WO2013157881A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2013157881A1
WO2013157881A1 PCT/KR2013/003330 KR2013003330W WO2013157881A1 WO 2013157881 A1 WO2013157881 A1 WO 2013157881A1 KR 2013003330 W KR2013003330 W KR 2013003330W WO 2013157881 A1 WO2013157881 A1 WO 2013157881A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
group
nitride
source gas
substrate
Prior art date
Application number
PCT/KR2013/003330
Other languages
French (fr)
Korean (ko)
Inventor
가와니시히데오
Original Assignee
서울반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012096090A external-priority patent/JP5940355B2/en
Priority claimed from KR1020130043004A external-priority patent/KR102062382B1/en
Application filed by 서울반도체 주식회사 filed Critical 서울반도체 주식회사
Publication of WO2013157881A1 publication Critical patent/WO2013157881A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Definitions

  • the present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly, to a method of manufacturing a carbon-doped nitride-based semiconductor layer, and a p-type nitride-based semiconductor layer manufactured using the same and a device using the same.
  • Mg Magnesium
  • AlGaN the main p-type dopant for GaN and AlGaN.
  • the energy level of Mg as an acceptor is about 230 meV (experimental value) in GaN, which is larger and deeper in AlGaN, which is deeper than that of AlGaN.
  • the hole concentration of Mg-doped AlGaN is extremely low compared to the hole concentration of Mg-doped GaN.
  • Mg-doped AlGaN has very low electrical conductivity
  • the use of Mg as a p-type dopant is not suitable for light emitting devices such as light emitting diodes (LEDs) and laser diodes using AlGaN having a high aluminum composition. This was very difficult.
  • the energy level of Mg deepens with increasing aluminum composition ratio in AlGaN. Therefore, the activation ratio of the holes constrained to Mg becomes 1% or less, the AlGaN hole concentration becomes very low, and the electrical resistance of the AlGaN layer becomes high. For this reason, when a large amount of Mg is added so that the added amount is about 2 ⁇ 10 20 cm -3 or more, segregation of Mg occurs and crystal quality is very poor. Therefore, it is no longer possible to add more Mg than the added amount. Therefore, it has been difficult to realize an LED, a power control electronic device, or a semiconductor laser using Mg-doped AlGaN.
  • the hole concentration of the current Mg-doped AlGaN semiconductor layer is low, the resistance is large, and the thickness of the p-type AlGaN layer in the current LED structure is limited to 0.1 ⁇ m to 0.2 ⁇ m.
  • an ultraviolet region semiconductor laser using an AlGaN semiconductor layer having a high Al content has not yet been realized, and there is a limitation that the oscillation wavelength of the semiconductor laser is limited to the long wavelength side close to the forbidden band of GaN.
  • Mg has a great thermal diffusion, and in the case of producing an n-type layer on a p-type layer to which Mg is added, Mg thermally diffuses along a defect to realize an n-type layer. Therefore, npn or pnp bipolar transistors were not feasible. Therefore, it has become a big obstacle in realizing the control power supply device of an electric vehicle and a hybrid vehicle.
  • Japanese Patent Application Laid-Open No. 2011-023541 discloses more than 40 degrees with respect to a reference plane orthogonal to a reference axis extending in the c-axis direction.
  • P-type gallium nitride-based semiconductor layer having a carbon concentration of not less than Mg but also a carbon concentration of 2 ⁇ 10 16 cm ⁇ 3 or more on the main surface of the support using a support made of a group III nitride semiconductor having an angle of 140 degrees or less A technique is disclosed.
  • carbon is a positive impurity, it may be either an acceptor or a donor depending on the substance into which carbon is introduced.
  • the p-type formation could not be sufficiently stabilized even when the gallium nitride-based semiconductor layer was n-type. That is, since the main surface of the support made of group III-V nitride-based semiconductor has an angle of 40 degrees to 140 degrees with respect to the reference plane orthogonal to the reference axis extending from the c-axis direction, carbon is stabilized and functions as a p-type impurity. Did not do it.
  • other experimental and theoretical discussions conducted on the (1-101) plane of carbon-doped hexagonal GaN and other surfaces of GaN did not achieve sufficient p-type conductivity.
  • An object of the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method of manufacturing a semiconductor device including a carbon-doped p-type gallium nitride based semiconductor layer having high reproducibility and improved productivity.
  • another object of the present invention is to provide a p-type gallium nitride-based semiconductor layer having a high electrical conductivity and low resistance, and a semiconductor light emitting device including the same.
  • a carbon source material is supplied after supplying a group III source for a predetermined time T 1 , and after a predetermined time t 1 has elapsed after the start of supplying the group III source.
  • a Group V source containing the same is supplied for a predetermined time T 2 (wherein t 1 + T 2 > T 1 ), and after starting the Group V source supply, the predetermined time t 2 (wherein t 1 + T 2 -t 2 > T 1 ), the step of supplying the Group III source gas and the step of supplying the Group V source is repeated, the growth temperature of 1190 °C to 1370 °C using chemical vapor deposition or vacuum deposition method or at a growth temperature that the substrate temperature is 1070 °C ⁇ 1250 °C, Al x Ga 1 - includes forming x N semiconductor layer (0 ⁇ x ⁇ 1), and doping the carbon to the nitrogen site of the semiconductor layer.
  • the single crystal substrate may have an offset angle in the main plane of ⁇ 0.1% with respect to the (0001) C plane.
  • the carbon source material may be carbon tetrabromide (CBr 4 ).
  • the group V source may comprise a magnesium source material.
  • the aluminum content may be 5 mol% to 100 mol%.
  • the supply time T 2 of the supply time of the group III source and T 1 wherein the group V source gas, the supply time of said Group III wherein the Group V and the supply time T 1 of the source Source T distance between the two can be up to more than 2 seconds 0 seconds.
  • III-V nitride-based semiconductor layer growth method for growing a III-V nitride-based semiconductor layer by using a MOVPE method directly on a substrate or through a single or a plurality of intervening layers
  • the growth method of the III-V nitride-based semiconductor layer according to the present invention includes a group III atomic source gas of Al x Ga 1-x N (0 ⁇ x ⁇ 1), a group V atomic source gas, and a p-type impurity in a reaction tube.
  • the substrate being sapphire substrate, silicon substrate, silicon carbide substrate, gallium nitride substrate, nitride It is composed of any one of aluminum substrates, and the main surface has an offset angle in the range of ⁇ 0.1% with respect to the C surface and the equivalent crystal surface.
  • Another embodiment of the present invention provides a method for growing a group III-V nitride semiconductor layer, wherein the group III-V nitride semiconductor layer is grown on the substrate directly or through a single layer or a plurality of intervening layers by using the MOVPE method.
  • a Group III atom source gas of Al x Ga 1-x N (0 ⁇ x ⁇ 1) is supplied into the reaction tube for a predetermined time, and then Group V atoms Alternately growing the group III atomic layer and the group V atomic atomic layer by alternately supplying the source gas for a predetermined time, and supplying the group V atomic source gas as a p-type impurity Carbon is also introduced into the atomic layer of the group V atoms by supplying a carbon source gas together.
  • the growth method may further include supplying an Mg source gas while supplying the group V atomic source gas for the predetermined time.
  • the growth method may further include supplying Mg source gas during the process of supplying the Group III atomic source gas of Al x Ga 1- x N for a predetermined time and then supplying the Group V atomic source gas for a predetermined time. It may further include.
  • the growth method may further include supplying a source gas of Mg while supplying the group V atomic source gas for the predetermined time.
  • the substrate may be composed of any one of a sapphire substrate, a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and an aluminum nitride substrate.
  • the main surface of the substrate may have an offset angle in the range of ⁇ 0.1% with respect to the C surface and the equivalent crystal surface.
  • the III-V nitride-based semiconductor layer may have a thickness of 0.1 ⁇ m or more and 3 ⁇ m or less.
  • Group III-V nitride and semiconductor layers of Al x Ga 1-x N are simultaneously supplied into the reaction tube to grow a group III-V nitride semiconductor layer directly on the substrate or through one or more intervening layers.
  • a method of growing a group nitride semiconductor layer, the method of growing a group III-V nitride semiconductor layer according to another embodiment of the present invention includes supplying a carbon source gas as a p-type impurity, The ratio of the atomic source gas and the group III atomic source gas may be 5 or more and 600 or less.
  • the substrate may include any one of a sapphire substrate, a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and an aluminum nitride substrate, and the main surface may have an offset angle in the range of ⁇ 0.1% with respect to the C surface and an equivalent crystal surface.
  • a nitride semiconductor light emitting device includes an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer, wherein the p-type nitride semiconductor layer is a sapphire substrate or a silicon substrate.
  • a group III atomic source gas of Al x Ga 1 - x N (0 ⁇ x ⁇ 1), a group V atomic source gas, and a carbon source gas as a p-type impurity By supplying a group III atomic source gas of Al x Ga 1 - x N (0 ⁇ x ⁇ 1), a group V atomic source gas, and a carbon source gas as a p-type impurity, the atomic layer and carbon of the group III atom The atomic layers of the doped group V atoms were alternately grown.
  • a nitride semiconductor light emitting device includes a stack of an n-type nitride-based semiconductor layer, an active layer and a p-type nitride-based semiconductor layer, wherein the p-type nitride-based semiconductor layer is III in the reaction tube
  • the p-type nitride semiconductor layer may be Al x Ga 1 - x N (0 ⁇ x ⁇ 1).
  • the nitride-based semiconductor light emitting device may further include a p-type electrode formed on the p-type nitride-based semiconductor layer.
  • the III-V nitride semiconductor layer is grown using MOVPE.
  • a step of supplying a Group III atomic source gas of Al x Ga 1-x N into the reaction tube for a predetermined time, and then alternately supplying a Group V atomic source gas for a predetermined time To alternately grow an atomic layer of group III atoms and an atomic layer of group V atoms, and supply the group V atomic source gas with a carbon source gas as a p-type impurity while supplying the group V atomic source gas for a predetermined time.
  • the layer thickness of the p-type nitride-based semiconductor layer may be 3 ⁇ m.
  • the present invention since the p-type nitride semiconductor layer produced by the method for producing a p-type nitride semiconductor layer according to the present invention is doped with carbon stably, the present invention provides a carbon-doped p-type with improved productivity.
  • a method for producing a p-type nitride semiconductor layer such as AlGaN can be provided.
  • a carbon-doped p-type III-V compound semiconductor can be realized with Al x Ga 1-x N (0.001? X? 1), the composition of Al can be increased by 77%, and a p-type nitride compound semiconductor layer having a wide band gap is provided. Can be generated.
  • a p-type III-V compound semiconductor layer having low resistance can be realized even in a power supply device having a large current, a higher performance nitride-based power control device can be realized.
  • FIG. 1 is a process diagram schematically illustrating a crystal growth step of a p-type AlGaN semiconductor layer on a single crystal substrate according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a supply timing of growth elements before and after growth of a p-type AlGaN semiconductor layer in crystal growth of a p-type AlGaN semiconductor layer on a single crystal substrate according to an embodiment of the present invention.
  • (A) of FIG. 3 is a low temperature emission (PL) spectrum obtained from an undoped AlGaN having an Al composition ratio of 8%
  • (b) is a low temperature emission (PL) spectrum obtained from a C-doped AlGaN having an Al composition ratio of 9%.
  • 5A and 5B are graphs showing a depth profile of NIAD of C-doped AlGaN having an Al composition ratio of 55%, (a) relates to an AlGaN semiconductor layer doped with C and Mg simultaneously, and (b) ) Is for the C-doped AlGaN semiconductor layer.
  • FIG. 6A illustrates carbon doping characteristics of AlGaN having an Al composition ratio of 10%
  • FIG. 6B illustrates carbon doping characteristics of AlGaN having an Al composition ratio of 55%.
  • FIGS. 7A and 7B show Mg-doped GaN (layer thickness 0.08 ⁇ m) / C-doped AlGaN (layer thickness 0.1 ⁇ m) / undoped GaN (layer thickness 10 nm) / Si-doped AlGaN (3 to 4 ⁇ m) Is a SIMS analysis of an LED sample having a double heterostructure.
  • FIG. 10 is a first example of one cycle of the gas supply method in the case of epitaxially growing Al x Ga 1-x N by an alternate supply method according to another embodiment of the present invention.
  • FIG. 11 is a second example of one cycle of the gas supply method in the case of epitaxially growing Al x Ga 1-x N by an alternate supply method according to another embodiment of the present invention.
  • 15 is a fourth example of one cycle of the gas supply method in the case of epitaxially growing Al x Ga 1-x N by the simultaneous supply method according to another embodiment of the present invention.
  • 20 is a conceptual diagram illustrating an example of a layer structure of a nitride based semiconductor light emitting device using carbon doped Al x Ga 1-x N according to the present invention.
  • 21 is a conceptual diagram illustrating another example of a layer structure of a nitride based semiconductor light emitting device using carbon doped Al x Ga 1-x N according to the present invention.
  • the p-type nitride-based semiconductor layer or the III-V compound semiconductor layer is organometallic vapor deposition (MOCVD), plasma chemical vapor deposition (PECVD), low pressure chemical vapor phase It can be formed using a vapor deposition technique such as chemical vapor deposition (CVD) such as vapor deposition (LPCVD), or vacuum deposition such as molecular beam epitaxy (MBE).
  • MOCVD organometallic vapor deposition
  • PECVD plasma chemical vapor deposition
  • low pressure chemical vapor phase It can be formed using a vapor deposition technique such as chemical vapor deposition (CVD) such as vapor deposition (LPCVD), or vacuum deposition such as molecular beam epitaxy (MBE).
  • CVD chemical vapor deposition
  • LPCVD vapor deposition
  • MBE molecular beam epitaxy
  • FIG. 1 is a process diagram schematically showing a crystal growth step of a p-type AlGaN semiconductor layer on a single crystal substrate, according to an embodiment of the present invention
  • Figure 2 is a p on a single crystal substrate, according to an embodiment of the present invention It is a flowchart about the supply timing of a growth element before and after growth of a p-type AlGaN semiconductor layer in the crystal growth of the type AlGaN semiconductor layer.
  • the washed single crystal substrate 11 is prepared and then set in the MOVPE apparatus (FIG. 1 (a)).
  • the MOVPE apparatus a well-known thing can be used for the MOVPE apparatus to be used.
  • the substrate 11 a single crystal substrate whose main surface has an offset angle in the range of ⁇ 0.1% with respect to the (0001) C surface is used.
  • a group V source gas is supplied into the MOVPE apparatus for a predetermined time T 1 (FIG. 1B), and a group V source gas containing a carbon source material after a predetermined time t 1 has elapsed after the start of supplying the group III source gas.
  • a step of supplying the Group III source gas after a predetermined time t 2 (where t 1 + T 2 -t 2 > T 1 ) has elapsed after the supply of the Group V source gas is started, and the Group V source gas is supplied. Perform the process again.
  • a carrier gas of the group III source gas and the group V source gas a known gas such as hydrogen gas can be used.
  • the aluminum content of the Al x Ga 1 - x N semiconductor layer (0 ⁇ x ⁇ 1) is 5 mol% to 100 mol%, and the effective maximum ionization is performed.
  • carbon tetrabromide CBr 4
  • Acetylene is not preferred for use as a carbon source material because of its high reactivity and risk.
  • carbon tetrachloride has an etching effect, when the flow rate is increased, the crystal growth rate is extremely lowered and a semiconductor layer is not formed. Therefore, carbon tetrachloride is not suitable for use as a carbon source material.
  • bromine has a large atomic number compared to chlorine, and is relatively suitable for use as a carbon source material because the chemical reaction force is relatively mild even though it is the same halogen.
  • the nitrogen atom separation ratio of the ammonia gas molecule is closely related to the growth temperature of the p-type AlGaN semiconductor layer, and the growth temperature or substrate temperature of 1190 ° C to 1370 ° C is 1070 ° C. It is preferable to supply the group III source gas and the group V source gas at a growth temperature of ⁇ 1250 ° C. In addition, the optimum growth temperature of the p-type AlGaN semiconductor layer to be deposited is changed depending on the mol% of aluminum contained in the p-type AlGaN semiconductor layer.
  • the optimum deposition temperature is preferably set to 1190 °C ⁇ 1370 °C because it must grow at a high temperature in terms of crystal quality and doping properties.
  • the component of the Group V source gas is preferably mixed with a magnesium source material, the amount is about 1/100 to 100 times the gas partial pressure composed of the carbon source material, the NIAD containing carbon and magnesium It is most desirable to measure the capacitance voltage until it is in the range of 3 to 7 ⁇ 10 18 cm -3 . This is because carbon and magnesium atoms contained in the group V source gas are doped at sites of nitrogen atoms in the AlGaN crystal during growth of the p-type AlGaN semiconductor layer, thereby stably carbon doping.
  • Carbon is doped by repeatedly providing a predetermined overlap time or interval time (I 1 , I 2 ) between the step of supplying the group III source gas for a predetermined time and the step of supplying the group V source gas for a predetermined time.
  • P-type AlGaN semiconductor layer is formed.
  • an overlap is not set between the supply time T 1 of the group III source gas and the supply time T 2 of the group V source gas, and the supply time T 1 of the group III source gas and the group V source gas are not set. It is preferable to set the interval time between the supply times T 2 of 0 seconds to 2 seconds.
  • the carbon atom can be stably doped at the site of the nitrogen atom in the AlGaN crystal by setting the interval time between the supply time T 1 of the group III source gas and the supply time T 2 of the group V source gas.
  • the interval time is set to 2 seconds or more, the interface of the hetero structure of the manufactured p-type AlGaN crystal layer becomes rough, which is not preferable.
  • GaN and AlGaN layers were grown on the (0001) plane of the sapphire substrate according to the conventional reduced pressure organometallic gas phase epitaxy (LP-MOVPE) method. Growth pressure and growth temperature were 40 hPa and 1180 ° C., respectively. TMGa, TMAl, CBr 4 and NH 3 were used as raw materials for Ga, Al, C and N, respectively.
  • the epitaxial growth conditions are as follows.
  • Substrate surface temperature 1070 °C ⁇ 1250 °C
  • Source gas pressure at growth 40 to 200 hPa
  • V / III ratio (molar ratio / partial pressure ratio): about 200 to 600
  • Carbon tetrachloride supply 7 ⁇ 10 -8 mol / min ⁇ 1.7 ⁇ 10 -5 mol / min
  • the number of times of supply of the group III source gas and the group V source gas, the supply time T 1 of the group III source gas, and the supply time T 2 of the group V source gas are 0 to the interval between the T 1 and T 2 . It adjusted suitably so that the desired thickness of a p-type AlGaN semiconductor layer might be obtained on conditions which become 1 second.
  • the structure of the sample is as follows. A single C-doped AlGaN layer (layer thickness 1 ⁇ m) was grown on an undoped AlGaN (layer thickness 2-4 ⁇ m) template for Van der Pauw method Hall effect measurements. On the other hand, a thick layer-thick n-type GaN or AlGaN (layer thickness 2-4 ⁇ ) template was grown on a hot undoped AIN layer (layer thickness of several nm).
  • an undoped GaN active layer (layer thickness of 10 to 15 nm) and a C-doped AlGaN layer (layer thickness of 0.1 to 1.5 ⁇ m) were added to the n-type GaN or Growth has continued on AlGaN templates.
  • the crystal quality of the prepared C-doped AlGaN sample was evaluated by X-ray rocking curve analysis using reflection of (0002) plane and (10-12) plane.
  • the X-ray rocking curve analysis results were then measured by transmission electron microscopy data for (000) and (0002) diffraction spots and (1020) planes using electron beams incident along the [1-100] direction.
  • the full width at half maximum (FWHM) for the (0002) plane ⁇ scan and the (10-12) plane ⁇ scan was around 120 to 150 arcsec and 300 to 350 arcsec.
  • the density of dislocations composed of screw-type dislocations and mixed-type dislocations of the C-doped p-type AlGaN layer and the density of mixed dislocations and edge dislocations are 2 to 2, respectively. It was estimated to be 3 ⁇ 2 ⁇ 10 9 cm -3 - 5 ⁇ 10 7 cm -3 and 7 ⁇ 10 8 cm. X-ray rocking curve analysis showed that the crystal quality of C-doped AlGaN was very similar to undoped AlGaN grown on c-plane sapphire substrate by the same growth conditions and same layer structure.
  • the optical properties of C-doped AlGaN and undoped AlGaN were compared for the purpose of clarifying the carbon effect on the luminescence properties and to find the energy level associated with the carbon acceptor of the (0001) face of the C-doped AlGaN.
  • FIG. 3A shows a low temperature emission (PL) spectrum obtained from an undoped AlGaN having a composition ratio of aluminum (hereinafter also referred to as an "Al composition ratio") of 8%.
  • Al composition ratio a composition ratio of aluminum
  • Figures 3 (a) and (b) show the excitation of a 193 nm pulsed excimer laser in the ML-2100-S optical attenuator of METROLUX Co., Ltd.
  • Photoluminescence (PL) spectra obtained in an undoped AlGaN layer and a C-doped AlGaN layer having an Al composition ratio of about 8-9% are shown.
  • the main luminescence i.e. the maximum peak
  • E 1 3.650
  • E 2 3.598 eV
  • E 3 3.498 eV
  • the present inventors observed the spectral spread of PL emission in C-doped AlGaN shown in Fig. 3B.
  • E 1 and E 3 in undoped AlGaN and E 1 and E 3 in C-doped AlGaN are occurring in carbon acceptors of undoped and C-doped AlGaN.
  • the shallow acceptor energy level (E m -E 1 ) 29 meV has a high hole density and is thought to play an important role in connection with the p-type conductivity of C-doped AlGaN.
  • a single C-doped AlGaN layer (layer thickness 1 ⁇ m) was grown on an undoped AlGaN (layer thickness 2-4 ⁇ m) template without a magnesium doped (Mg-doped) GaN cap layer. Therefore, for the measurement of van der Pauw geometry Hall effect, Mg-doped p-type GaN cap layer is not formed in case of GaN and AlGaN with Al composition ratio up to 10%.
  • the inventors first attempted carbon doping on the (0001) surface of GaN, but p-type conductivity was not realized.
  • the experimental results according to the present invention strongly suggest that a small amount of aluminum plays an important role in the p-type conductivity of AlGaN, and that aluminum is necessary for the p-type conductivity of the (0001) plane of AlGaN.
  • the inventors have experimentally realized p-type conductivity in C-doped AlGaN.
  • the (0001) planes of the undoped AlGaN layer were all n-type, and the background free electron dendity of the background was 3-9 ⁇ 10 15 cm ⁇ 3 .
  • the hole mobility of these samples was in the range of 20-80 cm 2 / V ⁇ s at room temperature.
  • 4 (a) and 4 (b) are graphs showing the dependence of free electron density on the flow rate of CBr 4 for carbon doped Al 0.1 Ga 0.9 N, by Van der Pauw geometry Hall effect measurement. Obtained.
  • the data of the hollow and black circles show the conductivity of n-type (free electron density) and p-type (free hole density) of Al 0.1 Ga 0.9 N, respectively.
  • the inventors have found that the n-type electrical conductivity of C-doped AlGaN with free electron density in the range of n ⁇ 3 ⁇ 10 14 cm -3 to 9 ⁇ 10 15 cm -3 when the flow rate of CBr 4 is 0.06 to 0.3 ⁇ mol / min. Observed.
  • the monolayer electrical conductivity, sheet resistance, and electron mobility of C-doped AlGaN of 2.3 ⁇ m layer thickness were 20 ohmcm, 8.6 ⁇ 10 4 ohm / cm 2 , 0.4 cm 2 / V ⁇ at room temperature. s.
  • the hole mobility of C-doped AlGaN in the p-type region varied from 0.4 to 20 cm 2 / V ⁇ s at room temperature.
  • NIAD Net Ionized Acceptor Densities
  • (N A - -N D + ) (N A - And N D + C-V was measured at room temperature for C-doped AlGaN using an ECV-Pro-type nanometer C-V system to determine the NIAD defined by ionized acceptor and donor density, respectively.
  • the KOH concentration of the electrolyte used was 0.001 to 0.005 mol%, and far ultraviolet rays were obtained in a mercury-xenon lamp having a wavelength light source of 185 to 2000 nm.
  • Acceptor N on hand A - And donor N D + The atomic density of was measured independently by SIMS analysis. C-V measurements can show the p-type conductivity of C-doped AlGaN.
  • FIG. 5 (a) shows Mg-doped GaN (layer thickness 0.08 ⁇ m) / C-doped AlGaN (molar concentration of aluminum 55%, layer thickness 1.0 ⁇ m) / Si doped AlGaN (molar concentration of aluminum 55%), layer thickness 2-4 ⁇ m) shows the depth profile of the NIAD obtained by CV measurement of the structure of the sample.
  • the AlGaN semiconductor layer of FIG. 5 (a) is manufactured by simultaneously doping carbon (C) and magnesium (Mg). Meanwhile, the AlGaN semiconductor layer, which is the measurement target in FIG. 5B, is doped with C only.
  • FIG. 5 (b) shows GaN (layer thickness 0.08 ⁇ m) / C-doped AlGaN (molar concentration of aluminum 55%, layer thickness 1.0 ⁇ m) / Si doped AlGaN (molar concentration 55% of aluminum), layer thickness 2 Depth profile of the NIAD obtained by CV measurement of the structure of the sample composed of ⁇ 4 ⁇ m).
  • Mg-doped p-type GaN is believed to reduce the effect of the "surface state" of CV measurement samples with high carbon content and low carbon content. It is important to get reliable and reliable CV measurement results.
  • the electrical conductivity of the C-doped AlGaN semiconductor layer with a composition ratio of Al of 0.55 is p-type, and its NIAD is 6-7 ⁇ 10 for a depth of 1.2 ⁇ m at 0.18 ⁇ m, as shown in FIG. It was 18 cm ⁇ -3> .
  • the NIAD of Mg-doped GaN was slightly lower, which was 5 ⁇ 10 18 cm -3 .
  • AlGaN semiconductor layer of carbon doped is only shown in 5 (b) also, a value of about 0.09 ⁇ m NIAD at a depth of about 0.54 ⁇ m about 1 ⁇ 10 17 cm - 3 ⁇ about 2 ⁇ 10 18 cm - Not only was it scattered between 3 , but it was also unstable with a mixture of p-type and n-type.
  • 6A and 6B are graphs summarizing C-doping characteristics of AlGaN having Al composition ratios of 10% and 55%, respectively.
  • NIAD is from 3 ⁇ 10 16 cm -3 3 ⁇ 10 18 cm , as Fig. 6 (a) and changing the flow rate of the CBr 4 as shown in (b) - was able to be controlled easily through 3.
  • the maximum NIAD is (6 to 7) x 10 18 cm -3 , and as shown in FIG. 5 (a), it is a value obtained for AlGaN having an Al composition ratio of 55%.
  • the flow rates of CBr 4 from which the same NIAD (eg 1 ⁇ 10 18 cm ⁇ 3 ) can be obtained are different for AlGaN with 10% aluminum and AlGaN with 55% aluminum.
  • the experiment of the present invention requires a larger flow rate of CBr 4 to obtain the same NIAD for AlGaN having a relatively low Al composition ratio.
  • SIMS analysis provided more important information about carbon doping.
  • the Mg concentration of the cap GaN layer was determined to be 5 ⁇ 10 19 cm ⁇ 3 in another SIMS analysis. Secondary ionic strengths of aluminum and gallium are indicated for reference.
  • the doped carbon concentration was set to a maximum of 7.3 ⁇ 10 18 cm ⁇ 3 .
  • the system was carefully calibrated for carbon analysis by standard methods, using AlGaN samples implanted with carbon ions.
  • the AlGaN sample has the same Al composition ratio as used in the SIMS analysis, the AlGaN sample for ion implantation was grown under the same growth conditions.
  • the NIAD of the carbon acceptor in p-type AlGaN (composition ratio of Al 27%) was 5 ⁇ 10 18 cm ⁇ 3 .
  • the electrical activation rate of the carbon acceptor in AlGaN was measured using the carbon concentration and NIAD measured in the SIMS analysis, as described above, and this sample was estimated to be about 68%.
  • the inventors also evaluated the electrical activation rate of the carbon acceptor using several other samples. 8 is a graph showing the dependence of the carbon acceptor's electrical activation ratio on the aluminum composition ratio, and the electrical activation ratio was evaluated using carbon atom density (measured by SIMS analysis) and NIAD (measured by CV measurement). However, it appears to be around 55-71%.
  • the NIAD of the magnesium doped (Mg doped) p-type GaN layer was measured for the samples used to obtain (a) and (b) of FIG.
  • the NIAD for the Mg acceptor was 4-5 ⁇ 10 18 cm ⁇ 3
  • the Mg concentration of Mg-doped p-type GaN was determined to be 5 ⁇ 10 19 cm ⁇ 3 by SIMS analysis.
  • the electrical activation rate of GaN's Mg acceptor was estimated to be about 8-10%.
  • the electrical activation rate of the Mg acceptor is required in three samples and also appears as error bars at the 0% Al composition ratio shown in FIG. 8. According to the experimental results of the present invention, the ratio of the carbon acceptor electric activation of AlGaN having an Al composition ratio of 20 to 27% is greater than that of the Mg acceptor of GaN.
  • k and T are Boltzmann's constant and absolute temperature, respectively.
  • FIG. 9 is a graph evaluating activation energies of Al 0.27 Ga 0.73 N carbon acceptors and GaN Mg acceptors using experimental electrical activation ratios of carbon and magnesium acceptors at room temperature.
  • the present inventors can evaluate that the activation energy for AlGaN carbon acceptors having an Al composition ratio of 27% is in the range of 22 to 30 meV, and the activation energy for Mg acceptors in GaN is in the range of 110 to 130 meV. have.
  • the evaluation value of the activation energy of the carbon acceptor is a value close to the carbon acceptor level in AlGaN having an Al composition ratio of 27% measured in the PL emission spectrum.
  • Table 1 and Table 2 summarize the electrical characteristics of the p-type AlGaN semiconductor layer prepared by growing on the (0001) surface of the sapphire substrate according to the above-described LP-MOVPE method based on the same conditions as the above-described epitaxial growth conditions. Table. As can be seen from this table, even when the aluminum content is increased, it can be seen that the electrical conductivity of the AlGaN is maintained by doping carbon into the AlGaN semiconductor layer under the predetermined conditions disclosed in the present invention.
  • the present invention can provide a method of manufacturing a carbon-doped p-type gallium nitride based semiconductor layer having improved productivity.
  • the p-type nitride semiconductor layer having a high aluminum content can be produced, the p-type nitride semiconductor layer produced by the production method of the present invention has high breakdown voltage characteristics and excellent electrical properties, It has transparent optical properties and high electrical conductivity up to the deep ultraviolet region. Therefore, according to the above manufacturing method, since a p-type layer having a low resistance can be realized even in a power supply device carrying a large current, a higher performance nitride-based power control device can be realized.
  • the method of manufacturing a III-V nitride semiconductor layer carbon-doped as a p-type impurity is a case where the III-V nitride semiconductor layer is Al x Ga 1-x N, and the MOCVD method is used. An example will be described.
  • a substrate for epitaxially growing Al x Ga 1-x N is prepared.
  • the main surface is a crystal surface substrate having a surface in the range of ⁇ 0.1% with respect to the C surface or the crystal surface corresponding to the C surface, not only a sapphire substrate but also various substrates such as silicon substrate, silicon carbide substrate, gallium nitride substrate, and aluminum nitride substrate can be used.
  • the interlayer refers to a nitride based semiconductor layer grown on a substrate.
  • the principal surface is a substrate having a surface in the range of ⁇ 0.1% of the C plane or the crystal plane corresponding to the C plane
  • vapor deposition can be used to deposit group III atoms and group V atoms alternately on the substrate by 5-7 molecular layers. Will be.
  • Sources of Group III elements used to grow Al x Ga 1-x N include, for example, trimethylgallium (TMG), trimethylaluminum TMA; A source of (CH3) 3Al) and cyclopentadienyl magnesium (Cp2Mg) is used, and a V-group element is, for example, can be used with ammonia (NH 3).
  • Carrier gas carrying the source for example, may be a hydrogen (H 2).
  • H 2 hydrogen
  • such materials are illustrative and not limited to, of course.
  • C carbon tetrabromide
  • the carbon doping source is not limited to carbon tetrabromide (CBr 4 ), but acetylene is not preferable to use as a carbon source material because it is highly reactive and dangerous.
  • carbon tetrachloride has an etching effect, and when the flow rate is increased, the crystal growth rate is extremely lowered and the film does not grow. Therefore, it is not preferable to use it as a carbon source material.
  • carbon tetrabromide also has an etching effect, since the atomic number of bromine is larger than that of chlorine, the carbon tetrabromide is a carbon source material because it is the same halogen but has a relatively mild chemical reaction force.
  • Examples of growth conditions by the MOVPE method are as follows.
  • Substrate surface temperature 1070 °C or more and 1250 °C or less
  • Source gas pressure at growth 4000 or more and 20000Pa or less
  • Component ratio of group V element / group III element 5 or more and 600 or less
  • the growth conditions are one example, if Al x Ga 1-x N can be grown by the MOVPE method, it is not limited thereto.
  • the separation ratio of nitrogen atoms in the ammonia gas molecule is highly temperature dependent.
  • the dissociation ratio of nitrogen atoms in the ammonia gas molecule is closely related to the growth temperature of the p-type AlGaN semiconductor layer. Therefore, it is preferable to supply the group III source gas and the group V source gas under conditions in which the set temperature during growth is in the range of 1180 ° C or more and 1370 ° C or less, and the substrate temperature is in the range of 1070 ° C or more and 1250 ° C or less.
  • growth temperature when the growth temperature is lower than 1180 ° C, carbon becomes difficult to enter the site of the nitrogen atom in the AlGaN crystal. Therefore, it is preferable that growth temperature is 1180 degreeC or more. On the other hand, when growth temperature is higher than 1370 degreeC, since a gallium atom volatilizes, 1370 degreeC or less of growth temperature is preferable.
  • the optimum growth temperature of the deposited AlGaN semiconductor layer is preferably changed according to the aluminum content (mol%) contained in the AlGaN semiconductor layer.
  • the optimum growth temperature is 1180 ° C. or more and 1230 ° C. or less.
  • the optimum growth temperature is preferably set to 1180 ° C or more and 1370 ° C or less.
  • the reason why the source ratio of the group V element and the group III element is in the range of 5 to 600 is because carbon tends to enter the site of the nitrogen atom layer in the AlGaN crystal in this range.
  • the amount of carbon doping can be maximized at the site of the nitrogen atom layer in the AlGaN crystal.
  • the set temperature at the time of growth is 1250 degreeC or more
  • the source ratio of the source of a group V element and a group III element is 5 or more, carbon will fully enter the site of the nitrogen atom layer in an AlGaN crystal.
  • the source ratio of the source of a group V element and a group III element is preferably 200 or more and 600 or less.
  • the source gas supply method When the III-V nitride semiconductor layer is grown by the MOVPE method, the source gas supply method, the simultaneous supply of the III-source gas of the group III element and the V-source gas of the group V element at the same time
  • FIG. 10 is a first example of one cycle of a gas supply method when epitaxially growing Al x Ga 1-x N by an alternate supply method.
  • Group III elements Ga and Al sources trimethyl gallium (TMG) and trimethyl aluminum (TMA; (CH 3 ) 3 Al) were supplied for T 1 hour and cyclopenta, a source of Mg Dienyl magnesium (Cp 2 Mg) overlaps with T 1 hour and is also supplied for t 1 hour, which is shorter than T 1 hour.
  • TMG trimethyl gallium
  • TMA trimethyl aluminum
  • Cp 2 Mg Mg Dienyl magnesium
  • ammonia (NH 3 ) was supplied as an N source of Group V element for T 2 hours at interval time I 1 , and carbon tetrabromide (CBr 4 ) as a carbon doping source overlapped with T 2 time. It is also supplied for t 2 hours which is shorter than T 2 hours.
  • the interval time I 2 is supplied, the Group III element is supplied for T 1 hour, the Mg component is supplied for t 1 hour, the Group V element is T 2 hours, and the carbon doped component is t for the interval time I 1 .
  • the two- hour cycle is repeated several times. Then, Al x Ga 1-x N can be grown to a desired thickness.
  • Interval time I 1 and interval time I 2 may be up to 2 seconds. Interval time I 1 and interval time I 2 may be 0 seconds. However, without interval time I 1 and interval time I 2 , there is a possibility that the source gas of the group III element and the source gas of the group V element are mixed. Therefore, whenever possible, interval time I 1 and interval time I 2 should be prepared. On the other hand, when the interval time I 1 and the interval time I 2 are set to each other for 2 seconds or more, the crystal quality of the interface of the grown film can be greatly reduced due to re-evaporation and adsorption or capture of residual gas. Therefore, it is not preferable to set the interval time I 1 and the interval time I 2 for 2 seconds or more, respectively.
  • the film grown by the gas supply method according to the first example using the growth conditions by the MOVPE method may be stably a p-type AlGaN semiconductor layer.
  • the reason for this is that when a substrate having a surface in the range of ⁇ 0.1% of the C plane or the crystal plane corresponding to the C plane is used, the group III atomic layer and the group V atomic layer are alternately applied to the substrate by 5 to 7 molecular layers, respectively. This is because carbon accumulates in the group V atomic layer.
  • FIG. 11 is a second example of one cycle of the gas supply method when epitaxially growing Al x Ga 1-x N by an alternate supply method.
  • cyclopentadienyl magnesium (Cp 2 Mg) overlaps with T 1 hour and is supplied only at t 1 hour, which is shorter than the T 1 period.
  • cyclopentadienyl magnesium (Cp 2 Mg) is supplied for a time equal to t 2 hours at which carbon tetrabromide (CBr 4 ), which is a carbon doping source, is supplied.
  • CBr 4 carbon tetrabromide
  • 12 is a third example of one cycle of the gas supply method when epitaxially growing Al x Ga 1-x N by an alternate supply method.
  • the third example is different from the first example or the second example, except that cyclopentadienyl magnesium (Cp 2 Mg) is always flowed into the reactor.
  • Other processes of the third example are almost the same as the first example or the second example.
  • Substrate surface temperature 1070 °C or more and 1110 °C or less
  • Source gas pressure at growth 4000 or more and 20000Pa or less
  • Source ratio of group V element source / group III element 5 or more and 600 or less
  • the ionization impurity concentration generates carriers in the added impurity, and indicates that the ionization itself is negative or positive ionized.
  • Ionization impurities are ions immobilized in the crystal, not free carriers.
  • C-V measurements make it possible to analyze the exact appearance of doping without being affected by the internal electric field of the crystal.
  • the device used in this measurement is ECV-Pro from Nanometrics.
  • mold is shown to the thickness of 0.1 micrometer on the surface of an Al x Ga 1-x N semiconductor layer. However, at depths of 0.1 ⁇ m or more, n-type and p-type are inverted and an unstable portion exists.
  • the second example is to supply the source gas of Mg together while supplying the carbon source gas.
  • the source gas of the second example Experimental results show that the layer grown by the feeding method has more stable hole concentration.
  • cyclopentadienyl magnesium (Cp 2 Mg) is supplied at the same time as the source gas of the Group V element, so that Mg is doped into the Group V atomic layer. It is estimated that Mg has the effect of introducing a defect into an AlGaN crystal. For this reason, doping Mg at a concentration much lower than the carbon concentration in the Group V atomic layer results in defects in the AlGaN crystal to the extent that Mg does not damage the hetero interface of the AlGaN crystal and allows carbon to enter the Group V atomic layer. Because it is possible to increase.
  • the gas supply method according to the third example also has the same effect as the second example because the Mg source and the carbon component are supplied as in the second example.
  • FIG. 15 is a fourth example of one cycle of the gas supply method when epitaxially growing Al x Ga 1- x N by the simultaneous supply method.
  • the source of the group V element N during the time T 1 which is the time when trimethylgallium (TMG) and trimethylaluminum (TMA; (CH 3 ) 3 Al) sources of group III elements Ga and Al are supplied into the reactor Phosphorous ammonia NH 3 ) is also supplied for the same time (T 2 hours).
  • TMG trimethylgallium
  • TMA trimethylaluminum
  • CBr 4 the raw material carbon tetrabromide
  • Al x Ga 1- x N is grown to the desired thickness.
  • the source ratio of the group V element source / group III element is preferably as small as possible in the range of 5 or more and 600 or less.
  • the group V atoms are supplied as depleted as possible, carbon tends to enter the group V atomic layer.
  • both of the alternate supply method and the simultaneous supply method use a group III atomic layer when a substrate having a surface in the range of ⁇ 0.1% of the crystal plane corresponding to the C plane or the C plane is used.
  • the and group V atomic layers are alternately stacked on the substrate by about 5 molecular layers, respectively, and carbon enters the group V atomic layer. Therefore, by using a substrate having a surface in the range of ⁇ 0.1% with respect to the C plane or the C plane, it is possible to stably grow the p-type AlGaN semiconductor layer by either the alternate supply method or the simultaneous supply method. Do.
  • the co-feeding method needs to supply the Group V atoms as much as possible. Therefore, the simultaneous supply method has a limited group V element source / Group III element source ratio.
  • the alternating feeding method is a growth method that not only can alleviate the ratio limitation of the group V element source / group III element source significantly, but also allow carbon to be added to the group V atomic layer more actively than the simultaneous supply method. .
  • FIG. 17 it can be seen that when the flow rate of CBr 4 increases under any growth conditions, the effective ionization acceptor density increases in proportion to each other.
  • the effective ionization acceptor is controlled. You can control the density of the acceptor.
  • FIG. 19 shows contact resistance, sheet resistance, resistivity, carrier mobility, sheet when carbons doped Al x Ga 1 - x N are grown by varying the Al composition ratio, flow rate and layer thickness of the carbon source. It is a measurement result of carrier density and carrier density.
  • the carrier density can be realized up to (6.0 to 9.3) E +18 while increasing the composition of carbon-doped Al x Ga 1 - x N aluminum to about 70%.
  • 20 is a conceptual diagram illustrating an example of a layer structure of a nitride based semiconductor light emitting device using carbon doped Al x Ga 1-x N according to the present invention.
  • impurities doped in the p-type nitride semiconductor layer 5 between the light-emitting layer 4 and the p-type nitride-based semiconductor layer 5 do not diffuse into the light-emitting layer 4.
  • the cap layer to be formed may be appropriately formed.
  • Reference numeral 1 is a substrate.
  • the substrate is a crystalline surface substrate whose main surface has a surface in the range of ⁇ 0.1% with respect to the C surface or the crystal surface corresponding to the C surface. If the main surface is a crystal surface substrate having a surface in the range of ⁇ 0.1% of the crystal surface corresponding to the C surface or C surface, various substrates such as a sapphire substrate, a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and an aluminum nitride substrate may be used.
  • the buffer layer 2 is a buffer layer.
  • the buffer layer is a layer which prevents defects from occurring due to a difference between the lattice constant of the substrate and the lattice constant of the nitride semiconductor layer laminated on the substrate.
  • As the buffer layer it is possible to reduce defects in the n-type nitride based semiconductor layer 3 using AlN, AlGaN, or the like having the substrate 1, the n-type nitride based semiconductor layer 3, and an intermediate lattice constant.
  • the buffer layer may be a superlattice structure of AlN and AlGaN.
  • Reference numeral 3 is an n-type nitride semiconductor layer.
  • the n-type nitride semiconductor layer may be formed of AlGaN, GaN, GaInN, or the like.
  • the n-type nitride semiconductor layer may be formed by laminating an n-type contact layer on which n-type electrodes are stacked and an n-type cladding layer disposed on the light emitting layer 4 side.
  • the n-type contact layer may also serve as an n-type cladding layer.
  • As n-type impurity, Si, Ge, etc. are preferable, for example.
  • positioned at the light emitting layer 4 side by way of the n-type nitride-type semiconductor layer 3 structure were mentioned, it is not limited to this.
  • the n-type nitride-based semiconductor layer 3 the n-type nitride-based semiconductor layer disposed on the light emitting layer 4 side has an n-type nitride system having a band gap larger than the band gap of the light emitting layer 4 like the n-type cladding layer.
  • the n-type nitride semiconductor having the same band gap as the light emitting layer 4 can be formed.
  • the emission layer 4 is a light emitting layer.
  • the emission layer 4 may be a single quantum well (SQW) including GaN, InGaN, AlGaN, or AlGaInN, or a multi-quantum well (MQW) structure in which a well layer and a barrier layer are repeatedly stacked.
  • SQW single quantum well
  • MQW multi-quantum well
  • the emitted light is moved toward the shorter wavelength as the Al composition of the well layer increases, and when In increases, the emission wavelength can be controlled by moving to the longer wavelength. Therefore, the composition of the light emitting layer 4 is suitably selected according to the light emission wavelength made to emit light by a nitride type semiconductor light emitting element.
  • Reference numeral 5 is a p-type nitride semiconductor layer.
  • the p-type nitride-based semiconductor layer is composed of Al x Ga 1 -x N doped with carbon according to the present invention.
  • the aluminum composition ratio of Al x Ga 1- x N may be increased by 77%.
  • the p-type cladding layer having a wider band gap than the band gap of the light emitting layer 4 can be easily realized.
  • the thickness of the p-type nitride semiconductor layer 5 is preferably 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the p-type nitride semiconductor layer 5 is composed of carbon-doped Al x Ga 1- x N according to the present invention
  • the p-type nitride semiconductor layer 5 is composed of GaN or AlGaN having a p-type by doping Mg. Excellent IV characteristics. Therefore, when the carbon-doped Al x Ga 1- x N according to the present invention is used for the p-type nitride based semiconductor layer 5, the current diffusion layer or the p-type electrode is appropriately provided between the p-type nitride based semiconductor layer 5 and the p-type electrode.
  • the p-type electrode can be directly formed on the p-type nitride based semiconductor layer 5 without providing a current diffusion layer or a contact layer.
  • the p-type nitride semiconductor layer 5 made of carbon-doped Al x Ga 1 - x N is intended to easily realize schottky contact with the p-type electrode by adjusting the effective ionization acceptor density.
  • the p-type electrode 6 is a p-type electrode.
  • the p-type electrode 6 can be composed of, for example, a single layer film containing any one of Al, Pt, Ru, Ag, Ti, Au, and Ni, a multilayer film or an alloy composed of two or more layers.
  • Reference numeral 7 is an n-type electrode.
  • the n-type electrode 7 is formed on the exposed surface where the n-type nitride semiconductor layer is exposed by etching a portion of the p-type nitride semiconductor layer 5, the light emitting layer 4, and the n-type nitride semiconductor layer.
  • the n-type electrode 7 can be composed of two or more multilayer films composed of any one of Cr, Ti, Au, Al, and Ni.
  • the present invention is not limited thereto.
  • 21 is a conceptual diagram illustrating another example of a layer structure of a nitride based semiconductor light emitting device using carbon doped Al x Ga 1-x N according to the present invention.
  • the same reference numerals are used for parts substantially the same as or equivalent to those in FIG.
  • a method of manufacturing the nitride semiconductor light emitting device of FIG. 21 is as follows.
  • the buffer layer 2 is laminated on the substrate 1, and the n-type nitride semiconductor layer 3, the light emitting layer 4, and the p-type nitride semiconductor layer 5 are sequentially stacked thereon.
  • a reflective electrode containing a metal such as Ag to reflect light toward the opposite side of the light extraction surface among the light emitted from the active layer 4 on the p-type nitride based semiconductor layer 5 to improve light extraction efficiency.
  • (8) is laminated.
  • the reflective electrode 8 can also function as a p-type electrode. Between the reflective electrode 8 and the p-type nitride based semiconductor layer 5, a composition layer exhibiting a function of preventing the diffusion of the reflective electrode 8 component can be inserted.
  • a conductive substrate 10 containing silicon or the like prepared separately is bonded through an adhesive layer 9 containing Au or the like. Thereafter, the substrate 1 is removed by polishing or etching. At this time, all or part of the buffer layer 2 together with the substrate 1 can likewise be removed by polishing or etching.
  • the n type electrode 7 is formed in the board
  • a transparent electrode such as ITO may be used.
  • the nitride semiconductor light emitting device having the structure of FIG. 21 was described.
  • the p-type cladding layer having a wider band gap than the band gap of the light emitting layer can be realized by using Al x Ga 1-x N doped with carbon according to the present invention as the p-type nitride based semiconductor layer 5, and the sheet resistance is high. Since it is low, it is not necessary to naturally insert a contact layer or the like for ohmic contact between the p-type nitride based semiconductor layer 5 and the electrode.
  • a p-type nitride semiconductor layer by carbon doping which has been difficult until now can be stably manufactured. That is, since the carbon-doped nitride-based semiconductor layer is a material which is also n-type in terms of carbon properties, it is difficult to realize a p-type stably in carbon doping, but according to the manufacturing method of the present invention, a carbon-doped p-type nitride-based semiconductor stably It is possible to make a layer.
  • a nitride-based semiconductor light emitting device having high luminous efficiency can be manufactured without inserting a contact layer or the like between the p-type nitride-based semiconductor layer and the electrode.
  • the p-type nitride semiconductor layer including Al x Ga 1 - x N doped with carbon according to the present invention has a current of 20 mA for a bias voltage of about 9 V, for example, as shown in FIG. Flow. Therefore, the p-type nitride semiconductor layer containing Al x Ga 1 - x N doped with carbon according to the present invention can realize low resistance by controlling the effective ionization acceptor density. Therefore, the p-type nitride-based semiconductor layer including Al x Ga 1 - x N doped with carbon according to the present invention can remove the p-type electrode away from the active layer to eliminate light absorption loss.
  • the p-type nitride-based semiconductor layer containing Al x Ga 1 - x N doped with carbon has a thickness of three times the oscillation wavelength (for example, about the thickness of the p-type nitride-based semiconductor layer in order to lower the oscillation threshold. 3 micrometers) can be applied to a semiconductor laser.

Abstract

A semiconductor device and a method for manufacturing the same are disclosed. A method for manufacturing a p-type nitride-based semiconductor layer of the semiconductor device comprises forming a AlxGa1-xN semiconductor layer (0 < x <= 1) by repeating the steps of: supplying a source of periodic group III for a predetermined time T1, supplying a source of periodic group V that contains a carbon source material for a predetermined time T2 when a predetermined time t1 elapses after starting to supply the source of periodic group III, and supplying the source gas of periodic group III when a predetermined time t2 elapses after starting to supply the source of periodic group V; and supplying the source of periodic group V.

Description

반도체 장치 및 이를 제조하는 방법Semiconductor device and method of manufacturing same
본 발명은 반도체 장치 및 이를 제조하는 방법에 관한 것으로, 특히 탄소 도핑된 질화물계 반도체층의 제조 방법 및 이를 이용하여 제조된 p형 질화물계 반도체층 및 이를 이용한 장치에 관한 것이다.The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly, to a method of manufacturing a carbon-doped nitride-based semiconductor layer, and a p-type nitride-based semiconductor layer manufactured using the same and a device using the same.
p형 AlGaN의 전기 전도성을 제어하는 것은 과학 기술적인 관점에서 매우 어려운 문제이다. 마그네슘(Mg)은 GaN과 AlGaN의 주요 p형 도펀트(p-type dopant)이다. 그러나, Mg의 억셉터로서의 에너지 준위는 GaN에서 약 230meV(실험치)이며, AlGaN에서는 더 크고 더 깊은 준위가 되어 AlGaN의 에너지 준위보다 깊다. 그 결과, Mg이 도핑된 AlGaN의 홀 농도는 동일하게 Mg이 도핑된 GaN의 홀 농도에 비해 극단적으로 낮다.Controlling the electrical conductivity of p-type AlGaN is a very difficult problem from a scientific and technical point of view. Magnesium (Mg) is the main p-type dopant for GaN and AlGaN. However, the energy level of Mg as an acceptor is about 230 meV (experimental value) in GaN, which is larger and deeper in AlGaN, which is deeper than that of AlGaN. As a result, the hole concentration of Mg-doped AlGaN is extremely low compared to the hole concentration of Mg-doped GaN.
따라서, Mg이 도핑된 AlGaN의 전기 전도도는 매우 낮기 때문에, Mg을 p형 도펀트로 이용하는 것은 높은 알루미늄 조성의 AlGaN을 이용한 발광 다이오드(LED) 및 레이저 다이오드 등의 발광 소자에 적합하지 않다는 점에서 그 실현이 매우 어려웠다. 또한, 초고주파용 또는 전력 제어용 등의 GaN 또는 AlGaN계 질화물계 반도체에서도 같은 문제가 있었다.Therefore, since Mg-doped AlGaN has very low electrical conductivity, the use of Mg as a p-type dopant is not suitable for light emitting devices such as light emitting diodes (LEDs) and laser diodes using AlGaN having a high aluminum composition. This was very difficult. In addition, GaN or AlGaN-based nitride semiconductors, such as those used for ultra-high frequency or power control, have the same problem.
예를 들면, AlGaN에서 알루미늄 조성비의 증가와 함께, Mg의 에너지 준위가 깊어진다. 그로 인해, Mg에 구속되어 있는 홀의 활성화 비율이 1% 이하가 되어, AlGaN의 홀 농도가 매우 낮아져, AlGaN층의 전기 저항이 높아지게 된다. 이러한 이유로, Mg을 많이 첨가하여 약 2 × 1020cm-3이상의 첨가량이되면, Mg의 편석(segregation)이 발생되어 결정 품질이 매우 떨어진다. 따라서, 상기 첨가량 이상의 Mg을 더 이상 첨가할 수 없다. 따라서, Mg이 도핑된 AlGaN를 이용한 LED나 전력 제어용 전자 장치, 또는 반도체 레이저의 실현이 어려웠다.For example, the energy level of Mg deepens with increasing aluminum composition ratio in AlGaN. Therefore, the activation ratio of the holes constrained to Mg becomes 1% or less, the AlGaN hole concentration becomes very low, and the electrical resistance of the AlGaN layer becomes high. For this reason, when a large amount of Mg is added so that the added amount is about 2 × 10 20 cm -3 or more, segregation of Mg occurs and crystal quality is very poor. Therefore, it is no longer possible to add more Mg than the added amount. Therefore, it has been difficult to realize an LED, a power control electronic device, or a semiconductor laser using Mg-doped AlGaN.
또한, 현재의 Mg 도핑된 AlGaN 반도체층의 홀 농도가 낮기 때문에, 저항이 크고, 현재의 LED 구조에서 p형 AlGaN층의 두께는 0.1㎛ ~ 0.2㎛가 한계였다. 또한 Al의 함유량이 많은 AlGaN반도체층을 이용한 자외선 영역 반도체 레이저는 아직 실현되지 않았으며, 반도체 레이저의 발진 파장이 GaN의 금지 대역에 가까운 장파장 측에 제한되어 있다는 한계가 있다.In addition, since the hole concentration of the current Mg-doped AlGaN semiconductor layer is low, the resistance is large, and the thickness of the p-type AlGaN layer in the current LED structure is limited to 0.1 µm to 0.2 µm. In addition, an ultraviolet region semiconductor laser using an AlGaN semiconductor layer having a high Al content has not yet been realized, and there is a limitation that the oscillation wavelength of the semiconductor laser is limited to the long wavelength side close to the forbidden band of GaN.
또한, Mg은 열 확산이 심하여, Mg을 첨가한 p형 층 위에 n형 층을 제작하는 경우에, Mg이 결함을 따라 열 확산하여 n형 층을 실현할 수 없다. 따라서 npn 또는 pnp 바이폴라형 트랜지스터는 실현이 불가능했다. 그로 인해, 전기 자동차·하이브리드 자동차의 제어용 전원 장치 실현에 있어서 큰 걸림돌이 되고 있다.In addition, Mg has a great thermal diffusion, and in the case of producing an n-type layer on a p-type layer to which Mg is added, Mg thermally diffuses along a defect to realize an n-type layer. Therefore, npn or pnp bipolar transistors were not feasible. Therefore, it has become a big obstacle in realizing the control power supply device of an electric vehicle and a hybrid vehicle.
이처럼, Mg이 도핑된 p형 층에는 여러 가지 문제점이 있기 때문에, 이를 해결하고자, 일본 특허출원공개공보 특개2011-023541호에는 c축 방향으로 연장된 기준축과 직교하는 기준 평면에 대해 40도 이상 140도 이하의 각도를 이루는 주면을 가지는 III족 질화물계 반도체로 이루어진 지지체를 이용하여, 지지체의 주면에 Mg뿐만 아니라 2 × 1016cm-3 이상의 탄소 농도를 갖는 p형 질화갈륨계 반도체층을 형성하는 기술이 개시되어있다.As described above, since there are various problems with the p-type layer doped with Mg, Japanese Patent Application Laid-Open No. 2011-023541 discloses more than 40 degrees with respect to a reference plane orthogonal to a reference axis extending in the c-axis direction. P-type gallium nitride-based semiconductor layer having a carbon concentration of not less than Mg but also a carbon concentration of 2 × 10 16 cm −3 or more on the main surface of the support using a support made of a group III nitride semiconductor having an angle of 140 degrees or less A technique is disclosed.
(선행기술문헌)(Prior art document)
일본 특허출원공개공보 특개2011-023541호Japanese Patent Application Laid-Open No. 2011-023541
탄소는 양성 불순물이므로 탄소가 도입되는 물질에 의해 억셉터 또는 도너 중 어느 것으로도 될 수 있다. 특허 문헌 1에 개시된 Mg 및 탄소 도핑된 p형 질화갈륨계 반도체층의 제조 방법으로는 질화갈륨계 반도체층이 n형이 되는 경우도 있어서, p형화를 충분히 안정으로 할 수 없었다. 즉, III-V족 질화물계 반도체로 이루어진 지지체의 주면은 c축 방향으로부터 연장된 기준축에 직교하는 기준 평면에 대해 40도 이상 140도 이하의 각도이기 때문에, 탄소가 안정되어 p형 불순물로서 기능하지 않았다. 뿐만 아니라, 탄소 도핑된 육방정계 GaN의 (1-101)면 및 GaN의 다른 표면에서 행해진 다른 실험 및 이론적인 논의에 따르면, 충분한 p형 전도성을 달성하지 못하였다.Since carbon is a positive impurity, it may be either an acceptor or a donor depending on the substance into which carbon is introduced. In the method for producing the Mg and carbon doped p-type gallium nitride semiconductor layer disclosed in Patent Document 1, the p-type formation could not be sufficiently stabilized even when the gallium nitride-based semiconductor layer was n-type. That is, since the main surface of the support made of group III-V nitride-based semiconductor has an angle of 40 degrees to 140 degrees with respect to the reference plane orthogonal to the reference axis extending from the c-axis direction, carbon is stabilized and functions as a p-type impurity. Did not do it. In addition, other experimental and theoretical discussions conducted on the (1-101) plane of carbon-doped hexagonal GaN and other surfaces of GaN did not achieve sufficient p-type conductivity.
본 발명의 목적은 이러한 사정을 감안한 것으로, 본 발명이 해결하고 하는 과제는, 재현성이 높고 생산성이 향상된 탄소 도핑된 p형 질화갈륨계 반도체층을 포함하는 반도체 장치의 제조 방법을 제공하는 것이다. SUMMARY OF THE INVENTION An object of the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method of manufacturing a semiconductor device including a carbon-doped p-type gallium nitride based semiconductor layer having high reproducibility and improved productivity.
또한, 본 발명이 해결하고자 하는 또 다른 과제는, 전기 전도도가 높고 낮은 저항의 탄소 도핑된 p형 질화갈륨계 반도체층 및 이를 포함하는 반도체 발광 소자를 제공하기 위한 것이다.In addition, another object of the present invention is to provide a p-type gallium nitride-based semiconductor layer having a high electrical conductivity and low resistance, and a semiconductor light emitting device including the same.
본 발명의 일 실시예에 따른 p형 질화물계 반도체층의 제조 방법은, III족 소스를 소정 시간 T1 동안 공급하고, 상기 III족 소스 공급 개시 후, 소정 시간 t1의 경과 후에, 탄소 소스 물질을 함유하는 V족 소스를 소정 시간 T2 (단, t1 + T2 > T1) 동안 공급하고, 상기 V족 소스 공급 개시 후, 소정 시간 t2 (단, t1 + T2 - t2> T1) 의 경과 후에, 상기의 III족 소스 가스를 공급하는 단계 및 상기 V족 소스를 공급하는 공정을 반복하여, 화학 기상 성장법 또는 진공 증착법을 이용하여 1190 ℃ ~ 1370 ℃의 성장 온도 또는 상기 기판 온도가 1070℃ ~ 1250℃이 되는 성장 온도에서, AlxGa1 - xN 반도체층(0 < x ≤ 1)을 형성하는 것을 포함하고, 상기 반도체층의 질소 사이트에 탄소를 도핑한다.In the method of manufacturing a p-type nitride semiconductor layer according to an embodiment of the present invention, a carbon source material is supplied after supplying a group III source for a predetermined time T 1 , and after a predetermined time t 1 has elapsed after the start of supplying the group III source. A Group V source containing the same is supplied for a predetermined time T 2 (wherein t 1 + T 2 > T 1 ), and after starting the Group V source supply, the predetermined time t 2 (wherein t 1 + T 2 -t 2 > T 1 ), the step of supplying the Group III source gas and the step of supplying the Group V source is repeated, the growth temperature of 1190 ℃ to 1370 ℃ using chemical vapor deposition or vacuum deposition method or at a growth temperature that the substrate temperature is 1070 ℃ ~ 1250 ℃, Al x Ga 1 - includes forming x N semiconductor layer (0 <x ≤ 1), and doping the carbon to the nitrogen site of the semiconductor layer.
상기 단결정 기판은 주면이 (0001) C면에 대해 ±0.1% 범위의 오프셋 각도를 가질 수 있다.The single crystal substrate may have an offset angle in the main plane of ± 0.1% with respect to the (0001) C plane.
상기 탄소 소스 물질은 사브롬화탄소(CBr4)일 수 있다.The carbon source material may be carbon tetrabromide (CBr 4 ).
상기 V족 소스는 마스네슘 소스 물질을 포함할 수 있다.The group V source may comprise a magnesium source material.
상기 알루미늄 함량은 5mol% ~ 100mol%일 수 있다.The aluminum content may be 5 mol% to 100 mol%.
또한, 상기 III족 소스의 공급 시간 T1과 상기 V족 소스 가스의 공급 시간 T2 사이에 오버랩을 설정하지 않을 수 있고, 상기 III족 소스의 공급 시간 T1과 상기 V족 소스의 공급 시간 T2 간의 간격은 0 초 이상 2 초 이하일 수 있다.Further, it may not set the overlap between the supply time T 2 of the supply time of the group III source and T 1 wherein the group V source gas, the supply time of said Group III wherein the Group V and the supply time T 1 of the source Source T distance between the two can be up to more than 2 seconds 0 seconds.
기판 상에 직접, 또는 단수 또는 복수의 개재층을 통해 MOVPE법을 이용하여 III-V족 질화물계 반도체층을 성장시키는 III-V족 질화물계 반도체층 성장 방법에 있어서, 본 발명의 또 다른 실시예에 따른 III-V족 질화물계 반도체층의 성장 방법은, 반응관 내에 AlxGa1-xN (0 < x ≤ 1)의 III족 원자 소스 가스와, V족 원자 소스 가스와, p형 불순물로서 탄소 소스 가스을 공급함으로써, III족 원자의 원자층과 탄소 도핑된 V족 원자의 원자층을 교대로 성장시키는 것을 포함하고, 상기 기판은 사파이어 기판, 실리콘 기판, 탄화 규소 기판, 질화갈륨 기판, 질화 알루미늄 기판 중 어느 하나로 구성되고, 주면은 C면 및 이와 동등한 결정면에 대해 ±0.1 %의 범위의 오프셋 각도를 갖는다.In a III-V nitride-based semiconductor layer growth method for growing a III-V nitride-based semiconductor layer by using a MOVPE method directly on a substrate or through a single or a plurality of intervening layers, another embodiment of the present invention The growth method of the III-V nitride-based semiconductor layer according to the present invention includes a group III atomic source gas of Al x Ga 1-x N (0 <x ≤ 1), a group V atomic source gas, and a p-type impurity in a reaction tube. And alternately growing an atomic layer of group III atoms and an atomic layer of carbon doped Group V atoms, the substrate being sapphire substrate, silicon substrate, silicon carbide substrate, gallium nitride substrate, nitride It is composed of any one of aluminum substrates, and the main surface has an offset angle in the range of ± 0.1% with respect to the C surface and the equivalent crystal surface.
기판 상에 직접, 또는 단수 또는 복수의 개재층을 통해 MOVPE 법을 이용하여 III-V족 질화물계 반도체층을 성장시키는 III-V족 질화물계 반도체층의 성장 방법에 있어서, 본 발명의 또 다른 실시예에 따른 III-V족 질화물계 반도체층의 성장 방법은, 반응관 내에 AlxGa1-xN (0 < x ≤ 1)의 III족 원자 소스 가스를 소정 시간 동안 공급한 다음, V족 원자 소스 가스를 소정 시간 동안 공급하는 공정을 교대로 실시하여, III족 원자 원자층과 V족 원자 원자층을 교대로 성장시키는 것을 포함하고, 상기 V족 원자 소스 가스를 소정 기간 공급하면서 p형 불순물로서 탄소 소스 가스도 함께 공급함으로써 상기 V족 원자의 원자층에 탄소를 도입한다.Another embodiment of the present invention provides a method for growing a group III-V nitride semiconductor layer, wherein the group III-V nitride semiconductor layer is grown on the substrate directly or through a single layer or a plurality of intervening layers by using the MOVPE method. In the growth method of the III-V nitride-based semiconductor layer according to the example, a Group III atom source gas of Al x Ga 1-x N (0 <x ≤ 1) is supplied into the reaction tube for a predetermined time, and then Group V atoms Alternately growing the group III atomic layer and the group V atomic atomic layer by alternately supplying the source gas for a predetermined time, and supplying the group V atomic source gas as a p-type impurity Carbon is also introduced into the atomic layer of the group V atoms by supplying a carbon source gas together.
상기 성장 방법은, 상기 V족 원자 소스 가스를 상기 소정 시간 동안 공급하면서, Mg 소스 가스도 함께 공급하는 것을 더 포함할 수 있다.The growth method may further include supplying an Mg source gas while supplying the group V atomic source gas for the predetermined time.
또한, 상기 성장 방법은, 상기 AlxGa1 -xN의 III족 원자 소스 가스를 소정 시간 공급한 다음, 상기 V족 원자 소스 가스를 소정 시간 공급하는 공정 동안 계속 Mg의 소스 가스를 공급하는 것을 더 포함할 수 있다.The growth method may further include supplying Mg source gas during the process of supplying the Group III atomic source gas of Al x Ga 1- x N for a predetermined time and then supplying the Group V atomic source gas for a predetermined time. It may further include.
또한, 상기 성장 방법은, 상기 V족 원자 소스 가스를 상기 소정 시간 공급하면서, Mg의 소스 가스도 공급하는 것을 더 포함할 수 있다.The growth method may further include supplying a source gas of Mg while supplying the group V atomic source gas for the predetermined time.
상기 기판은 사파이어 기판, 실리콘 기판, 탄화 규소 기판, 질화갈륨 기판, 질화알루미늄 기판 중 어느 하나로 구성될 수 있다.The substrate may be composed of any one of a sapphire substrate, a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and an aluminum nitride substrate.
상기 기판의 주면은 C면 및 이와 동등한 결정면에 대해 ±0.1 %의 범위에서 오프셋 각도를 가질 수 있다.The main surface of the substrate may have an offset angle in the range of ± 0.1% with respect to the C surface and the equivalent crystal surface.
상기 III-V족 질화물계 반도체층의 두께는 0.1㎛ 이상 3㎛ 이하일 수 있다.The III-V nitride-based semiconductor layer may have a thickness of 0.1 μm or more and 3 μm or less.
반응관내에 AlxGa1-xN의 III족 원자 소스 가스 및 V족 원자 소스 가스를 동시에 공급하여 기판 상에 직접, 또는 하나 또는 복수의 개재층을 통해 III-V족 질화물계 반도체층을 성장시키는 III-V족 질화물계 반도체층의 성장 방법에 있어서, 본 발명의 또 다른 실시예에 따른 III-V족 질화물계 반도체층의 성장 방법은, p형 불순물로서 탄소 소스 가스도 함께 공급하는 것을 포함하고, V족 원자 소스 가스와 III족 원자 소스 가스의 비율은 5 이상 600 이하일 수 있다.Group III-V nitride and semiconductor layers of Al x Ga 1-x N are simultaneously supplied into the reaction tube to grow a group III-V nitride semiconductor layer directly on the substrate or through one or more intervening layers. A method of growing a group nitride semiconductor layer, the method of growing a group III-V nitride semiconductor layer according to another embodiment of the present invention includes supplying a carbon source gas as a p-type impurity, The ratio of the atomic source gas and the group III atomic source gas may be 5 or more and 600 or less.
상기 기판은 사파이어 기판, 실리콘 기판, 탄화 규소 기판, 질화갈륨 기판, 질화알루미늄 기판 중 어느 하나로 구성되고, 주면은 C면 및 이와 동등한 결정면에 대해 ±0.1 %의 범위의 오프셋 각도를 가질 수 있다.The substrate may include any one of a sapphire substrate, a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and an aluminum nitride substrate, and the main surface may have an offset angle in the range of ± 0.1% with respect to the C surface and an equivalent crystal surface.
본 발명의 또 다른 실시예에 따른 질화물계 반도체 발광 소자는, n형 질화물계 반도체층, 활성층 및 p형 질화물계 반도체층의 적층을 포함하고, 상기 p형 질화물계 반도체층은 사파이어 기판, 실리콘 기판, 탄화 규소 기판, 질화갈륨 기판, 질화알루미늄 기판 중 어느 하나로 구성되고, 주면은 C면 및 이와 동등한 결정면에 대해 ±0.1 %의 범위에서 오프셋 각도를 갖는 기판 상에 직접, 또는 단수 또는 복수의 개재층 상에 AlxGa1 - xN (0 < x ≤ 1)의 III족 원자 소스 가스와 V족 원자 소스 가스와 p형 불순물로서 탄소의 소스 가스를 공급함으로써, III족 원자의 원자층과 탄소가 도핑된 V족 원자의 원자층이 교대로 성장된 것이다.According to another embodiment of the present invention, a nitride semiconductor light emitting device includes an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer, wherein the p-type nitride semiconductor layer is a sapphire substrate or a silicon substrate. , A silicon carbide substrate, a gallium nitride substrate, or an aluminum nitride substrate, the main surface being directly on the substrate having an offset angle in the range of ± 0.1% with respect to the C surface and its equivalent crystal surface, or a singular or plural intervening layer By supplying a group III atomic source gas of Al x Ga 1 - x N (0 <x ≤ 1), a group V atomic source gas, and a carbon source gas as a p-type impurity, the atomic layer and carbon of the group III atom The atomic layers of the doped group V atoms were alternately grown.
본 발명의 또 다른 실시예에 따른 질화물계 반도체 발광 소자는, n형 질화물계 반도체층, 활성층 및 p형 질화물계 반도체층의 적층을 포함하고, 상기 p형 질화물계 반도체층은 반응관 내에서 III족 원자 소스 가스와 V족 원자 소스 가스를 각각 소정 시간 교대로 공급함으로써 III족 원자의 원자층과 V족 원자의 원자층이 교대로 성장하여 형성된 층이며, 상기 V족 원자 소스 가스를 공급하는 시간에 탄소 소스 가스도 함께 공급함으로써 탄소가 도입된 것이다.A nitride semiconductor light emitting device according to another embodiment of the present invention includes a stack of an n-type nitride-based semiconductor layer, an active layer and a p-type nitride-based semiconductor layer, wherein the p-type nitride-based semiconductor layer is III in the reaction tube A group formed by alternately growing an atomic layer of group III atoms and an atomic layer of group V atoms by supplying group atom source gas and group V atom source gas alternately for a predetermined time, and supplying the group V atom source gas Carbon was also introduced by supplying a carbon source gas to the reactor.
상기 p형 질화물계 반도체층은 AlxGa1 - xN (0 < x ≤ 1)일 수 있다.The p-type nitride semiconductor layer may be Al x Ga 1 - x N (0 <x ≦ 1).
상기 질화물계 반도체 발광 소자는, 상기 p형 질화물계 반도체층 상에 형성된 p형 전극을 더 포함할 수 있다.The nitride-based semiconductor light emitting device may further include a p-type electrode formed on the p-type nitride-based semiconductor layer.
본 발명의 또 다른 실시예에 따른 반도체 레이저는, p형 질화물계 반도체층이 기판에 직접, 또는 하나 또는 복수의 개재층을 통해 MOVPE법을 이용하여 III-V족 질화물계 반도체층을 성장시키는 III-V족 질화물계 반도체층 성장 방법에 있어서, 반응관내에 AlxGa1-xN의 III족 원자 소스 가스를 소정 시간 공급한 다음, V족 원자 소스 가스를 소정 시간 공급하는 공정을 교대로 실시하여 III족 원자의 원자층과 V족 원자의 원자층을 교대로 성장시키고, 상기 V족 원자 소스 가스를 소정 시간 공급하면서 p형 불순물로서 탄소 소스 가스도 함께 공급함으로써 상기 V족 원자의 원자층에 탄소가 도입된 III-V족 질화물계 반도체층을 포함한다.In a semiconductor laser according to another embodiment of the present invention, in which the p-type nitride semiconductor layer is grown on the substrate directly or through one or a plurality of intervening layers, the III-V nitride semiconductor layer is grown using MOVPE. In the -V nitride-based semiconductor layer growth method, a step of supplying a Group III atomic source gas of Al x Ga 1-x N into the reaction tube for a predetermined time, and then alternately supplying a Group V atomic source gas for a predetermined time To alternately grow an atomic layer of group III atoms and an atomic layer of group V atoms, and supply the group V atomic source gas with a carbon source gas as a p-type impurity while supplying the group V atomic source gas for a predetermined time. And a group III-V nitride semiconductor layer into which carbon is introduced.
상기 p형 질화물계 반도체층의 층 두께는 3㎛일 수 있다.The layer thickness of the p-type nitride-based semiconductor layer may be 3㎛.
본 발명에 따르면, 본 발명에 따른 p형 질화물계 반도체층의 제조 방법에 의해 제조된 p형 질화물계 반도체층은, 탄소가 안정적으로 도핑되어 있기 때문에, 본 발명은 생산성을 향상시킨 탄소 도핑 p형 AlGaN 등의 p형 질화물계 반도체층의 제조 방법을 제공할 수 있다.According to the present invention, since the p-type nitride semiconductor layer produced by the method for producing a p-type nitride semiconductor layer according to the present invention is doped with carbon stably, the present invention provides a carbon-doped p-type with improved productivity. A method for producing a p-type nitride semiconductor layer such as AlGaN can be provided.
또한, 탄소 도핑 p형 III-V족 화합물 반도체를 AlxGa1-xN (0.001≤x≤1)로 실현할 수 있고, Al의 조성을 77%까지 높일 수 있으며, 밴드 갭이 넓은 p형 질화물계 화합물 반도체층을 생성할 수 있다.In addition, a carbon-doped p-type III-V compound semiconductor can be realized with Al x Ga 1-x N (0.001? X? 1), the composition of Al can be increased by 77%, and a p-type nitride compound semiconductor layer having a wide band gap is provided. Can be generated.
또한, 대전류를 흘리는 전원 장치에서도 저항이 낮은 p형 III-V족 화합물 반도체층이 실현 가능하기 때문에, 보다 고성능인 질화물계 전력 제어 장치를 구현할 수 있다.In addition, since a p-type III-V compound semiconductor layer having low resistance can be realized even in a power supply device having a large current, a higher performance nitride-based power control device can be realized.
도 1은 본 발명의 일 실시예에 따른, 단결정 기판 상에 p형 AlGaN 반도체층의 결정 성장 단계를 모식적으로 나타내는 공정도이다.1 is a process diagram schematically illustrating a crystal growth step of a p-type AlGaN semiconductor layer on a single crystal substrate according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른, 단결정 기판 상에 p형 AlGaN 반도체층의 결정 성장에서, p형 AlGaN 반도체층 성장 전후의 성장 원소의 공급시기에 대한 순서도이다.FIG. 2 is a flowchart illustrating a supply timing of growth elements before and after growth of a p-type AlGaN semiconductor layer in crystal growth of a p-type AlGaN semiconductor layer on a single crystal substrate according to an embodiment of the present invention.
도 3의 (a)는 Al 조성비 8%의 언도핑 AlGaN에서 얻은 저온 발광(PL) 스펙트럼이고, (b)는 Al 조성비 9%의 C-도핑 AlGaN에서 얻은 저온 발광(PL) 스펙트럼이다.(A) of FIG. 3 is a low temperature emission (PL) spectrum obtained from an undoped AlGaN having an Al composition ratio of 8%, and (b) is a low temperature emission (PL) spectrum obtained from a C-doped AlGaN having an Al composition ratio of 9%.
도 4의 (a)와 (b)는 탄소 도핑된 Al0.1Ga0.9N에 대해 CBr4의 유량에 대한 자유 전자 밀도의 의존성을 나타내는 그래프이다.4 (a) and (b) are graphs showing the dependence of free electron density on the flow rate of CBr 4 for carbon doped Al 0.1 Ga 0.9 N.
도 5의 (a)와 (b)는 Al 조성비 55%의 C-도핑 AlGaN의 NIAD의 깊이 프로파일을 나타내는 그래프이고, (a)는 C 및 Mg가 동시에 도핑된 AlGaN 반도체층에 관한 것이고, (b)는 C만 도핑된 AlGaN 반도체층에 관한 것이다.5A and 5B are graphs showing a depth profile of NIAD of C-doped AlGaN having an Al composition ratio of 55%, (a) relates to an AlGaN semiconductor layer doped with C and Mg simultaneously, and (b) ) Is for the C-doped AlGaN semiconductor layer.
도 6의 (a)는 Al 조성비 10%의 AlGaN의 탄소 도핑 특성이며, 도 6의 (b)는 Al 조성비 55%의 AlGaN의 탄소 도핑 특성이다.FIG. 6A illustrates carbon doping characteristics of AlGaN having an Al composition ratio of 10%, and FIG. 6B illustrates carbon doping characteristics of AlGaN having an Al composition ratio of 55%.
도 7의 (a)와 (b)는 Mg-도핑 GaN(층 두께 0.08μm) / C-도핑 AlGaN(층 두께 0.1μm) / 언도핑 GaN(층 두께 10nm) / Si-도핑 AlGaN(3 ~ 4μm의 층 두께)으로 이루어진 더블 헤테로 구조를 갖는 LED 샘플의 SIMS 분석이다.7A and 7B show Mg-doped GaN (layer thickness 0.08 μm) / C-doped AlGaN (layer thickness 0.1 μm) / undoped GaN (layer thickness 10 nm) / Si-doped AlGaN (3 to 4 μm) Is a SIMS analysis of an LED sample having a double heterostructure.
도 8은 탄소 억셉터 전기 활성화 비율의 Al 조성비에 대한 의존도를 나타내는 그래프이다.8 is a graph showing the dependence of the carbon acceptor electrical activation ratio on the Al composition ratio.
도 9는 실온에서 탄소와 마그네슘 억셉터의 실험적인 전기 활성화 비율을 이용하여, Al0.27Ga0.73N의 탄소 억셉터 및 GaN의 Mg 억셉터의 활성화 에너지를 평가한 그래프이다.9 is a graph evaluating the activation energy of the carbon acceptor of Al 0.27 Ga 0.73 N and the Mg acceptor of GaN using the experimental electrical activation ratio of carbon and magnesium acceptors at room temperature.
도 10은 본 발명의 또 다른 실시예에 따른, 교대 공급법에 의해 AlxGa1-xN을 에피택셜 성장시키는 경우에 있어서, 가스 공급 방법의 한 사이클에 대한 제1 예이다.FIG. 10 is a first example of one cycle of the gas supply method in the case of epitaxially growing Al x Ga 1-x N by an alternate supply method according to another embodiment of the present invention.
도 11은 본 발명의 또 다른 실시예에 따른, 교대 공급법에 의해 AlxGa1-xN을 에피택셜 성장시키는 경우에 있어서, 가스 공급 방법의 한 사이클에 대한 제2 예이다.FIG. 11 is a second example of one cycle of the gas supply method in the case of epitaxially growing Al x Ga 1-x N by an alternate supply method according to another embodiment of the present invention.
도 12는 본 발명의 또 다른 실시예에 따른, 교대 공급법에 의해 AlxGa1-xN을 에피택셜 성장시키는 경우에 있어서, 가스 공급 방법의 한 사이클에 대한 제3 예이다.12 is a third example of one cycle of the gas supply method in the case of epitaxially growing Al x Ga 1-x N by an alternate supply method according to another embodiment of the present invention.
도 13은 제1 예의 소스 가스의 공급 방법으로 AlxGa1-xN 반도체(x = 0.55)를 성장시킨 막의 C-V 측정법(이온화 불순물 농도 측정)에 의한 AlGaN 반도체막 깊이 방향에 대한 홀 농도를 나타낸다.FIG. 13 shows the hole concentration in the AlGaN semiconductor film depth direction by CV measurement (ionization impurity concentration measurement) of a film in which an Al x Ga 1-x N semiconductor (x = 0.55) was grown by the source gas supply method of the first example. .
도 14는 제2 예의 소스 가스의 공급 방법으로 AlxGa1-xN 반도체 (x = 0.55)를 성장시킨 막의 C-V 측정법(이온화 불순물 농도 측정)에 의한 AlGaN 반도체막 깊이 방향에 대한 홀 농도를 나타낸다.Fig. 14 shows the hole concentration in the AlGaN semiconductor film depth direction by CV measurement (ionization impurity concentration measurement) of a film in which an Al x Ga 1-x N semiconductor (x = 0.55) was grown by the method of supplying the source gas of the second example. .
도 15는 본 발명의 또 다른 실시예에 따른, 동시 공급법에 의해 AlxGa1-xN을 에피택셜 성장시키는 경우에 있어서, 가스 공급 방법의 한 사이클에 대한 제4 예이다.15 is a fourth example of one cycle of the gas supply method in the case of epitaxially growing Al x Ga 1-x N by the simultaneous supply method according to another embodiment of the present invention.
도 16은 탄소 도핑된 AlxGa1-xN (x = 0.1)에 있어서, 탄소 소스 가스인 CBr4 플로우 레이트(flow rate)와 유효 이온화 억셉터(acceptor) 밀도와의 관계를 나타낸다.FIG. 16 shows the relationship between CBr 4 flow rate, which is a carbon source gas, and an effective ionization acceptor density, for carbon doped Al x Ga 1-x N (x = 0.1).
도 17은 탄소 도핑된 AlxGa1-xN (x = 0.55)에 있어서, 탄소 소스 가스인 CBr4의 유량과 유효 이온화 억셉터(acceptor) 밀도와의 관계를 나타낸다.FIG. 17 shows the relationship between the flow rate of CBr 4 , the carbon source gas, and the effective ionization acceptor density for carbon doped Al x Ga 1-x N (x = 0.55).
도 18은 본 발명에 따른 탄소 도핑된 AlxGa1-xN (x = 27)와 Mg이 도핑된 AlxGa1-xN(x = 27) 각각의 I-V 특성을 측정한 결과를 나타낸다.18 shows the results of measuring IV characteristics of each of carbon-doped Al x Ga 1-x N (x = 27) and M x doped Al x Ga 1-x N (x = 27) according to the present invention.
도 19는 본 발명에 따른 탄소 도핑된 AlxGa1-xN과 관련하여, Al 조성 비율, 탄소 소스의 유량, 및 층 두께를 바꾸어 성장시킨 경우의 접촉 저항, 시트 저항, 저항률, 캐리어 이동도, 시트 캐리어 밀도, 캐리어 밀도의 측정 결과를 나타낸다.19 shows contact resistance, sheet resistance, resistivity, and carrier mobility when the Al composition ratio, the flow rate of the carbon source, and the layer thickness are grown with respect to the carbon doped Al x Ga 1-x N according to the present invention. , The sheet carrier density, and the measurement result of the carrier density are shown.
도 20은 본 발명에 따른 탄소 도핑된 AlxGa1-xN을 이용한 질화물계 반도체 발광 소자의 층 구조의 일례를 나타내는 개념도이다.20 is a conceptual diagram illustrating an example of a layer structure of a nitride based semiconductor light emitting device using carbon doped Al x Ga 1-x N according to the present invention.
도 21은 본 발명에 따른 탄소 도핑된 AlxGa1-xN을 이용한 질화물계 반도체 발광 소자의 층 구조의 다른 일례를 나타내는 개념도이다.21 is a conceptual diagram illustrating another example of a layer structure of a nitride based semiconductor light emitting device using carbon doped Al x Ga 1-x N according to the present invention.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 발명이 속하는 기술분야의 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 있는 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; The following embodiments are provided as examples to sufficiently convey the spirit of the present invention to those skilled in the art to which the present invention pertains. Accordingly, the present invention is not limited to the embodiments described below and may be embodied in other forms. In the drawings, widths, lengths, thicknesses, and the like of components may be exaggerated for convenience. In addition, when one component is described as "on" or "on" another component, each component is different from each other as well as when the component is "just above" or "on" the other component. This includes cases where there is another component between them. Like numbers refer to like elements throughout.
본 발명의 제조 방법에 있어서, p형 AlGaN 반도체층 등의 p형 질화물계 반도체층 또는 III-V족 화합물 반도체층은 유기 금속 기상 성장법 (MOCVD), 플라즈마 화학 기상 증착 (PECVD), 저압 화학 기상 증착 (LPCVD) 등의 화학 기상 증착 (CVD), 혹은 분자선 에피택시 (MBE) 등의 진공 증착 등의 증착 기법을 사용하여 형성할 수 있다.In the production method of the present invention, the p-type nitride-based semiconductor layer or the III-V compound semiconductor layer, such as the p-type AlGaN semiconductor layer, is organometallic vapor deposition (MOCVD), plasma chemical vapor deposition (PECVD), low pressure chemical vapor phase It can be formed using a vapor deposition technique such as chemical vapor deposition (CVD) such as vapor deposition (LPCVD), or vacuum deposition such as molecular beam epitaxy (MBE).
본 발명의 p형 질화물계 반도체층의 제조 방법의 일 실시형태로, MOCVD를 이용하는 경우를 도면을 참조하여 설명한다. EMBODIMENT OF THE INVENTION The case where MOCVD is used as one Embodiment of the manufacturing method of the p-type nitride-type semiconductor layer of this invention is demonstrated with reference to drawings.
도 1은 본 발명의 일 실시예에 따른, 단결정 기판 상에 p형 AlGaN 반도체층의 결정 성장 단계를 모식적으로 나타내는 공정도이며, 도 2는 본 발명의 일 실시예에 따른, 단결정 기판 상에 p형 AlGaN 반도체층의 결정 성장에서, p형 AlGaN 반도체층 성장 전후의 성장 원소의 공급시기에 대한 순서도이다.1 is a process diagram schematically showing a crystal growth step of a p-type AlGaN semiconductor layer on a single crystal substrate, according to an embodiment of the present invention, Figure 2 is a p on a single crystal substrate, according to an embodiment of the present invention It is a flowchart about the supply timing of a growth element before and after growth of a p-type AlGaN semiconductor layer in the crystal growth of the type AlGaN semiconductor layer.
먼저, 도 1을 참조하면, 세척한 단결정 기판(11)을 준비한 후, MOVPE 장치에 셋팅한다(도 1 (a)). 또한, 사용하는 MOVPE 장치는 공지의 것을 사용할 수 있다. 상기 기판(11)으로는 주면이 (0001) C면에 대해서 ±0.1 %의 범위의 오프셋 각도를 갖는 단결정 기판이 사용된다. 또한 단결정 기판으로 사파이어 기판을 사용하는 것이 가장 바람직하다.First, referring to FIG. 1, the washed single crystal substrate 11 is prepared and then set in the MOVPE apparatus (FIG. 1 (a)). In addition, a well-known thing can be used for the MOVPE apparatus to be used. As the substrate 11, a single crystal substrate whose main surface has an offset angle in the range of ± 0.1% with respect to the (0001) C surface is used. In addition, it is most preferable to use a sapphire substrate as the single crystal substrate.
다음, 상기 MOVPE장치 내에 III족 소스 가스를 소정 시간 T1 동안 공급하고 (도 1 (b)), 상기 III족 소스 가스 공급 개시 후 소정 시간 t1 경과 후에 탄소 소스 물질을 함유하는 V족 소스 가스를 소정 시간 T2 (단, t1 + T2 > T1)동안 공급한다(도 1 (c)). 또한, 상기 V족 소스 가스 공급 개시 후, 소정 시간 t2(단, t1 + T2 - t2 > T1) 경과 후에 상기의 III족 소스 가스를 공급하는 공정 및 상기 V족 소스 가스를 공급하는 공정을 다시 수행한다. 상기 III족 소스 가스 및 V족 소스 가스의 캐리어 가스는 수소 가스 등의 공지의 가스를 사용할 수 있다.Next, a group V source gas is supplied into the MOVPE apparatus for a predetermined time T 1 (FIG. 1B), and a group V source gas containing a carbon source material after a predetermined time t 1 has elapsed after the start of supplying the group III source gas. Is supplied for a predetermined time T 2 (wherein t 1 + T 2 > T 1 ) (FIG. 1 (c)). In addition, a step of supplying the Group III source gas after a predetermined time t 2 (where t 1 + T 2 -t 2 > T 1 ) has elapsed after the supply of the Group V source gas is started, and the Group V source gas is supplied. Perform the process again. As a carrier gas of the group III source gas and the group V source gas, a known gas such as hydrogen gas can be used.
상기 III족 소스 가스 공급 공정과 상기 V족 소스 가스 공급 공정은 AlxGa1 - xN 반도체층(0<x≤1)의 알루미늄 함유량이 5 mol% ~ 100 mol%이고, 또한, 유효 최대 이온화 억셉터 밀도(NIAD = (NA - - ND +))는 정전 용량 전압 측정(capacitance-voltage measurement)을 통해 3 ~ 7 × 1018cm-3의 범위까지 실시하는 것이 바람직하다.In the Group III source gas supply process and the Group V source gas supply process, the aluminum content of the Al x Ga 1 - x N semiconductor layer (0 <x≤1) is 5 mol% to 100 mol%, and the effective maximum ionization is performed. The acceptor density (NIAD = (N A -- N D + )) is preferably carried out in the range of 3 to 7 x 10 18 cm -3 through capacitance-voltage measurement.
상기 V족 소스 가스에 혼합되는 탄소 소스 물질로서, 사브롬화탄소(CBr4)를 이용하는 것이 바람직하다. 한편, 아세틸렌은 반응성이 높아 위험하기 때문에, 탄소 소스 물질로 사용하기에 바람직하지 않다. 또한, 사염화탄소는 에칭 작용이 있기 때문에, 그 유량을 높게 하면 결정 성장 속도가 극단적으로 저하하여 반도체층이 형성되지 않으므로, 탄소 소스 물질로 사용하기에 바람직하지 않다. 또한, 사브롬화탄소도 에칭 작용이 있기는 하지만, 염소에 비해 브롬은 원자 번호가 커서, 같은 할로겐임에도 화학 반응력이 상대적으로 약간 완만하기 때문에, 탄소 소스 물질로 사용하기에 바람직하다.It is preferable to use carbon tetrabromide (CBr 4 ) as the carbon source material to be mixed with the Group V source gas. Acetylene, on the other hand, is not preferred for use as a carbon source material because of its high reactivity and risk. In addition, since carbon tetrachloride has an etching effect, when the flow rate is increased, the crystal growth rate is extremely lowered and a semiconductor layer is not formed. Therefore, carbon tetrachloride is not suitable for use as a carbon source material. In addition, although carbon tetrabromide also has an etching effect, bromine has a large atomic number compared to chlorine, and is relatively suitable for use as a carbon source material because the chemical reaction force is relatively mild even though it is the same halogen.
상기 V족 소스 가스의 성분으로 암모니아 가스를 이용하는 경우, 암모니아 기체 분자의 질소 원자 분리 비율은 p형 AlGaN 반도체층 성장 온도에 밀접하게 관계되고, 1190℃ ~ 1370℃의 성장 온도 또는 기판 온도가 1070℃ ~ 1250℃가 되는 성장 온도에서 상기 III족 소스 가스 및 V족 소스 가스를 공급하는 것이 바람직하다. 또한, 증착되는 p형 AlGaN 반도체층의 최적 성장 온도는 상기 p형 AlGaN 반도체층에 함유된 알루미늄의 mol%에 따라 변화한다. 예를 들면, 알루미늄 함유량이 수 내지 25 mol%의 AlGaN의 경우, 1190℃ ~ 1230℃가 최적 성장 온도이다. 그러나 증착되는 AlGaN에 함유된 알루미늄의 mol%를 증가시킬 경우, 결정 품질과 도핑 특성의 관점에서 고온에서 성장해야 하기 때문에, 최적의 증착 온도는 1190℃ ~ 1370℃로 설정하는 것이 바람직하다.When using ammonia gas as a component of the Group V source gas, the nitrogen atom separation ratio of the ammonia gas molecule is closely related to the growth temperature of the p-type AlGaN semiconductor layer, and the growth temperature or substrate temperature of 1190 ° C to 1370 ° C is 1070 ° C. It is preferable to supply the group III source gas and the group V source gas at a growth temperature of ˜1250 ° C. In addition, the optimum growth temperature of the p-type AlGaN semiconductor layer to be deposited is changed depending on the mol% of aluminum contained in the p-type AlGaN semiconductor layer. For example, for AlGaN with an aluminum content of several to 25 mol%, 1190 ° C to 1230 ° C is the optimum growth temperature. However, when increasing the mol% of aluminum contained in the AlGaN to be deposited, the optimum deposition temperature is preferably set to 1190 ℃ ~ 1370 ℃ because it must grow at a high temperature in terms of crystal quality and doping properties.
또한, 상기 V족 소스 가스의 성분은 마그네슘 소스 물질을 혼합하는 것이 바람직하며, 그 양은 탄소 소스 물질로 구성된 가스 분압의 1/100배 ~ 100배 정도이며, 탄소 및 마그네슘을 포함하는 NIAD가 상기 정전 용량 전압 측정을 통해 3 ~ 7 × 1018cm-3의 범위가 될 때까지 하는 것이 가장 바람직하다. 상기 V족 소스 가스에 함유된 탄소와 마그네슘 원자가 p형 AlGaN 반도체층 성장 시 AlGaN 결정 중 질소 원자의 사이트(site)에 도핑됨에 따라, 탄소 도핑을 안정적으로 할 수 있기 때문이다.In addition, the component of the Group V source gas is preferably mixed with a magnesium source material, the amount is about 1/100 to 100 times the gas partial pressure composed of the carbon source material, the NIAD containing carbon and magnesium It is most desirable to measure the capacitance voltage until it is in the range of 3 to 7 × 10 18 cm -3 . This is because carbon and magnesium atoms contained in the group V source gas are doped at sites of nitrogen atoms in the AlGaN crystal during growth of the p-type AlGaN semiconductor layer, thereby stably carbon doping.
상기 III족 소스 가스를 소정 시간 공급하는 공정과, 상기 V족 소스 가스를 소정 시간 공급하는 공정 간에 소정의 오버랩 시간이나 간격 시간 (I1, I2)을 마련하고 반복적으로 시행함으로써, 탄소가 도핑된 p형 AlGaN 반도체층이 형성된다. 여기서 도 2와 같이, 상기 III족 소스 가스의 공급 시간 T1과 상기 V족 소스 가스의 공급 시간 T2 사이에 오버랩을 설정하지 않고, 상기 III족 소스 가스의 공급 시간 T1과 상기 V족 소스 가스의 공급 시간 T2 사이의 인터벌 시간을 0 초 이상 2 초 이하로 설정하는 것이 바람직하다. 상기 인터벌 시간을 상기 III족 소스 가스의 공급 시간 T1과 상기 V족 소스 가스의 공급 시간 T2 사이에 설정함으로써, AlGaN 결정 중 질소 원자의 사이트에 탄소 원자를 안정적으로 도핑할 수 있기 때문이다. 그러나, 인터벌 시간이 2초 이상으로 설정되면, 제조된 p형 AlGaN 결정층의 헤테로 구조의 계면이 거칠어지기 때문에 바람직하지 않다.Carbon is doped by repeatedly providing a predetermined overlap time or interval time (I 1 , I 2 ) between the step of supplying the group III source gas for a predetermined time and the step of supplying the group V source gas for a predetermined time. P-type AlGaN semiconductor layer is formed. Here, as shown in FIG. 2, an overlap is not set between the supply time T 1 of the group III source gas and the supply time T 2 of the group V source gas, and the supply time T 1 of the group III source gas and the group V source gas are not set. It is preferable to set the interval time between the supply times T 2 of 0 seconds to 2 seconds. This is because the carbon atom can be stably doped at the site of the nitrogen atom in the AlGaN crystal by setting the interval time between the supply time T 1 of the group III source gas and the supply time T 2 of the group V source gas. However, when the interval time is set to 2 seconds or more, the interface of the hetero structure of the manufactured p-type AlGaN crystal layer becomes rough, which is not preferable.
(본 발명의 방법에 의한 p형 AlGaN 반도체층 성장)(P-type AlGaN semiconductor layer growth by the method of the present invention)
GaN과 AlGaN 층은 기존의 감압 유기 금속 기상 에피택시(LP-MOVPE)법에 따라 사파이어 기판의 (0001)면에 성장시켰다. 성장 압력 및 성장 온도는 각각 40hPa 및 1180℃이었다. Ga, Al, C와 N의 원료로 각각 TMGa, TMAl, CBr4 및 NH3를 이용했다. 덧붙여, 에피택셜 성장 조건은 다음과 같다.GaN and AlGaN layers were grown on the (0001) plane of the sapphire substrate according to the conventional reduced pressure organometallic gas phase epitaxy (LP-MOVPE) method. Growth pressure and growth temperature were 40 hPa and 1180 ° C., respectively. TMGa, TMAl, CBr 4 and NH 3 were used as raw materials for Ga, Al, C and N, respectively. In addition, the epitaxial growth conditions are as follows.
성장시 설정 온도 : 1190℃ ~ 1370℃Set temperature when growing: 1190 ℃ ~ 1370 ℃
기판 표면 온도 : 1070℃ ~ 1250℃Substrate surface temperature: 1070 ℃ ~ 1250 ℃
성장시 소스 가스 압력 : 40 ~ 200 hPaSource gas pressure at growth: 40 to 200 hPa
V/III비율 (몰비/분압의 비율) : 약200 ~ 600V / III ratio (molar ratio / partial pressure ratio): about 200 to 600
사염화탄소의 공급량 : 7 × 10-8mol/min ~ 1.7 × 10-5mol/minCarbon tetrachloride supply: 7 × 10 -8 mol / min ~ 1.7 × 10 -5 mol / min
시클로펜타디에닐 마그네슘(Cp2Mg)의 공급량 : 1.3 × 10-7mol/min ~ 1.6 × 10-7mol/minSupply amount of cyclopentadienyl magnesium (Cp2Mg): 1.3 × 10 -7 mol / min ~ 1.6 × 10 -7 mol / min
III족 소스 가스(트리메틸갈륨(TMG)과 트리메틸알루미늄(TMAl))의 공급량 : 5 × 10-5mol/minSupply amount of Group III source gas (trimethylgallium (TMG) and trimethylaluminum (TMAl)): 5 x 10 -5 mol / min
또한, III족 소스 가스 및 V족 소스 가스의 각각의 공급 횟수, III족 소스 가스의 공급 시간 T1, 및 V족 소스 가스의 공급 시간 T2는 상기 T1과 T2 사이의 간격이 0~1 초가 되는 조건에서 p형 AlGaN 반도체층의 원하는 두께를 얻을 수 있도록 적절하게 조정했다.In addition, the number of times of supply of the group III source gas and the group V source gas, the supply time T 1 of the group III source gas, and the supply time T 2 of the group V source gas are 0 to the interval between the T 1 and T 2 . It adjusted suitably so that the desired thickness of a p-type AlGaN semiconductor layer might be obtained on conditions which become 1 second.
샘플의 구조는 다음과 같다. 단일 C-도핑 AlGaN층(층 두께 1㎛)은 반데르포우(Van der Pauw)법 홀 효과 측정을 위해, 언도핑 AlGaN(층 두께 2 ~ 4㎛) 템플릿 (template)에 성장되었다. 한편, 두꺼운 층 두께의 n형 GaN 또는 AlGaN (층 두께 2 ~ 4㎛) 템플릿은 고온의 언도핑 AIN층(층 두께 수 nm)에 성장되었다. 이어 정전 용량-전압(C-V) 측정, SIMS 분석 및 I-V 특성 측정을 위해, 언도핑 GaN 활성층(층 두께 10 ~ 15nm) 및 C-도핑 AlGaN층(층 두께 0.1 ~ 1.5μm)이 상기 n형 GaN 또는 AlGaN 템플릿에 지속적으로 성장되었다. 오믹 접촉층으로 얇은 Mg-도핑 GaN캡 층(10nm의 층 두께)은 C-V 측정 및 LED의 제작을 위해 상기 C-도핑 AlGaN층에 성장되었다.The structure of the sample is as follows. A single C-doped AlGaN layer (layer thickness 1 μm) was grown on an undoped AlGaN (layer thickness 2-4 μm) template for Van der Pauw method Hall effect measurements. On the other hand, a thick layer-thick n-type GaN or AlGaN (layer thickness 2-4 탆) template was grown on a hot undoped AIN layer (layer thickness of several nm). Then, for capacitive-voltage (CV) measurement, SIMS analysis, and IV characterization, an undoped GaN active layer (layer thickness of 10 to 15 nm) and a C-doped AlGaN layer (layer thickness of 0.1 to 1.5 μm) were added to the n-type GaN or Growth has continued on AlGaN templates. A thin Mg-doped GaN cap layer (10 nm layer thickness) as an ohmic contact layer was grown on the C-doped AlGaN layer for C-V measurement and fabrication of LEDs.
(본 발명의 방법에 의해 제조된 p형 AlGaN 반도체층의 결정 품질)(Crystal Quality of p-type AlGaN Semiconductor Layer Produced by the Method of the Present Invention)
상기 제조된 C-도핑 AlGaN 샘플의 결정 품질은 (0002)면 및 (10-12)면의 반사를 이용한 X선 로킹 커브 분석에 의해 평가되었다. 이어서, X선 로킹 커브 분석 결과는 [1-100] 방향에 따라 입사되는 전자빔을 이용한 (000) 및 (0002)의 회절 스팟 및 (1020)면에 대한 투과 전자 현미경 분석 데이터에 의해 측정되었다. X선 로킹 커브 분석에 따르면, (0002)면 ω스캔 및 (10-12)면 φ스캔에 대한 반치폭(FWHM)은 각각 120 ~ 150arcsec과 300 ~ 350arcsec 부근이었다. 이는 상기 C-도핑 p형 AlGaN 층의 나선 전위(screw-type dislocation)와 혼합 전위(mixed-type dislocation)로 구성된 전위의 밀도 및 혼합 전위와 칼날 전위(edge-type dislocation )의 밀도는 각각 2 ~ 5 × 107cm-3 및 7 × 108cm- 3 ~ 2 × 109cm-3가 될 것으로 평가되었다. X선 로킹 커브 분석을 통해, C-도핑 AlGaN의 결정 품질은 같은 성장 조건과 동일한 층 구조에 의해 c면 사파이어 기판 상에 성장된 언도핑 AlGaN과 매우 유사한 것으로 나타났다.The crystal quality of the prepared C-doped AlGaN sample was evaluated by X-ray rocking curve analysis using reflection of (0002) plane and (10-12) plane. The X-ray rocking curve analysis results were then measured by transmission electron microscopy data for (000) and (0002) diffraction spots and (1020) planes using electron beams incident along the [1-100] direction. According to the X-ray rocking curve analysis, the full width at half maximum (FWHM) for the (0002) plane ω scan and the (10-12) plane φ scan was around 120 to 150 arcsec and 300 to 350 arcsec. The density of dislocations composed of screw-type dislocations and mixed-type dislocations of the C-doped p-type AlGaN layer and the density of mixed dislocations and edge dislocations are 2 to 2, respectively. It was estimated to be 3 ~ 2 × 10 9 cm -3 - 5 × 10 7 cm -3 and 7 × 10 8 cm. X-ray rocking curve analysis showed that the crystal quality of C-doped AlGaN was very similar to undoped AlGaN grown on c-plane sapphire substrate by the same growth conditions and same layer structure.
(C-도핑 AlGaN의 광학 특성)(Optical Properties of C-doped AlGaN)
발광 특성에 대한 탄소 효과를 명확하게 함과 동시에, C-도핑 AlGaN의 (0001)면의 탄소 억셉터와 관련된 에너지 준위를 찾을 목적으로 C-도핑 AlGaN 및 언도핑 AlGaN의 광학 특성에 대해 비교했다.The optical properties of C-doped AlGaN and undoped AlGaN were compared for the purpose of clarifying the carbon effect on the luminescence properties and to find the energy level associated with the carbon acceptor of the (0001) face of the C-doped AlGaN.
도 3의 (a)는 알루미늄의 조성비(이하, "Al 조성비"라고도 한다)가 8%인 언도핑 AlGaN에서 얻은 저온 발광(PL) 스펙트럼으로, 하나의 주요(최대) 방사 및 3개의 약한 방사가 각각 Em = 3.685eV, E1 = 3.650, E2 = 3.598eV 및 E3 = 3.498eV에 있는 것으로 측정되었다. 도 3의 (b)는 9%의 Al 조성비를 갖는 C-도핑 AlGaN이며, 하나의 주요(최대) 방사, 하나의 2번째로 큰 방사( "서브 피크 방사"라고도 한다.), 및 약한 방사가 각각 Em = 3.739eV, E1 = 3.710 및 E3 = 3.570eV에 있는 것으로 측정되었다.FIG. 3A shows a low temperature emission (PL) spectrum obtained from an undoped AlGaN having a composition ratio of aluminum (hereinafter also referred to as an "Al composition ratio") of 8%. One main (maximum) emission and three weak emission It was measured to be at E m = 3.685 eV, E 1 = 3.650, E 2 = 3.598 eV and E 3 = 3.498 eV, respectively. FIG. 3B is C-doped AlGaN with an Al composition ratio of 9%, with one major (maximum) emission, one second largest radiation (also referred to as "sub-peak radiation"), and weak radiation It was measured to be at E m = 3.739 eV, E 1 = 3.710 and E 3 = 3.570 eV, respectively.
도 3의 (a)와 (b)는 METROLUX 사의 ML-2100-S형의 광학감쇠기에서 193nm의 펄스화된 엑시머 레이저의 여기(excitation)를 이용하여, 약하게 펄스화된 여기에서 19K(켈빈)의 약 8 ~ 9%의 Al 조성비를 갖는 언도핑 AlGaN층 및 C-도핑 AlGaN층에서 얻어진 광 발광(PL) 스펙트럼을 보여준다.Figures 3 (a) and (b) show the excitation of a 193 nm pulsed excimer laser in the ML-2100-S optical attenuator of METROLUX Co., Ltd. Photoluminescence (PL) spectra obtained in an undoped AlGaN layer and a C-doped AlGaN layer having an Al composition ratio of about 8-9% are shown.
주요 발광, 즉 최대 피크는 Em = 3.685eV에 나타나 있으며 도 3의 (a)에 도시된 바와 같이, 언도핑 AlGaN에서의 밴드 가장자리 발광(band edge-emission)에 관계한다. 이와 비교하여, 하나의 주요 방사 및 3개의 약한 방사가 각각 Em = 3.685eV, E1 = 3.650, E2 = 3.598eV 및 E3 = 3.498eV에 있는 것이 측정되었다. 하나의 주요 방사 및 3개의 약한 방사 간에 계산된 광자 에너지의 차이는 각각 (Em - E1) = 35meV, (Em - E2) = 87meV, (Em - E3) = 187meV이다.The main luminescence, i.e. the maximum peak, is shown at E m = 3.685 eV and is related to band edge-emission in undoped AlGaN, as shown in FIG. In comparison, it was measured that one main radiation and three weak radiations were at E m = 3.685 eV, E 1 = 3.650, E 2 = 3.598 eV and E 3 = 3.498 eV, respectively. The calculated photon energy difference between one major and three weak emissions is (E m -E 1 ) = 35 meV, (E m -E 2 ) = 87 meV, (E m -E 3 ) = 187 meV, respectively.
본 발명자는 도 3의 (b)에 표시된 C-도핑 AlGaN에서 PL 발광의 스펙트럼 확산을 관측했다. 각 발광의 광자 에너지는 주의 깊게 측정되었는데, 최대 피크 방사는 Em = 3.739eV이며, C-도프의 AlGaN에서의 밴드 가장자리 방사에 관계하지만, Al 조성이 다른 도 3의 (a) 샘플과는 거의 관련이 없다. 상기 최대 피크 부근에서 관측된 두 번째로 큰 방사, 즉, 서브 피크 방사는 E1 = 3.710eV이다. 그리고 약한 방사선은, E3 = 3.570eV에 있는 것이 측정되었다.The present inventors observed the spectral spread of PL emission in C-doped AlGaN shown in Fig. 3B. The photon energy of each emission was carefully measured, with a maximum peak emission of E m = 3.739 eV, which is related to the band edge emission in AlGaN of C-doped, but almost different from the sample (a) of FIG. Not relevant The second largest emission observed near the maximum peak, ie the sub peak emission, is E 1 = 3.710 eV. And the weak radiation was measured to be at E 3 = 3.570 eV.
E1의 서브 피크 및 E3에서의 약한 방사의 방사 강도는 CBr4의 흐름에 크게 의존한다. 그러므로, 본 발명자는 두 방사가 C-도핑 AlGaN의 탄소 억셉터에 관계한다고 결론내렸다.The sub-peaks of E 1 and the emission intensity of the weak emission at E 3 are highly dependent on the flow of CBr 4 . Therefore, the inventors concluded that the two emissions are related to the carbon acceptor of C-doped AlGaN.
최대 피크 방사와 서브 피크 또는 약한 방사 간의 광자 에너지의 차이는 각각 (Em - E1) = 29meV, (Em - E3) = 169meV이다.The difference in photon energy between the maximum peak emission and the sub peak or weak emission is (E m -E 1 ) = 29 meV and (E m -E 3 ) = 169 meV, respectively.
자유 여기자(free exciton)와 속박 여기자(bounded exciton)를 고려하여 광자 에너지의 차이에 대해 더 깊이 분석하고 논의할 필요가 있다. 그러나, 언도핑 AlGaN에서의 E1 및 E3와 C-도핑 AlGaN에서의 E1 및 E3는 언도핑 및 C-도핑 AlGaN의 탄소 억셉터에서 발생하고 있다. 본 발명자는 얕은 억셉터 레벨과 깊은 억셉터 레벨에 대해 각각 29-35meV 및 169-187meV를 탄소 억셉터의 두 에너지 준위로 추정했다. 상기의 얕은 억셉터 에너지 준위 (Em - E1) = 29meV는 높은 홀 밀도를 갖고, C-도핑 AlGaN의 p형 전도성과 관련하여 중요한 역할을 할 것으로 생각된다.Considering free and bound exciton, there is a need to further analyze and discuss the difference in photon energy. However, E 1 and E 3 in undoped AlGaN and E 1 and E 3 in C-doped AlGaN are occurring in carbon acceptors of undoped and C-doped AlGaN. We estimated 29-35 meV and 169-187 meV as the two energy levels of the carbon acceptor for the shallow acceptor level and the deep acceptor level, respectively. The shallow acceptor energy level (E m -E 1 ) = 29 meV has a high hole density and is thought to play an important role in connection with the p-type conductivity of C-doped AlGaN.
(홀 효과 측정)(Hall effect measurement)
10%의 Al 조성비를 갖는 AlGaN의 홀 효과 측정은 다음의 간단한 구조를 사용하여 시행되었다.Hall effect measurement of AlGaN with Al composition ratio of 10% was carried out using the following simple structure.
단일 C-도핑 AlGaN층(층 두께 1㎛)은 마그네슘이 도핑된(Mg-도핑) GaN 캡층을 갖지 않는 언도핑 AlGaN(층 두께 2 ~ 4㎛) 템플릿에서 성장되었다. 따라서 반데르포우(Van der Pauw) 기하학 홀 효과 측정을 위해, Al 조성비가 10%까지 GaN과 AlGaN의 경우에는 Mg-도핑 p형 GaN 캡층이 형성되어 있지 않다.A single C-doped AlGaN layer (layer thickness 1 μm) was grown on an undoped AlGaN (layer thickness 2-4 μm) template without a magnesium doped (Mg-doped) GaN cap layer. Therefore, for the measurement of van der Pauw geometry Hall effect, Mg-doped p-type GaN cap layer is not formed in case of GaN and AlGaN with Al composition ratio up to 10%.
본 발명자는 첫째, GaN의 (0001) 표면에 탄소 도핑을 시도했지만 p형 전도성은 실현되지 않았다. 본 발명에 의한 실험 결과는 소량의 알루미늄이 AlGaN의 p형 전도성에 중요한 역할을 하고, 알루미늄은 AlGaN의 (0001)면의 p형 전도성에 필요하다는 것을 강력하게 시사한다. 한편, 본 발명자는 실험적으로 C-도핑 AlGaN에서 p형 전도성을 실현했다. 언도핑 AlGaN층의 (0001)면은 모두 n형이며, 백그라운드의 자유 전자 밀도(background free electron dendity)는 3 ~ 9 × 1015cm-3이었다. 일반적으로 이들 샘플의 홀 이동도는 실온에서 20 ~ 80cm2 / V·s의 범위 내였다.The inventors first attempted carbon doping on the (0001) surface of GaN, but p-type conductivity was not realized. The experimental results according to the present invention strongly suggest that a small amount of aluminum plays an important role in the p-type conductivity of AlGaN, and that aluminum is necessary for the p-type conductivity of the (0001) plane of AlGaN. On the other hand, the inventors have experimentally realized p-type conductivity in C-doped AlGaN. The (0001) planes of the undoped AlGaN layer were all n-type, and the background free electron dendity of the background was 3-9 × 10 15 cm −3 . In general, the hole mobility of these samples was in the range of 20-80 cm 2 / V · s at room temperature.
도 4의 (a)와 (b)는 탄소 도핑된 Al0.1Ga0.9N 대해 CBr4의 유량에 대한 자유 전자 밀도의 의존성을 나타내는 그래프이며, 반데르포우(Van der Pauw) 기하학 홀 효과 측정에 의해 얻어진 것이다. 속이 빈 원과 검은 원의 데이터는 각각 Al0.1Ga0.9N의 n형(자유 전자 밀도) 및 p형(자유 홀 밀도)의 전도성을 나타낸다.4 (a) and 4 (b) are graphs showing the dependence of free electron density on the flow rate of CBr 4 for carbon doped Al 0.1 Ga 0.9 N, by Van der Pauw geometry Hall effect measurement. Obtained. The data of the hollow and black circles show the conductivity of n-type (free electron density) and p-type (free hole density) of Al 0.1 Ga 0.9 N, respectively.
본 발명자는 CBr4의 유량이 0.06 ~ 0.3μmol/min일 때 n ≒ 3 × 1014cm-3에서 9 × 1015cm-3의 범위에서 자유 전자 밀도를 갖는 C-도핑 AlGaN의 n형 전기 전도성을 관측했다.The inventors have found that the n-type electrical conductivity of C-doped AlGaN with free electron density in the range of n ≒ 3 × 10 14 cm -3 to 9 × 10 15 cm -3 when the flow rate of CBr 4 is 0.06 to 0.3 μmol / min. Observed.
CBr4의 유량이 0.7μmol/min일 때 자유 전자 밀도는 n ≒ 5 × 1014cm-3로 감소했다. 그리고 CBr4의 유량이 약 3μmol/min 이상이 되면, 전기 전도성은 n형에서 p형으로 변화하여 CBr4의 유량의 증가와 함께, 자유 홀 밀도는 p ≒ 4 × 1013cm- 3 에서 3 × 1018cm-3 로 급격히 증가했다. 자유 홀 밀도의 최대 값은 CBr4의 유량이 5μmol/min 일 때 얻은 p ≒ 3.2 × 1018cm-3이며, 시트 캐리어 밀도는 7.5 × 1014cm-2에 상당한다.When the flow rate of CBr 4 was 0.7 μmol / min, the free electron density decreased to n ≒ 5 × 10 14 cm −3 . When the flow rate of CBr 4 is about 3 μmol / min or more, the electrical conductivity changes from n type to p type, and with the increase of CBr 4 flow rate, the free hole density is 3 3 4 × 10 13 cm - 3 to 3 × 10 18 cm -3 increased sharply. The maximum value of the free hole density was p ≒ 3.2 × 10 18 cm −3 obtained when the flow rate of CBr 4 was 5 μmol / min, and the sheet carrier density was equivalent to 7.5 × 10 14 cm −2 .
덧붙여, 이 경우에 있어서, 2.3㎛ 층 두께의 C-도핑 AlGaN의 단층 전기 전도도, 시트 저항과 전자 이동도는 실온에서 20 ohm·cm, 8.6 × 104 ohm/cm2, 0.4 cm2 / V·s였다. p형 영역에서 C-도핑 AlGaN의 홀 이동도는 실온에서 0.4 ~ 20 cm2 / V·s로 변화했다.In this case, the monolayer electrical conductivity, sheet resistance, and electron mobility of C-doped AlGaN of 2.3 µm layer thickness were 20 ohmcm, 8.6 × 10 4 ohm / cm 2 , 0.4 cm 2 / V · at room temperature. s. The hole mobility of C-doped AlGaN in the p-type region varied from 0.4 to 20 cm 2 / V · s at room temperature.
(C-V 측정)(C-V measurement)
NIAD (Net Ionized Acceptor Densities) = (NA - - ND +) (NA - 및 ND +는 각각 이온화된 억셉터와 도너의 밀도)에 의해 정의된 상기 NIAD를 측정하기 위해, ECV-Pro형 나노미터 C-V 시스템을 이용하여 C-도핑 AlGaN 대해 상온에서 C-V를 측정했다. 참고로, 사용된 전해질의 KOH 농도는 0.001 ~ 0.005mol%이며, 원 자외선은 185 ~ 2000nm의 파장 광원을 갖는 수은-제논 램프에서 얻었다. 한편 억셉터 NA -와 도너 ND +의 원자 밀도는 SIMS 분석에 의해 독립적으로 측정되었다. C-V 측정은 C-도핑 AlGaN의 p형 전도성 특성을 보여줄 수 있다.NIAD (Net Ionized Acceptor Densities) = (NA                 - -ND                 +) (NA                 - And ND                 +C-V was measured at room temperature for C-doped AlGaN using an ECV-Pro-type nanometer C-V system to determine the NIAD defined by ionized acceptor and donor density, respectively. For reference, the KOH concentration of the electrolyte used was 0.001 to 0.005 mol%, and far ultraviolet rays were obtained in a mercury-xenon lamp having a wavelength light source of 185 to 2000 nm. Acceptor N on handA                 -And donor ND                                  +The atomic density of was measured independently by SIMS analysis. C-V measurements can show the p-type conductivity of C-doped AlGaN.
도 5의 (a)는 Mg-도핑 GaN (층 두께 0.08㎛) / C-도핑 AlGaN (알루미늄의 몰 농도 55%, 층 두께 1.0㎛) / Si 도핑 AlGaN (알루미늄의 몰 농도 55%), 층 두께 2 ~ 4㎛)으로 구성된 샘플의 구조를 C-V 측정하여 얻은 NIAD의 깊이 프로파일을 보여준다. 도 5 (a)의 AlGaN 반도체층은 탄소(C)와 마그네슘(Mg)을 동시에 도핑하여 제작된 것이다. 한편, 도 5의 (b)의 측정 대상인 AlGaN 반도체층은 C만 도핑된 것이다. 즉, 도 5의 (b)는 GaN(층 두께 0.08㎛) / C-도핑 AlGaN (알루미늄의 몰 농도 55%, 층 두께 1.0㎛) / Si 도핑 AlGaN (알루미늄의 몰 농도 55%), 층 두께 2 ~ 4㎛)으로 구성된 샘플의 구조를 C-V 측정하여 얻은 NIAD의 깊이 프로파일을 보여준다. 도 5의 (a)와 도 5의 (b)를 비교해 보면 알 수 있듯이, Mg-도핑 p형 GaN은 높은 탄소함량과 낮은 탄소 함량을 갖는 C-V 측정 샘플의 "표면 상태"의 효과를 감소시킴으로써 믿을 수 있고 안정적인 C-V 측정 결과를 얻기 위해 중요하다.5 (a) shows Mg-doped GaN (layer thickness 0.08 μm) / C-doped AlGaN (molar concentration of aluminum 55%, layer thickness 1.0 μm) / Si doped AlGaN (molar concentration of aluminum 55%), layer thickness 2-4 μm) shows the depth profile of the NIAD obtained by CV measurement of the structure of the sample. The AlGaN semiconductor layer of FIG. 5 (a) is manufactured by simultaneously doping carbon (C) and magnesium (Mg). Meanwhile, the AlGaN semiconductor layer, which is the measurement target in FIG. 5B, is doped with C only. 5 (b) shows GaN (layer thickness 0.08 μm) / C-doped AlGaN (molar concentration of aluminum 55%, layer thickness 1.0 μm) / Si doped AlGaN (molar concentration 55% of aluminum), layer thickness 2 Depth profile of the NIAD obtained by CV measurement of the structure of the sample composed of ~ 4㎛). As can be seen by comparing Figs. 5A and 5B, Mg-doped p-type GaN is believed to reduce the effect of the "surface state" of CV measurement samples with high carbon content and low carbon content. It is important to get reliable and reliable CV measurement results.
Al의 조성비가 0.55인 C-도핑 AlGaN 반도체층에 대한 전기 전도성은 p형이며, 그 NIAD는 도 5의 (a)에 도시된 바와 같이, 0.18㎛에서 1.2㎛의 깊이에 대해 6 ~ 7 × 1018cm-3인 상태였다. 한편, Mg-도핑 GaN의 NIAD는 약간 낮아, 5 × 1018cm-3이었다. 이에 대해 탄소만 도핑된 AlGaN 반도체층은 도 5 (b)에 도시된 바와 같이, 약 0.09㎛에서 약 0.54㎛의 깊이에서 NIAD 값이 약 1 × 1017cm- 3 ~ 약 2 × 1018cm- 3 사이로 흩어져 있을 뿐만 아니라, p형과 n형이 혼합되어있는 불안정한 상태였다.The electrical conductivity of the C-doped AlGaN semiconductor layer with a composition ratio of Al of 0.55 is p-type, and its NIAD is 6-7 × 10 for a depth of 1.2 μm at 0.18 μm, as shown in FIG. It was 18 cm <-3> . On the other hand, the NIAD of Mg-doped GaN was slightly lower, which was 5 × 10 18 cm -3 . On the other hand, as AlGaN semiconductor layer of carbon doped is only shown in 5 (b) also, a value of about 0.09㎛ NIAD at a depth of about 0.54㎛ about 1 × 10 17 cm - 3 ~ about 2 × 10 18 cm - Not only was it scattered between 3 , but it was also unstable with a mixture of p-type and n-type.
도 6의 (a)와 (b)는 Al 조성비가 각각 10%와 55%인 AlGaN의 C-도핑 특성을 요약한 그래프이다. 도 6 (a)와 (b)에 도시된 바와 같이, CBr4의 유량을 변경함에 따라, NIAD는 3 × 1016cm-3에서 3 × 1018cm- 3 사이로 쉽게 제어할 수 있게 되었다.6A and 6B are graphs summarizing C-doping characteristics of AlGaN having Al composition ratios of 10% and 55%, respectively. , NIAD is from 3 × 10 16 cm -3 3 × 10 18 cm , as Fig. 6 (a) and changing the flow rate of the CBr 4 as shown in (b) - was able to be controlled easily through 3.
최대 NIAD는 (6 ~ 7) × 1018cm-3이며, 도 5 (a)에 도시된 바와 같이, Al 조성비가 55%인 AlGaN 대해 얻은 수치이다. 그러나 같은 NIAD (예를 들어, 1 × 1018cm-3)를 얻을 수 있는 CBr4의 유량은, 10%의 알루미늄을 갖는 AlGaN과 55%의 알루미늄을 갖는 AlGaN에서 다르다. The maximum NIAD is (6 to 7) x 10 18 cm -3 , and as shown in FIG. 5 (a), it is a value obtained for AlGaN having an Al composition ratio of 55%. However, the flow rates of CBr 4 from which the same NIAD (eg 1 × 10 18 cm −3 ) can be obtained are different for AlGaN with 10% aluminum and AlGaN with 55% aluminum.
즉, 본 발명의 실험은, Al 조성비가 상대적으로 작은 AlGaN에 대해서 동일한 NIAD를 얻기 위해 더 큰 CBr4의 유량을 요구한다.That is, the experiment of the present invention requires a larger flow rate of CBr 4 to obtain the same NIAD for AlGaN having a relatively low Al composition ratio.
이 결과는, p형 전도성이 C-도핑 GaN에서는 실현되지 않지만, C-도핑 AlGaN에서 실현된다는 사실을 반영한다고 추측할 수 있다. 사실, AlGaN의 C-도핑 실험 결과에 따르면, 20% 근방의 알루미늄을 갖는 AlGaN의 경우, CBr4의 유량이 가장 작을 때, 예를 들어, 동일한 NIAD 값인 1 × 1018cm-3를 얻을 수 있다. 이 결과도 AlGaN의 탄소와 알루미늄 원자 사이의 관계를 반영하고 있다.This result can be assumed to reflect the fact that p-type conductivity is not realized in C-doped GaN, but is realized in C-doped AlGaN. In fact, according to the C-doped experimental results of AlGaN, for AlGaN having 20% of aluminum, when the flow rate of CBr 4 is the smallest, for example, the same NIAD value of 1 × 10 18 cm −3 can be obtained. . This result also reflects the relationship between AlGaN carbon and aluminum atoms.
SIMS 분석을 통해 탄소 도핑에 대한 더 많은 중요한 정보를 얻을 수 있었다. 도 7의 (a)와 (b)는 Mg-도핑 GaN(층 두께 0.08㎛) / C-도핑 AlGaN (알루미늄의 몰 농도 = 27%, 층 두께 0.11㎛) / 언도핑 GaN (층 두께 15nm) / Si-도핑 AlGaN (알루미늄의 몰 농도 = 10%; 층 두께 3㎛)로 구성된 더블 헤테로 구조의 SIMS 분석 결과를 나타낸다. 캡 GaN층의 Mg 농도는 다른 SIMS 분석에서는 5 × 1019cm-3인 것이 측정되었다. 알루미늄과 갈륨의 2차 이온 강도는 참고적으로 표시되어 있다.SIMS analysis provided more important information about carbon doping. 7A and 7B show Mg-doped GaN (layer thickness 0.08 μm) / C-doped AlGaN (molar concentration of aluminum = 27%, layer thickness 0.11 μm) / undoped GaN (layer thickness 15 nm) / Results of SIMS analysis of a double heterostructure composed of Si-doped AlGaN (molar concentration of aluminum = 10%; layer thickness 3 μm) are shown. The Mg concentration of the cap GaN layer was determined to be 5 × 10 19 cm −3 in another SIMS analysis. Secondary ionic strengths of aluminum and gallium are indicated for reference.
C-도핑 AlGaN층의 탄소 농도를 SIMS 분석함으로써, 탄소 도핑에 대한 중요한 정보를 얻을 수 있었다. 도 7의 (a)와 (b)는 탄소의 공급 재료원인 CBr4의 유량을 변화시킴으로써, AlGaN층에 대한 탄소 도핑 양을 다르게 하여 제작한 시료의 SIMS 분석 결과를 나타낸다. 도 7의 (a)와 (b)에 도시된 바와 같이, CBr4의 유량을 변화시킴으로써, 탄소 밀도는 각각 (4 ~ 5) × 1018cm- 3 와 (0.9 ~ 1) × 1018cm- 3로 변화하고, 탄소 도핑 양을 제어할 수 있음을 알 수 있었다. 또한, 본 발명의 실험에서는 도핑된 탄소 농도를 최대 7.3 × 1018cm-3로 하는 것도 가능했다. SIMS 분석을 시작하기 전에, 해당 시스템은 탄소 이온이 주입된 AlGaN샘플을 사용하여, 표준 방법에 의해 탄소 분석을 할 수 있도록 신중하게 조정되었다. 또한, 상기 AlGaN 샘플은 상기 SIMS 분석에서 사용된 것과 동일한 Al 조성비를 갖는 것으로, 이온 주입용의 AlGaN 샘플은 같은 성장 조건에서 성장시켰다.By SIMS analysis of the carbon concentration of the C-doped AlGaN layer, important information on carbon doping could be obtained. 7 (a) and 7 (b) show the results of SIMS analysis of a sample prepared by varying the amount of carbon doping for the AlGaN layer by varying the flow rate of CBr 4 , which is a carbon feed material source. By the changing the flow rate of the CBr 4 as shown in (a) and (b) of Figure 7, the carbon density of each of (4 ~ 5) × 10 18 cm - 3 and (0.9 ~ 1) × 10 18 cm - It was found to change to 3 and control the amount of carbon doping. In addition, in the experiment of the present invention, it was also possible to set the doped carbon concentration to a maximum of 7.3 × 10 18 cm −3 . Before starting the SIMS analysis, the system was carefully calibrated for carbon analysis by standard methods, using AlGaN samples implanted with carbon ions. In addition, the AlGaN sample has the same Al composition ratio as used in the SIMS analysis, the AlGaN sample for ion implantation was grown under the same growth conditions.
(AlGaN에서의 탄소 억셉터의 전기적 활성)(Electrical Activity of Carbon Acceptor in AlGaN)
도 7의 (a)와 (b)를 얻기 위해 사용된 샘플에 대해, p형 AlGaN (Al의 조성비 27%)에서의 탄소 억셉터의 NIAD는 5 × 1018cm-3이었다. 따라서, AlGaN에서의 탄소 억셉터의 전기 활성화 비율은 전술한 것처럼, SIMS 분석에서 측정된 탄소 농도 및 NIAD를 사용하였으며, 이 샘플은 약 68%인 것으로 평가되었다.For the samples used to obtain FIGS. 7A and 7B, the NIAD of the carbon acceptor in p-type AlGaN (composition ratio of Al 27%) was 5 × 10 18 cm −3 . Thus, the electrical activation rate of the carbon acceptor in AlGaN was measured using the carbon concentration and NIAD measured in the SIMS analysis, as described above, and this sample was estimated to be about 68%.
본 발명자는 다른 몇 가지 샘플을 사용하여, 탄소 억셉터의 전기 활성화 비율도 평가했다. 도 8은, 탄소 억셉터의 전기 활성화 비율의 알루미늄 조성비에 대한 의존도를 나타내는 그래프이며, 전기 활성화 비율은 탄소 원자 밀도(SIMS 분석에 의한 측정)와 NIAD(C-V 측정에 의해 측정)를 이용하여 평가한바, 55-71% 근방인 것으로 보인다.The inventors also evaluated the electrical activation rate of the carbon acceptor using several other samples. 8 is a graph showing the dependence of the carbon acceptor's electrical activation ratio on the aluminum composition ratio, and the electrical activation ratio was evaluated using carbon atom density (measured by SIMS analysis) and NIAD (measured by CV measurement). However, it appears to be around 55-71%.
AlGaN(Al의 조성비 27 %)의 탄소 억셉터 전기 활성화 비율에 대한 3개의 실험 결과는 오차 막대로 표시되어있다. 본 발명의 실험 결과에 따르면, AlGaN(Al의 조성비 27 %)에서의 탄소 억셉터의 전기 활성화 비율은 55 ~ 71%의 범위 내에 있는 것을 알 수 있었다. 20%의 Al 조성비의 AlGaN에 대한 탄소 억셉터 전기 활성화 비율은, 도 8에 표시된 바와 같이, 27%의 Al 조성비의 AlGaN 대한 전기 활성화 비율보다 약간 크거나 혹은 거의 동일하다고 생각되는데, 이는 AlGaN층에서, 얕은 탄소 억셉터 준위가 존재하고 있음을 보여주고 있다.Three experimental results for the carbon acceptor electrical activation ratio of AlGaN (27% of Al composition) are indicated by error bars. According to the experimental results of the present invention, it was found that the electrical activation ratio of the carbon acceptor in AlGaN (composition ratio of Al 27%) is in the range of 55 to 71%. The carbon acceptor electrical activation ratio for AlGaN at 20% Al composition ratio is thought to be slightly greater than or nearly equal to the electrical activation ratio for AlGaN at 27% Al composition ratio, as shown in FIG. In other words, it shows that a shallow carbon acceptor level exists.
한편, 마그네슘 도핑된(Mg 도핑) p형 GaN층의 NIAD은 도 7의 (a)와 (b)을 얻기 위해 사용된 샘플에 대해 측정되었다. Mg 억셉터에 대한 NIAD는 4 ~ 5 × 1018cm-3이며, Mg 도핑된 p형 GaN의 Mg 농도는 SIMS 분석을 통해 5 × 1019cm-3인 것이 측정되었다. 따라서 GaN의 Mg 억셉터의 전기 활성화 비율은 약 8 ~ 10 %로 평가되었다. Mg 억셉터의 전기 활성화 비율은 3개의 샘플에서 요구되며, 도 8에 나타난 0% Al 조성비에서의 오류 막대로도 나타난다. 본 발명의 실험 결과에 따르면, Al 조성비가 20 ~ 27%인 AlGaN의 탄소 억셉터 전기 활성화 비율은 GaN의 Mg 억셉터의 전기 활성화 비율보다 크다.On the other hand, the NIAD of the magnesium doped (Mg doped) p-type GaN layer was measured for the samples used to obtain (a) and (b) of FIG. The NIAD for the Mg acceptor was 4-5 × 10 18 cm −3 , and the Mg concentration of Mg-doped p-type GaN was determined to be 5 × 10 19 cm −3 by SIMS analysis. Thus, the electrical activation rate of GaN's Mg acceptor was estimated to be about 8-10%. The electrical activation rate of the Mg acceptor is required in three samples and also appears as error bars at the 0% Al composition ratio shown in FIG. 8. According to the experimental results of the present invention, the ratio of the carbon acceptor electric activation of AlGaN having an Al composition ratio of 20 to 27% is greater than that of the Mg acceptor of GaN.
p형 전도성의 유래에 대해 더 깊은 검토를 하기 위해, 억셉터(NA -/NA)의 전기 활성화 비율은 다른 활성화 에너지 EA에 대한 절대 온도의 함수로 계산된다.to a deeper examine the origin of the p-type conductivity and acceptor-electrical activation ratio of (A N / A N) is calculated as a function of the absolute temperature for the different activation energy E A.
(NA -/NA) = exp {-EA / 2kT} (N A - / N A) = exp {-E A / 2kT}
여기서, k와 T는 각각 볼츠만 상수와 절대 온도이다.Where k and T are Boltzmann's constant and absolute temperature, respectively.
도 9는 실온에서의 탄소와 마그네슘 억셉터의 실험적인 전기 활성화 비율을 이용하여 Al0.27Ga0.73N의 탄소 억셉터와 GaN의 Mg 억셉터의 활성화 에너지를 평가한 그래프이다. 또한, 도 9에는, EA = 20meV에서 240meV까지 활성화 에너지에 대해 계산된 전기 활성화 비율이 실선으로 표시되어 있다.9 is a graph evaluating activation energies of Al 0.27 Ga 0.73 N carbon acceptors and GaN Mg acceptors using experimental electrical activation ratios of carbon and magnesium acceptors at room temperature. In addition, in FIG. 9, the electrical activation ratio calculated for the activation energy from E A = 20 meV to 240 meV is indicated by a solid line.
따라서, 본 발명자는 27%의 Al 조성비를 갖는 AlGaN의 탄소 억셉터에 대한 활성화 에너지는 22 ~ 30meV의 범위 내이며, GaN에서의 Mg 억셉터에 대한 활성화 에너지는 110 ~ 130meV의 범위 내에 있다고 평가할 수 있다. 탄소 억셉터의 활성화 에너지의 평가값은 상기의 PL 발광 스펙트럼에서 측정된 27%의 Al 조성비를 갖는 AlGaN에서의 탄소 억셉터 준위에 가까운 값이다.Therefore, the present inventors can evaluate that the activation energy for AlGaN carbon acceptors having an Al composition ratio of 27% is in the range of 22 to 30 meV, and the activation energy for Mg acceptors in GaN is in the range of 110 to 130 meV. have. The evaluation value of the activation energy of the carbon acceptor is a value close to the carbon acceptor level in AlGaN having an Al composition ratio of 27% measured in the PL emission spectrum.
표 1 및 표 2는, 전술한 에피택셜 성장 조건과 동일한 조건에 근거한 전술한 LP-MOVPE법에 따라, 사파이어 기판의 (0001)면에 성장시켜 제조된 p형 AlGaN 반도체층의 전기적 특성을 정리한 표이다. 이 표에서 알 수 있듯이, 알루미늄 함유량을 증가시킨 경우에도, 본 발명에 개시된 소정 조건 하에서 AlGaN 반도체층에 탄소를 도핑함으로써, 상기 AlGaN의 전기전도성은 유지됨을 알 수 있다. Table 1 and Table 2 summarize the electrical characteristics of the p-type AlGaN semiconductor layer prepared by growing on the (0001) surface of the sapphire substrate according to the above-described LP-MOVPE method based on the same conditions as the above-described epitaxial growth conditions. Table. As can be seen from this table, even when the aluminum content is increased, it can be seen that the electrical conductivity of the AlGaN is maintained by doping carbon into the AlGaN semiconductor layer under the predetermined conditions disclosed in the present invention.
표 1
실시예 Al 조성비(%) 층 두께(㎛) CBr4의 유량(μmol/min) 접촉저항 Rc(KΩ) 시트 저항 Rs(Ω/cm2)
A 10 5.5 2.6 2000~3500 2700000
B 10 2.3 5.1 1000~1800 930000
C 10 2.3 5.1 100~150 86000
D 25 0.4 1 150~200 (4.0~4.5)E+03
E 77 0.4 13 95~120 (5.0~7.3)E+03
Table 1
Example Al composition ratio (%) Layer thickness (㎛) Flow rate of CBr 4 (μmol / min) Contact resistance R c (KΩ) Sheet Resistance R s (Ω / cm 2 )
A 10 5.5 2.6 2000-3500 2700000
B 10 2.3 5.1 1000-1800 930000
C 10 2.3 5.1 100-150 86000
D 25 0.4 One 150-200 (4.0-4.5) E + 03
E 77 0.4 13 95-120 (5.0 ~ 7.3) E + 03
표 2
실시예 저항률(Ω·cm) 캐리어 이동도(cm2 / V·s) 시트 캐리어 밀도Ps (cm-2) 캐리어 밀도P (cm-3)
A 1500 0.14 1.6E+13 2.9E+16
B 210 0.19 3.5E+13 1.5E+17
C 20 0.097 7.5E+14 3.3E+18
D 0.1~0.19 12~16 +(1.0~1.2)E+14 +(2.6~2.9)E+18
E 2.2~2.9 0.30~0.36 +(2.0~3.7)E+14 +(6.0~9.3)E+18
TABLE 2
Example Resistivity (Ωcm) Carrier Mobility (cm 2 / V · s) Sheet Carrier Density P s (cm -2 ) Carrier Density P (cm -3 )
A 1500 0.14 1.6E + 13 2.9E + 16
B 210 0.19 3.5E + 13 1.5E + 17
C 20 0.097 7.5E + 14 3.3E + 18
D 0.1-0.19 12-16 + (1.0 ~ 1.2) E + 14 + (2.6 ~ 2.9) E + 18
E 2.2 to 2.9 0.30-0.36 + (2.0 ~ 3.7) E + 14 + (6.0-9.3) E + 18
이와 같이, 상술한 실시예들에 따르면, 탄소가 안정적으로 도핑되어 있으므로, 본 발명은 생산성을 향상시킨 탄소 도핑된 p형 질화갈륨계 반도체층의 제조 방법을 제공할 수 있다. 또한, 상기 제조 방법에 따르면, 알루미늄 함유율을 높인 p형 질화물계 반도체층을 제조할 수 있으므로, 본 발명의 제조 방법에 의해 제조된 p형 질화물계 반도체층은 높은 내압 특성 및 우수한 전기적 특성을 가지고, 심자외선 영역까지 투명한 광학 특성과 높은 전기전도특성을 갖는다. 따라서, 상기 제조 방법에 따르면, 대전류를 흘리는 전원 장치에서도 저항이 낮은 p형층이 실현 가능하기 때문에, 보다 고성능인 질화물계 전력 제어 장치를 구현할 수 있다.As described above, according to the above-described embodiments, since the carbon is stably doped, the present invention can provide a method of manufacturing a carbon-doped p-type gallium nitride based semiconductor layer having improved productivity. In addition, according to the above production method, since the p-type nitride semiconductor layer having a high aluminum content can be produced, the p-type nitride semiconductor layer produced by the production method of the present invention has high breakdown voltage characteristics and excellent electrical properties, It has transparent optical properties and high electrical conductivity up to the deep ultraviolet region. Therefore, according to the above manufacturing method, since a p-type layer having a low resistance can be realized even in a power supply device carrying a large current, a higher performance nitride-based power control device can be realized.
이어서, 본 발명의 또 다른 실시예에 따른, p형 불순물로서 탄소 도핑된 III-V족 화합물 반도체의 제조 방법을 설명한다. 본 실시예에 있어서, p형 불순물로서 탄소 도핑된 III-V족 질화물계 반도체층의 제조 방법은, III-V족 질화물계 반도체층이 AlxGa1-xN이며, MOCVD법을 이용하는 경우를 예로 들어 설명한다.Next, a method of manufacturing a carbon-doped group III-V compound semiconductor as a p-type impurity according to another embodiment of the present invention will be described. In this embodiment, the method of manufacturing a III-V nitride semiconductor layer carbon-doped as a p-type impurity is a case where the III-V nitride semiconductor layer is Al x Ga 1-x N, and the MOCVD method is used. An example will be described.
먼저, AlxGa1-xN을 에피택셜 성장시키기 위한 기판을 준비한다. 기판은 주면이 C면 또는 C면에 해당하는 결정면에 대해 ± 0.1 %의 범위의 표면을 가지는 결정면 기판이면 사파이어 기판뿐만 아니라 실리콘 기판, 탄화 규소 기판, 질화갈륨 기판, 질화 알루미늄 기판 등 다양한 기판을 사용할 수 있다. 본 명세서에서 개재층은 기판 위에 성장된 질화물계 반도체층을 말한다.First, a substrate for epitaxially growing Al x Ga 1-x N is prepared. If the main surface is a crystal surface substrate having a surface in the range of ± 0.1% with respect to the C surface or the crystal surface corresponding to the C surface, not only a sapphire substrate but also various substrates such as silicon substrate, silicon carbide substrate, gallium nitride substrate, and aluminum nitride substrate can be used. Can be. In this specification, the interlayer refers to a nitride based semiconductor layer grown on a substrate.
주면이 C면 또는 C면에 해당하는 결정면에 대해 ± 0.1 %의 범위의 표면을 갖는 기판이면, 증착을 이용하여 III족 원자와 V족 원자를 5-7 분자층씩 교대로 기판 상에 증착시킬 수 있게 된다.If the principal surface is a substrate having a surface in the range of ± 0.1% of the C plane or the crystal plane corresponding to the C plane, vapor deposition can be used to deposit group III atoms and group V atoms alternately on the substrate by 5-7 molecular layers. Will be.
AlxGa1-xN를 성장시키기 위해 사용되는 III족 원소의 소스로는, 예를 들어, 트리메틸갈륨(TMG), 트리메틸알루미늄 TMA; (CH3)3Al) 및 시클로펜타디에닐 마그네슘(Cp2Mg)을 이용하고, V족 원소의 소스로는, 예를 들어, 암모니아 (NH3)를 사용할 수 있다. 소스를 운반하는 캐리어 가스로는, 예를 들어, 수소(H2)를 사용할 수 있다. 그러나 이러한 재료는 예시이며, 이에 국한되지 않음은 물론이다.Sources of Group III elements used to grow Al x Ga 1-x N include, for example, trimethylgallium (TMG), trimethylaluminum TMA; A source of (CH3) 3Al) and cyclopentadienyl magnesium (Cp2Mg) is used, and a V-group element is, for example, can be used with ammonia (NH 3). Carrier gas carrying the source, for example, may be a hydrogen (H 2). However, such materials are illustrative and not limited to, of course.
탄소(C) 도핑의 소스로는, 예를 들어, 사브롬화탄소(CBr4)가 사용된다. 본 발명에서, 탄소 도핑 소스는 사브롬화탄소(CBr4)로 한정되는 것은 아니나, 아세틸렌은 반응성이 높고, 위험하기 때문에 탄소 소스 물질로 사용하는 것은 바람직하지 않다. 또한, 사염화탄소는 에칭 작용이 있어서, 유량을 늘리면 결정 성장 속도가 극단적으로 저하되어 막이 성장하지 않기 때문에, 탄소 소스 물질로 사용하는 것은 바람직하지 않다. 또한, 사브롬화탄소도 에칭 작용을 하기는 하지만, 염소에 비해 브롬의 원자 번호가 크기 때문에, 같은 할로겐이지만 화학 반응력이 상대적으로 약간 완만하여, 사브롬화탄소를 탄소 소스 물질로 한다.As a source of carbon (C) doping, for example, carbon tetrabromide (CBr 4 ) is used. In the present invention, the carbon doping source is not limited to carbon tetrabromide (CBr 4 ), but acetylene is not preferable to use as a carbon source material because it is highly reactive and dangerous. In addition, carbon tetrachloride has an etching effect, and when the flow rate is increased, the crystal growth rate is extremely lowered and the film does not grow. Therefore, it is not preferable to use it as a carbon source material. In addition, although carbon tetrabromide also has an etching effect, since the atomic number of bromine is larger than that of chlorine, the carbon tetrabromide is a carbon source material because it is the same halogen but has a relatively mild chemical reaction force.
MOVPE 법에 의한 성장 조건의 예는 다음과 같다.Examples of growth conditions by the MOVPE method are as follows.
성장시 설정 온도 : 1180℃ 이상 1370℃ 이하Set temperature during growth: 1180 ℃ or more 1370 ℃ or less
기판 표면 온도 : 1070℃ 이상 1250℃ 이하Substrate surface temperature: 1070 ℃ or more and 1250 ℃ or less
성장시 소스 가스 압력 : 4000 이상 20000Pa 이하Source gas pressure at growth: 4000 or more and 20000Pa or less
V족 원소 성분 / III족 원소의 성분 비율 : 5 이상 600 이하Component ratio of group V element / group III element: 5 or more and 600 or less
CBr4 공급량 : 7 × 10-8mol/min 이상 1.7 × 10-5mol/min 이하CBr 4 Supply: 7 × 10 -8 mol / min or more 1.7 × 10 -5 mol / min or less
Cp2Mg 공급량 : 1.3 × 10-7mol/min ~ 1.6 × 10-7mol/minCp2Mg supply: 1.3 × 10 -7 mol / min ~ 1.6 × 10 -7 mol / min
III족 원소의 소스 가스 (TMG 및 TMAl) 공급량 : 5 × 10-5mol/minSource gas (TMG and TMAl) supply of Group III elements: 5 × 10 -5 mol / min
또한, 상기 성장 조건은 일례이며, MOVPE법에 의해 AlxGa1-xN을 성장할 수 있다면, 이에 국한되지 않는다. 그러나, 암모니아 기체 분자의 질소 원자의 분리 비율은 온도 의존성이 높다. V족 원소의 소스 가스의 성분으로 암모니아 가스를 이용하는 경우, 암모니아 기체 분자의 질소 원자의 해리 비율은 p형 AlGaN 반도체층 성장 온도에 밀접한 관계가 있다. 따라서, 성장 시 설정 온도는 1180℃ 이상 1370℃ 이하의 범위이고, 기판 온도는 1070℃ 이상 1250℃ 이하 범위의 조건에서 III족 소스 가스 및 V족 소스 가스를 공급하는 것이 바람직하다.In addition, the growth conditions are one example, if Al x Ga 1-x N can be grown by the MOVPE method, it is not limited thereto. However, the separation ratio of nitrogen atoms in the ammonia gas molecule is highly temperature dependent. When ammonia gas is used as a component of the source gas of the group V element, the dissociation ratio of nitrogen atoms in the ammonia gas molecule is closely related to the growth temperature of the p-type AlGaN semiconductor layer. Therefore, it is preferable to supply the group III source gas and the group V source gas under conditions in which the set temperature during growth is in the range of 1180 ° C or more and 1370 ° C or less, and the substrate temperature is in the range of 1070 ° C or more and 1250 ° C or less.
또한, 성장 온도가 1180℃보다 낮아지면 탄소가 AlGaN 결정 중의 질소 원자의 사이트(site)에 들어가기 어렵게 된다. 따라서 성장 온도는 1180℃ 이상인 것이 바람직하다. 한편, 성장 온도가 1370℃보다 높은 경우에는, 갈륨 원자가 휘발해 버리므로, 성장 온도는 1370℃ 이하가 바람직하다.In addition, when the growth temperature is lower than 1180 ° C, carbon becomes difficult to enter the site of the nitrogen atom in the AlGaN crystal. Therefore, it is preferable that growth temperature is 1180 degreeC or more. On the other hand, when growth temperature is higher than 1370 degreeC, since a gallium atom volatilizes, 1370 degreeC or less of growth temperature is preferable.
또한, 증착되는 AlGaN 반도체층의 최적 성장 온도는 AlGaN 반도체층에 함유된 알루미늄 함량(mol%)에 따라 변화시키는 것이 바람직하다. 예를 들면, 알루미늄 함량이 수 내지 25 mol%의 AlGaN의 경우 1180℃ 이상 1230℃ 이하가 최적 성장 온도이다. 그러나, 성장되는 AlGaN에 함유된 알루미늄 함량(mol%)을 증가시킬 경우, 결정 품질과 도핑 특성의 관점에서 고온에서 성장시킬 필요가 있다. 최적의 성장 온도는 1180 ℃ 이상 1370 ℃ 이하로 설정하는 것이 바람직하다.In addition, the optimum growth temperature of the deposited AlGaN semiconductor layer is preferably changed according to the aluminum content (mol%) contained in the AlGaN semiconductor layer. For example, for AlGaN having an aluminum content of several to 25 mol%, the optimum growth temperature is 1180 ° C. or more and 1230 ° C. or less. However, when increasing the aluminum content (mol%) contained in the grown AlGaN, it is necessary to grow at high temperature in view of crystal quality and doping characteristics. The optimum growth temperature is preferably set to 1180 ° C or more and 1370 ° C or less.
V족 원소의 소스와 III족 원소의 소스 비율을 5 이상 600 이하의 범위로 하는 이유는, 이 범위에서 탄소가 AlGaN 결정 중의 질소 원자층의 사이트에 들어가기 쉽기 때문이다. V족 원소의 소스와 III족 원소의 소스 비율을 5 이상 600 이하의 범위로 함으로써, AlGaN 결정 중의 질소 원자층의 사이트에 탄소의 도핑량을 최대로 할 수 있게 된다. 또한, 성장 시 설정 온도가 1250 ℃ 이상인 경우 V족 원소의 소스와 III족 원소의 소스 비율은 5 이상이면, 충분히 탄소가 AlGaN결정 중의 질소 원자층의 사이트에 들어간다. 한편, 성장 시 설정 온도가 1250℃ 미만인 경우, V족 원소의 소스와 III족 원소의 소스 비율은 200 이상 600 이하가 바람직하다.The reason why the source ratio of the group V element and the group III element is in the range of 5 to 600 is because carbon tends to enter the site of the nitrogen atom layer in the AlGaN crystal in this range. By setting the source ratio of the source of the group V element and the group III element to 5 to 600, the amount of carbon doping can be maximized at the site of the nitrogen atom layer in the AlGaN crystal. In addition, when the set temperature at the time of growth is 1250 degreeC or more, if the source ratio of the source of a group V element and a group III element is 5 or more, carbon will fully enter the site of the nitrogen atom layer in an AlGaN crystal. On the other hand, when the set temperature at the time of growth is less than 1250 degreeC, the source ratio of the source of a group V element and a group III element is preferably 200 or more and 600 or less.
이하, 도 10 내지 도 12 및 도 15에 따라 본 발명의 실시예들에 따른 p형 불순물로서 탄소가 도핑된 III-V족 질화물계 반도체층의 제조 방법에 있어서, 구체적인 가스 공급 방법에 대해 설명한다.Hereinafter, a detailed gas supply method will be described in the method of manufacturing a III-V nitride-based semiconductor layer doped with carbon as a p-type impurity according to embodiments of the present invention according to FIGS. 10 to 12 and 15. .
III-V족 질화물계 반도체층을 MOVPE 법으로 성장시키는 경우, 소스 가스의 공급 방법, III족 원소의 소스(III-source) 가스와 V족 원소의 소스(V-source) 가스를 동시에 공급하는 동시 공급법과, III족 원소의 소스 가스와 V족 원소의 소스 가스을 교대로 공급하는 교대 공급법이있다.When the III-V nitride semiconductor layer is grown by the MOVPE method, the source gas supply method, the simultaneous supply of the III-source gas of the group III element and the V-source gas of the group V element at the same time There is a supply method and an alternate supply method for alternately supplying a source gas of a group III element and a source gas of a group V element.
도 10은 교대 공급법에 의해 AlxGa1-xN을 에피택셜 성장시키는 경우, 가스 공급 방법의 한 사이클에 대한 제1 예이다.FIG. 10 is a first example of one cycle of a gas supply method when epitaxially growing Al x Ga 1-x N by an alternate supply method.
도 10에 도시된 바와 같이, 반응기 내에 III족 원소인 Ga 및 Al 소스인 트리메틸 갈륨(TMG) 및 트리메틸 알루미늄(TMA; (CH3)3Al)이 T1 시간 동안 공급되고, Mg의 소스인 시클로펜타디에닐 마그네슘(Cp2Mg)이 T1 시간과 오버랩되며, 또한 T1 시간보다 짧은 시간인 t1 시간 동안 공급된다.As shown in FIG. 10, in the reactor, Group III elements Ga and Al sources trimethyl gallium (TMG) and trimethyl aluminum (TMA; (CH 3 ) 3 Al) were supplied for T 1 hour and cyclopenta, a source of Mg Dienyl magnesium (Cp 2 Mg) overlaps with T 1 hour and is also supplied for t 1 hour, which is shorter than T 1 hour.
T1시간 경과 후, 인터벌 시간 I1을 두고, V족 원소인 N소스로서 암모니아(NH3)가 T2 시간 동안 공급되고, 탄소 도핑 소스인 사브롬화탄소(CBr4)가 T2 시간과 오버랩되며, 또한 T2 시간보다 짧은 시간인 t2 시간 동안 공급된다.After the time T 1 elapsed, ammonia (NH 3 ) was supplied as an N source of Group V element for T 2 hours at interval time I 1 , and carbon tetrabromide (CBr 4 ) as a carbon doping source overlapped with T 2 time. It is also supplied for t 2 hours which is shorter than T 2 hours.
T2 기간 경과 후, 인터벌 시간 I2를 두고, 또한 III족 원소가 T1 시간, Mg 성분이 t1 시간 공급되고, 인터벌 시간 I1을 두고 V족 원소가 T2 시간, 탄소 도핑 성분이 t2 시간 공급되는 사이클이 여러번 반복된다. 그러면, AlxGa1-xN을 원하는 두께까지 성장시킬 수 있다.After the T 2 period has elapsed, the interval time I 2 is supplied, the Group III element is supplied for T 1 hour, the Mg component is supplied for t 1 hour, the Group V element is T 2 hours, and the carbon doped component is t for the interval time I 1 . The two- hour cycle is repeated several times. Then, Al x Ga 1-x N can be grown to a desired thickness.
인터벌 시간 I1 및 인터벌 시간 I2는 최대 2초로 한다. 인터벌 시간 I1 및 인터벌 시간 I2는 0 초라도 상관없다. 그러나 인터벌 시간 I1 및 인터벌 시간 I2이 없으면 III족 원소의 소스 가스와 V족 원소의 소스 가스가 혼합될 가능성이 생긴다. 따라서, 가능하면 인터벌 시간 I1 및 인터벌 시간 I2는 마련하는 것이 좋다. 한편, 인터벌 시간 I1 및 인터벌 시간 I2을 각각 2초 이상 설정하면 성장한 막의 계면의 결정 품질이 재증발 및 잔류 가스의 흡착 또는 포획 등에 따라 크게 저하될 수 있다. 따라서 인터벌 시간 I1 및 인터벌 시간 I2을 각각 2초 이상 설정하는 것은 바람직하지 않다.Interval time I 1 and interval time I 2 may be up to 2 seconds. Interval time I 1 and interval time I 2 may be 0 seconds. However, without interval time I 1 and interval time I 2 , there is a possibility that the source gas of the group III element and the source gas of the group V element are mixed. Therefore, whenever possible, interval time I 1 and interval time I 2 should be prepared. On the other hand, when the interval time I 1 and the interval time I 2 are set to each other for 2 seconds or more, the crystal quality of the interface of the grown film can be greatly reduced due to re-evaporation and adsorption or capture of residual gas. Therefore, it is not preferable to set the interval time I 1 and the interval time I 2 for 2 seconds or more, respectively.
상기 MOVPE법에 의한 성장 조건을 이용한 제1 예에 따른 가스 공급 방법으로 성장시킨 막은 안정적으로 p형 AlGaN반도체층이 될 수 있다. 그 이유는 C면 또는 C면에 해당하는 결정면에 대해 ±0.1 %의 범위의 표면을 갖는 기판을 이용한 경우, III족 원자층과 V족 원자층이 각각 5~7 분자층 정도씩 교대로 기판에 쌓여, 탄소가 확실히 V족 원자층에 들어가기 때문이다.The film grown by the gas supply method according to the first example using the growth conditions by the MOVPE method may be stably a p-type AlGaN semiconductor layer. The reason for this is that when a substrate having a surface in the range of ± 0.1% of the C plane or the crystal plane corresponding to the C plane is used, the group III atomic layer and the group V atomic layer are alternately applied to the substrate by 5 to 7 molecular layers, respectively. This is because carbon accumulates in the group V atomic layer.
탄소는 III족 원자층에 들어가면 n형 불순물이되고, V족 원자층에 들어가면 p형 불순물이 된다. 즉, 본 발명에 따른 성장 방법에 의하면, III족 원자층과 V족 원자층이 각각 5~7 분자층 정도씩 교대로 기판에 적층되며, 탄소가 V족 원자층에 들어간다. 따라서, 본 발명에 따른 성장 방법에 의하면, 안정적으로 p형 AlGaN 반도체층을 제조할 수 있다.Carbon becomes an n-type impurity when entering the group III atomic layer and becomes a p-type impurity when entering the group V atomic layer. That is, according to the growth method according to the present invention, the group III atomic layer and the group V atomic layer are alternately laminated on the substrate by about 5 to 7 molecular layers, respectively, and carbon enters the group V atomic layer. Therefore, according to the growth method according to the present invention, it is possible to stably produce a p-type AlGaN semiconductor layer.
도 11은 교대 공급법에 의해 AlxGa1-xN을 에피택셜 성장시키는 경우, 가스 공급 방법의 한 사이클에 대한 제2 예이다.FIG. 11 is a second example of one cycle of the gas supply method when epitaxially growing Al x Ga 1-x N by an alternate supply method.
상기 제1 예에서는 시클로펜타디에닐 마그네슘(Cp2Mg)은 T1 시간과 오버랩되며, 또한 T1 기간보다 짧은 시간인 t1 시간에만 공급된다. 그러나, 제2 예에서는 시클로펜타디에닐 마그네슘(Cp2Mg)이 탄소 도핑소스인 사브롬화탄소(CBr4)가 공급되는 t2 시간과 같은 시간 동안 공급된다. 제2 예의 다른 공정은 제1 예와 거의 동일하다.In the first example, cyclopentadienyl magnesium (Cp 2 Mg) overlaps with T 1 hour and is supplied only at t 1 hour, which is shorter than the T 1 period. However, in the second example, cyclopentadienyl magnesium (Cp 2 Mg) is supplied for a time equal to t 2 hours at which carbon tetrabromide (CBr 4 ), which is a carbon doping source, is supplied. The other process of the second example is almost the same as that of the first example.
도 12는 교대 공급법에 의해 AlxGa1-xN을 에피택셜 성장시키는 경우, 가스 공급 방법의 한 사이클에 대한 제3 예이다.12 is a third example of one cycle of the gas supply method when epitaxially growing Al x Ga 1-x N by an alternate supply method.
제3 예는 상기 제1 예 또는 제2 예와 다르며, 다른 점은 시클로펜타디에닐 마그네슘(Cp2Mg)을 반응기에 항상 흘리는 점이다. 제3 예의 다른 공정은 제1 예 또는 제2 예와 거의 동일하다.The third example is different from the first example or the second example, except that cyclopentadienyl magnesium (Cp 2 Mg) is always flowed into the reactor. Other processes of the third example are almost the same as the first example or the second example.
Mg의 소스 가스는 계속 반응기에 계속 공급되고 있어도, AlGaN 반도체층을 성장하는 과정에서 특별히 문제되지 않는다. 따라서, Mg의 소스 가스 공급을 계속하는 경우, Mg 소스 가스의 공급 타이밍을 세부적으로 제어할 필요가 없어서, 제조 과정을 간편하게 할 수 있다.Even if the source gas of Mg continues to be supplied to the reactor, there is no particular problem in the process of growing the AlGaN semiconductor layer. Therefore, when continuing supplying the source gas of Mg, it is not necessary to control the supply timing of Mg source gas in detail, and can simplify a manufacturing process.
도 13은 제1 예의 소스 가스의 공급 방법으로 아래의 성장 조건에서 AlxGa1-xN 반도체(x = 0.55)를 성장시킨 층에 대해 C-V 측정법 (이온화 불순물 농도 측정)에 의한 AlGaN 반도체층의 깊이 방향에 따른 홀 농도이다.FIG. 13 shows an AlGaN semiconductor layer obtained by CV measurement (ionization impurity concentration measurement) for a layer in which an Al x Ga 1-x N semiconductor (x = 0.55) was grown under the following growth conditions by the source gas supply method of the first example; Hole concentration along the depth direction.
성장시 설정 온도 : 1180℃ 이상 1230℃ 이하Set temperature during growth: 1180 ℃ or more 1230 ℃ or less
기판 표면 온도 : 1070℃ 이상 1110℃ 이하Substrate surface temperature: 1070 ℃ or more and 1110 ℃ or less
성장시 소스 가스 압력 : 4000 이상 20000Pa 이하Source gas pressure at growth: 4000 or more and 20000Pa or less
V족 원소 소스 / III족 원소의 소스 비율 : 5 이상 600 이하Source ratio of group V element source / group III element: 5 or more and 600 or less
CBr4 공급량 : 7 × 10-8mol/min 이상 1.7 × 10-5mol/min 이하CBr 4 Supply: 7 × 10 -8 mol / min or more 1.7 × 10 -5 mol / min or less
Cp2Mg 공급량 : 1.3 × 10-7mol/min ~ 1.6 × 10-7mol/minCp 2 Mg Supply: 1.3 × 10 -7 mol / min ~ 1.6 × 10 -7 mol / min
III족 원소의 소스 가스(TMG 및 TMAl) 공급량 : 5 × 10-5mol/minSource gas (TMG and TMAl) supply of Group III elements: 5 × 10 -5 mol / min
또한, 이온화 불순물 농도는 첨가한 불순물 중 캐리어를 발생시키고, 자체가 마이너스 또는 플러스 이온화된 것을 나타낸다. 이온화 불순물은 자유 캐리어가 아닌, 결정에 고정된 이온이다. 따라서 C-V 측정법은 결정의 내부 전계의 영향을 받지 않고 정확한 도핑의 모습을 분석하는 것을 가능하게 한다. 이번 측정에서 이용한 장치는 Nanometrics 사의 ECV-Pro이다.In addition, the ionization impurity concentration generates carriers in the added impurity, and indicates that the ionization itself is negative or positive ionized. Ionization impurities are ions immobilized in the crystal, not free carriers. Thus, C-V measurements make it possible to analyze the exact appearance of doping without being affected by the internal electric field of the crystal. The device used in this measurement is ECV-Pro from Nanometrics.
도 13에 따르면, AlxGa1-xN 반도체층의 표면에서 0.1㎛의 두께까지 p형을 나타내고 있다. 그러나 0.1㎛ 이상의 깊이에서는 n형과 p형이 반전되고 불안정한 부분이 존재한다.According to FIG. 13, p type | mold is shown to the thickness of 0.1 micrometer on the surface of an Al x Ga 1-x N semiconductor layer. However, at depths of 0.1 µm or more, n-type and p-type are inverted and an unstable portion exists.
한편, 도 14는 성장 조건이 동일한 제2 예의 소스 가스의 공급 방법으로 AlxGa1-xN 반도체(x = 0.55)를 성장시킨 층에 대해 C-V 측정법(이온화 불순물 농도 측정)에 의한 AlGaN 반도체층의 깊이 방향에 따른 홀 농도이다. 이에 따르면, 층의 깊이로 1.3㎛까지 안정적으로 p형을 나타내고 있다. 이것은 V족 원소의 소스 가스을 공급하면서 Mg의 소스 가스 및 탄소 소스 가스를 동시에 흘린 것에 의해, V족 원자층에 탄소가 적극적으로 들어있는 것을 보여준다.On the other hand, Fig. 14 shows an AlGaN semiconductor layer by CV measurement (ionization impurity concentration measurement) for a layer in which an Al x Ga 1-x N semiconductor (x = 0.55) was grown by the source gas supply method of the second example with the same growth conditions. Is the hole concentration along the depth direction. According to this, the p-type was stably exhibited up to 1.3 micrometers in depth of a layer. This shows that carbon is actively contained in the group V atomic layer by simultaneously flowing the source gas of Mg and the carbon source gas while supplying the source gas of the group V element.
제2 예는 모두 탄소 소스 가스를 공급하면서 Mg의 소스 가스를 함께 공급하는 것이다. 도 14와 도 15의 측정 결과와 같이, 성장 온도 등이 동일한 조건에서 제1 예의 소스 가스의 공급 방법과 제2 예의 소스 가스의 공급 방법으로 각각 AlGaN 반도체층을 성장시킨 경우, 제2 예의 소스 가스의 공급 방법으로 성장시킨 층이 더 안정적으로 홀 농도가 높게 나타나는 실험 결과를 얻을 수 있다.The second example is to supply the source gas of Mg together while supplying the carbon source gas. As shown in the measurement results in FIGS. 14 and 15, when the AlGaN semiconductor layer is grown by the method of supplying the source gas of the first example and the method of supplying the source gas of the second example, respectively, under the same conditions as the growth temperature, the source gas of the second example Experimental results show that the layer grown by the feeding method has more stable hole concentration.
제2 예의 방법에 의할 때 제1 예의 방법을 이용할 때보다 탄소가 V족 원자층에 들어가기 쉬워지는 이유는 다음과 같다. 제2 예에 따르면, 시클로펜타디에닐 마그네슘(Cp2Mg)을 V족 원소의 소스 가스를 공급함과 동시에 공급하게 되어, Mg이 V족 원자층에 도핑된다. Mg은 AlGaN 결정에 결함을 도입하는 효과가 있는 것으로 추측된다. 이 때문에, V족 원자층에 탄소 농도보다 훨씬 낮은 농도에서 Mg을 도핑하면, Mg이 AlGaN 결정의 헤테로 계면에 손상을 주지 않고, 탄소가 V족 원자층에 들어가는 것을 허용하는 정도로 AlGaN 결정에 결함을 늘리는 것이 가능하기 때문이다.The reason why carbon is more likely to enter the group V atomic layer than when using the method of the first example when using the method of the second example is as follows. According to the second example, cyclopentadienyl magnesium (Cp 2 Mg) is supplied at the same time as the source gas of the Group V element, so that Mg is doped into the Group V atomic layer. It is estimated that Mg has the effect of introducing a defect into an AlGaN crystal. For this reason, doping Mg at a concentration much lower than the carbon concentration in the Group V atomic layer results in defects in the AlGaN crystal to the extent that Mg does not damage the hetero interface of the AlGaN crystal and allows carbon to enter the Group V atomic layer. Because it is possible to increase.
따라서, 제3 예에 의한 가스 공급 방법도 제2 예와 같이 Mg 소스와 탄소 성분이 공급되기 때문에, 제2 예와 같은 효과를 나타낸다.Therefore, the gas supply method according to the third example also has the same effect as the second example because the Mg source and the carbon component are supplied as in the second example.
도 15는 동시 공급법에 의해 AlxGa1 -xN을 에피택셜 성장시킬 경우 가스 공급 방법의 한 사이클에 대한 제4 예다.FIG. 15 is a fourth example of one cycle of the gas supply method when epitaxially growing Al x Ga 1- x N by the simultaneous supply method.
제4 예에서는 반응기 내에 III족 원소인 Ga과 Al의 소스인 트리메틸갈륨(TMG) 및 트리메틸알루미늄(TMA; (CH3)3Al)이 공급되는 시간인 T1 시간 동안, V족 원소인 N의 소스인 암모니아 NH3)도 동시에 같은 시간(T2 시간)동안 공급된다. 또한, Mg의 원료인 시클로펜타디에닐 마그네슘(Cp2Mg)과 탄소 도핑의 원료인 사브롬화탄소(CBr4)는 T1 시간 및 T2 시간과 오버랩되며, 또한 T1 시간 및 T2 시간보다 짧은 시간인 t2 시간 동안 공급된다. 그러면, AlxGa1 -xN은 희망하는 두께까지 성장된다.In the fourth example, the source of the group V element N during the time T 1 , which is the time when trimethylgallium (TMG) and trimethylaluminum (TMA; (CH 3 ) 3 Al) sources of group III elements Ga and Al are supplied into the reactor Phosphorous ammonia NH 3 ) is also supplied for the same time (T 2 hours). Further, the starting material cyclopentadienyl magnesium (Cp 2 Mg) as the raw material carbon tetrabromide (CBr 4) for carbon doping of Mg is overlapping with T 1 time, and T 2 hours, more also T 1 time, and T 2 sigan It is supplied for a short time t 2 hours. Then, Al x Ga 1- x N is grown to the desired thickness.
제4 예에서는 교대 공급의 경우와 달리 V족 원소 소스 / III족 원소의 소스 비율은 5 이상 600 이하의 범위에서 최대한 작게 하는 것이 좋다. V족 원자를 가능한 한 고갈시키면서 공급하면, 탄소가 V족 원자층으로 들어가기 쉬워진다.In the fourth example, unlike the alternate supply, the source ratio of the group V element source / group III element is preferably as small as possible in the range of 5 or more and 600 or less. When the group V atoms are supplied as depleted as possible, carbon tends to enter the group V atomic layer.
이상과 같이, 여러 가스 공급 방법을 설명했지만, 교대 공급법, 동시 공급법의 두 방법 모두 C면 또는 C면에 해당하는 결정면에 대해 ± 0.1 %의 범위의 표면을 갖는 기판를 이용하면 III족 원자층과 V족 원자층이 각각 5분자층 정도씩 교대로 기판에 쌓여, 탄소가 V족 원자층으로 들어간다. 따라서 C면 또는 C면에 해당하는 결정면에 대해 ±0.1 %의 범위의 표면을 갖는 기판를 이용하면, 교대 공급법 및 동시 공급법 중 어느 방식으로도, p형 AlGaN 반도체층을 안정적으로 성장시키는 것이 가능하다.As described above, various gas supply methods have been described. However, both of the alternate supply method and the simultaneous supply method use a group III atomic layer when a substrate having a surface in the range of ± 0.1% of the crystal plane corresponding to the C plane or the C plane is used. The and group V atomic layers are alternately stacked on the substrate by about 5 molecular layers, respectively, and carbon enters the group V atomic layer. Therefore, by using a substrate having a surface in the range of ± 0.1% with respect to the C plane or the C plane, it is possible to stably grow the p-type AlGaN semiconductor layer by either the alternate supply method or the simultaneous supply method. Do.
그러나, 앞서 언급했듯이, 동시 공급법은 V족 원자를 최대한 고갈시키면서 공급할 필요가 있다. 따라서, 동시 공급법은 V족 원소 소스 / III족 원소 소스 비율이 제한적이다. 한편, 교대 공급법은 V족 원소 소스 / III족 원소 소스의 비율 제한을 크게 완화할 수 있게 될 뿐만 아니라, 동시 공급법보다 더 적극적으로 V족 원자층에 탄소를 넣는 것을 가능하게 하는 성장 방법이다.However, as mentioned above, the co-feeding method needs to supply the Group V atoms as much as possible. Therefore, the simultaneous supply method has a limited group V element source / Group III element source ratio. The alternating feeding method, on the other hand, is a growth method that not only can alleviate the ratio limitation of the group V element source / group III element source significantly, but also allow carbon to be added to the group V atomic layer more actively than the simultaneous supply method. .
도 16은 탄소가 도핑된 AlxGa1 - xN (x = 0.1)에서 탄소 소스 가스인 CBr4의 플로우 레이트(flow rate)와 유효 이온화 억셉터(acceptor) 밀도와의 관계를 나타낸다. 도 16에 따르면, CBr4의 유량(flow rate)이 적어도 12μmol/min를 초과하면, 유효 이온화 억셉터(acceptor) 밀도가 1016cm-3에 도달 후, CBr4의 유량이 증가함에 따라 유효 이온화 억셉터(acceptor) 밀도는 비례하여 증가하는 것을 알 수 있다.FIG. 16 shows the relationship between the flow rate of CBr 4 , a carbon source gas, and the effective ionization acceptor density at carbon doped Al x Ga 1 - x N (x = 0.1). According to FIG. 16, if the flow rate of CBr 4 exceeds at least 12 μmol / min, after the effective ionization acceptor density reaches 10 16 cm −3 , the effective ionization as the flow rate of CBr 4 increases It can be seen that the acceptor density increases in proportion.
도 17은 탄소가 도핑된 AlxGa1 - xN(x = 0.55)에서 탄소 소스 가스인 CBr4의 유량과 유효 이온화 억셉터(acceptor) 밀도와의 관계를 나타낸다. 도 17의 실험 결과는, 5개의 기판을 준비하고, 5개의 기판 상에 층마다 CBr4의 유량을 바꾸어 여러 층을 성장시켜, 각 기판의 각 층마다 유효 이온화 억셉터(acceptor) 밀도를 측정한 결과이다. ○, ●, ▲, △, □ 표시는 기판을 특정하는 것이며, 같은 표시의 것은 동일한 기판 상에 성장된 CBr4의 유량이 다른 층이다. 따라서, 도 17에서 같은 표시의 플롯은 CBr4의 유량 이외에는 같은 성장 조건(기판 주면의 오프셋 각도, 기판 표면 온도, 성장 시 소스 가스 압력 등)으로 성장시킨 층의 유효 이온화 억셉터(acceptor) 밀도를 보여준다. 따라서, CBr4의 유량과 유효 이온화 억셉터(acceptor) 밀도의 관계가 표시된다.FIG. 17 shows the relationship between the flow rate of CBr 4 , the carbon source gas, and the effective ionization acceptor density at carbon - doped Al x Ga 1 - x N (x = 0.55). 17 shows that five substrates were prepared, various layers were grown by varying the flow rate of CBr 4 on each of the five substrates, and the effective ionization acceptor density was measured for each layer of each substrate. The result is. ○, ●, ▲, △, □ display is to a certain substrate, it is the same display is the flow rate of CBr 4 grown on the same substrate as other layer. Therefore, the plot of the same mark in FIG. 17 shows the effective ionization acceptor density of the layer grown under the same growth conditions (substrate offset surface, substrate surface temperature, source gas pressure during growth, etc.) except for the flow rate of CBr 4 . Shows. Therefore, the relationship between the flow rate of CBr 4 and the effective ionization acceptor density is indicated.
도 17에 따르면, 어느 성장 조건에서도 CBr4의 유량이 증가하면, 유효 이온화 억셉터(acceptor) 밀도는 비례하여 거의 증가하는 관계가 있음을 알 수 있고, CBr4의 유량을 제어하면 유효 이온화 억셉터(acceptor) 밀도를 제어할 수 있다. 또한, 도 17에서도 AlxGa1 - xN(x = 0.1)의 경우처럼, CBr4의 플로우 레이트가 적어도 11μmol/min을 초과하면 유효 이온화 억셉터(acceptor) 밀도는 1016cm-3에 도달한 후, CBr4의 유량이 증가하면 유효 이온화 억셉터(acceptor) 밀도는 비례하여 증가하는 것을 알 수 있다.According to FIG. 17, it can be seen that when the flow rate of CBr 4 increases under any growth conditions, the effective ionization acceptor density increases in proportion to each other. When the flow rate of CBr 4 is controlled, the effective ionization acceptor is controlled. You can control the density of the acceptor. Also in FIG. 17, as in the case of Al x Ga 1 - x N (x = 0.1), when the flow rate of CBr 4 exceeds at least 11 μmol / min, the effective ionization acceptor density reaches 10 16 cm −3 . Afterwards, it can be seen that as the flow rate of CBr 4 increases, the effective ionization acceptor density increases proportionally.
이상의 실험에 따르면, AlxGa1 -xN의 Al 조성 비율이 높아져도, CBr4의 유량을 조절함으로써 유효 이온화 억셉터(acceptor)의 밀도를 조절할 수 있음을 알 수 있다.According to the above experiment, it can be seen that even if the Al composition ratio of Al x Ga 1- x N is increased, the density of the effective ionization acceptor can be controlled by adjusting the flow rate of CBr 4 .
도 18은 본 발명에 따른 탄소가 도핑된 AlxGa1 - xN(x = 0.27)와 Mg이 도핑된 AlxGa1-xN (x = 0.27) 각각의 I-V 특성을 측정한 결과이다.FIG. 18 is a result of measuring IV characteristics of each of carbon-doped Al x Ga 1 - x N (x = 0.27) and Mg-doped Al x Ga 1 - x N (x = 0.27) according to the present invention.
도 18에 따르면, Mg이 도핑된 AlxGa1 - xN(x = 0.27)에서는 약 9V의 바이어스 전압(Bais Voltage)을 인가하여도 1mA 정도의 전류(Injection Current)밖에 흐르지 않는 반면, 본 발명에 따른 탄소가 도핑된 AlxGa1 - xN (x = 0.27)은 약 9V의 바이어스 전압을 인가하면, 20mA의 전류가 흐르는 것을 알 수 있다.According to FIG. 18, in the case of M x doped Al x Ga 1 - x N (x = 0.27), even though a bias voltage of about 9 V is applied, only an injection current of about 1 mA flows. According to the doped Al x Ga 1 - x N (x = 0.27) is applied to a bias voltage of about 9V, it can be seen that a current of 20mA flows.
이러한 결과는, 본 발명에 따른 탄소 도핑된 AlxGa1 - xN(x = 0.27)는 Mg이 도핑된 AlxGa1 - xN(x = 0.27)에 비해 매우 낮은 저항을 갖는 것을 보여준다. 따라서, 본 발명에 따른 탄소 도핑된 AlxGa1 - xN(x = 0.27)을 p형 클래드층으로 이용한 경우, 콘택트층을 통하지 않고 직접 p형 전극을 적층할 수 있다.These results show that the carbon doped Al x Ga 1 - x N (x = 0.27) according to the present invention has a very low resistance compared to the M x doped Al x Ga 1 - x N (x = 0.27). Therefore, when carbon-doped Al x Ga 1 - x N (x = 0.27) according to the present invention is used as the p-type cladding layer, the p-type electrode can be directly stacked without passing through the contact layer.
도 19는 본 발명에 따른 탄소가 도핑된 AlxGa1 - xN에 대해, Al 조성비와 탄소 소스의 유량과 층 두께를 바꾸어 성장시킨 경우의 접촉 저항, 시트 저항, 저항률, 캐리어 이동도, 시트 캐리어 밀도, 캐리어 밀도의 측정 결과이다.FIG. 19 shows contact resistance, sheet resistance, resistivity, carrier mobility, sheet when carbons doped Al x Ga 1 - x N are grown by varying the Al composition ratio, flow rate and layer thickness of the carbon source. It is a measurement result of carrier density and carrier density.
본 발명의 제조 방법에 따르면, 탄소가 도핑된 AlxGa1 - xN 알루미늄의 조성을 약 70%까지 높이면서 캐리어 밀도는 (6.0 ~ 9.3)E +18까지 실현할 수 있었다.According to the manufacturing method of the present invention, the carrier density can be realized up to (6.0 to 9.3) E +18 while increasing the composition of carbon-doped Al x Ga 1 - x N aluminum to about 70%.
도 20은 본 발명에 따른 탄소 도핑된 AlxGa1-xN을 이용한 질화물계 반도체 발광 소자의 층 구조의 일례를 나타내는 개념도이다.20 is a conceptual diagram illustrating an example of a layer structure of a nitride based semiconductor light emitting device using carbon doped Al x Ga 1-x N according to the present invention.
따라서, 도 20의 층 이외에, 예를 들면, 발광층(4)과 p형 질화물계 반도체층(5) 사이에 p형 질화물계 반도체층(5)에 도핑된 불순물이 발광층(4)으로 확산하지 않도록 하는 캡 층 등이 적절히 형성되어도 상관없다.Therefore, in addition to the layer of FIG. 20, for example, impurities doped in the p-type nitride semiconductor layer 5 between the light-emitting layer 4 and the p-type nitride-based semiconductor layer 5 do not diffuse into the light-emitting layer 4. The cap layer to be formed may be appropriately formed.
부호 1은 기판이다. 기판은 주면이 C면 또는 C면에 해당하는 결정면에 대해 ± 0.1 %의 범위의 표면을 갖는 결정면 기판이다. 주면이 C면 또는 C면에 해당하는 결정면에 대해 ± 0.1 %의 범위의 표면을 갖는 결정면 기판이면 사파이어 기판, 실리콘 기판, 탄화 규소 기판, 질화갈륨 기판, 질화알루미늄 기판 등 다양한 기판을 사용할 수 있다. Reference numeral 1 is a substrate. The substrate is a crystalline surface substrate whose main surface has a surface in the range of ± 0.1% with respect to the C surface or the crystal surface corresponding to the C surface. If the main surface is a crystal surface substrate having a surface in the range of ± 0.1% of the crystal surface corresponding to the C surface or C surface, various substrates such as a sapphire substrate, a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and an aluminum nitride substrate may be used.
부호 2는 버퍼층이다. 버퍼층은 기판의 격자 정수와 기판 상에 적층되는 질화물계 반도체층의 격자 정수의 차이에 의해 결정에 결함이 발생하는 것을 방지하는 층이다. 버퍼층으로는, 기판(1)과 n형 질화물계 반도체층(3)과 중간 격자 정수를 갖는 AlN과 AlGaN 등을 이용하여 n형 질화물계 반도체층(3)의 결함을 감소시키는 것이 가능하다. 버퍼층은 AlN과 AlGaN의 초격자 구조일 수 있다.2 is a buffer layer. The buffer layer is a layer which prevents defects from occurring due to a difference between the lattice constant of the substrate and the lattice constant of the nitride semiconductor layer laminated on the substrate. As the buffer layer, it is possible to reduce defects in the n-type nitride based semiconductor layer 3 using AlN, AlGaN, or the like having the substrate 1, the n-type nitride based semiconductor layer 3, and an intermediate lattice constant. The buffer layer may be a superlattice structure of AlN and AlGaN.
부호 3은 n형 질화물계 반도체층이다. n형 질화물계 반도체층은 AlGaN, GaN, GaInN 등으로 형성할 수 있다. n형 질화물계 반도체층은 도시되어 있지 않지만, n형 전극이 적층되는 n형 콘택트층과 발광층(4)쪽에 배치되는 n형 클래드층과의 적층으로 구성되어도 된다. n형 콘택트층은 n형 클래드층을 겸할 수도 있다. n형 불순물로서는, 예를 들어 Si과 Ge 등이 바람직하다. Reference numeral 3 is an n-type nitride semiconductor layer. The n-type nitride semiconductor layer may be formed of AlGaN, GaN, GaInN, or the like. Although not shown, the n-type nitride semiconductor layer may be formed by laminating an n-type contact layer on which n-type electrodes are stacked and an n-type cladding layer disposed on the light emitting layer 4 side. The n-type contact layer may also serve as an n-type cladding layer. As n-type impurity, Si, Ge, etc. are preferable, for example.
또한, n형 질화물계 반도체층(3) 구성으로는, n형 전극이 적층되는 n형 콘택트층과 발광층(4) 쪽에 배치되는 n형 클래드층이 적층되는 예를 들었지만, 이것에 제한되지 않는다. 예를 들어, n형 질화물계 반도체층(3)에서 발광층(4)쪽에 배치되는 n형 질화물계 반도체층은 n형 클래드층처럼 발광층(4)의 밴드 갭보다 큰 밴드 갭을 갖는 n형 질화물계 반도체가 아닌, 발광층(4)과 같은 밴드 갭을 갖는 n형 질화물계 반도체로 구성할 수 있다.Moreover, although the n-type contact layer in which n-type electrodes are laminated | stacked, and the n-type cladding layer arrange | positioned at the light emitting layer 4 side by way of the n-type nitride-type semiconductor layer 3 structure were mentioned, it is not limited to this. For example, in the n-type nitride-based semiconductor layer 3, the n-type nitride-based semiconductor layer disposed on the light emitting layer 4 side has an n-type nitride system having a band gap larger than the band gap of the light emitting layer 4 like the n-type cladding layer. Instead of the semiconductor, the n-type nitride semiconductor having the same band gap as the light emitting layer 4 can be formed.
부호 4는 발광층이다. 발광층(4)은 GaN, InGaN, AlGaN, 또는 AlGaInN 등을 포함하여 단일 양자 우물(SQW) 또는 우물층과 장벽층이 반복 적층된 다중 양자 우물(MQW) 구조일 수 있다. 발광하는 빛이 우물층의 Al 조성이 높을수록 단파장쪽으로 이동되고, In이 증가하면 장파장쪽으로 이동되는 것을 이용하여 발광 파장을 조절할 수 있다. 따라서, 발광층(4)의 조성은 질화물계 반도체 발광 소자에 의해 발광시키는 발광 파장에 따라 적절히 선택된다.4 is a light emitting layer. The emission layer 4 may be a single quantum well (SQW) including GaN, InGaN, AlGaN, or AlGaInN, or a multi-quantum well (MQW) structure in which a well layer and a barrier layer are repeatedly stacked. The emitted light is moved toward the shorter wavelength as the Al composition of the well layer increases, and when In increases, the emission wavelength can be controlled by moving to the longer wavelength. Therefore, the composition of the light emitting layer 4 is suitably selected according to the light emission wavelength made to emit light by a nitride type semiconductor light emitting element.
부호 5는 p형 질화물계 반도체층이다. p형 질화물계 반도체층은 본 발명에 따른 탄소가 도핑된 AlxGa1 -xN으로 구성한다. 본 발명의 제조 방법에 의하면, AlxGa1 -xN의 알루미늄 조성비는 77%까지 증가될 수 있다. 알루미늄 조성비가 77%까지 높아지면, 발광층(4)의 밴드갭에 비해 넓은 밴드 갭을 가진 p형 클래드층을 쉽게 실현할 수 있다. p형 질화물계 반도체층(5)의 두께는 0.1㎛ 이상 3㎛ 이하인 것이 바람직하다. Reference numeral 5 is a p-type nitride semiconductor layer. The p-type nitride-based semiconductor layer is composed of Al x Ga 1 -x N doped with carbon according to the present invention. According to the manufacturing method of the present invention, the aluminum composition ratio of Al x Ga 1- x N may be increased by 77%. When the aluminum composition ratio is increased to 77%, the p-type cladding layer having a wider band gap than the band gap of the light emitting layer 4 can be easily realized. The thickness of the p-type nitride semiconductor layer 5 is preferably 0.1 µm or more and 3 µm or less.
또한, p형 질화물계 반도체층(5)을 본 발명에 따른 탄소가 도핑된 AlxGa1 -xN로 구성하면, Mg을 도핑하여 p형을 갖는 GaN 또는 AlGaN으로 이루어진 p형 질화물계 반도체에 비해 I-V 특성이 뛰어나다. 따라서, 본 발명에 따른 탄소 도핑된 AlxGa1 -xN을 p형 질화물계 반도체층(5)에 이용하는 경우, p형 질화물계 반도체층(5)과 p형 전극 사이에 적절하게 전류 확산층 또는 콘택트층을 마련해도 좋지만, p형 질화물계 반도체층(5) 상에 전류 확산층 또는 콘택트층을 마련하지 않고 직접 p형 전극을 형성할 수 있다. 탄소 도핑된 AlxGa1 - xN로 이루어진 p형 질화물계 반도체층(5)은 유효 이온화 억셉터(acceptor) 밀도를 조절함으로써 쉽게 p형 전극과 쇼트키(schottky) 접촉을 실현하기 위한 것이다.Further, when the p-type nitride semiconductor layer 5 is composed of carbon-doped Al x Ga 1- x N according to the present invention, the p-type nitride semiconductor layer 5 is composed of GaN or AlGaN having a p-type by doping Mg. Excellent IV characteristics. Therefore, when the carbon-doped Al x Ga 1- x N according to the present invention is used for the p-type nitride based semiconductor layer 5, the current diffusion layer or the p-type electrode is appropriately provided between the p-type nitride based semiconductor layer 5 and the p-type electrode. Although a contact layer may be provided, the p-type electrode can be directly formed on the p-type nitride based semiconductor layer 5 without providing a current diffusion layer or a contact layer. The p-type nitride semiconductor layer 5 made of carbon-doped Al x Ga 1 - x N is intended to easily realize schottky contact with the p-type electrode by adjusting the effective ionization acceptor density.
부호 6은 p형 전극이다. p형 전극(6)은, 예를 들어, Al, Pt, Ru, Ag, Ti, Au, Ni 중 어느 하나를 포함하는 단층막, 2층 이상으로 구성된 다층막 또는 합금으로 구성할 수 있다.6 is a p-type electrode. The p-type electrode 6 can be composed of, for example, a single layer film containing any one of Al, Pt, Ru, Ag, Ti, Au, and Ni, a multilayer film or an alloy composed of two or more layers.
부호 7은 n형 전극이다. n형 전극(7)은 p형 질화물계 반도체층(5), 발광층(4) 및 n형 질화물계 반도체층의 일부를 에칭하여 n형 질화물계 반도체층이 노출된 노출면에 형성된다. n형 전극(7)은 Cr, Ti, Au, Al, Ni 중 어느 하나로 구성된 2층 이상의 다층막으로 구성할 수 있다. Reference numeral 7 is an n-type electrode. The n-type electrode 7 is formed on the exposed surface where the n-type nitride semiconductor layer is exposed by etching a portion of the p-type nitride semiconductor layer 5, the light emitting layer 4, and the n-type nitride semiconductor layer. The n-type electrode 7 can be composed of two or more multilayer films composed of any one of Cr, Ti, Au, Al, and Ni.
도 20은 질화물계 반도체 발광 소자의 층 구조의 일례에 해당하므로, 본 발명이 이에 한정되는 것은 아니다. 20 corresponds to an example of the layer structure of the nitride semiconductor light emitting device, and thus the present invention is not limited thereto.
도 21은 본 발명에 따른 탄소 도핑된 AlxGa1-xN을 이용한 질화물계 반도체 발광 소자의 층 구조의 다른 일례를 나타내는 개념도이다. 도 20과 실질적으로 동일하거나 동등한 부분에는 같은 부호를 사용하고 있다.21 is a conceptual diagram illustrating another example of a layer structure of a nitride based semiconductor light emitting device using carbon doped Al x Ga 1-x N according to the present invention. The same reference numerals are used for parts substantially the same as or equivalent to those in FIG.
도 21의 질화물계 반도체 발광 소자의 제조 방법은 다음과 같다. 기판(1) 상에 버퍼층(2)을 적층하고, 그 위에 n형 질화물계 반도체층(3), 발광층(4), 및 p형 질화물계 반도체층(5)을 차례로 적층한다. 또한, p형 질화물계 반도체층(5) 상에 활성층(4)에서 출사되는 빛 가운데 광 추출면의 반대측을 향하는 빛을 반사하여, 광 추출 효율을 향상시키기 위해 Ag등의 금속을 포함하는 반사 전극(8)을 적층한다. 또한, 반사 전극(8)은 p형 전극으로도 기능할 수 있다. 반사 전극(8)과 p형 질화물계 반도체층(5) 사이에 반사 전극(8) 성분의 확산을 방지하는 기능을 발휘하는 조성층을 삽입할 수 있다.A method of manufacturing the nitride semiconductor light emitting device of FIG. 21 is as follows. The buffer layer 2 is laminated on the substrate 1, and the n-type nitride semiconductor layer 3, the light emitting layer 4, and the p-type nitride semiconductor layer 5 are sequentially stacked thereon. In addition, a reflective electrode containing a metal such as Ag to reflect light toward the opposite side of the light extraction surface among the light emitted from the active layer 4 on the p-type nitride based semiconductor layer 5 to improve light extraction efficiency. (8) is laminated. The reflective electrode 8 can also function as a p-type electrode. Between the reflective electrode 8 and the p-type nitride based semiconductor layer 5, a composition layer exhibiting a function of preventing the diffusion of the reflective electrode 8 component can be inserted.
반사 전극(8) 상에, 예를 들어, Au등을 포함하는 접착층(9)를 통해 별도로 준비한 실리콘 등을 포함하는 전도성 기판(10)을 접합시킨다. 그 후, 기판(1)을 연마 또는 에칭으로 제거한다. 이때, 기판(1)과 함께 버퍼층(2)의 전부 또는 일부를 마찬가지로 연마 또는 에칭에 의해 제거할 수 있다.On the reflective electrode 8, for example, a conductive substrate 10 containing silicon or the like prepared separately is bonded through an adhesive layer 9 containing Au or the like. Thereafter, the substrate 1 is removed by polishing or etching. At this time, all or part of the buffer layer 2 together with the substrate 1 can likewise be removed by polishing or etching.
기판(1) 또는 기판(1)과 버퍼층(2)의 전부 또는 일부를 제거한 면에 n형 전극(7)을 형성한다. n형 전극(7)으로는 ITO 등의 투명 전극을 사용해도 좋다.The n type electrode 7 is formed in the board | substrate 1 or the surface in which all or one part of the board | substrate 1 and the buffer layer 2 were removed. As the n-type electrode 7, a transparent electrode such as ITO may be used.
이상과 같이, 도 21의 구조를 갖는 질화물계 반도체 발광 소자를 설명했다. 이 실시 예에서도, p형 질화물계 반도체층(5)으로 본 발명에 따른 탄소가 도핑된 AlxGa1-xN을 이용하면 발광층의 밴드 갭보다 넓은 밴드 갭의 p형 클래드층을 실현할 수 있으며, 시트 저항이 낮기 때문에, p형 질화물계 반도체층(5)과 전극 사이에 오믹 접촉을 위해 콘택트층 등을 당연히 삽입할 필요가 없다.As described above, the nitride semiconductor light emitting device having the structure of FIG. 21 was described. In this embodiment as well, the p-type cladding layer having a wider band gap than the band gap of the light emitting layer can be realized by using Al x Ga 1-x N doped with carbon according to the present invention as the p-type nitride based semiconductor layer 5, and the sheet resistance is high. Since it is low, it is not necessary to naturally insert a contact layer or the like for ohmic contact between the p-type nitride based semiconductor layer 5 and the electrode.
이상 설명한 바와 같이, 본 발명에 따르면, 지금까지 곤란했던 탄소 도핑에 의한 p형 질화물계 반도체층을 안정적으로 제조할 수 있다. 즉, 탄소 도핑 질화물계 반도체층은 탄소의 특성상 n형으로도 되는 물질이기 때문에, 탄소 도핑에서 안정적으로 p형을 실현하기는 어려우나, 본 발명의 제조 방법에 의하면 안정적으로 탄소 도핑 p형 질화물계 반도체층을 만드는 것이 가능해 진다.As described above, according to the present invention, a p-type nitride semiconductor layer by carbon doping which has been difficult until now can be stably manufactured. That is, since the carbon-doped nitride-based semiconductor layer is a material which is also n-type in terms of carbon properties, it is difficult to realize a p-type stably in carbon doping, but according to the manufacturing method of the present invention, a carbon-doped p-type nitride-based semiconductor stably It is possible to make a layer.
또한, 불순물 도입을 탄소 도핑으로 실현했기 때문에, Mg 도핑과 달리 저 저항화하는 것이 가능해졌다. 또한, 탄소 도핑된 질화물계 반도체층을 AlGaN으로 구성하면, InGaN 등으로 구성된 발광층의 밴드 갭보다 큰 밴드 갭의 p형 클래드층을 실현할 수 있다. 따라서, 본 발명에 의하면, p형 질화물계 반도체층과 전극 사이에 콘택층 등을 삽입하지 않고도 발광 효율이 높은 질화물계 반도체 발광 소자를 제조할 수 있다.In addition, since impurity introduction is realized by carbon doping, it is possible to reduce resistance unlike Mg doping. In addition, when the carbon doped nitride semiconductor layer is made of AlGaN, a p-type cladding layer having a band gap larger than that of the light emitting layer made of InGaN or the like can be realized. Therefore, according to the present invention, a nitride-based semiconductor light emitting device having high luminous efficiency can be manufactured without inserting a contact layer or the like between the p-type nitride-based semiconductor layer and the electrode.
또한, 본 발명에 따른 탄소가 도핑된 AlxGa1 - xN를 포함하는 p형 질화물계 반도체층은, 예를 들어, 도 18에 나타난 바와 같이, 약 9V의 바이어스 전압에 대해 20mA의 전류가 흐른다. 따라서, 본 발명에 따른 탄소가 도핑된 AlxGa1 - xN를 포함하는 p형 질화물계 반도체층은, 그 유효 이온화 억셉터(acceptor) 밀도를 제어함으로써 저 저항화를 실현할 수 있다. 따라서, 본 발명에 따른 탄소가 도핑된 AlxGa1 - xN를 포함하는 p형 질화물계 반도체층은 p형 전극을 활성층으로부터 멀리 떨어뜨려 광 흡수 손실을 없앨 수 있다. 또한, 탄소가 도핑된 AlxGa1 - xN를 포함하는 p형 질화물계 반도체층은 발진 역치를 낮추기 위해 p형 질화물계 반도체층의 층 두께를 발진 파장의 3배 두께(예를 들어, 약 3㎛)로 해야하는 반도체 레이저에 적용할 수 있다.In addition, the p-type nitride semiconductor layer including Al x Ga 1 - x N doped with carbon according to the present invention has a current of 20 mA for a bias voltage of about 9 V, for example, as shown in FIG. Flow. Therefore, the p-type nitride semiconductor layer containing Al x Ga 1 - x N doped with carbon according to the present invention can realize low resistance by controlling the effective ionization acceptor density. Therefore, the p-type nitride-based semiconductor layer including Al x Ga 1 - x N doped with carbon according to the present invention can remove the p-type electrode away from the active layer to eliminate light absorption loss. In addition, the p-type nitride-based semiconductor layer containing Al x Ga 1 - x N doped with carbon has a thickness of three times the oscillation wavelength (for example, about the thickness of the p-type nitride-based semiconductor layer in order to lower the oscillation threshold. 3 micrometers) can be applied to a semiconductor laser.
(부호의 설명)(Explanation of the sign)
1 기판1 board
2 버퍼층2 buffer layer
3 n형 질화물계 반도체층3 n-type nitride semiconductor layer
4 발광층4 light emitting layer
5 p형 질화물계 반도체층5p type nitride semiconductor layer
6 p형 전극6 p-type electrode
7 n형 전극7 n-type electrode
11 단결정 기판11 Monocrystalline Substrate
12 p형 AlGaN 반도체층12 p-type AlGaN semiconductor layer

Claims (24)

  1. III족 소스를 소정 시간 T1 동안 공급하고,Group III source is supplied for a predetermined time T 1 ,
    상기 III족 소스 공급 개시 후, 소정 시간 t1의 경과 후에, 탄소 소스 물질을 함유하는 V족 소스를 소정 시간 T2 (단, t1 + T2 > T1) 동안 공급하고,After the start of supplying the group III source, after a predetermined time t 1, the Group V source containing the carbon source material is supplied for a predetermined time T 2 (wherein t 1 + T 2 > T 1 ),
    상기 V족 소스 공급 개시 후, 소정 시간 t2 (단, t1 + T2 - t2> T1) 의 경과 후에, 상기의 III족 소스 가스를 공급하는 단계 및 상기 V족 소스를 공급하는 공정을 반복하여, 화학 기상 성장법 또는 진공 증착법을 이용하여 1190 ℃ ~ 1370 ℃의 성장 온도 또는 상기 기판 온도가 1070℃ ~ 1250℃이 되는 성장 온도에서, AlxGa1 - xN 반도체층(0 < x ≤ 1)을 형성하는 것을 포함하고,Supplying the Group III source gas and supplying the Group V source after a predetermined time t 2 (where t 1 + T 2 -t 2 > T 1 ) has elapsed after the Group V source supply started. Repeatedly, the Al x Ga 1 - x N semiconductor layer (0 &lt; 0 &lt; 0 &gt;) at a growth temperature of 1190 deg. C to 1370 deg. C or a growth temperature at which the substrate temperature becomes 1070 deg. C to 1250 deg. forming x ≤ 1),
    상기 반도체층의 질소 사이트에 탄소를 도핑하는 p형 질화물계 반도체층의 제조 방법.A method of manufacturing a p-type nitride semiconductor layer in which carbon is doped to a nitrogen site of the semiconductor layer.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 단결정 기판은 주면이 (0001) C면에 대해 ±0.1% 범위의 오프셋 각도를 가지는 사파이어 기판인 p형 질화물계 반도체층의 제조 방법.The single crystal substrate is a method of manufacturing a p-type nitride-based semiconductor layer is a sapphire substrate with a main surface has an offset angle of ± 0.1% range with respect to (0001) C surface.
  3. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2,
    상기 탄소 소스 물질은 사브롬화탄소(CBr4)인 p형 질화물계 반도체층의 제조 방법.And the carbon source material is carbon tetrabromide (CBr 4 ).
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 V족 소스는 마스네슘 소스 물질을 포함하는 p형 질화물계 반도체층의 제조 방법.The group V source is a method of manufacturing a p-type nitride-based semiconductor layer comprising a magnesium source material.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 알루미늄 함량은 5mol% ~ 100mol%인 p형 질화물계 반도체층의 제조 방법.The aluminum content is 5mol% ~ 100mol% method for producing a p-type nitride-based semiconductor layer.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 III족 소스의 공급 시간 T1과 상기 V족 소스 가스의 공급 시간 T2 사이에 오버랩을 설정하지 않고, 상기 III족 소스의 공급 시간 T1과 상기 V족 소스의 공급 시간 T2 간의 간격은 0 초 이상 2 초 이하인 p형 질화물계 반도체층의 제조 방법.Supply time without setting the overlap between T 2, the supply time interval between T 2 of the group V source and the supply time T 1 of the group III source of supply time of the group III source and T 1 wherein the group V source gas, The manufacturing method of the p-type nitride-type semiconductor layer which is 0 second or more and 2 second or less.
  7. 기판 상에 직접, 또는 단수 또는 복수의 개재층을 통해 MOVPE법을 이용하여 III-V족 질화물계 반도체층을 성장시키는 III-V족 질화물계 반도체층 성장 방법에 있어서,In the III-V nitride-based semiconductor layer growth method of growing a III-V nitride-based semiconductor layer using a MOVPE method directly on the substrate or through a single or a plurality of intervening layers,
    반응관 내에 AlxGa1-xN (0 < x ≤ 1)의 III족 원자 소스 가스와, V족 원자 소스 가스와, p형 불순물로서 탄소 소스 가스을 공급함으로써, III족 원자의 원자층과 탄소 도핑된 V족 원자의 원자층을 교대로 성장시키는 것을 포함하고,The atomic layer of the group III atoms and carbon by supplying the group III atomic source gas of Al x Ga 1-x N (0 <x ≤ 1), the group V atomic source gas, and the carbon source gas as p-type impurities in the reaction tube Alternately growing an atomic layer of doped Group V atoms,
    상기 기판은 사파이어 기판, 실리콘 기판, 탄화 규소 기판, 질화갈륨 기판, 질화 알루미늄 기판 중 어느 하나로 구성되고, 주면은 C면 및 이와 동등한 결정면에 대해 ±0.1 %의 범위의 오프셋 각도를 갖는 III-V족 질화물계 반도체층의 성장 방법.The substrate is composed of any one of a sapphire substrate, silicon substrate, silicon carbide substrate, gallium nitride substrate, aluminum nitride substrate, the main surface group III-V having an offset angle in the range of ± 0.1% with respect to the C surface and the equivalent crystal surface A growth method of a nitride based semiconductor layer.
  8. 기판 상에 직접, 또는 단수 또는 복수의 개재층을 통해 MOVPE 법을 이용하여 III-V족 질화물계 반도체층을 성장시키는 III-V족 질화물계 반도체층의 성장 방법에 있어서,In the growth method of a III-V nitride-based semiconductor layer to grow a III-V nitride-based semiconductor layer using a MOVPE method directly on the substrate, or through a single or a plurality of intervening layers,
    반응관 내에 AlxGa1-xN (0 < x ≤ 1)의 III족 원자 소스 가스를 소정 시간 동안 공급한 다음, V족 원자 소스 가스를 소정 시간 동안 공급하는 공정을 교대로 실시하여, III족 원자 원자층과 V족 원자 원자층을 교대로 성장시키는 것을 포함하고,After supplying the Group III atomic source gas of Al x Ga 1-x N (0 <x ≤ 1) for a predetermined time into the reaction tube, the process of supplying the Group V atomic source gas for a predetermined time is alternately performed, Alternately growing a group atomic atomic layer and a group V atomic atomic layer,
    상기 V족 원자 소스 가스를 소정 기간 공급하면서 p형 불순물로서 탄소 소스 가스도 함께 공급함으로써 상기 V족 원자의 원자층에 탄소를 도입하는 III-V족 질화물계 반도체층의 성장 방법.A method of growing a III-V nitride semiconductor layer in which carbon is introduced into an atomic layer of the Group V atoms by supplying the Group V atomic source gas for a predetermined period of time and also supplying a carbon source gas as a p-type impurity.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 V족 원자 소스 가스를 상기 소정 시간 동안 공급하면서, Mg 소스 가스도 함께 공급하는 것을 더 포함하는 III-V족 질화물계 반도체층의 성장 방법.The method of growing a group III-V nitride-based semiconductor layer further comprising supplying the Mg source gas while supplying the group V atomic source gas for the predetermined time.
  10. 청구항 8에 있어서,The method according to claim 8,
    상기 AlxGa1 -xN의 III족 원자 소스 가스를 소정 시간 공급한 다음, 상기 V족 원자 소스 가스를 소정 시간 공급하는 공정 동안 계속 Mg의 소스 가스를 공급하는 것을 더 포함하는 III-V족 질화물계 반도체층의 성장 방법.And supplying the source gas of Mg continuously during the step of supplying the Group III atomic source gas of Al x Ga 1- x N for a predetermined time, and then supplying the Group V atomic source gas for a predetermined time. A growth method of a nitride based semiconductor layer.
  11. 청구항 8에 있어서,The method according to claim 8,
    상기 V족 원자 소스 가스를 상기 소정 시간 공급하면서, Mg의 소스 가스도 공급하는 것을 더 포함하는 III-V족 질화물계 반도체층의 성장 방법.And supplying a source gas of Mg while supplying the Group V atomic source gas for the predetermined time.
  12. 청구항 8에 있어서,The method according to claim 8,
    상기 기판은 사파이어 기판, 실리콘 기판, 탄화 규소 기판, 질화갈륨 기판, 질화알루미늄 기판 중 어느 하나로 구성되는 III-V족 질화물계 반도체층의 성장 방법.The substrate is a growth method of a III-V group nitride semiconductor layer composed of any one of a sapphire substrate, silicon substrate, silicon carbide substrate, gallium nitride substrate, aluminum nitride substrate.
  13. 청구항 8 내지 청구항 12 중 어느 한 항에 있어서,The method according to any one of claims 8 to 12,
    상기 기판의 주면은 C면 및 이와 동등한 결정면에 대해 ±0.1 %의 범위에서 오프셋 각도를 갖는 III-V족 질화물계 반도체층의 성장 방법.And a main surface of the substrate having an offset angle in a range of ± 0.1% with respect to a C surface and an equivalent crystal surface thereof.
  14. 청구항 7에 있어서,The method according to claim 7,
    상기 III-V족 질화물계 반도체층의 두께는 0.1㎛ 이상 3㎛ 이하인 III-V족 질화물계 반도체층의 성장 방법.The method of growing a group III-V nitride semiconductor layer, wherein the group III-V nitride semiconductor layer has a thickness of 0.1 µm or more and 3 µm or less.
  15. 청구항 8에 있어서,The method according to claim 8,
    상기 III-V족 질화물계 반도체층의 두께는 0.1㎛ 이상 3㎛ 이하인 III-V족 질화물계 반도체층의 성장 방법.The method of growing a group III-V nitride semiconductor layer, wherein the group III-V nitride semiconductor layer has a thickness of 0.1 µm or more and 3 µm or less.
  16. 반응관내에 AlxGa1-xN의 III족 원자 소스 가스 및 V족 원자 소스 가스를 동시에 공급하여 기판 상에 직접, 또는 하나 또는 복수의 개재층을 통해 III-V족 질화물계 반도체층을 성장시키는 III-V족 질화물계 반도체층의 성장 방법에 있어서,Group III-V nitride and semiconductor layers of Al x Ga 1-x N are simultaneously supplied into the reaction tube to grow a group III-V nitride semiconductor layer directly on the substrate or through one or more intervening layers. In the growth method of a group nitride semiconductor layer,
    p형 불순물로서 탄소 소스 가스도 함께 공급하는 것을 포함하고,including supplying a carbon source gas as a p-type impurity,
    V족 원자 소스 가스와 III족 원자 소스 가스의 비율은 5 이상 600 이하인 III-V족 질화물계 반도체층의 성장 방법.A growth method of a III-V nitride-based semiconductor layer in which the ratio of the group V atomic source gas and the group III atomic source gas is 5 or more and 600 or less.
  17. 청구항 16에 있어서,The method according to claim 16,
    상기 기판은 사파이어 기판, 실리콘 기판, 탄화 규소 기판, 질화갈륨 기판, 질화알루미늄 기판 중 어느 하나로 구성되고, 주면은 C면 및 이와 동등한 결정면에 대해 ±0.1 %의 범위의 오프셋 각도를 갖는 III-V족 질화물계 반도체층의 성장 방법.The substrate is composed of any one of a sapphire substrate, silicon substrate, silicon carbide substrate, gallium nitride substrate, aluminum nitride substrate, the main surface group III-V having an offset angle in the range of ± 0.1% with respect to the C surface and the equivalent crystal surface A growth method of a nitride based semiconductor layer.
  18. n형 질화물계 반도체층, 활성층 및 p형 질화물계 반도체층의 적층을 포함하고,a lamination of an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer,
    상기 p형 질화물계 반도체층은 사파이어 기판, 실리콘 기판, 탄화 규소 기판, 질화갈륨 기판, 질화알루미늄 기판 중 어느 하나로 구성되고, 주면은 C면 및 이와 동등한 결정면에 대해 ±0.1 %의 범위에서 오프셋 각도를 갖는 기판 상에 직접, 또는 단수 또는 복수의 개재층 상에 AlxGa1 - xN (0 < x ≤ 1)의 III족 원자 소스 가스와 V족 원자 소스 가스와 p형 불순물로서 탄소의 소스 가스를 공급함으로써, III족 원자의 원자층과 탄소가 도핑된 V족 원자의 원자층이 교대로 성장된 질화물계 반도체 발광 소자 .The p-type nitride semiconductor layer is composed of any one of a sapphire substrate, a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and an aluminum nitride substrate, and a main surface thereof has an offset angle in a range of ± 0.1% with respect to the C surface and its equivalent crystal surface. A source gas of carbon as a group III atomic source gas of Al x Ga 1 - x N (0 <x ≤ 1), a group V atomic source gas, and a p-type impurity directly on the substrate having, or on a single or a plurality of intervening layers The nitride-based semiconductor light emitting device in which an atomic layer of group III atoms and an atomic layer of carbon-doped group V atoms are alternately grown.
  19. n형 질화물계 반도체층, 활성층 및 p형 질화물계 반도체층의 적층을 포함하고,a lamination of an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer,
    상기 p형 질화물계 반도체층은 반응관 내에서 III족 원자 소스 가스와 V족 원자 소스 가스를 각각 소정 시간 교대로 공급함으로써 III족 원자의 원자층과 V족 원자의 원자층이 교대로 성장하여 형성된 층이며, 상기 V족 원자 소스 가스를 공급하는 시간에 탄소 소스 가스도 함께 공급함으로써 탄소가 도입된 질화물계 반도체 발광 소자.The p-type nitride semiconductor layer is formed by alternately growing an atomic layer of group III atoms and an atomic layer of group V atoms by alternately supplying a group III atomic source gas and a group V atomic source gas in a reaction tube, respectively. A nitride-based semiconductor light-emitting device in which a layer is introduced and carbon is introduced by supplying a carbon source gas at a time of supplying the group V atom source gas.
  20. 청구항 19에 있어서,The method according to claim 19,
    상기 p형 질화물계 반도체층은 AlxGa1 - xN (0 < x ≤ 1) 인 질화물계 반도체 발광 소자.The p-type nitride semiconductor layer is Al x Ga 1 - x N (0 <x ≤ 1) nitride-based semiconductor light emitting device.
  21. 청구항 18에 있어서,The method according to claim 18,
    상기 p형 질화물계 반도체층 상에 형성된 p형 전극을 더 포함하는 질화물계 반도체 발광 소자.The nitride-based semiconductor light emitting device further comprising a p-type electrode formed on the p-type nitride-based semiconductor layer.
  22. 청구항 19 또는 청구항 20에 있어서,The method according to claim 19 or 20,
    상기 p형 질화물계 반도체층 상에 형성된 p형 전극을 더 포함하는 질화물계 반도체 발광 소자.The nitride-based semiconductor light emitting device further comprising a p-type electrode formed on the p-type nitride-based semiconductor layer.
  23. p형 질화물계 반도체층이 기판에 직접, 또는 하나 또는 복수의 개재층을 통해 MOVPE법을 이용하여 III-V족 질화물계 반도체층을 성장시키는 III-V족 질화물계 반도체층 성장 방법에 있어서, 반응관내에 AlxGa1-xN의 III족 원자 소스 가스를 소정 시간 공급한 다음, V족 원자 소스 가스를 소정 시간 공급하는 공정을 교대로 실시하여 III족 원자의 원자층과 V족 원자의 원자층을 교대로 성장시키고, 상기 V족 원자 소스 가스를 소정 시간 공급하면서 p형 불순물로서 탄소 소스 가스도 함께 공급함으로써 상기 V족 원자의 원자층에 탄소가 도입된 III-V족 질화물계 반도체층을 포함하는 반도체 레이저.In a method of growing a III-V nitride semiconductor layer, in which a p-type nitride semiconductor layer is grown directly on a substrate or through one or a plurality of intervening layers, using a MOVPE method to grow a III-V nitride-based semiconductor layer. After supplying the Group III atomic source gas of Al x Ga 1-x N to the tube for a predetermined time, the process of supplying the Group V atomic source gas for a predetermined time is alternately performed to make the atomic layer of the Group III atom and the atoms of the Group V atom The layer III-V nitride semiconductor layer in which carbon is introduced into the atomic layer of the group V atoms by growing layers alternately and supplying the group V atom source gas for a predetermined time and also supplying a carbon source gas as a p-type impurity. Including semiconductor laser.
  24. 청구항 23에 있어서,The method according to claim 23,
    상기 p형 질화물계 반도체층의 층 두께는 3㎛ 인 반도체 레이저.And a layer thickness of the p-type nitride semiconductor layer is 3 µm.
PCT/KR2013/003330 2012-04-19 2013-04-19 Semiconductor device and method for manufacturing same WO2013157881A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012096090A JP5940355B2 (en) 2012-04-19 2012-04-19 Method for manufacturing p-type nitride semiconductor layer
JP2012-096090 2012-04-19
JP2013027026 2013-02-14
JP2013-027026 2013-02-14
KR1020130043004A KR102062382B1 (en) 2012-04-19 2013-04-18 Semiconductor device and method for fabricating the same
KR10-2013-0043004 2013-04-18

Publications (1)

Publication Number Publication Date
WO2013157881A1 true WO2013157881A1 (en) 2013-10-24

Family

ID=49383756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003330 WO2013157881A1 (en) 2012-04-19 2013-04-19 Semiconductor device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013157881A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356611A (en) * 2002-09-20 2004-12-16 Mitsubishi Chemicals Corp Manufacturing method for iii-v compound semiconductor crystal
JP2006165314A (en) * 2004-12-08 2006-06-22 New Japan Radio Co Ltd Nitride semiconductor device and its manufacturing method
KR100613814B1 (en) * 1997-05-26 2006-12-19 소니 가부시끼 가이샤 P-type nitride compound semiconductor and method of making the same
JP2009016452A (en) * 2007-07-02 2009-01-22 Mitsubishi Electric Corp Manufacturing method for nitride-based semiconductor laminated structure, and manufacturing method for semiconductor element
JP2011151422A (en) * 2009-12-10 2011-08-04 Dowa Electronics Materials Co Ltd P-TYPE AlGaN LAYER, AND GROUP-III NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613814B1 (en) * 1997-05-26 2006-12-19 소니 가부시끼 가이샤 P-type nitride compound semiconductor and method of making the same
JP2004356611A (en) * 2002-09-20 2004-12-16 Mitsubishi Chemicals Corp Manufacturing method for iii-v compound semiconductor crystal
JP2006165314A (en) * 2004-12-08 2006-06-22 New Japan Radio Co Ltd Nitride semiconductor device and its manufacturing method
JP2009016452A (en) * 2007-07-02 2009-01-22 Mitsubishi Electric Corp Manufacturing method for nitride-based semiconductor laminated structure, and manufacturing method for semiconductor element
JP2011151422A (en) * 2009-12-10 2011-08-04 Dowa Electronics Materials Co Ltd P-TYPE AlGaN LAYER, AND GROUP-III NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT

Similar Documents

Publication Publication Date Title
KR100497890B1 (en) Nitride semiconductor LED and fabrication method for thereof
Chang et al. InGaN-GaN multiquantum-well blue and green light-emitting diodes
US6630692B2 (en) III-Nitride light emitting devices with low driving voltage
KR101365604B1 (en) Fabrication of nonpolar indium gallium nitride thin films, heterostructures, and devices by metalorganic chemical vapor deposition
EP0803916B1 (en) Manufacturing method of a light emitting device
KR101423459B1 (en) A method of growing semiconductor heterostructures based on gallium nitride
Yamasaki et al. p‐type conduction in Mg‐doped Ga0. 91In0. 09N grown by metalorganic vapor‐phase epitaxy
US9577144B2 (en) Ultraviolet light-emitting device
JP2011517099A (en) MOCVD growth technology for planar semipolar (Al, In, Ga, B) N-based light-emitting diodes
US9076896B2 (en) Method of fabricating nonpolar gallium nitride-based semiconductor layer, nonpolar semiconductor device, and method of fabricating the same
KR100449074B1 (en) Method for manufacturing semiconductor and semiconductor light emitting element
KR100271030B1 (en) Method for Producing Group III-V Compound Semiconductor, and Semiconductor Light Emitting Device Using Such Semiconductor and Method for Producing the Same
WO2014084549A1 (en) Epitaxial wafer and switch element and light-emitting element using same
KR20100006548A (en) Group iii nitride based semiconductor light emitting element and epitaxial wafer
WO2013183888A1 (en) Light-emitting element
WO2016209015A1 (en) Ultraviolet light emitting diode, light emitting diode package, and lighting device
KR20090021849A (en) Semiconductor light emitting device and fabrication method thereof
US20050145856A1 (en) Gallium nitride semiconductor device and method of producing the same
KR100838195B1 (en) Method for fabricating a light emitting diode of a nitride compound semiconductor and a light emitting diode fabricated by the method
WO2013157881A1 (en) Semiconductor device and method for manufacturing same
WO2014084550A1 (en) Epitaxial wafer and switch element and light-emitting element using same
KR102062382B1 (en) Semiconductor device and method for fabricating the same
KR102553985B1 (en) Group III nitride semiconductor
WO2016186364A1 (en) Light detection device
Hamzah et al. Effects of three-step magnesium doping in p-GaN layer on the properties of InGaN-based light-emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778629

Country of ref document: EP

Kind code of ref document: A1