WO2013157696A1 - Fusion power generation system for multidirectional tracking of sunlight and wind power for smart energy generation and mass supply system of grid-connected and dispersion type - Google Patents

Fusion power generation system for multidirectional tracking of sunlight and wind power for smart energy generation and mass supply system of grid-connected and dispersion type Download PDF

Info

Publication number
WO2013157696A1
WO2013157696A1 PCT/KR2012/004526 KR2012004526W WO2013157696A1 WO 2013157696 A1 WO2013157696 A1 WO 2013157696A1 KR 2012004526 W KR2012004526 W KR 2012004526W WO 2013157696 A1 WO2013157696 A1 WO 2013157696A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
module
solar
wind
power generation
Prior art date
Application number
PCT/KR2012/004526
Other languages
French (fr)
Korean (ko)
Inventor
오명공
Original Assignee
Oh Myeong Gong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oh Myeong Gong filed Critical Oh Myeong Gong
Publication of WO2013157696A1 publication Critical patent/WO2013157696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/13Profile arrangements, e.g. trusses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/213Rotors for wind turbines with vertical axis of the Savonius type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This embodiment relates to a solar wind multi-directional tracking convergence power generation system for grid-connected distributed smart energy generation supply mass system.
  • a photovoltaic module used in a photovoltaic power generation system is a flat surface rectangular photovoltaic module having a single surface area is composed of one to many dozens in parallel.
  • the solar cell module is densely constructed as described above.
  • the solar cell module surface temperature rises in summer, and the amount of power generation decreases.
  • wind power is affected by wind pressure, resulting in damage to the structure. Snow accumulated on the surface caused breakage or reduction of power generation efficiency due to snow load.
  • the shadow of the wind generator is generated on the surface of the solar cell module has a phenomenon that the amount of solar power generation is reduced.
  • This embodiment utilizes the columnar space and increases the amount of power generated by increasing the mining rate by the solar automatic tracking of the solar module's lifting and lowering function of the solar module, and is equipped with a Savonius wind power generator inside the wind power when not solar power generation
  • wind turbines installed at the top are installed inside the solar module to eliminate projection shadows and have a multi-faceted configuration to protect the wind generators from typhoons and strong winds and to reduce wind pressure and unbalanced loads on structures. It aims to provide photovoltaic wind multi-faceted convergence power generation system for mass distributed system of linked distributed smart energy generation.
  • a grid-type distributed smart energy power generation system for tracking a large number of solar wind power generation convergence power generation systems may include a horizontal frame formed in a ring shape and a plurality of horizontal frames spaced apart from each other at least one of the horizontal frames and at least one horizontal frame.
  • a module frame including a vertical frame connecting two or more, and a central coupling part disposed in the center of the horizontal frame and having a pole or a traffic light penetrated in a vertical direction;
  • a multifaceted photovoltaic module mounted on an upper side of the module frame and including a plurality of vertical frames disposed at a predetermined interval along a horizontal frame and a photovoltaic module disposed between the plurality of vertical frames;
  • a lower polyhedral solar module positioned below the polyhedral solar module and including a plurality of frames provided along the horizontal frame and a solar module mounted to the frame;
  • a rotating body connecting the upper side of the lower polyhedral solar module and the horizontal frame and allowing the lower polyhedral solar module to rotate and unfold;
  • An opening and closing device provided in the module frame to allow the lower polyhedral solar module to rotate;
  • the lower polyhedral solar module is mounted inside the module frame corresponding to the lower polyhedral solar module, characterized in that it comprises a wind generator that is exposed to
  • the horizontal frame is provided on the upper end of the module frame, the upper horizontal frame formed in a circular shape; A middle upper side frame formed below the upper side horizontal frame and formed in a circular shape having a larger diameter than the upper side horizontal frame; A middle lower part furnace frame provided below the middle upper part furnace frame and formed in a circular shape having a larger diameter than the middle upper part furnace frame; An upper polygonal ring frame provided below the middle upper horizontal frame and formed in a polygonal shape in which the middle lower portion is inscribed with the road frame; It is provided below the middle upper horizontal frame, the lower polygonal ring frame formed in the same shape as the upper polygonal ring frame; characterized by consisting of.
  • the polyhedral solar module includes: an upper polyhedral solar module having upper and lower ends respectively fixed to the upper horizontal frame and the upper middle horizontal frame;
  • the upper and lower lower middle and upper and lower frame, respectively, is characterized in that it consists of a lower polyhedral solar module is fixed.
  • the frame of the lower polygonal solar module is provided between the upper polygonal ring frame and the lower polygonal ring frame, characterized in that formed in a rectangular shape corresponding to the length of one side of the upper polygonal ring frame.
  • the opening and closing device includes a servo motor for providing power for rotation of the lower polyhedral solar module;
  • a housing mounted to the main frame; Located inside the housing, one end is connected to the lower polyhedral solar module, characterized in that it comprises a shaft that enters into and out of the housing according to the rotation of the servomotor.
  • the wind generator is characterized in that the plurality of wind blades are arranged radially by the central coupling portion axis.
  • the wind power generator includes an upper circular fixing plate and a lower circular fixing plate which are penetrated by the central coupling part and spaced apart from each other; A plurality of wind vanes provided between the upper circular fixing plate and the lower circular fixing plate and disposed radially with respect to the central coupling part; It characterized in that it comprises a generator provided in the upper circular fixed plate corresponding to the rotary shaft of each wind blade.
  • the solar wind multi-directional tracking convergence power generation system is installed in one or two poles in series or in parallel to the power converter, characterized in that connected to the grid connection line through the electricity meter and transformer in the power converter.
  • the solar wind multi-track tracking convergence power generation system for a large-scale system is a summer solar cell caused by a large amount of flow wind speed as wind passes through the space between the various solar modules. By cooling the heat generated in the module at a high speed, it maintains the proper temperature so that power generation efficiency is not reduced.
  • the solar wind multi-directional tracking converged power generation system for grid-connected distributed smart energy power supply and mass supply system has a small surface area and has a slope so as to prevent snow from accumulating on the surface of the multi-sided solar cell module in winter. do.
  • the folding solar cell module moves up and down according to the movement trajectory of the sun to increase the amount of power generation.
  • the foldable solar module rises to open the internal space, thereby generating additional power by the operation of the wind turbine, and typhoons or strong winds have the advantage of preventing burnout of the wind turbine.
  • the foldable solar modules are multi-faceted and can be generated by scattering and reflection in places affected by shadow shading, eliminating the lateral load in the shape of a polygon, and having an excellent surface dominant effect in rain and wind, such as typhoons and strong winds. There is an advantage of reducing the wind pressure.
  • FIG. 1 is a pole installation diagram of the solar wind multi-directional tracking fusion generator according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the solar wind multi-directional tracking fusion generator.
  • FIG 3 is a side cross-sectional view of the solar wind multi-directional tracking fusion generator.
  • FIG. 4 is a perspective view of a module frame according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of a multi-sided solar tracking module according to an embodiment of the present invention.
  • FIG. 6 is an exploded view of a part of the upper polyhedral solar module according to an embodiment of the present invention.
  • FIG. 7 is a plan cross-sectional view of the upper polyhedral solar module.
  • FIG 8 is an exploded view of a portion of the central polyhedral solar module according to an embodiment of the present invention.
  • FIG. 9 is a plan sectional view of the central polyhedral solar module.
  • FIG. 10 is an exploded view of a part of a lower photovoltaic module according to an embodiment of the present invention.
  • 11 is a plan cross-sectional view of the lower side solar module.
  • FIG. 12 is a detailed view of the lower side photovoltaic module and cylinder.
  • FIG. 13 is a perspective view of a wind turbine according to an embodiment of the present invention.
  • 15 and 16 are the overall circuit diagram of the solar wind multi-directional tracking convergence power generation system for grid-connected distributed smart energy generation mass supply system according to an embodiment of the present invention.
  • 17 is a block diagram of a solar wind multi-directional tracking convergence power generation system for the grid-type distributed smart energy generation supply mass system.
  • 18 and 19 are program circuit diagrams of the solar wind multi-directional tracking convergence power generation system for the grid-type distributed smart energy generation supply mass system.
  • 20 and 21 is an overall system diagram of the solar wind multi-directional tracking convergence power generation system for the grid-connected distributed smart energy generation supply mass system.
  • FIG. 22 is a view illustrating the operation of the solar wind multi-directional tracking fusion generator.
  • FIG. 23 is an exemplary view in which the solar wind multi-directional tracking fusion generator is installed in a traffic light column.
  • FIG. 1 is a pole installation diagram of the solar wind multi-directional tracking fusion generator according to an embodiment of the present invention.
  • 2 is a perspective view of the solar wind multi-directional tracking fusion generator.
  • 3 is a side cross-sectional view of the solar wind multi-directional tracking fusion generator.
  • Figure 4 is a perspective view of the module frame according to an embodiment of the present invention.
  • Figure 5 is a perspective view of a multi-sided solar tracking module according to an embodiment of the present invention.
  • Figure 6 is an exploded view of part of the upper polyhedral solar module according to an embodiment of the present invention.
  • 7 is a plan sectional view of the upper polyhedral solar module.
  • Figure 8 is a partial exploded view of the central polyhedral solar module according to an embodiment of the present invention.
  • FIG. 9 is a plan sectional view of the central polyhedral solar module.
  • Figure 10 is an exploded view of a part of the lower photovoltaic module according to an embodiment of the present invention.
  • 11 is a plan cross-sectional view of the lower side solar module.
  • Figure 12 is a detailed view of the lower side photovoltaic module and cylinder.
  • Figure 13 is a perspective view of a wind turbine according to an embodiment of the present invention.
  • 14 is a side cross-sectional view of the wind turbine.
  • the upper polyhedral solar module 100 is positioned on the upper side, and the upper polyhedral solar module 100 is provided.
  • the central polyhedral photovoltaic module 200 is positioned below the central polyhedral photovoltaic module 200, and the lower polyhedral photovoltaic module 300 composed of a plurality of lower photovoltaic modules 301 below the central polyhedral photovoltaic module 200. It may be configured to include a module frame 400 and a cylinder 600 located in.
  • the upper polyhedral photovoltaic module 100 is vertically configured, and a plurality of upper vertical frames 111 inclined at a predetermined angle are arranged in parallel with a symmetrical interval therebetween and are arranged at regular intervals in a circle.
  • the upper vertical frame 111 is formed with a coupling groove 118 in one longitudinal direction.
  • the upper photovoltaic module 110 is coupled to the coupling groove 118 between each of the upper vertical frames 111 arranged in parallel, and an empty space is formed between the coupled upper photovoltaic modules 110 to vent holes. 117 is formed.
  • the upper part of the upper photovoltaic module 110, the upper module upper fixing body 112 is formed with a protrusion and a groove is coupled to the upper end of the upper photovoltaic module 110, the lower end of the upper module formed with a protrusion and the groove The fixture 113 is coupled. Therefore, the upper photovoltaic module 110 is fixed so as not to be separated from the upper vertical frame 111.
  • An upper upper frame 114 having a plurality of coupling grooves 119 formed thereon is fixed to an upper surface of the upper module upper fixing body 112 so that an upper end of the upper vertical frame 111 may be inserted into the coupling groove 119.
  • the upper lower frame 115 having a plurality of coupling grooves 120 formed on the bottom surface of the lower module fixing body 113 is padded and fixed to insert the lower end of the upper vertical frame 111 into the coupling groove 120.
  • the upper junction box 116 is attached to the upper and lower portions of the upper photovoltaic module 110 to serve as terminal blocks.
  • central polygonal solar module 200 a plurality of central vertical frames 211 inclined at a predetermined angle are arranged in parallel and spaced symmetrically with each other, and are arranged at regular intervals in a circle.
  • the central polygonal solar module 200 has a coupling groove 218 formed in one longitudinal direction.
  • the central photovoltaic module 210 is coupled to the coupling groove 218 between each of the central vertical frames 211 arranged in parallel, and an empty space is formed between the combined central photovoltaic modules 210 to vent holes 217. It is composed of
  • each of the central solar module 210 is a central module upper fixing body 212 is formed with a protrusion and a groove is coupled to the lower end of the central module module with a protrusion and groove formed at the bottom of the central solar module 210
  • the stagnation 213 is coupled so that the central photovoltaic module 210 is not separated from the central vertical frame 211.
  • the upper surface of the middle module upper fixing body 212 is fixed to the upper middle frame 214 having a plurality of coupling grooves 219 is formed so that the upper end of the central vertical frame 211 is inserted into the coupling groove 219.
  • the lower surface of the central module lower fixing body 213 is fixed to the middle lower frame 215 having a plurality of coupling grooves 220 is padded so that the lower end of the middle vertical frame 211 is inserted into the coupling groove 220.
  • the central junction box 216 which serves as a terminal block, is attached to the upper and lower portions at the rear of each of the central solar modules 210.
  • the lower side photovoltaic module 300 is configured to vertically comprise a lower photovoltaic module 310 coupled with a plurality of photovoltaic modules 311 to a rectangular frame 312, the lower photovoltaic module 310 It is configured to be arranged in a large number in this circle.
  • the lower junction box 313 which functions as a terminal block is attached to the upper and lower portions of the rear of each solar module 311.
  • the upper photovoltaic module 100, the central photovoltaic module 200, and the photovoltaic module 311 have a function of converting light energy into electrical energy, and are typically configured to produce electrical energy when receiving sunlight on a surface. It is.
  • the center coupling portion 410 is formed in a vertical cylindrical shape in the center of the multi-sided solar tracking module 11 is provided.
  • the central coupling portion 410 is divided into half vertically may be configured to be coupled to a pole, such as poles and poles.
  • the upper circular ring frame 420 is formed in a circular shape on the upper portion of the central coupling portion 410 to fix the upper end of the upper polyhedral solar module 100, from the central coupling portion 410 to the upper circular ring frame 420
  • the horizontal frame 421 of the wheel shape horizontally is coupled.
  • a circular middle upper circular ring frame 430 is positioned with a predetermined interval below the upper circular ring frame 420, so that the lower end of the upper polyhedral solar module 100 and the upper end of the central polyhedral solar module 200 are positioned. It is fixed, the middle upper portion circular frame 431 in the shape of the spokes horizontally from the center coupling portion 410 to the upper middle circular annular frame 430 is coupled.
  • the lower and lower circular annular frame 440 of the circular middle and lower circular circular frame 440 is located at a constant interval below the fixed to the bottom of each of the central solar module 200, the central coupling portion 410
  • the middle lower circular ring frame 440 horizontally to the middle lower circular ring frame 440 is coupled.
  • a lower and lower polygonal ring frame 450 formed of polygons having a predetermined interval below the middle and lower circular ring frame 440 is located, and the rotating body 500 for each side of the middle and lower polygonal ring frame 450. Is coupled to the upper surface of the solar module 300 if the lower side is coupled to the rotating body (500).
  • the lower polygonal ring frame 460 composed of the same polygon as the lower and lower polygonal ring frame 450 is arranged at regular intervals below the lower and lower polygonal ring frame 450, and the lower surface of the solar module 300 is lower. Located in the horizontal coupling from the central coupling portion 410 to the lower polygonal ring frame 460 horizontally shaped lower wheel frame 461 is formed.
  • a plurality of vertical frames 470 are vertically coupled between the upper and middle horizontal frame 431, the middle and lower horizontal frame 441, and the lower horizontal frame 461, and are configured to be overall robust.
  • the cylinder 600 is coupled to the lower surface solar module 300 and the module frame 400.
  • the cylinder 600 is fixed by the combination 610 inside the lower photovoltaic module 310.
  • one side end of the shaft 602 inserted into the housing 601 is coupled to the combined body 610.
  • one end of the housing 601 is coupled to the coupling body 610 coupled to the vertical frame 470, and the servo motor 603 is coupled to an end of the housing 601.
  • the cylinder 600 configured as described above automatically tracks sunlight by a program so that the servomotor 603 operates so that the shaft 602 is drawn out and drawn out from the housing 601.
  • the optical module 300 is folded or unfolded.
  • the configuration of the wind turbine 700 has an upper circular fixing plate 701 is located at the top and a lower circular fixing plate 702 is located at the bottom, in the center of the upper circular fixing plate 701 and the lower circular fixing plate 702
  • a coupling hole 703 is formed to be inserted into the central coupling portion 410, and a plurality of holes 704 are formed around the coupling hole 703.
  • a housing 705 capable of coupling the generator 706 is coupled to each of the holes 704, and the generator 706 is coupled to the inside of the housing 705, and is perpendicular to the bottom of the generator 706.
  • the rotating shaft 707 is coupled, and the wind blade 710 is provided around the rotating shaft 707.
  • the wind blade 710 is formed in a curved shape around the rotating shaft 707, a plurality of wings 712 are arranged in a circular, and the horizontal disk 711 is coupled to the upper and lower portions of the blade 712 It is configured to include).
  • the wind generator 700 has a coupling hole 703 is inserted into the central coupling portion 410 of the module frame 400 and the upper circular fixing plate 701 in the middle and lower horizontal frame 441 and the lower horizontal frame 461. And the lower circular fixing plate 702 is configured to be coupled and fixed.
  • FIG. 15 and 16 are the overall circuit diagram of the solar wind multi-directional tracking convergence power generation system for grid-connected distributed smart energy generation mass supply system according to an embodiment of the present invention.
  • Figure 17 is a block diagram of the solar wind multi-directional tracking convergence power generation system for the grid-type distributed decentralized smart energy generation supply mass system.
  • 18 and 19 are program circuit diagrams of the solar wind multi-directional tracking convergence power generation system for the grid-type distributed smart energy generation supply mass system.
  • 20 and 21 are overall schematic diagrams of the solar wind multi-directional tracking and convergence power generation system for the grid-connected distributed smart energy generation supply mass system.
  • the wind generator 700 is configured in series and connected to the power converter 20 through the regulator 26 due to the large width of the voltage fluctuation.
  • the upper polyhedral solar module 100, the central polyhedral solar module 200, and the lower polyhedral solar module 300 are connected in series and in parallel to the harvesting circuit 24. And, it is configured to be connected to the power conversion device 20 in the harvesting circuit 24, is configured to perform various controls by a PLC program, power meter 21 and transformer 22 in the power conversion device 20 It is configured to be connected to the grid connection line 23 through.
  • FIG. 22 is a view illustrating the operation of the solar wind multi-directional tracking fusion generator.
  • the solar wind multi-directional tracking fusion generator 10 is configured such that the lower surface solar module 300 rises and falls according to the south middle altitude that changes with time from sunrise to sunset of the sun 30. do.
  • FIG. 23 is an exemplary view in which the solar wind multi-directional tracking fusion generator is installed in a traffic light column.
  • the solar wind multi-directional tracking fusion generator 10 is configured to be installed on an upper portion of a traffic light 32 as well as a pole.
  • the multi-directional solar wind tracing fusion generator 10 may be configured in various sizes by increasing the division or capacity according to the required generation voltage and power generation.
  • reference numeral 25 which is not described in the detailed description, is a connector.
  • the foldable solar cell module is raised and lowered to increase the amount of power generated, the wind turbine is provided inside the openable foldable solar module can produce additional power, as well as the wind turbine The overall power generation efficiency is improved, such as preventing shadows, and thus, the industrial application is highly possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Wind Motors (AREA)

Abstract

One embodiment of the present invention relates to a fusion power generation system for multidirectional tracking of sunlight and wind power for a smart energy generation and mass supply system of a grid-connected and dispersion type, wherein a natural lighting ratio increases so as to increase a power generation amount by utilizing a high-rise space and automatically multidirectional tracking through lifting and folding functions of a photovoltaic module, and a Savonius wind power generator is provided inside so as to enable wind power generation when photovoltaic power generation does not occur. In addition, the wind power generator to be mounted on an upper portion is provided in the photovoltaic module so as to remove projected shadow and formed in a multidirectional shape so as to protect the wind power generator from typhoon and strong winds and to reduce a wind pressure load and an asymmetric load of a structure.

Description

계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템Grid-connected decentralized smart energy generation Supply solar wind multi-faceted tracking convergence power generation system for mass systems
본 실시예는 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템에 관한 것이다.This embodiment relates to a solar wind multi-directional tracking convergence power generation system for grid-connected distributed smart energy generation supply mass system.
일반적으로 태양광 발전시스템에 사용되는 태양광전지모듈은 단일 표면적이 넓은 평판형 직사각 태양광전지모듈이 하나에서 많게는 수십개가 직병렬 연결되어 구성된다. In general, a photovoltaic module used in a photovoltaic power generation system is a flat surface rectangular photovoltaic module having a single surface area is composed of one to many dozens in parallel.
상기와 같이 밀집되어 구성된 태양광전지모듈은 특히 여름철에 태양전지모듈 표면온도가 상승하여 발전량이 감소되며 또한 겨울철에는 바람의 영향을 많이 받아 풍압하중으로 인해 구조물 파손이 발생하며 눈이 내리면 단일 표면적이 넓어 표면에 눈이 쌓여 적설하중에 의한 파손 또는 발전효율의 감소가 발생되었다.The solar cell module is densely constructed as described above. In particular, the solar cell module surface temperature rises in summer, and the amount of power generation decreases. In addition, in winter, wind power is affected by wind pressure, resulting in damage to the structure. Snow accumulated on the surface caused breakage or reduction of power generation efficiency due to snow load.
또한, 상부에 풍력발전기를 병행하여 사용할 때 풍력발전기의 그림자음영이 태양전지모듈의 표면에 발생되어 태양광 발전량이 감소되는 현상이 발생되었다.In addition, when the wind turbine is used in parallel, the shadow of the wind generator is generated on the surface of the solar cell module has a phenomenon that the amount of solar power generation is reduced.
본 실시예는 주상공간을 활용하고 태양광모듈의 승하강 접이식 기능의 태양광 자동추적으로 채광율을 높여 발전량이 증가시키며, 내부에 사보니우스 풍력발전기를 구비하여 태양광발전이 되지 않을 때 풍력발전이 가능하게 함은 물론, 상부에 설치되는 풍력발전기를 태양광모듈 내부에 설치하여 투영그림자를 없애고 다방면 형태로 구성되어 태풍이나 강풍에 의한 풍력발전기 보호와 구조물의 풍압하중과 편하중을 줄이는 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템을 제공하는 것을 목적으로 한다.This embodiment utilizes the columnar space and increases the amount of power generated by increasing the mining rate by the solar automatic tracking of the solar module's lifting and lowering function of the solar module, and is equipped with a Savonius wind power generator inside the wind power when not solar power generation In addition to enabling power generation, wind turbines installed at the top are installed inside the solar module to eliminate projection shadows and have a multi-faceted configuration to protect the wind generators from typhoons and strong winds and to reduce wind pressure and unbalanced loads on structures. It aims to provide photovoltaic wind multi-faceted convergence power generation system for mass distributed system of linked distributed smart energy generation.
본 발명의 실시예에 따른 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템은, 링 형상으로 형성되며 다수개가 상하 이격되어 배치되는 가로프레임과, 상기 가로프레임을 적어도 두개이상 연결하는 세로프레임과, 상기 가로프레임의 중앙부에 배치되어 전주 또는 신호등이 상하방향으로 관통되는 중앙결합부를 포함하는 모듈프레임; 상기 모듈프레임의 상측에 장착되며, 가로프레임을 따라서 일정간격으로 다수개 배치되는 수직프레임과 다수의 상기 수직프레임 사이에 배치되는 태양광모듈을 포함하는 다면각태양광모듈; 상기 다면각태양광모듈 하방에 위치되며, 상기 가로프레임를 따라서 다수개 구비되는 프레임과 상기 프레임에 장착되는 태양광모듈을 포함하는 하부다면각태양광모듈; 상기 하부다면각태양광모듈의 상단과 상기 가로프레임을 연결하며, 상기 하부다면각태양광모듈이 회전하여 펼쳐질 수 있도록 하는 회동체; 상기 모듈프레임에 구비되며, 상기 하부다면각태양광모듈이 회전될 수 있도록 하는 개폐장치; 상기 하부다면각태양광모듈과 대응하는 상기 모듈프레임 내측에 장착되며, 상기 하부다면각태양광모듈이 회전에 따라 외부로 노출되는 풍력발전기를 포함하여 구성되는 것을 특징으로 한다.In accordance with an embodiment of the present invention, a grid-type distributed smart energy power generation system for tracking a large number of solar wind power generation convergence power generation systems may include a horizontal frame formed in a ring shape and a plurality of horizontal frames spaced apart from each other at least one of the horizontal frames and at least one horizontal frame. A module frame including a vertical frame connecting two or more, and a central coupling part disposed in the center of the horizontal frame and having a pole or a traffic light penetrated in a vertical direction; A multifaceted photovoltaic module mounted on an upper side of the module frame and including a plurality of vertical frames disposed at a predetermined interval along a horizontal frame and a photovoltaic module disposed between the plurality of vertical frames; A lower polyhedral solar module positioned below the polyhedral solar module and including a plurality of frames provided along the horizontal frame and a solar module mounted to the frame; A rotating body connecting the upper side of the lower polyhedral solar module and the horizontal frame and allowing the lower polyhedral solar module to rotate and unfold; An opening and closing device provided in the module frame to allow the lower polyhedral solar module to rotate; The lower polyhedral solar module is mounted inside the module frame corresponding to the lower polyhedral solar module, characterized in that it comprises a wind generator that is exposed to the outside as the rotation.
상기 가로 프레임은, 모듈프레임의 상단에 구비되며, 원형상으로 형성되는 상부가로프레임; 상기 상부가로프레임의 하방에 구비되며, 상기 상부가로프레임보다 직경이 큰 원형상으로 형성되는 중상부가로프레임; 상기 중상부가로프레임의 하방에 구비되며, 상기 중상부가로프레임보다 직경이 큰 원형상으로 형성되는 중하부가로프레임; 상기 중상부 가로프레임의 하방에 구비되며, 상기 중하부가로프레임과 내접하는 다각형 형상으로 형성되는 상부다각형환프레임; 상기 중상부 가로프레임의 하방에 구비되며, 상기 상부다각형환프레임과 동일한 형상으로 형성되는 하부다각형환프레임;으로 구성되는 것을 특징으로 한다.The horizontal frame is provided on the upper end of the module frame, the upper horizontal frame formed in a circular shape; A middle upper side frame formed below the upper side horizontal frame and formed in a circular shape having a larger diameter than the upper side horizontal frame; A middle lower part furnace frame provided below the middle upper part furnace frame and formed in a circular shape having a larger diameter than the middle upper part furnace frame; An upper polygonal ring frame provided below the middle upper horizontal frame and formed in a polygonal shape in which the middle lower portion is inscribed with the road frame; It is provided below the middle upper horizontal frame, the lower polygonal ring frame formed in the same shape as the upper polygonal ring frame; characterized by consisting of.
상기 다면각태양광모듈은, 상기 상부가로프레임과 중상부가로프레임에 상단과 하단이 각각 고정되는 상부다면각태양광모듈과; 상기 중상부가로프레임과 중하부가로프레임에 각각 상단과 하단이 고정되는 하부다면각태양광모듈로 구성되는 것을 특징으로 한다.The polyhedral solar module includes: an upper polyhedral solar module having upper and lower ends respectively fixed to the upper horizontal frame and the upper middle horizontal frame; The upper and lower lower middle and upper and lower frame, respectively, is characterized in that it consists of a lower polyhedral solar module is fixed.
상기 하부다면각태양광모듈의 프레임은 상기 상부다각형환프레임 및 하부다각형환프레임의 사이에 구비되며, 상기 상부다각형환프레임의 한변의 길이와 대응하는 사각형 형상으로 형성되는 것을 특징으로 한다.The frame of the lower polygonal solar module is provided between the upper polygonal ring frame and the lower polygonal ring frame, characterized in that formed in a rectangular shape corresponding to the length of one side of the upper polygonal ring frame.
상기 개폐장치는, 상기 하부다면각태양광모듈의 회전을 위한 동력을 제공하는 서보모터와; 상기 메인프레임에 장착되는 하우징과; 상기 하우징의 내측에 위치되며, 일단은 상기 하부다면각태양광모듈에 연결되어, 상기 서보모터의 회전에 따라 상기 하우징의 내외측으로 출입되는 축을 포함하는 것을 특징으로 한다.The opening and closing device includes a servo motor for providing power for rotation of the lower polyhedral solar module; A housing mounted to the main frame; Located inside the housing, one end is connected to the lower polyhedral solar module, characterized in that it comprises a shaft that enters into and out of the housing according to the rotation of the servomotor.
상기 태양광모듈이 장착되는 한쌍의 수직 프레임과 이웃하는 수직프레임의 사이에는 상기 풍력발전기의 구동을 위한 바람이 출입되는 통풍구가 구비되는 것을 특징으로 한다.Between the pair of vertical frame to which the solar module is mounted and the neighboring vertical frame is characterized in that the air vent for driving the wind turbine is provided.
상기 풍력발전기는 상기 중앙결합부 축으로하여 다수개의 풍력날개가 방사상으로 배치되는 것을 특징으로 한다.The wind generator is characterized in that the plurality of wind blades are arranged radially by the central coupling portion axis.
상기 풍력발전기는, 상기 중앙결합부에 의해 관통되며, 상하 이격되는 상부원형고정판과 하부원형고정판과; 상기 상부원형고정판과 하부원형고정판의 사이에 구비되며, 상기 중앙결합부를 축으로하여 방사상으로 배치되는 다수의 풍력날개와; 상기 각 풍력날개의 회전축과 대응하는 상기 상부원형고정판에 구비되는 발전기를 포함하여 구성되는 것을 특징으로 한다.The wind power generator includes an upper circular fixing plate and a lower circular fixing plate which are penetrated by the central coupling part and spaced apart from each other; A plurality of wind vanes provided between the upper circular fixing plate and the lower circular fixing plate and disposed radially with respect to the central coupling part; It characterized in that it comprises a generator provided in the upper circular fixed plate corresponding to the rotary shaft of each wind blade.
상기 태양광 풍력 다방면 추적 융합발전시스템은 하나 또는 둘 이상의 전주에 설치되어 전력변환장치까지 직렬 또는 병렬 연결되며, 상기 전력변환장치에서 전력량계 및 변압기를 거쳐 계통연계선로로 연결되는 것을 특징으로 한다.The solar wind multi-directional tracking convergence power generation system is installed in one or two poles in series or in parallel to the power converter, characterized in that connected to the grid connection line through the electricity meter and transformer in the power converter.
본 실시예에 의한 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템은 다방면 태양광모듈 사이의 공간으로 바람이 수시로 통과하게 되어 많은 양의 유동풍속에 의한 여름철 태양광전지모듈에 발생되는 열을 빠른 속도로 냉각시킴으로써 적정온도를 유지하여 발전효율이 감소하지 않도록 한다.In the grid-connected distributed smart energy generation supply system according to the present embodiment, the solar wind multi-track tracking convergence power generation system for a large-scale system is a summer solar cell caused by a large amount of flow wind speed as wind passes through the space between the various solar modules. By cooling the heat generated in the module at a high speed, it maintains the proper temperature so that power generation efficiency is not reduced.
그리고, 본 실시에에 의한 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템은 단일 표면적이 작고 경사가 있어 겨울철 다방면 태양광전지모듈 표면에 눈이 쌓이는 것을 방지할 수 있게 된다.In addition, the solar wind multi-directional tracking converged power generation system for grid-connected distributed smart energy power supply and mass supply system according to the present embodiment has a small surface area and has a slope so as to prevent snow from accumulating on the surface of the multi-sided solar cell module in winter. do.
그리고, 본 실시에에 의한 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템은 태양의 이동궤적에 따라 접이식 태양광전지모듈이 승하강하여 발전량이 증가하게 된다.Further, according to the present embodiment, in the grid-type distributed smart energy generation supply system for the solar wind multi-directional tracking and convergence power generation system, the folding solar cell module moves up and down according to the movement trajectory of the sun to increase the amount of power generation.
그리고, 바람이 많이 부는 날이나 야간에 접이식 태양광모듈이 상승하여 내부공간을 열어줌으로써 풍력발전기의 가동으로 추가적인 전력을 생산할 수 있으며 태풍이나 강풍이 풍력발전기의 소손을 방지하는 이점이 있다.And, on a windy day or at night, the foldable solar module rises to open the internal space, thereby generating additional power by the operation of the wind turbine, and typhoons or strong winds have the advantage of preventing burnout of the wind turbine.
또한, 접이식 태양광모듈이 다방면으로 구성되어 그림자음영의 영향을 받는 장소에서 산란일사 및 반사일사 등에 의해 발전이 가능하며, 다면각 형태로 편하중을 없애고 비바람에 표면 우세효과가 뛰어나며 태풍이나 강풍 등의 풍압하중을 감소시키는 이점이 있다.In addition, the foldable solar modules are multi-faceted and can be generated by scattering and reflection in places affected by shadow shading, eliminating the lateral load in the shape of a polygon, and having an excellent surface dominant effect in rain and wind, such as typhoons and strong winds. There is an advantage of reducing the wind pressure.
도 1은 본 발명의 실시예에 의한 태양광 풍력 다방면 추적 융합발전기의 전주 설치도이다.1 is a pole installation diagram of the solar wind multi-directional tracking fusion generator according to an embodiment of the present invention.
도 2는 상기 태양광 풍력 다방면 추적 융합발전기의 사시도이다.2 is a perspective view of the solar wind multi-directional tracking fusion generator.
도 3은 상기 태양광 풍력 다방면 추적 융합발전기의 측단면도이다.3 is a side cross-sectional view of the solar wind multi-directional tracking fusion generator.
도 4는 본 발명의 실시예에 의한 모듈프레임 사시도이다.4 is a perspective view of a module frame according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 의한 다방면태양광추적모듈 사시도이다.5 is a perspective view of a multi-sided solar tracking module according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 의한 상부다면각태양광모듈 일부 분해도이다.6 is an exploded view of a part of the upper polyhedral solar module according to an embodiment of the present invention.
도 7은 상기 상부다면각태양광모듈 평단면도이다.7 is a plan cross-sectional view of the upper polyhedral solar module.
도 8은 본 발명의 실시예에 의한 중부다면각태양광모듈 일부 분해도이다.8 is an exploded view of a portion of the central polyhedral solar module according to an embodiment of the present invention.
도 9은 상기 중부다면각태양광모듈 평단면도이다.9 is a plan sectional view of the central polyhedral solar module.
도 10은 본 발명의 실시예에 의한 하부태양광모듈 일부 분해도이다.10 is an exploded view of a part of a lower photovoltaic module according to an embodiment of the present invention.
도 11은 상기 하부다면태양광모듈 평단면도이다.11 is a plan cross-sectional view of the lower side solar module.
도 12는 상기 하부다면태양광모듈 및 실린더 상세도이다.12 is a detailed view of the lower side photovoltaic module and cylinder.
도 13은 본 발명의 실시예에 의한 풍력발전기 사시도이다.13 is a perspective view of a wind turbine according to an embodiment of the present invention.
도 14은 상기 풍력발전기 측단면도이다.14 is a side cross-sectional view of the wind turbine.
도 15 및 도 16은 본 발명의 실시예에 의한 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템의 전체 회로도이다.15 and 16 are the overall circuit diagram of the solar wind multi-directional tracking convergence power generation system for grid-connected distributed smart energy generation mass supply system according to an embodiment of the present invention.
도 17는 상기 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템의 블록도이다.17 is a block diagram of a solar wind multi-directional tracking convergence power generation system for the grid-type distributed smart energy generation supply mass system.
도 18 및 도 19는 상기 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템의 프로그램 회로 구성도이다.18 and 19 are program circuit diagrams of the solar wind multi-directional tracking convergence power generation system for the grid-type distributed smart energy generation supply mass system.
도 20 및 도 21은 상기 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템의 전체 계통도이다.20 and 21 is an overall system diagram of the solar wind multi-directional tracking convergence power generation system for the grid-connected distributed smart energy generation supply mass system.
도 22는 상기 태양광 풍력 다방면 추적 융합발전기의 동작 예시도이다.22 is a view illustrating the operation of the solar wind multi-directional tracking fusion generator.
도 23은 상기 태양광 풍력 다방면 추적 융합발전기가 신호등주에 설치된 예시도이다.FIG. 23 is an exemplary view in which the solar wind multi-directional tracking fusion generator is installed in a traffic light column.
이하에서는 본 발명의 구체적인 실시예를 도면과 함께 상세히 설명하도록 한다. 그러나 본 발명은 본 발명의 사상이 제시되는 실시예에 제한된다고 할 수 없으며, 또 다른 구성요소의 추가, 변경, 삭제 등에 의해서 퇴보적인 다른 발명이나 본 발명의 사상범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments in which the spirit of the present invention is presented, and other embodiments included in the spirit of the present invention or other inventions which are degenerate by addition, modification, or deletion of other components are easily provided. Can suggest.
이하, 본 발명에 의한 신재생에너지 공급의무화 제도 시행에 따른 발전부지가 필요없는 계통연계형 분산형 스마트에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템 및 그 제조방법은 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, a multi-sided solar wind tracking and convergence power generation system for grid-connected distributed smart energy power supply and mass supply system that does not need a power generation site according to the implementation of a new renewable energy supply obligation system according to the present invention, and a method of manufacturing the same, refer to the accompanying drawings. It will be described in detail.
도 1은 본 발명의 실시예에 의한 태양광 풍력 다방면 추적 융합발전기의 전주 설치도이다. 그리고, 도 2는 상기 태양광 풍력 다방면 추적 융합발전기의 사시도이다. 그리고, 도 3은 상기 태양광 풍력 다방면 추적 융합발전기의 측단면도이다. 그리고, 도 4는 본 발명의 실시예에 의한 모듈프레임 사시도이다. 그리고, 도 5는 본 발명의 실시예에 의한 다방면태양광추적모듈 사시도이다. 그리고, 도 6은 본 발명의 실시예에 의한 상부다면각태양광모듈 일부 분해도이다. 그리고, 도 7은 상기 상부다면각태양광모듈 평단면도이다. 그리고, 도 8은 본 발명의 실시예에 의한 중부다면각태양광모듈 일부 분해도이다. 그리고, 도 9은 상기 중부다면각태양광모듈 평단면도이다. 그리고, 도 10은 본 발명의 실시예에 의한 하부태양광모듈 일부 분해도이다. 그리고, 도 11은 상기 하부다면태양광모듈 평단면도이다. 그리고, 도 12는 상기 하부다면태양광모듈 및 실린더 상세도이다. 그리고, 도 13은 본 발명의 실시예에 의한 풍력발전기 사시도이다. 그리고, 도 14은 상기 풍력발전기 측단면도이다.1 is a pole installation diagram of the solar wind multi-directional tracking fusion generator according to an embodiment of the present invention. 2 is a perspective view of the solar wind multi-directional tracking fusion generator. 3 is a side cross-sectional view of the solar wind multi-directional tracking fusion generator. And, Figure 4 is a perspective view of the module frame according to an embodiment of the present invention. And, Figure 5 is a perspective view of a multi-sided solar tracking module according to an embodiment of the present invention. And, Figure 6 is an exploded view of part of the upper polyhedral solar module according to an embodiment of the present invention. 7 is a plan sectional view of the upper polyhedral solar module. And, Figure 8 is a partial exploded view of the central polyhedral solar module according to an embodiment of the present invention. 9 is a plan sectional view of the central polyhedral solar module. And, Figure 10 is an exploded view of a part of the lower photovoltaic module according to an embodiment of the present invention. 11 is a plan cross-sectional view of the lower side solar module. And, Figure 12 is a detailed view of the lower side photovoltaic module and cylinder. And, Figure 13 is a perspective view of a wind turbine according to an embodiment of the present invention. 14 is a side cross-sectional view of the wind turbine.
도 1 내지 도 14에 도시된 바를 참조하면, 본 실시예에 따른 다방면 태양광 풍력 추적 융합발전기(10)는 상부에 상부다면각태양광모듈(100)이 위치하며, 상기 상부다면각태양광모듈(100)의 하방에 중부다면각태양광모듈(200)이 위치하며, 상기 중부다면각태양광모듈(200)의 하방에 다수의 하부태양광모듈(301)로 구성된 하부다면태양광모듈(300)과 그 내부에 위치한 모듈프레임(400) 및 실린더(600)를 포함하여 구성될 수 있다.1 to 14, in the multi-sided solar wind tracking fusion generator 10 according to the present embodiment, the upper polyhedral solar module 100 is positioned on the upper side, and the upper polyhedral solar module 100 is provided. The central polyhedral photovoltaic module 200 is positioned below the central polyhedral photovoltaic module 200, and the lower polyhedral photovoltaic module 300 composed of a plurality of lower photovoltaic modules 301 below the central polyhedral photovoltaic module 200. It may be configured to include a module frame 400 and a cylinder 600 located in.
상기 상부다면각태양광모듈(100)에는 수직으로 구성되며, 서로 대칭되게 간격을 가지고 평행으로 배열되어 소정의 각도로 기울어지는 다수의 상부수직프레임(111)이 원형으로 일정한 간격을 가지고 배열된다. The upper polyhedral photovoltaic module 100 is vertically configured, and a plurality of upper vertical frames 111 inclined at a predetermined angle are arranged in parallel with a symmetrical interval therebetween and are arranged at regular intervals in a circle.
상기 상부수직프레임(111)에는 일측 길이방향으로 결합홈(118)이 형성된다. 그리고, 평행으로 배열된 상기 상부수직프레임(111)의 사이마다 결합홈(118)에 상부태양광모듈(110)이 결합되며, 결합된 상부태양광모듈(110) 사이마다 빈공간이 형성되어 통풍구(117)를 형성하게 된다.The upper vertical frame 111 is formed with a coupling groove 118 in one longitudinal direction. In addition, the upper photovoltaic module 110 is coupled to the coupling groove 118 between each of the upper vertical frames 111 arranged in parallel, and an empty space is formed between the coupled upper photovoltaic modules 110 to vent holes. 117 is formed.
또한, 상기 각각의 상부태양광모듈(110)의 상단에는 돌출부와 홈이 형성된 상부모듈상단고정체(112)가 결합되고, 상부태양광모듈(110)의 하단에는 돌출부와 홈이 형성된 상부모듈하단고정체(113)가 결합된다. 따라서, 상부태양광모듈(110)이 상부수직프레임(111)에서 이탈되지 않도록 고정된다. In addition, the upper part of the upper photovoltaic module 110, the upper module upper fixing body 112 is formed with a protrusion and a groove is coupled to the upper end of the upper photovoltaic module 110, the lower end of the upper module formed with a protrusion and the groove The fixture 113 is coupled. Therefore, the upper photovoltaic module 110 is fixed so as not to be separated from the upper vertical frame 111.
상기 상부모듈상단고정체(112)의 상면에는 다수의 결합홈(119)이 형성된 상부상단프레임(114)이 덧대어 고정되어 상부수직프레임(111)의 상단이 결합홈(119)에 삽입될 수 있다. 그리고, 상부모듈하단고정체(113)의 하면에도 다수의 결합홈(120)이 형성된 상부하단프레임(115)이 덧대어 고정되어 상부수직프레임(111)의 하단이 결합홈(120)에 삽입된다. 아울러 각각의 상부태양광모듈(110)의 후면에 상부 및 하부에 단자대 역할을 하는 상부정션박스(116)가 부착된다.An upper upper frame 114 having a plurality of coupling grooves 119 formed thereon is fixed to an upper surface of the upper module upper fixing body 112 so that an upper end of the upper vertical frame 111 may be inserted into the coupling groove 119. have. In addition, the upper lower frame 115 having a plurality of coupling grooves 120 formed on the bottom surface of the lower module fixing body 113 is padded and fixed to insert the lower end of the upper vertical frame 111 into the coupling groove 120. . In addition, the upper junction box 116 is attached to the upper and lower portions of the upper photovoltaic module 110 to serve as terminal blocks.
상기 중부다면각태양광모듈(200)에는 서로 대칭되게 간격을 가지고 평행하게 배열되어 소정의 각도로 기울어지는 다수의 중부수직프레임(211)이 원형으로 일정한 간격을 가지고 배열된다.In the central polygonal solar module 200, a plurality of central vertical frames 211 inclined at a predetermined angle are arranged in parallel and spaced symmetrically with each other, and are arranged at regular intervals in a circle.
그리고, 상기 중부다면각태양광모듈(200)에는 일측 길이방향으로 결합홈(218)이 형성된다. 상기 평행으로 배열된 중부수직프레임(211)의 사이마다 결합홈(218)에 중부태양광모듈(210)이 결합되며, 결합된 중부태양광모듈(210) 사이마다 빈공간이 형성되어 통풍구(217)로 구성된다. In addition, the central polygonal solar module 200 has a coupling groove 218 formed in one longitudinal direction. The central photovoltaic module 210 is coupled to the coupling groove 218 between each of the central vertical frames 211 arranged in parallel, and an empty space is formed between the combined central photovoltaic modules 210 to vent holes 217. It is composed of
또한, 상기 각각의 중부태양광모듈(210)의 상단에는 돌출부와 홈이 형성된 중부모듈상단고정체(212)가 결합되고 중부태양광모듈(210)의 하단에는 돌출부와 홈이 형성된 중부모듈하단고정체(213)가 결합되어 중부태양광모듈(210)이 중부수직프레임(211)에서 이탈되지 않도록 한다.In addition, the upper end of each of the central solar module 210 is a central module upper fixing body 212 is formed with a protrusion and a groove is coupled to the lower end of the central module module with a protrusion and groove formed at the bottom of the central solar module 210 The stagnation 213 is coupled so that the central photovoltaic module 210 is not separated from the central vertical frame 211.
상기 중부모듈상단고정체(212)의 상면에는 다수의 결합홈(219)이 형성된 중부상단프레임(214)이 덧대어 고정되어 중부수직프레임(211)의 상단이 결합홈(219)에 삽입된다. 그리고, 중부모듈하단고정체(213)의 하면에는 다수의 결합홈(220)이 형성된 중부하단프레임(215)이 덧대어 고정되어 중부수직프레임(211)의 하단이 결합홈(220)에 삽입된다. 아울러 각각의 중부태양광모듈(210)의 후면에 상부 및 하부에 단자대 역할을 하는 중부정션박스(216)가 부착된다.The upper surface of the middle module upper fixing body 212 is fixed to the upper middle frame 214 having a plurality of coupling grooves 219 is formed so that the upper end of the central vertical frame 211 is inserted into the coupling groove 219. In addition, the lower surface of the central module lower fixing body 213 is fixed to the middle lower frame 215 having a plurality of coupling grooves 220 is padded so that the lower end of the middle vertical frame 211 is inserted into the coupling groove 220. . In addition, the central junction box 216, which serves as a terminal block, is attached to the upper and lower portions at the rear of each of the central solar modules 210.
상기 하부다면태양광모듈(300)의 구성은 사각형 프레임(312)에 다수의 태양광모듈(311)이 결합된 하부태양광모듈(310)이 수직으로 구성되며, 상기 하부태양광모듈(310)이 원형으로 다수 배열되도록 구성된다. 아울러 각각의 태양광모듈(311) 후면의 상부 및 하부에 단자대 기능을 하는 하부정션박스(313)가 부착된다.The lower side photovoltaic module 300 is configured to vertically comprise a lower photovoltaic module 310 coupled with a plurality of photovoltaic modules 311 to a rectangular frame 312, the lower photovoltaic module 310 It is configured to be arranged in a large number in this circle. In addition, the lower junction box 313 which functions as a terminal block is attached to the upper and lower portions of the rear of each solar module 311.
상기 상부태양광모듈(100)과 중부태양광모듈(200)과 태양광모듈(311)은 빛에너지를 전기에너지로 바꿔주는 기능을 하여 통상적으로 표면에 태양광을 받을 시 전기에너지를 생산하도록 구성되어 있다.The upper photovoltaic module 100, the central photovoltaic module 200, and the photovoltaic module 311 have a function of converting light energy into electrical energy, and are typically configured to produce electrical energy when receiving sunlight on a surface. It is.
상기 다방면태양광추적모듈(11)의 중심에 수직의 원통형으로 형성된 중앙결합부(410)가 구비된다. 상기 중앙결합부(410)는 세로로 절반이 나누어져 전주 및 등주 등의 기둥에 결합할 수 있도록 구성될 수 있다. The center coupling portion 410 is formed in a vertical cylindrical shape in the center of the multi-sided solar tracking module 11 is provided. The central coupling portion 410 is divided into half vertically may be configured to be coupled to a pole, such as poles and poles.
상기 중앙결합부(410)의 상부에 원형으로 구성된 상부원형환프레임(420)이 위치하여 상부다면각태양광모듈(100)의 상단을 고정하며, 중앙결합부(410)에서 상부원형환프레임(420)까지 수평으로 바퀴살 형태의 상부가로프레임(421)이 결합된다. The upper circular ring frame 420 is formed in a circular shape on the upper portion of the central coupling portion 410 to fix the upper end of the upper polyhedral solar module 100, from the central coupling portion 410 to the upper circular ring frame 420 The horizontal frame 421 of the wheel shape horizontally is coupled.
또한, 상기 상부원형환프레임(420)의 하방으로 일정간격을 갖고 원형의 중상부원형환프레임(430)이 위치하여 상부다면각태양광모듈(100)의 하단 및 중부다면각태양광모듈(200)의 상단을 고정하며, 중앙결합부(410)에서 중상부원형환프레임(430)까지 수평으로 바퀴살 형태의 중상부가로프레임(431)이 결합된다. In addition, a circular middle upper circular ring frame 430 is positioned with a predetermined interval below the upper circular ring frame 420, so that the lower end of the upper polyhedral solar module 100 and the upper end of the central polyhedral solar module 200 are positioned. It is fixed, the middle upper portion circular frame 431 in the shape of the spokes horizontally from the center coupling portion 410 to the upper middle circular annular frame 430 is coupled.
또한, 상기 중상부원형환프레임(430)의 하방으로 일정한 간격을 갖고 원형의 중하부원형환프레임(440)이 위치하여 중부다면각태양광모듈(200)의 하단을 고정하며, 중앙결합부(410)에서 중하부원형환프레임(440)까지 수평으로 바퀴살 형태의 중하부가로프레임(441)이 결합된다. In addition, the lower and lower circular annular frame 440 of the circular middle and lower circular circular frame 440 is located at a constant interval below the fixed to the bottom of each of the central solar module 200, the central coupling portion 410 The middle lower circular ring frame 440 horizontally to the middle lower circular ring frame 440 is coupled.
또한, 상기 중하부원형환프레임(440)의 하방으로 일정한 간격을 갖고 다각형으로 구성된 중하부다각형환프레임(450)이 위치하며, 상기 중하부다각형환프레임(450)의 각 변마다 회동체(500)가 결합되며 상기 회동체(500)에 하부다면태양광모듈(300)의 상단이 결합된다. In addition, a lower and lower polygonal ring frame 450 formed of polygons having a predetermined interval below the middle and lower circular ring frame 440 is located, and the rotating body 500 for each side of the middle and lower polygonal ring frame 450. Is coupled to the upper surface of the solar module 300 if the lower side is coupled to the rotating body (500).
중하부다각형환프레임(450)과 동일한 형태의 다각형으로 구성된 하부다각형환프레임(460)이 중하부다각형환프레임(450)의 하방으로 일정한 간격을 갖고 배열되어 하부다면태양광모듈(300)의 하단에 위치하며 중앙결합부(410)에서 하부다각형환프레임(460)까지 수평으로 바퀴살 형태의 하부가로프레임(461)이 형성된다.The lower polygonal ring frame 460 composed of the same polygon as the lower and lower polygonal ring frame 450 is arranged at regular intervals below the lower and lower polygonal ring frame 450, and the lower surface of the solar module 300 is lower. Located in the horizontal coupling from the central coupling portion 410 to the lower polygonal ring frame 460 horizontally shaped lower wheel frame 461 is formed.
상기 중상부가로프레임(431), 중하부가로프레임(441), 하부가로프레임(461) 간에 수직으로 다수의 세로프레임(470)이 결합되어 전체적으로 견고하도록 구성된다.A plurality of vertical frames 470 are vertically coupled between the upper and middle horizontal frame 431, the middle and lower horizontal frame 441, and the lower horizontal frame 461, and are configured to be overall robust.
하부다면태양광모듈(300) 및 모듈프레임(400)에는 실린더(600)가 결합된다. 상기 실린더(600)는 하부태양광모듈(310)의 내측에 결합체(610)에 의해 고정된다. 그리고, 결합된 상기 결합체(610)에 하우징(601)에 삽입되는 축(602)의 일측단이 결합된다. 그리고, 상기 세로프레임(470)에 결합된 상기 결합체(610)에 상기 하우징(601)의 일측단이 결합되도록 구성되며, 상기 하우징(601)의 끝부분에 서보모터(603)가 결합된다.The cylinder 600 is coupled to the lower surface solar module 300 and the module frame 400. The cylinder 600 is fixed by the combination 610 inside the lower photovoltaic module 310. Then, one side end of the shaft 602 inserted into the housing 601 is coupled to the combined body 610. In addition, one end of the housing 601 is coupled to the coupling body 610 coupled to the vertical frame 470, and the servo motor 603 is coupled to an end of the housing 601.
상기와 같이 구성된 상기 실린더(600)는 프로그램에 의해 태양광을 자동추적하여 상기 서보모터(603)가 작동하여 상기 축(602)이 상기 하우징(601)에서 인출 및 인입되는 동작으로 상기 하부다면태양광모듈(300)이 접히거나 펴지는 동작을 하게 된다.The cylinder 600 configured as described above automatically tracks sunlight by a program so that the servomotor 603 operates so that the shaft 602 is drawn out and drawn out from the housing 601. The optical module 300 is folded or unfolded.
한편, 풍력발전기(700)의 구성은 상부에 상부원형고정판(701)이 위치하며 하부에 하부원형고정판(702)이 위치하며, 상기 상부원형고정판(701) 및 하부원형고정판(702)의 중심에 중앙결합부(410)에 삽입될 수 있도록 결합구(703)가 형성되며, 결합구(703)를 중심으로 다수의 구멍(704)이 형성된다. On the other hand, the configuration of the wind turbine 700 has an upper circular fixing plate 701 is located at the top and a lower circular fixing plate 702 is located at the bottom, in the center of the upper circular fixing plate 701 and the lower circular fixing plate 702 A coupling hole 703 is formed to be inserted into the central coupling portion 410, and a plurality of holes 704 are formed around the coupling hole 703.
상기 구멍(704)마다 발전기(706)를 결합할 수 있는 하우징(705)이 결합되며, 상기 하우징(705)의 내부에 상기 발전기(706)가 결합되며, 상기 발전기(706)의 하단에 수직의 회전축(707)이 결합되며, 상기 회전축(707)을 중심으로 풍력날개(710)가 구비된다. 상기 풍력날개(710)는 상기 회전축(707)을 중심으로 만곡된 형태로 형성되며, 원형으로 다수개가 배열되는 날개(712)와, 상기 날개(712)의 상부 및 하부에 결합되는 수평원판(711)을 포함하여 구성된다.A housing 705 capable of coupling the generator 706 is coupled to each of the holes 704, and the generator 706 is coupled to the inside of the housing 705, and is perpendicular to the bottom of the generator 706. The rotating shaft 707 is coupled, and the wind blade 710 is provided around the rotating shaft 707. The wind blade 710 is formed in a curved shape around the rotating shaft 707, a plurality of wings 712 are arranged in a circular, and the horizontal disk 711 is coupled to the upper and lower portions of the blade 712 It is configured to include).
상기 풍력발전기(700)는 상기 모듈프레임(400)의 중앙결합부(410)에 결합구(703)가 삽입되며 중하부가로프레임(441) 및 하부가로프레임(461)에 상부원형고정판(701) 및 하부원형고정판(702)이 결합되어 고정되도록 구성된다.The wind generator 700 has a coupling hole 703 is inserted into the central coupling portion 410 of the module frame 400 and the upper circular fixing plate 701 in the middle and lower horizontal frame 441 and the lower horizontal frame 461. And the lower circular fixing plate 702 is configured to be coupled and fixed.
도 15 및 도 16은 본 발명의 실시예에 의한 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템의 전체 회로도이다. 그리고, 도 17는 상기 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템의 블록도이다. 그리고, 도 18 및 도 19는 상기 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템의 프로그램 회로 구성도이다. 그리고, 도 20 및 도 21은 상기 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템의 전체 계통도이다.15 and 16 are the overall circuit diagram of the solar wind multi-directional tracking convergence power generation system for grid-connected distributed smart energy generation mass supply system according to an embodiment of the present invention. And, Figure 17 is a block diagram of the solar wind multi-directional tracking convergence power generation system for the grid-type distributed decentralized smart energy generation supply mass system. 18 and 19 are program circuit diagrams of the solar wind multi-directional tracking convergence power generation system for the grid-type distributed smart energy generation supply mass system. 20 and 21 are overall schematic diagrams of the solar wind multi-directional tracking and convergence power generation system for the grid-connected distributed smart energy generation supply mass system.
도 15 내지 도 21을 참조하면, 상기 풍력발전기(700)는 직렬로 구성되어 전압변동의 폭이 큼으로 레귤레이터(26)를 거쳐 전력변환장치(20)로 연결된다. 그리고, 상부다면각태양광모듈(100)과 중부다면각태양광모듈(200)과 하부다면태양광모듈(300)이 직렬 및 병렬로 연결되어 수확회로(24)로 연결된다. 그리고, 상기 수확회로(24)에서 전력변환장치(20)로 연결되도록 구성되며, PLC프로그램에 의해 각종 제어가 이루어지도록 구성되며, 전력변환장치(20)에서 전력량계(21) 및 변압기(22)를 거쳐 계통연계선로(23)로 연결되도록 구성된다.15 to 21, the wind generator 700 is configured in series and connected to the power converter 20 through the regulator 26 due to the large width of the voltage fluctuation. In addition, the upper polyhedral solar module 100, the central polyhedral solar module 200, and the lower polyhedral solar module 300 are connected in series and in parallel to the harvesting circuit 24. And, it is configured to be connected to the power conversion device 20 in the harvesting circuit 24, is configured to perform various controls by a PLC program, power meter 21 and transformer 22 in the power conversion device 20 It is configured to be connected to the grid connection line 23 through.
도 22는 상기 태양광 풍력 다방면 추적 융합발전기의 동작 예시도이다.22 is a view illustrating the operation of the solar wind multi-directional tracking fusion generator.
도 22를 참조하면, 태양광 풍력 다방면 추적 융합발전기(10)는 태양(30)의 일출부터 일몰까지 시간에 따라 변화하는 남중고도에 맞춰 하부다면태양광모듈(300)이 상승 및 하강을 하도록 구성된다.Referring to FIG. 22, the solar wind multi-directional tracking fusion generator 10 is configured such that the lower surface solar module 300 rises and falls according to the south middle altitude that changes with time from sunrise to sunset of the sun 30. do.
도 23은 상기 태양광 풍력 다방면 추적 융합발전기가 신호등주에 설치된 예시도이다.FIG. 23 is an exemplary view in which the solar wind multi-directional tracking fusion generator is installed in a traffic light column.
도 23을 참조하면, 태양광 풍력 다방면 추적 융합발전기(10)는 전주 뿐만 아니라 신호등(32)의 상부에도 설치가 가능하도록 구성된다. Referring to FIG. 23, the solar wind multi-directional tracking fusion generator 10 is configured to be installed on an upper portion of a traffic light 32 as well as a pole.
이와 같이 상기 다방면 태양광 풍력 추적 융합발전기(10)는 필요한 발전전압 및 발전전력에 따라 분할 또는 용량의 증가로 다양한 크기로 구성이 가능하다.As described above, the multi-directional solar wind tracing fusion generator 10 may be configured in various sizes by increasing the division or capacity according to the required generation voltage and power generation.
한편, 상세한 설명에 기재되지 않은 미설명 부호 25는 커넥터이다.On the other hand, reference numeral 25, which is not described in the detailed description, is a connector.
실시예에 따르면, 태양의 이동궤적에 따라 접이식 태양광전지모듈이 승하강하여 발전량이 증가하게 되며, 개폐가능한 접이식 태양광모듈의 내부에 풍력발전기가 구비되어 추가적인 전력을 생산이 가능함은 물론, 풍력발전기에 의한 음영을 방지하는 등 전체적인 발전 효율이 향상되므로 산업상 이용 가능성이 높다.According to the embodiment, according to the movement of the sun, the foldable solar cell module is raised and lowered to increase the amount of power generated, the wind turbine is provided inside the openable foldable solar module can produce additional power, as well as the wind turbine The overall power generation efficiency is improved, such as preventing shadows, and thus, the industrial application is highly possible.

Claims (9)

  1. 링 형상으로 형성되며 다수개가 상하 이격되어 배치되는 가로프레임과, 상기 가로프레임을 적어도 두개이상 연결하는 세로프레임과, 상기 가로프레임의 중앙부에 배치되어 전주 또는 신호등이 상하방향으로 관통되는 중앙결합부를 포함하는 모듈프레임;A horizontal frame formed in a ring shape and a plurality of horizontal frames are spaced apart from each other, a vertical frame connecting at least two or more horizontal frames, and a central coupling part disposed at the center of the horizontal frame to allow electric poles or traffic lights to penetrate in the vertical direction. A module frame;
    상기 모듈프레임의 상측에 장착되며, 가로프레임을 따라서 일정간격으로 다수개 배치되는 수직프레임과 다수의 상기 수직프레임 사이에 배치되는 태양광모듈을 포함하는 다면각태양광모듈;A multifaceted photovoltaic module mounted on an upper side of the module frame and including a plurality of vertical frames disposed at a predetermined interval along a horizontal frame and a photovoltaic module disposed between the plurality of vertical frames;
    상기 다면각태양광모듈 하방에 위치되며, 상기 가로프레임를 따라서 다수개 구비되는 프레임과 상기 프레임에 장착되는 태양광모듈을 포함하는 하부다면각태양광모듈;A lower polyhedral solar module positioned below the polyhedral solar module and including a plurality of frames provided along the horizontal frame and a solar module mounted to the frame;
    상기 하부다면각태양광모듈의 상단과 상기 가로프레임을 연결하며, 상기 하부다면각태양광모듈이 회전하여 펼쳐질 수 있도록 하는 회동체;A rotating body connecting the upper side of the lower polyhedral solar module and the horizontal frame and allowing the lower polyhedral solar module to rotate and unfold;
    상기 모듈프레임에 구비되며, 상기 하부다면각태양광모듈이 회전될 수 있도록 하는 개폐장치;An opening and closing device provided in the module frame to allow the lower polyhedral solar module to rotate;
    상기 하부다면각태양광모듈과 대응하는 상기 모듈프레임 내측에 장착되며, 상기 하부다면각태양광모듈이 회전에 따라 외부로 노출되는 풍력발전기를 포함하여 구성되는 것을 특징으로 하는 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템.A grid-connected distributed smart energy generation system, which is mounted inside the module frame corresponding to the lower polyhedral solar module and comprises a wind power generator that is exposed to the outside as the lower polyhedral solar module rotates. Supply solar wind multi-faceted fusion power generation system for mass supply system.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 가로 프레임은,The horizontal frame,
    모듈프레임의 상단에 구비되며, 원형상으로 형성되는 상부가로프레임;An upper horizontal frame provided at an upper end of the module frame and formed in a circular shape;
    상기 상부가로프레임의 하방에 구비되며, 상기 상부가로프레임보다 직경이 큰 원형상으로 형성되는 중상부가로프레임;A middle upper side frame formed below the upper side horizontal frame and formed in a circular shape having a larger diameter than the upper side horizontal frame;
    상기 중상부가로프레임의 하방에 구비되며, 상기 중상부가로프레임보다 직경이 큰 원형상으로 형성되는 중하부가로프레임;A middle lower part furnace frame provided below the middle upper part furnace frame and formed in a circular shape having a larger diameter than the middle upper part furnace frame;
    상기 중상부 가로프레임의 하방에 구비되며, 상기 중하부가로프레임과 내접하는 다각형 형상으로 형성되는 상부다각형환프레임;An upper polygonal ring frame provided below the middle upper horizontal frame and formed in a polygonal shape in which the middle lower portion is inscribed with the road frame;
    상기 중상부 가로프레임의 하방에 구비되며, 상기 상부다각형환프레임과 동일한 형상으로 형성되는 하부다각형환프레임;으로 구성되는 것을 특징으로 하는 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템.It is provided below the middle upper horizontal frame, the lower polygonal ring frame is formed in the same shape as the upper polygonal ring frame; grid-connected distributed smart energy generation for mass-provided system for a large quantity of solar energy Tracking Convergence Development System.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 다면각태양광모듈은,The polyhedral solar module,
    상기 상부가로프레임과 중상부가로프레임에 상단과 하단이 각각 고정되는 상부다면각태양광모듈과;An upper polyhedral solar module having upper and lower ends fixed to the upper horizontal frame and the upper middle horizontal frame, respectively;
    상기 중상부가로프레임과 중하부가로프레임에 각각 상단과 하단이 고정되는 하부다면각태양광모듈로 구성되는 것을 특징으로 하는 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템.Multi-sided solar power multi-track tracking convergence power generation system for grid-connected distributed smart energy generation supply mass system, characterized in that consisting of the lower polyhedral solar modules fixed to the top and bottom of the upper and lower middle frame, respectively. .
  4. 제 2 항에 있어서,The method of claim 2,
    상기 하부다면각태양광모듈의 프레임은 상기 상부다각형환프레임 및 하부다각형환프레임의 사이에 구비되며, 상기 상부다각형환프레임의 한변의 길이와 대응하는 사각형 형상으로 형성되는 것을 특징으로 하는 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템.The frame of the lower polyhedral solar module is provided between the upper polygonal ring frame and the lower polygonal ring frame, the grid-associated dispersion, characterized in that formed in a rectangular shape corresponding to the length of one side of the upper polygonal ring frame. Solar energy multi-track tracking convergence power generation system
  5. 제 1 항에 있어서,The method of claim 1,
    상기 개폐장치는,The opening and closing device,
    상기 하부다면각태양광모듈의 회전을 위한 동력을 제공하는 서보모터와;A servo motor for providing power for rotation of the lower polyhedral solar module;
    상기 메인프레임에 장착되는 하우징과;A housing mounted to the main frame;
    상기 하우징의 내측에 위치되며, 일단은 상기 하부다면각태양광모듈에 연결되어, 상기 서보모터의 회전에 따라 상기 하우징의 내외측으로 출입되는 축을 포함하는 것을 특징으로 하는 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템.Located inside the housing, one end is connected to the lower polyhedral photovoltaic module, grid-connected distributed smart energy supply, characterized in that it comprises an axis entering and exiting the inside and outside of the housing according to the rotation of the servomotor. Multi-track tracking convergence power generation system for solar power system for mass system.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 태양광모듈이 장착되는 한쌍의 수직 프레임과 이웃하는 수직프레임의 사이에는 상기 풍력발전기의 구동을 위한 바람이 출입되는 통풍구가 구비되는 것을 특징으로 하는 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템.Between the pair of vertical frame to which the solar module is mounted and the neighboring vertical frame is provided for the ventilation system for grid-connected distributed smart energy power generation system, characterized in that the ventilation openings for entering the wind generator is provided. Solar wind multi-faceted convergence power generation system.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 풍력발전기는 상기 중앙결합부 축으로하여 다수개의 풍력날개가 방사상으로 배치되는 것을 특징으로 하는 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템.The wind turbine is a multi-directional tracking convergence power generation system for a grid-connected distributed smart energy generation supply mass system, characterized in that the plurality of wind blades are arranged radially by the axis of the central coupling portion.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 풍력발전기는,The wind power generator,
    상기 중앙결합부에 의해 관통되며, 상하 이격되는 상부원형고정판과 하부원형고정판과;An upper circular fixing plate and a lower circular fixing plate which are penetrated by the central coupling part and spaced apart from each other;
    상기 상부원형고정판과 하부원형고정판의 사이에 구비되며, 상기 중앙결합부를 축으로하여 방사상으로 배치되는 다수의 풍력날개와;A plurality of wind vanes provided between the upper circular fixing plate and the lower circular fixing plate and disposed radially with respect to the central coupling part;
    상기 각 풍력날개의 회전축과 대응하는 상기 상부원형고정판에 구비되는 발전기를 포함하여 구성되는 것을 특징으로 하는 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템.The solar wind multi-directional tracking and convergence power generation system for grid-type distributed smart energy generation supply mass system, characterized in that it comprises a generator provided in the upper circular fixed plate corresponding to the rotating shaft of each wind blade.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 태양광 풍력 다방면 추적 융합발전시스템은 하나 또는 둘 이상의 전주에 설치되어 전력변환장치까지 직렬 또는 병렬 연결되며,The solar wind multi-directional tracking convergence power generation system is installed in one or more poles are connected in series or parallel to the power converter,
    상기 전력변환장치에서 전력량계 및 변압기를 거쳐 계통연계선로로 연결되는 것을 특징으로 하는 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템.The solar wind multi-directional tracking and convergence power generation system for grid-connected distributed smart energy generation mass supply system, characterized in that connected to the grid connection line via a power meter and a transformer in the power converter.
PCT/KR2012/004526 2012-04-21 2012-06-08 Fusion power generation system for multidirectional tracking of sunlight and wind power for smart energy generation and mass supply system of grid-connected and dispersion type WO2013157696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120041814A KR101309542B1 (en) 2012-04-21 2012-04-21 Solar and windpower generation system
KR10-2012-0041814 2012-04-21

Publications (1)

Publication Number Publication Date
WO2013157696A1 true WO2013157696A1 (en) 2013-10-24

Family

ID=49383626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004526 WO2013157696A1 (en) 2012-04-21 2012-06-08 Fusion power generation system for multidirectional tracking of sunlight and wind power for smart energy generation and mass supply system of grid-connected and dispersion type

Country Status (2)

Country Link
KR (1) KR101309542B1 (en)
WO (1) WO2013157696A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106100543A (en) * 2016-08-12 2016-11-09 山东盛唐新能源电力有限公司 Photovoltaic panel plastic stent
CN109004893A (en) * 2018-07-30 2018-12-14 安徽旭能电力股份有限公司 A kind of mechanical linkage type solar energy ceiling
CN113507255A (en) * 2021-05-08 2021-10-15 西安热工研究院有限公司 Power energy storage device for wind driven generator of photovoltaic micro-grid
EP3255335B1 (en) * 2015-02-05 2023-09-13 Alessandro Caviasca Photovoltaic module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2028678B1 (en) * 2021-07-09 2023-01-16 If Adamas B V Vertical axis wind turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295751A (en) * 2000-04-18 2001-10-26 Takuo Yukimoto Natural energy based power generating structure comprising wind power generating device integrated with solar power generating device
KR20100109093A (en) * 2009-03-31 2010-10-08 김국진 Complex generator using solar and wind
JP2011058429A (en) * 2009-09-10 2011-03-24 Yasuhiro Fujita Triangular pyramid shape photovoltaic power generation device, wind power generation device of open wind collection duct, and wind power assistance device
KR20120018850A (en) * 2010-08-24 2012-03-06 동국중전기 주식회사 Diamond-shaped multi-directional fixed tracking methods solar cells system streetlight and the manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295751A (en) * 2000-04-18 2001-10-26 Takuo Yukimoto Natural energy based power generating structure comprising wind power generating device integrated with solar power generating device
KR20100109093A (en) * 2009-03-31 2010-10-08 김국진 Complex generator using solar and wind
JP2011058429A (en) * 2009-09-10 2011-03-24 Yasuhiro Fujita Triangular pyramid shape photovoltaic power generation device, wind power generation device of open wind collection duct, and wind power assistance device
KR20120018850A (en) * 2010-08-24 2012-03-06 동국중전기 주식회사 Diamond-shaped multi-directional fixed tracking methods solar cells system streetlight and the manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3255335B1 (en) * 2015-02-05 2023-09-13 Alessandro Caviasca Photovoltaic module
CN106100543A (en) * 2016-08-12 2016-11-09 山东盛唐新能源电力有限公司 Photovoltaic panel plastic stent
CN106100543B (en) * 2016-08-12 2018-04-10 山东盛唐新能源电力股份有限公司 Photovoltaic panel plastic stent
CN109004893A (en) * 2018-07-30 2018-12-14 安徽旭能电力股份有限公司 A kind of mechanical linkage type solar energy ceiling
CN113507255A (en) * 2021-05-08 2021-10-15 西安热工研究院有限公司 Power energy storage device for wind driven generator of photovoltaic micro-grid
CN113507255B (en) * 2021-05-08 2023-05-02 西安热工研究院有限公司 Power energy storage device for wind driven generator for photovoltaic micro-grid

Also Published As

Publication number Publication date
KR101309542B1 (en) 2013-09-23

Similar Documents

Publication Publication Date Title
WO2018044115A1 (en) Smart pole using new renewable energy
WO2013100283A1 (en) Round and polyhedral segment solar energy and wind power generation system
WO2013157696A1 (en) Fusion power generation system for multidirectional tracking of sunlight and wind power for smart energy generation and mass supply system of grid-connected and dispersion type
CN104763968A (en) Multifunctional integrated solar energy and wind energy monitoring street lamp
CN206807384U (en) The solar power generation integrating device of bionical sunflower can be folded
CN202118763U (en) Energy-saving street lamp
WO2022169118A1 (en) Solar light and wind power hybrid power generation system
WO2006022590A1 (en) Multiple energy harvester to power standalone electrical appliances
CN102447264A (en) Wind-light integrative power generation system
WO2011025343A2 (en) Balloon wind gathering type power plant
CN102997160A (en) Solar street lamp
CN102226845A (en) Reflection light-concentrating unit, power generating unit of integration of solar energy and wind energy and system thereof
CN112054588B (en) Wind-solar hybrid power generation system
CN211239763U (en) Adjustable fixed-unfolding solar power generation system
KR20130123521A (en) Solar and windpower generation system
KR102233561B1 (en) Hybrid power generator utilizing unused space
KR20120109889A (en) Building photovoltaics and wind turbine system
KR20110030392A (en) Tree-type solar power generator
CN201218459Y (en) Natural energy road lamp
RU2528626C2 (en) Self-contained power generator for street lamp
CN112197226B (en) Flexible solar intelligent street lamp
CN210637187U (en) Landscape type power generation device
CN108449008B (en) Wind-solar hybrid power generation device applied to landscape lamp and control system thereof
CN214410277U (en) Double-spliced battery type traffic signal lamp
CN206517336U (en) A kind of wind-light storage generating tree system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874695

Country of ref document: EP

Kind code of ref document: A1