WO2013157565A1 - Thermal adhesive polyimide film, method for producing thermal adhesive polyimide film, and polyimide/metal laminate using thermal adhesive polyimide film - Google Patents

Thermal adhesive polyimide film, method for producing thermal adhesive polyimide film, and polyimide/metal laminate using thermal adhesive polyimide film Download PDF

Info

Publication number
WO2013157565A1
WO2013157565A1 PCT/JP2013/061356 JP2013061356W WO2013157565A1 WO 2013157565 A1 WO2013157565 A1 WO 2013157565A1 JP 2013061356 W JP2013061356 W JP 2013061356W WO 2013157565 A1 WO2013157565 A1 WO 2013157565A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
polyimide
fusible
film
layer
Prior art date
Application number
PCT/JP2013/061356
Other languages
French (fr)
Japanese (ja)
Inventor
暢 飯泉
英雄 有原
英治 升井
圭一 柳田
拓郎 河内山
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012095606A external-priority patent/JP2015129200A/en
Priority claimed from JP2012282249A external-priority patent/JP2015128821A/en
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Publication of WO2013157565A1 publication Critical patent/WO2013157565A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a heat-fusible polyimide film, a method for producing a heat-fusible polyimide film, and a polyimide metal laminate using the heat-fusible polyimide film.
  • Polyimide films are widely used as substrate materials such as flexible printed boards (FPC) and tape automated bonding (TAB).
  • FPC flexible printed boards
  • TAB tape automated bonding
  • an adhesive such as an epoxy resin or an acrylic resin can be used.
  • Patent Document 1 discloses a polyimide film having a heat-fusible property in which a heat-fusible polyimide layer is laminated on a heat-resistant polyimide layer. Is disclosed.
  • the present inventors set the types and blending ratios of the tetracarboxylic dianhydride component and the diamine component as the components of the heat-fusible polyimide film, and the conditions for producing the polyimide film.
  • the present invention was completed by earnest examination.
  • a multilayer heat-fusible polyimide film comprising a heat-fusible polyimide layer and a heat-resistant polyimide layer laminated in contact with the heat-fusible polyimide layer,
  • the heat-fusible polyimide layer is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the heat-fusible polyimide layer is a total tetracarboxylic dianhydride component.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is contained in an amount of 50 mol% or more, and the diamine component of the heat-fusible polyimide layer is 2,2-bis [4 -(4-aminophenoxy) phenyl] propane in excess of 50 mol%,
  • the heat-resistant polyimide layer is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the heat-resistant polyimide layer is the total tetracarboxylic dianhydride component, Containing 50 mol% or more of 3 ′, 4,4′-biphenyltetracarboxylic dianhydride,
  • a 18 ⁇ m copper foil is superposed on the heat-fusible polyimide layer of the heat-fusible polyimide film, and is higher by 30 ° C.
  • the polyimide metal laminate obtained by thermocompression bonding with a press pressure of 3 MPa and a press time of 1 minute in the following temperature range has a peel strength measured by the method of JIS C6471 of 0.5 N / mm or more.
  • Heat-sealable polyimide film (2) The heat according to (1), wherein the diamine component of the heat-fusible polyimide layer contains 70 mol% or more of 2,2-bis [4- (4-aminophenoxy) phenyl] propane in all diamines. Fusible polyimide film.
  • the tetracarboxylic dianhydride component of the heat-fusible polyimide layer is 50% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component.
  • the tetracarboxylic dianhydride component of the heat-fusible polyimide layer is 50% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component.
  • a polyimide precursor solution (a) that gives a heat-resistant polyimide layer and a polyimide precursor solution (b) that gives a heat-fusible polyimide layer are cast from an extrusion die on a support and laminated. Forming a thin film-like body, drying the thin-film body at a temperature of 140 ° C.
  • the polyimide precursor solution (a) is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the polyimide precursor solution (a) is all tetracarboxylic dianhydride.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is contained in an amount of 50 mol% or more
  • the polyimide precursor solution (b) is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the polyimide precursor solution (b) is all tetracarboxylic dianhydride.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is contained in an amount of 50 mol% or more, and the diamine component of the polyimide precursor solution (b) is 2,2-
  • a method for producing a heat-fusible polyimide film comprising more than 50 mol% of bis [4- (4-aminophenoxy) phenyl] propane.
  • (9) A polyimide metal laminate obtained by laminating a metal layer in contact with the heat-fusible polyimide layer of the heat-fusible polyimide film described in any one of (1) to (6) above.
  • a heat-fusible polyimide film having excellent heat resistance and excellent adhesion to a metal layer can be obtained.
  • the laminated body (polyimide metal laminated body) with high peeling strength of a polyimide film and a metal layer can be obtained by thermocompression-bonding this heat-fusible polyimide film and metal layers, such as copper foil.
  • the heat-fusible polyimide film of the present invention is a multilayer heat-fusible polyimide film including a heat-fusible polyimide layer and a heat-resistant polyimide layer laminated in contact with the heat-fusible polyimide layer.
  • the heat-fusible polyimide film of the present invention is a single-layer heat-fusible polyimide film composed of only a heat-fusible polyimide layer or a multilayer heat-fusing film including a heat-fusible polyimide layer as a surface layer. It is a conductive polyimide film.
  • thermal fusion means that the softening point of the polyimide film surface is less than 350 ° C.
  • the softening point is a temperature at which the object is softened suddenly when heated.
  • the glass transition temperature (Tg) is used for amorphous polyimide, and the melting point is used for crystalline polyimide.
  • Tg glass transition temperature
  • thermoplastic thermoplastic
  • the “heat-sealable polyimide layer” includes “a single-layer heat-sealable polyimide film”.
  • the heat-fusible polyimide layer is obtained by polymerizing a tetracarboxylic dianhydride component and a diamine component.
  • the heat-fusible polyimide layer comprises 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic dianhydride component, and 50 mol% or more of the total tetracarboxylic dianhydride component. Including.
  • the content of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component is preferably 70 mol% or higher, more preferably 80 mol% or higher, more preferably 90 mol%. More than mol%. Further, the total tetracarboxylic dianhydride component may contain 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride exceeding 0 and less than 50 mol%, preferably 10 to 30 mol%. Thereby, a polyimide metal laminate having high peel strength can be obtained.
  • the heat-fusible polyimide layer contains 2,2-bis [4- (4-aminophenoxy) phenyl] propane as a diamine component in an amount exceeding 50 mol% in the total diamine.
  • the content of 2,2-bis [4- (4-aminophenoxy) phenyl] propane in all diamines is preferably 60 mol% or more from the viewpoint of obtaining a polyimide film having excellent heat resistance and low water absorption, which will be described later. More preferably, it is 65 mol% or more, and most preferably 70 mol% or more and 100% or less.
  • tetracarboxylic dianhydride component of the heat-fusible polyimide layer the above two acid components and other tetracarboxylic dianhydride components can be used in combination.
  • Other tetracarboxylic dianhydride components include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride Bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2 -Bis (3,4-dicarboxyphenyl) propane dianhydride, 1,4-hydroquinone dibenzoate-3,3 ', 4,4'-tetracarboxylic dianhydride and the like.
  • the above 2,2-bis [4- (4-aminophenoxy) phenyl] propane and another diamine component can be used in combination.
  • the diamine component used in combination include 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3 , 3′-diaminobenzophenone, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sul
  • 1,3-bis (4-aminophenoxy) benzene and 1,4-bis (4-aminophenoxy) benzene can be preferably used. Furthermore, 1,3-bis (4-aminophenoxy) benzene is particularly preferred.
  • the diamine component to be used in combination can be used alone or in combination of two or more.
  • aromatic diamines such as paraphenylene diamine and metaphenylene diamine, modified products thereof, and aliphatic diamines such as hexamethylene diamine and tetramethylene diamine can be used in combination as long as the characteristics of the present invention are not impaired.
  • paraphenylenediamine it is preferable to use paraphenylenediamine together.
  • the heat-fusible polyimide layer preferably contains 25% by mole or more of paraphenylenediamine in all diamines. Thereby, the heat resistance of a polyimide metal laminated body further improves, and the peeling strength with a metal layer also becomes high.
  • the heat-resistant polyimide layer is obtained by polymerizing a tetracarboxylic dianhydride component and a diamine component.
  • the heat-resistant polyimide contains 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic dianhydride component in an amount of 50 mol% or more in the total tetracarboxylic dianhydride component.
  • the diamine component of the heat-resistant polyimide is not particularly limited.
  • paraphenylenediamine 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, m-tolidine, and 4,4′-diaminobenzanilide.
  • the total amount of these diamine components is preferably 70 mol% or more, more preferably 80 mol% or more, and more preferably 90 mol% or more in the total diamine components.
  • the diamine component of the heat-resistant polyimide contains 70 mol% or more of paraphenylenediamine in the total diamine.
  • Examples of the combination of an acid component and a diamine component that can provide a heat-resistant polyimide layer include the following.
  • a combination comprising 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), paraphenylenediamine (PPD), and, if necessary, 4,4-diaminodiphenyl ether (DADE).
  • s-BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • PPD paraphenylenediamine
  • DADE 4,4-diaminodiphenyl ether
  • s-BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • PPD paraphenylenediamine
  • DADE 4,4 if necessary
  • s-BPDA / PMDA is preferably 50/50 to 90/10.
  • PPD and DADE are used in combination, PPD / DADE is preferably 90/10 to 10/90, for example.
  • DADE / PPD is preferably 90/10 to 10/90.
  • s-BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • PPD diamine
  • the combination of (1) is preferable because of excellent heat resistance. Furthermore, tetracarboxylic acid containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a main component (for example, 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more).
  • a heat-resistant polyimide layer obtained from a dianhydride component and a diamine component containing paraphenylenediamine as a main component for example, 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more
  • a heat-fusible polyimide film excellent in low linear expansion coefficient, high elastic modulus, and dimensional stability can be obtained.
  • an acid component capable of obtaining a heat-resistant polyimide layer in addition to the above-mentioned acid component, other tetracarboxylic dianhydride components and / or other diamine components are used in combination as long as the desired properties are not impaired. be able to.
  • tetracarboxylic dianhydride components include 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4) -Dicarboxyphenyl) sulfide dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4- Dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis [( 3,4-dicarboxyphenoxy) phenyl] propane dianhydride and the like.
  • diamine components include metaphenylene diamine, 2,4-toluenediamine, 3,3′-diaminodiphenyl sulfide, 3,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenyl sulfide, 3,3′- Diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3 ' -Diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2-di (3-aminophenyl) propane, 2,2-di (4-aminophenyl)
  • the thickness of the heat-sealable polyimide film is not particularly limited, but in the case of a heat-sealable polyimide film having a three-layer structure having a heat-sealable polyimide layer on both sides of the heat-resistant polyimide layer, the thickness of the heat-stable polyimide layer Is preferably 3 to 70 ⁇ m, more preferably 8 to 50 ⁇ m.
  • the thickness of the single layer of the heat-fusible polyimide layer is preferably 0.5 to 15 ⁇ m, and more preferably 1 to 12.5 ⁇ m.
  • the total thickness of the heat-fusible polyimide layers on both sides is preferably 1 to 30 ⁇ m, and more preferably 2 to 25 ⁇ m.
  • the heat-fusible polyimide film obtained in the present invention is excellent in heat resistance, particularly solder heat resistance.
  • the water absorption rate of the heat-fusible layer of the heat-fusible polyimide film is, for example, 0.6% or less, preferably 0.5% or less.
  • the linear expansion coefficient of the heat-fusible polyimide film is, for example, 16 to 22 ppm / ° C.
  • the elastic modulus of the heat-fusible polyimide film is, for example, 5.5 to 8 GPa. The method for measuring the water absorption rate, the linear expansion coefficient, and the elastic modulus will be described in the Examples section.
  • the single-layer heat-fusible polyimide film composed only of the heat-fusible polyimide layer described above will be described.
  • the single-layer heat-fusible polyimide layer is obtained by polymerizing a tetracarboxylic dianhydride component and a diamine component.
  • the heat-fusible polyimide contains 50 mol% or more of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in at least all tetracarboxylic dianhydride components, and 2,3,3 ′, 4 It may contain more than 0 and less than 50 mol% of '-biphenyltetracarboxylic dianhydride.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is preferably 70 mol% or more, more preferably 80 mol% or more, more preferably 90 mol%.
  • a polyimide metal laminate having a high peel strength which will be described later, contains 10 to 30 mol% of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component. From the viewpoint of obtaining.
  • the diamine component contains an amount exceeding 50 mol% of 2,2-bis [4- (4-aminophenoxy) phenyl] propane in the total diamine.
  • the content of 2,2-bis [4- (4-aminophenoxy) phenyl] propane in the total diamine is 70 mol% or more and 100% or less from the viewpoint of obtaining a polyimide film having excellent heat resistance and low water absorption, which will be described later. preferable.
  • the thickness of the single-layer heat-fusible polyimide film is not particularly limited, but is 75 ⁇ m or less, preferably 8 to 50 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • the description content of the said "multilayer heat-fusible polyimide film" is applicable as it is.
  • the multilayer heat-fusible polyimide film is a polyimide that gives a heat-fusible polyimide layer on one or both sides of a self-supporting film obtained from a polyimide precursor solution (polyamic acid solution) (a) that gives a heat-resistant polyimide layer. It can be obtained by applying a precursor solution (polyamic acid solution) (b) and imidizing by heating and drying the resulting multilayer self-supporting film.
  • the self-supporting film obtained from the polyimide precursor solution (a) that gives the heat-resistant polyimide layer is substantially the same in terms of the tetracarboxylic acid component and the diamine component, or a slight excess of either component.
  • a polyamic acid solution [polyimide precursor solution (a)] obtained by reacting in a solvent can be cast on a support and dried by heating.
  • the polyimide precursor solution (b) that gives the heat-fusible polyimide layer also has a tetracarboxylic acid component and a diamine component that are substantially equimolar, or a slight excess of either component in an organic solvent. It is obtained by reacting.
  • the polyimide precursor solution (b) that gives the heat-fusible polyimide layer was prepared by using 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic dianhydride component,
  • the carboxylic dianhydride component contains 50 mol% or more
  • the diamine component contains 2,2-bis [4- (4-aminophenoxy) phenyl] propane in excess of 50 mol% in the total diamine.
  • the polyimide precursor solution (polyamic acid solution) (a) that gives the heat-resistant polyimide layer is obtained by adding 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component. Contains 50 mol% or more.
  • the polyimide precursor solution (b) for providing the heat-fusible polyimide layer may contain 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride.
  • 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride may be contained in the total tetracarboxylic dianhydride component in an amount of less than 50 mol%, preferably 10 to 30 mol%. Thereby, the polyimide metal laminated body with high peeling strength can be obtained.
  • Examples of the organic solvent for producing the polyimide precursor solution include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, Examples thereof include amides such as hexamethylsulfuramide, sulfoxides such as dimethyl sulfoxide and diethyl sulfoxide, and sulfones such as dimethyl sulfone and diethyl sulfone. These solvents may be used alone or in combination.
  • the concentration of all monomers in the organic solvent when carrying out the polymerization reaction of the polyimide precursor can be appropriately selected according to the purpose of use.
  • the concentration of all monomers in the organic solvent is preferably 5 to 40% by mass, more preferably 6 to 35% by mass, and 10 to 30%. It is particularly preferable that the content is% by mass.
  • a tetracarboxylic acid component and a diamine component are substantially equimolar, or either component (acid component or diamine).
  • Component) is slightly mixed and mixed, and the reaction is carried out at a reaction temperature of 100 ° C. or lower, preferably 80 ° C. or lower, more preferably 0 to 60 ° C. for about 0.2 to 60 hours to obtain a polyamic acid (polyimide precursor) solution.
  • the solution viscosity of the polyimide precursor solution (a) and the polyimide precursor solution (b) can be appropriately selected depending on the purpose (coating, casting, etc.) to be used.
  • the rotational viscosity measured at 30 ° C. is about 100 from the viewpoint of workability in handling the polyimide precursor solution. It is preferably ⁇ 5000 poise, more preferably 500 to 4,000 poise, and particularly preferably about 1000 to 3,000 poise.
  • polyimide precursor is 1 to 100 centipoise from the viewpoint of workability in handling the polyimide precursor solution. It is preferably 3 to 50 centipoise, more preferably 5 to 20 centipoise. Therefore, it is desirable to carry out the polymerization reaction to such an extent that the produced polyamic acid (polyimide precursor) exhibits the above viscosity. Moreover, said organic solvent can be added to the manufactured polyamic acid solution, and solution viscosity can also be adjusted.
  • the polyimide precursor solution (a) self-supporting film used as the heat-resistant polyimide layer may be, for example, a polyimide precursor solution (a) or a suitable support (for example, a metal, ceramic, plastic roll, or metal belt). ) To form a film having a uniform thickness, and then heated to 50 to 210 ° C., particularly 60 to 200 ° C. using a heat source such as hot air or infrared rays, It can be obtained by gradually removing and drying until it becomes self-supporting (for example, to the extent that it can be peeled off from the support).
  • a heat source such as hot air or infrared rays
  • a polyimide precursor solution (b) that gives a heat-fusible polyimide layer is applied to one side or both sides of the self-supporting film of the polyimide precursor solution (a) thus obtained.
  • the polyimide precursor solution (b) may be applied to the self-supporting film peeled from the support, or may be applied to the self-supporting film on the support before peeling from the support.
  • the polyimide precursor solution (b) can be applied to the self-supporting film of the polyimide precursor solution (a), for example, gravure coating method, spin coating method, silk screen method, dip coating method, spray coating method. , Known coating methods such as bar coating, knife coating, roll coating, blade coating and die coating.
  • the self-supporting film of the polyimide precursor solution (a) preferably has a surface on which the polyimide precursor solution (b) can be applied uniformly.
  • the self-supporting film of the polyimide precursor solution (a) preferably has a loss on heating in the range of 20 to 40% by mass, and preferably has an imidization ratio in the range of 8 to 40%. If the heating weight loss and imidization rate are within the above ranges, the mechanical properties of the self-supporting film will be sufficient, and it will be easier to cleanly apply the polyimide precursor solution (b) on the upper surface of the self-supporting film, and imidization will occur.
  • production of a foam, a crack, a craze, a crack, crack, etc. is not observed in the polyimide film obtained later, and the adhesive strength of a heat resistant polyimide layer and a heat-fusible polyimide layer becomes enough.
  • the imidization ratio of the self-supporting film can be calculated by measuring the IR spectrum of the self-supporting film and its fully cured product (polyimide film) by the ATR method and using the ratio of the peak area of the vibration band.
  • the vibration band peak an asymmetric stretching vibration band of an imide carbonyl group, a benzene ring skeleton stretching vibration band, or the like is used.
  • imidation rate measurement there is also a method using a Karl Fischer moisture meter described in JP-A-9-316199.
  • a fine inorganic or organic filler can be mix
  • inorganic additives include particulate or flat inorganic fillers, such as particulate titanium dioxide powder, silicon dioxide (silica) powder, magnesium oxide powder, aluminum oxide (alumina) powder, and zinc oxide powder.
  • inorganic oxide powder such as, inorganic nitride powder such as particulate silicon nitride powder and titanium nitride powder, inorganic carbide powder such as silicon carbide powder, inorganic such as particulate calcium carbonate powder, calcium sulfate powder and barium sulfate powder Mention may be made of salt powder.
  • organic additive examples include polyimide particles and thermosetting resin particles. These additives may be used in combination of two or more. About the usage-amount and shape (size, aspect ratio) of an additive, it is preferable to select according to a use purpose. Moreover, in order to disperse these additives uniformly, a means known per se can be applied.
  • the maximum heating temperature of the heat treatment for imidation is preferably 350 ° C. to 600 ° C., more preferably 380 to 520 ° C., more preferably 390 to 500 ° C., and more preferably 400 to 480 ° C.
  • the heat treatment for imidization is preferably performed in stages, and is first subjected to primary heat treatment at a temperature of 200 ° C. or higher and lower than 300 ° C. for 1 minute to 60 minutes, and then at a temperature of 300 ° C. or higher and lower than 350 ° C. for 1 minute. Secondary heat treatment for ⁇ 60 minutes, and then the maximum heating temperature of 350 ° C. to 600 ° C., preferably 450 to 590 ° C., more preferably 490 to 580 ° C., more preferably 500 to 580 ° C. for 1 minute to 30 minutes.
  • a tertiary heat treatment is desirable. This heat treatment can be performed using a known apparatus such as a hot air furnace or an infrared heating furnace.
  • this heat treatment is preferably performed by fixing the self-supporting film of the polyimide precursor solution (a) coated with the polyimide precursor solution (b) with a pin tenter, a clip or the like.
  • the polyimide precursor solution (b) and / or the polyimide precursor solution (a) is used for the purpose of limiting the gelation of the polyamic acid (polyimide precursor).
  • Phenyl and the like can be added in the range of 0.01 to 1% with respect to the solid content (polymer) concentration during polyamic acid polymerization.
  • a phosphate ester or a salt of a tertiary amine and a phosphate ester to the polyamic acid solution.
  • these addition amounts are preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polyimide or polymer.
  • Specific examples of the phosphate ester include distearyl phosphate ester and monostearyl phosphate ester.
  • Examples of the salt of tertiary amine and phosphate ester include monostearyl phosphate ester triethanolamine salt.
  • thermal imidization thermal imidization
  • chemical imidization chemical imidization
  • a basic organic compound can be added to the polyimide precursor solution (b) and / or the polyimide precursor solution (a) for the purpose of promoting imidization.
  • imidazole, 2-methylimidazole, 1,2-dimethylimidazole, 2-phenylimidazole, benzimidazole, isoquinoline, substituted pyridine and the like are 0.05 to 10% by mass with respect to the polyamic acid (polyimide precursor), preferably It can be used in a proportion of 0.05 to 5% by mass, particularly preferably 0.1 to 2% by mass. These can be used to avoid insufficient imidization to form polyimide films at relatively low temperatures.
  • the multilayer polyimide film of the present invention is obtained by a coextrusion-casting film forming method (also simply referred to as a coextrusion method), a heat-resistant polyimide layer dope solution (also referred to as a polyamic acid solution or a polyimide precursor solution), It can also be produced by a method of obtaining a multilayer polyimide film by laminating, drying and imidizing with a dope solution of a heat-fusible polyimide layer.
  • a coextrusion-casting film forming method also simply referred to as a coextrusion method
  • a heat-resistant polyimide layer dope solution also referred to as a polyamic acid solution or a polyimide precursor solution
  • a method of obtaining a multilayer polyimide film by laminating, drying and imidizing with a dope solution of a heat-fusible polyimide layer for example, a method described in JP-A-3-180343 (Japanese Patent Public
  • this co-extrusion method first uses an extrusion molding machine having two or more layers of extrusion dies, and the dope solution of the heat-resistant polyimide layer and the heat-sealable polyimide from the discharge port of the dies.
  • a layered dope solution is cast on a support to form a laminated thin film.
  • the thin film on the support is dried to form a multilayer self-supporting film, then the multilayer self-supporting film is peeled off from the support, and finally the multilayer self-supporting film is heat-treated. It is to do.
  • the dope solution in contact with the support may be either a dope solution that provides a heat-resistant polyimide layer or a dope solution that provides a heat-fusible polyimide layer.
  • the drying is preferably performed by drying the thin film at a temperature exceeding 135 ° C., specifically 140 ° C. or higher, preferably 145 ° C. or higher to form a self-supporting film. Thereby, the peeling strength of the polyimide metal laminated body mentioned later improves.
  • a dope solution supply port is provided, and a dope solution passage is formed from each supply port toward each manifold, and a flow path at the bottom of the manifold is formed.
  • the gap between the lip portions can be adjusted by a lip adjustment bolt.
  • the distance between the gaps of the flow path is adjusted by each choke bar.
  • Each of the manifolds preferably has a hanger coat type shape.
  • the double-layer extrusion die has respective dope supply ports on the left and right sides of the upper portion of the die, and the dope solution passages are immediately joined at the junction where the partition plate is provided.
  • a dope solution flow path communicates from the junction to the manifold, and a dope solution passage (lip portion) at the bottom of the manifold communicates with the slit-like discharge port.
  • a structure feed block type double-layer die or single manifold type double-layer die in which the dope solution is discharged on the support in the form of a groove film from the discharge port may be used.
  • a multilayer extrusion polyimide film can be produced by a molding method similar to the two-layer extrusion molding by using three or more dies for extrusion molding. That is, when a heat-resistant polyimide layer dope and a heat-fusible polyimide layer dope are used, a two-layer heat-fusible polyimide film can be obtained. In addition, in the case of a layer configuration of a heat-fusible polyimide layer dope liquid-a heat-resistant polyimide layer dope liquid-a heat-fusible polyimide layer dope liquid, a three-layer heat-fusible polyimide film is obtained. You can also.
  • the multilayer polyimide film of the present invention is obtained by applying a polyamic acid solution of a heat-fusible polyimide to a heat-resistant polyimide film, heating and drying to imidize the heat-fusible layer. You can also.
  • a heat resistant polyimide film a film obtained by forming the heat resistant polyimide film composition by a known method or a commercially available polyimide film can be used.
  • heat-resistant polyimide films examples include Upilex (registered trademark) manufactured by Ube Industries, Kapton EN (registered trademark) manufactured by Toray DuPont, Apical NPI (registered trademark) manufactured by Kaneka Corporation, and the like. .
  • the amic acid solution of the heat-fusible polyimide film to be applied and the drying conditions can be performed in the same manner as in the application to the self-supporting film.
  • it is desirable to surface-treat a heat resistant polyimide film before coating examples of the surface treatment method include corona treatment, plasma treatment, alkali treatment, etching treatment, coupling agent treatment, or a combination thereof.
  • the single layer heat-fusible polyimide film contains 50 mol% or more of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in at least all tetracarboxylic dianhydride components, A tetracarboxylic dianhydride component containing more than 0 and less than 50 mol% of 3 ′, 4′-biphenyltetracarboxylic dianhydride, and 2,2-bis [4- (4-aminophenoxy) phenyl in all diamines
  • a polyamic acid solution containing a diamine component containing more than 50 mol% of propane is cast or applied onto a carrier film, dried, and then heat-treated to obtain a heat-fusible polyimide film with a carrier film.
  • the polyamic acid solution is cast or coated on a carrier film and dried.
  • the drying temperature is, for example, 80 to 200 ° C., preferably 100 to 200 ° C.
  • a polyimide film can be suitably used as the carrier film.
  • a commercially available polyimide film can be used.
  • Upyorex registered trademark
  • Kapton EN registered trademark
  • Kaneka Corporation NPI registered trademark
  • the thickness of the polyimide film as the carrier film is preferably 50 ⁇ m or more, more preferably 75 to 125 ⁇ m.
  • a polyimide film as a carrier film is obtained by polymerizing a tetracarboxylic dianhydride component and a diamine component to obtain a polyamic acid solution, casting or coating the polyamic acid solution on a support, and drying it. After obtaining the support film, the self-support film is heated to imidize.
  • the surface that was in contact with the support when the polyamic acid solution was cast or applied onto the support was referred to as the B surface, and was not in contact with the support (air Side) surface.
  • the method for casting or coating is not particularly limited. For example, gravure coating, spin coating, silk screen, dip coating, spray coating, bar coating, knife coating, roll coating, blade coating And a method such as a die coating method.
  • the surface of the carrier film on which the polyamic acid solution is cast or applied may be either the A surface or the B surface, but it is preferable to cast or apply the polyamic acid solution on the B surface of the carrier film.
  • the adhesiveness with the metal of a heat-fusible polyimide film improves, and the peeling strength of the polyimide metal laminated body obtained by bonding together with a metal becomes high.
  • the thickness of the carrier film is 75 ⁇ m or more, preferably 75 to 125 ⁇ m, it is preferable to cast or apply the polyamic acid solution to the B surface of the carrier film.
  • the dried product (with a carrier film) is then heat-treated. Thereby, while remaining solvent is fully removed, imidation is advanced.
  • the temperature of the heat treatment is higher than the above drying temperature, preferably 100 to 400 ° C., more preferably 300 to 400 ° C.
  • the heat treatment time is, for example, 1 to 100 minutes.
  • the heat treatment is performed continuously or intermittently.
  • the heat treatment can be performed using an apparatus such as a hot air furnace or an infrared heating furnace.
  • a fixing device for the dried product (solidified film) for example, a belt-like or chain-like one provided with a large number of pins or gripping tools at equal intervals, the length of the solidified film supplied continuously or intermittently is used.
  • a device that can be installed in a pair along both side edges in the direction and can fix the film while moving the film continuously or intermittently with the movement of the film is suitable.
  • the solidified film fixing device can expand and contract the film being heat-treated in the width direction or the longitudinal direction at an appropriate elongation or contraction rate (particularly preferably an expansion ratio of about 0.5 to 5%). It may be a device.
  • the heat-welding polyimide film again, preferably 400 gf / mm 2 or less, particularly preferably under 300 gf / mm 2 or lower tension or under no tension, the temperature of 100 ⁇ 400 ° C., preferably 0.
  • a heat-fusible polyimide film having particularly excellent dimensional stability can be obtained.
  • the produced heat-fusible polyimide film with a long carrier film can be wound into a roll.
  • the carrier film can be peeled from the heat-fusible polyimide film with a carrier film to obtain a single-layer heat-fusible polyimide film.
  • the polyimide metal laminate of the present invention is formed by laminating a metal layer on the heat-fusible polyimide layer of the heat-fusible polyimide film of the present invention.
  • a metal layer may be laminated on both surfaces of the heat-fusible polyimide film, or a metal layer may be laminated only on one surface of the heat-fusible polyimide film.
  • the polyimide metal laminate of the present invention is laminated on one or both sides of the heat-fusible polyimide film having the heat-fusible polyimide layer on one or both sides of the outermost layer and the heat-fusible polyimide layer. You may do it.
  • the polyimide metal laminate of the present invention is obtained by laminating a metal layer on the heat-fusible polyimide layer of the heat-fusible polyimide film having the heat-fusible polyimide layer on at least one or both surfaces of the outermost layer. Formed.
  • the metal layer is formed on one side of the heat-fusible polyimide film
  • the heat-fusible polyimide film having the heat-fusible polyimide layer on one side or both sides of the outermost layer of the heat-fusible polyimide film is used.
  • the said heat-fusible polyimide film which has the said heat-fusible polyimide layer on both surfaces of the said heat-fusible polyimide film is used.
  • the surface of the heat-sealable polyimide film on which the metal layer is laminated is a carrier during the production of the single-layer heat-sealable polyimide film described above. It is preferable that the surface has no film.
  • the metal layer is laminated on one side or both sides of the heat-fusible polyimide film.
  • the metal layer is preferably a metal foil.
  • various metal foils such as copper, aluminum, gold, or an alloy of these alloys can be used.
  • copper foil is preferably used. Specific examples of the copper foil include rolled copper foil and electrolytic copper foil.
  • the thickness of the metal foil is not particularly limited, but is preferably 2 to 35 ⁇ m, and particularly preferably 5 to 18 ⁇ m.
  • a metal foil with a carrier for example, a copper foil with an aluminum foil carrier can be used.
  • the heat-fusible polyimide film and the metal layer are thermocompression-bonded by superimposing a metal layer (metal foil or the like) on both sides of the heat-fusible polyimide film having the heat-fusible polyimide layer formed on both sides.
  • a metal layer metal foil or the like
  • a metal layer such as a metal foil
  • the heat-fusible polyimide film and the metal foil are heated at least by a pair of pressure members so that the temperature of the pressure part is 30 ° C. higher than the glass transition temperature of the heat-fusible polyimide and 420 ° C. or lower. It is preferable to perform thermocompression bonding continuously.
  • the pressure member examples include a pair of pressure-bonding metal rolls (the pressure-bonding portion may be made of metal or ceramic sprayed metal), a double belt press, and a hot press, and particularly capable of thermocompression bonding and cooling under pressure.
  • a hydraulic double belt press is particularly preferred.
  • a polyimide metal laminate can be easily obtained by roll lamination using a pair of crimped metal rolls.
  • the pressure member for example, a metal roll or preferably a double belt press is used, and the heat-fusible polyimide film, the metal foil, and the reinforcing material are superposed and continuously heated.
  • a long polyimide metal laminate can be produced by pressure bonding.
  • the heat-fusible polyimide film and the metal foil are used in a roll-wound state, and are continuously supplied to the pressure members, respectively, and are particularly suitable when the polyimide metal laminate is obtained in a roll-wound state. .
  • the heat-fusible polyimide film and the metal foil are firmly laminated.
  • the peel strength measured by the method of JIS C6471 is 0.5 N / mm or more, preferably 0.7 N / mm or more, more preferably 0.9 N / mm or more, and further preferably 1.3 N.
  • a polyimide metal laminate that is at least / mm can be obtained.
  • the peeling state includes a case where peeling occurs at the interface between the heat-resistant polyimide layer and the heat-fusible polyimide film, and a case where peeling occurs at the interface between the heat-fusible polyimide layer and the metal layer. Therefore, the measured peel strength is the peel strength of the surface with weaker adhesive force.
  • the peel strength measurement method is as follows.
  • a copper foil (3EC-VLP, manufactured by Mitsui Kinzoku Co., Ltd., 3 ⁇ -VLP, thickness 18 ⁇ m) is superimposed on the heat-fusible polyimide layer of the heat-fusible polyimide film, and 30 ° C. or more from the glass transition temperature of the heat-fusible polyimide.
  • a polyimide metal laminate in which a copper foil is laminated on a heat-fusible polyimide film is obtained by thermocompression bonding at a high temperature of 420 ° C. or less at a residual heat of 5 minutes, a press pressure of 3 MPa, and a press time of 1 minute.
  • the peel strength of this polyimide metal laminate is measured by the method of JIS C6471.
  • the glass transition temperature of the heat-fusible polyimide varies depending on the types of the tetracarboxylic dianhydride component and the diamine component that constitute the heat-fusible polyimide.
  • the said thermocompression bonding temperature is suitably set according to the glass transition temperature of the heat-fusible polyimide used.
  • the heat-fusible polyimide film of the present invention can be used as an adhesive sheet or an adhesive tape.
  • the polyimide metal laminate of the present invention has good moldability and can be directly subjected to drilling, bending, drawing, metal wiring formation, and the like. Moreover, the heat-fusible polyimide film of this invention can be used for the thermocompression bonding of the electronic circuit on wiring.
  • the heat-fusible polyimide film and the polyimide metal laminate of the present invention can be used as materials for electronic parts and electronic devices such as a printed wiring board, a flexible printed circuit board, and a TAB tape.
  • the heat-fusible polyimide film of the present invention includes a tab lead sealing material such as a lithium ion battery, a polymer battery, and an electric double layer capacitor using an aluminum laminate film as an outer bag, a cover lay of a flexible printed circuit board, and a ceramic package. It can be suitably used as an adhesive sheet that requires reliability at high temperatures, such as a bonding material between a cap and a cap.
  • the metal layer was mentioned as an adherend laminated
  • the adherend other than metal include ceramic, glass, and polyimide film.
  • solder heat resistance of polyimide metal laminate A resist is printed on one side of the obtained polyimide metal laminate and immersed in an etching solution at 30 ° C. for 20 to 30 minutes to obtain a laminate in which the metal layer on one side is etched. It was. The obtained laminate was dried at 80 ° C. for 30 minutes, and the sample conditioned for 24 hours or more in an environment of 23 ° C.-60% RH was floated in a solder bath at various temperatures for 10 seconds. It was confirmed. The maximum temperature at which foaming was not confirmed was defined as the solder heat resistance temperature.
  • Example 1 Multilayer heat-fusible polyimide film and polyimide metal laminate
  • a polyamic acid solution E thermal fusion layer
  • polyamic acid solution A core layer
  • polyamic acid solution E thermal fusion layer
  • the thin film casting was continuously dried with hot air at 145 ° C. to form a self-supporting film. After peeling the self-supporting film from the support, it is gradually heated from 200 ° C. to 460 ° C.
  • Table 2 shows the linear expansion coefficient and elastic modulus of the heat-fusible polyimide film.
  • a copper foil (3EC-VLP, manufactured by Mitsui Kinzoku Co., Ltd., 3 ⁇ m thickness) is superimposed on both sides of the obtained heat-fusible polyimide film, and the temperature is 300 ° C., the remaining heat is 5 minutes, the pressing pressure is 3 MPa, and the pressing time is 1.
  • stacked on both surfaces of the heat-fusible polyimide film was obtained by carrying out the thermocompression bonding in minutes. Each evaluation of the peeling strength of this polyimide metal laminated body and solder heat resistance was performed. The results are shown in Table 2.
  • Example 2 A heat-fusible polyimide film was obtained in the same manner as in Example 1 except that the type of polyamic acid solution and the drying temperature of the cast were changed as shown in Table 2.
  • Table 2 shows the linear expansion coefficient and elastic modulus of the heat-fusible polyimide film.
  • a polyimide metal laminate was obtained in the same manner as in Example 1. Each evaluation of the peeling strength of this polyimide metal laminated body and solder heat resistance was performed. The results are shown in Table 2.
  • the drying temperature of the self-supporting film is 140 ° C. or higher, the peel strength of the polyimide metal laminate (interfacial strength between the heat-resistant polyimide layer and the heat-fusible polyimide layer) is improved.
  • the BAPP in the diamine component exceeds 50 mol%, preferably 65 mol% or more, particularly 70 mol% or more, the heat resistance of the polyimide metal laminate is excellent.
  • the core layer contains less s-BPDA as the tetracarboxylic dianhydride component, there is no problem in solder heat resistance, but the value of the linear expansion coefficient of the heat-fusible polyimide film increases, and the elastic modulus There was a tendency that the dimensional stability of the polyimide metal laminate decreased. More preferably, the core layer contains 50 mol% or more of s-BPDA as a tetracarboxylic dianhydride component.
  • the heat fusion layer when BAPP and PPD are used in combination as the diamine component, and the amount of PPD is 25 mol% or more in the total diamine component, the peel strength and solder heat resistance of the polyimide metal laminate are Even better.
  • a-BPDA in the tetracarboxylic dianhydride component is used for the heat-sealing layer, the peel strength of the polyimide metal laminate is improved.
  • a polyimide film having excellent heat resistance and excellent adhesion to the metal layer can be obtained. Moreover, it is excellent in heat resistance and can obtain the laminated body (polyimide metal laminated body) with high peeling strength of a polyimide film and a metal layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are a thermal adhesive polyimide film that offers excellent heat resistance and excellent adhesiveness to a metal layer, a method for producing the thermal adhesive polyimide film, and a polyimide/metal laminate using the thermal adhesive polyimide film. A multi-layered thermal adhesive polyimide film comprising a thermal adhesive polyimide layer and a heat-resistant polyimide layer layered in contact with the thermal adhesive polyimide layer, the thermal adhesive polyimide film being characterized in that: the thermal adhesive polyimide layer comprises 50 mol% or more 3,3',4,4'-biphenyl tetracarboxylic dianhydride of the total tetracarboxylic dianhydride component, and comprises more than 50 mol% 2,2-bis[4-(4-aminophenoxy) phenyl] propane of the total diamine; and the heat-resistant polyimide layer comprises 50 mol% or more 3,3',4,4'-biphenyl tetracarboxylic dianhydride of the total tetracarboxylic dianhydride component, the peel strength as measured by the method in JIS C6471 being 0.5 N/mm or more.

Description

熱融着性ポリイミドフィルム、熱融着性ポリイミドフィルムの製造方法及び熱融着性ポリイミドフィルムを用いたポリイミド金属積層体Heat-sealable polyimide film, method for producing heat-sealable polyimide film, and polyimide metal laminate using heat-sealable polyimide film
 本発明は、熱融着性ポリイミドフィルム、熱融着性ポリイミドフィルムの製造方法及び熱融着性ポリイミドフィルムを用いたポリイミド金属積層体に関する。 The present invention relates to a heat-fusible polyimide film, a method for producing a heat-fusible polyimide film, and a polyimide metal laminate using the heat-fusible polyimide film.
 ポリイミドフィルムは、フレキシブルプリント板(FPC)やテープ・オートメイティッド・ボンディング(TAB)などの基板材料として幅広く使用されている。 Polyimide films are widely used as substrate materials such as flexible printed boards (FPC) and tape automated bonding (TAB).
 FPCやTABの製造において、ポリイミドフィルムと銅箔とを張り合わせる方法としては、エポキシ樹脂やアクリル樹脂などの接着剤を用いることが挙げられる。 In the production of FPC and TAB, as a method of laminating a polyimide film and a copper foil, an adhesive such as an epoxy resin or an acrylic resin can be used.
 また、接着剤を用いることなく銅箔と張り合わせることができるポリイミドフィルムとして、特許文献1には、耐熱性ポリイミド層に熱融着性ポリイミド層が積層されてなる熱融着性を有するポリイミドフィルムが開示されている。 In addition, as a polyimide film that can be bonded to a copper foil without using an adhesive, Patent Document 1 discloses a polyimide film having a heat-fusible property in which a heat-fusible polyimide layer is laminated on a heat-resistant polyimide layer. Is disclosed.
特開2004-230670号公報JP 2004-230670 A
 しかしながら、FPCやTABの高機能化に伴い、熱融着性ポリイミドフィルムの耐熱性や、熱融着性ポリイミドフィルムと被着体である銅箔などの金属層との接着性の更なる改善が望まれていた。 However, with the enhancement of FPC and TAB functions, the heat resistance of the heat-fusible polyimide film and the adhesion between the heat-fusible polyimide film and the metal layer such as copper foil as the adherend are further improved. It was desired.
 本発明は、耐熱性に優れ、かつ金属層との接着性に優れた熱融着性ポリイミドフィルム及びその製造方法、熱融着性ポリイミドフィルムを用いたポリイミド金属積層体を提供することを目的とする。 It is an object of the present invention to provide a heat-fusible polyimide film excellent in heat resistance and adhesiveness to a metal layer, a method for producing the same, and a polyimide metal laminate using the heat-fusible polyimide film. To do.
 本発明者らは、上記課題を解決するために、熱融着性ポリイミドフィルムの構成成分としてのテトラカルボン酸二無水物成分とジアミン成分の種類および配合割合、ポリイミドフィルムを製造するための条件を鋭意検討し、本発明を完成させた。 In order to solve the above-mentioned problems, the present inventors set the types and blending ratios of the tetracarboxylic dianhydride component and the diamine component as the components of the heat-fusible polyimide film, and the conditions for producing the polyimide film. The present invention was completed by earnest examination.
 本発明は、以下の事項に関する。
(1)熱融着性ポリイミド層と、前記熱融着性ポリイミド層に接して積層された耐熱性ポリイミド層とを含む多層の熱融着性ポリイミドフィルムであって、
 前記熱融着性ポリイミド層は、テトラカルボン酸二無水物成分とジアミン成分とから得られ、前記熱融着性ポリイミド層の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、前記熱融着性ポリイミド層の前記ジアミン成分は、全ジアミン中、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを50モル%超含み、
 前記耐熱性ポリイミド層は、テトラカルボン酸二無水物成分とジアミン成分とから得られ、前記耐熱性ポリイミド層の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、
 熱融着性ポリイミドフィルムの熱融着性ポリイミド層上に18μmの銅箔を重ね合わせ、熱融着性ポリイミド層を構成する熱融着性ポリイミドのガラス転移温度より30℃以上高く、且つ420℃以下の温度の範囲で、プレス圧力3MPa、プレス時間1分で熱圧着して得られたポリイミド金属積層体について、JIS C6471の方法で測定した剥離強度が0.5N/mm以上であることを特徴とする熱融着性ポリイミドフィルム。
(2)前記熱融着性ポリイミド層の前記ジアミン成分は、全ジアミン中、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを70モル%以上含む上記(1)記載の熱融着性ポリイミドフィルム。
(3)前記熱融着性ポリイミド層の前記ジアミン成分は、全ジアミン中、パラフェニレンジアミンを25モル%以上含む上記(1)または(2)記載の熱融着性ポリイミドフィルム。
(4)前記熱融着性ポリイミド層の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を0を超え50モル%未満含む上記(1)から(3)のいずれか1項に記載の熱融着性ポリイミドフィルム。
(5)前記熱融着性ポリイミド層の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を10~30モル%含む上記(4)記載の熱融着性ポリイミドフィルム。
(6)前記耐熱性ポリイミド層の前記ジアミン成分は、全ジアミン中、パラフェニレンジアミンを50モル%以上含む上記(1)から(5)のいずれか1項に記載の熱融着性ポリイミドフィルム。
(7)耐熱性ポリイミド層を与えるポリイミド前駆体溶液(a)と、熱融着性ポリイミド層を与えるポリイミド前駆体溶液(b)とを押出成形用ダイスから支持体上に流延して積層された薄膜状体を形成し、前記薄膜状体を140℃以上の温度で乾燥して自己支持性フィルムを形成し、前記自己支持性フィルムを支持体から剥離し、剥離した前記自己支持性フィルムを加熱する熱融着性ポリイミドフィルムの製造方法であって、
 前記ポリイミド前駆体溶液(a)は、テトラカルボン酸二無水物成分とジアミン成分とから得られ、前記ポリイミド前駆体溶液(a)の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、
 前記ポリイミド前駆体溶液(b)は、テトラカルボン酸二無水物成分とジアミン成分とから得られ、前記ポリイミド前駆体溶液(b)の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、前記ポリイミド前駆体溶液(b)の前記ジアミン成分は、全ジアミン中、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを50モル%超含むことを特徴とする熱融着性ポリイミドフィルムの製造方法。
(8)前記薄膜状体を145℃以上の温度で乾燥する上記(7)記載の熱融着性ポリイミドフィルムの製造方法。
(9)上記(1)から(6)のいずれか1項に記載の熱融着性ポリイミドフィルムの熱融着性ポリイミド層に接して金属層が積層されてなるポリイミド金属積層体。
The present invention relates to the following matters.
(1) A multilayer heat-fusible polyimide film comprising a heat-fusible polyimide layer and a heat-resistant polyimide layer laminated in contact with the heat-fusible polyimide layer,
The heat-fusible polyimide layer is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the heat-fusible polyimide layer is a total tetracarboxylic dianhydride component. Among them, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is contained in an amount of 50 mol% or more, and the diamine component of the heat-fusible polyimide layer is 2,2-bis [4 -(4-aminophenoxy) phenyl] propane in excess of 50 mol%,
The heat-resistant polyimide layer is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the heat-resistant polyimide layer is the total tetracarboxylic dianhydride component, Containing 50 mol% or more of 3 ′, 4,4′-biphenyltetracarboxylic dianhydride,
A 18 μm copper foil is superposed on the heat-fusible polyimide layer of the heat-fusible polyimide film, and is higher by 30 ° C. than the glass transition temperature of the heat-fusible polyimide constituting the heat-fusible polyimide layer, and 420 ° C. The polyimide metal laminate obtained by thermocompression bonding with a press pressure of 3 MPa and a press time of 1 minute in the following temperature range has a peel strength measured by the method of JIS C6471 of 0.5 N / mm or more. Heat-sealable polyimide film.
(2) The heat according to (1), wherein the diamine component of the heat-fusible polyimide layer contains 70 mol% or more of 2,2-bis [4- (4-aminophenoxy) phenyl] propane in all diamines. Fusible polyimide film.
(3) The heat-fusible polyimide film according to (1) or (2), wherein the diamine component of the heat-fusible polyimide layer contains 25 mol% or more of paraphenylenediamine in all diamines.
(4) The tetracarboxylic dianhydride component of the heat-fusible polyimide layer is 50% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component. The heat fusion according to any one of (1) to (3) above, comprising at least mol% and comprising 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride in excess of 0 and less than 50 mol%. Conductive polyimide film.
(5) The tetracarboxylic dianhydride component of the heat-fusible polyimide layer is 50% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component. The heat-fusible polyimide film as described in (4) above, containing at least mol% and containing 10 to 30 mol% of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride.
(6) The heat-fusible polyimide film according to any one of (1) to (5), wherein the diamine component of the heat-resistant polyimide layer contains 50 mol% or more of paraphenylenediamine in all diamines.
(7) A polyimide precursor solution (a) that gives a heat-resistant polyimide layer and a polyimide precursor solution (b) that gives a heat-fusible polyimide layer are cast from an extrusion die on a support and laminated. Forming a thin film-like body, drying the thin-film body at a temperature of 140 ° C. or more to form a self-supporting film, peeling the self-supporting film from the support, and peeling the self-supporting film A method for producing a heat-fusible polyimide film to be heated,
The polyimide precursor solution (a) is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the polyimide precursor solution (a) is all tetracarboxylic dianhydride. In the product component, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is contained in an amount of 50 mol% or more,
The polyimide precursor solution (b) is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the polyimide precursor solution (b) is all tetracarboxylic dianhydride. In the physical component, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is contained in an amount of 50 mol% or more, and the diamine component of the polyimide precursor solution (b) is 2,2- A method for producing a heat-fusible polyimide film, comprising more than 50 mol% of bis [4- (4-aminophenoxy) phenyl] propane.
(8) The method for producing a heat-fusible polyimide film according to (7), wherein the thin film-like body is dried at a temperature of 145 ° C. or higher.
(9) A polyimide metal laminate obtained by laminating a metal layer in contact with the heat-fusible polyimide layer of the heat-fusible polyimide film described in any one of (1) to (6) above.
 本発明によれば、耐熱性に優れ、かつ金属層との接着性に優れた熱融着性ポリイミドフィルムを得ることができる。また、この熱融着性ポリイミドフィルムと銅箔などの金属層とを熱圧着することにより、ポリイミドフィルムと金属層との剥離強度が高い積層体(ポリイミド金属積層体)を得ることができる。 According to the present invention, a heat-fusible polyimide film having excellent heat resistance and excellent adhesion to a metal layer can be obtained. Moreover, the laminated body (polyimide metal laminated body) with high peeling strength of a polyimide film and a metal layer can be obtained by thermocompression-bonding this heat-fusible polyimide film and metal layers, such as copper foil.
 [熱融着性ポリイミドフィルム]
 本発明の熱融着性ポリイミドフィルムは、熱融着性ポリイミド層と、前記熱融着性ポリイミド層に接して積層された耐熱性ポリイミド層とを含む多層の熱融着性ポリイミドフィルムである。また、本発明の熱融着性ポリイミドフィルムは、熱融着性ポリイミド層のみからなる単層の熱融着性ポリイミドフィルム、または、表面層として熱融着性ポリイミド層を含む多層の熱融着性ポリイミドフィルムである。
[Heat-bondable polyimide film]
The heat-fusible polyimide film of the present invention is a multilayer heat-fusible polyimide film including a heat-fusible polyimide layer and a heat-resistant polyimide layer laminated in contact with the heat-fusible polyimide layer. In addition, the heat-fusible polyimide film of the present invention is a single-layer heat-fusible polyimide film composed of only a heat-fusible polyimide layer or a multilayer heat-fusing film including a heat-fusible polyimide layer as a surface layer. It is a conductive polyimide film.
 ここで、「熱融着性」とは、ポリイミドフィルム表面の軟化点が350℃未満であることをいう。軟化点は、対象物が加熱時に急激に軟化する温度であり、非結晶性ポリイミドではガラス転移温度(Tg)、結晶性ポリイミドでは融点が軟化点となる。以下においては、「熱融着性」を「熱可塑性」ということがある。また、ここで「熱融着性ポリイミド層」は「単層の熱融着性ポリイミドフィルム」を含むものとする。 Here, “thermal fusion” means that the softening point of the polyimide film surface is less than 350 ° C. The softening point is a temperature at which the object is softened suddenly when heated. The glass transition temperature (Tg) is used for amorphous polyimide, and the melting point is used for crystalline polyimide. In the following, “heat-fusibility” is sometimes referred to as “thermoplastic”. Here, the “heat-sealable polyimide layer” includes “a single-layer heat-sealable polyimide film”.
 <熱融着性ポリイミド層>
 熱融着性ポリイミド層は、テトラカルボン酸二無水物成分とジアミン成分とを重合して得られる。
 上記熱融着性ポリイミド層は、テトラカルボン酸二無水物成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を、全テトラカルボン酸二無水物成分中50モル%以上含む。
 全テトラカルボン酸二無水物成分中の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の含量は、好ましくは70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上である。
 また、全テトラカルボン酸二無水物成分中、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を0を超え50モル%未満、好ましくは10~30モル%含んでも良い。これにより剥離強度が高いポリイミド金属積層体を得ることができる。
 さらに、上記熱融着性ポリイミド層は、ジアミン成分として、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを、全ジアミン中50モル%超える量を含む。全ジアミン中の2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンの含量は、後述する耐熱性に優れ、吸水率が低いポリイミドフィルムを得る観点から、好ましくは60モル%以上、より好ましくは65モル%以上、最も好ましくは70モル%以上100%以下とされる。
<Heat-bonding polyimide layer>
The heat-fusible polyimide layer is obtained by polymerizing a tetracarboxylic dianhydride component and a diamine component.
The heat-fusible polyimide layer comprises 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic dianhydride component, and 50 mol% or more of the total tetracarboxylic dianhydride component. Including.
The content of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component is preferably 70 mol% or higher, more preferably 80 mol% or higher, more preferably 90 mol%. More than mol%.
Further, the total tetracarboxylic dianhydride component may contain 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride exceeding 0 and less than 50 mol%, preferably 10 to 30 mol%. Thereby, a polyimide metal laminate having high peel strength can be obtained.
Further, the heat-fusible polyimide layer contains 2,2-bis [4- (4-aminophenoxy) phenyl] propane as a diamine component in an amount exceeding 50 mol% in the total diamine. The content of 2,2-bis [4- (4-aminophenoxy) phenyl] propane in all diamines is preferably 60 mol% or more from the viewpoint of obtaining a polyimide film having excellent heat resistance and low water absorption, which will be described later. More preferably, it is 65 mol% or more, and most preferably 70 mol% or more and 100% or less.
 上記熱融着性ポリイミド層のテトラカルボン酸二無水物成分としては、上記2つの酸成分と、他のテトラカルボン酸二無水物成分とを併用することができる。他のテトラカルボン酸二無水物成分としては、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、1,4-ヒドロキノンジベンゾエート-3,3’,4,4’-テトラカルボン酸二無水物などが挙げられる。併用するテトラカルボン酸二無水物成分は、単独または2種以上を組み合わせて使用することができる。 As the tetracarboxylic dianhydride component of the heat-fusible polyimide layer, the above two acid components and other tetracarboxylic dianhydride components can be used in combination. Other tetracarboxylic dianhydride components include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride Bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2 -Bis (3,4-dicarboxyphenyl) propane dianhydride, 1,4-hydroquinone dibenzoate-3,3 ', 4,4'-tetracarboxylic dianhydride and the like. The tetracarboxylic dianhydride components used in combination can be used alone or in combination of two or more.
 上記熱融着性ポリイミド層のジアミン成分としては、上記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンと、他のジアミン成分とを併用することができる。併用するジアミン成分の具体例としては、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,3’-ジアミノベンゾフェノン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパンなどが挙げられる。この中で、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼンを好ましく用いることができる。さらに、1,3-ビス(4-アミノフェノキシ)ベンゼンが特に好ましい。併用するジアミン成分は、単独または2種以上を組み合わせて使用することができる。 As the diamine component of the heat-fusible polyimide layer, the above 2,2-bis [4- (4-aminophenoxy) phenyl] propane and another diamine component can be used in combination. Specific examples of the diamine component used in combination include 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3 , 3′-diaminobenzophenone, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) ) Phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) Phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, and 2,2-bis [4- (3-aminophenoxy) phenyl] propane. Of these, 1,3-bis (4-aminophenoxy) benzene and 1,4-bis (4-aminophenoxy) benzene can be preferably used. Furthermore, 1,3-bis (4-aminophenoxy) benzene is particularly preferred. The diamine component to be used in combination can be used alone or in combination of two or more.
 なお、本発明の特性を損なわない範囲で、パラフェニレンジアミン、メタフェニレンジアミンなどの芳香族ジアミンやその変性物、ヘキサメチレンジアミン、テトラメチレンジアミンなどの脂肪族ジアミンも併用することができる。この中でも、パラフェニレンジアミンを併用することが好ましい。熱融着性ポリイミド層は、全ジアミン中、パラフェニレンジアミンを25モル%以上含むことが好ましい。これにより、ポリイミド金属積層体の耐熱性がさらに向上し、金属層との剥離強度も高くなる。 In addition, aromatic diamines such as paraphenylene diamine and metaphenylene diamine, modified products thereof, and aliphatic diamines such as hexamethylene diamine and tetramethylene diamine can be used in combination as long as the characteristics of the present invention are not impaired. Among these, it is preferable to use paraphenylenediamine together. The heat-fusible polyimide layer preferably contains 25% by mole or more of paraphenylenediamine in all diamines. Thereby, the heat resistance of a polyimide metal laminated body further improves, and the peeling strength with a metal layer also becomes high.
 <耐熱性ポリイミド層>
 耐熱性ポリイミド層は、テトラカルボン酸二無水物成分とジアミン成分とを重合して得られる。
 上記耐熱性ポリイミドは、テトラカルボン酸二無水物成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を、全テトラカルボン酸二無水物成分中50モル%以上含む。また、他のテトラカルボン酸二無水物成分を含んでも良い。
 例えば、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、更に、ピロメリット酸二無水物及び1,4-ヒドロキノンジベンゾエート-3,3’,4,4’-テトラカルボン酸二無水物より選ばれる少なくとも1種の酸成分を含むことが好ましい。それらのテトラカルボン酸二無水物成分の合計量は、全テトラカルボン酸二無水物成分中70モル%以上であることが好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることがより好ましい。
 上記耐熱性ポリイミドのジアミン成分としては、特に制限はないが、例えば、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、m-トリジン及び4,4’-ジアミノベンズアニリドより選ばれる少なくとも1種のジアミン成分を含むことが好ましい。それらのジアミン成分の合計量は、全ジアミン成分中70モル%以上であることが好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることがより好ましい。耐熱性ポリイミドのジアミン成分は、全ジアミン中、パラフェニレンジアミンを70モル%以上含むことがより好ましい。
<Heat resistant polyimide layer>
The heat-resistant polyimide layer is obtained by polymerizing a tetracarboxylic dianhydride component and a diamine component.
The heat-resistant polyimide contains 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic dianhydride component in an amount of 50 mol% or more in the total tetracarboxylic dianhydride component. Moreover, you may contain another tetracarboxylic dianhydride component.
For example, it contains 50 mol% or more of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and pyromellitic dianhydride and 1,4-hydroquinone dibenzoate-3,3 ′, 4 It is preferable to include at least one acid component selected from 4′-tetracarboxylic dianhydride. The total amount of these tetracarboxylic dianhydride components is preferably 70 mol% or more, more preferably 80 mol% or more, and more preferably 90 mol% or more in the total tetracarboxylic dianhydride component. It is more preferable.
The diamine component of the heat-resistant polyimide is not particularly limited. For example, paraphenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, m-tolidine, and 4,4′-diaminobenzanilide. It is preferable to include at least one diamine component selected from the above. The total amount of these diamine components is preferably 70 mol% or more, more preferably 80 mol% or more, and more preferably 90 mol% or more in the total diamine components. More preferably, the diamine component of the heat-resistant polyimide contains 70 mol% or more of paraphenylenediamine in the total diamine.
 耐熱性ポリイミド層を得ることができる酸成分とジアミン成分との組み合わせとしては、例えば、次のものが挙げられる。
(1)3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)と、パラフェニレンジアミン(PPD)と、必要により4,4-ジアミノジフェニルエーテル(DADE)を含む組み合わせ。この場合、PPD/DADE(モル比)は100/0~85/15であることが好ましい。
(2)3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)及びピロメリット酸二無水物(PMDA)と、パラフェニレンジアミン(PPD)と、必要により4,4-ジアミノジフェニルエーテル(DADE)を含む組み合わせ。この場合、s-BPDA/PMDAは50/50~90/10であることが好ましい。PPDとDADEを併用する場合、PPD/DADEは、例えば90/10~10/90が好ましい。
(3)ピロメリット酸二無水物(PMDA)と、パラフェニレンジアミン(PPD)及び4,4-ジアミノジフェニルエーテル(DADE)の組み合わせ。この場合、DADE/PPDは90/10~10/90であることが好ましい。
(4)3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を主成分(テトラカルボン酸二無水物成分合計100モル%中の50モル%以上)とパラフェニレンジアミン(PPD)とを主成分(ジアミン成分合計100モル%中の50モル%以上)として得られるもの。
Examples of the combination of an acid component and a diamine component that can provide a heat-resistant polyimide layer include the following.
(1) A combination comprising 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), paraphenylenediamine (PPD), and, if necessary, 4,4-diaminodiphenyl ether (DADE). In this case, the PPD / DADE (molar ratio) is preferably 100/0 to 85/15.
(2) 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and pyromellitic dianhydride (PMDA), paraphenylenediamine (PPD), and 4,4 if necessary A combination comprising diaminodiphenyl ether (DADE). In this case, s-BPDA / PMDA is preferably 50/50 to 90/10. When PPD and DADE are used in combination, PPD / DADE is preferably 90/10 to 10/90, for example.
(3) A combination of pyromellitic dianhydride (PMDA), paraphenylenediamine (PPD) and 4,4-diaminodiphenyl ether (DADE). In this case, DADE / PPD is preferably 90/10 to 10/90.
(4) 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) as a main component (50 mol% or more of the total 100 mol% of tetracarboxylic dianhydride components) and paraphenylene What is obtained by using diamine (PPD) as a main component (50 mol% or more of 100 mol% of diamine components in total).
 上記(1)~(3)において、4,4-ジアミノジフェニルエーテル(DADE)の一部または全部を、目的に応じて3,4’-ジアミノジフェニルエーテルにまたは、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンに置き換えることもできる。上記(1)~(4)において、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の一部または全部を、目的に応じて3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物に置き換えることもできる。 In the above (1) to (3), a part or all of 4,4-diaminodiphenyl ether (DADE) is changed to 3,4′-diaminodiphenyl ether or 2,2-bis [4- (4 -Aminophenoxy) phenyl] propane can also be substituted. In the above (1) to (4), a part or all of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is converted to 3,3 ′, 4,4′-benzophenonetetra according to the purpose. It can also be replaced by carboxylic dianhydride.
 上記(1)の組み合わせは、耐熱性に優れるために好ましい。さらに、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を主成分(例えば、70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上)として含むテトラカルボン酸二無水物成分と、パラフェニレンジアミンを主成分(例えば、70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上含む)として含むジアミン成分とから得られる耐熱性ポリイミド層を用いることにより、低い線膨張係数、高い弾性率、寸法安定性に優れた熱融着性ポリイミドフィルムを得ることができる。 The combination of (1) is preferable because of excellent heat resistance. Furthermore, tetracarboxylic acid containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a main component (for example, 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more). A heat-resistant polyimide layer obtained from a dianhydride component and a diamine component containing paraphenylenediamine as a main component (for example, 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more) is used. Thus, a heat-fusible polyimide film excellent in low linear expansion coefficient, high elastic modulus, and dimensional stability can be obtained.
 耐熱性ポリイミド層を得ることができる酸成分としては、上記の酸成分の他に、目的の特性を損なわない範囲で、他のテトラカルボン酸二無水物成分および/または他のジアミン成分を併用することができる。他のテトラカルボン酸二無水物成分としては、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス[(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物などが挙げられる。他のジアミン成分としては、メタフェニレンジアミン、2,4-トルエンジアミン、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼンなどのビス(アミノフェノキシ)ベンゼン類、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニルなどが挙げられる。併用するテトラカルボン酸二無水物成分および/またはジアミン成分は、単独または2種以上を組み合わせて使用することができる。 As an acid component capable of obtaining a heat-resistant polyimide layer, in addition to the above-mentioned acid component, other tetracarboxylic dianhydride components and / or other diamine components are used in combination as long as the desired properties are not impaired. be able to. Other tetracarboxylic dianhydride components include 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4) -Dicarboxyphenyl) sulfide dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4- Dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis [( 3,4-dicarboxyphenoxy) phenyl] propane dianhydride and the like. Other diamine components include metaphenylene diamine, 2,4-toluenediamine, 3,3′-diaminodiphenyl sulfide, 3,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenyl sulfide, 3,3′- Diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3 ' -Diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2-di (3-aminophenyl) propane, 2,2-di (4-aminophenyl) propane, 1,3- Bis (4-aminophenoxy) benzene, 1,4-bis (4 Bis (aminophenoxy) benzenes such as aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 2,2-bis [4- (4 -Aminophenoxy) phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, and the like. The tetracarboxylic dianhydride component and / or diamine component used in combination can be used alone or in combination of two or more.
 熱融着性ポリイミドフィルムの厚みは、特に限定されないが、耐熱性ポリイミド層の両面に熱融着性ポリイミド層を有する3層構造の熱融着性ポリイミドフィルムの場合は、耐熱性ポリイミド層の厚みは3~70μmであることが好ましく、8~50μmであることがより好ましい。熱融着性ポリイミド層の単層の厚みは0.5~15μmであることが好ましく、1~12.5μmであることがより好ましい。両面の熱融着性ポリイミド層の厚みの合計は1~30μmであることが好ましく、2~25μmであることがより好ましい。 The thickness of the heat-sealable polyimide film is not particularly limited, but in the case of a heat-sealable polyimide film having a three-layer structure having a heat-sealable polyimide layer on both sides of the heat-resistant polyimide layer, the thickness of the heat-stable polyimide layer Is preferably 3 to 70 μm, more preferably 8 to 50 μm. The thickness of the single layer of the heat-fusible polyimide layer is preferably 0.5 to 15 μm, and more preferably 1 to 12.5 μm. The total thickness of the heat-fusible polyimide layers on both sides is preferably 1 to 30 μm, and more preferably 2 to 25 μm.
 本発明で得られた熱融着性ポリイミドフィルムは、耐熱性、特に半田耐熱性に優れる。また、熱融着性ポリイミドフィルムの熱融着層の吸水率は、例えば、0.6%以下、好ましくは0.5%以下である。さらに、熱融着性ポリイミドフィルムの線膨張係数は、例えば16~22ppm/℃である。また、熱融着性ポリイミドフィルムの弾性率は、例えば5.5~8GPaである。吸水率、線膨張係数および弾性率の測定方法については、実施例の項で説明する。 The heat-fusible polyimide film obtained in the present invention is excellent in heat resistance, particularly solder heat resistance. Moreover, the water absorption rate of the heat-fusible layer of the heat-fusible polyimide film is, for example, 0.6% or less, preferably 0.5% or less. Furthermore, the linear expansion coefficient of the heat-fusible polyimide film is, for example, 16 to 22 ppm / ° C. The elastic modulus of the heat-fusible polyimide film is, for example, 5.5 to 8 GPa. The method for measuring the water absorption rate, the linear expansion coefficient, and the elastic modulus will be described in the Examples section.
 ここで、前で述べた熱融着性ポリイミド層のみからなる単層の熱融着性ポリイミドフィルムについて説明する。単層の熱融着性ポリイミド層は、テトラカルボン酸二無水物成分とジアミン成分とを重合して得られる。熱融着性ポリイミドは、少なくとも全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を0を超え50モル%未満含みうる。全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物は、好ましくは70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含む。また、全テトラカルボン酸二無水物成分中、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を10~30モル%含むことが、後述する剥離強度が高いポリイミド金属積層体を得る観点から好ましい。さらに、ジアミン成分は、全ジアミン中、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを50モル%超える量を含む。全ジアミン中、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを70モル%以上100%以下含むことが、後述する耐熱性に優れ、吸水率が低いポリイミドフィルムを得る観点から好ましい。 Here, the single-layer heat-fusible polyimide film composed only of the heat-fusible polyimide layer described above will be described. The single-layer heat-fusible polyimide layer is obtained by polymerizing a tetracarboxylic dianhydride component and a diamine component. The heat-fusible polyimide contains 50 mol% or more of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in at least all tetracarboxylic dianhydride components, and 2,3,3 ′, 4 It may contain more than 0 and less than 50 mol% of '-biphenyltetracarboxylic dianhydride. Of the total tetracarboxylic dianhydride component, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is preferably 70 mol% or more, more preferably 80 mol% or more, more preferably 90 mol%. Including above. In addition, a polyimide metal laminate having a high peel strength, which will be described later, contains 10 to 30 mol% of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component. From the viewpoint of obtaining. Further, the diamine component contains an amount exceeding 50 mol% of 2,2-bis [4- (4-aminophenoxy) phenyl] propane in the total diamine. The content of 2,2-bis [4- (4-aminophenoxy) phenyl] propane in the total diamine is 70 mol% or more and 100% or less from the viewpoint of obtaining a polyimide film having excellent heat resistance and low water absorption, which will be described later. preferable.
 単層の熱融着性ポリイミドフィルムの厚みは、特に限定されないが75μm以下、好ましくは8~50μmであり、さらに好ましくは10~50μmである。尚、上記で記載しない形態については、前記「多層の熱融着性ポリイミドフィルム」の記載内容をそのまま適用できる。 The thickness of the single-layer heat-fusible polyimide film is not particularly limited, but is 75 μm or less, preferably 8 to 50 μm, and more preferably 10 to 50 μm. In addition, about the form which is not described above, the description content of the said "multilayer heat-fusible polyimide film" is applicable as it is.
 [熱融着性ポリイミドフィルムの製造方法]
 次に、本発明の熱融着性ポリイミドフィルムの製造方法の一例として、耐熱性ポリイミド層の片面または両面に熱融着性ポリイミド層を有する熱融着性ポリイミドフィルムの製造方法について説明する。
[Method for producing heat-fusible polyimide film]
Next, as an example of the method for producing the heat-fusible polyimide film of the present invention, a method for producing a heat-fusible polyimide film having a heat-fusible polyimide layer on one or both sides of the heat-resistant polyimide layer will be described.
 (塗工法による多層の熱融着性ポリイミドフィルムの製造方法)
 多層の熱融着性ポリイミドフィルムは、耐熱性ポリイミド層を与えるポリイミド前駆体溶液(ポリアミック酸溶液)(a)から得られる自己支持性フィルムの片面または両面に、熱融着性ポリイミド層を与えるポリイミド前駆体溶液(ポリアミック酸溶液)(b)を塗工し、得られた多層の自己支持性フィルムを加熱、乾燥してイミド化を行うことにより、得ることができる。
(Manufacturing method of multilayer heat-fusible polyimide film by coating method)
The multilayer heat-fusible polyimide film is a polyimide that gives a heat-fusible polyimide layer on one or both sides of a self-supporting film obtained from a polyimide precursor solution (polyamic acid solution) (a) that gives a heat-resistant polyimide layer. It can be obtained by applying a precursor solution (polyamic acid solution) (b) and imidizing by heating and drying the resulting multilayer self-supporting film.
 耐熱性ポリイミド層を与えるポリイミド前駆体溶液(a)から得られる自己支持性フィルムは、テトラカルボン酸成分とジアミン成分とを、実質的に等モル、またはどちらかの成分を少し過剰にして、有機溶媒中で反応させて得られるポリアミック酸溶液[ポリイミド前駆体溶液(a)]を支持体上に流延し、これを加熱乾燥して得ることができる。 The self-supporting film obtained from the polyimide precursor solution (a) that gives the heat-resistant polyimide layer is substantially the same in terms of the tetracarboxylic acid component and the diamine component, or a slight excess of either component. A polyamic acid solution [polyimide precursor solution (a)] obtained by reacting in a solvent can be cast on a support and dried by heating.
 一方、熱融着性ポリイミド層を与えるポリイミド前駆体溶液(b)も、テトラカルボン酸成分とジアミン成分とを、実質的に等モル、またはどちらかの成分を少し過剰にして、有機溶媒中で反応させることにより得られる。 On the other hand, the polyimide precursor solution (b) that gives the heat-fusible polyimide layer also has a tetracarboxylic acid component and a diamine component that are substantially equimolar, or a slight excess of either component in an organic solvent. It is obtained by reacting.
 ここで、熱融着性ポリイミド層を与えるポリイミド前駆体溶液(b)は、テトラカルボン酸二無水物成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を、全テトラカルボン酸二無水物成分中50モル%以上含み、前記ジアミン成分として、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを、全ジアミン中50モル%超含む。
 また、耐熱性ポリイミド層を与えるポリイミド前駆体溶液(ポリアミック酸溶液)(a)は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含む。
 また、熱融着性ポリイミド層を与えるポリイミド前駆体溶液(b)は、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を含んでも良い。この場合、全テトラカルボン酸二無水物成分中、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を50モル%未満、好ましくは10~30モル%含んでも良い。これにより、剥離強度が高いポリイミド金属積層体を得ることができる。
Here, the polyimide precursor solution (b) that gives the heat-fusible polyimide layer was prepared by using 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic dianhydride component, The carboxylic dianhydride component contains 50 mol% or more, and the diamine component contains 2,2-bis [4- (4-aminophenoxy) phenyl] propane in excess of 50 mol% in the total diamine.
In addition, the polyimide precursor solution (polyamic acid solution) (a) that gives the heat-resistant polyimide layer is obtained by adding 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component. Contains 50 mol% or more.
Further, the polyimide precursor solution (b) for providing the heat-fusible polyimide layer may contain 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride. In this case, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride may be contained in the total tetracarboxylic dianhydride component in an amount of less than 50 mol%, preferably 10 to 30 mol%. Thereby, the polyimide metal laminated body with high peeling strength can be obtained.
 ポリイミド前駆体溶液を製造するための有機溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、ヘキサメチルスルホルアミドなどのアミド類、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド類、ジメチルスルホン、ジエチルスルホンなどのスルホン類を挙げることができる。これらの溶媒は単独で用いてもよく、混合して用いてもよい。 Examples of the organic solvent for producing the polyimide precursor solution include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, Examples thereof include amides such as hexamethylsulfuramide, sulfoxides such as dimethyl sulfoxide and diethyl sulfoxide, and sulfones such as dimethyl sulfone and diethyl sulfone. These solvents may be used alone or in combination.
 ポリイミド前駆体の重合反応を実施する際の有機溶媒中の全モノマーの濃度は、使用する目的に応じて適宜選択することができる。例えば、ポリイミド前駆体溶液(a)および(b)は、有機溶媒中の全モノマーの濃度が5~40質量%であることが好ましく、6~35質量%であることがより好ましく、10~30質量%であることが特に好ましい。 The concentration of all monomers in the organic solvent when carrying out the polymerization reaction of the polyimide precursor can be appropriately selected according to the purpose of use. For example, in the polyimide precursor solutions (a) and (b), the concentration of all monomers in the organic solvent is preferably 5 to 40% by mass, more preferably 6 to 35% by mass, and 10 to 30%. It is particularly preferable that the content is% by mass.
 ポリイミド前駆体溶液(a)およびポリイミド前駆体溶液(b)の製造例の一例として、例えば、テトラカルボン酸成分とジアミン成分とを実質的に等モル、またはどちらかの成分(酸成分、またはジアミン成分)を少し過剰にして混合し、反応温度100℃以下、好ましくは80℃以下、さらに好ましくは0~60℃で約0.2~60時間反応させることによりポリアミック酸(ポリイミド前駆体)溶液を得ることができる。 As an example of the manufacture example of a polyimide precursor solution (a) and a polyimide precursor solution (b), for example, a tetracarboxylic acid component and a diamine component are substantially equimolar, or either component (acid component or diamine). Component) is slightly mixed and mixed, and the reaction is carried out at a reaction temperature of 100 ° C. or lower, preferably 80 ° C. or lower, more preferably 0 to 60 ° C. for about 0.2 to 60 hours to obtain a polyamic acid (polyimide precursor) solution. Obtainable.
 ポリイミド前駆体溶液(a)およびポリイミド前駆体溶液(b)の溶液粘度は、使用する目的(塗工、流延など)などに応じて適宜選択することができる。例えば、ポリイミド前駆体溶液(a)およびポリイミド前駆体溶液(b)は、流延に使用する場合、このポリイミド前駆体溶液を取り扱う作業性の面からは、30℃で測定した回転粘度が約100~5000ポイズであることが好ましく、500~4000ポイズであることがより好ましく、1000~3000ポイズ程度であることが特に好ましい。また、ポリイミド前駆体溶液(a)およびポリイミド前駆体溶液(b)を塗工に使用する場合、ポリイミド前駆体溶液を取り扱う作業性の面からは、30℃で測定した回転粘度が1~100センチポイズであることが好ましく、3~50センチポイズであることがより好ましく、5~20センチポイズであることが特に好ましい。したがって、前記の重合反応は、生成するポリアミック酸(ポリイミド前駆体)が上記のような粘度を示す程度にまで実施することが望ましい。また、製造したポリアミック酸溶液に上記の有機溶媒を加え、溶液粘度を調整することもできる。 The solution viscosity of the polyimide precursor solution (a) and the polyimide precursor solution (b) can be appropriately selected depending on the purpose (coating, casting, etc.) to be used. For example, when the polyimide precursor solution (a) and the polyimide precursor solution (b) are used for casting, the rotational viscosity measured at 30 ° C. is about 100 from the viewpoint of workability in handling the polyimide precursor solution. It is preferably ˜5000 poise, more preferably 500 to 4,000 poise, and particularly preferably about 1000 to 3,000 poise. Further, when the polyimide precursor solution (a) and the polyimide precursor solution (b) are used for coating, the rotational viscosity measured at 30 ° C. is 1 to 100 centipoise from the viewpoint of workability in handling the polyimide precursor solution. It is preferably 3 to 50 centipoise, more preferably 5 to 20 centipoise. Therefore, it is desirable to carry out the polymerization reaction to such an extent that the produced polyamic acid (polyimide precursor) exhibits the above viscosity. Moreover, said organic solvent can be added to the manufactured polyamic acid solution, and solution viscosity can also be adjusted.
 耐熱性ポリイミド層となるポリイミド前駆体溶液(a)の自己支持性フィルムは、例えば、ポリイミド前駆体溶液(a)を適当な支持体(例えば、金属、セラミック、プラスチック製のロール、または金属ベルト等)の表面上に流延して、均一な厚さの膜状態に形成し、次いで、熱風、赤外線等の熱源を利用して50~210℃、特に60~200℃に加熱して、溶媒を徐々に除去し、自己支持性になるまで(例えば、支持体上より剥離することができる程度にまで)乾燥することによって得ることができる。 The polyimide precursor solution (a) self-supporting film used as the heat-resistant polyimide layer may be, for example, a polyimide precursor solution (a) or a suitable support (for example, a metal, ceramic, plastic roll, or metal belt). ) To form a film having a uniform thickness, and then heated to 50 to 210 ° C., particularly 60 to 200 ° C. using a heat source such as hot air or infrared rays, It can be obtained by gradually removing and drying until it becomes self-supporting (for example, to the extent that it can be peeled off from the support).
 本発明においては、このようにして得られたポリイミド前駆体溶液(a)の自己支持性フィルムの片面または両面に、熱融着性ポリイミド層を与えるポリイミド前駆体溶液(b)を塗工する。ポリイミド前駆体溶液(b)は、支持体より剥離した自己支持性フィルムに塗工してもよく、支持体より剥離する前に、支持体上の自己支持性フィルムに塗工してもよい。 In the present invention, a polyimide precursor solution (b) that gives a heat-fusible polyimide layer is applied to one side or both sides of the self-supporting film of the polyimide precursor solution (a) thus obtained. The polyimide precursor solution (b) may be applied to the self-supporting film peeled from the support, or may be applied to the self-supporting film on the support before peeling from the support.
 ポリイミド前駆体溶液(b)は、ポリイミド前駆体溶液(a)の自己支持性フィルムに塗工することができ、例えば、グラビアコート法、スピンコート法、シルクスクリーン法、ディップコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法などの公知の塗工方法を挙げることができる。 The polyimide precursor solution (b) can be applied to the self-supporting film of the polyimide precursor solution (a), for example, gravure coating method, spin coating method, silk screen method, dip coating method, spray coating method. , Known coating methods such as bar coating, knife coating, roll coating, blade coating and die coating.
 本発明においては、ポリイミド前駆体溶液(a)の自己支持性フィルムの片面または両面に、ポリイミド前駆体溶液(b)を均一に塗工することが好ましい。したがって、ポリイミド前駆体溶液(a)の自己支持性フィルムは、ポリイミド前駆体溶液(b)を均質に塗工できる表面を有することが好ましい。 In the present invention, it is preferable to uniformly apply the polyimide precursor solution (b) to one side or both sides of the self-supporting film of the polyimide precursor solution (a). Therefore, the self-supporting film of the polyimide precursor solution (a) preferably has a surface on which the polyimide precursor solution (b) can be applied uniformly.
 ポリイミド前駆体溶液(a)の自己支持性フィルムは、その加熱減量が20~40質量%の範囲にあることが好ましく、イミド化率が8~40%の範囲にあることが好ましい。加熱減量およびイミド化率が上記範囲内であれば、自己支持性フィルムの力学的性質が十分となり、自己支持性フィルムの上面にポリイミド前駆体溶液(b)をきれいに塗工しやすくなり、イミド化後に得られるポリイミドフィルムに発泡、亀裂、クレーズ、クラック、ひびワレなどの発生が観察されず、また、耐熱性ポリイミド層と熱融着性ポリイミド層との接着強度が十分となる。 The self-supporting film of the polyimide precursor solution (a) preferably has a loss on heating in the range of 20 to 40% by mass, and preferably has an imidization ratio in the range of 8 to 40%. If the heating weight loss and imidization rate are within the above ranges, the mechanical properties of the self-supporting film will be sufficient, and it will be easier to cleanly apply the polyimide precursor solution (b) on the upper surface of the self-supporting film, and imidization will occur. Generation | occurrence | production of a foam, a crack, a craze, a crack, crack, etc. is not observed in the polyimide film obtained later, and the adhesive strength of a heat resistant polyimide layer and a heat-fusible polyimide layer becomes enough.
 なお、自己支持性フィルムの加熱減量とは、測定対象のフィルムを400℃で30分間乾燥し、乾燥前の重量(W1)と乾燥後の重量(W2)とから次式によって求めた値である。
加熱減量(質量%)={(W1-W2)/W1}×100
The loss on heating of the self-supporting film is a value obtained by drying the film to be measured at 400 ° C. for 30 minutes, and calculating from the weight before drying (W1) and the weight after drying (W2) by the following equation. .
Loss on heating (mass%) = {(W1-W2) / W1} × 100
 また、自己支持性フィルムのイミド化率は、自己支持性フィルムと、そのフルキュア品(ポリイミドフィルム)のIRスペクトルをATR法で測定し、振動帯ピーク面積の比を利用して算出することができる。振動帯ピークとしては、イミドカルボニル基の非対称伸縮振動帯や、ベンゼン環骨格伸縮振動帯などを利用する。またイミド化率測定に関し、特開平9-316199号公報に記載のカールフィッシャー水分計を用いる手法もある。 Further, the imidization ratio of the self-supporting film can be calculated by measuring the IR spectrum of the self-supporting film and its fully cured product (polyimide film) by the ATR method and using the ratio of the peak area of the vibration band. . As the vibration band peak, an asymmetric stretching vibration band of an imide carbonyl group, a benzene ring skeleton stretching vibration band, or the like is used. As for imidation rate measurement, there is also a method using a Karl Fischer moisture meter described in JP-A-9-316199.
 なお、耐熱性ポリイミド層は、必要に応じて、微細な無機または有機フィラー(添加剤)を配合することができる。無機の添加剤としては、粒子状あるいは偏平状などの無機フィラーを挙げることができ、微粒子状の二酸化チタン粉末、二酸化ケイ素(シリカ)粉末、酸化マグネシウム粉末、酸化アルミニウム(アルミナ)粉末、酸化亜鉛粉末などの無機酸化物粉末、微粒子状の窒化ケイ素粉末、窒化チタン粉末などの無機窒化物粉末、炭化ケイ素粉末などの無機炭化物粉末、微粒子状の炭酸カルシウム粉末、硫酸カルシウム粉末、硫酸バリウム粉末などの無機塩粉末を挙げることができる。有機の添加剤としては、ポリイミド粒子、熱硬化性樹脂の粒子などを挙げることができる。これらの添加剤は2種以上を組み合わせて使用してもよい。添加剤の使用量および形状(大きさ、アスペクト比)については、使用目的に応じて選択することが好ましい。また、これらの添加剤を均一に分散させるために、それ自体公知の手段を適用することができる。 In addition, a fine inorganic or organic filler (additive) can be mix | blended with a heat resistant polyimide layer as needed. Examples of inorganic additives include particulate or flat inorganic fillers, such as particulate titanium dioxide powder, silicon dioxide (silica) powder, magnesium oxide powder, aluminum oxide (alumina) powder, and zinc oxide powder. Inorganic oxide powder such as, inorganic nitride powder such as particulate silicon nitride powder and titanium nitride powder, inorganic carbide powder such as silicon carbide powder, inorganic such as particulate calcium carbonate powder, calcium sulfate powder and barium sulfate powder Mention may be made of salt powder. Examples of the organic additive include polyimide particles and thermosetting resin particles. These additives may be used in combination of two or more. About the usage-amount and shape (size, aspect ratio) of an additive, it is preferable to select according to a use purpose. Moreover, in order to disperse these additives uniformly, a means known per se can be applied.
 ポリイミド前駆体溶液(a)の自己支持性フィルムにポリイミド前駆体溶液(b)を塗工した後、次いで、これを加熱・イミド化して多層の熱融着性ポリイミドフィルムを得ることができる。イミド化のための熱処理の最高加熱温度は350℃~600℃が好ましく、380~520℃がより好ましく、390~500℃がより好ましく、400~480℃がより好ましい。 After the polyimide precursor solution (b) is applied to the self-supporting film of the polyimide precursor solution (a), this is then heated and imidized to obtain a multilayer heat-fusible polyimide film. The maximum heating temperature of the heat treatment for imidation is preferably 350 ° C. to 600 ° C., more preferably 380 to 520 ° C., more preferably 390 to 500 ° C., and more preferably 400 to 480 ° C.
 イミド化のための加熱処理は段階的に行うことが好ましく、まず200℃以上300℃未満の温度で1分~60分間第一次加熱処理した後に、300℃以上350℃未満の温度で1分~60分間第二次加熱処理し、その後、最高加熱温度350℃~600℃、好ましくは450~590℃、より好ましくは490~580℃、さらに好ましくは500~580℃で1分~30分間第三次加熱処理することが望ましい。この加熱処理は、熱風炉、赤外線加熱炉などの公知の装置を使用して行うことができる。 The heat treatment for imidization is preferably performed in stages, and is first subjected to primary heat treatment at a temperature of 200 ° C. or higher and lower than 300 ° C. for 1 minute to 60 minutes, and then at a temperature of 300 ° C. or higher and lower than 350 ° C. for 1 minute. Secondary heat treatment for ˜60 minutes, and then the maximum heating temperature of 350 ° C. to 600 ° C., preferably 450 to 590 ° C., more preferably 490 to 580 ° C., more preferably 500 to 580 ° C. for 1 minute to 30 minutes. A tertiary heat treatment is desirable. This heat treatment can be performed using a known apparatus such as a hot air furnace or an infrared heating furnace.
 また、この加熱処理は、ポリイミド前駆体溶液(b)を塗工したポリイミド前駆体溶液(a)の自己支持性フィルムをピンテンター、クリップなどで固定して行うことが好ましい。 Further, this heat treatment is preferably performed by fixing the self-supporting film of the polyimide precursor solution (a) coated with the polyimide precursor solution (b) with a pin tenter, a clip or the like.
 ポリイミド前駆体溶液(b)および/またはポリイミド前駆体溶液(a)は、ポリアミック酸(ポリイミド前駆体)のゲル化を制限する目的で、リン系安定剤、例えば亜リン酸トリフェニル、リン酸トリフェニル等をポリアミック酸重合時に固形分(ポリマー)濃度に対して0.01~1%の範囲で添加することができる。 The polyimide precursor solution (b) and / or the polyimide precursor solution (a) is used for the purpose of limiting the gelation of the polyamic acid (polyimide precursor). Phenyl and the like can be added in the range of 0.01 to 1% with respect to the solid content (polymer) concentration during polyamic acid polymerization.
 フィルムの表面状態および生産性の点からは、ポリアミック酸溶液にリン酸エステルや、3級アミンとリン酸エステルとの塩類を添加することが好ましい。これらの添加量は、ポリイミドまたは重合体100質量部に対して0.01~5質量部であることが好ましい。リン酸エステルの具体例としては、ジステアリルリン酸エステルやモノステアリルリン酸エステルなどが挙げられる。また、3級アミンとリン酸エステルとの塩類としては、モノステアリルリン酸エステルトリエタノールアミン塩などが挙げられる。尚、本発明におけるイミド化については、熱によるイミド化(熱イミド化)または化学的にイミド化(化学イミド化)のいずれも適用できる。この中で、熱イミド化を好適に適用できる。 From the viewpoint of the film surface state and productivity, it is preferable to add a phosphate ester or a salt of a tertiary amine and a phosphate ester to the polyamic acid solution. These addition amounts are preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polyimide or polymer. Specific examples of the phosphate ester include distearyl phosphate ester and monostearyl phosphate ester. Examples of the salt of tertiary amine and phosphate ester include monostearyl phosphate ester triethanolamine salt. For imidization in the present invention, either thermal imidization (thermal imidization) or chemical imidization (chemical imidization) can be applied. Among these, thermal imidization can be suitably applied.
 また、ポリイミド前駆体溶液(b)および/またはポリイミド前駆体溶液(a)は、イミド化を促進する目的で、塩基性有機化合物を添加することができる。例えば、イミダゾール、2-メチルイミダゾール、1,2-ジメチルイミダゾール、2-フェニルイミダゾール、ベンズイミダゾール、イソキノリン、置換ピリジン等をポリアミック酸(ポリイミド前駆体)に対して0.05~10質量%、好ましくは0.05~5質量%、特に好ましくは0.1~2質量%の割合で使用することができる。これらは、比較的低温でポリイミドフィルムを形成するためにイミド化が不十分となることを避けるために使用することができる。 Further, a basic organic compound can be added to the polyimide precursor solution (b) and / or the polyimide precursor solution (a) for the purpose of promoting imidization. For example, imidazole, 2-methylimidazole, 1,2-dimethylimidazole, 2-phenylimidazole, benzimidazole, isoquinoline, substituted pyridine and the like are 0.05 to 10% by mass with respect to the polyamic acid (polyimide precursor), preferably It can be used in a proportion of 0.05 to 5% by mass, particularly preferably 0.1 to 2% by mass. These can be used to avoid insufficient imidization to form polyimide films at relatively low temperatures.
 (共押出し-流延製膜法による熱融着性ポリイミドフィルムの製造方法)
 本発明の多層のポリイミドフィルムは、共押出し-流延製膜法(単に、共押出法ともいう。)によって、耐熱性ポリイミド層のドープ液(ポリアミック酸溶液、ポリイミド前駆体溶液ともいう)と、熱融着性ポリイミド層のドープ液とを積層、乾燥、イミド化して多層ポリイミドフィルムを得る方法で製造することもできる。この共押出法は、例えば、特開平3-180343号公報(特公平7-102661号公報)に記載されている方法を用いることができる。
 より具体的に説明すると、この共押出法は、まず二層以上の押出成形用ダイスを有する押出成形機を使用し、前記ダイスの吐出口から耐熱性ポリイミド層のドープ液と熱融着性ポリイミド層のドープ液とを支持体上に流延し積層された薄膜状体を形成する。そして、前記支持体上の薄膜状体を乾燥し多層の自己支持性フィルムを形成し、次いで、支持体上から多層の自己支持性フィルムを剥離し、最後に多層の自己支持性フィルムを加熱処理するというものである。この形態において、支持体に接するドープ液は、耐熱性ポリイミド層を与えるドープ液および熱融着性ポリイミド層を与えるドープ液のいずれでも構わない。この際、前記乾燥は、薄膜状体を135℃を超える温度、具体的には140℃以上、好ましくは145℃以上の温度で乾燥し自己支持性フィルムを形成することが好ましい。これにより、後述するポリイミド金属積層体の剥離強度が向上する。
(Method for producing heat-fusible polyimide film by coextrusion-casting film formation method)
The multilayer polyimide film of the present invention is obtained by a coextrusion-casting film forming method (also simply referred to as a coextrusion method), a heat-resistant polyimide layer dope solution (also referred to as a polyamic acid solution or a polyimide precursor solution), It can also be produced by a method of obtaining a multilayer polyimide film by laminating, drying and imidizing with a dope solution of a heat-fusible polyimide layer. As this coextrusion method, for example, a method described in JP-A-3-180343 (Japanese Patent Publication No. 7-102661) can be used.
More specifically, this co-extrusion method first uses an extrusion molding machine having two or more layers of extrusion dies, and the dope solution of the heat-resistant polyimide layer and the heat-sealable polyimide from the discharge port of the dies. A layered dope solution is cast on a support to form a laminated thin film. Then, the thin film on the support is dried to form a multilayer self-supporting film, then the multilayer self-supporting film is peeled off from the support, and finally the multilayer self-supporting film is heat-treated. It is to do. In this embodiment, the dope solution in contact with the support may be either a dope solution that provides a heat-resistant polyimide layer or a dope solution that provides a heat-fusible polyimide layer. At this time, the drying is preferably performed by drying the thin film at a temperature exceeding 135 ° C., specifically 140 ° C. or higher, preferably 145 ° C. or higher to form a self-supporting film. Thereby, the peeling strength of the polyimide metal laminated body mentioned later improves.
 二層押出成形用ダイスとしては、例えば、ドープ液の供給口を有し、ドープ液の通路が、その各供給口から各マニホールドに向かってそれぞれ形成されており、そのマニホールドの底部の流路が合流点で合流して、その合流した後のドープ液の通路(リップ部)がスリット状の吐出口に連通していて、この吐出口からドープ液が薄膜状に支持体上に吐出される構造(マルチマニホールド型二層ダイス)になっているものを挙げることができる。前記リップ部は、リップ調整ボルトによって、その間隔を調整できるようになっている。
 また、各マニホールドの底部(合流点に近い箇所)は、各チョークバーによってその流路の空隙部の間隔が調節される。前記の各マニホールドは、ハンガーコートタイプの形状を有していることが好ましい。また、二層押出成形用ダイスとしては、ダイス上部の左右に各ドープ液の供給口を有し、ドープ液の通路が、仕切り板を備えた合流点で直ちに合流するようになっている。その合流点からマニホールドにドープ液の流路が連通していて、そのマニホールドの底部のドープ液の通路(リップ部)がスリット状の吐出口に連通している。この吐出口からドープ液が溝膜状に支持体上に吐出される構造(フィードブロック型二層ダイスまたはシングルマニホールド型二層ダイス)になっているものであってもよい。尚、共押出し-流延製膜法における支持体上に連続して押し出す操作以降の乾燥条件や加熱条件等の形態ついては、前記「塗工法による多層の熱融着性ポリイミドフィルムの製造方法」の記載内容をそのまま適用できる。
As the two-layer extrusion die, for example, a dope solution supply port is provided, and a dope solution passage is formed from each supply port toward each manifold, and a flow path at the bottom of the manifold is formed. A structure in which the dope solution passage (lip portion) joins at the junction and communicates with the slit-like discharge port, and the dope solution is discharged from the discharge port onto the support in the form of a thin film. What is (multi-manifold type two-layer die) can be mentioned. The gap between the lip portions can be adjusted by a lip adjustment bolt.
Further, at the bottom of each manifold (location close to the merging point), the distance between the gaps of the flow path is adjusted by each choke bar. Each of the manifolds preferably has a hanger coat type shape. In addition, the double-layer extrusion die has respective dope supply ports on the left and right sides of the upper portion of the die, and the dope solution passages are immediately joined at the junction where the partition plate is provided. A dope solution flow path communicates from the junction to the manifold, and a dope solution passage (lip portion) at the bottom of the manifold communicates with the slit-like discharge port. A structure (feed block type double-layer die or single manifold type double-layer die) in which the dope solution is discharged on the support in the form of a groove film from the discharge port may be used. The form of drying conditions and heating conditions after the operation of continuously extruding onto the support in the coextrusion-casting film forming method is as described in “Method for producing multilayer heat-fusible polyimide film by coating method”. The description can be applied as it is.
 上記二層押出に加えて、三層以上押出成形用ダイスを使用することにより、二層押出成形と同様の成形方法で、多層押出ポリイミドフィルムを製造することもできる。すなわち、耐熱性ポリイミド層のドープ液と熱融着性ポリイミド層のドープ液とを使用すれば、二層の熱融着性ポリイミドフィルムを得ることができる。また、熱融着性ポリイミド層のドープ液-耐熱性ポリイミド層のドープ液-熱融着性ポリイミド層のドープ液の層構成とした場合には、3層の熱融着性ポリイミドフィルムを得ることもできる。 In addition to the above two-layer extrusion, a multilayer extrusion polyimide film can be produced by a molding method similar to the two-layer extrusion molding by using three or more dies for extrusion molding. That is, when a heat-resistant polyimide layer dope and a heat-fusible polyimide layer dope are used, a two-layer heat-fusible polyimide film can be obtained. In addition, in the case of a layer configuration of a heat-fusible polyimide layer dope liquid-a heat-resistant polyimide layer dope liquid-a heat-fusible polyimide layer dope liquid, a three-layer heat-fusible polyimide film is obtained. You can also.
 (熱融着性ポリイミドフィルムの製造方法のその他の変形例)
 また、本発明の多層のポリイミドフィルムは、耐熱性ポリイミドフィルムに、熱融着性ポリイミドのポリアミック酸溶液を塗工し、加熱、乾燥して熱融着層のイミド化を行うことにより、得ることもできる。耐熱性ポリイミドフィルムは、前記耐熱性ポリイミドフィルム組成のものを公知の方法で製膜したものや、市販のポリイミドフィルムが使用できる。市販の耐熱性ポリイミドフィルムとしては、例えば、宇部興産製のユーピレックス(登録商標)、東レ・デュポン社製のカプトンEN(登録商標)、株式会社カネカ社製のアピカルNPI(登録商標)などが挙げられる。
 塗工する熱融着性ポリイミドフィルムのアミック酸溶液や、乾燥条件は、前記、自己支持性フィルムへの塗工と同様な方法で行うことができる。
 また、耐熱性ポリイミドフィルムと熱融着性ポリイミドフィルムとの接着強度を上げるために、塗工前に耐熱性ポリイミドフィルムを表面処理することが望ましい。表面処理方法としては、例えば、コロナ処理、プラズマ処理、アルカリ処理、エッチング処理、カップリング剤処理、あるいはこれらの組み合わせが挙げられる。
(Other variations of manufacturing method of heat-fusible polyimide film)
In addition, the multilayer polyimide film of the present invention is obtained by applying a polyamic acid solution of a heat-fusible polyimide to a heat-resistant polyimide film, heating and drying to imidize the heat-fusible layer. You can also. As the heat resistant polyimide film, a film obtained by forming the heat resistant polyimide film composition by a known method or a commercially available polyimide film can be used. Examples of commercially available heat-resistant polyimide films include Upilex (registered trademark) manufactured by Ube Industries, Kapton EN (registered trademark) manufactured by Toray DuPont, Apical NPI (registered trademark) manufactured by Kaneka Corporation, and the like. .
The amic acid solution of the heat-fusible polyimide film to be applied and the drying conditions can be performed in the same manner as in the application to the self-supporting film.
Moreover, in order to raise the adhesive strength of a heat resistant polyimide film and a heat-fusible polyimide film, it is desirable to surface-treat a heat resistant polyimide film before coating. Examples of the surface treatment method include corona treatment, plasma treatment, alkali treatment, etching treatment, coupling agent treatment, or a combination thereof.
 次に単層の熱融着性ポリイミドフィルムの製造方法の一例を説明する。尚、下記で記載しない形態については、前記「塗工法による多層の熱融着性ポリイミドフィルムの製造方法」および「共押出し-流延製膜法による熱融着性ポリイミドフィルムの製造方法」の記載内容をそのまま適用できる。 Next, an example of a method for producing a single-layer heat-fusible polyimide film will be described. For the forms not described below, the description in the above-mentioned “Method for producing multilayer heat-fusible polyimide film by coating method” and “Method for producing heat-fusible polyimide film by coextrusion-casting film forming method” is provided. The content can be applied as it is.
 単層の熱融着性ポリイミドフィルムは、少なくとも全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を0を超え50モル%未満含むテトラカルボン酸二無水物成分と、全ジアミン中、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを50モル%超含むジアミン成分と、を含むポリアミック酸溶液をキャリアフィルム上に流延または塗布し、乾燥した後、この乾燥物を熱処理することにより、キャリアフィルム付き熱融着性ポリイミドフィルムとして得ることができる。 The single layer heat-fusible polyimide film contains 50 mol% or more of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in at least all tetracarboxylic dianhydride components, A tetracarboxylic dianhydride component containing more than 0 and less than 50 mol% of 3 ′, 4′-biphenyltetracarboxylic dianhydride, and 2,2-bis [4- (4-aminophenoxy) phenyl in all diamines A polyamic acid solution containing a diamine component containing more than 50 mol% of propane is cast or applied onto a carrier film, dried, and then heat-treated to obtain a heat-fusible polyimide film with a carrier film. Can be obtained as
 ポリアミック酸溶液はキャリアフィルム上に流延または塗布され、乾燥される。乾燥温度は、例えば80~200℃、好ましくは100~200℃である。 The polyamic acid solution is cast or coated on a carrier film and dried. The drying temperature is, for example, 80 to 200 ° C., preferably 100 to 200 ° C.
 キャリアフィルムとしては、ポリイミドフィルムが好適に使用することができる。キャリアフィルムとしてのポリイミドフィルムは、市販のものを使用することができ、例えば、宇部興産製のユーピレックス(登録商標)、東レ・デュポン社製のカプトンEN(登録商標)、株式会社カネカ社製のアピカルNPI(登録商標)などが挙げられる。この中で、熱融着性ポリイミドフィルムのキャリアフィルムからの剥離性やフィルム剛性の観点から、宇部興産製のユーピレックス(25S、50S、75S、125S)が好ましく用いられる。キャリアフィルムとしてのポリイミドフィルムの厚みは、好ましくは50μm以上、さらに好ましくは75~125μmである。このようなキャリアフィルムを使用することによって、両面が金属との接着性に優れた(剥離強度が高い)単層の熱融着性ポリイミドフィルムを得ることができる。 A polyimide film can be suitably used as the carrier film. As the carrier film, a commercially available polyimide film can be used. For example, Upyorex (registered trademark) manufactured by Ube Industries, Kapton EN (registered trademark) manufactured by Toray DuPont, Apical manufactured by Kaneka Corporation NPI (registered trademark) and the like can be mentioned. Among these, from the viewpoints of peelability of the heat-fusible polyimide film from the carrier film and film rigidity, Upilex (25S, 50S, 75S, 125S) manufactured by Ube Industries is preferably used. The thickness of the polyimide film as the carrier film is preferably 50 μm or more, more preferably 75 to 125 μm. By using such a carrier film, it is possible to obtain a single-layer heat-fusible polyimide film having excellent adhesion to metal on both sides (high peel strength).
 キャリアフィルムとしてのポリイミドフィルムは、テトラカルボン酸二無水物成分と、ジアミン成分とを重合しポリアミック酸溶液を得て、ポリアミック酸溶液を支持体上に流延または塗布して、乾燥することにより自己支持性フィルムを得た後、自己支持性フィルムを加熱してイミド化することにより得られる。ここで、キャリアフィルムとしてのポリイミドフィルムの両面のうち、ポリアミック酸溶液を支持体上に流延または塗布した際に支持体に接していた面をB面といい、支持体に接していない(空気側)の面のA面という。 A polyimide film as a carrier film is obtained by polymerizing a tetracarboxylic dianhydride component and a diamine component to obtain a polyamic acid solution, casting or coating the polyamic acid solution on a support, and drying it. After obtaining the support film, the self-support film is heated to imidize. Here, of both surfaces of the polyimide film as the carrier film, the surface that was in contact with the support when the polyamic acid solution was cast or applied onto the support was referred to as the B surface, and was not in contact with the support (air Side) surface.
 流延または塗布する方法としては、特に制限はなく、例えば、グラビアコート法、スピンコート法、シルクスクリーン法、ディップコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法などの方法を挙げることができる。 The method for casting or coating is not particularly limited. For example, gravure coating, spin coating, silk screen, dip coating, spray coating, bar coating, knife coating, roll coating, blade coating And a method such as a die coating method.
 ポリアミック酸溶液を流延または塗布するキャリアフィルムの面については、A面B面のいずれでもよいが、キャリアフィルムのB面にポリアミック酸溶液を流延または塗布することが好ましい。これにより、熱融着性ポリイミドフィルムの金属との接着性が向上し、金属と張り合わせて得られるポリイミド金属積層体の剥離強度が高くなる。特に、キャリアフィルムの厚みが75μm以上、好ましくは75~125μmの場合に、キャリアフィルムのB面にポリアミック酸溶液を流延または塗布することが好ましい。 The surface of the carrier film on which the polyamic acid solution is cast or applied may be either the A surface or the B surface, but it is preferable to cast or apply the polyamic acid solution on the B surface of the carrier film. Thereby, the adhesiveness with the metal of a heat-fusible polyimide film improves, and the peeling strength of the polyimide metal laminated body obtained by bonding together with a metal becomes high. In particular, when the thickness of the carrier film is 75 μm or more, preferably 75 to 125 μm, it is preferable to cast or apply the polyamic acid solution to the B surface of the carrier film.
 ポリアミック酸溶液を乾燥した後、次いで、この乾燥物(キャリアフィルム付き)を熱処理する。これにより、残存する溶媒を十分に除去するとともに、イミド化を進行させる。熱処理の温度は、前記の乾燥温度より高く、好ましくは100~400℃、より好ましくは300~400℃である。熱処理時間は、例えば1~100分間である。 After drying the polyamic acid solution, the dried product (with a carrier film) is then heat-treated. Thereby, while remaining solvent is fully removed, imidation is advanced. The temperature of the heat treatment is higher than the above drying temperature, preferably 100 to 400 ° C., more preferably 300 to 400 ° C. The heat treatment time is, for example, 1 to 100 minutes.
 熱処理は、連続的または断続的に行われる。熱処理を連続的に行う場合には、前記乾燥物の少なくとも一対の両端縁を移動可能な固定装置などで固定した状態で行うことが好ましい。熱処理は、熱風炉、赤外線加熱炉などの装置を使用して行うことができる。乾燥物(固化フィルム)の固定装置としては、例えば、多数のピンまたは把持具などを等間隔で備えたベルト状またはチェーン状のものを、連続的または断続的に供給される前記固化フィルムの長手方向の両側縁に沿って一対設置し、そのフィルムの移動と共に連続的または断続的に移動させながら前記フィルムを固定できる装置が好適である。また、前記の固化フィルムの固定装置は、熱処理中のフィルムを幅方向または長手方向に適当な伸び率または収縮率(特に好ましくは0.5~5%程度の伸縮倍率)で伸縮することができる装置であってもよい。 The heat treatment is performed continuously or intermittently. When the heat treatment is continuously performed, it is preferable that at least a pair of both end edges of the dried product is fixed in a movable fixing device or the like. The heat treatment can be performed using an apparatus such as a hot air furnace or an infrared heating furnace. As a fixing device for the dried product (solidified film), for example, a belt-like or chain-like one provided with a large number of pins or gripping tools at equal intervals, the length of the solidified film supplied continuously or intermittently is used. A device that can be installed in a pair along both side edges in the direction and can fix the film while moving the film continuously or intermittently with the movement of the film is suitable. In addition, the solidified film fixing device can expand and contract the film being heat-treated in the width direction or the longitudinal direction at an appropriate elongation or contraction rate (particularly preferably an expansion ratio of about 0.5 to 5%). It may be a device.
 なお、熱融着性ポリイミドフィルムを、再び、好ましくは400gf/mm以下、特に好ましくは300gf/mm以下の低張力下あるいは無張力下に、100~400℃の温度で、好ましくは0.1~30分間熱処理することで、特に寸法安定性が優れた熱融着性ポリイミドフィルムとすることができる。 Incidentally, the heat-welding polyimide film, again, preferably 400 gf / mm 2 or less, particularly preferably under 300 gf / mm 2 or lower tension or under no tension, the temperature of 100 ~ 400 ° C., preferably 0. By heat-treating for 1 to 30 minutes, a heat-fusible polyimide film having particularly excellent dimensional stability can be obtained.
 製造された長尺のキャリアフィルム付きの熱融着性ポリイミドフィルムは、熱融着性ポリイミドフィルムをロール状に巻き取ることができる。 The produced heat-fusible polyimide film with a long carrier film can be wound into a roll.
 最後に、キャリアフィルム付き熱融着性ポリイミドフィルムからキャリアフィルムを剥離して、単層の熱融着性ポリイミドフィルムを得ることができる。 Finally, the carrier film can be peeled from the heat-fusible polyimide film with a carrier film to obtain a single-layer heat-fusible polyimide film.
  [ポリイミド金属積層体]
 次に、本発明のポリイミド金属積層体について説明する。本発明のポリイミド金属積層体は、本発明の熱融着性ポリイミドフィルムの熱融着性ポリイミド層上に金属層を積層してなる。熱融着性ポリイミドフィルムの両面に金属層を積層してもよく、熱融着性ポリイミドフィルムの片面にのみ金属層を積層してもよい。また、本発明のポリイミド金属積層体は、最外層の片面または両面に前記熱融着性ポリイミド層を有する前記熱融着性ポリイミドフィルムと、前記熱融着性ポリイミド層の片面または両面上に積層しても良い。
 すなわち、本発明のポリイミド金属積層体は、少なくとも最外層の片面または両面に前記熱融着性ポリイミド層を有する前記熱融着性ポリイミドフィルムの、前記熱融着性ポリイミド層上に金属層を積層して形成される。金属層を熱融着性ポリイミドフィルムの片面に形成する場合は、前記熱融着性ポリイミドフィルムの最外層の片面または両面に前記熱融着性ポリイミド層を有する前記熱融着性ポリイミドフィルムを用いる。また、金属層を両面に形成する場合は、前記熱融着性ポリイミドフィルムの両面に前記熱融着性ポリイミド層を有する前記熱融着性ポリイミドフィルムを用いる。
[Polyimide metal laminate]
Next, the polyimide metal laminate of the present invention will be described. The polyimide metal laminate of the present invention is formed by laminating a metal layer on the heat-fusible polyimide layer of the heat-fusible polyimide film of the present invention. A metal layer may be laminated on both surfaces of the heat-fusible polyimide film, or a metal layer may be laminated only on one surface of the heat-fusible polyimide film. The polyimide metal laminate of the present invention is laminated on one or both sides of the heat-fusible polyimide film having the heat-fusible polyimide layer on one or both sides of the outermost layer and the heat-fusible polyimide layer. You may do it.
That is, the polyimide metal laminate of the present invention is obtained by laminating a metal layer on the heat-fusible polyimide layer of the heat-fusible polyimide film having the heat-fusible polyimide layer on at least one or both surfaces of the outermost layer. Formed. When the metal layer is formed on one side of the heat-fusible polyimide film, the heat-fusible polyimide film having the heat-fusible polyimide layer on one side or both sides of the outermost layer of the heat-fusible polyimide film is used. . Moreover, when forming a metal layer on both surfaces, the said heat-fusible polyimide film which has the said heat-fusible polyimide layer on both surfaces of the said heat-fusible polyimide film is used.
 単層の熱融着性ポリイミドフィルムに金属層を積層する場合、金属層が積層される熱融着性ポリイミドフィルムの面は、前で述べた単層の熱融着性ポリイミドフィルムの製造時にキャリアフィルムが付いていない面であることが好ましい。単層の熱融着性ポリイミドフィルムを用いてポリイミド金属積層体を得る場合には、金属層は熱融着性ポリイミドフィルムの片面または両面に積層される。 When a metal layer is laminated on a single-layer heat-sealable polyimide film, the surface of the heat-sealable polyimide film on which the metal layer is laminated is a carrier during the production of the single-layer heat-sealable polyimide film described above. It is preferable that the surface has no film. When a polyimide metal laminate is obtained using a single layer heat-fusible polyimide film, the metal layer is laminated on one side or both sides of the heat-fusible polyimide film.
 金属層は、金属箔が好ましい。金属箔としては、銅、アルミニウム、金、またはこれらの合金の箔など各種金属箔を用いることができる。この中で、銅箔が好ましく使用される。銅箔の具体例としては、圧延銅箔、電解銅箔などが挙げられる。 The metal layer is preferably a metal foil. As the metal foil, various metal foils such as copper, aluminum, gold, or an alloy of these alloys can be used. Among these, copper foil is preferably used. Specific examples of the copper foil include rolled copper foil and electrolytic copper foil.
 熱融着性ポリイミドフィルムの両面に金属層を積層する場合には、同種または異種の金属を用いることができる。 When laminating metal layers on both sides of the heat-fusible polyimide film, the same or different metals can be used.
 金属箔の厚さは特に制限はないが、2~35μmが好ましく、5~18μmが特に好ましい。金属箔の厚みが5μm以下のものとしては、キャリア付き金属箔、例えばアルミニウム箔キャリア付き銅箔が使用できる。 The thickness of the metal foil is not particularly limited, but is preferably 2 to 35 μm, and particularly preferably 5 to 18 μm. As the metal foil having a thickness of 5 μm or less, a metal foil with a carrier, for example, a copper foil with an aluminum foil carrier can be used.
 本発明においては、熱融着性ポリイミド層が両面に形成された熱融着性ポリイミドフィルムの両面に金属層(金属箔など)を重ねて熱融着性ポリイミドフィルムと金属層とを熱圧着することにより、熱融着性ポリイミドフィルムの両面に金属層が積層されたポリイミド金属積層体を得ることができる。また、熱融着性ポリイミド層が少なくとも片面に形成された熱融着性ポリイミドフィルムの片面の前記熱融着性ポリイミド層上に金属層(金属箔など)を重ねて熱融着性ポリイミドフィルムと金属層とを熱圧着することにより、熱融着性ポリイミドフィルムの片面に金属層が積層されたポリイミド金属積層体を得ることができる。 In the present invention, the heat-fusible polyimide film and the metal layer are thermocompression-bonded by superimposing a metal layer (metal foil or the like) on both sides of the heat-fusible polyimide film having the heat-fusible polyimide layer formed on both sides. Thereby, the polyimide metal laminated body by which the metal layer was laminated | stacked on both surfaces of the heat-fusible polyimide film can be obtained. A heat-fusible polyimide film in which a metal layer (such as a metal foil) is stacked on the heat-fusible polyimide layer on one side of the heat-fusible polyimide film having a heat-fusible polyimide layer formed on at least one side; By thermocompression bonding with the metal layer, a polyimide metal laminate in which the metal layer is laminated on one surface of the heat-fusible polyimide film can be obtained.
 熱融着性ポリイミドフィルムと金属箔は、少なくとも一対の加圧部材により、加圧部の温度が熱融着性ポリイミドのガラス転移温度より30℃以上高く、且つ420℃以下となる加熱下で、連続的に熱圧着することが好ましい。 The heat-fusible polyimide film and the metal foil are heated at least by a pair of pressure members so that the temperature of the pressure part is 30 ° C. higher than the glass transition temperature of the heat-fusible polyimide and 420 ° C. or lower. It is preferable to perform thermocompression bonding continuously.
 加圧部材としては、一対の圧着金属ロール(圧着部は金属製、セラミック溶射金属製のいずれでもよい)、ダブルベルトプレスおよびホットプレスが挙げられ、特に加圧下に熱圧着および冷却できるものであって、その中でも特に液圧式のダブルベルトプレスを好適に挙げることができる。また、一対の圧着金属ロールによるロールラミネートでも、簡便にポリイミド金属積層体を得ることができる。 Examples of the pressure member include a pair of pressure-bonding metal rolls (the pressure-bonding portion may be made of metal or ceramic sprayed metal), a double belt press, and a hot press, and particularly capable of thermocompression bonding and cooling under pressure. Of these, a hydraulic double belt press is particularly preferred. Also, a polyimide metal laminate can be easily obtained by roll lamination using a pair of crimped metal rolls.
 本発明においては、前記の加圧部材、例えば金属ロールや、好適にはダブルベルトプレスを使用し、熱融着性ポリイミドフィルムと金属箔と補強材とを重ね合わせて、連続的に加熱下に圧着して、長尺状のポリイミド金属積層体を製造することができる。 In the present invention, the pressure member, for example, a metal roll or preferably a double belt press is used, and the heat-fusible polyimide film, the metal foil, and the reinforcing material are superposed and continuously heated. A long polyimide metal laminate can be produced by pressure bonding.
 また、熱融着性ポリイミドフィルムおよび金属箔が、ロール巻きの状態で用いられ、加圧部材にそれぞれ連続的に供給され、ポリイミド金属積層体をロール巻きの状態で得られる場合に特に好適である。 Further, the heat-fusible polyimide film and the metal foil are used in a roll-wound state, and are continuously supplied to the pressure members, respectively, and are particularly suitable when the polyimide metal laminate is obtained in a roll-wound state. .
 本発明のポリイミド金属積層体は、熱融着性ポリイミドフィルムおよび金属箔が強固に積層される。本発明によれば、例えば、JIS C6471の方法で測定した剥離強度が0.5N/mm以上、好ましくは0.7N/mm以上、より好ましくは0.9N/mm以上、さらに好ましくは1.3N/mm以上であるポリイミド金属積層体を得ることができる。
 尚、耐熱性ポリイミド層の両面に熱融着性ポリイミド層が積層された三層の熱融着性ポリイミドフィルムのうち、熱融着性ポリイミド層に金属層が積層されたポリイミド金属積層体においては、剥離の状態(剥離モード)は、耐熱性ポリイミド層と熱融着性ポリイミドフィルムの界面で剥離するケース、熱融着性ポリイミド層と金属層の界面で剥離するケースなどがある。従って、測定された剥離強度は、より接着力の弱い面の剥離強度である。
 本発明において、剥離強度の測定方法は、次のとおりである。まず、熱融着性ポリイミドフィルムの熱融着性ポリイミド層上に銅箔(三井金属株式会社製、3EC-VLP、厚み18μm)を重ね合わせ、熱融着性ポリイミドのガラス転移温度より30℃以上高く、且つ420℃以下の温度で、余熱5分、プレス圧力3MPa、プレス時間1分で熱圧着することにより、熱融着性ポリイミドフィルムに銅箔が積層されたポリイミド金属積層体を得る。次に、このポリイミド金属積層体の剥離強度をJIS C6471の方法で測定する。尚、剥離強度の測定に用いられる銅箔の種類については特に限定されない。また、熱融着性ポリイミドのガラス転移温度は、熱融着性ポリイミドを構成するテトラカルボン酸二無水物成分とジアミン成分の種類によって異なる。上記熱圧着温度は、使用される熱融着性ポリイミドのガラス転移温度に応じて適宜設定される。
In the polyimide metal laminate of the present invention, the heat-fusible polyimide film and the metal foil are firmly laminated. According to the present invention, for example, the peel strength measured by the method of JIS C6471 is 0.5 N / mm or more, preferably 0.7 N / mm or more, more preferably 0.9 N / mm or more, and further preferably 1.3 N. A polyimide metal laminate that is at least / mm can be obtained.
Of the three layers of heat-fusible polyimide films in which the heat-fusible polyimide layer is laminated on both sides of the heat-resistant polyimide layer, in the polyimide metal laminate in which the metal layer is laminated on the heat-fusible polyimide layer, The peeling state (peeling mode) includes a case where peeling occurs at the interface between the heat-resistant polyimide layer and the heat-fusible polyimide film, and a case where peeling occurs at the interface between the heat-fusible polyimide layer and the metal layer. Therefore, the measured peel strength is the peel strength of the surface with weaker adhesive force.
In the present invention, the peel strength measurement method is as follows. First, a copper foil (3EC-VLP, manufactured by Mitsui Kinzoku Co., Ltd., 3μ-VLP, thickness 18 μm) is superimposed on the heat-fusible polyimide layer of the heat-fusible polyimide film, and 30 ° C. or more from the glass transition temperature of the heat-fusible polyimide. A polyimide metal laminate in which a copper foil is laminated on a heat-fusible polyimide film is obtained by thermocompression bonding at a high temperature of 420 ° C. or less at a residual heat of 5 minutes, a press pressure of 3 MPa, and a press time of 1 minute. Next, the peel strength of this polyimide metal laminate is measured by the method of JIS C6471. In addition, it does not specifically limit about the kind of copper foil used for the measurement of peeling strength. The glass transition temperature of the heat-fusible polyimide varies depending on the types of the tetracarboxylic dianhydride component and the diamine component that constitute the heat-fusible polyimide. The said thermocompression bonding temperature is suitably set according to the glass transition temperature of the heat-fusible polyimide used.
 本発明の熱融着性ポリイミドフィルムは、接着シートや接着テープとして用いることができる。 The heat-fusible polyimide film of the present invention can be used as an adhesive sheet or an adhesive tape.
 本発明のポリイミド金属積層体は、成形加工性が良好で、そのまま穴あけ加工、折り曲げ加工や絞り加工、金属配線形成などを行うことができる。また、本発明の熱融着性ポリイミドフィルムは、配線上への電子回路の熱圧着に使用することができる。本発明の熱融着性ポリイミドフィルムおよびポリイミド金属積層体は、プリント配線板、フレキシブルプリント基板、TABテープ等の電子部品や電子機器類の素材として用いることができる。さらに、本発明の熱融着性ポリイミドフィルムは、アルミラミネートフィルムを外装袋として使用するリチウムイオン電池、ポリマー電池、電気二重層キャパシタ等のタブリードの封止材、フレキシブルプリント基板のカバーレイ、セラミックパッケージとキャップとの接合材など、高温下での信頼性が要求される接着性シートとして好適に使用することができる。 The polyimide metal laminate of the present invention has good moldability and can be directly subjected to drilling, bending, drawing, metal wiring formation, and the like. Moreover, the heat-fusible polyimide film of this invention can be used for the thermocompression bonding of the electronic circuit on wiring. The heat-fusible polyimide film and the polyimide metal laminate of the present invention can be used as materials for electronic parts and electronic devices such as a printed wiring board, a flexible printed circuit board, and a TAB tape. Further, the heat-fusible polyimide film of the present invention includes a tab lead sealing material such as a lithium ion battery, a polymer battery, and an electric double layer capacitor using an aluminum laminate film as an outer bag, a cover lay of a flexible printed circuit board, and a ceramic package. It can be suitably used as an adhesive sheet that requires reliability at high temperatures, such as a bonding material between a cap and a cap.
 尚、上記においては、熱融着性ポリイミドフィルムに積層する被着物として金属層を挙げたが、これに限定されるものではない。金属以外の被着物としては、例えばセラミック、ガラスやポリイミドフィルムなどが挙げられる。 In addition, in the above, although the metal layer was mentioned as an adherend laminated | stacked on a heat-fusible polyimide film, it is not limited to this. Examples of the adherend other than metal include ceramic, glass, and polyimide film.
 以下、本発明を実施例に基づき、さらに詳細に説明する。但し、本発明は以下の実施例により制限されるものでない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the following examples.
 [各評価の測定方法]
 1.単層の熱融着性ポリイミドフィルムのガラス転移温度(Tg)の測定
 得られたフィルムを、Rheometric Scientific,inc製 Rheometrics Solid Analyzer IIを用いて、動的粘弾性測定(昇温速度10℃/min、周波数6.28rad/sec)tanδのピーク温度により評価した。
[Measurement method for each evaluation]
1. Measurement of glass transition temperature (Tg) of single-layer heat-fusible polyimide film Using the obtained film, Rheometrics Solid Analyzer II manufactured by Rheometric Scientific, Inc., dynamic viscoelasticity measurement (temperature increase rate: 10 ° C / min) The frequency was evaluated by the peak temperature of tan δ.
 2.単層の熱融着性ポリイミドフィルムの吸水率の測定
 水中で23℃、24時間以上吸水させたサンプルの絶乾重量からの重量増加を測定し、[(吸水重量)-(絶乾重量)]/(絶乾重量)で算出した。
2. Measurement of water absorption rate of single layer heat-fusible polyimide film Measured weight increase from absolute dry weight of sample absorbed in water at 23 ° C for 24 hours or more, [(absorbed weight)-(absolute dry weight)] / (Absolute dry weight).
 3.三層熱融着性ポリイミドフィルムの線膨張係数(CTE)の測定
 長さ15mm/幅3mmにサンプリングしたサンプルを、引張りモード、荷重4gf、昇温速度20℃/minで測定を行い、50℃から200℃のTMAカーブより算出した。
3. Measurement of the coefficient of linear expansion (CTE) of a three-layer heat-fusible polyimide film A sample sampled to a length of 15 mm / width of 3 mm was measured in a tensile mode, a load of 4 gf, and a heating rate of 20 ° C / min. Calculated from a 200 ° C. TMA curve.
 4.ポリイミド金属積層体の剥離強度の測定
 ポリイミド金属積層体の剥離強度は、JIS C6471の方法で測定した。
4). Measurement of peel strength of polyimide metal laminate The peel strength of the polyimide metal laminate was measured by the method of JIS C6471.
 5.ポリイミド金属積層体の半田耐熱性の評価
 得られたポリイミド金属積層体の片面にレジストを印刷し、30℃で20~30分エッチング液に浸漬し、片面の金属層がエッチングされた積層体を得た。得られた積層体を80℃で30分乾燥を行い、23℃-60%RHの環境下で24時間以上調湿したサンプルを種々の温度の半田浴へ10秒間フロートし、サンプルの発泡の有無を確認した。発泡が確認されない最高温度を半田耐熱温度とした。
5. Evaluation of solder heat resistance of polyimide metal laminate A resist is printed on one side of the obtained polyimide metal laminate and immersed in an etching solution at 30 ° C. for 20 to 30 minutes to obtain a laminate in which the metal layer on one side is etched. It was. The obtained laminate was dried at 80 ° C. for 30 minutes, and the sample conditioned for 24 hours or more in an environment of 23 ° C.-60% RH was floated in a solder bath at various temperatures for 10 seconds. It was confirmed. The maximum temperature at which foaming was not confirmed was defined as the solder heat resistance temperature.
 6.ポリイミド金属積層体の寸法変化の評価
 得られたポリイミド金属積層体の片面にレジストを印刷し、30℃で20~30分エッチング液に浸漬し、片面の金属層がエッチングされた積層体を得た。得られた積層体を86mmφの円形に切り抜き、80℃で30分乾燥を行い、23℃-60%RHの環境下で24時間以上調湿した。そのサンプルの反り状態で寸法変化を見積もった。円形の端部の反り量が5mm以内を「○」、反り量が測定できない(端部が90°以上反り返る)ものを「×」、その間を「△」と評価した。
6). Evaluation of dimensional change of polyimide metal laminate A resist was printed on one side of the obtained polyimide metal laminate and immersed in an etching solution at 30 ° C. for 20 to 30 minutes to obtain a laminate in which the metal layer on one side was etched. . The obtained laminate was cut into a 86 mmφ circle, dried at 80 ° C. for 30 minutes, and conditioned for 24 hours or more in an environment of 23 ° C.-60% RH. The dimensional change was estimated in the state of warping of the sample. The circle end warp amount was evaluated as “◯” when the warp amount was within 5 mm, “X” when the warp amount could not be measured (end portion was warped by 90 ° or more), and “Δ” between them.
 [耐熱性ポリイミド層(コア層)を与えるポリアミック酸溶液Aの合成]
 攪拌機、窒素導入管を備えた反応容器に、ジメチルアセトアミド(DMAc)を加え、さらに、パラフェニレンジアミン(PPD)と3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)とを該等モル反応させ、モノマー濃度が18重量%、25℃における溶液粘度が1500ポイズのポリアミック酸溶液Aを得た。
[Synthesis of polyamic acid solution A giving heat-resistant polyimide layer (core layer)]
Dimethylacetamide (DMAc) is added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and paraphenylenediamine (PPD) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) are added. ) To obtain a polyamic acid solution A having a monomer concentration of 18% by weight and a solution viscosity at 25 ° C. of 1500 poise.
 [耐熱性ポリイミド層(コア層)を与えるポリアミック酸溶液Bの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、ジアミン成分としてのPPD、4,4-ジアミノジフェニルエーテル(DADE)および2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)と、テトラカルボン酸二無水物成分としてのs-BPDAおよびピロメリット酸二無水物(PMDA)とを供給し、テトラカルボン酸二無水物成分とジアミン成分とを反応させ、モノマー濃度が18重量%のポリアミック酸溶液Bを得た。PPD、DADEおよびBAPPのモル比は、50:30:20であった。また、s-BPDAとPMDAのモル比は20:80であった。
[Synthesis of polyamic acid solution B giving heat-resistant polyimide layer (core layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and PPD as a diamine component, 4,4-diaminodiphenyl ether (DADE) and 2,2-bis [4- (4-aminophenoxy) phenyl] Propane (BAPP), s-BPDA as tetracarboxylic dianhydride component and pyromellitic dianhydride (PMDA) are supplied, the tetracarboxylic dianhydride component and the diamine component are reacted, and the monomer concentration 18 wt% of polyamic acid solution B was obtained. The molar ratio of PPD, DADE and BAPP was 50:30:20. The molar ratio of s-BPDA to PMDA was 20:80.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Cの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPを加えた。続いて、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)とs-BPDAを加えて、モノマー濃度が18重量%、25℃における溶液粘度は800ポイズのポリアミック酸溶液Cを得た。a-BPDAとs-BPDAのモル比は、10:90であった。
[Synthesis of polyamic acid solution C giving heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP was further added. Subsequently, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) and s-BPDA were added, the monomer concentration was 18 wt%, and the solution viscosity at 25 ° C. was 800 poise. An acid solution C was obtained. The molar ratio of a-BPDA and s-BPDA was 10:90.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液C’の合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPを加えた。続いて、a-BPDAとs-BPDAを加えてモノマー濃度が18重量%のポリアミック酸溶液C’を得た。a-BPDAとs-BPDAのモル比は、30:70であった。
[Synthesis of polyamic acid solution C ′ to give heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP was further added. Subsequently, a-BPDA and s-BPDA were added to obtain a polyamic acid solution C ′ having a monomer concentration of 18% by weight. The molar ratio of a-BPDA and s-BPDA was 30:70.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Dの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPと1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)を加えた。続いて、s-BPDAを加えてモノマー濃度が18重量%のポリアミック酸溶液Dを得た。BAPPとTPE-Rのモル比は70:30であった。
[Synthesis of polyamic acid solution D giving heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP and 1,3-bis (4-aminophenoxy) benzene (TPE-R) were further added. Subsequently, s-BPDA was added to obtain a polyamic acid solution D having a monomer concentration of 18% by weight. The molar ratio of BAPP and TPE-R was 70:30.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液D’の合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPと1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)を加えた。続いて、a-BPDAとs-BPDAを加えてモノマー濃度が18重量%のポリアミック酸溶液D’を得た。a-BPDAとs-BPDAのモル比は、10:90であった。BAPPとTPE-Rのモル比は70:30であった。
[Synthesis of polyamic acid solution D ′ providing a heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP and 1,3-bis (4-aminophenoxy) benzene (TPE-R) were further added. Subsequently, a-BPDA and s-BPDA were added to obtain a polyamic acid solution D ′ having a monomer concentration of 18% by weight. The molar ratio of a-BPDA and s-BPDA was 10:90. The molar ratio of BAPP and TPE-R was 70:30.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Eの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPとs-BPDAを加えて、モノマー濃度が18重量%のポリアミック酸溶液Eを得た。
[Synthesis of polyamic acid solution E to give heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP and s-BPDA were further added to obtain a polyamic acid solution E having a monomer concentration of 18% by weight.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Fの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPとTPE-Rを加えた。続いて、a-BPDAとs-BPDAを加えてモノマー濃度が18重量%のポリアミック酸溶液Fを得た。a-BPDAとs-BPDAのモル比は、10:90であった。BAPPとTPE-Rのモル比は50:50であった。
[Synthesis of polyamic acid solution F that gives a heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP and TPE-R were further added. Subsequently, a-BPDA and s-BPDA were added to obtain a polyamic acid solution F having a monomer concentration of 18% by weight. The molar ratio of a-BPDA and s-BPDA was 10:90. The molar ratio of BAPP and TPE-R was 50:50.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Gの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、TPE-Rと1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)を加えた。続いて、a-BPDAとs-BPDAを加えてモノマー濃度が18重量%のポリアミック酸溶液Gを得た。a-BPDAとs-BPDAのモル比は、30:70であった。TPE-RとTPE-Qのモル比は30:70(BAPPは0モル%)であった。
[Synthesis of polyamic acid solution G to give heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and TPE-R and 1,4-bis (4-aminophenoxy) benzene (TPE-Q) were further added. Subsequently, a-BPDA and s-BPDA were added to obtain a polyamic acid solution G having a monomer concentration of 18% by weight. The molar ratio of a-BPDA and s-BPDA was 30:70. The molar ratio of TPE-R to TPE-Q was 30:70 (BAPP was 0 mol%).
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Hの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPとPPDを加えた。続いて、a-BPDAとs-BPDAを加えてモノマー濃度が18質量%のポリアミック酸溶液Hを得た。a-BPDAとs-BPDAのモル比は、20:80であった。BAPPとPPDのモル比は70:30であった。
[Synthesis of polyamic acid solution H that gives heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP and PPD were further added. Subsequently, a-BPDA and s-BPDA were added to obtain a polyamic acid solution H having a monomer concentration of 18% by mass. The molar ratio of a-BPDA and s-BPDA was 20:80. The molar ratio of BAPP and PPD was 70:30.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Iの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPとPPDを加えた。続いて、s-BPDAを加えてモノマー濃度が18質量%のポリアミック酸溶液Iを得た。BAPPとPPDのモル比は90:10であった。
[Synthesis of polyamic acid solution I giving heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP and PPD were further added. Subsequently, s-BPDA was added to obtain a polyamic acid solution I having a monomer concentration of 18% by mass. The molar ratio of BAPP and PPD was 90:10.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Jの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPとPPDを加えた。続いて、s-BPDAを加えてモノマー濃度が18質量%のポリアミック酸溶液Jを得た。BAPPとPPDのモル比は80:20であった。
[Synthesis of polyamic acid solution J that gives a heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP and PPD were further added. Subsequently, s-BPDA was added to obtain a polyamic acid solution J having a monomer concentration of 18% by mass. The molar ratio of BAPP and PPD was 80:20.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Kの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPとPPDを加えた。続いて、s-BPDAを加えてモノマー濃度が18質量%のポリアミック酸溶液Kを得た。BAPPとPPDのモル比は75:25であった。
[Synthesis of polyamic acid solution K that gives heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP and PPD were further added. Subsequently, s-BPDA was added to obtain a polyamic acid solution K having a monomer concentration of 18% by mass. The molar ratio of BAPP and PPD was 75:25.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Lの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPとPPDを加えた。続いて、s-BPDAを加えてモノマー濃度が18質量%のポリアミック酸溶液Lを得た。BAPPとPPDのモル比は70:30であった。
[Synthesis of polyamic acid solution L that gives a heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP and PPD were further added. Subsequently, s-BPDA was added to obtain a polyamic acid solution L having a monomer concentration of 18% by mass. The molar ratio of BAPP and PPD was 70:30.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Mの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPとPPDを加えた。続いて、s-BPDAを加えてモノマー濃度が18質量%のポリアミック酸溶液Mを得た。BAPPとPPDのモル比は65:35であった。
[Synthesis of polyamic acid solution M that gives heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP and PPD were further added. Subsequently, s-BPDA was added to obtain a polyamic acid solution M having a monomer concentration of 18% by mass. The molar ratio of BAPP and PPD was 65:35.
 [熱融着性ポリイミド層(融着層)を与えるポリアミック酸溶液Nの合成]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、BAPPを加えた。続いて、s-BPDAとPMDAを加えてモノマー濃度が18質量%のポリアミック酸溶液Nを得た。s-BPDAとPMDAのモル比は、10:90であった。
[Synthesis of polyamic acid solution N to give heat-fusible polyimide layer (fusion layer)]
DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and BAPP was further added. Subsequently, s-BPDA and PMDA were added to obtain a polyamic acid solution N having a monomer concentration of 18% by mass. The molar ratio of s-BPDA to PMDA was 10:90.
 [参考例1]
 ポリアミック酸溶液Eをガラス板状へコーターを用いてキャストし、乾燥炉内で120℃で12分間乾燥させ自己支持性フィルムを得た。得られた自己支持フィルムを四方テンターへ貼り付け、150℃、200℃、250℃、340℃で各2分ずつ保持しながら昇温し、厚み20μmの単層の熱融着性ポリイミドフィルムを得た。熱融着性ポリイミドフィルムのガラス転移温度と吸水率を表1に示す。
[Reference Example 1]
The polyamic acid solution E was cast into a glass plate using a coater and dried at 120 ° C. for 12 minutes in a drying furnace to obtain a self-supporting film. The obtained self-supporting film was affixed to a four-way tenter and heated at 150 ° C., 200 ° C., 250 ° C., and 340 ° C. for 2 minutes each to obtain a single layer heat-fusible polyimide film having a thickness of 20 μm. It was. Table 1 shows the glass transition temperature and water absorption of the heat-fusible polyimide film.
 [参考例2~7]
 ポリアミック酸溶液を表1のように変更した以外は、参考例1と同様にして単層の熱融着性ポリイミドフィルムを得た。熱融着性ポリイミドフィルムのガラス転移温度と吸水率を表1に示す。表1の結果から、ジアミン成分中のBAPPが50モル%を超える、特に70モル%以上の場合には、吸水率が低い熱融着性ポリイミドフィルムを得ることができることが明らかとなった。
[Reference Examples 2 to 7]
A single-layer heat-fusible polyimide film was obtained in the same manner as in Reference Example 1 except that the polyamic acid solution was changed as shown in Table 1. Table 1 shows the glass transition temperature and water absorption of the heat-fusible polyimide film. From the results of Table 1, it has been clarified that when the BAPP in the diamine component exceeds 50 mol%, particularly 70 mol% or more, a heat-fusible polyimide film having a low water absorption rate can be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (多層熱融着性ポリイミドフィルムおよびポリイミド金属積層体)
 [実施例1]
 三層押し出しダイスから、平滑な金属製支持体の上面に、ポリアミック酸溶液E(熱融着層)-ポリアミック酸溶液A(コア層)-ポリアミック酸溶液E(熱融着層)の層となるように、ポリアミック酸溶液Aとポリアミック酸溶液Eを押し出して流延した。薄膜状体の流延物を145℃の熱風で連続的に乾燥し、自己支持性フィルムを形成した。自己支持性フィルムを支持体から剥離した後、加熱炉で、200℃から460℃まで徐々に加熱し(最高加熱温度は460℃)、溶媒を除去とイミド化を行ない、厚み25μm(2つの熱融着層の厚みは、それぞれ4.5μmであり、コア層の厚みは16μm)の三層構造の多層の熱融着性ポリイミドフィルムを得た。熱融着性ポリイミドフィルムの線膨張係数および弾性率を表2に示す。
 次に、得られた熱融着性ポリイミドフィルムの両面に銅箔(三井金属株式会社製、3EC-VLP、厚み18μm)を重ね合わせ、温度300℃、余熱5分、プレス圧力3MPa、プレス時間1分で熱圧着することにより、熱融着性ポリイミドフィルムの両面に銅箔が積層されたポリイミド金属積層体を得た。このポリイミド金属積層体の剥離強度および半田耐熱の各評価を行った。その結果を表2に示す。
(Multilayer heat-fusible polyimide film and polyimide metal laminate)
[Example 1]
From the three-layer extrusion die, a polyamic acid solution E (thermal fusion layer) -polyamic acid solution A (core layer) -polyamic acid solution E (thermal fusion layer) is formed on the upper surface of a smooth metal support. Thus, the polyamic acid solution A and the polyamic acid solution E were extruded and cast. The thin film casting was continuously dried with hot air at 145 ° C. to form a self-supporting film. After peeling the self-supporting film from the support, it is gradually heated from 200 ° C. to 460 ° C. in a heating furnace (maximum heating temperature is 460 ° C.), the solvent is removed and imidized, and a thickness of 25 μm (two heats) A multilayer heat-fusible polyimide film having a three-layer structure in which the thickness of the fusion layer was 4.5 μm and the thickness of the core layer was 16 μm was obtained. Table 2 shows the linear expansion coefficient and elastic modulus of the heat-fusible polyimide film.
Next, a copper foil (3EC-VLP, manufactured by Mitsui Kinzoku Co., Ltd., 3 μm thickness) is superimposed on both sides of the obtained heat-fusible polyimide film, and the temperature is 300 ° C., the remaining heat is 5 minutes, the pressing pressure is 3 MPa, and the pressing time is 1. The polyimide metal laminated body by which the copper foil was laminated | stacked on both surfaces of the heat-fusible polyimide film was obtained by carrying out the thermocompression bonding in minutes. Each evaluation of the peeling strength of this polyimide metal laminated body and solder heat resistance was performed. The results are shown in Table 2.
 [実施例2~12、比較例1~5]
 ポリアミック酸溶液の種類および流延物の乾燥温度を表2のように変えた以外は、実施例1と同じ方法で、熱融着性ポリイミドフィルムを得た。熱融着性ポリイミドフィルムの線膨張係数および弾性率を表2に示す。また、実施例1と同様な方法によりポリイミド金属積層体を得た。このポリイミド金属積層体の剥離強度および半田耐熱の各評価を行った。その結果を表2に示す。
[Examples 2 to 12, Comparative Examples 1 to 5]
A heat-fusible polyimide film was obtained in the same manner as in Example 1 except that the type of polyamic acid solution and the drying temperature of the cast were changed as shown in Table 2. Table 2 shows the linear expansion coefficient and elastic modulus of the heat-fusible polyimide film. A polyimide metal laminate was obtained in the same manner as in Example 1. Each evaluation of the peeling strength of this polyimide metal laminated body and solder heat resistance was performed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2のすべての実施例および比較例において、剥離強度測定時には、耐熱性ポリイミド層と熱融着性ポリイミド層の界面で剥離した。また、実施例10~12のポリイミド金属積層体の寸法安定性は「○」であり、比較例3のそれは「△」であった。 In all the examples and comparative examples in Table 2, the peel strength was measured at the interface between the heat-resistant polyimide layer and the heat-fusible polyimide layer. The dimensional stability of the polyimide metal laminates of Examples 10 to 12 was “◯”, and that of Comparative Example 3 was “Δ”.
 上記の結果から主に明らかになったことを以下に示す。
(1)自己支持性フィルムの乾燥温度が、140℃以上であると、ポリイミド金属積層体の剥離強度(耐熱性ポリイミド層と熱融着性ポリイミド層の界面強度)が向上する。
(2)熱融着層について、ジアミン成分中のBAPPが50モル%を超える、好ましくは65モル%以上、特に70モル%以上の場合には、ポリイミド金属積層体の半田耐熱性に優れる。
(3)コア層について、テトラカルボン酸二無水物成分としてs-BPDAが少ないと、半田耐熱性には問題がないが、熱融着性ポリイミドフィルムの線膨張係数の値が増加し、弾性率が低下し、ポリイミド金属積層体の寸法安定性が低下する傾向が見られた。コア層について、テトラカルボン酸二無水物成分としてs-BPDAを50モル%以上含むことが、より望ましい。
(4)熱融着層について、ジアミン成分としてBAPPとPPDを併用し、かつ全ジアミン成分中、PPDの量が25モル%以上の場合には、ポリイミド金属積層体の剥離強度と半田耐熱性がさらに優れる。
(5)熱融着層について、テトラカルボン酸二無水物成分中のa-BPDAを用いると、ポリイミド金属積層体の剥離強度が向上する。
The following are the main findings from the above results.
(1) When the drying temperature of the self-supporting film is 140 ° C. or higher, the peel strength of the polyimide metal laminate (interfacial strength between the heat-resistant polyimide layer and the heat-fusible polyimide layer) is improved.
(2) When the BAPP in the diamine component exceeds 50 mol%, preferably 65 mol% or more, particularly 70 mol% or more, the heat resistance of the polyimide metal laminate is excellent.
(3) If the core layer contains less s-BPDA as the tetracarboxylic dianhydride component, there is no problem in solder heat resistance, but the value of the linear expansion coefficient of the heat-fusible polyimide film increases, and the elastic modulus There was a tendency that the dimensional stability of the polyimide metal laminate decreased. More preferably, the core layer contains 50 mol% or more of s-BPDA as a tetracarboxylic dianhydride component.
(4) For the heat fusion layer, when BAPP and PPD are used in combination as the diamine component, and the amount of PPD is 25 mol% or more in the total diamine component, the peel strength and solder heat resistance of the polyimide metal laminate are Even better.
(5) When a-BPDA in the tetracarboxylic dianhydride component is used for the heat-sealing layer, the peel strength of the polyimide metal laminate is improved.
 本発明によれば、耐熱性に優れ、かつ金属層との接着に優れたポリイミドフィルムを得ることができる。また、耐熱性に優れ、ポリイミドフィルムと金属層との剥離強度が高い積層体(ポリイミド金属積層体)を得ることができる。 According to the present invention, a polyimide film having excellent heat resistance and excellent adhesion to the metal layer can be obtained. Moreover, it is excellent in heat resistance and can obtain the laminated body (polyimide metal laminated body) with high peeling strength of a polyimide film and a metal layer.

Claims (9)

  1.  熱融着性ポリイミド層と、前記熱融着性ポリイミド層に接して積層された耐熱性ポリイミド層とを含む多層の熱融着性ポリイミドフィルムであって、
     前記熱融着性ポリイミド層は、テトラカルボン酸二無水物成分とジアミン成分とから得られ、前記熱融着性ポリイミド層の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、前記熱融着性ポリイミド層の前記ジアミン成分は、全ジアミン中、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを50モル%超含み、
     前記耐熱性ポリイミド層は、テトラカルボン酸二無水物成分とジアミン成分とから得られ、前記耐熱性ポリイミド層の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、
     熱融着性ポリイミドフィルムの熱融着性ポリイミド層上に18μmの銅箔を重ね合わせ、熱融着性ポリイミド層を構成する熱融着性ポリイミドのガラス転移温度より30℃以上高く、且つ420℃以下の温度の範囲で、プレス圧力3MPa、プレス時間1分で熱圧着して得られたポリイミド金属積層体について、JIS C6471の方法で測定した剥離強度が0.5N/mm以上であることを特徴とする熱融着性ポリイミドフィルム。
    A multilayer heat-fusible polyimide film comprising a heat-fusible polyimide layer and a heat-resistant polyimide layer laminated in contact with the heat-fusible polyimide layer,
    The heat-fusible polyimide layer is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the heat-fusible polyimide layer is a total tetracarboxylic dianhydride component. Among them, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is contained in an amount of 50 mol% or more, and the diamine component of the heat-fusible polyimide layer is 2,2-bis [4 -(4-aminophenoxy) phenyl] propane in excess of 50 mol%,
    The heat-resistant polyimide layer is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the heat-resistant polyimide layer is the total tetracarboxylic dianhydride component, Containing 50 mol% or more of 3 ′, 4,4′-biphenyltetracarboxylic dianhydride,
    A 18 μm copper foil is superposed on the heat-fusible polyimide layer of the heat-fusible polyimide film, and is higher by 30 ° C. than the glass transition temperature of the heat-fusible polyimide constituting the heat-fusible polyimide layer, and 420 ° C. The polyimide metal laminate obtained by thermocompression bonding with a press pressure of 3 MPa and a press time of 1 minute in the following temperature range has a peel strength measured by the method of JIS C6471 of 0.5 N / mm or more. Heat-sealable polyimide film.
  2.  前記熱融着性ポリイミド層の前記ジアミン成分は、全ジアミン中、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを70モル%以上含む請求項1記載の熱融着性ポリイミドフィルム。 2. The heat-fusible polyimide according to claim 1, wherein the diamine component of the heat-fusible polyimide layer contains 70 mol% or more of 2,2-bis [4- (4-aminophenoxy) phenyl] propane in the total diamine. the film.
  3.  前記熱融着性ポリイミド層の前記ジアミン成分は、全ジアミン中、パラフェニレンジアミンを25モル%以上含む請求項1または2記載の熱融着性ポリイミドフィルム。 The heat-fusible polyimide film according to claim 1 or 2, wherein the diamine component of the heat-fusible polyimide layer contains 25 mol% or more of paraphenylenediamine in all diamines.
  4.  前記熱融着性ポリイミド層の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を0を超え50モル%未満含む請求項1から3のいずれか1項に記載の熱融着性ポリイミドフィルム。 The tetracarboxylic dianhydride component of the heat-fusible polyimide layer is 50 mol% or more of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component. The heat-fusible polyimide film according to any one of claims 1 to 3, further comprising more than 0 and less than 50 mol% of 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride.
  5.  前記熱融着性ポリイミド層の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を10~30モル%含む請求項4記載の熱融着性ポリイミドフィルム。 The tetracarboxylic dianhydride component of the heat-fusible polyimide layer is 50 mol% or more of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the total tetracarboxylic dianhydride component. The heat-fusible polyimide film according to claim 4, further comprising 10 to 30 mol% of 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride.
  6. 前記耐熱性ポリイミド層の前記ジアミン成分は、全ジアミン中、パラフェニレンジアミンを50モル%以上含む請求項1から5のいずれか1項に記載の熱融着性ポリイミドフィルム。 The heat-fusible polyimide film according to any one of claims 1 to 5, wherein the diamine component of the heat-resistant polyimide layer contains 50 mol% or more of paraphenylenediamine in all diamines.
  7.  耐熱性ポリイミド層を与えるポリイミド前駆体溶液(a)と、熱融着性ポリイミド層を与えるポリイミド前駆体溶液(b)とを押出成形用ダイスから支持体上に流延して積層された薄膜状体を形成し、前記薄膜状体を140℃以上の温度で乾燥して自己支持性フィルムを形成し、前記自己支持性フィルムを支持体から剥離し、剥離した前記自己支持性フィルムを加熱する熱融着性ポリイミドフィルムの製造方法であって、
     前記ポリイミド前駆体溶液(a)は、テトラカルボン酸二無水物成分とジアミン成分とから得られ、前記ポリイミド前駆体溶液(a)の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、
     前記ポリイミド前駆体溶液(b)は、テトラカルボン酸二無水物成分とジアミン成分とから得られ、前記ポリイミド前駆体溶液(b)の前記テトラカルボン酸二無水物成分は、全テトラカルボン酸二無水物成分中、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上含み、前記ポリイミド前駆体溶液(b)の前記ジアミン成分は、全ジアミン中、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを50モル%超含むことを特徴とする熱融着性ポリイミドフィルムの製造方法。
    A thin film formed by casting a polyimide precursor solution (a) that gives a heat-resistant polyimide layer and a polyimide precursor solution (b) that gives a heat-fusible polyimide layer from an extrusion die onto a support. Forming a body, drying the thin-film body at a temperature of 140 ° C. or more to form a self-supporting film, peeling the self-supporting film from the support, and heating the peeled self-supporting film A method for producing a fusible polyimide film,
    The polyimide precursor solution (a) is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the polyimide precursor solution (a) is all tetracarboxylic dianhydride. In the product component, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is contained at 50 mol% or more
    The polyimide precursor solution (b) is obtained from a tetracarboxylic dianhydride component and a diamine component, and the tetracarboxylic dianhydride component of the polyimide precursor solution (b) is all tetracarboxylic dianhydride. In the physical component, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is contained in an amount of 50 mol% or more, and the diamine component of the polyimide precursor solution (b) is 2,2- A method for producing a heat-fusible polyimide film, comprising more than 50 mol% of bis [4- (4-aminophenoxy) phenyl] propane.
  8.  前記薄膜状体を145℃以上の温度で乾燥する請求項7記載の熱融着性ポリイミドフィルムの製造方法。 The method for producing a heat-fusible polyimide film according to claim 7, wherein the thin film-like body is dried at a temperature of 145 ° C or higher.
  9.  請求項1から6のいずれか1項に記載の熱融着性ポリイミドフィルムの熱融着性ポリイミド層に接して金属層が積層されてなるポリイミド金属積層体。 A polyimide metal laminate obtained by laminating a metal layer in contact with the heat-fusible polyimide layer of the heat-fusible polyimide film according to any one of claims 1 to 6.
PCT/JP2013/061356 2012-04-19 2013-04-17 Thermal adhesive polyimide film, method for producing thermal adhesive polyimide film, and polyimide/metal laminate using thermal adhesive polyimide film WO2013157565A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-095613 2012-04-19
JP2012-095606 2012-04-19
JP2012095613 2012-04-19
JP2012095606A JP2015129200A (en) 2012-04-19 2012-04-19 Heat-fusible polyimide film and polyimide metal laminate using the same
JP2012282249A JP2015128821A (en) 2012-04-19 2012-12-26 Heat-fusible polyimide film, production method of heat-fusible polyimide film, and polyimide metal laminate using heat-fusible polyimide film
JP2012-282249 2012-12-26

Publications (1)

Publication Number Publication Date
WO2013157565A1 true WO2013157565A1 (en) 2013-10-24

Family

ID=49383520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061356 WO2013157565A1 (en) 2012-04-19 2013-04-17 Thermal adhesive polyimide film, method for producing thermal adhesive polyimide film, and polyimide/metal laminate using thermal adhesive polyimide film

Country Status (2)

Country Link
TW (1) TW201402325A (en)
WO (1) WO2013157565A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136897A1 (en) * 2015-02-26 2016-09-01 宇部興産株式会社 Manufacturing method of copper clad laminate
WO2016159104A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Multilayer polyimide film, flexible metal foil laminate, method for manufacturing flexible metal foil laminate, and method for manufacturing rigid-flexible printed wiring board
KR20190078559A (en) 2016-10-31 2019-07-04 우베 고산 가부시키가이샤 A polyimide film for metal lamination and a polyimide metal laminate using the same
WO2023190555A1 (en) * 2022-03-28 2023-10-05 Ube株式会社 Polyimide precursor composition, polyimide film, and polyimide film/substrate layered-product

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055039A (en) * 2005-08-23 2007-03-08 Kaneka Corp One side metal clad laminated sheet and its manufacturing method
JP2007138058A (en) * 2005-11-21 2007-06-07 Du Pont Toray Co Ltd Highly adhesive polyimide film and method for manufacturing the same
WO2008004496A1 (en) * 2006-07-06 2008-01-10 Toray Industries, Inc. Thermoplastic polyimide, and laminated polyimide film and metal foil-laminated polyimide film using the thermoplastic polyimide
JP2008272958A (en) * 2007-04-25 2008-11-13 Kaneka Corp Method for producing single-sided metal clad laminate
JP2008302569A (en) * 2007-06-07 2008-12-18 Ube Ind Ltd Manufacturing method of laminated body of parting agent and one side metal leaf laminated resin film, and one side metal leaf laminated film
JP2010125793A (en) * 2008-11-28 2010-06-10 Arisawa Mfg Co Ltd Bilayer double-side flexible metal laminate plate and method of manufacturing the same
WO2011087044A1 (en) * 2010-01-18 2011-07-21 株式会社カネカ Multilayer polyimide film and flexible metal laminated board
JP2011143678A (en) * 2010-01-18 2011-07-28 Kaneka Corp Multilayer polyimide film and flexible metal-clad laminate using the same
WO2012011607A1 (en) * 2010-07-22 2012-01-26 宇部興産株式会社 Process for production of polyimide film laminate, and polyimide film laminate
JP2012081604A (en) * 2010-10-07 2012-04-26 Mitsubishi Chemicals Corp Laminate and substrate for printed wiring board
JP2012089315A (en) * 2010-10-18 2012-05-10 Ube Ind Ltd Flexible flat cable and manufacturing method thereof
WO2012133594A1 (en) * 2011-03-30 2012-10-04 宇部興産株式会社 Polyimide film and metal laminate using same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055039A (en) * 2005-08-23 2007-03-08 Kaneka Corp One side metal clad laminated sheet and its manufacturing method
JP2007138058A (en) * 2005-11-21 2007-06-07 Du Pont Toray Co Ltd Highly adhesive polyimide film and method for manufacturing the same
WO2008004496A1 (en) * 2006-07-06 2008-01-10 Toray Industries, Inc. Thermoplastic polyimide, and laminated polyimide film and metal foil-laminated polyimide film using the thermoplastic polyimide
JP2008272958A (en) * 2007-04-25 2008-11-13 Kaneka Corp Method for producing single-sided metal clad laminate
JP2008302569A (en) * 2007-06-07 2008-12-18 Ube Ind Ltd Manufacturing method of laminated body of parting agent and one side metal leaf laminated resin film, and one side metal leaf laminated film
JP2010125793A (en) * 2008-11-28 2010-06-10 Arisawa Mfg Co Ltd Bilayer double-side flexible metal laminate plate and method of manufacturing the same
WO2011087044A1 (en) * 2010-01-18 2011-07-21 株式会社カネカ Multilayer polyimide film and flexible metal laminated board
JP2011143678A (en) * 2010-01-18 2011-07-28 Kaneka Corp Multilayer polyimide film and flexible metal-clad laminate using the same
WO2012011607A1 (en) * 2010-07-22 2012-01-26 宇部興産株式会社 Process for production of polyimide film laminate, and polyimide film laminate
JP2012081604A (en) * 2010-10-07 2012-04-26 Mitsubishi Chemicals Corp Laminate and substrate for printed wiring board
JP2012089315A (en) * 2010-10-18 2012-05-10 Ube Ind Ltd Flexible flat cable and manufacturing method thereof
WO2012133594A1 (en) * 2011-03-30 2012-10-04 宇部興産株式会社 Polyimide film and metal laminate using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136897A1 (en) * 2015-02-26 2016-09-01 宇部興産株式会社 Manufacturing method of copper clad laminate
KR20170122196A (en) 2015-02-26 2017-11-03 우베 고산 가부시키가이샤 Manufacturing method of copper clad laminate
WO2016159104A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Multilayer polyimide film, flexible metal foil laminate, method for manufacturing flexible metal foil laminate, and method for manufacturing rigid-flexible printed wiring board
JPWO2016159104A1 (en) * 2015-03-31 2017-12-21 株式会社カネカ Multilayer polyimide film, flexible metal foil laminate, method for producing flexible metal foil laminate, and method for producing rigid flexible wiring board
KR20190078559A (en) 2016-10-31 2019-07-04 우베 고산 가부시키가이샤 A polyimide film for metal lamination and a polyimide metal laminate using the same
WO2023190555A1 (en) * 2022-03-28 2023-10-05 Ube株式会社 Polyimide precursor composition, polyimide film, and polyimide film/substrate layered-product

Also Published As

Publication number Publication date
TW201402325A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP4625458B2 (en) Adhesive film and use thereof
JP4734837B2 (en) Polyimide film with improved adhesiveness, method for producing the same, and laminate
KR101917405B1 (en) Polyimide film and metal laminate using same
JP6743697B2 (en) Multilayer polyimide film, method for producing multilayer polyimide film, polyimide laminate using the same, and copolymerized polyimide used therein
KR20120123389A (en) Multilayer polyimide film and flexible metal laminated board
US9900994B2 (en) Method for producing film and flexible metal-clad laminate
JPWO2018079710A1 (en) Polyimide film for metal lamination and polyimide metal laminate using the same
WO2013024819A1 (en) Method for manufacturing polyimide metal laminate
JP6673329B2 (en) Heat-fusible polyimide film
JP5468913B2 (en) Multilayer polyimide film with resist and method for producing the same
WO2013157565A1 (en) Thermal adhesive polyimide film, method for producing thermal adhesive polyimide film, and polyimide/metal laminate using thermal adhesive polyimide film
JP5382274B2 (en) Heat-sealable polyimide film and production method thereof, and polyimide metal laminate using heat-sealable polyimide film
JP2015129200A (en) Heat-fusible polyimide film and polyimide metal laminate using the same
JP6496812B2 (en) Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal-clad laminate
JP5998576B2 (en) Heat-sealable polyimide film and polyimide metal laminate using the same
JP2015128821A (en) Heat-fusible polyimide film, production method of heat-fusible polyimide film, and polyimide metal laminate using heat-fusible polyimide film
JP5355993B2 (en) Adhesive film
JP2006199871A (en) Adhesive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13777489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP