulation format is as shown in Figure 2, including the peer interface MAC address (DA) field, source interface MAC address (SA) field, 802.1Q tag field, and IP packet field: in [IP]
  • DA peer interface MAC address
  • SA source interface MAC address
  • IP IP packet field
  • IP IP
  • a new SID unicast packet extension is defined, which is used to carry a specific port number, so that the packet is a SID unicast packet, and carries specific SID specific allocation information, including specific information such as a router ID mapping. SID mapping.
  • each SR node in the network After each SR node in the network obtains the SID information of the local node, all the SR nodes in the network multicast the SID information of the local node to the network through flooding multicast packets.
  • the format of the flooding multicast packet is shown in Figure 3.
  • the extended prefix TLV is used to carry the SID Allocation TLV field.
  • the SR management node sends the SID information to the SR node in the network in the multicast mode or the unicast mode.
  • each SR node After receiving the SID information, each SR node includes: all the SR nodes in the network pass the pan.
  • the flood multicast packet floods the network with its own SID information.
  • the method of the embodiment of the present invention further includes:
  • Step 101 The SR management node sends an advertisement that has its own SID allocation capability to each SR node in the network. It should be noted that step 101 can be omitted. That is, when the SR node is elected as the SR management node by default, the SR node defaults to the current SR management node with the SR ID allocation capability.
  • the implementation of this step includes: the SR management node notifies the all the SR nodes in the network that the node has the SID allocation capability by extending the IGP protocol. In this way, after the SR node receives the advertisement information message, the SR node confirms that the SR management node allocates the SID information through the DCN channel or the IGP mode, including:
  • the SR management node When the SR management node allocates the SID information in the multicast mode, the SR management node in this step advertises to the all the SR nodes in the network that the node has the SID allocation capability by extending the IGP protocol, including:
  • the SR management node sets an allocation capability identifier field in the OSPF or ISIS message, or expands a TLV or sub-TLV to add an allocation capability identifier field to identify that the node has the capability of performing node SID allocation;
  • the SR management node advertises by setting OSPF or ISIS multicast mode with the allocation capability identification field.
  • Each SR node in the network can confirm the message carrying the SID Allocation TLV from the SR management node according to the allocation capability identification field.
  • the SR management node When the SR management node allocates the SID information in a unicast manner, the SR management node in this step advertises to the all the SR nodes in the network that the node has the SID allocation capability by extending the IGP protocol, including:
  • the SR management node sends an announcement supporting the SR SID allocation capability to each SR node in the network through the DCN channel to form an automatic service channel. For details, refer to how to set an allocation capability identifier field in OSPF or ISIS packets, or to extend a TLV or sub-TLV to add a capability identification field. In this way, after each SR node receives the support SR SID allocation capability advertisement message from the SR management node, if it needs to establish an SR service channel, it can actively send an SR SID allocation request message to the SR management node, and then manage by SR. The node assigns SID information to the SR node in unicast mode.
  • an SR node that sends an advertisement with its SID allocation capability to each SR node in the network includes two or more, the received SR node selects a transmission notification according to a preset policy.
  • the SR node is the SR management node, and the pre-set policy may be that the router ID is the largest or the smallest according to the router ID size.
  • Step 103 Establish a service channel between the SR management node and each SR node in the network, including:
  • the SR IGP process is used to extend the local router ID and SID to the Prefix SID Sub-TLV format or similar ISIS SID carried in the prefix TLV.
  • the SID Allocation TLV field in the Sub-TLV format is used for multicast advertisement. Therefore, the service topology between the SR nodes obtains topology information of all SR nodes in the network through multicast packets.
  • how to learn is the prior art. It is not intended to limit the scope of protection of the present invention, and is not described herein again;
  • each SR node calculates an optimal path that can reach the SR management node through the SPF algorithm.
  • the shortest path calculation from each SR node to the SR management node is calculated by using the SID of the SR management node as the destination address, and the SR service channel is automatically created.
  • the method in the embodiment of the present invention further includes:
  • the SR management node delivers a backup path policy to the SR node that creates the SR service channel, so that the SR node pre-configures or calculates a backup SR service channel that satisfies the backup path policy.
  • the SR management node calculates an SR backup path, and advertises the relevant forwarding table information to the relevant SR node on the SR backup path to construct a backup SR service channel.
  • the method of the embodiment of the present invention further includes:
  • the SID management node uses the SID Allocation TLV field to assign a SID to the router ID of the newly added SR node, and the SID Allocation TLV field also carries the original SID information in the network to which the new SR node joins.
  • each SR node in the network After receiving the extended mode advertisement message, each SR node in the network updates the mapping relationship between the SID information and the router ID according to the information from the SR management node.
  • the method of the embodiment of the present invention further includes:
  • the SID information allocated to the failed SR node is revoked and flooded to each of the other SR nodes in the network;
  • each SR node in the network After receiving the revocation information, each SR node in the network recalculates through the SPF algorithm and deletes the SR forwarding entry to the failed SR node.
  • the configuration of the SID information of the SR node of the unnumbered interface is automatically allocated and learned without performing IP configuration and SID configuration on the nodes or ports on the network, thereby realizing the SR control node and each SR.
  • the automatic establishment of service channels between nodes greatly simplifies the complexity of establishing and configuring service channels.
  • FIG. 4 is a schematic structural diagram of a structure of an SR node according to an embodiment of the present invention. As shown in FIG. 4, at least a configuration management module, an allocation processing module, where
  • the configuration management module is set to automatically establish a configuration management channel
  • the allocation processing module is configured to receive the allocated SID information through the extended IGP packet or the configuration management packet; acquire the topology relationship of the entire network through learning; and flood the network through the management channel The SID information of the node.
  • the SR node further includes: an establishing module, configured to calculate, according to the SID information and the topology relationship of the entire network, a default SR service channel that can reach the SR management node by using the SPF algorithm.
  • the setup module is further configured to receive a backup path policy to pre-configure or calculate a backup SR service channel that satisfies the backup path policy.
  • the SR node When the SR node is elected as the SR management node, the SR node further includes an allocation module, and a processing module, where
  • the allocation module is configured to use the DCN management channel establishment process to learn the SR node address information of the access network and allocate the SID information; and send the allocated SID information to each of the networks by extending the IGP message or the configuration management message.
  • the SR node includes: transmitting the allocated SID information to each SR node in the network in a multicast manner by extending the IGP packet; or unicasting the allocation by configuring the extension of the management packet Good SID information is sent to each SR node in the network.
  • the processing module is configured to obtain the topology relationship of the entire network by learning, and output the SID information and the topology relationship of the entire network to the establishing module.
  • the SR node further includes an advertisement module, configured to send an advertisement with its SID allocation capability to each SR node in the network after the configuration management channel is established.
  • the allocation module is also configured to deliver a backup path policy.
  • the allocation module is further configured to calculate an SR backup path, notify the relevant SR node on the SR backup path of the relevant forwarding table information, and construct a backup SR service channel.
  • the allocation module is further configured to: assign a SID information to the accessing new SR node; accordingly,
  • the establishing module is further configured to: after receiving the extended mode notification message, update the mapping relationship between the SID information and the address information according to the information from the SR management node.
  • the allocation module is further configured to: sense the failed SR node, revoke the SID information assigned to the failed SR node, and flood it to each of the other SR nodes in the network; accordingly,
  • the establishing module is further configured to: after receiving the revocation information, recalculate through the SPF algorithm, and delete the SR forwarding entry that implements the SR node.
  • FIG. 5 is a schematic diagram of a network architecture according to a first application example of the present invention.
  • the network includes an SR management node, that is, a Node B, and three SR nodes, namely, a node A1, a node A2, and a node A3.
  • the node A1, the node A2, and the node A3 in the network access the network, and the DCN management channel is automatically established after the device is loaded and started by default.
  • the SR IGP process on each access node is started by default configuration loading.
  • the first application example uses the multicast mode to send SID information and establish a service channel, including:
  • the Node B learns the router IDs of all the SR nodes, namely, the node A1, the node A2, and the node A3, and manages the loopback IP address; and according to the pre-planning or configuration of the SR ID information, the node B gives each The SR nodes, that is, the node A1, the node A2, the node A3, and the node B themselves allocate the SID;
  • the Node B identifies that the node has the capability of performing node SID allocation by setting an allocation capability identification field in the OSPF or ISIS message, or extending a TLV or a sub-TLV to add a distribution capability identification field;
  • the OSPF or ISIS multicast mode of the capability identification field advertises each of the other SR nodes, namely, node A1, node A2, and node A3;
  • the Node B encapsulates the SID information of each of the SR nodes, that is, the node A1, the node A2, and the node A3, into the SID Allocation TLV field newly added by the OSPF prefix TLV or the SID Allocation TLV field added by the ISIS protocol. Transmitting to each SR node, node A1, node A2, and node A3 through a specific multicast (such as 224.0.0.5);
  • the node After each SR node, that is, the node A1, the node A2, and the node A3 receives the extended OSPF or ISIS packet sent by the Node B, the node is determined according to the Router ID and the SID Label carried therein.
  • the assigned SID information corresponding to the router ID, and the SID information of the node B and the SID information of other SR nodes are saved.
  • the node A1 processes and saves the SID information of the node, and also stores the SID information of the node A2, the node A3, and the node B. ;
  • the local router ID and SID are extended by the SR IGP process to extend the prefix SID sub-tlv carried in the prefix TLV.
  • New in the format or ISIS SID Sub-TLV format The SID Allocation TLV field performs multicast advertisement, and the service topology acquires topology information of the network node by using the multicast address;
  • each SR node that is, node A1, node A2, and node A3 respectively calculate an optimal path of the reachable node B according to the SPF algorithm, and automatically establish an SR service working channel; by default, each SR node is node A1 and node.
  • the shortest path calculation of A2 and node A3 to node B is calculated with the SID of the Node B node as the destination address.
  • the packet P when a packet P needs to be forwarded to the outside through the Node B, the packet P is periodically tagged with a SID header of the shortest path to the Node B, and the encapsulation header is configured to encapsulate the Node B by default in the form of a Label stack.
  • the SID indicates that the packet must be forwarded through the Node B.
  • the forwarding entry of each SR node is obtained by mapping the shortest path interface of the SID.
  • FIG. 6 is a schematic diagram of a network architecture according to a second application example of the present invention.
  • the network includes an SR management node, that is, a Node B, and three SR nodes, namely, a node A1, a node A2, and a node A3.
  • the node A1, the node A2, and the node A3 in the network access the network, and the DCN management channel is automatically established after the device is loaded and started by default.
  • the SR IGP process on each access node is started by default configuration loading.
  • the second application example uses the unicast mode to send SID information and establish a service channel, including:
  • the Node B learns the router IDs of all the SR nodes, namely, the node A1, the node A2, and the node A3, and manages the loopback IP address; and according to the pre-planning or configuration of the SR ID information, the node B gives each The SR nodes, that is, the node A1, the node A2, the node A3, and the node B themselves allocate the SID;
  • the Node B sends a notification supporting the SR SID allocation capability to each SR node in the network through the DCN channel.
  • the node B allocates the unicast packet data frame encapsulation format according to the SID shown in FIG. 2 through the DCN management channel, and sends the SID and other information allocated to each SR node in the network to each unicast mode.
  • the SR node is node A1, node A2, and node A3;
  • the SID information allocated by the node is saved;
  • the SID is utilized.
  • the SR IGP process advertises the local router ID and SID through the prefix SID sub-tlv format carried in the OSPF extension prefix TLV or the SID Allocation TLV field in the ISIS SID Sub-TLV format.
  • the multicast address acquires topology information of the network node;
  • each SR node that is, node A1, node A2, and node A3 respectively calculate an optimal path of the reachable node B according to the SPF algorithm, and automatically establish an SR service working channel; by default, each SR node is node A1 and node.
  • the shortest path calculation of A2 and node A3 to node B is calculated with the SID of the Node B node as the destination address.
  • the packet P when a packet P needs to be forwarded to the outside through the Node B, the packet P is periodically tagged with a SID header of the shortest path to the Node B, and the encapsulation header is configured to encapsulate the Node B by default in the form of a Label stack.
  • the SID indicates that the packet must be forwarded through the Node B.
  • the forwarding entry of each SR node is obtained by mapping the shortest path interface of the SID.
  • FIG. 7 is a schematic diagram of an IP RAN network forwarding according to an embodiment of the present invention.
  • the SID allocation method of the embodiment of the present invention can implement the plug-and-play function of the IPRAN network node without any configuration automatically.
  • FIG. 8 is a schematic diagram of adding and forwarding an embodiment of adding an SR node according to an embodiment of the present invention. As shown in FIG. 8, it is assumed that node A7 is a newly added SR node in the network as shown in FIG. 7, and node A7 is automatically connected to the channel.
  • the establishment includes:
  • the DCN When the node A7 is powered on, the DCN automatically manages the channel configuration and the default SR IGP process.
  • the router ID of node A7 will be generated based on the DCN management channel.
  • the SID Allocation TLV field in the step 102 shown in FIG. 1 is implemented by the present invention, and a router ID is assigned to the router ID of the node A7.
  • the SID information in the network shown in FIG. 7 ie, node A1 - node A7 and node B SID information
  • the SID Allocation TLV field is carried by the Link State Advertisement (LSA) extension of the OSPF IP packet field as shown in FIG. 3, or the IP packet in the DCN channel Ethernet packet as shown in FIG.
  • LSA Link State Advertisement
  • the extension mode carried by the field is advertised to each SR node, that is, node A1 - node A7.
  • the information of the node B updates the mapping relationship between the SID information and the router ID, that is, updates the SR forwarding table, mainly adding a SR forwarding for the node A7 on the node A1 - node A6, as shown in bold bold italics in Figure 8.
  • a forwarding entry for A1 which stores all SR forwarding entries on node A7.
  • the SR forwarding table is formed by the SR IGP protocol to advertise its own local SID information, and each SR node forms an SR forwarding table according to the received SR IGP topology information.
  • the node A7 searches for the next hop of the SID of the local to the Node B, and searches the SR forwarding table in the node A7 in FIG. , map out the int2 interface.
  • the management node B cancels the SID information allocated to the node A3, and floods to each of the other SR nodes, that is, the node A1, the node A2, and the node A4 to the node A6;
  • each SR node that is, node A1, node A2, and node A4 to node A6, is recalculated by the shortest path first SPF algorithm, and the SR forwarding entry to node A3 is deleted, as shown in FIG.
  • the line deleted entry and recalculates its shortest path to Node B, such as node A1, and recalculates that the shortest path to Node B is reachable through A4 ⁇ A5 ⁇ A6.
  • the above technical solution does not require IP configuration and SID configuration for nodes or ports on the network, and realizes automatic allocation and learning of SID information of SR nodes of the unnumbered interface; establishing services between the SR management node and each SR node in the network.
  • the channel which realizes the automatic establishment of the service channel between the SR control node and each SR node, greatly simplifies the complexity of establishing and configuring the service channel; and also fails in the original SR service channel through the establishment of the backup SR service channel. In this case, the service path is switched in time, and the SR service channel is quickly protected.

Abstract

一种分配分段路由标识(SID)的方法和分段路由(SR)节点,包括SR管理节点获知网络中SR节点的地址信息并给SR节点分配SID信息(100);SR管理节点通过内部网关协议(IGP)报文的组播方式或配置管理报文的扩展,将分配好的SID信息发送给网络中的每个SR节点(102)。上述技术方案无需对网络上节点或端口进行IP配置和SID等配置,实现了无编号接口的SR节点的SID信息的自动分配和学习。另外,通过SR管理节点及网络中的每个SR节点间建立业务通道,从而实现了在SR控制节点和每个SR节点之间业务通道的自动建立,大大简化了业务通道建立和配置的复杂性。

Description

一种分配分段路由标记的方法和分段路由节点 技术领域
本发明涉及基于IP的传送网(IP RAN)技术,尤指一种分配分段路由标记(SID)的方法和分段路由(SR)节点。
背景技术
当前,在基于IP的传送网(IP RAN),也称无编号接口网络上,已存在数据通信网络(DCN,Data Communication Network)管理通道自动建立和配置方法,主要通过每个节点上自动设定DCN端口、默认生成路由ID(Router ID),通过开放式最短路径优先(OSPF,Open Shortest Path First)协议、地址解析协议(ARP,Address Resolution Protocol)、链路层发现协议(LLDP)等协议的扩展来实现每个节点之间的管理IP地址、DCN端口,以及媒体接入控制(MAC)地址的学习,从而实现DCN通道自动建立和配置。
但是,对于分段路由(SR,Segment Routing)节点之间(比如每个接入节点和汇聚节点之间)的业务通道的建立,还需要大量的手动配置,比如:每个端口IP地址的配置,内部网关协议(IGP,Interior Gateway Protocol)的配置、标签分发协议(Label Distribution Protocol,LDP)的配置、伪线信息的配置等。随着接入节点数目的增加,配置的复杂性会大幅提高,相应的配置出错带来的风险也大幅提高。
在相关的SR技术,即IGP协议基础上启动SR扩展功能实现中,通过IGP协议上的SR扩展,携带SR标识(SR ID,Segment Routing ID,也缩写为SID)的通告,并通过IGP的算法计算出到每个SID的最短路径;而报文头封装中的SID堆栈信息,可以指导报文依照封装堆栈路径转发。这样,可以大幅减少相应的LDP协议及伪线信息的配置。但是,所述相关技术方案中并没有给出如何利用IGP协议上的SR扩展来实现SID的分配的具体实现方案,也不能达到业务通道的自动建立。
发明内容
为了解决上述技术问题,本发明实施例提供一种分配SID的方法和SR节点,能够实现SID的自动分配。
为解决上述技术问题,本发明实施例提供了一种分配分段路由标识SID的方法,包括:分段路由SR管理节点获知网络中SR节点的地址信息并给SR节点分配SID信息;
SR管理节点通过对内部网关协议IGP报文或配置管理报文的扩展,将分配好的SID信息发送给网络中的除SR管理节点外的其他每个SR节点。
可选地,所述发送包括:
所述SR管理节点通过对IGP报文的扩展,通过扩展后的IGP报文携带SR节点地址信息对应的SID信息,把所述SID信息组播发送给所述每个SR节点,所述SID信息的数量为一个或一个以上。
可选地,其中,所述扩展的SID信息通过中间系统到中间系统ISIS或开放式最短路径优先OSPF的SID分配类型长度值TLV字段携带。
可选地,所述发送还包括:
所述SR管理节点通过对配置管理报文的扩展,通过配置管理通道,携带SR节点地址信息对应的SID信息,并把所述SID信息发送给所述每个SR节点,所述SID信息的数量为一个或一个以上。
可选地,该方法还包括:
每个SR节点接收到所述SID信息后,网络中的所有SR节点通过泛洪组播报文向网络中洪泛自身的SID信息。
可选地,所述方法还包括:所述将分配好的SID信息发送给网络中的除SR管理节点外的其他每个SR节点之前,所述SR管理节点向网络中的除SR管理节点外的其他每个SR节点发送自身具备SID分配能力的通告。
可选地,其中,所述SR管理节点向网络中的除SR管理节点外的其他每个SR节点发送自身具备SID分配能力的通告包括:
所述SR管理节点通过设置有分配能力标识字段的OSPF或ISIS报文或 配置管理报文通告网络中的除SR管理节点外的其他每个SR节点。
可选地,所述方法还包括:当所述SR管理节点包括两个或两个以上时,
收到所述通告的SR节点按照预先设置的策略选定一个发送通告的SR管理节点为最终的SR管理节点。
可选地,所述方法还包括:所述网络中的除SR管理节点外的SR节点获取到所述SR管理节点具备的分配能力后,计算出一条该SR节点至所述SR管理节点的默认SR业务通道。
可选地,其中,SID信息包括节点的地址信息和SID标签信息;SID标签信息包括以下一种或多种:标签范围、索引和全局标签。
可选地,所述方法还包括,当所述网络中接入新增SR节点时,
所述SR管理节点通过所述组播或单播方式扩展,给新增SR节点的地址信息分配一个SID,且在所述扩展中还携带有新增SR节点所加入的网络中原有的分配给其它节点的SID信息;
所述网络中的除SR管理节点外的其他每个SR节点接收到扩展方式通告消息后,根据来自所述SR管理节点的信息更新SID分配信息和地址信息的映射关系。
可选地,所述方法还包括,当所述网络中存在SR节点失效时,
所述SR管理节点在感知到失效SR节点后,撤销给该失效SR节点地址信息分配的SID信息,且洪泛给所述网络中的除SR管理节点外的其他每个SR节点;
所述网络中的除SR管理节点外的其他每个SR节点接收到该撤销信息后,经过SPF算法重新计算,删除到失效SR节点的SR转发条目。
为解决上述技术问题,本发明实施例还提供了一种分段路由SR节点,包括配置管理模块,分配处理模块,以及建立模块,其中,
配置管理模块,设置为自动建立配置管理通道;
分配处理模块,设置为通过扩展的内部网关协议IGP报文或配置管理报文接收分配的分段路由标识SID信息;通过所述管理通道向网络中洪泛本节点的SID信息。
可选地,所述的SR节点还包括建立模块,设置为计算出一条至所述SR管理节点的默认SR业务通道。
可选地,所述的SR节点还包括分配模块,及处理模块,其中,
分配模块,设置为当所述SR节点为SR管理节点时,利用管理通道建立过程,获知接入网络的SR节点地址信息并分配SID信息;通过对IGP报文或配置管理报文的扩展将分配好的SID信息发送给网络中的除SR管理节点外的其他每个SR节点;
处理模块,设置为当所述SR节点为SR管理节点时,通过学习获取全网拓扑关系,将SID信息及全网拓扑关系输出给建立模块。
可选地,其中,所述分配模块是设置为:通过对IGP报文的扩展,以组播方式将分配好的SID信息发送给网络中的除SR管理节点外的其他每个SR节点;或者,通过配置管理报文的扩展,以单播方式将分配好的SID信息发送给网络中的除SR管理节点外的其他每个SR节点。
可选地,所述SR节点还包括通告模块,设置为当所述SR节点为SR管理节点时,向网络中的每个SR节点发送自身具备SID分配能力的通告。
可选地,所述分配模块还设置为:为接入新增SR节点分配一个SID信息;
所述建立模块还设置为:接收到扩展方式通告消息后,根据来自所述SR管理节点的信息更新SID信息和地址信息的映射关系。
可选地,所述分配模块还设置为:感知到失效SR节点,撤销给该失效SR节点分配的SID信息,且洪泛给所述网络中的除SR管理节点外的其他每个SR节点;
所述建立模块还设置为:接收到该撤销信息后,经过最短路径优先SPF算法重新计算,删除到失效SR节点的SR转发条目。
与上述相关技术相比,本发明实施例包括SR管理节点获知网络中SR节点的地址信息并给SR节点分配SID信息;SR管理节点通过IGP报文的组播方式或配置管理报文的扩展,将分配好的SID信息发送给网络中的每个SR节点。通过本发明实施例方法,无需对网络上节点或端口进行IP配置和SID等配置,实现了无编号接口的SR节点的SID信息的自动分配和学习。
另外,本发明实施例方法通过SR管理节点及网络中的每个SR节点间建立业务通道,从而实现了在SR控制节点和每个SR节点之间业务通道的自动建立,大大简化了业务通道建立和配置的复杂性。
本发明实施例方法还通过备份SR业务通道的建立,在原有SR业务通道出现故障情况下,及时地进行了业务路径的切换,实现了SR业务通道快速保护。
附图概述
图1为本发明实施例分配SID的方法流程图;
图2为本发明实施例SID分配单播报文数据帧封装格式的示意图;
图3为本发明实施例泛洪组播报文格式的示意图;
图4为本发明实施例SR节点的组成结构示意图;
图5为本发明第一应用示例的网络架构示意图;
图6为本发明第二应用示例的网络架构示意图;
图7为本发明实施例IP RAN网络转发示意图;
图8为本发明实施例添加SR节点的实施例的添加转发示意图;
图9为本发明实施例删除SR节点的实施例的删除转发示意图。
本发明的较佳实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例中所述的SR管理节点为网络中选举出来的具有汇聚管理功能的SR节点,SR节点为网络中的除SR管理节点之外的其它SR节点。其中,如何选举属于本领域技术人员的公知技术,其具体实现并不用于限定本发明的保护范围,这里不再赘述。
图1为本发明实施例分配SID的方法的流程图,如图1所示,包括:
步骤100:SR管理节点获知网络中SR节点的地址信息并给SR节点分配SID信息。
本步骤中,通过建立DCN管理通道,SR管理节点可以学习到网络中所有SR节点的Router ID以及管理环回IP地址等相关信息。其中,DCN管理通道建立过程属于本领域技术人员的公知技术,具体实现并不用于限定本发明的保护范围,这里不再赘述。
本步骤中的SR管理节点分配SID信息包括:
SR管理节点根据预先规划(由网络默认规则生成,如根据Router ID大小,设置由低到高划分的SID区域范围内的SID值)或配置(如管理员预先配置好SID值)的SID信息,为网络中的每个SR节点及SR管理节点自身分配SID信息。其中,本领域技术人员知道,SID信息包括IPv 6 Router ID或SID标签信息(Label),其中,SID Label包括以下一种或多种:标签范围、索引(index)和全局Label。
步骤102:SR管理节点通过对IGP报文或配置管理报文的扩展,将分配好的SID信息发送给网络中的每个SR节点。
本步骤中,SR管理节点通过对IGP报文的扩展,以组播方式将分配好的SID信息发送给网络中的每个SR节点,包括:
SR管理节点通过对中间系统到中间系统(ISIS)或OSPF的报文扩展,携带一个或一个以上SR节点地址信息对应的SID信息组播发送给网络中的每个SR节点,其中,扩展的信息可以通过ISIS或OSPF的SID分配类型长度值(SID Allocation TLV)字段携带。在扩展字段中的值即SID分配信息包括但不限于携带SR节点的Router ID或环回IP地址,以及所分配SID的SID标签信息(SID Lable);其中,SID Lable包括以下一种或多种:标签范围、 索引(index)和全局label。
比如:预先对OSPF或ISIS进行扩展以携带对节点进行相应前缀的SR SID分配信息的SID Allocation TLV字段。也就是说,类似在OSPF扩展prefix TLV中携带的Prefix SID Sub-TLV格式,或ISIS SID Sub-TLV格式,扩展新增一个SID Allocation TLV字段,用于携带SID信息;
SR管理节点将新增有SID Allocation TLV字段的IGP协议报文通过组播方式(如224.0.0.5)发送给网络中的每个SR节点。这里,将网络中每个SR节点的SID信息通过TLV方式,都封装到OSPF prefix TLV格式的新增SID Allocation TLV字段中或ISIS SID Sub-TLV格式的新增SID Allocation TLV字段中,其中,该新增SID Allocation TLV字段中的Value用于携带SR节点的Router ID或环回IP地址,以及所分配SID的SID Lable(标签范围、index和全局label中的一种或多种)。
网络中的每个SR节点接收到该IGP协议报文后,根据IGP协议报文的SID Allocation TLV字段中携带的Router ID,获得节点对应的Router ID所分配的SID Label信息。
本步骤中,SR管理节点通过对配置管理报文的扩展,通过配置管理通道,将分配好的SID信息发送给网络中的每个SR节点包括:SR管理节点通过配置管理通道,将为网络中每个SR节点所分配的SID信息携带一个或一个以上SR节点地址信息对应的SID信息,以单播方式分别发送给每个SR节点。
比如:SR管理节点通过配置管理通道如DCN管理通道,将为网络中每个SR节点所分配的SID等信息,以单播方式,通过SID分配单播报文经由配置管理报文扩展分别发送给每个SR节点。其中,DCN管理通道通过默认加载的OSPF进程,学习到OSPF的洪泛消息,学习到相互之间的拓扑连接,管理节点将获取到网络中所有的节点地址信息,通过节点地址信息直接和网络每个节点进行IP交互的配置管理报文发送,如通过类似NETCONF或简单网络管理协议(SNMP)给SR节点下发相应的配置时,根据SR管理节点上的这些配置应用模块生成用户数据报协议(UDP)或传输控制协议(TCP)格式的报文封装,通过DCN管理通道发送这些配置管理报文给相应需配置的节点。需配置节点接收到所述报文后解析配置管理报文中携带的信息,发送给配置管理 模块进行解析,配置管理模块将所述配置信息解析到相应配置协议,发送到相关协议进程进行处理。SID分配单播报文数据帧封装格式如图2所示,其中包括对端接口MAC地址(DA)字段、源接口MAC地址(SA)字段、802.1Q tag字段以及IP报文字段,:在[IP报文]字段中,定义新的SID单播报文扩展,用于携带特定端口号,以表明该报文是个SID单播报文,以及携带具体的SID具体分配信息,包括如Router ID映射的具体的SID映射。
网络中的每个SR节点获得本节点的SID信息后,网络中的所有SR节点均以组播方式,通过泛洪组播报文向网络中洪泛本节点的SID信息。泛洪组播报文格式如图3所示,在[OSPF IP报文]字段中,扩展prefix TLV用于携带SID Allocation TLV字段。
本步骤中,在SR管理节点通过组播方式或单播方式将SID信息发送给网络中的SR节点,每个SR节点接收到所述SID信息后,还包括:网络中的所有SR节点通过泛洪组播报文向网络中洪泛自身的SID信息。
在步骤100之后,步骤102之前,本发明实施例方法还包括:
步骤101:SR管理节点向网络中的每个SR节点发送自身具备SID分配能力的通告。需要说明的是,步骤101可以省略,即系统默认当SR节点被选举为SR管理节点时,SR节点默认当前的SR管理节点具备SR ID分配能力。
本步骤实现包括:SR管理节点通过扩展IGP协议,向网络中的所有SR节点通告本节点具有SID分配能力。这样,在SR节点接收到该通告信息报文后,SR节点才会对SR管理节点通过DCN通道或IGP方式分配SID信息进行确认,包括:
当SR管理节点通过组播方式分配SID信息时,本步骤中的SR管理节点通过扩展IGP协议,向网络中的所有SR节点通告本节点具有SID分配能力包括:
SR管理节点在OSPF或ISIS报文中设置一个分配能力标识字段,或者扩展一个TLV或子TLV使其新增分配能力标识字段,来标识本节点具备进行节点SID分配能力;
SR管理节点通过设置有分配能力标识字段的OSPF或ISIS组播方式通告 网络中的每个SR节点。这样,网络中的每个SR节点可以根据该分配能力标识字段对来自SR管理节点的携带有SID Allocation TLV的消息进行确认。
当SR管理节点通过单播方式分配SID信息时,本步骤中的SR管理节点通过扩展IGP协议,向网络中的所有SR节点通告本节点具有SID分配能力包括:
SR管理节点通过DCN通道,分别向网络中的每个SR节点发送支持SR SID分配能力的通告,以便形成自动业务通道的建立。具体如何添加可以参考在OSPF或ISIS报文中设置一个分配能力标识字段,或者扩展一个TLV或子TLV使其新增分配能力标识字段的方式,这里不做限定。这样,当每个SR节点接收到来自SR管理节点的支持SR SID分配能力通告报文后,如果需要建立SR业务通道,可以主动向SR管理节点发送一个SR SID分配请求报文,之后由SR管理节点以单播方式,为该SR节点分配SID信息。
需要说明的是,当向网络中的每个SR节点发送自身具备SID分配能力的通告的SR节点包括两个或两个以上时,收到通告的SR节点按照预先设置的策略选定一个发送通告的SR节点为SR管理节点,其中预先设置的策略可以是根据Router ID大小,选择Router ID最大的,或最小的等。
本发明实施例方法还包括:
步骤103:SR管理节点及网络中的每个SR节点间建立业务通道,包括:
网络中的SR节点和SR管理节点学习到自身和其他节点的SID信息后,利用SR IGP进程将本地的Router ID和SID通过OSPF扩展prefix TLV中携带的类似Prefix SID Sub-TLV格式或类似ISIS SID Sub-TLV格式新增的SID Allocation TLV字段进行组播通告,由此,SR节点间的业务拓扑经由组播报文获取到网络中所有SR节点的拓扑信息;这里,如何学习是现有技术,并不用于限定本发明的保护范围,这里不再赘述;
接着,每个SR节点通过SPF算法分别计算出一条可到达SR管理节点的最优路径。默认情况下,每个SR节点至SR管理节点的最短路径计算以SR管理节点的SID为目的地址进行计算,并自动创建SR业务通道。
在原有SR业务通道出现故障情况下,为了及时进行业务路径的切换, 以实现SR业务通道快速保护,本发明实施例方法还包括:
SR管理节点向创建SR业务通道的SR节点下发备份路径策略,以便SR节点预先配置或计算出一条满足备份路径策略的备份SR业务通道;
或者,SR管理节点计算一条SR备份路径,给该SR备份路径上的相关SR节点通告相关转发表信息,构造备份SR业务通道。
这里,SR业务通道快速保护的具体实现属于本领域技术人员的公知技术,并不用于限定本发明的保护范围,这里不再赘述。
当所述网络中接入新增SR节点时,本发明实施例方法还包括:
SR管理节点通过SID Allocation TLV字段,给新增SR节点的Router ID分配一个SID,且在SID Allocation TLV字段中还携带有新增SR节点所加入的网络中原有的SID信息;
网络中的每个SR节点接收到扩展方式通告消息后,根据来自所述SR管理节点的信息更新SID信息和Router ID的映射关系。
当网络中存在SR节点失效时,本发明实施例方法还包括:
SR管理节点在感知到失效SR节点后,撤销给该失效SR节点分配的SID信息,且洪泛给网络中的其他每个SR节点;
网络中的每个SR节点接收到该撤销信息后,经过SPF算法重新计算,删除到失效SR节点的SR转发条目。
通过本发明实施例方法,无需对网络上节点或端口进行IP配置和SID等配置,实现了无编号接口的SR节点的SID信息的自动分配和学习,从而实现了在SR控制节点和每个SR节点之间业务通道的自动建立,大大简化了业务通道建立和配置的复杂性。
图4为本发明实施例SR节点的组成结构示意图,如图4所示,至少包括配置管理模块,分配处理模块,其中,
配置管理模块,设置为自动建立配置管理通道;
分配处理模块,设置为通过扩展的IGP报文或配置管理报文接收分配的SID信息;通过学习获取全网拓扑关系;通过所述管理通道向网络中洪泛本 节点的SID信息。
所述SR节点还包括:建立模块,设置为根据SID信息及全网拓扑关系,通过SPF算法分别计算出一条可到达SR管理节点的默认SR业务通道。
建立模块还设置为,接收备份路径策略,以预先配置或计算出一条满足备份路径策略的备份SR业务通道。
当SR节点被选举为SR管理节点时,所述SR节点还包括分配模块,及处理模块,其中,
分配模块,设置为利用DCN管理通道建立过程,获知接入网络的SR节点地址信息并分配SID信息;通过对IGP报文或配置管理报文的扩展将分配好的SID信息发送给网络中的每个SR节点,包括:通过对IGP报文的扩展,以组播方式将分配好的SID信息发送给网络中的每个SR节点;或者,通过配置管理报文的扩展,以单播方式将分配好的SID信息发送给网络中的每个SR节点。
处理模块,设置为通过学习获取全网拓扑关系,将SID信息及全网拓扑关系输出给建立模块。
所述SR节点还包括通告模块,设置为在配置管理通道建立后,向网络中的每个SR节点发送自身具备SID分配能力的通告。
分配模块还设置为,下发备份路径策略。
分配模块还设置为,计算一条SR备份路径,给该SR备份路径上的相关SR节点通告相关转发表信息,构造备份SR业务通道。
分配模块还设置为:为接入新增SR节点分配一个SID信息;相应地,
建立模块还设置为:接收到扩展方式通告消息后,根据来自所述SR管理节点的信息更新SID信息和地址信息的映射关系。
分配模块还设置为:感知到失效SR节点,撤销给该失效SR节点分配的SID信息,且洪泛给所述网络中的其他每个SR节点;相应地,
建立模块还设置为:接收到该撤销信息后,经过SPF算法重新计算,删除到实现SR节点的SR转发条目。
下面结合具体应用示例对本发明方法进行详细描述。
图5为本发明第一应用示例的网络架构示意图,如图5所示,网络中包括SR管理节点即节点B,以及三个SR节点即节点A1、节点A2和节点A3。假设网络中的节点A1、节点A2和节点A3接入网络时,均通过设备默认配置加载启动后实现了DCN管理通道自动建立,且通过默认配置加载启动每个接入节点上的SR IGP进程。
第一应用示例采用组播方式发送SID信息,建立业务通道,包括:
首先,通过DCN管理通道的自动建立,节点B学习到所有SR节点即节点A1、节点A2和节点A3的Router ID以及管理环回IP地址;并根据预先规划或配置SR ID信息,节点B给每个SR节点即节点A1、节点A2和节点A3及节点B自身分配SID;
接着,节点B通过在OSPF或ISIS报文中设置一个分配能力标识字段,或者扩展一个TLV或子TLV使其新增分配能力标识字段,来标识本节点具备进行节点SID分配能力;通过设置有分配能力标识字段的OSPF或ISIS组播方式通告其他每个SR节点即节点A1、节点A2和节点A3;
之后,节点B将每个SR节点即节点A1、节点A2和节点A3的SID信息通过TLV方式,都封装到OSPF prefix TLV新增的SID Allocation TLV字段中或ISIS协议新增的SID Allocation TLV字段中,通过特定组播(如224.0.0.5)发送给每个SR节点即节点A1、节点A2和节点A3;
当每个SR节点即节点A1、节点A2和节点A3接收到B节点发送过来的扩展的OSPF或ISIS携带SID Allocation TLV的报文后,根据其中所携带的Router ID和SID Label,判断出哪个节点Router ID对应的所分配SID信息,并保存节点B的SID信息和其他SR节点的SID信息,比如:节点A1处理保存自身的SID信息外,还会保存节点A2,节点A3以及节点B的SID信息;
当每个SR节点即节点A1、节点A2和节点A3学习到自身及其他节点的SR ID信息后,利用SR IGP进程将本地的Router ID和SID通过OSPF扩展prefix TLV中携带的Prefix SID sub-tlv格式或ISIS SID Sub-TLV格式中新增的 SID Allocation TLV字段进行组播通告,由此,业务拓扑经由组播地址获取到网络节点的拓扑信息;
之后,每个SR节点即节点A1、节点A2和节点A3按照SPF算法分别计算出一条可到达节点B最优路径,自动建立SR业务工作通道;默认情况下,每个SR节点即节点A1、节点A2和节点A3至节点B的最短路径计算以节点B节点的SID为目的地址进行计算。
这样,当有报文P需要通过节点B转发到外部时,给该报文P默认打上一层到节点B的最短路径的SID报文头,封装头部以Label堆栈形式将默认封装节点B的SID表示报文一定要经过节点B往外转发。而在报文转发流程中,每个SR节点的转发条目经由SID的最短路径接口映射得出即可。
图6为本发明第二应用示例的网络架构示意图,如图6所示,网络中包括SR管理节点即节点B,以及三个SR节点即节点A1、节点A2和节点A3。假设网络中的节点A1、节点A2和节点A3接入网络时,均通过设备默认配置加载启动后实现了DCN管理通道自动建立,且通过默认配置加载启动每个接入节点上的SR IGP进程。
第二应用示例采用单播方式发送SID信息,建立业务通道,包括:
首先,通过DCN管理通道的自动建立,节点B学习到所有SR节点即节点A1、节点A2和节点A3的Router ID以及管理环回IP地址;并根据预先规划或配置SR ID信息,节点B给每个SR节点即节点A1、节点A2和节点A3及节点B自身分配SID;
接着,节点B通过DCN通道,分别向网络中的每个SR节点发送支持SR SID分配能力的通告;
之后,节点B通过DCN管理通道,按照图2所示的SID分配单播报文数据帧封装格式,将为网络中每个SR节点所分配的SID等信息,以单播方式,分别发送给每个SR节点即节点A1、节点A2及节点A3;
当SR节点即节点A1、节点A2及节点A3接收到节点B发送的SID分配通告报文后,保存本节点所分配SID信息;
当SR节点即节点A1、节点A2及节点A3接收到的本节点SID后,利用 SR IGP进程将本地的Router ID和SID通过OSPF扩展prefix TLV中携带的Prefix SID sub-tlv格式或ISIS SID Sub-TLV格式中新增的SID Allocation TLV字段进行组播通告,由此,业务拓扑经由组播地址获取到网络节点的拓扑信息;
之后,每个SR节点即节点A1、节点A2和节点A3按照SPF算法分别计算出一条可到达节点B最优路径,自动建立SR业务工作通道;默认情况下,每个SR节点即节点A1、节点A2和节点A3至节点B的最短路径计算以节点B节点的SID为目的地址进行计算。
这样,当有报文P需要通过节点B转发到外部时,给该报文P默认打上一层到节点B的最短路径的SID报文头,封装头部以Label堆栈形式将默认封装节点B的SID表示报文一定要经过节点B往外转发。而在报文转发流程中,每个SR节点的转发条目经由SID的最短路径接口映射得出即可。
图7为本发明实施例IP RAN网络转发示意图,当IP RAN网络内有节点添加时,利用本发明实施例的SID分配方法,无需任何配置自动即可实现IPRAN网络节点的即插即用功能,图8为本发明实施例添加SR节点的实施例的添加转发示意图,如图8所示,假设节点A7为如图7所示网络中新增加的一个SR节点,节点A7接入后通道的自动建立包括:
节点A7设备上电启动时,默认加载DCN自动管理通道建立所需的配置及默认SR IGP进程,在DCN管理通道建立基础上将会产生的节点A7的Router ID。
作为SR管理节点的节点B根据DCN自通通告的Router ID感知到节点A7的存在后,通过本发明实施图1所示的步骤102中的SID Allocation TLV字段,给节点A7的Router ID分配一个SID,且在SID Allocation TLV字段中还携带有图7所示网络中原有的SID信息(即节点A1-节点A7及节点B的SID信息)。该SID Allocation TLV字段通过如图3的OSPF IP报文字段以10型链路状态通告LSA(Link state advertisement)扩展携带,或者,以如图2所示的DCN通道以太报文中的IP报文字段携带的扩展方式通告给每个SR节点即节点A1-节点A7。
每个SR节点即节点A1-节点A7接收到扩展方式通告消息后,根据来自 节点B的信息更新SID信息和Router ID的映射关系即更新SR转发表,主要为在节点A1-节点A6上增加一条对于节点A7的SR转发,如图8中加粗斜体字所示的A3\A1的转发条目,节点A7上存储所有SR转发条目。SR转发表的形成为每个SR节点接收到Router ID及SID信息的映射关系后,通过SR IGP协议发布自身本地的SID信息,每个SR节点依据接收到的SR IGP拓扑信息形成SR转发表。
这样,在有报文发送到节点B时,对于最短路径需要经过节点A7的转发,节点A7查找本地到节点B的SID的下一跳,对如图8中节点A7中的SR转发表进行查找,映射出int2接口。
当IP RAN网络内有节点删除时,如图9所示,假设图7所示的预案IPRAN网络中的节点A3失效,需要删除,则包括:
管理节点B在感知到节点A3失效后,撤销给节点A3分配的SID信息,且洪泛给其他每个SR节点即节点A1、节点A2,及节点A4~节点A6;
每个SR节点即节点A1、节点A2,及节点A4~节点A6接收到该撤销信息后,经过最短路径优先SPF算法重新计算,删除到节点A3的SR转发条目,如图9中的粗黑斜线删除的条目;且重新计算出自身到节点B的最短路径,比如节点A1,重新计算出到节点B的最短路径为经过A4\A5\A6可达。
以上所述,仅为本发明的较佳实例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
上述技术方案无需对网络上节点或端口进行IP配置和SID等配置,实现了无编号接口的SR节点的SID信息的自动分配和学习;通过SR管理节点及网络中的每个SR节点间建立业务通道,从而实现了在SR控制节点和每个SR节点之间业务通道的自动建立,大大简化了业务通道建立和配置的复杂性;还通过备份SR业务通道的建立,在原有SR业务通道出现故障情况下,及时地进行了业务路径的切换,实现了SR业务通道快速保护。

Claims (19)

  1. 一种分配分段路由标识SID的方法,包括:分段路由SR管理节点获知网络中SR节点的地址信息并给SR节点分配SID信息;
    SR管理节点通过对内部网关协议IGP报文或配置管理报文的扩展,将分配好的SID信息发送给网络中的除SR管理节点外的其他每个SR节点。
  2. 根据权利要求1所述的方法,其中,所述发送包括:
    所述SR管理节点通过对IGP报文的扩展,通过扩展后的IGP报文携带SR节点地址信息对应的SID信息,把所述SID信息组播发送给所述每个SR节点,所述SID信息的数量为一个或一个以上。
  3. 根据权利要求2所述的方法,其中,所述扩展的SID信息通过中间系统到中间系统ISIS或开放式最短路径优先OSPF的SID分配类型长度值TLV字段携带。
  4. 根据权利要求1所述的方法,所述发送还包括:
    所述SR管理节点通过对配置管理报文的扩展,通过配置管理通道,携带SR节点地址信息对应的SID信息,并把所述SID信息发送给所述每个SR节点,所述SID信息的数量为一个或一个以上。
  5. 根据权利要求1或2或4所述的方法,该方法还包括:
    每个SR节点接收到所述SID信息后,网络中的所有SR节点通过泛洪组播报文向网络中洪泛自身的SID信息。
  6. 根据权利要求1所述的方法,所述方法还包括:所述将分配好的SID信息发送给网络中的除SR管理节点外的其他每个SR节点之前,所述SR管理节点向网络中的除SR管理节点外的其他每个SR节点发送自身具备SID分配能力的通告。
  7. 根据权利要求6所述的方法,其中,所述SR管理节点向网络中的除SR管理节点外的其他每个SR节点发送自身具备SID分配能力的通告包括:
    所述SR管理节点通过设置有分配能力标识字段的OSPF或ISIS报文或配置管理报文通告网络中的除SR管理节点外的其他每个SR节点。
  8. 根据权利要求6所述的方法,所述方法还包括:当所述SR管理节点 包括两个或两个以上时,
    收到所述通告的SR节点按照预先设置的策略选定一个发送通告的SR管理节点为最终的SR管理节点。
  9. 根据权利要求6所述的方法,所述方法还包括:所述网络中的除SR管理节点外的SR节点获取到所述SR管理节点具备的分配能力后,计算出一条该SR节点至所述SR管理节点的默认SR业务通道。
  10. 根据权利要求1或6所述的方法,其中,SID信息包括节点的地址信息和SID标签信息;SID标签信息包括以下一种或多种:标签范围、索引和全局标签。
  11. 根据权利要求1或6所述的方法,所述方法还包括,当所述网络中接入新增SR节点时,
    所述SR管理节点通过所述组播或单播方式扩展,给新增SR节点的地址信息分配一个SID,且在所述扩展中还携带有新增SR节点所加入的网络中原有的分配给其它节点的SID信息;
    所述网络中的除SR管理节点外的其他每个SR节点接收到扩展方式通告消息后,根据来自所述SR管理节点的信息更新SID分配信息和地址信息的映射关系。
  12. 根据权利要求1或6所述的方法,所述方法还包括,当所述网络中存在SR节点失效时,
    所述SR管理节点在感知到失效SR节点后,撤销给该失效SR节点地址信息分配的SID信息,且洪泛给所述网络中的除SR管理节点外的其他每个SR节点;
    所述网络中的除SR管理节点外的其他每个SR节点接收到该撤销信息后,经过SPF算法重新计算,删除到失效SR节点的SR转发条目。
  13. 一种分段路由SR节点,包括配置管理模块,分配处理模块,以及建立模块,其中,
    配置管理模块,设置为自动建立配置管理通道;
    分配处理模块,设置为通过扩展的内部网关协议IGP报文或配置管理报文接收分配的分段路由标识SID信息;通过所述管理通道向网络中洪泛本节 点的SID信息。
  14. 根据权利要求13所述的SR节点,还包括建立模块,设置为计算出一条至所述SR管理节点的默认SR业务通道。
  15. 根据权利要求13所述的SR节点,还包括分配模块,及处理模块,其中,
    分配模块,设置为当所述SR节点为SR管理节点时,利用管理通道建立过程,获知接入网络的SR节点地址信息并分配SID信息;通过对IGP报文或配置管理报文的扩展将分配好的SID信息发送给网络中的除SR管理节点外的其他每个SR节点;
    处理模块,设置为当所述SR节点为SR管理节点时,通过学习获取全网拓扑关系,将SID信息及全网拓扑关系输出给建立模块。
  16. 根据权利要求15所述的SR节点,其中,所述分配模块是设置为:通过对IGP报文的扩展,以组播方式将分配好的SID信息发送给网络中的除SR管理节点外的其他每个SR节点;或者,通过配置管理报文的扩展,以单播方式将分配好的SID信息发送给网络中的除SR管理节点外的其他每个SR节点。
  17. 根据权利要求15所述的SR节点,所述SR节点还包括通告模块,设置为当所述SR节点为SR管理节点时,向网络中的每个SR节点发送自身具备SID分配能力的通告。
  18. 根据权利要求15所述的SR节点,所述分配模块还设置为:为接入新增SR节点分配一个SID信息;
    所述建立模块还设置为:接收到扩展方式通告消息后,根据来自所述SR管理节点的信息更新SID信息和地址信息的映射关系。
  19. 根据权利要求15所述的SR节点,所述分配模块还设置为:感知到失效SR节点,撤销给该失效SR节点分配的SID信息,且洪泛给所述网络中的除SR管理节点外的其他每个SR节点;
    所述建立模块还设置为:接收到该撤销信息后,经过最短路径优先SPF算法重新计算,删除到失效SR节点的SR转发条目。
PCT/CN2014/091800 2014-09-19 2014-11-20 一种分配分段路由标记的方法和分段路由节点 WO2015131560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410484251.1A CN105450437B (zh) 2014-09-19 2014-09-19 一种分配sid的方法和sr节点
CN201410484251.1 2014-09-19

Publications (1)

Publication Number Publication Date
WO2015131560A1 true WO2015131560A1 (zh) 2015-09-11

Family

ID=54054442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091800 WO2015131560A1 (zh) 2014-09-19 2014-11-20 一种分配分段路由标记的方法和分段路由节点

Country Status (2)

Country Link
CN (1) CN105450437B (zh)
WO (1) WO2015131560A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865784A (zh) * 2020-06-17 2020-10-30 烽火通信科技股份有限公司 一种sr网络的路由可视化方法及系统
CN113206787A (zh) * 2020-01-31 2021-08-03 中国移动通信有限公司研究院 分段标识的处理方法及设备
CN113411256A (zh) * 2021-07-30 2021-09-17 广东省新一代通信与网络创新研究院 业务更新方法、装置及分段路由网络编程系统
CN114006858A (zh) * 2020-07-13 2022-02-01 中国移动通信有限公司研究院 IPv6信息的发现方法、装置、网络节点及存储介质
US20220166706A1 (en) * 2019-08-14 2022-05-26 Huawei Technologies Co., Ltd. Method and Apparatus for Processing Link State Information
CN115552861A (zh) * 2020-02-21 2022-12-30 华为技术有限公司 生成转发表项的方法、发送报文的方法、网络设备及系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666438B (zh) 2016-07-27 2021-10-22 中兴通讯股份有限公司 报文转发方法及装置
CN107968752B (zh) * 2016-10-20 2020-07-07 新华三技术有限公司 一种sid获取方法和装置
CN108023815B (zh) * 2016-11-03 2020-10-30 中兴通讯股份有限公司 信息传输方法、装置及系统
CN108259341B (zh) * 2017-12-06 2020-12-29 新华三技术有限公司 一种前缀标签分配方法和sdn控制器
CN110300061A (zh) * 2018-03-23 2019-10-01 中兴通讯股份有限公司 一种通告绑定信息的方法、设备及存储介质
CN113507416B (zh) 2018-10-27 2022-05-10 华为技术有限公司 报文处理方法、相关设备及计算机存储介质
CN109347740B (zh) * 2018-11-19 2022-03-01 新华三技术有限公司 报文转发方法和装置
CN110233765B (zh) * 2019-06-23 2022-08-12 何梓菁 一种低时延网络切片方法和设备
CN112511427B (zh) * 2020-01-14 2024-05-07 中兴通讯股份有限公司 段路由业务处理方法、装置、路由设备及存储介质
CN113382452B (zh) * 2020-03-09 2023-04-07 中国移动通信有限公司研究院 路径建立方法、数据传输方法、装置、网络节点及存储介质
CN113381932B (zh) * 2020-03-09 2022-12-27 华为技术有限公司 一种生成段标识sid的方法和网络设备
CN113438161B (zh) * 2020-03-23 2022-10-04 华为技术有限公司 一种生成段标识sid的方法和网络设备
CN114531395B (zh) * 2020-11-23 2023-06-16 华为技术有限公司 一种通告网络设备处理能力的方法、设备和系统
CN112671652B (zh) * 2020-11-26 2022-08-30 新华三技术有限公司 报文转发方法及装置
CN113507412B (zh) * 2021-07-08 2022-04-19 中国人民解放军国防科技大学 网络互联中的SRv6路由器渐进部署方法、系统和存储介质
CN113691451B (zh) * 2021-09-22 2022-08-19 新华三技术有限公司 一种段标识确定方法及装置
CN113992475B (zh) * 2021-09-23 2023-12-26 新华三信息安全技术有限公司 一种隧道建立方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140254596A1 (en) * 2013-03-11 2014-09-11 Cisco Technology, Inc. Indexed segment id
US20140269421A1 (en) * 2013-03-15 2014-09-18 Cisco Technology, Inc. Segment routing: pce driven dynamic setup of forwarding adjacencies and explicit path
US20140269266A1 (en) * 2012-10-05 2014-09-18 Cisco Technology, Inc. Method and system for path monitoring using segment routing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255807B (zh) * 2011-07-07 2013-10-02 浙江大学 一种基于主从结构多跳网络的多路径分段路由方法
US9049233B2 (en) * 2012-10-05 2015-06-02 Cisco Technology, Inc. MPLS segment-routing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269266A1 (en) * 2012-10-05 2014-09-18 Cisco Technology, Inc. Method and system for path monitoring using segment routing
US20140254596A1 (en) * 2013-03-11 2014-09-11 Cisco Technology, Inc. Indexed segment id
US20140269421A1 (en) * 2013-03-15 2014-09-18 Cisco Technology, Inc. Segment routing: pce driven dynamic setup of forwarding adjacencies and explicit path

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. FILSFILS, ED. ET AL.: "Segment Routing Architecture", 3 July 2014 (2014-07-03), Retrieved from the Internet <URL:http://tools.ietf.org/pdf/draft-filsfils-spring-segment-routing-04.pdf> *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220166706A1 (en) * 2019-08-14 2022-05-26 Huawei Technologies Co., Ltd. Method and Apparatus for Processing Link State Information
EP4012987A4 (en) * 2019-08-14 2022-10-19 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR PROCESSING LINK STATE INFORMATION
CN113206787A (zh) * 2020-01-31 2021-08-03 中国移动通信有限公司研究院 分段标识的处理方法及设备
CN115552861A (zh) * 2020-02-21 2022-12-30 华为技术有限公司 生成转发表项的方法、发送报文的方法、网络设备及系统
CN115552861B (zh) * 2020-02-21 2024-03-15 华为技术有限公司 生成转发表项的方法、发送报文的方法、网络设备及系统
CN111865784A (zh) * 2020-06-17 2020-10-30 烽火通信科技股份有限公司 一种sr网络的路由可视化方法及系统
CN114006858A (zh) * 2020-07-13 2022-02-01 中国移动通信有限公司研究院 IPv6信息的发现方法、装置、网络节点及存储介质
CN113411256A (zh) * 2021-07-30 2021-09-17 广东省新一代通信与网络创新研究院 业务更新方法、装置及分段路由网络编程系统

Also Published As

Publication number Publication date
CN105450437B (zh) 2020-03-06
CN105450437A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2015131560A1 (zh) 一种分配分段路由标记的方法和分段路由节点
US11616656B2 (en) Multicast data transmission method, related apparatus, and system
CN108476160B (zh) 基于分层覆叠穿隧的交换机互连
US9781032B1 (en) MPLS label usage in ethernet virtual private networks
US8995444B2 (en) Method and system for extending routing domain to non-routing end stations
US10581733B2 (en) Methods and devices for constructing label and forwarding label packet
US9306855B2 (en) System and method for using label distribution protocol (LDP) in IPv6 networks
US20210014158A1 (en) Network Device Management Method and Apparatus, and System
CN107968750B (zh) 报文传输方法、装置及节点
WO2018006671A1 (zh) 报文发送方法和装置、网络架构、计算机存储介质
EP3488564B1 (en) Method for fast convergence in layer 2 overlay network and non-transitory computer readable storage medium
US20160065503A1 (en) Methods, systems, and computer readable media for virtual fabric routing
CN105577502B (zh) 业务传送方法及装置
WO2011032472A1 (zh) 虚拟专用网络的实现方法及系统
US11240063B2 (en) Methods, nodes and computer readable media for tunnel establishment per slice
WO2018171396A1 (zh) 一种数据传输方法、装置及系统
US10904145B2 (en) Methods, system and apparatuses for routing data packets in a network topology
US10715431B2 (en) Methods and apparatuses for routing data packets in a network topology
KR101038811B1 (ko) 상호 연결된 브리지 망에서 동적 주소 결합 방법을 이용한 연결형 및 비연결형 프레임 전송 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884748

Country of ref document: EP

Kind code of ref document: A1