WO2013157872A1 - 무선 통신 시스템에서 하향링크 데이터를 수신하는 방법 및 장치 - Google Patents
무선 통신 시스템에서 하향링크 데이터를 수신하는 방법 및 장치 Download PDFInfo
- Publication number
- WO2013157872A1 WO2013157872A1 PCT/KR2013/003310 KR2013003310W WO2013157872A1 WO 2013157872 A1 WO2013157872 A1 WO 2013157872A1 KR 2013003310 W KR2013003310 W KR 2013003310W WO 2013157872 A1 WO2013157872 A1 WO 2013157872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subframe
- pdsch
- transport block
- block size
- pdcch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2643—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
- H04B7/2656—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0078—Timing of allocation
- H04L5/0082—Timing of allocation at predetermined intervals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1438—Negotiation of transmission parameters prior to communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1469—Two-way operation using the same type of signal, i.e. duplex using time-sharing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
Definitions
- the present invention relates to wireless communication, and more particularly, to a method for receiving downlink data and an apparatus using the same.
- LTE Long term evolution
- 3GPP 3rd generation partnership project
- TS technical specification
- LTA-A LTE-advanced
- a CRS Cell
- Reference signals such as -specific reference signal (PSS), primary synchronization signal (PSS) / secondary synchronization signal (SSS), and control channels such as physical downlink control channel (PDCCH) and physical broadcast channel (PBCH) are defined.
- PSS -specific reference signal
- PSS primary synchronization signal
- SSS secondary synchronization signal
- PDCCH physical downlink control channel
- PBCH physical broadcast channel
- NCT new carrier type
- An object of the present invention is to provide a method for receiving downlink data in a wireless communication system and an apparatus using the same.
- Another object of the present invention is to provide a method for determining a transport block size and an apparatus using the same.
- a method for receiving downlink data in a wireless communication system includes receiving downlink control information from a primary cell in a first subframe, receiving downlink data from a secondary cell through a physical downlink shared channel (PDSCH) in a second subframe, and receiving the second data from the secondary cell. Determining a transport block size based on a carrier type of a subframe, and decoding the PDSCH based on the downlink control information and the transport block size.
- PDSCH physical downlink shared channel
- a user equipment (UE) in a wireless communication system includes a RF (radio freqeuncy) unit for transmitting and receiving a radio signal and a processor connected to the RF unit.
- the processor receives downlink control information from a primary cell in a first subframe, receives downlink data from a secondary cell through a physical downlink shared channel (PDSCH) in a second subframe, and receives the second subframe.
- PDSCH physical downlink shared channel
- a transport block size is determined based on a carrier type of, and the PDSCH is decoded based on the downlink control information and the transport block size.
- the transport block size may be determined based on a position of an orthogonal frequency division multiplexing (OFDM) symbol at which the PDSCH starts in the second subframe.
- OFDM orthogonal frequency division multiplexing
- the transport block size may be determined based on whether the second subframe includes a reference signal for channel measurement.
- the transport block size may be determined based on a position of an orthogonal frequency division multiplexing (OFDM) symbol at which the PDSCH starts in the second subframe and whether the second subframe includes a reference signal for channel measurement.
- OFDM orthogonal frequency division multiplexing
- the size of the transport block is orthogonal frequency division multiplexing (OFDM) at which the special subframe of the second subframe is set and the PDSCH starts. It may be determined based on the position of the symbol.
- OFDM orthogonal frequency division multiplexing
- the size of the transport block may be determined based on the number of orthogonal frequency division multiplexing (OFDM) symbols used for transmission of the PDSCH. have.
- OFDM orthogonal frequency division multiplexing
- NCT new carrier type
- FIG. 1 illustrates a radio frame structure for frequency division duplex (FDD) in 3rd generation partnership project (3GPP) long term evolution (LTE).
- 3GPP 3rd generation partnership project
- LTE long term evolution
- FIG. 2 shows a structure of a radio frame for time division duplex (TDD) in 3GPP LTE.
- FIG 3 shows an example of a resource grid for one downlink slot.
- FIG 5 is an exemplary diagram illustrating monitoring of a physical downlink control channel (PDCCH).
- PDCH physical downlink control channel
- FIG. 6 shows an example in which a reference signal and a control channel are arranged in a downlink subframe of 3GPP LTE.
- EPCCH 7 is an example of a subframe having an enhanced PDCCH (EPDCCH).
- EPDCCH enhanced PDCCH
- FIG 8 shows an example of a physical resource block (PRB) pair.
- PRB physical resource block
- FIG. 10 shows an example of a subframe structure of a single carrier system and a carrier aggregation system.
- FIG. 11 shows an example of a subframe structure of a 3GPP LTE-A (advanced) system that is cross-carrier scheduled through a carrier indicator field.
- FIG. 12 illustrates a method of receiving downlink data according to an embodiment of the present invention.
- FIG. 13 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- CDMA may be implemented by a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
- TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
- GSM global system for mobile communications
- GPRS general packet radio service
- EDGE enhanced data rates for GSM evolution
- OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
- IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
- UTRA is part of a universal mobile telecommunications system (UMTS).
- 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
- LTE-A (advanced) is the evolution of 3GPP LTE.
- the user equipment may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). It may be called other terms such as digital assistant, wireless modem, handheld device.
- MS mobile station
- MT mobile terminal
- UT user terminal
- SS subscriber station
- PDA personal digital assistant
- a base station generally refers to a fixed station communicating with a terminal, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like.
- eNB evolved-NodeB
- BTS base transceiver system
- AP access point
- LTE includes LTE and / or LTE-A.
- 3GPP LTE supports both frequency division duplex (FDD) and time division duplex (TDD).
- FDD frequency division duplex
- UL uplink
- DL downlink
- TDD time division duplex
- a terminal supporting full duplex-FDD can simultaneously perform UL transmission and DL reception at a specific time.
- a terminal supporting half duplex-FDD and TDD cannot simultaneously perform UL transmission and DL reception.
- 1 shows a radio frame structure for FDD in 3GPP LTE.
- radio frame for FDD is also referred to as frame structure type 1.
- a radio frame includes 10 subframes.
- One subframe includes two consecutive slots. Slots in a radio frame are numbered with slots # 0 through # 19.
- the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
- TTI may be referred to as a scheduling unit for data transmission.
- one radio frame may have a length of 10 ms
- one subframe may have a length of 1 ms
- one slot may have a length of 0.5 ms.
- One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of subcarriers in the frequency domain.
- the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be called a different name according to a multiple access scheme.
- SC-FDMA when SC-FDMA is used as an uplink multiple access scheme, the OFDM symbol may be referred to as an SC-FDMA symbol.
- a resource block includes a plurality of consecutive subcarriers in one slot in resource allocation units.
- the structure of the radio frame of FIG. 1 is merely an example. Accordingly, the number of subframes included in the radio frame, the number of slots included in the subframe, or the number of OFDM symbols included in the slot may be variously changed.
- 3GPP LTE defines that one slot includes 7 OFDM symbols in a normal cyclic prefix (CP), and one slot includes 6 OFDM symbols in an extended CP. .
- FIG. 2 shows a structure of a radio frame for TDD in 3GPP LTE.
- radio frame for TDD is also referred to as frame structure type 2.
- the structure of a radio frame for TDD is similar to that of a frame for FDD. However, in TDD, one radio frame may be divided into a DL subframe, an UL subframe, and a special subframe.
- Table 1 shows an example of configuration of a radio frame.
- 'D' represents a DL subframe
- 'U' represents a UL subframe
- 'S' represents a special subframe.
- the terminal may know which subframe is the DL subframe or the UL subframe according to the configuration of the radio frame.
- the subframe having index # 1 and / or index # 6 may be set as a special subframe.
- the special subframe includes a downlink pilot time slot (DwPTS), a guard period (GP) and an uplink pilot time slot (UpPTS).
- DwPTS is used for initial cell search, synchronization, or channel estimation at the terminal.
- UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
- GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
- FIG 3 shows an example of a resource grid for one downlink slot.
- the downlink slot includes a plurality of OFDM symbols in the time domain and N RB resource blocks in the frequency domain.
- the number N RB of resource blocks included in the downlink slot depends on a downlink transmission bandwidth set in a cell.
- N RB in LTE system may be any one of 6 to 110.
- One resource block includes a plurality of subcarriers in the frequency domain.
- the structure of the uplink slot may also be the same as that of the downlink slot.
- Each element on the resource grid is called a resource element.
- an exemplary resource block includes 7 ⁇ 12 resource elements including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the number of OFDM symbols and the number of subcarriers in the resource block is equal to this. It is not limited. The number of OFDM symbols and the number of subcarriers can be variously changed according to the length of the CP, frequency spacing, and the like.
- the downlink (DL) subframe is divided into a control region and a data region in the time domain.
- the control region includes up to four OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
- a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a physical downlink shared channel (PDSCH) is allocated to the data region.
- PDCCH physical downlink control channel
- PDSCH physical downlink shared channel
- a downlink control channel in 3GPP LTE may be divided into a physical broadcast channel (PBCH), a physical control format indicator channel (PCFICH), a PDCCH, and a physical hybrid-ARQ indicator channel (PHICH).
- PBCH physical broadcast channel
- PCFICH physical control format indicator channel
- PHICH physical hybrid-ARQ indicator channel
- the PBCH is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
- the PBCH carries system information necessary for the terminal to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
- MIB master information block
- SIB system information transmitted on the PDSCH indicated by the PDCCH is called a system information block (SIB).
- the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of a control region) used for transmission of control channels in the subframe.
- CFI control format indicator
- the UE monitors the PDCCH.
- PCFICH does not use blind decoding and is transmitted on a fixed resource of a subframe.
- the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
- ACK positive-acknowledgement
- NACK negative-acknowledgement
- HARQ uplink hybrid automatic repeat request
- the ACK / NACK signal for the uplink data on the physical uplink shared channel (PUSCH) transmitted by the terminal is transmitted through the PHICH.
- the PDCCH occupies up to four OFDM symbols in the time domain, and is transmitted over the entire system band in the frequency domain.
- Control information transmitted through the PDCCH is called downlink control information (DCI).
- DCI is the resource allocation of PDSCH (also called DL grant), the PUSCH resource allocation (also called UL grant), and a set of transmit power control commands for individual UEs in any UE group. And / or activation of voice over internet protocol (VoIP).
- VoIP voice over internet protocol
- blind decoding is used to detect the PDCCH.
- the blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
- the base station determines the PDCCH format according to the DCI to send to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a radio network temporary identifier (RNTI)) Mask to the CRC.
- CRC cyclic redundancy check
- RNTI radio network temporary identifier
- the control region in the subframe includes a plurality of control channel elements (CCEs).
- the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
- the REG includes a plurality of REs.
- the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
- One REG includes four REs and one CCE includes nine REGs.
- ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
- the number of CCEs used to transmit the PDCCH is determined by the base station according to the channel state. For example, one CCE may be used for PDCCH transmission for a UE having a good downlink channel state. Eight CCEs may be used for PDCCH transmission for a UE having a poor downlink channel state.
- a control channel composed of one or more CCEs performs interleaving in units of REGs and is mapped to physical resources after a cyclic shift based on a cell identifier is performed.
- 3GPP TS 36.213 V10.4.0 2011-12
- E-UTRA Evolved Universal Terrestrial Radio Access
- Physical layer procedures Release 10
- the UE cannot know which CCE aggregation level or DCI format is transmitted at which position in the control region. Since a plurality of PDCCHs may be transmitted in one subframe, the UE monitors the plurality of PDCCHs in every subframe. Here, monitoring means that the UE attempts to decode the PDCCH according to the PDCCH format.
- a search space is used to reduce the burden of blind decoding.
- the search space may be referred to as a monitoring set of the CCE for the PDCCH.
- the UE monitors the PDCCH in the corresponding search space.
- the search space is divided into a common search space and a UE-specific search space.
- the common search space is a space for searching for a PDCCH having common control information.
- the common search space includes 16 CCEs ranging from CCE indexes 0 to 15, and supports a PDCCH having a CCE aggregation level of ⁇ 4, 8 ⁇ .
- the UE-specific search space supports a PDCCH having a CCE aggregation level of ⁇ 1, 2, 4, 8 ⁇ .
- Table 2 below shows the number of PDCCH candidates monitored by the UE.
- the size of the search space is determined by Table 2, and the starting point of the search space is defined differently from the common search space and the terminal specific search space.
- the starting point of the common search space is fixed regardless of the subframe, but the starting point of the UE-specific search space is subframe according to the terminal identifier (eg, C (cell) -RNTI), CCE aggregation level and / or slot number in the radio frame. May vary.
- the terminal identifier eg, C (cell) -RNTI
- CCE aggregation level e.g, C (cell) -RNTI
- the search space S k (L) is defined as a set of PDCCH candidates at a set level L ⁇ ⁇ 1,2,4,8 ⁇ .
- the CCE corresponding to the PDCCH candidate m in the search space S k (L) is given as follows.
- N CCE, k can be used for transmission of the PDCCH in the control region of subframe k.
- the control region includes a set of CCEs numbered from 0 to N CCE, k ⁇ 1.
- M (L) is the number of PDCCH candidates at CCE aggregation level L in a given search space.
- m ' m + M (L) n cif .
- variable Y k is defined as follows.
- n s is a slot number in a radio frame.
- a DCI format and a search space to be monitored are determined according to a transmission mode of the PDSCH.
- the following table shows an example of PDCCH monitoring configured with C-RNTI.
- FIG. 6 shows an example in which a reference signal and a control channel are arranged in a DL subframe of 3GPP LTE.
- the control region includes the preceding three OFDM symbols, and the data region in which the PDSCH is transmitted includes the remaining OFDM symbols.
- PCFICH, PHICH and / or PDCCH are transmitted in the control region.
- the carrier indicator field of the PCFICH indicates three OFDM symbols.
- the region excluding the resource for transmitting the PCFICH and / or PHICH becomes the PDCCH region for monitoring the PDCCH.
- various reference signals are transmitted in the subframe.
- the CRS (cell-specific reference signal) can be received by all terminals in the cell, and is transmitted over the entire downlink band.
- 'R0' is a RE is transmitted CRS for the first antenna port
- 'R1' is a RE is transmitted CRS for the second antenna port
- 'R2' is a CRS is transmitted for the third antenna port RE
- 'R3' indicates the RE is transmitted CRS for the fourth antenna port.
- the reference signal sequence r l, ns (m) for the CRS is defined as follows.
- N maxRB is the maximum number of resource blocks
- ns is a slot number in a radio frame
- l is an OFDM symbol number in a slot.
- the pseudo-random sequence c (i) is defined by a Gold sequence of length 31 as follows.
- Nc 1600
- N cell ID is PCI (physical cell identity)
- N CP 1 in a normal CP
- N CP 0 in an extended CP.
- a UE-specific reference signal may be transmitted.
- the CRS is transmitted in the entire region of the subframe
- the URS is transmitted in the data region of the subframe and used for demodulation of the corresponding PDSCH.
- 'R5' indicates the RE to which the URS is transmitted.
- URS is also called a dedicated reference signal (DRS) or a demodulation reference signal (DM-RS).
- DRS dedicated reference signal
- DM-RS demodulation reference signal
- the URS is transmitted only in the resource block to which the corresponding PDSCH is mapped.
- R5 is displayed in addition to the region in which the PDSCH is transmitted, but this is to indicate the location of the resource element to which the URS is mapped.
- URS is used only by a terminal receiving a corresponding PDSCH.
- the reference signal sequence r ns (m) for the URS is equal to Equation 3.
- m 0, 1, ..., 12 N PDSCH, RB -1, N PDSCH, RB is the number of resource blocks of the corresponding PDSCH transmission.
- n RNTI is an identifier of a terminal.
- n SCID is a parameter obtained from a DL grant (eg, DCI format 2B or 2C) associated with PDSCH transmission.
- the PDCCH is monitored in a limited region called a control region in a subframe, and the CRS transmitted in all bands is used for demodulation of the PDCCH.
- the type of control information is diversified and the amount of control information increases, the scheduling flexibility is inferior to the existing PDCCH alone.
- enhanced PDCCH in order to reduce the burden due to CRS transmission, enhanced PDCCH (EPDCCH) is introduced.
- the subframe may include zero or one PDCCH region 710 and zero or more EPDCCH regions 720 and 730.
- the EPDCCH regions 720 and 730 are areas where the UE monitors the EPDCCH.
- the PDCCH region 710 is located in up to four OFDM symbols before the subframe, but the EPDCCH regions 720 and 730 may be flexibly scheduled in the OFDM symbols after the PDCCH region 710.
- One or more EPDCCH regions 720 and 730 may be designated to the terminal, and the terminal may monitor the EPDCCH in the designated EPDCCH regions 720 and 730.
- RRC radio resource control
- the PDCCH may be demodulated based on the CRS.
- DM-RSs not CRSs, may be defined for demodulation of the EPDCCH.
- the DM-RS may be transmitted in the corresponding EPDCCH regions 720 and 730.
- the reference signal sequence r ns (m) for the DM-RS is the same as Equation (3).
- m 0, 1, ..., 12 N RB -1
- N RB is the maximum number of resource blocks.
- ns is a slot number in a radio frame
- N EPDCCH ID is a cell index associated with a corresponding EPDCCH region
- SCID is a parameter given from higher layer signaling.
- Each EPDCCH region 720 and 730 may be used for scheduling for different cells.
- the EPDCCH in the EPDCCH region 720 may carry scheduling information for the first cell
- the EPDCCH in the EPDCCH region 730 may carry scheduling information for the second cell.
- the same precoding as that of the EPDCCH may be applied to the DM-RS in the EPDCCH regions 720 and 730.
- the EPDCCH search space may correspond to the EPDCCH region.
- one or more EPDCCH candidates may be monitored for one or more aggregation levels.
- the EPDCCH is transmitted using one or more ECCEs.
- the ECCE includes a plurality of enhanced resource element groups (ERREGs). Depending on the type of subframe and the CP, the ECCE may include 4 EREGs or 8 EREGs. For example, in a normal CP, the ECCE may include 4 EREGs, and in the extended CP, the ECCE may include 8 EREGs.
- EREGs enhanced resource element groups
- a physical resource block (PRB) pair refers to two PRBs having the same resource block number in one subframe. That is, the PRB pair refers to the first PRB of the first slot and the second PRB of the second slot in the same frequency domain. In a normal CP, a PRB pair includes 14 OFDM symbols and 12 subcarriers.
- each PRB includes 7 OFDM symbols and 12 subcarriers.
- the number of OFDM symbols and the number of subcarriers are just examples.
- the PRB pair includes 168 resource elements (REs). 16 EREGs are constructed from 144 REs, except for 24 REs for DM-RS. That is, 1 EREG may include 9 REs. However, CSI-RS or CRS may be disposed in addition to the DM-RS in one PRB pair. In this case, since the number of available REs is reduced, the number of REs included in one EREG may also be reduced. The number of REs included in the EREG may vary, but the number of EREGs included in one PRB pair does not change.
- REs resource elements
- index 16 EREGs from 0 to 15.
- 9 RE having the RE index 0 is allocated to the EREG 0.
- resource group # 0 ⁇ EREG 0, EREG 4, EREG 8, EREG 12 ⁇
- resource group # 1 ⁇ EREG 1, EREG 5, EREG 9, EREG 3 ⁇
- resource group # 2 ⁇ EREG 2, EREG 6, EREG 10, EREG 14 ⁇
- resource group # 3 ⁇ EREG 3, EREG 7, EREG 11, EREG 15 ⁇ .
- resource group # 0 ⁇ EREG 0, EREG 2, EREG 4, EREG 6, EREG 8, EREG 10, EREG 12, EREG 14 ⁇
- resource group # 1 ⁇ EREG 1 , EREG 3, EREG 5, EREG 7, EREG 9, EREG 11, EREG 13, EREG 15 ⁇ .
- the ECCE may include 4 EREGs in the normal CP and the ECCE in the extended CPs may include 8 EREGs.
- ECCE is defined by a resource group. For example, FIG. 8 shows that ECCE # 0 includes resource group # 0, ECCE # 1 contains resource group # 1, ECCE # 2 contains resource group # 2, and ECCE # 3 contains resource group # 0. Example of including three.
- the resource group constituting one ECCE in the local transmission is selected from the EREGs in one PRB pair.
- resource groups constituting one ECCE are selected from EREGs of different PRB pairs.
- the uplink (UL) subframe may be divided into a control region and a data region in the frequency domain.
- the control region is allocated a physical uplink control channel (PUCCH) for transmitting uplink control information.
- the data area is allocated a PUSCH for transmitting data.
- PUCCH physical uplink control channel
- PUCCH for one UE is allocated as a PRB pair in a subframe.
- Resource blocks belonging to one PRB pair occupy different subcarriers in each of the first slot and the second slot.
- the frequency occupied by the resource block belonging to the resource block pair allocated to the PUCCH is changed based on a slot boundary. This is called that the resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
- the terminal may obtain a frequency diversity gain by transmitting uplink control information through different subcarriers over time.
- m is a location index indicating a logical frequency domain location of a pair of resource blocks allocated to a PUCCH in a subframe.
- the uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK), a channel quality indicator (CQI) indicating a downlink channel state, a scheduling request (SR) which is an uplink radio resource allocation request, and the like.
- HARQ hybrid automatic repeat request
- CQI channel quality indicator
- SR scheduling request
- CA carrier aggregation
- the CA may be called another name such as bandwidth aggregation.
- CA means that when a wireless communication system attempts to support broadband, one or more carriers having a bandwidth smaller than the target broadband are collected to form a broadband.
- a target carrier may use the bandwidth used by the existing system as it is for backward compatibility with the existing system.
- bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz are supported, and in 3GPP LTE-A, a bandwidth of 20 MHz or more can be configured using only the bandwidth of the 3GPP LTE system.
- broadband can be configured by defining new bandwidth without using the bandwidth of the existing system.
- a plurality of base stations and terminals can communicate through up to five cells.
- Five cells may correspond to a bandwidth of up to 100 MHz. That is, the CA environment represents a case in which a specific terminal has two or more configured serving cells (hereinafter, referred to as cells) having different carrier frequencies.
- the carrier frequency represents the center frequency of the cell.
- the cell represents a combination of DL resources and optionally UL resources. That is, the cell must include DL resources, and may optionally include UL resources combined with the DL resources.
- the DL resource may be a DL component carrier (CC).
- the UL resource may be a UL CC.
- the linkage between the carrier frequency of the DL CC and the carrier frequency of the UL CC may be indicated by system information transmitted on the DL CC.
- the system information may be system information block type2 (SIB2).
- FIG. 10 shows an example of a subframe structure of a single carrier system and a carrier aggregation system.
- FIG. 10- (a) shows a single carrier system. It is assumed that the system bandwidth of Fig. 10- (a) is 20 MHz. Since the number of carriers is one, the bandwidth of the DL CC transmitted by the base station and the UL CC transmitted by the terminal are also 20 MHz. The base station performs DL transmission through the DL CC, the terminal performs UL transmission through the UL CC.
- the downlink bandwidth consists of DL CC A, DL CC B, and DL CC C each having a bandwidth of 20 MHz.
- the uplink bandwidth consists of UL CC A, UL CC B, and UL CC C, each having a bandwidth of 20 MHz.
- the base station performs DL transmission through DL CC A, DL CC B and DL CC C, and the terminal performs UL transmission through UL CC A, UL CC B and UL CC C.
- DL CC A and UL CC A, DL CC B and UL CC B, DL CC C and UL CC C may correspond to each other.
- the terminal may simultaneously monitor and / or receive DL signals and / or data transmitted from a plurality of DL CCs.
- the base station may configure the DL CC cell-specific or terminal-specific such that only DL signals and / or data transmitted from the number M DL CCs less than the number N of DL CCs managed by the cell are monitored.
- the base station may configure L DL CCs cell-specifically or terminal-specifically to monitor DL signals and / or data transmitted from L DL CCs among M DL CCs first.
- the terminal supporting the CA may use a primary cell (PCell) and at least one secondary cell (SCell) for increased bandwidth. That is, when two or more cells exist, one cell becomes a PCell and the other cells become Scells. Both PCell and SCell can be serving cells.
- a terminal in an RRC_CONNECTED state that does not support CA or cannot support CA may have only one serving cell including a PCell.
- a terminal in an RRC_CONNECTED state supporting CA may have at least one serving cell including a PCell and at least one SCell.
- the PCell may be a cell operating at a primary frequency.
- the PCell may be a cell in which the terminal performs RRC connection with the network.
- the PCell may be a cell having the smallest cell index.
- the PCell may be a cell that first attempts random access through a physical random access channel (PRACH) among a plurality of cells.
- PRACH physical random access channel
- the PCell may be a cell in which the terminal performs an initial connection establishment process or a connection reestablishment process in a CA environment.
- the PCell may be a cell indicated in the handover process.
- the terminal may acquire non-access stratum (NAS) mobility information (eg, a tracking area indicator (TAI)) during RRC connection / reconfiguration / handover through the PCell.
- NAS non-access stratum
- TAI tracking area indicator
- the terminal may obtain a security input during RRC reset / handover through the PCell.
- the UE may receive and transmit the PUCCH only in the PCell.
- the terminal may apply system information acquisition and system information change monitoring only to the PCell.
- the network may change the PCell of the UE supporting the CA in the handover process by using the RRCConnectionReconfiguration message including the MobilityControlInfo.
- the SCell may be a cell operating at a secondary frequency. SCell is used to provide additional radio resources.
- the PUCCH is not allocated to the SCell.
- the network adds an SCell, the network provides system information of a corresponding cell to a terminal in an RRC_CONNECTED state through dedicated signaling.
- the change of system information with respect to the SCell may be performed by releasing and adding a cell, and the network may independently add, remove, or modify the SCell through an RRC connection reconfiguration process using an RRCConnectionReconfiguration message.
- the LTE-A terminal supporting CA may simultaneously transmit or receive one or a plurality of CCs according to capacity.
- the LTE terminal that does not support the CA may transmit or receive only one CC when each CC constituting the CA is compatible with the existing LTE system. Therefore, when at least the number of CCs used in the uplink and the downlink is the same, all the CCs need to be configured to be compatible with the existing LTE system.
- the plurality of CCs may be managed by a media access control (MAC).
- MAC media access control
- the CA is configured in the DL
- the receiver in the terminal should be able to receive a plurality of DL CCs.
- the transmitter in the terminal should be able to transmit a plurality of UL CCs.
- cross carrier scheduling may be applied.
- a PDCCH on a specific DL CC may schedule a PDSCH on any one of a plurality of DL CCs or a PUSCH on any one of a plurality of UL CCs.
- a carrier indicator field may be defined for cross carrier scheduling.
- CIF may be included in the DCI format transmitted on the PDCCH. The presence or absence of the CIF in the DCI format may be indicated by the higher layer semi-statically or UE-specifically.
- the CIF may indicate a DL CC on which the PDSCH is scheduled or an UL CC on which the PUSCH is scheduled.
- the CIF may be fixed 3 bits and may exist in a fixed position regardless of the size of the DCI format. If there is no CIF in the DCI format, the PDCCH on a specific DL CC may schedule a PDSCH on the same DL CC or may schedule a PUSCH on a UL CC connected to the specific DL CC with an SIB2.
- the base station may allocate a PDCCH monitoring DL CC set to reduce the complexity of blind decoding of the terminal.
- the PDCCH monitoring DL CC set is part of the entire DL CC, and the UE performs blind decoding only on the PDCCH in the PDCCH monitoring DL CC set. That is, in order to schedule PDSCH and / or PUSCH for the UE, the base station may transmit the PDCCH through only the DL CCs in the PDCCH monitoring DL CC set.
- the PDCCH monitoring DL CC set may be configured to be UE specific, UE group specific, or cell specific.
- 11 shows an example of a subframe structure of a 3GPP LTE-A system that is cross-carrier scheduled through CIF.
- a first DL CC of three DL CCs is configured as a PDCCH monitoring DL CC. If cross carrier scheduling is not performed, each DL C C transmits a PDCCH to schedule a PDSCH. When cross carrier scheduling is performed, only the first DL CC set as the PDCCH monitoring DL CC transmits the PDCCH.
- the PDCCH transmitted on the first DL CC schedules the PDSCH of the second DL CC and the third DL CC as well as the PDSCH of the first DL CC using the CIF.
- the second DL CC and the third DL C C which are not configured as the PDCCH monitoring DL CC may not transmit the PDCCH.
- cross carrier scheduling is not supported for the PCell. That is, the PCell is always scheduled by its PDCCH.
- the UL grant and DL assignment of a cell are always scheduled from the same cell. That is, if downlink is scheduled on the second carrier in the cell, uplink is also scheduled on the second carrier.
- the PDCCH indication can only be sent on the PCell.
- frame timing, super frame number (SFN) timing, and the like in the aggregated cells may be aligned.
- the terminal may monitor one common search space (CSS) when the aggregation level is 4 or 8 on the PCell.
- the terminal without the CIF configured monitors one UE-specific search space (USS) when the aggregation level is any one of 1, 2, 4, or 8 on each activated serving cell.
- the CIF-configured terminal monitors one or more USSs when the aggregation level is any one of 1, 2, 4, or 8 on one or more activated serving cells. CSS and USS can overlap each other on PCell.
- the UE in which the CIF related to the PDCCH monitored in the serving cell is configured monitors the PDCCH including the CRC configured as CIF in the USS of the serving cell and scrambled by the C-RNTI.
- the terminal in which the CIF related to the PDCCH monitored in the PCell is configured monitors the PDCCH including the CRC configured as CIF in the USS of the PCell and scrambled by the SPS C-RNTI.
- the terminal may monitor the CSS without the CIF.
- the terminal without the CIF is configured to monitor the USS without the CIF
- the terminal with the CIF is configured to monitor the USS through the CIF.
- the terminal When the terminal is configured to monitor the PDCCH of the SCell through the CIF in another serving cell, it may not monitor the PDCCH of the SCell.
- the UE may transmit uplink control information such as channel state information (CSI), ACK / NACK signal, etc. received, detected, or measured from one or more DL CCs to a base station through a predetermined UL CC.
- the CSI may include a CQI, a precoding matrix indicator (PMI), a rank indicator (RI), and the like.
- PMI precoding matrix indicator
- RI rank indicator
- the terminal when the terminal needs to transmit an ACK / NACK signal for data received from a plurality of DL CCs, the terminal multiplexes a plurality of ACK / NACK signals for data received from each DL CC. (multiplexing) or bundling (bundling) may be transmitted to the base station through the PUCCH of one UL CC.
- 3GPP LTE there are three cases in which ACK / NACK signal transmission for a DL CC is required.
- An ACK / NACK signal for PDSCH transmission indicated by a corresponding PDCCH in subframe nk may be transmitted in subframe n.
- k ⁇ K and K is a set of M elements ⁇ k 0 , k 1 , ..., k M-1 ⁇ according to the subframe n and the UL / DL configuration. This is a case where an ACK / NACK signal for a general PDSCH is transmitted.
- An ACK / NACK signal for a PDCCH of a subframe (nk) indicating release of DL semi-persistent scheduling (SPS) may be transmitted in subframe n.
- k ⁇ K and K is a set of M elements ⁇ k 0 , k 1 , ..., k M-1 ⁇ according to the subframe n and the UL / DL configuration.
- the ACK / NACK signal for the PDCCH indicating activation of the DL SPS is not transmitted.
- An ACK / NACK signal for PDSCH transmission without a corresponding PDCCH in subframe nk may be transmitted in subframe n.
- k ⁇ K and K is a set of M elements ⁇ k 0 , k 1 , ..., k M-1 ⁇ according to the subframe n and the UL / DL configuration. This is a case where an ACK / NACK signal for SPS is transmitted.
- K is referred to as a bundling window.
- the bundling window means one or more DL subframes corresponding to ACK / NACK signals in one UL subframe.
- a set K may be defined as shown in Table 4 below.
- a subframe using only EPDCCH without PDCCH may be defined.
- a carrier type using only EPDCCH will be referred to as a new carrier type (NCT).
- the NCT may include existing LTE subframes including the PDCCH.
- the NCT may be applied to all subframes, but may be applied only to a DL subframe of the SCell in a special subframe such as a multicast-broadcast single frequency network (MBSFN) subframe or a CA environment.
- MMSFN multicast-broadcast single frequency network
- the transport block size of the PDSCH in the normal CP is assumed to be 12 OFDM symbols.
- PDCCH may not be transmitted in NCT
- EPDCCH and PDSCH may start from the first OFDM symbol of each subframe. Therefore, when the PDCCH is not transmitted, all 14 OFDM symbols may be used to carry the PDSCH in each subframe.
- the TBS in the NCT may be increased by about 15% compared to the TBS in the conventional carrier type.
- the CRS may be transmitted every five subframes, that is, every 5 ms.
- CRS is not used for demodulation of PDSCH, but may be used only for tracking and may be referred to as a tracking reference signal (TRS). Since the CRS overhead on a single port is about 5%, the difference in resource elements available for PDSCH transmission between a conventional subframe and an NCT subframe in which CRS is not transmitted is up to 20%.
- the TBS is calculated by the following process.
- N ' PRBs to the number of allocated PRBs.
- the number of allocated PRBs is based on section 7.6 of 3GPP TS 36.213 V10.4.0.
- max ⁇ a, b ⁇ means the larger value of a and b, Is the largest integer less than or equal to d , and '0.75' is the scaling factor.
- the present invention proposes to modify the above process as follows.
- N ' PRB is set as in Equation 7 below.
- N DL RB is a downlink bandwidth setting expressed as a multiple of the resource block size.
- N ' PRB is set as in Equation 8 below.
- N DL RB is a downlink bandwidth setting expressed as a multiple of the resource block size.
- N ' PRB is set as in Equation 9 below.
- N DL RB is a downlink bandwidth setting expressed as a multiple of the resource block size.
- N ' PRB is set as in Equation 10 below.
- Equation (11) If the transport block is transmitted in DwPTS of a special subframe in frame structure type 2, i.e., a radio frame structure for TDD, the column indicator N PRB of Table 7.1.7.2.1-1 is Is set as in Equation (11).
- max ⁇ a, b ⁇ means the larger value of a and b, Is the largest integer less than or equal to d , and '0.75' is the scaling factor.
- the TBS is determined differently according to the start point of the PDSCH and the inclusion of the CRS in the NCT subframe. For example, if a transport block is transmitted in an NCT subframe, and the NCT subframe does not include a CRS, and a PDSCH starts in the first OFDM symbol in the NCT subframe, an increased resource of about 20% is selected for TBS. Is reflected in.
- a timing gap for switching from a DL subframe to an UL subframe is required in a radio frame for TDD.
- a special subframe exists between the DL subframe and the UL subframe, and various special subframe configurations are supported according to channel conditions, UE positions, and the like.
- Table 5 is an example of special subframe configuration.
- DwPTS and UpPTS vary according to normal CP or extended CP.
- a conversion coefficient for determining a transport block size may be changed based on a position of an OFDM symbol at which a PDSCH starts.
- the conversion factor is '0.75' in the special subframe configuration excluding Conf 0 and 5 in the normal CP or Conf 0 and 4 in the extended CP.
- the PDCCH may not be included and the PDSCH may start with the first OFDM symbol. Therefore, the OFDM symbol available for PDSCH transmission in the NCT special subframe may increase from 8-11 to 11-14 in the normal CP.
- the conversion factor may be increased to '1', and the following options may be selected.
- Option 1 If the PDSCH starts at the first OFDM symbol in the NCT special subframe, the conversion factor '1' is applied to all special subframe settings except Conf 0 and 5 in the normal CP or Conf 0 and 4 in the extended CP. do.
- Option 2 If the PDSCH starts in the first OFDM symbol in the NCT special subframe, apply the transform coefficient to '0.75' in Conf 1 and 6 and '1' in Conf 2,3,4,7 and 8.
- Option 3 If the number of OFDM symbols used for PDSCH transmission is equal to or greater than 12, the conversion factor is applied to '1', otherwise '0.75', regardless of the starting point of the PDSCH.
- an additional conversion factor '0.05' may be applied based on the start point of the PDSCH and the type of the subframe (eg, whether it is a normal subframe or a special subframe).
- Conf 9 in the normal CP starting from the first OFDM symbol or the Conf 7 subframe in the extended CP are available only 6 OFDM symbols out of 12 OFDM symbols. Therefore, as another option, the spreading factor of Conf 9 in the normal CP or Conf 7 in the extended CP may be applied as '0.5'.
- the downlink data may be rate-matched with the EPDCCH including the DCI scheduling the PDSCH.
- the starting point of the OFDM symbol for the PDSCH or the EPDCH and / or the number of PRBs for the DCI scheduling the PDSSCH may be considered.
- the base station will handle 15-20% of the difference due to CIF (e.g., the difference between CIF 1 and CIF 3 in a system with 6 RB system bandwidth). Can be. Thus, it can be assumed that the base station can handle up to 15% of dynamic situation changes.
- the following TBS determination method may be used.
- ⁇ is a constant such as 0.7
- ⁇ is a constant of 0.5 or more such as 1.0
- Starting_symbol is an OFDM symbol index (eg, 0,1,2, ...) indicating a PDSCH starting point
- N rm is an EPDCCH overlapping the PDSCH.
- the number of PRBs used, C thresh is a threshold such as 0.15, 0.2, 0.25, min ⁇ a, b ⁇ is the smaller of a and b, Is a maximum integer less than or equal to d
- N DL RB is a downlink bandwidth setting expressed as a multiple of the resource block size.
- ⁇ is a constant such as 0.7
- ⁇ is a constant of 0.5 or more such as 1.0
- Starting_symbol is an OFDM symbol index (eg, 0,1,2, ...) indicating a PDSCH starting point
- N rm is an EPDCCH overlapping the PDSCH.
- the number of PRBs used, C thresh is a threshold such as 0.15, 0.2, 0.25, min ⁇ a, b ⁇ is the smaller of a and b, Is a maximum integer less than or equal to d
- N DL RB is a downlink bandwidth setting expressed as a multiple of the resource block size.
- N rm is the number of PRBs used in the EPDCCH overlapping with PDSCH
- C thresh is a threshold value such as 0.15, 0.2, 0.25
- min ⁇ a, b ⁇ is the smaller of a and b.
- the value, N DL RB is a downlink bandwidth setting expressed as a multiple of the resource block size.
- N rm is the number of PRBs used for the EPDCCH overlapping with PDSCH
- c is 1, 1.2, 1.25 or 1.3
- min ⁇ a, b ⁇ is the smaller of a and b
- N DL RB is a downlink bandwidth setting expressed as a multiple of the resource block size.
- N rm is the number of PRBs used for the EPDCCH overlapping with PDSCH
- min ⁇ a, b ⁇ is a smaller value among a and b
- N DL RB is a downlink bandwidth setting expressed as a multiple of the resource block size.
- N rm is the number of PRBs used for the EPDCCH overlapping with PDSCH
- min ⁇ a, b ⁇ is a smaller value among a and b
- N DL RB is a downlink bandwidth setting expressed as a multiple of the resource block size.
- N rm is the number of PRBs used in the EPDCCH overlapping with PDSCH
- C thresh is a threshold value such as 0.15, 0.2, 0.25
- min ⁇ a, b ⁇ is the smaller of a and b.
- the value, N DL RB is a downlink bandwidth setting expressed as a multiple of the resource block size.
- FIG. 12 illustrates a method of receiving downlink data according to an embodiment of the present invention.
- an existing carrier type subframe is used in a PCell and an NCT subframe is used in an SCell.
- the terminal receives downlink control information from the PCell (S1210).
- a subframe in which downlink control information is received from a PCell is called a first subframe.
- the terminal receives downlink data from the SCell (S1220).
- the downlink data may be received through a PDSCH, and may be scheduled through downlink control information received in a first subframe. That is, the downlink control information may include information for cross carrier scheduling.
- the downlink control information may include information for cross carrier scheduling.
- a subframe in which downlink data is received to distinguish the first subframe is called a second subframe.
- the UE may determine a transport block size based on the carrier type of the second subframe (S1230). That is, the size of the transport block based on whether the second subframe is an NCT subframe, includes a reference signal for channel measurement, a special subframe in the TDD system, and / or whether the PDSCH starts with the first OFDM symbol, etc. Can be determined.
- the detailed process of determining the size of the transport block is as described above.
- the UE decodes the PDSCH based on the downlink control information and the transport block size (S1240). This may refer to 3GPP TS 36.213 V10.4.0.
- the NCT subframe may be set to use only EPDCCH without PDCCH.
- a PRB set may be configured, which is called an EPDCCH set.
- N rm may have the following options.
- the TBS not including the DCI scheduling the PDSCH may be predicted from the most recent SPS PDSCH transmission.
- the following methods may be considered for the USSS EPDCCH for flexible use of the SPS PDSCH scheduling using the EPDCCH.
- SPS PDSCH is rate matched around a PRB set to EPDCCH set. This may be indicated by a validation / activation DCI, an EPDCCH set containing the DCI or higher layer signaling. The option may be restricted to be used only when the EPDCCH set is a distributed EPDCCH set.
- SPS PDSCH is rate matched around a PRB set to either the first EPDCCH set or the second EPDCCH set.
- Option 2a SPS PDSCH is rate matched around a PRB set to any set of EPDCCHs.
- the option may be restricted to be used only when the EPDCCH set is a distributed EPDCCH set.
- Option 3 SPS PDSCH is not rate matched around a PRB set to EPDCCH set.
- Validate / Active DCI for SPS PDSCH may be rate matched to the PRB where SPS transmission is expected. That is, the SPS PDSCH is rate matched around the PRB where the UE finds the verify / active DCI.
- Option 5 The same PRBs that are rate matched to subframes of the same type as the current subframe type in the most recent SPS PDSCH transmission are assumed to be rate matched to the current SPS PDSCH.
- PDSCH is rate matched around a PRB set to an EPDCCH set assigned to CSS.
- PDSCH is not rate matched around a PRB set to an EPDCCH set assigned to CSS.
- PDSCH is rate matched only when the UE finds the DCI of the CSS EPDCCH set on the PRB where the CSS DCI and the PDSCH overlap.
- the terminal when configured with one or more (distributed) EPDCCH sets, the following cases may be considered.
- Option 1, Option 2 / 2a and Option 3 may be applied on a subframe basis. That is, when the SPS PDSCH is transmitted in the EPDCCH monitoring subframe, the assumption applied in each option may be applied in the subframe. Alternatively, if the terminal is set to the EPDCCH set regardless of the position where the active DCI is transmitted (for example, PDCCH monitoring subframe or EPDCCH monitoring subframe), options 1, 2, and 3 may be applied. For example, if option 2 is used for rate matching around the first EPDCCH set, it may be assumed that the same PRB is rate matched, regardless of the type of subframe.
- rate matching in the EPDCCH monitoring subframe is not performed.
- rate matching in the EPDCCH monitoring subframe is not performed.
- a successive SPS PDSCH may be sent in the PDCCH monitoring subframe.
- SPS PDSCH rate matching is considered in the EPDCCH monitoring subframe. However, SPS PDSCH rate matching around the EPDCCH region in the PDCCH monitoring subframe is not assumed. That is, regardless of rate matching in the EPDCCH monitoring subframe, rate matching around the EPDCCH set in the PDCCH monitoring subframe is not assumed.
- the same set of PRBs is rate matched regardless of the EPDCCH or PDCCH monitoring subframe. That is, the rate matched PRB set may follow a rate matching pattern determined by the verify / active DCI scheduling PDSCH.
- rate matching in option 1 or option 2 may be applied only in the EPDCCH monitoring subframe.
- Rate matching is applied regardless of the PDCCH or EPDCCH monitoring subframe.
- Rate matching is applied on a subframe basis. That is, it can be applied only to the EPDCCH monitoring subframe.
- rate matching around the EPDCCH is not performed in the PDCCH monitoring subframe, but in the EPDCCH monitoring subframe.
- the rate matching pattern in the EPDCCH monitoring subframe follows the most recent SPS PDSCH transmitted in the EPDCCH subframe.
- rate matching may be set for each subframe by a higher layer. For example, if the subframe is set to perform rate matching around the EPDCCH set, the PDSCH may be rate matched around the EPDCCH.
- the resource element used for PDCCH transmission is included in the CSI reference.
- the CSI reference resource is set according to the parameter l DataStart indicating a PDSCH start OFDM symbol that can be set in an upper layer.
- the UE When performing CQI estimation using a reference signal transmitted for time / frequency tracking, the UE receives information about a transmit power of a reference signal transmitted for time / frequency tracking and a power offset to be applied when estimating CQI from the base station It is then used to estimate the CQI.
- the information on the PDSCH transmission power is given as a power ratio of a reference signal transmitted for time / frequency tracking for PDSCH power, or time / frequency tracking for energy per PDSCH energy element (EPRE). It can be given as the EPRE rate of the reference signal transmitted for.
- the PDSCH transmission scheme assumed for the CSI reference resource assumes a transmission scheme for demodulating using URS in the case of NCT, and performs CQI estimation using CSI-RS.
- the amount of CSI feedback can be reduced by using channel reciprocity.
- whether the feedback of the PMI / RI can be set in the upper layer.
- the PDSCH transmission method of the CSI reference resource assumes a transmission mode 9 capable of up to 8 layer transmission.
- the PDSCH transmission method of the CSI reference resource may assume PDSCH transmission using a single antenna port.
- the antenna port of the PDSCH is to use the same antenna port as the antenna port for transmitting the reference signal used for time / frequency tracking.
- we assume PDSCH transmission of a single antenna port but in this case we assume a specific antenna port of the URS (e.g., port 7) and apply CSI feedback averaged by applying all PMI defined for feedback. Can be sent as a value.
- FIG. 13 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
- the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
- the memory 52 is connected to the processor 51 and stores various information for driving the processor 51.
- the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
- the processor 51 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 51.
- the terminal 60 includes a processor 61, a memory 62, and an RF unit 63.
- the memory 62 is connected to the processor 61 and stores various information for driving the processor 61.
- the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
- the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the terminal may be implemented by the processor 61.
- the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
- the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
- the RF unit may include a baseband circuit for processing a radio signal.
- the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
- the module may be stored in memory and executed by a processor.
- the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
무선 통신 시스템에서 하향링크 데이터를 수신하는 방법이 제공된다. 단말(user equipment, UE)은 제 1 서브프레임에서 1차 셀로부터 하향링크 제어 정보를 수신한다. 상기 단말은 제 2 서브프레임에서 PDSCH(physical downlink shared channel)를 통해 2차 셀로부터 하향링크 데이터를 수신한다. 상기 단말은 상기 제 2 서브프레임의 반송파 유형에 기반하여 전송 블록 크기를 결정한다. 상기 단말은 상기 하향링크 제어 정보 및 상기 전송 블록 크기에 기반하여 상기 PDSCH를 복호화한다.
Description
본 발명은 무선 통신에 관한 것으로, 보다 구체적으로 하향링크 데이터를 수신하는 방법 및 이를 이용하는 장치에 관한 것이다.
3GPP(3rd generation partnership project) TS(technical specification) 릴리이즈(release) 8을 기반으로 하는 LTE(long term evolution)는 유력한 차세대 이동 통신 표준이다. 최근에는, 다중 반송파를 지원하는 3GPP TS 릴리이즈 10을 기반으로 하는 LTA-A(LTE-advanced)의 표준화가 진행 중이다.
3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"에 개시된 바와 같이, 3GPP LTE/LTE-A의 물리 계층에는 CRS(cell-specific reference signal), PSS(primary synchronization signal)/SSS(secondary synchronization signal)와 같은 참조(reference) 신호와 PDCCH(physical downlink control channel), PBCH(physical broadcast channel)과 같은 제어 채널이 정의되어 있다.
한편, LTE 릴리이즈 8/9/10에서는 모든 DL 서브프레임에서 참조 신호 및 제어 채널이 전송된다. 그러나, 차기 통신 시스템에서는 좀 더 효율적으로 무선 자원을 이용하기 위해 참조 신호 및 제어 채널의 일부 또는 전부가 전송되지 않는 새로운 형태의 반송파를 도입할 것으로 예상된다. 이러한 반송파의 형태를 NCT(new carrier type)라 한다.
본 발명의 목적은 무선 통신 시스템에서 하향링크 데이터를 수신하는 방법 및 이를 이용하는 장치를 제공함에 있다.
본 발명의 다른 목적은 전송 블록 크기를 결정하는 방법 및 이를 이용하는 장치를 제공함에 있다.
본 발명의 일 실시예에 따르면 무선 통신 시스템에서 하향링크 데이터를 수신하는 방법이 제공된다. 상기 방법은 제 1 서브프레임에서 1차 셀로부터 하향링크 제어 정보를 수신하는 단계, 제 2 서브프레임에서 PDSCH(physical downlink shared channel)를 통해 2차 셀로부터 하향링크 데이터를 수신하는 단계, 상기 제 2 서브프레임의 반송파 유형에 기반하여 전송 블록 크기를 결정하는 단계, 및 상기 하향링크 제어 정보 및 상기 전송 블록 크기에 기반하여 상기 PDSCH를 복호화하는 단계를 포함한다.
본 발명의 다른 일 실시예에 따르면 무선 통신 시스템에서의 단말(user equipment, UE)이 제공된다. 상기 단말은 무선 신호를 송신 및 수신하는 RF(radio freqeuncy)부 및 상기 RF부와 연결되는 프로세서를 포함한다. 상기 프로세서는 제 1 서브프레임에서 1차 셀로부터 하향링크 제어 정보를 수신하고, 제 2 서브프레임에서 PDSCH(physical downlink shared channel)를 통해 2차 셀로부터 하향링크 데이터를 수신하고, 상기 제 2 서브프레임의 반송파 유형에 기반하여 전송 블록 크기를 결정하고, 및 상기 하향링크 제어 정보 및 상기 전송 블록 크기에 기반하여 상기 PDSCH를 복호화한다.
상기 전송 블록 크기는 상기 제 2 서브프레임에서 상기 PDSCH가 시작되는 OFDM(orthogonal frequency division multiplexing) 심볼의 위치에 기반하여 결정될 수 있다.
상기 전송 블록 크기는 상기 제 2 서브프레임이 채널 측정을 위한 참조 신호를 포함하는지에 기반하여 결정될 수 있다.
상기 전송 블록 크기는 상기 제 2 서브프레임에서 상기 PDSCH가 시작되는 OFDM(orthogonal frequency division multiplexing) 심볼의 위치 및 상기 제 2 서브프레임이 채널 측정을 위한 참조 신호를 포함하는지에 기반하여 결정될 수 있다.
상기 제 2 서브프레임이 TDD(time division duplex) 시스템에서의 스페셜 서브프레임인 경우, 상기 전송 블록의 크기는 상기 제 2 서브프레임의 스페셜 서브프레임 설정 및 상기 PDSCH가 시작되는 OFDM(orthogonal frequency division multiplexing) 심볼의 위치에 기반하여 결정될 수 있다.
상기 제 2 서브프레임이 TDD(time division duplex) 시스템에서의 스페셜 서브프레임인 경우, 상기 전송 블록의 크기는 상기 PDSCH의 전송을 위해 사용되는 OFDM(orthogonal frequency division multiplexing) 심볼의 개수에 기반하여 결정될 수 있다.
NCT(new carrier type) 서브프레임에서의 전송 블록 크기를 보다 정확하게 결정할 수 있다.
도 1은 3GPP(3rd generation partnership project) LTE(long term evolution)에서의 FDD(frequency division duplex)를 위한 무선 프레임(radio frame) 구조를 나타낸다.
도 2는 3GPP LTE에서 TDD(time division duplex)를 위한 무선 프레임의 구조를 나타낸다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 PDCCH(physical downlink control channel)의 모니터링을 나타낸 예시도이다.
도 6은 3GPP LTE의 하향링크 서브프레임에서 참조 신호(reference signal)와 제어 채널이 배치되는 예를 나타낸다.
도 7은 EPDCCH(enhanced PDCCH)를 갖는 서브프레임의 일 예이다.
도 8은 PRB(physical resource block) 쌍의 일 예를 나타낸다.
도 9는 상향링크 서브프레임의 구조를 나타낸다.
도 10은 단일 반송파 시스템과 반송파 집합 시스템의 서브프레임 구조의 일 예를 나타낸다.
도 11은 반송파 지시자 필드를 통하여 크로스 캐리어 스케줄링 되는 3GPP LTE-A(advanced) 시스템의 서브프레임 구조의 일 예를 나타낸다.
도 12는 본 발명의 일 실시예에 따른 하향링크 데이터를 수신하는 방법을 나타낸다.
도 13은 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
단말(user equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선 기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대 기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(access point, AP) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP TS(technical specification) 릴리이즈(release) 8을 기반으로 하는 3GPP LTE 또는 3GPP TS 릴리이즈 10을 기반으로 하는 3GPP LTE-A에서 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고 본 발명은 다양한 무선 통신 네트워크에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
한편, 3GPP LTE는 FDD(frequency division duplex)와 TDD(time division duplex)를 모두 지원한다. FDD에서는 상향링크(uplink, UL) 전송과 하향링크(downlink, DL) 수신이 서로 다른 주파수에서 수행되고, TDD에서는 동일한 주파수에서 수행된다. 전이중(full duplex)-FDD를 지원하는 단말은 특정 시간에 UL 전송과 DL 수신이 동시에 가능하다. 반이중(half duplex)-FDD와 TDD를 지원하는 단말은 UL 전송과 DL 수신이 동시에 가능하지 않다.
도 1은 3GPP LTE에서의 FDD를 위한 무선 프레임(radio frame) 구조를 나타낸다.
이는 3GPP(3rd Generation Partnership Project) TS 36.211 V10.4.0 (2011-12) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 10)"의 4.1절을 참조할 수 있다. FDD를 위한 무선 프레임의 구조를 프레임 구조 유형 1(frame structure type 1)이라고도 한다.
도 1을 참조하면, 무선 프레임은 10개의 서브프레임을 포함한다. 하나의 서브프레임은 2개의 연속적인 슬롯을 포함한다. 무선 프레임 내 슬롯은 #0부터 #19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 복수의 부반송파를 포함한다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 다른 명칭으로 불리울 수 있다. 예를 들어, 상향링크 다중 접속 방식으로 SC-FDMA가 사용될 경우, OFDM 심벌은 SC-FDMA 심벌이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다.
도 1의 무선 프레임의 구조는 일 예에 불과한 것이다. 따라서 무선 프레임에 포함되는 서브프레임의 개수나 서브프레임에 포함되는 슬롯의 개수, 또는 슬롯에 포함되는 OFDM 심벌의 개수는 다양하게 변경될 수 있다. 3GPP LTE는 노멀(normal) 사이클릭 프리픽스(cyclic prefix, CP)에서 하나의 슬롯은 7개의 OFDM 심벌을 포함하고, 확장(extended) CP에서 하나의 슬롯은 6개의 OFDM 심벌을 포함하는 것으로 정의하고 있다.
도 2는 3GPP LTE에서 TDD를 위한 무선 프레임의 구조를 나타낸다.
이는 3GPP(3rd Generation Partnership Project) TS 36.211 V10.3.0 (2011-09) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 10)"의 4.2절을 참조할 수 있다. TDD를 위한 무선 프레임의 구조를 프레임 구조 유형 2(frame structure type 2)이라고도 한다.
TDD를 위한 무선 프레임의 구조는 FDD를 위한 프레임의 구조와 유사하다. 다만, TDD에서는 하나의 무선 프레임은 DL 서브프레임, UL 서브프레임 및 스페셜 서브프레임으로 나눌 수 있다. 표 1은 무선 프레임의 설정(configuration)의 일 예를 나타낸다.
'D'는 DL 서브프레임, 'U'는 UL 서브프레임, 'S'는 스페셜 서브프레임을 나타낸다. 기지국으로부터 UL-DL 설정을 수신하면, 단말은 무선 프레임의 설정에 따라 어느 서브프레임이 DL 서브프레임 또는 UL 서브프레임인지를 알 수 있다.
인덱스 #1 및/또는 인덱스 #6을 갖는 서브프레임은 스페셜 서브프레임으로 설정될 수 있다. 스페셜 서브프레임은 DwPTS(downlink pilot time slot, DwPTS), GP(guard period) 및 UpPTS(uplink pilot time slot)을 포함한다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. GP은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
하향링크 슬롯은 시간 영역에서 복수의 OFDM 심벌을 포함하고, 주파수 영역에서 NRB개의 자원 블록을 포함한다. 하향링크 슬롯에 포함되는 자원 블록의 수 NRB 는 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 예를 들어, LTE 시스템에서 NRB는 6 내지 110 중 어느 하나일 수 있다. 하나의 자원 블록은 주파수 영역에서 복수의 부반송파를 포함한다. 상향링크 슬롯의 구조도 상기 하향링크 슬롯의 구조와 동일할 수 있다.
자원 그리드 상의 각 요소(element)를 자원 요소(resource element)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, k(k=0,...,NRB×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심벌 인덱스이다.
여기서, 하나의 자원 블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되는 7×12 자원 요소를 포함하는 것을 예시적으로 기술하나, 자원 블록 내 OFDM 심벌의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심벌의 수와 부반송파의 수는 CP의 길이, 주파수 간격(frequency spacing) 등에 따라 다양하게 변경될 수 있다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
하향링크(downlink, DL) 서브프레임은 시간 영역에서 제어 영역(control region)과 데이터 영역(data region)으로 나누어진다. 제어 영역은 서브프레임내의 첫 번째 슬롯의 앞선 최대 4개의 OFDM 심벌을 포함하나, 제어 영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어 영역에는 PDCCH(physical downlink control channel) 및 다른 제어 채널이 할당되고, 데이터 영역에는 PDSCH(physical downlink shared channel)가 할당된다.
3GPP TS 36.211 V10.4.0에 개시된 바와 같이, 3GPP LTE에서 하향링크 제어 채널은 PBCH(physical broadcast channel), PCFICH(physical control format indicator channel), PDCCH 및 PHICH(physical hybrid-ARQ indicator channel)로 나눌 수 있다.
PBCH은 무선 프레임의 첫 번째 서브프레임의 두 번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 단말이 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
서브프레임의 첫 번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임 내에서 제어 채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어 영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링 한다. PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 PUSCH(physical uplink shared channel) 상의 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH를 통해 전송된다.
PDCCH는 시간 영역에서 최대 4개의 OFDM 심벌을 차지하고, 주파수 영역에서는 시스템 전체 대역에 걸쳐서 전송된다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어 정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(voice over internet protocol)의 활성화 등을 포함할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어 채널인지 아닌지를 확인하는 방식이다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC(cyclic redundancy check)를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(radio network temporary identifier)라고 한다)를 CRC에 마스킹한다.
서브프레임내의 제어 영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. REG는 복수의 RE를 포함한다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
하나의 REG는 4개의 RE를 포함하고, 하나의 CCE는 9개의 REG를 포함한다. 하나의 PDCCH를 구성하기 위해 {1, 2, 4, 8}개의 CCE를 사용할 수 있으며, {1, 2, 4, 8} 각각의 요소를 CCE 집합 레벨(aggregation level)이라 한다.
PDCCH의 전송에 사용되는 CCE의 개수는 기지국이 채널 상태에 따라 결정한다. 예를 들어, 좋은 하향링크 채널 상태를 갖는 단말에게는 하나의 CCE를 PDCCH 전송에 사용할 수 있다. 나쁜(poor) 하향링크 채널 상태를 갖는 단말에게는 8개의 CCE를 PDCCH 전송에 사용할 수 있다.
하나 또는 그 이상의 CCE로 구성된 제어 채널은 REG 단위의 인터리빙을 수행하고, 셀 ID(identifier)에 기반한 순환 쉬프트(cyclic shift)가 수행된 후에 물리적 자원에 매핑된다.
도 5는 PDCCH의 모니터링을 나타낸 예시도이다. 이는 3GPP TS 36.213 V10.4.0 (2011-12) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 10)"의 9절을 참조할 수 있다.
단말은 자신의 PDCCH가 제어 영역 내의 어떤 위치에서 어떤 CCE 집합 레벨이나 DCI 포맷을 사용하여 전송되는지 알 수 없다. 하나의 서브프레임 내에서 복수의 PDCCH가 전송될 수 있으므로, 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링 한다. 여기서, 모니터링이란 단말이 PDCCH 포맷에 따라 PDCCH의 디코딩을 시도하는 것을 말한다.
3GPP LTE에서는 블라인드 디코딩으로 인한 부담을 줄이기 위해, 검색 공간(search space)을 사용한다. 검색 공간은 PDCCH를 위한 CCE의 모니터링 집합(monitoring set)이라 할 수 있다. 단말은 해당되는 검색 공간 내에서 PDCCH를 모니터링 한다.
검색 공간은 공용 검색 공간(common search space)과 단말 특정 검색 공간(UE-specific search space)로 나뉜다. 공용 검색 공간은 공용 제어 정보를 갖는 PDCCH를 검색하는 공간으로 CCE 인덱스 0~15까지 16개의 CCE로 구성되고, {4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다. 단말 특정 검색 공간은 {1, 2, 4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다.
다음 표 2는 단말에 의해 모니터링 되는 PDCCH 후보의 개수를 나타낸다.
검색 공간의 크기는 상기 표 2에 의해 정해지고, 검색 공간의 시작점은 공용 검색 공간과 단말 특정 검색 공간이 다르게 정의된다. 공용 검색 공간의 시작점은 서브프레임에 상관없이 고정되어 있지만, 단말 특정 검색 공간의 시작점은 단말 식별자(예컨대, C(cell)-RNTI), CCE 집합 레벨 및/또는 무선 프레임 내의 슬롯 번호에 따라 서브프레임마다 달라질 수 있다. 단말 특정 검색 공간의 시작점이 공용 검색 공간 내에 있을 경우, 단말 특정 검색 공간과 공용 검색 공간은 중복(overlap)될 수 있다.
집합 레벨 L∈{1,2,4,8}에서 검색 공간 S
k
(L) 는 PDCCH 후보의 집합으로 정의된다. 검색 공간 S
k
(L) 의 PDCCH 후보 m에 대응하는 CCE는 다음과 같이 주어진다.
여기서, i=0,1,...,L-1, m=0,...,M(L)-1, NCCE,k는 서브프레임 k의 제어 영역 내에서 PDCCH의 전송에 사용할 수 있는 CCE의 전체 개수이다. 제어 영역은 0부터 NCCE,k-1로 넘버링된 CCE들의 집합을 포함한다. M(L)은 주어진 검색 공간에서의 CCE 집합 레벨 L에서 PDCCH 후보의 개수이다.
단말에 반송파 지시자 필드(carrier indicator field)가 설정되면, m'=m+M(L)ncif이다. ncif는 반송파 지시자 필드의 값이다. 단말에 반송파 지시자 필드가 설정되지 않으면, m'=m이다.
공용 검색 공간에서, Yk는 2개의 집합 레벨, L=4 및 L=8에 대해 0으로 설정된다.
집합 레벨 L의 단말 특정 검색 공간에서, 변수 Yk는 다음과 같이 정의된다.
여기서, Y-1=nRNTI≠0, A=39827, D=65537, k=floor(ns/2), ns는 무선 프레임내의 슬롯 번호(slot number)이다.
단말이 C-RNTI를 기반으로 PDCCH를 모니터링 할 때, PDSCH의 전송 모드(transmission mode)에 따라 모니터링 할 DCI 포맷과 검색 공간이 결정된다. 다음의 표는 C-RNTI가 설정된 PDCCH 모니터링의 예를 나타낸다.
도 6은 3GPP LTE의 DL 서브프레임에서 참조 신호(reference signal)와 제어 채널이 배치되는 예를 나타낸다.
제어 영역은 앞선 3개의 OFDM 심벌을 포함하고, PDSCH가 전송되는 데이터 영역은 나머지 OFDM 심벌들을 포함한다.
제어 영역 내에서는 PCFICH, PHICH 및/또는 PDCCH가 전송된다. PCFICH의 반송파 지시자 필드는 3개의 OFDM 심벌을 가리킨다. 제어 영역에서 PCFICH 및/또는 PHICH가 전송되는 자원을 제외한 영역이 PDCCH를 모니터링 하는 PDCCH 영역이 된다.
또한, 서브프레임에는 다양한 참조 신호가 전송된다.
CRS(cell-specific reference signal)은 셀 내 모든 단말이 수신할 수 있고, 전 하향링크 대역에 걸쳐서 전송된다. 도 6에서, 'R0'는 제 1 안테나 포트에 대한 CRS가 전송되는 RE, 'R1'는 제 2 안테나 포트에 대한 CRS가 전송되는 RE, 'R2'는 제 3 안테나 포트에 대한 CRS가 전송되는 RE, 'R3'는 제4 안테나 포트에 대한 CRS가 전송되는 RE를 가리킨다.
CRS를 위한 참조 신호 시퀀스 rl,ns(m)은 다음과 같이 정의된다.
여기서, m=0,1,...,2NmaxRB-1, NmaxRB는 자원 블록의 최대 개수, ns는 무선 프레임내 슬롯 번호, l은 슬롯내 OFDM 심벌 번호이다.
의사 난수 시퀀스(pseudo-random sequence) c(i)는 다음과 같은 길이 31의 골드(Gold) 시퀀스에 의해 정의된다.
여기서, Nc=1600, 첫 번째 m-시퀀스는 x1(0)=1, x1(n)=0, m=1,2,...,30으로 초기화된다.
두 번째 m-시퀀스는 각 OFDM 심벌의 시작에서 cinit=210(7(ns+1)+l+1)(2Ncell
ID+1)+2Ncell
ID+NCP로 초기화된다. Ncell
ID는 PCI(physical cell identity)이고, 노멀 CP 에서 NCP=1, 확장 CP에서 NCP=0이다.
또한, URS(UE-specific reference signal)가 전송될 수 있다. CRS가 서브프레임의 전 영역에서 전송되지만, URS는 서브프레임의 데이터 영역 내에서 전송되고, 대응하는 PDSCH의 복조에 사용된다. 도 6에서, 'R5'는 URS가 전송되는 RE를 가리킨다. URS는 DRS(dedicated reference signal) 또는 DM-RS(demodulation reference signal)이라고도 한다.
URS는 대응하는 PDSCH가 맵핑되는 자원 블록에서만 전송된다. 도 6에는 PDSCH가 전송되는 영역 외에도 R5가 표시되어 있지만, 이는 URS가 맵핑되는 자원 요소의 위치를 나타내기 위한 것이다.
URS는 대응하는 PDSCH를 수신하는 단말만이 사용한다. URS를 위한 참조 신호 시퀀스 rns(m)은 수학식 3과 동일하다. 이때, m=0,1,...,12NPDSCH,RB-1 이고, NPDSCH,RB는 대응하는 PDSCH 전송의 자원 블록 개수이다. 의사 난수 시퀀스 생성기는 각 서브프레임의 시작에서 cinit=(floor(ns/2)+1)(2Ncell
ID+1)216+nRNTI로 초기화된다. nRNTI는 단말의 식별자이다.
URS는 단일 안테나를 통해 전송될 수 있지만, 다중 안테나를 통해 전송될 수도 있다. URS가 다중 안테나를 통해 전송되는 경우, 의사 난수 시퀀스 생성기는 각 서브프레임의 시작에서 cinit=(floor(ns/2)+1)(2Ncell
ID+1)216+nSCID로 초기화된다. nSCID는 PDSCH 전송과 관련된 DL 그랜트(예컨대, DCI 포맷 2B 또는 2C)로부터 얻어지는 파라미터이다.
한편, PDCCH는 서브프레임내의 제어 영역이라는 한정된 영역에서 모니터링 되고, 또한 PDCCH의 복조를 위해서는 전 대역에서 전송되는 CRS가 사용된다. 제어 정보의 종류가 다양해지고, 제어 정보의 양이 증가함에 따라 기존의 PDCCH 만으로는 스케줄링의 유연성이 떨어진다. 또한, CRS 전송으로 인한 부담을 줄이기 위해, EPDCCH(enhanced PDCCH)가 도입되고 있다.
도 7은 EPDCCH를 갖는 서브프레임의 일 예이다.
서브프레임은 0 또는 하나의 PDCCH 영역(710) 및 0 또는 그 이상의 EPDCCH 영역(720, 730)을 포함할 수 있다.
EPDCCH 영역(720, 730)은 단말이 EPDCCH를 모니터링 하는 영역이다. PDCCH 영역(710)은 서브프레임의 앞선 최대 4개의 OFDM 심벌 내에서 위치하지만, EPDCCH 영역(720, 730)은 PDCCH 영역(710) 이후의 OFDM 심벌에서 유연하게 스케줄링 될 수 있다.
단말에 하나 이상의 EPDCCH 영역(720, 730)이 지정될 수 있고, 단말은 지정된 EPDCCH 영역(720, 730)에서 EPDCCH를 모니터링 할 수 있다.
EPDCCH 영역(720, 730)의 개수/위치/크기 및/또는 EPDCCH를 모니터링 할 서브프레임에 관한 정보는 기지국이 단말에 RRC(radio resource control) 메시지 등을 통해 알려줄 수 있다.
PDCCH 영역(710)에서는 CRS를 기반으로 PDCCH를 복조할 수 있다. EPDCCH 영역(720, 730)에서는 EPDCCH의 복조를 위해 CRS가 아닌 DM-RS를 정의할 수 있다. 해당 DM-RS는 대응하는 EPDCCH 영역(720, 730)에서 전송될 수 있다.
DM-RS를 위한 참조 신호 시퀀스 rns(m)은 수학식 3과 동일하다. 이때, m=0,1,...,12NRB-1 이고, NRB는 최대 자원 블록의 개수이다. 의사 난수 시퀀스 생성기는 각 서브프레임의 시작에서 cinit=(floor(ns/2)+1)(2NEPDCCH,ID+1)216+nEPDCCH,SCID로 초기화될 수 있다. ns는 무선 프레임내 슬롯 번호, NEPDCCH,ID는 해당되는 EPDCCH 영역과 관련된 셀 인덱스, nEPDCCH,SCID는 상위 계층 시그널링으로부터 주어지는 파라미터이다.
각 EPDCCH 영역(720, 730)은 서로 다른 셀을 위한 스케줄링에 사용될 수 있다. 예를 들어, EPDCCH 영역(720) 내의 EPDCCH는 제 1 셀을 위한 스케줄링 정보를 나르고, EPDCCH 영역(730) 내의 EPDCCH는 제 2 셀을 위한 스케줄링 정보를 나를 수 있다.
EPDCCH 영역(720, 730)에서 EPDCCH가 다중 안테나를 통해 전송될 때, EPDCCH 영역(720, 730) 내의 DM-RS는 EPDCCH와 동일한 프리코딩이 적용될 수 있다.
PDCCH가 전송 자원 단위로 CCE를 사용하는 것과 비교하여, EPDCCH를 위한 전송 자원 단위를 ECCE(enhanced control channel element)라 한다. 집합 레벨(aggregation level)은 EPDCCH를 모니터링 하는 자원 단위로 정의될 수 있다. 예를 들어, 1 ECCE가 EPDCCH를 위한 최소 자원이라고 할 때, 집합 레벨 L={1, 2, 4, 8, 16}과 같이 정의될 수 있다.
이하에서 EPDCCH 검색 공간은 EPDCCH 영역에 대응될 수 있다. EPDCCH 검색 공간에서는 하나 또는 그 이상의 집합 레벨 마다 하나 또는 그 이상의 EPDCCH 후보가 모니터링 될 수 있다.
이제 EPDCCH를 위한 자원 할당에 대해 기술한다.
EPDCCH는 하나 또는 그 이상의 ECCE를 이용하여 전송된다. ECCE는 복수의 EREG(enhanced resource element group)을 포함한다. 서브프레임의 유형과 CP에 따라 ECCE는 4 EREG 또는 8 EREG를 포함할 수 있다. 예를 들어, 노멀 CP에서 ECCE는 4 EREG를 포함하고, 확장 CP에서 ECCE는 8 EREG를 포함할 수 있다.
PRB(physical resource block) 쌍(pair)는 하나의 서브프레임에서 동일한 자원 블록 번호를 갖는 2개의 PRB를 말한다. 즉, PRB 쌍은 동일한 주파수 영역에서 첫 번째 슬롯의 제 1 PRB와 두 번째 슬롯의 제 2 PRB를 말한다. 노멀 CP에서, PRB 쌍은 14 OFDM 심벌과 12 부반송파를 포함한다.
도 8은 PRB 쌍의 일 예를 나타낸다. 이하에서는 각각의 PRB가 7 OFDM 심벌과 12 부반송파를 포함한다고 가정하지만, OFDM 심벌의 개수와 부반송파의 개수는 예시에 불과하다.
하나의 서브프레임에서, PRB 쌍은 168 자원 요소(resource element, RE)를 포함한다. DM-RS를 위한 24 RE를 제외한, 144 RE로부터 16 EREG를 구성한다. 즉, 1 EREG는 9 RE를 포함할 수 있다. 다만, 하나의 PRB 쌍에 DM-RS 외에 CSI-RS 또는 CRS가 배치될 수 있다. 상기 경우 가용한 RE의 수가 줄어들므로, 1 EREG에 포함되는 RE의 개수 역시 줄어들 수 있다. EREG에 포함되는 RE의 개수는 바뀔 수 있지만, 하나의 PRB 쌍에 포함되는 EREG의 수는 변하지 않는다.
도 8과 같이, 첫 번째 OFDM 심벌(l=0)의 첫 번째 부반송파부터 순차적으로 RE 인덱스를 매길 수 있다. 16 EREG에 0부터 15까지 인덱스를 매긴다고 하자. 이때, RE 인덱스 0을 가지는 9 RE를 EREG 0에 할당한다. 마찬가지로, RE 인덱스 k(k=0,..., 15)에 해당되는 9 RE를 EREG k에 할당한다.
복수의 EREG를 포함하는 새로운 자원 그룹을 정의한다. 예를 들어, 4개의 EREG를 갖는 자원 그룹을 정의한다면, 자원 그룹 #0={EREG 0, EREG 4, EREG 8, EREG 12}, 자원 그룹 #1={EREG 1, EREG 5, EREG 9, EREG 3}, 자원 그룹 #2={EREG 2, EREG 6, EREG 10, EREG 14}, 자원 그룹 #3={EREG 3, EREG 7, EREG 11, EREG 15}과 같이 정의할 수 있다. 8개의 EREG를 갖는 자원 그룹을 정의한다면, 자원 그룹 #0={EREG 0, EREG 2, EREG 4, EREG 6, EREG 8, EREG 10, EREG 12, EREG 14}, 자원 그룹 #1={EREG 1, EREG 3, EREG 5, EREG 7, EREG 9, EREG 11, EREG 13, EREG 15}과 같이 정의할 수 있다.
상술한 바와 같이, ECCE는 노멀 CP에서 4 EREG를 포함하고, 확장 CP에서 ECCE는 8 EREG를 포함할 수 있다. ECCE는 자원 그룹에 의해 정의된다. 예를 들어, 도 8은 ECCE #0이 자원 그룹 #0을 포함하고, ECCE #1이 자원 그룹 #1을 포함하고, ECCE #2이 자원 그룹 #2을 포함하고, ECCE #3이 자원 그룹 #3을 포함하는 것을 예시한다.
ECCE-to-EREG 맵핑에는 로컬 전송(localized transmission)과 분산 전송(distributed transmission)의 2가지가 있다. 로컬 전송에서 하나의 ECCE를 구성하는 자원 그룹은 하나의 PRB 쌍 내의 EREG에서 선택된다. 분산 전송에서 하나의 ECCE를 구성하는 자원 그룹은 서로 다른 PRB 쌍의 EREG에서 선택된다.
도 9는 상향링크 서브프레임의 구조를 나타낸다.
상향링크(uplink, UL) 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 상기 제어 영역은 상향링크 제어 정보가 전송되기 위한 PUCCH(physical uplink control channel)이 할당된다. 상기 데이터 영역은 데이터가 전송되기 위한 PUSCH이 할당된다.
하나의 단말에 대한 PUCCH는 서브프레임에서 PRB 쌍으로 할당된다. 하나의 PRB 쌍에 속하는 자원 블록들은 제 1 슬롯과 제 2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원 블록 쌍에 속하는 자원 블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 자원 블록 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다. 단말이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티 이득을 얻을 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원 블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다.
PUCCH 상으로 전송되는 상향링크 제어 정보에는 HARQ(hybrid automatic repeat request) ACK(acknowledgement), 하향링크 채널 상태를 나타내는 CQI(channel quality indicator), 상향링크 무선 자원 할당 요청인 SR(scheduling request) 등이 있다.
한편, 높은 데이터 전송률에 대한 요구가 높아지고 있고, 이에 따라 3GPP LTE-A에서는 복수의 셀을 지원하는 반송파 집합(carrier aggregation, CA)이 적용될 수 있다. CA는 대역폭 집합(bandwidth aggregation) 등의 다른 명칭으로 불릴 수 있다. CA는 무선 통신 시스템이 광대역을 지원하려고 할 때 목표로 하는 광대역보다 작은 대역폭을 가지는 1개 이상의 반송파를 모아서 광대역을 구성하는 것을 의미한다. 1개 이상의 반송파를 모을 때 대상이 되는 반송파는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원하며, 3GPP LTE-A에서는 상기 3GPP LTE 시스템의 대역폭만을 이용하여 20MHz 이상의 광대역을 구성할 수 있다. 또는 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
복수의 기지국과 단말은 최대 5개까지의 셀들을 통해 통신할 수 있다. 5개의 셀은 최대 100MHz이 대역폭에 대응될 수 있다. 즉, CA 환경은 특정 단말이 반송파 주파수가 서로 다른 2개 이상의 구성 서빙 셀(configured serving cell, 이하 셀이라 한다)을 가지는 경우를 나타낸다. 반송파 주파수는 셀의 중심 주파수를 나타낸다.
셀은 DL 자원과 선택적으로(optionally) UL 자원의 결합을 나타낸다. 즉, 셀은 DL 자원을 반드시 포함하며, DL 자원과 결합되는 UL 자원은 선택적으로 포함할 수 있다. DL 자원은 DL 구성 반송파(component carrier, CC)일 수 있다. UL 자원은 UL CC일 수 있다. 특정 단말이 하나의 구성 서빙 셀을 가지는 경우, 하나의 DL CC와 하나의 UL CC를 가질 수 있다. 특정 단말이 2개 이상의 셀을 가지는 경우, 셀의 개수만큼의 DL CC와 셀의 개수보다 작거나 같은 개수의 UL CC를 가질 수 있다. 즉, 현재 3GPP LTE-A에서 CA가 지원되는 경우, DL CC의 개수는 UL CC의 개수보다 항상 많거나 같을 수 있다. 그러나, 3GPP LTE-A 이후의 릴리이즈에서는 DL CC의 개수가 UL CC의 개수보다 적은 CA가 지원될 수도 있다.
DL CC의 반송파 주파수와 UL CC의 반송파 주파수의 연결(linkage)은 DL CC 상으로 전송되는 시스템 정보에 의해서 지시될 수 있다. 상기 시스템 정보는 SIB2(system information block type2)일 수 있다.
도 10은 단일 반송파 시스템과 반송파 집합 시스템의 서브프레임 구조의 일 예를 나타낸다.
도 10-(a)는 단일 반송파 시스템을 나타낸다. 도 10-(a)의 시스템 대역폭은 20MHz인 것을 가정한다. 반송파의 개수가 1개이므로, 기지국이 전송하는 DL CC의 대역폭과 단말이 전송하는 UL CC의 대역폭도 각각 20MHz이다. 기지국은 DL CC를 통해서 DL 전송을 수행하고, 단말은 UL CC를 통해서 UL 전송을 수행한다.
도 10-(b)는 반송파 집합 시스템을 나타낸다. 도 10-(b)의 시스템 대역폭은 60MHz인 것을 가정한다. 하향링크 대역폭은 각각 20MHz의 대역폭을 가지는 DL CC A, DL CC B 및 DL CC C로 구성된다. 상향링크 대역폭은 각각 20MHz의 대역폭을 가지는 UL CC A, UL CC B 및 UL CC C로 구성된다. 기지국은 DL CC A, DL CC B 및 DL CC C를 통해서 DL 전송을 수행하고, 단말은 UL CC A, UL CC B 및 UL CC C를 통해서 UL 전송을 수행한다. DL CC A와 UL CC A, DL CC B와 UL CC B, DL CC C와 UL CC C는 서로 대응될 수 있다.
단말은 복수의 DL CC들로부터 전송되는 DL 신호 및/또는 데이터를 동시에 모니터 및/또는 수신할 수 있다. 기지국은 셀이 관리하는 DL CC의 개수 N보다 적은 개수 M개의 DL CC로부터 전송되는 DL 신호 및/또는 데이터만이 모니터링 되도록 셀 특정하게 또는 단말 특정하게 DL CC를 구성할 수 있다. 또한, 기지국은 M개의 DL CC 중 L개의 DL CC로부터 전송되는 DL 신호 및/또는 데이터를 우선하여 모니터링 하도록 셀 특정하게 또는 단말 특정하게 L개의 DL CC를 구성할 수 있다.
CA를 지원하는 단말은 증가된 대역폭을 위하여 1차 셀(primary cell, PCell)과 적어도 하나의 2차 셀(secondary cell, SCell)을 사용할 수 있다. 즉, 2개 이상의 셀이 존재하는 경우, 하나의 셀은 PCell이 되고, 나머지 셀들은 Scell이 된다. PCell과 SCell 모두 서빙 셀이 될 수 있다. CA를 지원하지 않거나 지원할 수 없는 RRC_CONNECTED 상태에 있는 단말은 오직 PCell을 포함하는 하나의 서빙 셀만을 가질 수 있다. CA를 지원하는 RRC_CONNECTED 상태에 있는 단말은 PCell과 적어도 하나의 SCell을 포함하는 적어도 하나의 서빙 셀을 가질 수 있다.
PCell은 1차 주파수(primary frequency)에서 동작하는 셀일 수 있다. PCell은 단말이 네트워크와 RRC 연결을 수행하는 셀일 수 있다. PCell은 셀 인덱스(cell index)가 가장 작은 셀일 수 있다. PCell은 복수의 셀 중 PRACH(physical random access channel)를 통해 처음 랜덤 액세스를 시도하는 셀일 수 있다. PCell은 CA 환경에서 단말이 초기 연결 설정(initial connection establishment) 과정 또는 연결 재설정(connection re-establishment) 과정을 수행하는 셀일 수 있다. 또는 PCell은 핸드오버(handover) 과정에서 지시된 셀일 수 있다. 단말은 PCell을 통해서 RRC 연결/재설정/핸드오버 시에 NAS(non-access stratum) 이동성 정보(mobility information) (예컨대, TAI(tracking area indicator))를 획득할 수 있다. 또한, 단말은 PCell을 통해서 RRC 재설정/핸드오버 시에 보안 입력(security input)을 획득할 수 있다. 단말은 PCell에서만 PUCCH를 할당 받고 전송할 수 있다. 또한, 단말은 PCell에 대해서만 시스템 정보 획득(system information acquisition) 및 시스템 정보 변경 모니터링(system information change monitoring)을 적용할 수 있다. 네트워크는 MobilityControlInfo를 포함하는 RRCConnectionReconfiguration 메시지를 이용하여 핸드오버 과정에서 CA를 지원하는 단말의 PCell을 변경할 수 있다.
SCell은 2차 주파수(secondary frequency)에서 동작하는 셀일 수 있다. SCell은 추가적인 무선 자원을 제공하기 위하여 사용된다. SCell에는 PUCCH가 할당되지 않는다. 네트워크는 SCell을 추가할 때 해당 셀의 시스템 정보를 전용 시그널링(dedicated signaling)을 통해 RRC_CONNECTED 상태에 있는 단말에 제공한다. SCell에 대하여 시스템 정보의 변경은 셀의 해제 및 추가에 의해서 수행될 수 있으며, 네트워크는 RRCConnectionReconfiguration 메시지를 이용한 RRC 연결 재설정 과정을 통해 독립적으로 SCell을 추가, 제거 또는 수정할 수 있다.
CA를 지원하는 LTE-A 단말은 용량에 따라서 하나 또는 복수의 CC를 동시에 전송 또는 수신할 수 있다. CA를 지원하지 않는 LTE 단말은 CA를 구성하는 각 CC가 기존의 LTE 시스템과 호환될 때 하나의 CC만을 송신 또는 수신할 수 있다. 따라서, 적어도 상향링크와 하향링크에서 사용되는 CC의 개수가 같은 경우, 모든 CC가 기존의 LTE 시스템과 호환되도록 구성될 필요가 있다. 또한, 복수의 CC를 효율적으로 사용하기 위하여 복수의 CC를 MAC(media access control)에서 관리할 수 있다. DL에서 CA가 구성되는 경우 단말 내의 수신기는 복수의 DL CC를 수신할 수 있어야 하며, UL에서 CA가 구성되는 경우 단말 내의 송신기는 복수의 UL CC를 전송할 수 있어야 한다.
CA 환경이 도입됨에 따라, 크로스 캐리어 스케줄링이 적용될 수 있다. 크로스 캐리어 스케줄링을 통해 특정 DL CC 상의 PDCCH가 복수의 DL CC 중 어느 하나의 DL CC 상의 PDSCH를 스케줄링 하거나, 복수의 UL CC 중 어느 하나의 UL CC 상의 PUSCH를 스케줄링할 수 있다. 크로스 캐리어 스케줄링을 위하여 반송파 지시자 필드(carrier indicator field, CIF)가 정의될 수 있다. CIF는 PDCCH 상으로 전송되는 DCI 포맷에 포함될 수 있다. DCI 포맷 내의 CIF의 존재 여부는 반정적(semi-statically) 또는 단말 특정하게 상위 계층에 의해서 지시될 수 있다. 크로스 캐리어 스케줄링이 수행될 때, CIF는 PDSCH가 스케줄링 되는 DL CC 또는 PUSCH가 스케줄링 되는 UL CC를 지시할 수 있다. CIF는 고정된 3비트일 수 있으며, DCI 포맷의 크기에 관계없이 고정된 위치에 존재할 수 있다. DCI 포맷 내에 CIF가 존재하지 않는 경우, 특정 DL CC 상의 PDCCH는 동일한 DL CC 상의 PDSCH를 스케줄링 하거나, 상기 특정 DL CC와 SIB2 연결된 UL CC 상의 PUSCH를 스케줄링할 수 있다.
CIF를 이용하여 크로스 캐리어 스케줄링을 수행하는 경우, 기지국은 단말의 블라인드 디코딩의 복잡도를 줄이기 위하여 PDCCH 모니터링 DL CC 집합을 할당할 수 있다. PDCCH 모니터링 DL CC 집합은 전체 DL CC의 일부이며, 단말은 PDCCH 모니터링 DL CC 집합 내의 PDCCH에 대하여만 블라인드 디코딩을 수행한다. 즉, 단말에 대하여 PDSCH 및/또는 PUSCH를 스케줄링 하기 위하여, 기지국은 PDCCH 모니터링 DL CC 집합 내의 DL CC만을 통하여 PDCCH를 전송할 수 있다. PDCCH 모니터링 DL CC 집합은 단말 특정(UE specific)하게, 단말 그룹(UE group specific) 특정하게 또는 셀 특정(cell specific)하게 설정될 수 있다.
도 11은 CIF를 통하여 크로스 캐리어 스케줄링 되는 3GPP LTE-A 시스템의 서브프레임 구조의 일 예를 나타낸다.
도 11을 참조하면, 3개의 DL CC 중 제 1 DL CC가 PDCCH 모니터링 DL CC로 설정된다. 크로스 캐리어 스케줄링이 수행되지 않는 경우, 각 DL CC는 PDCCH를 전송하여 PDSCH를 스케줄링 한다. 크로스 캐리어 스케줄링이 수행되는 경우, PDCCH 모니터링 DL CC로 설정된 제 1 DL CC만이 PDCCH를 전송한다. 제 1 DL CC 상으로 전송되는 PDCCH는 CIF를 이용하여 제 1 DL CC의 PDSCH 뿐만 아니라 제 2 DL CC 및 제 3 DL CC의 PDSCH를 스케줄링 한다. PDCCH 모니터링 DL CC로 설정되지 않은 제 2 DL CC 및 제 3 DL CC는 PDCCH를 전송하지 않을 수 있다.
한편, PCell에 대해서는 크로스 캐리어 스케줄링이 지원되지 않는다. 즉, PCell은 언제나 자신의 PDCCH에 의해서 스케줄링 된다. 셀의 UL 그랜트와 DL 할당(assignment)은 항상 동일한 셀로부터 스케줄링 된다. 즉, 셀 내에서 하향링크가 제 2 반송파 상으로 스케줄링 되면, 상향링크도 제 2 반송파 상으로 스케줄링 된다. PDCCH 지시는 오직 PCell 상으로만 전송될 수 있다. 또한, 집합된 셀에서 프레임 타이밍, SFN(super frame number) 타이밍 등은 정렬될(aligned) 수 있다.
단말은 PCell 상에서 집합 레벨이 4 또는 8인 경우 하나의 공용 검색 공간 (common search space, CSS)를 모니터링 할 수 있다. CIF가 설정되지 않은 단말은 각 활성화된 서빙 셀 상에서 집합 레벨이 1, 2, 4 또는 8 중 어느 하나인 경우 하나의 단말 특정 검색 공간(UE-specific search space, USS)를 모니터링 한다. CIF가 설정된 단말은 상위 계층에 의해서 구성된 바와 같이, 하나 이상의 활성화된 서빙 셀 상에서 집합 레벨이 1, 2, 4 또는 8 중 어느 하나인 경우 하나 이상의 USS를 모니터링 한다. PCell 상에서 CSS와 USS는 서로 겹칠 수 있다.
서빙 셀에서 모니터링 되는 PDCCH에 관련된 CIF가 설정된 단말은, 서빙 셀의 USS에서 CIF로 구성되고 C-RNTI에 의해 스크램블링 되는 CRC를 포함하는 PDCCH를 모니터링 한다. PCell에서 모니터링 되는 PDCCH에 관련된 CIF가 설정된 단말은, PCell의 USS에서 CIF로 구성되고 SPS C-RNTI에 의해 스크램블링 되는 CRC를 포함하는 PDCCH를 모니터링 한다. 또한, 단말은 CIF 없이 CSS를 모니터링 할 수 있다. PDCCH가 모니터링 되는 서빙 셀에 대하여, CIF가 설정되지 않은 단말은 CIF 없이 USS를 모니터링하고, CIF가 설정된 단말은 CIF를 통해 USS를 모니터링 한다. 단말은 다른 서빙 셀에서 CIF를 통해 SCell의 PDCCH를 모니터링 하도록 구성되는 경우, SCell의 PDCCH를 모니터링 하지 않을 수 있다.
또한, 단말은 하나 이상의 DL CC로부터 수신, 검출 또는 측정된 채널 상태 정보(channel state information, CSI), ACK/NACK 신호 등의 상향링크 제어 정보 등을 미리 정해진 하나의 UL CC를 통해 기지국으로 전송할 수 있다. CSI는 CQI, PMI(precoding matrix indicator), RI(rank indicator) 등을 포함할 수 있다. 예를 들어, 단말이 복수의 DL CC들로부터 수신한 데이터에 대한 ACK/NACK 신호를 전송해야 할 필요가 있을 때, 단말은 각각의 DL CC로부터 수신한 데이터에 대한 복수의 ACK/NACK 신호들을 다중화(multiplexing) 또는 번들링(bundling)하여 하나의 UL CC의 PUCCH를 통해 기지국으로 전송할 수 있다. 3GPP LTE에서 DL CC에 대한 ACK/NACK 신호의 전송이 필요한 경우는 다음의 3가지가 있다.
1) 서브프레임 (n-k)에서 대응되는 PDCCH에 의하여 지시되는 PDSCH 전송에 대한 ACK/NACK 신호가 서브프레임 n에서 전송될 수 있다. k∈K이며, K는 서브프레임 n 및 UL/DL 구성(configuration)에 따른 M개의 원소 집합 {k0,k1,...,kM-1}이다. 이는 일반적인 PDSCH에 대한 ACK/NACK 신호가 전송되는 경우이다.
2) DL SPS(semi-persistent scheduling)의 해제(release)를 지시하는 서브프레임 (n-k)의 PDCCH에 대한 ACK/NACK 신호가 서브프레임 n에서 전송될 수 있다. k∈K이며, K는 서브프레임 n 및 UL/DL 구성(configuration)에 따른 M개의 원소 집합 {k0,k1,...,kM-1}이다. DL SPS의 활성화(activation)를 지시하는 PDCCH에 대한 ACK/NACK 신호는 전송하지 않는다.
3) 서브프레임 (n-k)에서 대응되는 PDCCH가 없는 PDSCH 전송에 대한 ACK/NACK 신호가 서브프레임 n에서 전송될 수 있다. k∈K이며, K는 서브프레임 n 및 UL/DL 구성(configuration)에 따른 M개의 원소 집합 {k0,k1,...,kM-1}이다. 이는 SPS에 대한 ACK/NACK 신호가 전송되는 경우이다.
상술한 설명에서, K는 번들링 창(bundling window)이라 한다. 번들링 창은 하나의 UL 서브프레임에서의 ACK/NACK 신호에 대응되는 하나 이상의 DL 서브프레임을 의미한다. FDD 시스템의 경우, M=1이며, K={k0}={4}이다. TDD 시스템의 경우, 집합 K는 다음의 표 4와 같이 정의될 수 있다.
한편, PDCCH 없이 EPDCCH만을 사용하는 서브프레임이 정의될 수 있다. 이하에서는 EPDCCH만을 사용하는 반송파 유형을 NCT(new carrier type)라고 부르기로 한다. 그러나, NCT는 PDCCH를 포함하는 기존의 LTE 서브프레임을 포함할 수도 있다. 또한, NCT는 모든 서브프레임에 적용될 수 있지만, MBSFN(multicast-broadcast single frequency network) 서브프레임과 같은 특수한 서브프레임 또는 CA 환경에서 SCell의 DL 서브프레임에만 적용될 수 있다. 이하에서는 NCT가 적용되기 위해 기존의 LTE 시스템에서 변경되어야 할 것들을 기술하기로 한다.
1. 전송 블록 크기(transport block size, TBS) 결정
현재 LTE 사양(specification)에 따르면, 노멀 CP에서의 PDSCH의 전송 블록 크기는 12 OFDM 심벌로 가정된다. 그러나, NCT에서는 PDCCH가 전송되지 않을 수 있으므로, EPDCCH 및 PDSCH가 각 서브프레임의 첫 번째 OFDM 심벌부터 시작될 수 있다. 따라서, PDCCH가 전송되지 않는 경우, 각 서브프레임마다 14 OFDM 심벌 모두가 PDSCH를 나르기 위해 사용될 수 있다. 상기 경우, NCT에서의 TBS는 기존의 반송파 유형에서의 TBS과 비교하여 약 15%가 증가될 수 있다.
또한, NCT에서는 CRS가 전송되지 않는 서브프레임이 존재한다. 기존의 반송파 유형에서 CRS가 모든 서브프레임에서 전송되는 것과 비교하여, NCT에서 CRS는 다섯 개의 서브프레임마다, 즉 5ms 주기로 전송될 수 있다. NCT에서 CRS는 PDSCH의 복조를 위해 사용되지 않고, 트래킹(tracking)를 위해서만 사용될 수 있으며, TRS(tracking reference signal)로 불릴 수 있다. 단일 포트에서의 CRS 오버헤드는 약 5%이므로, 기존의 서브프레임과 CRS가 전송되지 않는 NCT 서브프레임 간의 PDSCH 전송에 이용 가능한 자원 요소의 차이는 최대 20% 정도가 된다.
한편, 3GPP TS 36.213 V10.4.0의 7.1.7절을 참조하면, TBS는 다음과 같은 과정에 의해 계산된다.
1. N'
PRB를 할당된 PRB의 개수로 설정한다. 상기 할당된 PRB의 개수는 3GPP TS 36.213 V10.4.0의 7.6절에 기반한다.
2. (1) 전송 블록이 프레임 구조 유형 2, 즉 TDD를 위한 무선 프레임 구조에서의 스페셜 서브프레임의 DwPTS에서 전송되면, 표 7.1.7.2.1-1의 행 지시자(column indicator) N
PRB는 다음의 수학식 5와 같이 설정된다.
(2) 그렇지 않으면, 표 7.1.7.2.1-1의 행 지시자 N
PRB는 다음의 수학식 6과 같이 설정된다.
본 발명은 상술한 과정을 다음과 같이 변경할 것을 제안한다.
1. N''
PRB를 할당된 PRB의 개수로 설정한다. 상기 할당된 PRB의 개수는 3GPP TS 36.213 V10.4.0의 7.6절에 기반한다.
2. (1) 전송 블록이 NCT 서브프레임에서 전송되면,
(1-1) PDSCH가 OFDM 심벌 #0, 즉 첫 번째 OFDM 심벌부터 시작되면,
(1-1-1) CRS가 전송되지 않는다면, N'
PRB는 다음의 수학식 7과 같이 설정된다.
여기서, c=1.20, min{a,b}는 a 및 b 중에서 작은 값, 는 d보다 같거나 작은 최대의 정수, N
DL
RB 는 자원 블록 크기의 배수로 표현되는 하향링크 대역폭 설정이다.
(1-1-2) 그렇지 않으면, N'
PRB는 다음의 수학식 8과 같이 설정된다
여기서, c=1.15, min{a,b}는 a 및 b 중에서 작은 값, 는 d보다 같거나 작은 최대의 정수, N
DL
RB 는 자원 블록 크기의 배수로 표현되는 하향링크 대역폭 설정이다.
(1-2) 그렇지 않으면,
(1-2-1) CRS가 전송되지 않는다면, N'
PRB는 다음의 수학식 9와 같이 설정된다.
여기서, c=1.05, min{a,b}는 a 및 b 중에서 작은 값, 는 d보다 같거나 작은 최대의 정수, N
DL
RB 는 자원 블록 크기의 배수로 표현되는 하향링크 대역폭 설정이다.
(2) 그렇지 않으면, N'
PRB는 다음의 수학식 10과 같이 설정된다.
3. (1) 전송 블록이 프레임 구조 유형 2, 즉 TDD를 위한 무선 프레임 구조에서의 스페셜 서브프레임의 DwPTS에서 전송되면, 표 7.1.7.2.1-1의 행 지시자(column indicator) N
PRB는 다음의 수학식 11과 같이 설정된다.
(2) 그렇지 않으면, 표 7.1.7.2.1-1의 행 지시자 N
PRB는 다음의 수학식 12와 같이 설정된다.
상술한 과정에 따르면, 전송 블록이 NCT 서브프레임에서 전송되는지, 또한 NCT 서브프레임에서 전송되는 경우, NCT 서브프레임에서의 PDSCH의 시작점 및 CRS의 포함 여부에 따라 TBS가 다르게 결정된다. 예를 들어, 전송 블록이 NCT 서브프레임에서 전송되고, 상기 NCT 서브프레임이 CRS를 포함하지 않고, 상기 NCT 서브프레임에서 PDSCH이 첫 번째 OFDM 심벌에서 시작한다면, 약 20%의 증가된 자원이 TBS 선택에 반영된다.
한편, 현재 LTE 사양에 따르면, TDD를 위한 무선 프레임에서는 DL 서브프레임으로부터 UL 서브프레임으로의 전환을 위한 타이밍 갭(timing gap)이 요구된다. 이를 위해, DL 서브프레임과 UL 서브프레임 사이에 스페셜 서브프레임이 존재하며, 채널 조건, 단말의 위치 등에 따라 다양한 스페셜 서브프레임 설정(configuration)이 지원된다. 표 5는 스페셜 서브프레임 설정의 일 예이다.
스페셜 서브프레임의 경우, 전송 블록 크기를 결정하기 위한 환산 계수는 PDSCH가 시작되는 OFDM 심볼의 위치 등에 기반하여 변경될 수 있다. 현재 LTE 사양에 따르면, 환산 계수는 노멀 CP에서 Conf 0 및 5, 또는 확장 CP에서 Conf 0 및 4를 제외한 스페셜 서브프레임 설정에서 '0.75'이다. NCT 스페셜 서브프레임에서는 PDCCH가 포함되지 않을 수 있으며, PDSCH가 첫 번째 OFDM 심볼에서 시작할 수 있다. 따라서, NCT 스페셜 서브프레임에서 PDSCH 전송을 위해 이용 가능한 OFDM 심볼은 노멀 CP에서 8-11에서 11-14로 증가할 수 있다. 기존의 반송파 유형에서의 TBS 계산에 기반하여 획득한 OFDM 심벌의 개수가 12와 동일하거나 큰 경우, 상기 환산 계수는 '1'로 증가될 수 있으며, 다음과 같은 옵션들이 선택될 수 있다.
옵션 1: NCT 스페셜 서브프레임에서 PDSCH가 첫 번째 OFDM 심볼에서 시작하는 경우, 노멀 CP에서 Conf 0 및 5, 또는 확장 CP에서 Conf 0 및 4를 제외한 모든 스페셜 서브프레임 설정에서 환산 계수 '1'를 적용한다.
옵션 2: NCT 스페셜 서브프레임에서 PDSCH가 첫 번째 OFDM 심볼에서 시작하는 경우, 환산 계수를 Conf 1 및 6에서 '0.75'로, Conf 2,3,4,7 및 8에서 '1'로 적용한다.
옵션 3: PDSCH 전송을 위해 사용되는 OFDM 심벌의 개수가 12와 동일하거나 크다면, 환산 계수를 PDSCH의 시작점에 관계없이 '1'로, 그렇지 않으면, '0.75'로 적용한다.
상술한 옵션들에 있어서, CRS가 전송되지 않는 서브프레임에서는 PDSCH의 시작점 및 서브프레임의 유형(예컨대, 노멀 서브프레임인지 또는 스페셜 서브프레임인지)에 기반하여 추가적인 환산 계수 '0.05'가 적용될 수 있다.
첫 번째 OFDM 심볼에서 시작되는 노멀 CP에서의 Conf 9 또는 확장 CP에서의 Conf 7 서브프레임은 12 OFDM 심볼들 중 6 OFDM 심볼들만이 이용 가능하다. 따라서, 다른 옵션으로 노멀 CP에서 Conf 9 또는 확장 CP에서 Conf 7의 확산 계수를 '0.5'로 적용할 수 있다.
한편, PDSCH와 다중화된 EPDCCH의 스케줄링에 있어서, 하향링크 데이터는 PDSCH를 스케줄링하는 DCI를 포함하는 EPDCCH와 레이트 매칭(rate-matching)될 수 있다. 상기 경우의 TBS를 결정함에 있어서는 PDSCH 또는 EPDCH를 위한 OFDM 심벌의 시작점 및/또는 PDSSCH를 스케줄링하는 DCI를 위한 PRB의 개수가 고려될 수 있다.
릴리이즈 10의 TBS 표와 CIF에 기반하면, 기지국은 CIF로 인해 15-20%의 차이(예컨대, 6 RB의 시스템 대역폭을 가지는 시스템에서 CIF가 1인 경우와 CIF가 3인 경우의 차이)를 다룰 수 있다. 따라서, 기지국은 최대 15%의 동적 상황 변경(dynamic situation changes)을 다룰 수 있다고 가정할 수 있다.
EPDCCH를 위한 OFDM 심볼의 시작점과 PRB 개수가 변경되는 동적 상황에서, 다음과 같은 TBS 결정 방법이 사용될 수 있다.
방법 1:
(1) N''PRB를 할당된 PRB의 개수로 설정한다. 상기 할당된 PRB의 개수는 3GPP TS 36.213 V10.4.0의 7.6절에 기반한다.
여기서, α는 0.7과 같은 상수, β는 1.0과 같은 0.5 이상의 상수, Starting_symbol는 PDSCH 시작점을 나타내는 OFDM 심볼 인덱스(예컨대, 0,1,2,...), N
rm 는 PDSCH와 중복되는 EPDCCH에 사용되는 PRB 개수, C
thresh 는 0.15, 0.2, 0.25와 같은 임계 값, min{a,b}는 a 및 b 중에서 작은 값, 는 d보다 같거나 작은 최대의 정수, N
DL
RB 는 자원 블록 크기의 배수로 표현되는 하향링크 대역폭 설정이다.
(2-2) 그렇지 않으면,
방법 1a:
(1) N''PRB를 할당된 PRB의 개수로 설정한다. 상기 할당된 PRB의 개수는 3GPP TS 36.213 V10.4.0의 7.6절에 기반한다.
여기서, α는 0.7과 같은 상수, β는 1.0과 같은 0.5 이상의 상수, Starting_symbol는 PDSCH 시작점을 나타내는 OFDM 심볼 인덱스(예컨대, 0,1,2,...), N
rm 는 PDSCH와 중복되는 EPDCCH에 사용되는 PRB 개수, C
thresh 는 0.15, 0.2, 0.25와 같은 임계 값, min{a,b}는 a 및 b 중에서 작은 값, 는 d보다 같거나 작은 최대의 정수, N
DL
RB 는 자원 블록 크기의 배수로 표현되는 하향링크 대역폭 설정이다.
여기서, β는 1.0과 같은 0.5 이상의 상수, N
rm 는 PDSCH와 중복되는 EPDCCH에 사용되는 PRB 개수, C
thresh 는 0.15, 0.2, 0.25와 같은 임계 값, min{a,b}는 a 및 b 중에서 작은 값, N
DL
RB 는 자원 블록 크기의 배수로 표현되는 하향링크 대역폭 설정이다.
(2-3) 그렇지 않으면,
방법 2:
(1) N''
PRB를 할당된 PRB의 개수로 설정한다. 상기 할당된 PRB의 개수는 3GPP TS 36.213 V10.4.0의 7.6절에 기반한다.
(2-1) 전송 블록이 PDSCH가 첫 번째 OFDM 심볼에서 시작하는(및/또는 트래킹을 위해 사용되는 CRS가 전송되지 않는) NCT 서브프레임에서 전송되면,
여기서, N
rm 는 PDSCH와 중복되는 EPDCCH에 사용되는 PRB 개수, c는 1, 1.2, 1.25 또는 1.3, min{a,b}는 a 및 b 중에서 작은 값, 는 d보다 같거나 작은 최대의 정수, N
DL
RB 는 자원 블록 크기의 배수로 표현되는 하향링크 대역폭 설정이다.
(2-2) 그렇지 않다면,
여기서, N
rm 는 PDSCH와 중복되는 EPDCCH에 사용되는 PRB 개수, min{a,b}는 a 및 b 중에서 작은 값, N
DL
RB 는 자원 블록 크기의 배수로 표현되는 하향링크 대역폭 설정이다.
방법 2a:
(1) N''
PRB를 할당된 PRB의 개수로 설정한다. 상기 할당된 PRB의 개수는 3GPP TS 36.213 V10.4.0의 7.6절에 기반한다.
(2-1) 전송 블록이 PDSCH가 첫 번째 OFDM 심볼에서 시작하는(및/또는 트래킹을 위해 사용되는 CRS가 전송되지 않는) NCT 서브프레임에서 전송되면,
(2-2) 그렇지 않다면,
여기서, N
rm 는 PDSCH와 중복되는 EPDCCH에 사용되는 PRB 개수, min{a,b}는 a 및 b 중에서 작은 값, N
DL
RB 는 자원 블록 크기의 배수로 표현되는 하향링크 대역폭 설정이다.
방법 3:
(1) N''
PRB를 할당된 PRB의 개수로 설정한다. 상기 할당된 PRB의 개수는 3GPP TS 36.213 V10.4.0의 7.6절에 기반한다.
여기서, β는 1.0과 같은 0.5 이상의 상수, N
rm 는 PDSCH와 중복되는 EPDCCH에 사용되는 PRB 개수, C
thresh 는 0.15, 0.2, 0.25와 같은 임계 값, min{a,b}는 a 및 b 중에서 작은 값, N
DL
RB 는 자원 블록 크기의 배수로 표현되는 하향링크 대역폭 설정이다.
(2-3) 그렇지 않으면,
도 12는 본 발명의 일 실시예에 따른 하향링크 데이터를 수신하는 방법을 나타낸다. 이하에서의 실시예에서는 PCell에서 기존의 반송파 유형의 서브프레임이 사용되고, SCell에서 NCT 서브프레임이 사용되는 것을 가정한다.
단말은 PCell로부터 하향링크 제어 정보를 수신한다(S1210). 설명의 편의를 위해, PCell로부터 하향링크 제어 정보가 수신되는 서브프레임을 제 1 서브프레임이라고 한다.
단말은 SCell로부터 하향링크 데이터를 수신한다(S1220). 상기 하향링크 데이터는 PDSCH를 통해 수신될 수 있으며, 제 1 서브프레임에서 수신된 하향링크 제어 정보를 통해 스케줄링될 수 있다. 즉, 상기 하향링크 제어 정보는 크로스 캐리어 스케줄링을 위한 정보를 포함할 수 있다. 또한, 제 1 서브프레임과의 구분을 위해 하향링크 데이터가 수신되는 서브프레임을 제 2 서브프레임이라고 한다.
단말은 제 2 서브프레임의 반송파 유형에 기반하여 전송 블록 크기를 결정할 수 있다(S1230). 즉, 제 2 서브프레임이 NCT 서브프레임인지, 채널 측정을 위한 참조 신호를 포함하는지, TDD 시스템에서의 스페셜 서브프레임인지 및/또는 PDSCH가 첫 번째 OFDM 심볼에서 시작되는지 등에 기반하여, 전송 블록의 크기가 결정될 수 있다. 전송 블록의 크기가 결정되는 구체적인 과정은 상술한 바와 같다.
단말은 하향링크 제어 정보 및 전송 블록 크기에 기반하여 PDSCH를 복호화한다(S1240). 이는 3GPP TS 36.213 V10.4.0를 참조할 수 있다.
2. SPS PDSCH와 EPDCCH 집합 사이의 레이트 매칭
상술한 바와 같이 NCT 서브프레임은 PDCCH 없이 EPDCCH만을 사용하는 것으로 설정될 수 있다. 단말이 EPDCCH를 모니터링하기 위해 PRB 집합이 설정될 수 있으며, 이를 EPDCCH 집합이라 한다.
상술한 수학식에서 N
rm은 다음과 같은 옵션들을 가질 수 있다.
- DCI에 의해 할당된 PDSCH의 PRB와 중복되는 EPDCCH의 PRB의 개수
- DCI에 의해 할당된 PDSCH의 PRB와 중복되는 (상기 DCI를 포함하는) EPDCCH 집합의 PRB의 개수
SPS PDSCH가 전송되는 경우에는 PDSCH를 스케줄링하는 DCI를 포함하지 않는 TBS는 가장 최근의 SPS PDSCH 전송으로부터 예측될 수 있다. 이때, EPDCCH를 이용하는 SPS PDSCH 스케줄링의 유연한 사용을 위해 다음과 같은 방법들이 USSS EPDCCH를 위해 고려될 수 있다.
- 옵션 1: SPS PDSCH는 EPDCCH 집합으로 설정된 PRB 주변에 레이트 매칭된다. 이는 검증(validation)/활성(activation) DCI, 상기 DCI를 포함하는 EPDCCH 집합 또는 상위 계층 시그널링에 의해 지시될 수 있다. 상기 옵션은 EPDCCH 집합이 분산 EPDCCH 집합인 경우에만 사용되는 것으로 제약될 수 있다.
- 옵션 2: SPS PDSCH는 제 1 EPDCCH 집합 또는 제 2 EPDCCH 집합으로 설정된 PRB 주변에 레이트 매칭된다.
- 옵션 2a: SPS PDSCH는 임의의 EPDCCH 집합으로 설정된 PRB 주변에 레이트 매칭된다. 상기 옵션은 EPDCCH 집합이 분산 EPDCCH 집합인 경우에만 사용되는 것으로 제약될 수 있다.
- 옵션 3: SPS PDSCH는 EPDCCH 집합으로 설정된 PRB 주변에 레이트 매칭되지 않는다.
- 옵션 4: SPS PDSCH을 위한 검증/활성 DCI는 SPS 전송이 예상되는 PRB에 레이트 매칭될 수 있다. 즉, SPS PDSCH는 단말이 검증/활성 DCI를 발견한 PRB 주변에 레이트 매칭된다.
- 옵션 5: 가장 최근 SPS PDSCH 전송에서 현재 서브프레임 유형과 동일한 유형의 서브프레임에 레이트 매칭된 동일한 PRB들은 현재 SPS PDSCH에 레이트 매칭되는 것으로 가정된다.
한편, SPS PDSCH 또는 DCI에 의해 스케줄링된 PDSCH를 위한 CSS EPDCCH를 위해,
- PDSCH는 CSS에 할당된 EPDCCH 집합으로 설정된 PRB 주변에 레이트 매칭된다.
- PDSCH는 CSS에 할당된 EPDCCH 집합으로 설정된 PRB 주변에 레이트 매칭되지 않는다.
- PDSCH는 단말이 CSS DCI와 PDSCH가 중복되는 PRB 상에서 CSS EPDCCH 집합의 DCI를 발견하는 경우에만 레이트 매칭된다.
또한, 단말이 하나 또는 그 이상의 (분산) EPDCCH 집합으로 설정되는 경우, 다음과 같은 경우들이 고려될 수 있다.
(1) 검증/활성 DCI가 PDCCH를 통해 스케줄링되고, SPS PDSCH가 EPDCCH를 모니터링하는 서브프레임에서 성공적으로 전송되면,
- 옵션 1, 옵션 2/2a 및 옵션 3이 서브프레임 기반으로 적용될 수 있다. 즉, SPS PDSCH가 EPDCCH 모니터링 서브프레임에서 전송되는 경우, 각 옵션에서 적용되는 가정이 상기 서브프레임에서 적용될 수 있다. 또는 단말이 활성 DCI가 전송되는 위치(예컨대, PDCCH 모니터링 서브프레임 또는 EPDCCH 모니터링 서브프레임인지)에 관계없이 EPDCCH 집합으로 설정되는 경우, 옵션 1, 2 및 3이 적용될 수 있다. 예를 들어, 옵션 2가 제 1 EPDCCH 집합 주변의 레이트 매칭에 사용되면, 서브프레임의 유형에 관계없이, 동일한 PRB가 레이트 매칭되는 것으로 가정될 수 있다.
- 옵션 4가 사용되면, EPDCCH 모니터링 서브프레임에서의 레이트 매칭은 수행되지 않는다.
- 옵션 5가 사용되면, EPDCCH 모니터링 서브프레임에서의 레이트 매칭은 수행되지 않는다.
(2) 검증/활성 DCI가 EPDCCH를 통해 스케줄링되면, 연속적인(successive) SPS PDSCH가 PDCCH 모니터링 서브프레임에서 전송될 수 있다.
- SPS PDSCH 레이트 매칭은 EPDCCH 모니터링 서브프레임에서 고려된다. 그러나, PDCCH 모니터링 서브프레임에서 EPDCCH 영역 주변의 SPS PDSCH 레이트 매칭은 가정되지 않는다. 즉, EPDCCH 모니터링 서브프레임에서의 레이트 매칭과 관계없이, PDCCH 모니터링 서브프레임에서 EPDCCH 집합 주변의 레이트 매칭은 가정되지 않는다.
- 또는, 동일한 PRB 집합은 EPDCCH 또는 PDCCH 모니터링 서브프레임과 관계없이 레이트 매칭되는 것으로 가정된다. 즉, 레이트 매칭된 PRB 세트는 검증/활성 DCI 스케줄링 PDSCH에 의해 결정된 레이트 매칭 패턴을 따를 수 있다.
(3) 활성 및 연속적인 PDSCH가 EPDCCH 모니터링 서브프레임에서 전송된다.
(4) 활성 및 연속적인 PDSCH가 PDCCH 모니터링 서브프레임에서 전송된다:
- 옵션 1 또는 옵션 2/2a가 가정되면, PDCCH 모니터링 서브프레임에서
i. 동일한 가정이 적용된다. 즉, PDCCH 모니터링 서브프레임에서 EPDCCH 집합 주변의 레이트 매칭이 수행된다.
ii. 또는, 옵션 1 또는 옵션 2에서 레이트 매칭이 EPDCCH 모니터링 서브프레임에서만 적용될 수 있다.
- 옵션 4 또는 옵션 5가 사용되면, 레이트 매칭이 가정되지 않는다.
요약하면, 레이트 매칭이 적용되면, 두 가지 옵션이 가능하다: (1) 레이트 매칭이 PDCCH 또는 EPDCCH 모니터링 서브프레임과 관계없이 적용된다. (2) 레이트 매칭이 서브프레임 기반으로 적용된다. 즉, EPDCCH 모니터링 서브프레임에만 적용될 수 있다.
특히, 옵션 5가 사용되는 경우, EPDCCH 주변의 레이트 매칭은 PDCCH 모니터링 서브프레임에서 수행되지 않고, EPDCCH 모니터링 서브프레임에서 수행된다. 따라서, EPDCCH 모니터링 서브프레임에서의 레이트 매칭 패턴은 EPDCCH 서브프레임에서 전송된 가장 최근의 SPS PDSCH를 따른다.
또한, 레이트 매칭은 상위 계층에 의해 서브프레임마다 설정될 수 있다. 예를 들어, 서브프레임이 EPDCCH 집합 주변의 레이트 매칭을 수행하는 것으로 설정된다면, PDSCH는 EPDCCH 주변에 레이트 매칭될 수 있다.
3. NCT에서의 CSI 피드백 가정
- 기존의 반송파 유형에서 서브프레임의 처음 3 OFDM 심볼까지 전송되는 PDCCH가 전송되지 않으므로 PDCCH 전송을 위해 사용되는 자원 요소를 CSI 참조(reference)에 포함한다. 다른 방법으로 상위 계층에서 설정할 수 있는 PDSCH 시작 OFDM 심볼을 지시하는 파라미터 l
DataStart에 따라서 CSI 참조 자원을 설정한다.
- 시간/주파수 추적(tracking)을 위해 특정 서브프레임에 전송되는 참조 신호에 할당되는 자원 요소는 없는 것으로 가정한다.
- PDCCH와 다른 제어 채널인 EPDCCH를 위해 할당된 자원 요소는 없는 것으로 가정한다.
- 시간/주파수 추적을 위해 전송되는 참조 신호를 이용하여 CQI 추정을 하는 경우, 단말은 시간/주파수 추적을 위해 전송되는 참조 신호의 전송 전력 및 CQI 추정 시 적용할 파워 오프셋에 대한 정보를 기지국으로부터 수신한 후 CQI 추정에 이용한다. 이 때, PDSCH 전송 전력에 대한 정보는 PDSCH 파워에 대한 시간/주파수 추적을 위해 전송되는 참조 신호의 파워 비율로 주어지거나, PDSCH 자원 요소당 에너지(energy per resource element, EPRE)에 대한 시간/주파수 추적을 위해 전송되는 참조 신호의 EPRE 비율로 주어질 수 있다.
4. CSI 참조 자원에 가정하는 PDSCH 전송 방식
CQI 추정할 때, CSI 참조 자원에 가정하는 PDSCH 전송 방식은 NCT의 경우 URS를 이용하여 복조하는 전송 방식을 가정하고, CSI-RS를 이용하여 CQI 추정을 수행한다. 하지만, TDD의 경우 하향링크와 상향링크가 서로 동일한 주파수를 사용하기 때문에, 채널 상반(channel reciprocity)을 이용하여 CSI 피드백의 양을 줄일 수 있다. 채널 상반을 이용할 수 있는 CSI 피드백 방법을 지원하기 위해서, PMI/RI의 피드백 여부를 상위 계층에서 설정할 수 있게 된다. PMI/RI를 전송하는 경우, CSI 참조 자원의 PDSCH 전송 방법은 8 계층 전송까지 가능한 전송 모드 9를 가정한다.
PMI/RI를 전송하지 않는 경우, CSI 참조 자원의 PDSCH 전송 방법은 단일 안테나 포트를 이용하는 PDSCH 전송을 가정할 수 있다. 이 때, PDSCH의 안테나 포트는 시간/주파수 추적을 위해 사용되는 참조 신호가 전송되는 안테나 포트와 동일한 안테나 포트를 사용하도록 한다. 다른 방법으로, 단일 안테나 포트의 PDSCH 전송을 가정하지만, 이 경우는 URS의 특정한 안테나 포트(예컨대, 포트 7)을 가정하고, 피드백 용으로 정의된 PMI를 모두 적용하여 평균을 취한 CQI 값을 CSI 피드백 값으로 전송할 수 있다.
도 13은 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸 블록도이다.
기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF unit, 53)을 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 정보를 저장한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 기지국의 동작은 프로세서(51)에 의해 구현될 수 있다.
단말(60)은 프로세서(61), 메모리(62) 및 RF부(63)을 포함한다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 정보를 저장한다. RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 단말의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 통상의 기술자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
Claims (17)
- 무선 통신 시스템에서 하향링크 데이터를 수신하는 방법에 있어서,제 1 서브프레임에서 1차 셀로부터 하향링크 제어 정보를 수신하는 단계;제 2 서브프레임에서 PDSCH(physical downlink shared channel)를 통해 2차 셀로부터 하향링크 데이터를 수신하는 단계;상기 제 2 서브프레임의 반송파 유형에 기반하여 전송 블록 크기를 결정하는 단계; 및상기 하향링크 제어 정보 및 상기 전송 블록 크기에 기반하여 상기 PDSCH를 복호화하는 단계를 포함하는 것을 특징으로 하는 방법.
- 제 1 항에 있어서,상기 전송 블록 크기는 상기 제 2 서브프레임에서 상기 PDSCH가 시작되는 OFDM(orthogonal frequency division multiplexing) 심볼의 위치에 기반하여 결정되는 것을 특징으로 하는 방법.
- 제 1 항에 있어서,상기 전송 블록 크기는 상기 제 2 서브프레임이 채널 측정을 위한 참조 신호를 포함하는지에 기반하여 결정되는 것을 특징으로 하는 방법.
- 제 1 항에 있어서,상기 전송 블록 크기는 상기 제 2 서브프레임에서 상기 PDSCH가 시작되는 OFDM(orthogonal frequency division multiplexing) 심볼의 위치 및 상기 제 2 서브프레임이 채널 측정을 위한 참조 신호를 포함하는지에 기반하여 결정되는 것을 특징으로 하는 방법.
- 제 6 항에 있어서,상기 PDSCH가 상기 제 2 서브프레임의 첫 번째 OFDM 심볼에서 시작되고, 상기 제 2 서브프레임이 상기 채널 측정을 위한 참조 신호를 포함하면, 상기 전송 블록의 크기는 다음의 수학식에 의해 결정되는 에 기반하여 결정되는 것을 특징으로 하는 방법.
- 제 6 항에 있어서,상기 채널 측정을 위한 참조 신호는 5ms마다 전송되는 TRS(tracking referece signal)인 것을 특징으로 하는 방법.
- 제 1 항에 있어서,상기 제 2 서브프레임이 TDD(time division duplex) 시스템에서의 스페셜 서브프레임이고,상기 전송 블록의 크기는 상기 제 2 서브프레임의 스페셜 서브프레임 설정 및 상기 PDSCH가 시작되는 OFDM(orthogonal frequency division multiplexing) 심볼의 위치에 기반하여 결정되는 것을 특징으로 하는 방법.
- 제 1 항에 있어서,상기 제 2 서브프레임이 TDD(time division duplex) 시스템에서의 스페셜 서브프레임이고,상기 전송 블록의 크기는 상기 PDSCH의 전송을 위해 사용되는 OFDM(orthogonal frequency division multiplexing) 심볼의 개수에 기반하여 결정되는 것을 특징으로 하는 방법.
- 무선 통신 시스템에서의 단말(user equipment, UE)에 있어서,무선 신호를 송신 및 수신하는 RF(radio freqeuncy)부; 및상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는제 1 서브프레임에서 1차 셀로부터 하향링크 제어 정보를 수신하고;제 2 서브프레임에서 PDSCH(physical downlink shared channel)를 통해 2차 셀로부터 하향링크 데이터를 수신하고;상기 제 2 서브프레임의 반송파 유형에 기반하여 전송 블록 크기를 결정하고; 및상기 하향링크 제어 정보 및 상기 전송 블록 크기에 기반하여 상기 PDSCH를 복호화하는 것을 특징으로 하는 단말.
- 제 11 항에 있어서,상기 전송 블록 크기는 상기 제 2 서브프레임에서 상기 PDSCH가 시작되는 OFDM(orthogonal frequency division multiplexing) 심볼의 위치에 기반하여 결정되는 것을 특징으로 하는 단말.
- 제 11 항에 있어서,상기 전송 블록 크기는 상기 제 2 서브프레임이 채널 측정을 위한 참조 신호를 포함하는지에 기반하여 결정되는 것을 특징으로 하는 단말.
- 제 11 항에 있어서,상기 전송 블록 크기는 상기 제 2 서브프레임에서 상기 PDSCH가 시작되는 OFDM(orthogonal frequency division multiplexing) 심볼의 위치 및 상기 제 2 서브프레임이 채널 측정을 위한 참조 신호를 포함하는지에 기반하여 결정되는 것을 특징으로 하는 단말.
- 제 14 항에 있어서,상기 채널 측정을 위한 참조 신호는 5ms마다 전송되는 TRS(tracking referece signal)인 것을 특징으로 하는 단말.
- 제 11 항에 있어서,상기 제 2 서브프레임이 TDD(time division duplex) 시스템에서의 스페셜 서브프레임이고,상기 전송 블록의 크기는 상기 제 2 서브프레임의 스페셜 서브프레임 설정 및 상기 PDSCH가 시작되는 OFDM(orthogonal frequency division multiplexing) 심볼의 위치에 기반하여 결정되는 것을 특징으로 하는 단말.
- 제 11 항에 있어서,상기 제 2 서브프레임이 TDD(time division duplex) 시스템에서의 스페셜 서브프레임이고,상기 전송 블록의 크기는 상기 PDSCH의 전송을 위해 사용되는 OFDM(orthogonal frequency division multiplexing) 심볼의 개수에 기반하여 결정되는 것을 특징으로 하는 단말.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/391,347 US9357543B2 (en) | 2012-04-18 | 2013-04-18 | Method and apparatus for receiving downlink data in wireless communication system |
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261635275P | 2012-04-18 | 2012-04-18 | |
US61/635,275 | 2012-04-18 | ||
US201261640011P | 2012-04-30 | 2012-04-30 | |
US61/640,011 | 2012-04-30 | ||
US201261655488P | 2012-06-05 | 2012-06-05 | |
US61/655,488 | 2012-06-05 | ||
US201261715313P | 2012-10-18 | 2012-10-18 | |
US61/715,313 | 2012-10-18 | ||
US201261723298P | 2012-11-06 | 2012-11-06 | |
US61/723,298 | 2012-11-06 | ||
US201261723747P | 2012-11-07 | 2012-11-07 | |
US61/723,747 | 2012-11-07 | ||
US201261729629P | 2012-11-25 | 2012-11-25 | |
US61/729,629 | 2012-11-25 | ||
US201361750815P | 2013-01-10 | 2013-01-10 | |
US61/750,815 | 2013-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013157872A1 true WO2013157872A1 (ko) | 2013-10-24 |
Family
ID=49383750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/003310 WO2013157872A1 (ko) | 2012-04-18 | 2013-04-18 | 무선 통신 시스템에서 하향링크 데이터를 수신하는 방법 및 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9357543B2 (ko) |
WO (1) | WO2013157872A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017018703A1 (ko) * | 2015-07-24 | 2017-02-02 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 신호의 전송 블록 사이즈 결정 방법 및 이를 위한 장치 |
CN110493878A (zh) * | 2015-09-20 | 2019-11-22 | 上海朗帛通信技术有限公司 | 无线通信中的一种低延时的方法和装置 |
US11483781B2 (en) | 2014-09-24 | 2022-10-25 | Interdigital Patent Holdings, Inc. | Channel usage indication and synchronization for LTE operation in unlicensed bands |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5961853B2 (ja) * | 2011-04-27 | 2016-08-02 | シャープ株式会社 | 端末、基地局、通信システムおよび通信方法 |
US9374178B2 (en) * | 2013-03-31 | 2016-06-21 | Tejas Networks Limited | Method, system and device for determining transport block size |
MX352077B (es) * | 2013-05-31 | 2017-11-08 | Huawei Tech Co Ltd | Metodo de comunicacion, estacion base y equipo de usuario. |
US10075266B2 (en) * | 2013-10-09 | 2018-09-11 | Qualcomm Incorporated | Data transmission scheme with unequal code block sizes |
US10171931B2 (en) * | 2014-03-18 | 2019-01-01 | Lg Electronics Inc. | Method for receiving downlink control channel by MTC device, and terminal |
CN112888015B (zh) | 2014-11-07 | 2023-09-15 | 北京三星通信技术研究有限公司 | 一种信道状态信息测量的方法和用户设备 |
WO2016182593A1 (en) * | 2015-05-13 | 2016-11-17 | Intel Corporation | Techniques for determining power offsets of a physical downlink shared channel |
US11490947B2 (en) | 2015-05-15 | 2022-11-08 | Clear Intradermal Technologies, Inc. | Tattoo removal using a liquid-gas mixture with plasma gas bubbles |
AU2016263428B2 (en) | 2015-05-15 | 2021-04-22 | Clear Intradermal Technologies, Inc. | Systems and methods for tattoo removal using cold plasma |
EP3243293B1 (en) * | 2015-10-17 | 2018-08-29 | Comcast Cable Communications, LLC | Control channel configuration in partial and full subframes |
JP7287779B2 (ja) * | 2016-03-24 | 2023-06-06 | 株式会社Nttドコモ | 無線基地局、張出装置及び通信制御方法 |
KR102164967B1 (ko) * | 2017-01-06 | 2020-10-13 | 한국전자통신연구원 | 통신 시스템에서 제어 채널의 송수신 방법 및 장치 |
EP3688901A1 (en) | 2017-09-29 | 2020-08-05 | Telefonaktiebolaget LM Ericsson (PUBL) | Transport block size configuration |
EP3737010B1 (en) | 2018-02-13 | 2024-01-24 | Huawei Technologies Co., Ltd. | Uplink signal transmitting method and receiving method, communication device and network device |
US11911090B2 (en) | 2018-12-19 | 2024-02-27 | Clear Intradermal Technologies, Inc. | Systems and methods for tattoo removal using an applied electric field |
US11888674B2 (en) * | 2020-02-14 | 2024-01-30 | Qualcomm Incorporated | 16-quadrature amplitude modulation (16-QAM) downlink configuration |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008133485A1 (en) * | 2007-04-30 | 2008-11-06 | Lg Electronics Inc. | Methods of generating data block in mobile communication system |
WO2010012239A1 (zh) * | 2008-07-30 | 2010-02-04 | 大唐移动通信设备有限公司 | 自适应调制和编码方法、系统及装置 |
US8284732B2 (en) * | 2009-02-03 | 2012-10-09 | Motorola Mobility Llc | Method and apparatus for transport block signaling in a wireless communication system |
US9763197B2 (en) * | 2009-10-05 | 2017-09-12 | Qualcomm Incorporated | Component carrier power control in multi-carrier wireless network |
US8824384B2 (en) * | 2009-12-14 | 2014-09-02 | Samsung Electronics Co., Ltd. | Systems and methods for transmitting channel quality information in wireless communication systems |
JP5990464B2 (ja) * | 2010-01-08 | 2016-09-14 | インターデイジタル パテント ホールディングス インコーポレイテッド | マルチキャリア/マルチセル動作のための不連続受信および/または不連続送信を実行する方法および装置 |
JP4923161B1 (ja) * | 2010-09-29 | 2012-04-25 | シャープ株式会社 | 移動通信システム、移動局装置、基地局装置、通信方法および集積回路 |
CN103155687A (zh) * | 2010-10-01 | 2013-06-12 | 交互数字专利控股公司 | 用于协调不连续接收drx的方法 |
US8724742B2 (en) * | 2010-10-06 | 2014-05-13 | Motorola Mobility Llc | Method and apparatus for soft buffer management for carrier aggregation |
US8837358B2 (en) * | 2010-10-18 | 2014-09-16 | Nokia Siemens Networks Oy | UL ACK/NACK for inter-radio access technology carrier aggregation |
JP4948671B1 (ja) * | 2010-10-29 | 2012-06-06 | シャープ株式会社 | 移動局装置、処理方法および集積回路 |
JP4969682B2 (ja) * | 2010-12-09 | 2012-07-04 | シャープ株式会社 | 移動局装置、通信システム、通信方法および集積回路 |
US20120207109A1 (en) * | 2011-02-14 | 2012-08-16 | Nokia Siemens Networks Oy | Multiplexing of ACK/NACK and channel state information on uplink control channel |
US9392464B2 (en) * | 2011-05-04 | 2016-07-12 | Google Technology Holdings LLC | Method and apparatus for providing user equipment access to TV white space resources by a broadband cellular network |
US9763230B2 (en) * | 2011-05-18 | 2017-09-12 | Lg Electronics Inc. | Method and apparatus for receiving and transmitting channel state information based on carrier sensing |
WO2013002685A1 (en) * | 2011-06-28 | 2013-01-03 | Telefonaktiebolaget L M Ericsson (Publ) | Scheduling of a user equipment in a radio communication system |
US20130016649A1 (en) * | 2011-07-12 | 2013-01-17 | Qualcomm Incorporated | System design for user equipment relays |
US9363753B2 (en) * | 2011-07-19 | 2016-06-07 | Qualcomm Incorporated | Sleep mode for user equipment relays |
EP2793406B1 (en) * | 2011-12-16 | 2016-10-05 | LG Electronics Inc. | Method and apparatus for resource mapping for physical channel in multiple cell system |
EP2801233A1 (en) * | 2012-01-02 | 2014-11-12 | Nokia Solutions and Networks Oy | Rate capping with multiple carrier aggregation schedulers |
US9065600B2 (en) * | 2012-03-14 | 2015-06-23 | Nokia Technologies Oy | Aggregation for a new carrier type |
-
2013
- 2013-04-18 US US14/391,347 patent/US9357543B2/en not_active Expired - Fee Related
- 2013-04-18 WO PCT/KR2013/003310 patent/WO2013157872A1/ko active Application Filing
Non-Patent Citations (5)
Title |
---|
"3GPP; TSGRAN; E-UTRA; Physical layer procedures (Release 10)", 3GPP TS 36.213 V10.5.0, March 2012 (2012-03-01) * |
CATT: "PDSCH TBS determination for additional TDD special subframe configurations", RL-121105, 3GPP TSG-RAN WG1 MEETING #68BIS, 26 March 2012 (2012-03-26), JEJU, KOREA * |
CMCC: "Discussion on additional special subframe configuration", RL-121712, 3GPP TSG- RAN WG1 MEETING #68BIS, 26 March 2012 (2012-03-26), JEJU, KOREA * |
ERICSSON ET AL.: "Discussion on additional special subframe configuration for LTE TDD", RL-121402, 3GPP TSG-RAN WG1 MEETING #68BIS, 26 March 2012 (2012-03-26), JEJU, KOREA * |
PANASONIC: "Channels and signals for additional carrier type", RL-121140, 3GPP TSG- RAN WG1 MEETING #68BIS, 26 March 2012 (2012-03-26), JEJU, KOREA * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11483781B2 (en) | 2014-09-24 | 2022-10-25 | Interdigital Patent Holdings, Inc. | Channel usage indication and synchronization for LTE operation in unlicensed bands |
WO2017018703A1 (ko) * | 2015-07-24 | 2017-02-02 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 신호의 전송 블록 사이즈 결정 방법 및 이를 위한 장치 |
US10517016B2 (en) | 2015-07-24 | 2019-12-24 | Lg Electronics Inc. | Method for determining size of transmission block of uplink signal in wireless communication system and apparatus therefor |
CN110493878A (zh) * | 2015-09-20 | 2019-11-22 | 上海朗帛通信技术有限公司 | 无线通信中的一种低延时的方法和装置 |
CN110493878B (zh) * | 2015-09-20 | 2022-08-26 | 上海朗帛通信技术有限公司 | 无线通信中的一种低延时的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
US20150071099A1 (en) | 2015-03-12 |
US9357543B2 (en) | 2016-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013157872A1 (ko) | 무선 통신 시스템에서 하향링크 데이터를 수신하는 방법 및 장치 | |
WO2018199685A1 (ko) | 통신 시스템에서 하향링크 채널 및 참조 신호의 송수신 방법 | |
WO2017160100A2 (ko) | 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치 | |
WO2014069944A1 (ko) | 무선 통신 시스템에서 데이터를 송/수신하는 방법 및 장치 | |
WO2018182358A1 (ko) | 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치 | |
WO2017018761A1 (ko) | 제어 정보 수신 방법 및 사용자기기와, 제어 정보 수신 방법 및 기지국 | |
WO2017018759A1 (ko) | 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국 | |
WO2014137105A1 (ko) | Epdcch를 통한 제어 정보 수신 방법 | |
WO2017043878A1 (ko) | 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 하향링크 물리 방송 채널 수신 방법 및 장치 | |
WO2014185673A1 (ko) | 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치 | |
WO2013147532A1 (ko) | 무선 통신 시스템에서 트래킹 참조 신호를 이용한 채널 측정 방법 및 이를 이용하는 장치 | |
WO2013151396A1 (ko) | 무선통신 시스템에서 반송파 집성 방법 및 장치 | |
WO2011122852A2 (ko) | 무선통신 시스템에서 제어채널을 모니터링하기 위한 방법 및 장치 | |
WO2014123387A1 (ko) | 단말의 간섭 제거를 위한 지원 정보 전송 방법 및 서빙셀 기지국 | |
WO2014204128A1 (ko) | Mtc 기기의 수신 방법 | |
WO2013025069A1 (en) | Apparatus and method for indicating synchronization signals in a wireless network | |
WO2013129884A1 (ko) | 하향링크 데이터 전송 방법 및 장치 | |
WO2016036097A1 (ko) | 비면허대역을 지원하는 무선접속시스템에서 채널상태측정 및 보고 방법 | |
WO2018128341A1 (ko) | Pbch 인코딩 및 전송을 위한 방법과 이를 위한 통신 장치 | |
WO2018128495A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2016129900A1 (ko) | 기계타입통신을 지원하는 무선접속시스템에서 물리방송채널을 송수신하는 방법 및 장치 | |
WO2014208940A1 (ko) | Mtc 기기의 동작 방법 | |
WO2018084487A1 (ko) | Nb iot에서 harq ack/nack 신호를 전송하는 방법 | |
WO2014123388A1 (ko) | 간섭 제거를 위해 네트워크 지원 정보를 전송하는 방법 및 서빙셀 기지국 | |
WO2019098748A1 (ko) | 무선 통신 시스템에서 신호를 수신하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13777476 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14391347 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13777476 Country of ref document: EP Kind code of ref document: A1 |