WO2013159408A1 - 液晶显示装置及其变压电路 - Google Patents

液晶显示装置及其变压电路 Download PDF

Info

Publication number
WO2013159408A1
WO2013159408A1 PCT/CN2012/075485 CN2012075485W WO2013159408A1 WO 2013159408 A1 WO2013159408 A1 WO 2013159408A1 CN 2012075485 W CN2012075485 W CN 2012075485W WO 2013159408 A1 WO2013159408 A1 WO 2013159408A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
unit
diode
energy storage
capacitor
Prior art date
Application number
PCT/CN2012/075485
Other languages
English (en)
French (fr)
Inventor
高新明
杨翔
黎飞
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/519,377 priority Critical patent/US9053671B2/en
Publication of WO2013159408A1 publication Critical patent/WO2013159408A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source

Definitions

  • the utility model relates to the field of liquid crystal display, in particular to a liquid crystal display device and a variable piezoelectric circuit thereof. ⁇ Background technique ⁇
  • a liquid crystal display device generally includes a liquid crystal display panel and a backlight system for controlling the passage of light generated by the backlight system by controlling deflection of liquid crystal molecules in the liquid crystal display panel.
  • the backlight system includes a light source and a backlight driving circuit.
  • the amplification factor of the backlight driving circuit of the backlight system is limited by the maximum duty ratio of the chip, and the transformer circuit is required to increase the amplification factor.
  • the prior art provides a transformer circuit for driving an LED light source in a backlight system.
  • the transformer circuit includes: a first coil 110, a second coil 120, and a switching unit 130.
  • One end 111 of the first coil 110 is for receiving an input voltage
  • the other end 113 of the first coil 110 is connected to one end 121 of the second coil 120
  • the other end 123 of the second coil 120 is for outputting a voltage after the voltage transformation
  • the control terminal 131 of the unit 130 is configured to input a driving signal
  • the first end 133 of the switch unit 130 is grounded
  • the second end 135 of the switch unit 130 is connected to the common end 113 of the first coil 110 and the one end 121 of the second coil 120. end.
  • the driving signal causes the switching unit 130 to be turned on
  • the voltage of one end 111 of the first coil 110 is equal to the input voltage, and the voltage of the other end 113 of the first coil 110 is zero.
  • the first coil 110 is at the input voltage. Energy storage under the influence of.
  • the voltage of the output terminal 123 of the second coil 120 is -N times the input voltage, wherein N is the second coil 120 and the first coil 110 Turn ratio.
  • the voltage of the other end 113 of the first coil 110 is higher than the end 111 of the first coil 110.
  • the voltage difference between the one end 121 of the second coil 120 and the other end 123 of the second coil 120 is N*V m *D/(1-D), and the other end of the second coil 120
  • the voltage of 123 is higher than the voltage of one end 121 of the second coil 120.
  • the driving signal causes the switching unit 130 to be turned on, that is, in the non-operating state
  • the other end 123 of the second coil 120 outputs a high reverse voltage after the voltage transformation, resulting in the latter stage.
  • the circuit must have high negative voltage resistance.
  • the switch unit 130 is turned on, the current on the second coil 120 will flow into the ground through the switch unit 130, causing loss of circuit energy and reducing the voltage conversion circuit. Useful power.
  • the main technical problem to be solved by the present invention is to provide a liquid crystal display device and a transformer circuit thereof, which can reduce the requirement of the negative voltage resistance of the circuit connected to the transformer circuit and improve the useful power of the transformer circuit.
  • a technical solution adopted by the present invention is: providing a transformer circuit, comprising: a first coil, one end of the first coil is used to connect an input voltage; the first capacitor, One end of the first capacitor is connected to the other end of the first coil; the second coil, one end of the second coil is connected to the other end of the first capacitor, and the other end is used for connecting a load; the first diode, the The anode of the first diode is connected to one end of the first line connected to the input voltage, the cathode of the first diode is connected to one end of the second line connected to the load; the switch unit includes a control end, a first end and a first The second end of the switch unit is configured to input a driving signal, the first end of the switch unit is grounded, and the second end of the switch unit is connected between the first line and the first capacitor; One end of the first turn and one end of the second turn are non-inverting ends.
  • the circuit includes a second capacitor, and one end of the second capacitor is connected to one end of the first line connected to the input voltage, and the other end is grounded.
  • the circuit includes a second diode connected in series between the second coil and the load, the anode of the second diode is connected to the second coil, and the cathode of the second diode is used for connection load.
  • the switching unit is a field effect transistor, the gate of the FET is a control end, the source of the FET is a first end, and the drain of the FET is a second end.
  • a transformer circuit comprising: a first coil, one end of the first coil is used for connecting an input voltage; One end of the energy storage unit is connected to the other end of the first coil; the second coil, one end of the second coil is connected to the other end of the energy storage unit, and the other end is used for connecting the load;
  • the one-way unit includes an input end And an output end, the input end of the unidirectional unit is connected to one end of the first line connected to the input voltage, and the output end of the unidirectional unit is connected to one end of the second line connected to the load;
  • the switch unit includes a control end, One end and a second end, the control end of the switch unit is configured to input a driving signal, the first end of the switch unit is grounded, and the second end of the switch unit is connected between the first coil and the energy storage unit Wherein one end of the first turn and one end of the second turn are non-inverting ends.
  • the unidirectional unit is a first diode
  • an anode of the first diode is an input end of the unidirectional unit
  • a cathode of the first diode is an output end of the unidirectional unit.
  • the energy storage unit is a first capacitor.
  • the circuit includes a second capacitor, and one end of the second capacitor is connected to one end of the first line connected to the input voltage, and the other end is grounded.
  • the circuit includes a second diode connected in series between the second coil and the load, the anode of the second diode is connected to the second coil, and the cathode of the second diode is used for connection load.
  • the switching unit is a field effect transistor, the gate of the FET is a control end, the source of the FET is a first end, and the drain of the FET is a second end.
  • a liquid crystal display device comprising: a liquid crystal panel and a backlight system, wherein the backlight system is provided with a transformer circuit and a light source
  • the transformer circuit includes: a first coil, one end of the first coil is used to connect an input voltage; an energy storage unit, one end of the energy storage unit is connected to the other end of the first coil; ⁇ , one end of the second coil is connected to the other end of the energy storage unit, and the other end is used to connect the light source;
  • the unidirectional unit includes an input end and an output end, and the input end of the unidirectional unit is connected to the first line One end of the voltage is connected, the output end of the unidirectional unit is connected to one end of the second line connected to the light source;
  • the switch unit includes a control end, a first end and a second end, and the control end of the switch unit is used for inputting a driving signal The first end of the switch unit is grounded, and the second end of the
  • the unidirectional unit is a first diode
  • an anode of the first diode is an input end of the unidirectional unit
  • a cathode of the first diode is an output end of the unidirectional unit.
  • the energy storage unit is a first capacitor.
  • the circuit includes a second capacitor, and one end of the second capacitor is connected to one end of the first line connected to the input voltage, and the other end is grounded.
  • the circuit includes a second diode connected in series between the second coil and the light source, the anode of the second diode is connected to the second coil, and the cathode of the second diode is used for connection. load.
  • the switching unit is a field effect transistor, the gate of the FET is a control end, the source of the FET is a first end, and the drain of the FET is a second end.
  • the utility model has the beneficial effects that: according to the prior art, the utility model adds a unidirectional unit and an energy storage unit in the circuit, and when the switch unit is turned on, the unidirectional unit is turned on, and the second line is turned on. The voltage at the output is clamped to reduce the reverse output voltage and reduce the negative voltage requirements of the latter circuit. Moreover, when the switch unit is turned on, the energy storage unit stores the energy on the second coil, and when the switch unit is closed, the energy storage unit releases the originally stored energy to increase the useful power of the transformer circuit.
  • FIG. 1 is a circuit diagram of a transformer circuit of the prior art
  • FIG. 2 is a schematic structural view of a first embodiment of a transformer circuit of the present invention
  • FIG. 3 is a schematic structural view of a second embodiment of a transformer circuit of the present invention.
  • 4 is a circuit diagram of a specific circuit of FIG.
  • FIG. 2 is a schematic structural view of a first embodiment of a transformer circuit of the present invention.
  • the transformer circuit of this embodiment includes: a first coil 210, an energy storage unit 220, a second coil 230, a unidirectional unit 240, and a switching unit 250.
  • One end 211 of the first coil 210 is used to connect the input voltage
  • the other end 212 of the first coil 210 is connected to one end 221 of the energy storage unit 220
  • the other end 222 of the energy storage unit 220 is connected to one end of the second coil 230. 231.
  • the other end 232 of the second coil 230 is used to connect the load.
  • the one end 211 of the first coil 210 and the one end 231 of the second coil 230 are non-inverting ends.
  • the input end 241 of the unidirectional unit 240 is connected to one end 211 of the first coil 210 connected to the input voltage
  • the output end 242 of the unidirectional unit 240 is connected to the other end 232 of the second coil 230 to the load.
  • the control terminal 251 of the switch unit 250 is used to input a drive signal.
  • the first end 252 of the switch unit 250 is grounded, and the second end 253 of the switch unit 250 is connected between the first coil 210 and the energy storage unit 220.
  • the driving signal causes the switching unit 250 to be in an on state
  • the voltage of one end 211 of the first coil 210 is equal to the input voltage
  • the voltage of the other end 212 of the first coil 210 is zero
  • the first coil 210 is at the input voltage.
  • Energy storage under the action if the input voltage is a positive voltage, the other end 232 of the second coil 230 induces a negative voltage, the unidirectional unit 240 is turned on, and the voltage of the other end 232 of the second coil 230 is clamped to be equal to the input voltage. Voltage.
  • the voltage difference between the two ends 231, 232 of the second coil 230 is N times the voltage difference between the two ends 211, 212 of the first coil 210, that is, N times the input voltage, where N is the turns ratio of the second line 230 to the first line 210.
  • the voltage of the other end 232 of the second coil 230 is equal to the input voltage
  • the voltage difference between the two ends 231, 232 of the second coil 230 is N times the input voltage
  • the voltage of the other end 222 of the energy storage unit 220 is the second coil 230.
  • the energy storage unit 220 for energy storage.
  • the voltage difference between the two ends 231 and 232 of the second coil 230 is N*V m *D/(lD).
  • the voltage of the other end 222 of the energy storage unit 220 is (N + l) * V m + V m / (lD).
  • the voltage at the other end 232 of the second coil 230 is (N + l) * V in + V in / (lD) + V in * D / (lD). That is, when the switching unit is turned on 250, the energy storage unit 220 stores the energy on the second coil 230, and when the switching unit 250 is closed, the energy storage unit 220 releases the originally stored energy.
  • FIG. 3 is a schematic structural view of a second embodiment of the transformer circuit of the present invention.
  • the present embodiment differs from the embodiment shown in FIG. 2 in that it further includes a second capacitor 260 and a second diode 270.
  • the one end 261 of the second capacitor 260 is connected to the first coil 210 connected to the input voltage 211, and the other end 262 of the second capacitor 260 is grounded to filter the input voltage to prevent the ripple from affecting the subsequent circuit.
  • the second diode 270 is connected in series between the second winding 230 and the load, the anode 271 of the second diode 270 is connected to the second winding 230, and the cathode 272 of the second diode 270 is used for receiving the load.
  • the second diode 270 can be turned off when the other terminal 232 of the second coil 230 outputs a negative voltage, preventing the influence of the negative voltage on the load.
  • the switching unit 250 when the switching unit 250 is turned on, the voltage of the other end 232 of the second coil 230 is clamped at a voltage equal to the input voltage, and thus the second diode 270
  • the diode with lower withstand voltage can be selected, which reduces the production cost and improves the reliability of the circuit.
  • FIG. 4 is a circuit diagram of a specific circuit of FIG.
  • the difference between the embodiment and the embodiment shown in FIG. 3 is that the energy storage unit is the first capacitor 420.
  • the first capacitor 420 operates in the same manner as the above embodiment, and details are not described herein.
  • the unidirectional unit is the first diode 440, the first two
  • the anode 441 of the pole tube 440 is an input end of the unidirectional unit
  • the cathode 442 of the first diode 440 is an output end of the unidirectional unit, wherein when a positive voltage is applied to the anode 441 of the first diode 440,
  • the first diode 440 is turned on, and conversely, the first diode 440 is turned off.
  • the switching unit is a FET 450, the gate 451 of the FET 450 is a control terminal, the source 452 of the FET 450 is a first end, and the drain 453 of the FET 450 is a second end, wherein when driving When the signal is high, the FET 450 is turned on, and the source 452 of the FET 450 is grounded, so that the voltage of the drain 453 of the FET 450 is zero; when the driving signal is high, the FET 450 cutoff.
  • the energy storage unit 220 may be a series connection of a plurality of capacitors, or other combinations of devices or devices having energy storage performance, which are not described herein.
  • unidirectional unit 240 can be a series of multiple diodes or other combination of devices or devices having unidirectional conduction performance, not described herein.
  • the present invention provides a backlight driving circuit comprising the transformer circuit of any of the above embodiments.
  • the present invention further provides a backlight system comprising an LED light source and a backlight driving circuit, wherein the backlight driving circuit comprises the transformer circuit according to any of the above embodiments, wherein the LED light source is a load.
  • the present invention further provides a liquid crystal display device comprising a liquid crystal panel and a backlight system, wherein the backlight system is provided with a transformer circuit as described in any of the above embodiments.
  • the utility model adds a unidirectional unit and an energy storage unit to the circuit.
  • the switch unit When the switch unit is turned on, the unidirectional unit is turned on, and the voltage of the output end of the second coil is clamped to Reduce the reverse output voltage and reduce the negative voltage requirements for the rear stage circuit.
  • the energy storage unit stores the energy on the second coil, and when the switch unit is closed, the energy storage unit releases the originally stored energy to increase the useful power of the transformer circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种液晶显示装置及其变压电路,其中变压电路的第一线圈(210)的一端连接输入电压,第一线圈(210)的另一端与储能单元(220)的一端连接,储能单元(220)的另一端连接第二线圈(230)的一端,第二线圈(230)的另一端连接负载。单向单元(240)的输入端与第一线圈(210)接输入电压的一端连接,单向单元(240)的输出端与第二线圈(230)接负载的一端连接。开关单元(250)的控制端用于输入驱动信号,开关单元(250)的第一端接地,开关单元(250)的第二端连接于第一线圈(210)与储能单元(220)之间。

Description

液晶显示装置及其变压电路
【技术领域】
本实用新型涉及液晶显示领域, 特别是涉及一种液晶显示装置及其变压电 路。 【背景技术】
液晶显示装置通常包括液晶显示面板和背光系统, 通过控制液晶显示面板 中液晶分子的偏转以控制背光系统所产生光线的通过与否形成画面。 其中, 背 光系统包括光源和背光驱动电路。 而背光系统的背光驱动电路的放大倍数受到 芯片最大占空比的限制, 需要变压电路提高放大倍数。
如图 1所示, 现有技术提供了一种背光系统中驱动 LED光源的变压电路, 该变压电路包括: 第一线圏 110、 第二线圏 120及开关单元 130。
第一线圏 110的一端 111用于接收输入电压, 第一线圏 110的另一端 113 连接第二线圏 120的一端 121 ,第二线圏 120的另一端 123用于输出变压后的电 压, 开关单元 130的控制端 131用于输入驱动信号, 开关单元 130的第一端 133 接地, 开关单元 130的第二端 135连接第一线圏 110的另一端 113与第二线圏 120的一端 121的公共端。
当驱动信号使得开关单元 130导通时,第一线圏 110的一端 111的电压等于 输入电压, 第一线圏 110的另一端 113的电压为零, 此时, 第一线圏 110在输入 电压的作用下进行储能。 同时, 由于第一线圏 110与第二线圏 120的耦合作用, 第二线圏 120的输出端 123的电压为输入电压的 -N倍,其中, N为第二线圏 120 与第一线圏 110的匝数比。
当驱动信号使得开关单元 130闭合时, 假定第一线圏 110的另一端 113的 电压为 Vd , 根据伏秒平衡原理, Vm *T。n = (Vd - Vm )(T -T。n ) , 其中, T为开关单元 130 的开关周期, T。n为导通时间, Vin为输入电压, 得出 Vd = Vm / (l-D) , 其中, D=T。《 。此时,第一线圏 110的另一端 113的电压高于第一线圏 110的一端 111 的电压, 两端的电压差为 Vd -Vm = Vm *D/ (l-D)。 根据变压原理可知, 第二线圏 120的一端 121与第二线圏 120的另一端 123之间的电压差为 N*Vm *D/ (1-D) , 并且, 第二线圏 120的另一端 123电压高于第二线圏 120的一端 121的电压。 第二线圏 120的一端 121的电压为 Vd , 所以第二线圏 120的另一端 123的电压 Vo = Vm *(l + N*D)/(l-D) , 其中, V。为第二线圏 120的另一端 123的电压。
但是, 由上述可知, 在驱动信号使得开关单元 130导通时, 即非工作状态 时, 第二线圏 120的另一端 123会输出一个很高的反向的变压后的电压, 导致 后一级的电路必须要有很高的耐负压性能, 同时, 在开关单元 130导通时, 第 二线圏 120上的电流会通过开关单元 130流入大地, 造成电路能量的损失, 降 低了变压电路的有用功率。
【实用新型内容】
本实用新型主要解决的技术问题是提供一种液晶显示装置及其变压电路, 能够降低对变压电路所接后级电路的耐负压性能的要求, 提高变压电路的有用 功率。
为解决上述技术问题, 本实用新型采用的一个技术方案是: 提供一种变压 电路, 其中, 包括: 第一线圏, 所述第一线圏的一端用于连接输入电压; 第一 电容, 所述第一电容的一端连接第一线圏的另一端; 第二线圏, 所述第二线圏 的一端连接第一电容的另一端, 另一端用于连接负载; 第一二极管, 所述第一 二极管的阳极与第一线圏接输入电压的一端连接, 所述第一二极管的阴极与第 二线圏接负载的一端连接; 开关单元, 包括控制端、 第一端和第二端, 所述开 关单元的控制端用于输入驱动信号, 所述开关单元的第一端接地, 所述开关单 元的第二端连接于第一线圏与第一电容之间; 其中, 第一线圏的一端和第二线 圏的一端为同相端。
其中, 所述电路包括第二电容, 所述第二电容的一端连接第一线圏接输入 电压的一端, 另一端接地。 其中, 所述电路包括串接于第二线圏和负载之间的第二二极管, 所述第二 二极管的阳极与第二线圏连接, 所述第二二极管的阴极用于接负载。
其中, 所述开关单元是场效应管, 所述场效应管的栅极为控制端, 所述场 效应管的源极为第一端, 所述场效应管的漏极为第二端。
为解决上述技术问题, 本实用新型采用的另一个技术方案是: 提供一种变 压电路, 其中, 包括: 第一线圏, 所述第一线圏的一端用于连接输入电压; 储 能单元, 所述储能单元的一端连接第一线圏的另一端; 第二线圏, 所述第二线 圏的一端连接储能单元的另一端, 另一端用于连接负载; 单向单元, 包括输入 端和输出端, 所述单向单元的输入端与第一线圏接输入电压的一端连接, 所述 单向单元的输出端与第二线圏接负载的一端连接; 开关单元, 包括控制端、 第 一端和第二端, 所述开关单元的控制端用于输入驱动信号, 所述开关单元的第 一端接地, 所述开关单元的第二端连接于第一线圏与储能单元之间; 其中, 第 一线圏的一端和第二线圏的一端为同相端。
其中, 所述单向单元是第一二极管, 所述第一二极管的阳极为单向单元的 输入端, 所述第一二极管的阴极为单向单元的输出端。
其中, 所述储能单元是第一电容。
其中, 所述电路包括第二电容, 所述第二电容的一端连接第一线圏接输入 电压的一端, 另一端接地。
其中, 所述电路包括串接于第二线圏和负载之间的第二二极管, 所述第二 二极管的阳极与第二线圏连接, 所述第二二极管的阴极用于接负载。
其中, 所述开关单元是场效应管, 所述场效应管的栅极为控制端, 所述场 效应管的源极为第一端, 所述场效应管的漏极为第二端。
为解决上述技术问题, 本实用新型采用的另一个技术方案是: 提供一种液 晶显示装置, 其中, 包括液晶面板和背光系统, 其中, 所述背光系统上设置有 变压电路和光源, 所述变压电路包括: 第一线圏, 所述第一线圏的一端用于连 接输入电压; 储能单元, 所述储能单元的一端连接第一线圏的另一端; 第二线 圏, 所述第二线圏的一端连接储能单元的另一端, 另一端用于连接光源; 单向 单元, 包括输入端和输出端, 所述单向单元的输入端与第一线圏接输入电压的 一端连接, 所述单向单元的输出端与第二线圏接光源的一端连接; 开关单元, 包括控制端、 第一端和第二端, 所述开关单元的控制端用于输入驱动信号, 所 述开关单元的第一端接地, 所述开关单元的第二端连接于第一线圏与储能单元 之间; 其中, 第一线圏的一端和第二线圏的一端为同相端。
其中, 所述单向单元是第一二极管, 所述第一二极管的阳极为单向单元的 输入端, 所述第一二极管的阴极为单向单元的输出端。
其中, 所述储能单元是第一电容。
其中, 所述电路包括第二电容, 所述第二电容的一端连接第一线圏接输入 电压的一端, 另一端接地。
其中, 所述电路包括串接于第二线圏和光源之间的第二二极管, 所述第二 二极管的阳极与第二线圏连接, 所述第二二极管的阴极用于接负载。
其中, 所述开关单元是场效应管, 所述场效应管的栅极为控制端, 所述场 效应管的源极为第一端, 所述场效应管的漏极为第二端。
本实用新型的有益效果是: 区别于现有技术的情况, 本实用新型通过在电 路中增加单向单元和储能单元, 在开关单元导通时, 单向单元导通, 将第二线 圏的输出端的电压钳位,以降低反向输出电压,降低对后级电路的耐负压要求。 而且, 在开关单元导通时, 储能单元将第二线圏上的能量进行存储, 并在开关 单元闭合时, 储能单元将原来存储的能量进行释放, 以增加变压电路的有用功 率。
【附图说明】
图 1是现有技术一种变压电路的电路图;
图 2是本实用新型变压电路第一实施例的结构示意图;
图 3是本实用新型变压电路第二实施例的结构示意图; 图 4是图 3的一种具体电路的电路图
【具体实施方式】
下面结合附图和具体的实施例进行说明。
参阅图 2, 图 2是本实用新型变压电路的第一实施例的结构示意图。 本实施 例的变压电路包括: 第一线圏 210、储能单元 220、 第二线圏 230、 单向单元 240 以及开关单元 250。
其中, 第一线圏 210的一端 211用于连接输入电压, 第一线圏 210的另一 端 212与储能单元 220的一端 221连接, 储能单元 220的另一端 222连接第二 线圏 230的一端 231 , 第二线圏 230的另一端 232用于连接负载。 其中, 第一线 圏 210的一端 211和第二线圏 230的一端 231为同相端。 单向单元 240的输入 端 241与第一线圏 210接输入电压的一端 211连接,单向单元 240的输出端 242 与第二线圏 230接负载的另一端 232连接。 开关单元 250的控制端 251用于输 入驱动信号, 开关单元 250的第一端 252接地, 开关单元 250的第二端 253连 接于第一线圏 210与储能单元 220之间。
当驱动信号使得开关单元 250处于导通状态时, 第一线圏 210的一端 211 的电压等于输入电压, 第一线圏 210的另一端 212的电压为零, 第一线圏 210 在输入电压的作用下进行储能。 此时, 若输入电压为正电压, 第二线圏 230 的 另一端 232感应产生一个负电压, 单向单元 240导通, 第二线圏 230的另一端 232的电压被钳位在与输入电压相等的电压上。 同时, 由于第一线圏 210与第二 线圏 230的耦合作用, 第二线圏 230的两端 231、 232的电压差为第一线圏 210 的两端 211、 212的电压差的 N倍, 即输入电压的 N倍, 其中, N为第二线圏 230与第一线圏 210的匝数比。第二线圏 230的另一端 232的电压等于输入电压, 第二线圏 230的两端 231、 232的电压差为输入电压的 N倍, 储能单元 220的另 一端 222的电压为第二线圏 230的另一端 232的电压与第二线圏 230的两端 231、 232的电压差之和\^ + 。= ^+1) , 即为输入电压的(N + 1)倍。 此时, 储能单元 220进行储能。
当驱动信号使得开关单元 250处于闭合状态时, 假定第一线圏 210的另一 端 212的电压为 ¼, 根据伏秒平衡原理, Vm*T。n=(Vd-Vm)(T-T。n), 其中, T为 开关单元 250的开关周期, T。n为导通时间, Vin为输入电压,得出 Vd=Vm/(l-D), 其中, D=T。^。 此时, 第一线圏 210的另一端 212的电压高于第一线圏 210的 一端 211的电压, 两端 211、 212的电压差为 Vd-Vm=Vm*D/(l-D)。 根据变压原 理可知, 第二线圏 230两端 231、 232的电压差为 N*Vm*D/(l-D)。 并且, 由于 储能单元 220两端 221、 222的电压不能突变, 所以储能单元 220另一端 222的 电压为(N + l)*Vm+Vm/(l-D)。根据基尔霍夫电压定律可知, 第二线圏 230另一端 232的电压为(N + l)*Vin+Vin/(l-D) + Vin*D/(l-D)。 即, 在开关单元导通 250时, 储能单元 220将第二线圏 230上的能量进行存储, 并在开关单元 250闭合时, 储能单元 220将原来存储的能量进行释放。
请参阅图 3, 图 3是本实用新型变压电路的第二实施例的结构示意图。 本实 施例与图 2所示的实施例的不同之处在于: 还包括第二电容 260以及第二二极 管 270。 其中, 第二电容 260的一端 261连接第一线圏 210接输入电压的一端 211, 第二电容 260的另一端 262接地, 能够对输入电压进行滤波, 防止纹波对 后级电路的影响。 第二二极管 270 串接于第二线圏 230和负载之间, 第二二极 管 270的阳极 271与第二线圏 230连接, 第二二极管 270的阴极 272用于接负 载。 第二二极管 270能够在第二线圏 230的另一端 232输出负电压时截止, 防 止负电压对负载的影响。
值得注意的是, 由于单向单元 240的设置, 在开关单元 250导通时, 第二 线圏 230的另一端 232的电压被钳位在与输入电压相等的电压上, 因而第二二 极管 270可选择耐压性能较低二极管,降低了生产成本,提高了电路的可靠性。
请参阅图 4, 图 4是图 3的一种具体电路的电路图。 本实施例与图 3所示的 实施例的不同之处在于: 储能单元是第一电容 420, 其中, 第一电容 420的工作 方式与上述实施例相同, 此处不重复赘述。 单向单元是第一二极管 440, 第一二 极管 440的阳极 441为单向单元的输入端, 第一二极管 440的阴极 442为单向 单元的输出端, 其中, 当给第一二极管 440的阳极 441加上正电压时, 第一二 极管 440导通, 反之, 则第一二极管 440截止。 开关单元是场效应管 450, 场效 应管 450的栅极 451为控制端, 场效应管 450的源极 452为第一端, 场效应管 450的漏极 453为第二端, 其中, 当驱动信号为高电平时, 场效应管 450导通, 场效应管 450的源极 452接地,因而使得场效应管 450的漏极 453的电压为零; 当驱动信号为高电平时, 场效应管 450截止。
值得注意的是, 储能单元 220 可以是多个电容的串联, 或其它具有储能性 能的器件或器件的组合, 此处不一一赘述。
同样地, 单向单元 240可以是多个二极管的串联或其它具有单向导通性能 的器件或器件的组合, 此处不——赘述。
此外, 本实用新型提供了一种背光驱动电路, 背光驱动电路包括上述任一 实施例所述的变压电路。
本实用新型还提供了一种背光系统, 包括 LED光源和背光驱动电路, 所述 背光驱动电路包括上述任一实施例所述的变压电路, 所述 LED光源为负载。
本实用新型又提供了一种液晶显示装置, 包括液晶面板和背光系统,其中, 所述背光系统上设置有如上述任一实施例所述的变压电路。
区别于现有技术的情况, 本实用新型通过在电路中增加了单向单元和储能 单元, 在开关单元导通时, 单向单元导通, 将第二线圏的输出端的电压钳位, 以降低反向输出电压, 降低对后级电路的耐负压要求。 而且, 在开关单元导通 时, 储能单元将第二线圏上的能量进行存储, 并在开关单元闭合时, 储能单元 将原来存储的能量进行释放, 以增加变压电路的有用功率。
以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围, 凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换, 或直 接或间接运用在其他相关的技术领域, 均同理包括在本实用新型的专利保护范 围内。

Claims

权利要求
1. 一种变压电路, 其中, 包括:
第一线圏, 所述第一线圏的一端用于连接输入电压;
第一电容, 所述第一电容的一端连接第一线圏的另一端;
第二线圏, 所述第二线圏的一端连接第一电容的另一端, 另一端用于连接 负载;
第一二极管, 所述第一二极管的阳极与第一线圏接输入电压的一端连接, 所述第一二极管的阴极与第二线圏接负载的一端连接;
开关单元, 包括控制端、 第一端和第二端, 所述开关单元的控制端用于输 入驱动信号, 所述开关单元的第一端接地, 所述开关单元的第二端连接于第一 线圏与第一电容之间;
其中, 第一线圏的一端和第二线圏的一端为同相端。
2. 根据权利要求 1所述的电路, 其中, 所述电路包括第二电容, 所述第二 电容的一端连接第一线圏接输入电压的一端, 另一端接地。
3. 根据权利要求 1所述的电路, 其中, 所述电路包括串接于第二线圏和负 载之间的第二二极管, 所述第二二极管的阳极与第二线圏连接, 所述第二二极 管的阴极用于接负载。
4根据权利要求 1 所述的电路, 其中, 所述开关单元是场效应管, 所述场 效应管的栅极为控制端, 所述场效应管的源极为第一端, 所述场效应管的漏极 为第二端。
5. 一种变压电路, 其中, 包括:
第一线圏, 所述第一线圏的一端用于连接输入电压;
储能单元, 所述储能单元的一端连接第一线圏的另一端;
第二线圏, 所述第二线圏的一端连接储能单元的另一端, 另一端用于连接 负载; 单向单元, 包括输入端和输出端, 所述单向单元的输入端与第一线圏接输 入电压的一端连接, 所述单向单元的输出端与第二线圏接负载的一端连接; 开关单元, 包括控制端、 第一端和第二端, 所述开关单元的控制端用于输 入驱动信号, 所述开关单元的第一端接地, 所述开关单元的第二端连接于第一 线圏与储能单元之间;
其中, 第一线圏的一端和第二线圏的一端为同相端。
6. 根据权利要求 5所述的电路, 其中,
所述单向单元是第一二极管, 所述第一二极管的阳极为单向单元的输入端, 所述第一二极管的阴极为单向单元的输出端。
7. 根据权利要求 5所述的电路, 其中, 所述储能单元是第一电容。
8. 根据权利要求 5所述的电路, 其中, 所述电路包括第二电容, 所述第二 电容的一端连接第一线圏接输入电压的一端, 另一端接地。
9. 根据权利要求 5所述的电路, 其中, 所述电路包括串接于第二线圏和负 载之间的第二二极管, 所述第二二极管的阳极与第二线圏连接, 所述第二二极 管的阴极用于接负载。
10. 根据权利要求 5所述的电路, 其中, 所述开关单元是场效应管, 所述场 效应管的栅极为控制端, 所述场效应管的源极为第一端, 所述场效应管的漏极 为第二端。
11. 一种液晶显示装置, 其中, 包括液晶面板和背光系统, 其中, 所述背光 系统上设置有变压电路和光源, 所述变压电路包括:
第一线圏, 所述第一线圏的一端用于连接输入电压;
储能单元, 所述储能单元的一端连接第一线圏的另一端;
第二线圏, 所述第二线圏的一端连接储能单元的另一端, 另一端用于连接 光源;
单向单元, 包括输入端和输出端, 所述单向单元的输入端与第一线圏接输 入电压的一端连接, 所述单向单元的输出端与第二线圏接光源的一端连接; 开关单元, 包括控制端、 第一端和第二端, 所述开关单元的控制端用于输 入驱动信号, 所述开关单元的第一端接地, 所述开关单元的第二端连接于第一 线圏与储能单元之间;
其中, 第一线圏的一端和第二线圏的一端为同相端。
12. 根据权利要求 11所述的装置, 其中,
所述单向单元是第一二极管, 所述第一二极管的阳极为单向单元的输入端, 所述第一二极管的阴极为单向单元的输出端。
13. 根据权利要求 11所述的装置, 其中, 所述储能单元是第一电容。
14. 根据权利要求 11所述的装置, 其中, 所述电路包括第二电容, 所述第 二电容的一端连接第一线圏接输入电压的一端, 另一端接地。
15. 根据权利要求 11所述的装置, 其中, 所述电路包括串接于第二线圏和 光源之间的第二二极管, 所述第二二极管的阳极与第二线圏连接, 所述第二二 极管的阴极用于接负载。
16. 根据权利要求 11所述的装置, 其中, 所述开关单元是场效应管, 所述 场效应管的栅极为控制端, 所述场效应管的源极为第一端, 所述场效应管的漏 极为第二端。
PCT/CN2012/075485 2012-04-27 2012-05-15 液晶显示装置及其变压电路 WO2013159408A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/519,377 US9053671B2 (en) 2012-04-27 2012-05-15 LCD device and a transforming circuit thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220187032.3 2012-04-27
CN 201220187032 CN202586750U (zh) 2012-04-27 2012-04-27 液晶显示装置及其背光系统、背光驱动电路、变压电路

Publications (1)

Publication Number Publication Date
WO2013159408A1 true WO2013159408A1 (zh) 2013-10-31

Family

ID=47256112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075485 WO2013159408A1 (zh) 2012-04-27 2012-05-15 液晶显示装置及其变压电路

Country Status (2)

Country Link
CN (1) CN202586750U (zh)
WO (1) WO2013159408A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274024A1 (en) * 2005-06-02 2006-12-07 Au Optronics Corp. Liquid crystal display and light emitting diode drive circuit thereof
US20100225290A1 (en) * 2009-03-06 2010-09-09 Maxim Integrated Products, Inc. Critical conduction resonant transition boost power circuit
CN201830140U (zh) * 2010-10-22 2011-05-11 广州创维平面显示科技有限公司 一种boost驱动电路、驱动装置及led液晶模组
CN202120578U (zh) * 2011-07-01 2012-01-18 深圳市华星光电技术有限公司 Led背光驱动电路
CN102354483A (zh) * 2011-06-29 2012-02-15 深圳Tcl新技术有限公司 Led背光源升压驱动电路、led背光源及液晶显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274024A1 (en) * 2005-06-02 2006-12-07 Au Optronics Corp. Liquid crystal display and light emitting diode drive circuit thereof
US20100225290A1 (en) * 2009-03-06 2010-09-09 Maxim Integrated Products, Inc. Critical conduction resonant transition boost power circuit
CN201830140U (zh) * 2010-10-22 2011-05-11 广州创维平面显示科技有限公司 一种boost驱动电路、驱动装置及led液晶模组
CN102354483A (zh) * 2011-06-29 2012-02-15 深圳Tcl新技术有限公司 Led背光源升压驱动电路、led背光源及液晶显示装置
CN202120578U (zh) * 2011-07-01 2012-01-18 深圳市华星光电技术有限公司 Led背光驱动电路

Also Published As

Publication number Publication date
CN202586750U (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
TWI523390B (zh) 用於功率變換器的控制裝置和控制方法以及開關電源
US20130021326A1 (en) Led driving system and display device using the same
US20130154484A1 (en) LED Driving System for Driving Multi-String LEDS and the Method Thereof
CN107453606B (zh) 一种三电平Boost电路
CN103531156B (zh) 背光驱动电路以及液晶显示装置
WO2016188462A1 (zh) 磁悬浮轴承开关功率放大器及其控制方法
WO2015100805A1 (zh) 反激式升压电路、led背光驱动电路及液晶显示器
WO2013083033A1 (zh) 无需额外电源的自举驱动电路
TWI538369B (zh) 具漏感能量回收之直流-直流返馳式轉換器
CN204156724U (zh) 一种正转正电源电压反馈电路
CN104578772A (zh) 一种升压电路
CN206922649U (zh) 一种双降‑升压电路
TW201223104A (en) DC/DC power converter having active self driving synchronous rectification
CN206442297U (zh) Boost谐振软开关变换器
TW201251326A (en) Level shifter and booster-driving circuit
CN105024678B (zh) 一种mosfet驱动电路及系统
TW201526500A (zh) 降壓型直流對直流轉換器及其操作方法
WO2013159408A1 (zh) 液晶显示装置及其变压电路
US8975828B2 (en) DC boost topology circuit for backlight driving
CN105101572A (zh) 一种高功率因数led驱动集成电路
CN109510464A (zh) 一种具备高增益升压能力的Buck-Boost DC-DC变换器
TWI339482B (en) Self-oscillating power converter
CN109149925B (zh) 一种降压斩波电路
US9351360B2 (en) Drive circuit for illumination device and illumination device
US8643350B2 (en) Self-driven synchronous rectification boost converter having high step-up ratio

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13519377

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875666

Country of ref document: EP

Kind code of ref document: A1