WO2013157518A1 - Cell charger and voltage equalization method - Google Patents

Cell charger and voltage equalization method Download PDF

Info

Publication number
WO2013157518A1
WO2013157518A1 PCT/JP2013/061193 JP2013061193W WO2013157518A1 WO 2013157518 A1 WO2013157518 A1 WO 2013157518A1 JP 2013061193 W JP2013061193 W JP 2013061193W WO 2013157518 A1 WO2013157518 A1 WO 2013157518A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
switch
batteries
winding
Prior art date
Application number
PCT/JP2013/061193
Other languages
French (fr)
Japanese (ja)
Inventor
慎司 広瀬
守 倉石
正彰 鈴木
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013157518A1 publication Critical patent/WO2013157518A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery charger and a voltage equalizing method for equalizing a plurality of battery voltages.
  • a transformer coupling method is known as a cell balance circuit for equalizing a plurality of battery voltages connected in series included in an assembled battery.
  • the transformer-coupled cell balance circuit has a transformer having an input winding connected in parallel to the assembled battery and an output winding corresponding to each battery and connected in parallel to each battery. It is a circuit that equalizes a plurality of battery voltages by using electromagnetic induction for the wire. In the transformer-coupled cell balance circuit as described above, it is desired to equalize the voltages of the batteries efficiently.
  • a battery charge control device which aims to reduce power loss in order to equalize the charge state of each unit cell constituting a secondary battery.
  • the secondary battery composed of a plurality of unit cells connected in series and the electric energy supplied to the primary side of the common transformer are distributed to each unit cell via the secondary side coil. And an equalization circuit. Between each secondary coil and each unit cell, a conduction switch for switching between conduction and non-conduction of both is inserted.
  • the conduction switch corresponding to the unit cell whose charging state has not reached the state of full charge is turned on to allow the charging current to flow to the unit cell.
  • the conduction switch corresponding to the unit cell whose state of charge is close to full charge is turned off to prevent the flow of the charging current to the unit cell.
  • an assembled battery serving as a power source for an electric vehicle is configured by connecting a large number of unit cells made of lithium secondary batteries in series.
  • a voltage detection circuit for detecting the voltage of each unit cell is provided.
  • An auxiliary battery that also serves as a control power supply is provided.
  • a power transfer circuit for selectively transferring the power of the auxiliary battery to each unit cell is provided.
  • the power transfer circuit includes a relay, a DC / AC inverter, an auxiliary battery transformer, a changeover switch, a cell transformer, a rectifier circuit, an FET, and the like.
  • the control device drives the relay and the DC / AC inverter and turns on the corresponding FET to transfer the power of the auxiliary battery.
  • JP 2004-079191 A Japanese Patent Laid-Open No. 11-113183 JP 2008-125211 A Special table 2010-522528
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a battery charging device and a battery charging method that suppress the reflux current and efficiently equalize the voltages of the batteries.
  • the battery charging device which is one of the embodiments includes an assembled battery, a transformer, a first switch, a second switch, a measurement unit, a diode, and a control unit.
  • the assembled battery a plurality of batteries are connected in series.
  • the transformer has a first winding and a plurality of second windings connected in parallel to each of the batteries.
  • the first switch is connected in series with the first winding and is connected in parallel with the assembled battery.
  • the second switch is provided between wirings connecting the battery and the second winding.
  • the measurement unit measures the voltage of each of the batteries.
  • the diode passes a current in a certain direction from the second winding to the battery.
  • a control part acquires the voltage of the said battery which the said measurement part measured, and specifies the battery of the lowest voltage.
  • blocking is performed.
  • the second switch is preferably provided between the positive terminal of the battery and the cathode of the diode.
  • FIG. 1 is a diagram showing an embodiment of a transformer-coupled cell balance circuit.
  • FIG. 2 is a diagram showing current values when a return current is generated when the cell balance process is performed in the circuit of FIG.
  • FIG. 3 is a diagram showing an embodiment of the battery charger.
  • FIG. 4 is a flowchart showing an embodiment of the operation of the battery charger.
  • FIG. 5 is a diagram showing a current flow of the present embodiment.
  • FIG. 6 is a diagram showing a flow of regenerative current when cell balance processing is performed in the circuit of FIG.
  • FIG. 1 is a diagram showing an embodiment of a transformer-coupled cell balance circuit.
  • the cell balance circuit of FIG. 1 includes a battery pack in which a plurality of batteries 2a to 2d are connected in series, a transformer T1, a first switch SW5, and diodes D1 to D4, and performs a cell balance process.
  • the first switch SW5 is connected and disconnected to generate an alternating current, and the generated alternating current is transmitted from the input winding L0 to the plurality of output windings L1 to L4 using electromagnetic induction. This is a process for equalizing a plurality of battery voltages.
  • an average voltage is output from each of the output windings L1 to L4 corresponding to the batteries 2a, 2b, 2c, and 2d, and charging is performed by passing a current through the low voltage battery. That is, a battery having a low voltage is charged by discharging from a battery having a high voltage.
  • a battery having a low voltage is charged by discharging from a battery having a high voltage.
  • the batteries 2a, 2b, and 2c have the same voltage and higher than the voltage of the battery 2d in the cell balance circuit of FIG. 1, when the cell balance process is performed using the first switch SW5, only the regenerative current I2d ( (Broken line) flows.
  • the regenerative current is a current that flows when a battery having a voltage higher than the average voltage is charged to a battery having a voltage lower than the average voltage.
  • the inventor has found that in the cell balance circuit, the total voltage between the terminals of the output windings L1 to L4 of the transformer T1 corresponding to each of the batteries 2a to 2d is the same as the total voltage of the batteries 2a to 2d.
  • a return current Ik solid line
  • the total value of the voltages between the terminals of the output windings L1 to L4 of the transformer T1 is the total value of the voltages of the batteries 2a to 2d.
  • the regenerative current I2d and the return current Ik flow as shown in FIG.
  • the efficiency of the cell balance process for equalizing the voltages of the respective batteries is reduced due to the generation of the return current, which is a reactive current that cannot be used for the regenerative current. This is because the generation of the return current is caused by the characteristics of the transformer T1, and the voltages of the output windings L1 to L4 corresponding to the high voltage battery tend to increase.
  • FIG. 2 is a diagram showing current values when a reflux current is generated when the cell balance processing is performed in the circuit of FIG.
  • the vertical axis in FIG. 2 indicates the current value, and the horizontal axis indicates time.
  • TP0 represents the current value of the reflux current Ik measured at TP0 in FIG. 1
  • TP1 to TP3 represent the current values measured at TP1 to TP3 in FIG. 1
  • TP4 represents the regenerative current and reflux measured at TP4 in FIG.
  • Current values including current are shown.
  • the currents shown in TP1 to TP3 in FIG. 2 indicate that there is a return current flowing in the input winding L0 via the output windings L1 to L4.
  • FIG. 3 is a diagram showing an embodiment of the battery charger. 3 includes an assembled battery, a transformer T1, a first switch SW5, second switches SW1 to SW4, measurement units 3a to 3d, diodes D1 to D4, a control unit 4, and a storage unit 5. .
  • the assembled battery has a plurality of batteries 2a to 2d connected in series.
  • the batteries 2a to 2d may be secondary batteries.
  • As the secondary battery for example, a lithium ion secondary battery, a nickel hydride secondary battery, or the like can be considered. In this example, four batteries are used for explanation, but the number of batteries is not limited to four.
  • the transformer T1 has a plurality of second windings L1 to L4 connected in parallel to the first winding L0 and the batteries 2a to 2d.
  • the first switch SW5 is connected in series with the first winding L0 and is connected in parallel with the assembled battery.
  • a MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the plurality of second switches SW1 to SW4 are provided between the wirings connecting the batteries 2a to 2d and the second windings L1 to L4, and block the flow of the reflux current.
  • the second switch SW1 is provided between the positive terminal of the battery 2a and the cathode of the diode D1.
  • the second switch SW2 is provided between the positive terminal of the battery 2b and the cathode of the diode D2.
  • the second switch SW3 is provided between the positive terminal of the battery 2c and the cathode of the diode D3.
  • the second switch SW4 is provided between the positive terminal of the battery 2d and the cathode of the diode D4.
  • a MOSFET or the like may be used.
  • the measuring units 3a to 3d measure the voltages of the batteries 2a to 2d. For example, a voltmeter can be considered.
  • the data measured by the measurement units 3a to 3d is output to the control unit 4.
  • the diode D1 allows a current in a certain direction to flow from the second winding L1 to the battery 2a.
  • the diode D2 allows a current in a certain direction to flow from the second winding L2 to the battery 2b.
  • the diode D3 allows a current in a certain direction to flow from the second winding L3 to the battery 2c.
  • the diode D4 allows a current in a certain direction to flow from the second winding L4 to the battery 2d.
  • the control unit 4 acquires the voltages of the batteries 2a to 2d measured by the measuring units 3a to 3d, and specifies the battery having the lowest voltage. Then, the second switch corresponding to the specified battery among the batteries 2a to 2d is brought into a connected state. Further, other second switches corresponding to those other than the specified battery are brought into a cut-off state. Subsequently, the first switch SW5 is repeatedly connected and disconnected until the specified battery voltage is equal to or exceeds the average voltage of all the batteries. For connection and disconnection, for example, it is conceivable to control connection and disconnection using a pulse signal having a predetermined period with a duty of 50%. However, the connection and disconnection control is not limited to the above control.
  • One terminal of the transformer T1 is connected to the positive terminal of the battery 2a of the assembled battery, and the other terminal of the transformer T1 is connected to one terminal of the first switch SW5.
  • the other terminal of the first switch SW5 is connected to the negative terminal of the battery 2d of the assembled battery.
  • a terminal for controlling connection and disconnection of the first switch SW5 is connected to the control unit 4.
  • a terminal for controlling connection and disconnection of each of the second switches SW1 to SW4 is connected to the control unit 4.
  • One terminal of the second switch SW1 is connected to the cathode of the diode D1, and the other terminal of the second switch SW1 is connected to the positive terminal of the battery 2a and one terminal of the measuring unit 3a.
  • the anode of the diode D1 and one terminal of the second winding L1 of the transformer T1 are connected.
  • the other terminal of the measuring unit 3a is connected to the negative terminal of the battery 2a and the other terminal of the second winding L1 of the transformer T1.
  • One terminal of the second switch SW2 is connected to the cathode of the diode D2, and the other terminal of the second switch SW2 is connected to the positive terminal of the battery 2b and one terminal of the measuring unit 3b.
  • the anode of the diode D2 and one terminal of the second winding L2 of the transformer T1 are connected.
  • the other terminal of the measuring unit 3b is connected to the negative terminal of the battery 2b and the other terminal of the second winding L2 of the transformer T1.
  • One terminal of the second switch SW3 is connected to the cathode of the diode D3, and the other terminal of the second switch SW3 is connected to the positive terminal of the battery 2c and one terminal of the measuring unit 3c.
  • the anode of the diode D3 and one terminal of the second winding L3 of the transformer T1 are connected.
  • the other terminal of the measuring unit 3c is connected to the negative terminal of the battery 2c and the other terminal of the second winding L3 of the transformer T1.
  • One terminal of the second switch SW4 is connected to the cathode of the diode D4, and the other terminal of the second switch SW4 is connected to the positive terminal of the battery 2d and one terminal of the measuring unit 3d.
  • the anode of the diode D4 and one terminal of the second winding L4 of the transformer T1 are connected.
  • the other terminal of the measurement unit 3d is connected to the negative terminal of the battery 2d and the other terminal of the second winding L4 of the transformer T1.
  • the output terminals of the measuring units 3a to 3d are connected to the control unit 4.
  • FIG. 4 is a flowchart showing an embodiment of the operation of the battery charger.
  • the control unit 4 acquires data from the measurement units 3a to 3d that measure the voltages of the batteries 2a to 2d, respectively. Subsequently, the control unit 4 obtains an average value of the voltages using the acquired voltages of the batteries 2a to 2d. For example, data (voltage value) and average value may be stored in the storage unit 5.
  • step S402 the control unit 4 specifies the maximum value and the minimum value of the data (voltage value), obtains the difference between the maximum value and the minimum value, and the obtained difference is larger than the cell balance range stored in the storage unit 5. It is determined whether or not. When it is larger than the cell balance range (Yes), the process proceeds to step S403, and when it is equal to or smaller than the cell balance range (No), the process is terminated. Alternatively, the process proceeds to step S401. Or you may transfer to step S401 with the determined period.
  • step S403 the second switch corresponding to the battery having the lowest voltage among the batteries 2a to 2d acquired by the control unit 4 is set in a connected state (ON). Further, the other second switches are turned off (off). In FIG. 4, the second switch SW4 is connected (ON), and the second switches SW1 to SW3 are disconnected (OFF).
  • step S404 cell balance processing is executed.
  • step S405 the control unit 4 determines whether or not the current voltage of the battery having the lowest voltage is an average value or greater than the average value, and if it is an average value (Yes) or greater than the average value, The process proceeds to step S406, and if smaller than the average value (No), the process proceeds to step S404 and the cell balance process is continued.
  • the average value has a certain predetermined range (variation range).
  • step S406 the control unit 4 stops the cell balance process. That is, the control unit 4 stops the control of the first switch SW5.
  • FIG. 5 is a diagram showing a current flow of the present embodiment.
  • FIG. 6 is a diagram showing a flow of regenerative current when cell balance processing is performed in the circuit of FIG.
  • the vertical axis in FIG. 6 indicates the current value, and the horizontal axis indicates time.
  • TP0 indicates the current value of the current measured at TP0 in FIG. 5
  • TP1 to TP3 indicate the current values measured at TP1 to TP3 in FIG.
  • TP4 indicates the current value of the regenerative current measured at TP4 in FIG. It is shown.
  • the current value of TP0 in FIG. 6 is about 1/4 of the regenerative current I2d (broken line) of TP4. Further, since the return current is cut off by the second switches SW1 to SW3 for cutting off the return current flowing through the input winding L0 via the output windings L1 to L4, it is shown in TP1 to TP3 in FIG. Current value becomes approximately 0A.
  • the flow of the return current flowing to the input winding side through the output winding of the transformer can be cut off, and the efficiency of the cell balance processing can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a cell charging method and a cell charger for suppressing a reflux current and efficiently equalizing the voltages of individual cells. The cell charger is provided with: a cell pack in which a plurality of cells are connected in series; a transformer having a first winding and a plurality of second windings connected in parallel to the cells; a first switch connected in series to the first winding and connected in parallel to the cell pack; a plurality of second switches provided between wiring for connecting the cells and the second windings; a measuring part for measuring the voltage of each of the cells; diodes for passing a fixed-direction current from the second windings to the cells; and a control unit for obtaining the voltages of the cells as measured by the measuring part, identifying the cell having the lowest voltage, causing the second switch corresponding to the identified cell to enter a connected state, causing the other second switches to enter a disconnected state, and repeatedly connecting and disconnecting the first switch until the voltage of the identified cell is the same as or exceeds the average voltage of all the cells.

Description

電池充電装置および電圧均等化方法Battery charger and voltage equalization method
 本発明は、複数の電池電圧を均等にする電池充電装置および電圧均等化方法に関する。 The present invention relates to a battery charger and a voltage equalizing method for equalizing a plurality of battery voltages.
 組電池に含まれる直列に接続される複数の電池電圧を均等にするセルバランス回路としてトランス結合方式が知られている。トランス結合方式のセルバランス回路は、組電池に並列に接続される入力巻線と電池各々に対応し電池各々に並列に接続される出力巻線を有するトランスを有し、入力巻線から出力巻線に電磁誘導を利用して複数の電池電圧を均等にする回路である。そして、上記のようなトランス結合方式のセルバランス回路においては、効率よく電池各々の電圧を均等にすることが望まれている。 A transformer coupling method is known as a cell balance circuit for equalizing a plurality of battery voltages connected in series included in an assembled battery. The transformer-coupled cell balance circuit has a transformer having an input winding connected in parallel to the assembled battery and an output winding corresponding to each battery and connected in parallel to each battery. It is a circuit that equalizes a plurality of battery voltages by using electromagnetic induction for the wire. In the transformer-coupled cell balance circuit as described above, it is desired to equalize the voltages of the batteries efficiently.
 関連する技術として、二次バッテリを構成する各単位セルの充電状態を均等化させるうえで電力ロスの低減を図ることを目的とするバッテリ充電制御装置が開示されている。そのバッテリ充電制御装置によれば、直列接続する複数の単位セルにより構成される二次バッテリと、共通トランスの一次側へ供給された電気エネルギを二次側コイルを介して各単位セルへ分配する均等化回路と、を設ける。各二次側コイルと各単位セルとの間に、両者の導通・非導通をそれぞれ切り替える導通スイッチを介挿する。二次バッテリの均等化処理が行われる際、充電状態が満充電に近い状態に至っていない単位セルに対応する導通スイッチをオンとし、該単位セルへの充電電流の流通を許容する。一方、充電状態が満充電に近い状態に至っている単位セルに対応する導通スイッチをオフとし、該単位セルへの充電電流の流通を阻止する。 As a related technique, a battery charge control device is disclosed which aims to reduce power loss in order to equalize the charge state of each unit cell constituting a secondary battery. According to the battery charge control device, the secondary battery composed of a plurality of unit cells connected in series and the electric energy supplied to the primary side of the common transformer are distributed to each unit cell via the secondary side coil. And an equalization circuit. Between each secondary coil and each unit cell, a conduction switch for switching between conduction and non-conduction of both is inserted. When the equalization process of the secondary battery is performed, the conduction switch corresponding to the unit cell whose charging state has not reached the state of full charge is turned on to allow the charging current to flow to the unit cell. On the other hand, the conduction switch corresponding to the unit cell whose state of charge is close to full charge is turned off to prevent the flow of the charging current to the unit cell.
 また、他の関連する技術として、組電池を構成する各単位セルの放電時の過放電を防止しながら、単位セル毎の容量のばらつきによる組電池全体としての容量の低下を抑える技術が開示されている。その技術によれば、電気自動車の電源となる組電池を、リチウム系二次電池からなる単位セルを多数個直列接続して構成する。各単位セルの電圧を検出する電圧検出回路を設ける。制御電源を兼用する補助電池を設ける。補助電池の電力を各単位セルに選択的に転送するための電力転送回路を設ける。電力転送回路を、リレー、DC/ACインバータ、補助電池用変圧器、切替スイッチ、セル用変圧器、整流回路、FET等から構成する。制御装置は、放電時において、電圧が下限値まで低下した単位セルが検出されると、リレー及びDC/ACインバータを駆動させると共に、対応するFETをオンさせて補助電池の電力を転送させる。 In addition, as another related technique, a technique is disclosed that suppresses a decrease in the capacity of the entire assembled battery due to a variation in capacity of each unit cell while preventing overdischarge during discharge of each unit cell constituting the assembled battery. ing. According to this technology, an assembled battery serving as a power source for an electric vehicle is configured by connecting a large number of unit cells made of lithium secondary batteries in series. A voltage detection circuit for detecting the voltage of each unit cell is provided. An auxiliary battery that also serves as a control power supply is provided. A power transfer circuit for selectively transferring the power of the auxiliary battery to each unit cell is provided. The power transfer circuit includes a relay, a DC / AC inverter, an auxiliary battery transformer, a changeover switch, a cell transformer, a rectifier circuit, an FET, and the like. When a unit cell whose voltage has dropped to the lower limit value is detected during discharging, the control device drives the relay and the DC / AC inverter and turns on the corresponding FET to transfer the power of the auxiliary battery.
特開2004-079191号公報JP 2004-079191 A 特開平11-113183号公報Japanese Patent Laid-Open No. 11-113183 特開2008-125211号公報JP 2008-125211 A 特表2010-522528号公報Special table 2010-522528
 本発明は上記のような実情に鑑みてなされたものであり、還流電流を抑止し、効率よく電池各々の電圧を均等にする電池充電装置および電池充電方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a battery charging device and a battery charging method that suppress the reflux current and efficiently equalize the voltages of the batteries.
 本実施形態のひとつである電池充電装置は組電池、トランス、第1のスイッチ、第2のスイッチ、計測部、ダイオード、制御部を備える。組電池は、複数の電池が直列に接続されている。トランスは、第1の巻線と上記電池各々に並列に接続される複数の第2の巻線を有する。第1のスイッチは、上記第1の巻線と直列に接続され、上記組電池と並列に接続される。第2のスイッチは、上記電池と上記第2の巻線とを接続する配線の間に設けられる。計測部は、上記電池各々の電圧を計測する。ダイオードは、上記第2の巻線から上記電池へ一定方向の電流を流す。制御部は、上記計測部が計測した上記電池の電圧を取得し、最も低い電圧の電池を特定する。そして、特定した電池に対応する第2のスイッチを接続状態にさせ、他の第2のスイッチを遮断状態にさせ、特定した電池の電圧が全ての上記電池の平均電圧と同じまたは超えるまで上記第1のスイッチに接続と遮断を繰り返させる制御をする。なお、第2のスイッチは上記電池の正極端子とダイオードのカソードとの間に設けることが望ましい。 The battery charging device which is one of the embodiments includes an assembled battery, a transformer, a first switch, a second switch, a measurement unit, a diode, and a control unit. In the assembled battery, a plurality of batteries are connected in series. The transformer has a first winding and a plurality of second windings connected in parallel to each of the batteries. The first switch is connected in series with the first winding and is connected in parallel with the assembled battery. The second switch is provided between wirings connecting the battery and the second winding. The measurement unit measures the voltage of each of the batteries. The diode passes a current in a certain direction from the second winding to the battery. A control part acquires the voltage of the said battery which the said measurement part measured, and specifies the battery of the lowest voltage. Then, the second switch corresponding to the specified battery is connected, and the other second switch is disconnected, and the first battery voltage is equal to or exceeds the average voltage of all the batteries. The control which makes 1 switch repeat connection and interruption | blocking is performed. The second switch is preferably provided between the positive terminal of the battery and the cathode of the diode.
 本実施形態によれば、還流電流を抑止して効率よく電池各々の電圧を均等にすることができるという効果を奏する。 According to this embodiment, there is an effect that the current of each battery can be equalized efficiently by suppressing the reflux current.
図1は、トランス結合方式のセルバランス回路の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of a transformer-coupled cell balance circuit. 図2は、図1の回路においてセルバランス処理を実施した際に還流電流が発生したときの各電流値を示す図である。FIG. 2 is a diagram showing current values when a return current is generated when the cell balance process is performed in the circuit of FIG. 図3は、電池充電装置の一実施例を示す図である。FIG. 3 is a diagram showing an embodiment of the battery charger. 図4は、電池充電装置の動作の一実施例を示すフロー図である。FIG. 4 is a flowchart showing an embodiment of the operation of the battery charger. 図5は、本実施形態の電流の流れを示す図である。FIG. 5 is a diagram showing a current flow of the present embodiment. 図6は、図5の回路においてセルバランス処理を実施した際の回生電流の流れを示す図である。FIG. 6 is a diagram showing a flow of regenerative current when cell balance processing is performed in the circuit of FIG.
 図1は、トランス結合方式のセルバランス回路の一実施例を示す図である。図1のセルバランス回路は複数の電池2a~2dが直列に接続されている組電池、トランスT1、第1のスイッチSW5、ダイオードD1~D4を有し、セルバランス処理を行う回路である。セルバランス処理は、第1のスイッチSW5は接続と遮断をして交流電流を生成させ、生成された交流電流を入力巻線L0から電磁誘導を利用して複数の出力巻線L1~L4に送電して複数の電池電圧を均等にする処理である。 FIG. 1 is a diagram showing an embodiment of a transformer-coupled cell balance circuit. The cell balance circuit of FIG. 1 includes a battery pack in which a plurality of batteries 2a to 2d are connected in series, a transformer T1, a first switch SW5, and diodes D1 to D4, and performs a cell balance process. In the cell balance processing, the first switch SW5 is connected and disconnected to generate an alternating current, and the generated alternating current is transmitted from the input winding L0 to the plurality of output windings L1 to L4 using electromagnetic induction. This is a process for equalizing a plurality of battery voltages.
 例えば、電池2a、2b、2c、2dに対応する出力巻線L1~L4各々から平均電圧を出力し、電圧の低い電池に電流を流して充電をする。すなわち、電圧の高い電池から放電をして電圧の低い電池を充電する。例えば、図1のセルバランス回路において電池2a、2b、2cが同じ電圧でかつ電池2dの電圧より高い場合、第1のスイッチSW5を用いてセルバランス処理をすると、電池2dのみに回生電流I2d(破線)が流れる。回生電流とは、平均電圧より高い電圧の電池から平均電圧より低い電圧の電池に充電が行われる際に流れる電流である。 For example, an average voltage is output from each of the output windings L1 to L4 corresponding to the batteries 2a, 2b, 2c, and 2d, and charging is performed by passing a current through the low voltage battery. That is, a battery having a low voltage is charged by discharging from a battery having a high voltage. For example, when the batteries 2a, 2b, and 2c have the same voltage and higher than the voltage of the battery 2d in the cell balance circuit of FIG. 1, when the cell balance process is performed using the first switch SW5, only the regenerative current I2d ( (Broken line) flows. The regenerative current is a current that flows when a battery having a voltage higher than the average voltage is charged to a battery having a voltage lower than the average voltage.
 しかし、発明者はセルバランス回路において、電池2a~2d各々に対応するトランスT1の出力巻線L1~L4各々の端子間の電圧の合計値が電池2a~2dの電圧の合計値と同じかそれより大きいとき、出力巻線を介して入力巻線側に流れる還流電流Ik(実線)が発生することを発見した。例えば、電池2a、2b、2cが同じ電圧でかつ電池2dの電圧より高い場合に、トランスT1の出力巻線L1~L4各々の端子間の電圧の合計値が電池2a~2dの電圧の合計値より大きくなると、図1に示すように回生電流I2dと還流電流Ikが流れてしまう。その結果、回生電流に利用できない無効電流である還流電流の発生により、電池各々の電圧を均等にするセルバランス処理の効率が低下してしまう。なお、還流電流の発生はトランスT1の特性に起因するもので、電圧の高い電池に対応する出力巻線L1~L4の電圧は上昇する傾向にあるためである。 However, the inventor has found that in the cell balance circuit, the total voltage between the terminals of the output windings L1 to L4 of the transformer T1 corresponding to each of the batteries 2a to 2d is the same as the total voltage of the batteries 2a to 2d. When larger, it was discovered that a return current Ik (solid line) flowing to the input winding side via the output winding is generated. For example, when the batteries 2a, 2b and 2c are the same voltage and higher than the voltage of the battery 2d, the total value of the voltages between the terminals of the output windings L1 to L4 of the transformer T1 is the total value of the voltages of the batteries 2a to 2d. When it becomes larger, the regenerative current I2d and the return current Ik flow as shown in FIG. As a result, the efficiency of the cell balance process for equalizing the voltages of the respective batteries is reduced due to the generation of the return current, which is a reactive current that cannot be used for the regenerative current. This is because the generation of the return current is caused by the characteristics of the transformer T1, and the voltages of the output windings L1 to L4 corresponding to the high voltage battery tend to increase.
 図2は、図1の回路においてセルバランス処理を実施した際に還流電流が発生したときの各電流値を示す図である。図2の縦軸は電流値を示し、横軸は時間を示している。TP0は図1のTP0で計測した還流電流Ikの電流値を示し、TP1~TP3は図1のTP1~TP3で計測した電流値が示され、TP4は図1のTP4で計測した回生電流と還流電流を含む電流値が示されている。図2のTP1~TP3に示されている電流は出力巻線L1~L4を介して入力巻線L0に流れる還流電流があることを示している。 FIG. 2 is a diagram showing current values when a reflux current is generated when the cell balance processing is performed in the circuit of FIG. The vertical axis in FIG. 2 indicates the current value, and the horizontal axis indicates time. TP0 represents the current value of the reflux current Ik measured at TP0 in FIG. 1, TP1 to TP3 represent the current values measured at TP1 to TP3 in FIG. 1, and TP4 represents the regenerative current and reflux measured at TP4 in FIG. Current values including current are shown. The currents shown in TP1 to TP3 in FIG. 2 indicate that there is a return current flowing in the input winding L0 via the output windings L1 to L4.
 そこで、本実施形態ではトランスの出力巻線を介して入力巻線側に流れる還流電流の流れを遮断し、セルバランス処理の効率を向上させる。 Therefore, in this embodiment, the flow of the reflux current flowing to the input winding side through the output winding of the transformer is interrupted, and the efficiency of the cell balance processing is improved.
 以下図面に基づいて、本実施形態について詳細を説明する。 Hereinafter, details of the present embodiment will be described with reference to the drawings.
 図3は、電池充電装置の一実施例を示す図である。図3の電池充電装置は組電池、トランスT1、第1のスイッチSW5、第2のスイッチSW1~SW4、計測部3a~3d、ダイオードD1~D4、制御部4、記憶部5を有している。 FIG. 3 is a diagram showing an embodiment of the battery charger. 3 includes an assembled battery, a transformer T1, a first switch SW5, second switches SW1 to SW4, measurement units 3a to 3d, diodes D1 to D4, a control unit 4, and a storage unit 5. .
 組電池は複数の電池2a~2dが直列に接続されている。電池2a~2dは二次電池などを用いることが考えられる。二次電池として、例えば、リチウムイオン二次電池、ニッケル水素二次電池などが考えられる。なお、本例では4つの電池を用いて説明しているが4つに限定されるものではない。 The assembled battery has a plurality of batteries 2a to 2d connected in series. The batteries 2a to 2d may be secondary batteries. As the secondary battery, for example, a lithium ion secondary battery, a nickel hydride secondary battery, or the like can be considered. In this example, four batteries are used for explanation, but the number of batteries is not limited to four.
 トランスT1は、第1の巻線L0と電池2a~2d各々に並列に接続される複数の第2の巻線L1~L4を有する。 The transformer T1 has a plurality of second windings L1 to L4 connected in parallel to the first winding L0 and the batteries 2a to 2d.
 第1のスイッチSW5は、第1の巻線L0と直列に接続され、組電池と並列に接続されている。本例では、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を用いているが限定されるものではない。 The first switch SW5 is connected in series with the first winding L0 and is connected in parallel with the assembled battery. In this example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is used, but is not limited.
 複数の第2のスイッチSW1~SW4は、電池2a~2dと第2の巻線L1~L4とを接続する配線の間に設けられ、還流電流の流れを遮断する。また、第2のスイッチSW1は電池2aの正極端子とダイオードD1のカソードとの間に設ける。第2のスイッチSW2は電池2bの正極端子とダイオードD2のカソードとの間に設ける。第2のスイッチSW3は電池2cの正極端子とダイオードD3のカソードとの間に設ける。第2のスイッチSW4は電池2dの正極端子とダイオードD4のカソードとの間に設ける。例えば、MOSFETなどを用いてもよい。 The plurality of second switches SW1 to SW4 are provided between the wirings connecting the batteries 2a to 2d and the second windings L1 to L4, and block the flow of the reflux current. The second switch SW1 is provided between the positive terminal of the battery 2a and the cathode of the diode D1. The second switch SW2 is provided between the positive terminal of the battery 2b and the cathode of the diode D2. The second switch SW3 is provided between the positive terminal of the battery 2c and the cathode of the diode D3. The second switch SW4 is provided between the positive terminal of the battery 2d and the cathode of the diode D4. For example, a MOSFET or the like may be used.
 計測部3a~3dは電池2a~2d各々の電圧を計測する。例えば、電圧計などが考えられる。また、計測部3a~3dが計測したデータは制御部4に出力される。 The measuring units 3a to 3d measure the voltages of the batteries 2a to 2d. For example, a voltmeter can be considered. The data measured by the measurement units 3a to 3d is output to the control unit 4.
 ダイオードD1は第2の巻線L1から電池2aへ一定方向の電流を流す。ダイオードD2は第2の巻線L2から電池2bへ一定方向の電流を流す。ダイオードD3は第2の巻線L3から電池2cへ一定方向の電流を流す。ダイオードD4は第2の巻線L4から電池2dへ一定方向の電流を流す。 The diode D1 allows a current in a certain direction to flow from the second winding L1 to the battery 2a. The diode D2 allows a current in a certain direction to flow from the second winding L2 to the battery 2b. The diode D3 allows a current in a certain direction to flow from the second winding L3 to the battery 2c. The diode D4 allows a current in a certain direction to flow from the second winding L4 to the battery 2d.
 制御部4は、計測部3a~3d各々が計測した電池2a~2dの電圧を取得し、最も低い電圧の電池を特定する。そして、電池2a~2dのうちの特定した電池に対応する第2のスイッチを接続状態にさせる。また、特定した電池以外に対応する他の第2のスイッチを遮断状態にさせる。続いて、特定した電池の電圧が全ての電池の平均電圧と同じまたは超えるまで第1のスイッチSW5に接続と遮断を繰り返させる制御をする。接続と遮断は、例えば、デューティ50%の決められた周期のパルス信号を用いて接続と遮断を制御することが考えられる。ただし、接続と遮断の制御は上記制御に限定されるものではない。 The control unit 4 acquires the voltages of the batteries 2a to 2d measured by the measuring units 3a to 3d, and specifies the battery having the lowest voltage. Then, the second switch corresponding to the specified battery among the batteries 2a to 2d is brought into a connected state. Further, other second switches corresponding to those other than the specified battery are brought into a cut-off state. Subsequently, the first switch SW5 is repeatedly connected and disconnected until the specified battery voltage is equal to or exceeds the average voltage of all the batteries. For connection and disconnection, for example, it is conceivable to control connection and disconnection using a pulse signal having a predetermined period with a duty of 50%. However, the connection and disconnection control is not limited to the above control.
 図3の充電装置の構成について説明する。 The configuration of the charging device in FIG. 3 will be described.
 トランスT1の一方の端子は組電池の電池2aの正極端子に接続され、トランスT1の他方の端子は第1のスイッチSW5の一方の端子に接続される。第1のスイッチSW5の他方の端子は組電池の電池2dの負極端子に接続される。また、第1のスイッチSW5の接続と遮断を制御するための端子は制御部4に接続されている。 One terminal of the transformer T1 is connected to the positive terminal of the battery 2a of the assembled battery, and the other terminal of the transformer T1 is connected to one terminal of the first switch SW5. The other terminal of the first switch SW5 is connected to the negative terminal of the battery 2d of the assembled battery. A terminal for controlling connection and disconnection of the first switch SW5 is connected to the control unit 4.
 また、第2のスイッチSW1~SW4各々の接続と遮断を制御するための端子は制御部4に接続されている。 In addition, a terminal for controlling connection and disconnection of each of the second switches SW1 to SW4 is connected to the control unit 4.
 第2のスイッチSW1の一方の端子はダイオードD1のカソードに接続され、第2のスイッチSW1の他方の端子は電池2aの正極端子と計測部3aの一方の端子に接続されている。ダイオードD1のアノードとトランスT1の第2の巻線L1の一方の端子と接続されている。計測部3aの他方の端子は電池2aの負極端子とトランスT1の第2の巻線L1の他方の端子と接続されている。 One terminal of the second switch SW1 is connected to the cathode of the diode D1, and the other terminal of the second switch SW1 is connected to the positive terminal of the battery 2a and one terminal of the measuring unit 3a. The anode of the diode D1 and one terminal of the second winding L1 of the transformer T1 are connected. The other terminal of the measuring unit 3a is connected to the negative terminal of the battery 2a and the other terminal of the second winding L1 of the transformer T1.
 第2のスイッチSW2の一方の端子はダイオードD2のカソードに接続され、第2のスイッチSW2の他方の端子は電池2bの正極端子と計測部3bの一方の端子に接続されている。ダイオードD2のアノードとトランスT1の第2の巻線L2の一方の端子と接続されている。計測部3bの他方の端子は電池2bの負極端子とトランスT1の第2の巻線L2の他方の端子と接続されている。 One terminal of the second switch SW2 is connected to the cathode of the diode D2, and the other terminal of the second switch SW2 is connected to the positive terminal of the battery 2b and one terminal of the measuring unit 3b. The anode of the diode D2 and one terminal of the second winding L2 of the transformer T1 are connected. The other terminal of the measuring unit 3b is connected to the negative terminal of the battery 2b and the other terminal of the second winding L2 of the transformer T1.
 第2のスイッチSW3の一方の端子はダイオードD3のカソードに接続され、第2のスイッチSW3の他方の端子は電池2cの正極端子と計測部3cの一方の端子に接続されている。ダイオードD3のアノードとトランスT1の第2の巻線L3の一方の端子と接続されている。計測部3cの他方の端子は電池2cの負極端子とトランスT1の第2の巻線L3の他方の端子と接続されている。 One terminal of the second switch SW3 is connected to the cathode of the diode D3, and the other terminal of the second switch SW3 is connected to the positive terminal of the battery 2c and one terminal of the measuring unit 3c. The anode of the diode D3 and one terminal of the second winding L3 of the transformer T1 are connected. The other terminal of the measuring unit 3c is connected to the negative terminal of the battery 2c and the other terminal of the second winding L3 of the transformer T1.
 第2のスイッチSW4の一方の端子はダイオードD4のカソードに接続され、第2のスイッチSW4の他方の端子は電池2dの正極端子と計測部3dの一方の端子に接続されている。ダイオードD4のアノードとトランスT1の第2の巻線L4の一方の端子と接続されている。計測部3dの他方の端子は電池2dの負極端子とトランスT1の第2の巻線L4の他方の端子と接続されている。 One terminal of the second switch SW4 is connected to the cathode of the diode D4, and the other terminal of the second switch SW4 is connected to the positive terminal of the battery 2d and one terminal of the measuring unit 3d. The anode of the diode D4 and one terminal of the second winding L4 of the transformer T1 are connected. The other terminal of the measurement unit 3d is connected to the negative terminal of the battery 2d and the other terminal of the second winding L4 of the transformer T1.
 計測部3a~3dの出力端子は制御部4に接続されている。 The output terminals of the measuring units 3a to 3d are connected to the control unit 4.
 図4の充電装置の制御部の動作について説明する。 The operation of the control unit of the charging device in FIG. 4 will be described.
 図4は、電池充電装置の動作の一実施例を示すフロー図である。ステップS401では、電池2a~2dの電圧をそれぞれ計測した計測部3a~3dからデータを制御部4が取得する。続いて、制御部4は取得した電池2a~2d各々の電圧を用いて電圧の平均値を求める。例えば、データ(電圧値)や平均値は記憶部5に記憶してもよい。 FIG. 4 is a flowchart showing an embodiment of the operation of the battery charger. In step S401, the control unit 4 acquires data from the measurement units 3a to 3d that measure the voltages of the batteries 2a to 2d, respectively. Subsequently, the control unit 4 obtains an average value of the voltages using the acquired voltages of the batteries 2a to 2d. For example, data (voltage value) and average value may be stored in the storage unit 5.
 ステップS402では、制御部4がデータ(電圧値)の最大値と最小値を特定し、最大値と最小値の差を求め、求めた差が記憶部5に記憶されているセルバランス範囲より大きいか否かを判定する。セルバランス範囲より大きい場合(Yes)はステップS403に移行し、セルバランス範囲以下の場合(No)は処理を終了する。またはステップS401に移行する。または決められた周期でステップS401に移行してもよい。 In step S402, the control unit 4 specifies the maximum value and the minimum value of the data (voltage value), obtains the difference between the maximum value and the minimum value, and the obtained difference is larger than the cell balance range stored in the storage unit 5. It is determined whether or not. When it is larger than the cell balance range (Yes), the process proceeds to step S403, and when it is equal to or smaller than the cell balance range (No), the process is terminated. Alternatively, the process proceeds to step S401. Or you may transfer to step S401 with the determined period.
 ステップS403では、制御部4が取得した電池2a~2dうちで最も低い電圧の電池に対応する第2のスイッチを接続状態(オン)にする。また、それ以外の第2のスイッチを遮断状態(オフ)にする。図4では第2のスイッチSW4を接続状態(オン)にし、第2のスイッチSW1~SW3を遮断状態(オフ)にする。 In step S403, the second switch corresponding to the battery having the lowest voltage among the batteries 2a to 2d acquired by the control unit 4 is set in a connected state (ON). Further, the other second switches are turned off (off). In FIG. 4, the second switch SW4 is connected (ON), and the second switches SW1 to SW3 are disconnected (OFF).
 ステップS404では、セルバランス処理を実行する。 In step S404, cell balance processing is executed.
 ステップS405では、制御部4が最も低い電圧の電池の現在の電圧が平均値であるかまたは平均値より大きいか否かを判定し、平均値である場合(Yes)または平均値より大きい場合はステップS406に移行し、平均値より小さい場合(No)はステップS404に移行してセルバランス処理を継続する。なお、平均値とはある所定範囲(ばらつき範囲)を有するものとする。 In step S405, the control unit 4 determines whether or not the current voltage of the battery having the lowest voltage is an average value or greater than the average value, and if it is an average value (Yes) or greater than the average value, The process proceeds to step S406, and if smaller than the average value (No), the process proceeds to step S404 and the cell balance process is continued. The average value has a certain predetermined range (variation range).
 ステップS406では制御部4がセルバランス処理を停止する。すなわち、制御部4が第1のスイッチSW5の制御を停止する。 In step S406, the control unit 4 stops the cell balance process. That is, the control unit 4 stops the control of the first switch SW5.
 図5は本実施形態の電流の流れを示す図である。図6は、図5の回路においてセルバランス処理を実施した際の回生電流の流れを示す図である。図6の縦軸は電流値を示し、横軸は時間を示している。TP0は図5のTP0で計測した電流の電流値を示し、TP1~TP3は図5のTP1~TP3で計測した電流値が示され、TP4は図5のTP4で計測した回生電流の電流値が示されている。 FIG. 5 is a diagram showing a current flow of the present embodiment. FIG. 6 is a diagram showing a flow of regenerative current when cell balance processing is performed in the circuit of FIG. The vertical axis in FIG. 6 indicates the current value, and the horizontal axis indicates time. TP0 indicates the current value of the current measured at TP0 in FIG. 5, TP1 to TP3 indicate the current values measured at TP1 to TP3 in FIG. 5, and TP4 indicates the current value of the regenerative current measured at TP4 in FIG. It is shown.
 図6のTP0の電流値はTP4の回生電流I2d(破線)の約1/4の値になる。また、出力巻線L1~L4を介して入力巻線L0に流れる還流電流を遮断するための第2のスイッチSW1~SW3により、還流電流は遮断されるため図6のTP1~TP3に示されている電流値が略0Aになる。 The current value of TP0 in FIG. 6 is about 1/4 of the regenerative current I2d (broken line) of TP4. Further, since the return current is cut off by the second switches SW1 to SW3 for cutting off the return current flowing through the input winding L0 via the output windings L1 to L4, it is shown in TP1 to TP3 in FIG. Current value becomes approximately 0A.
 本実施形態によれば、トランスの出力巻線を介して入力巻線側に流れる還流電流の流れを遮断し、セルバランス処理の効率を向上させることができる。 According to this embodiment, the flow of the return current flowing to the input winding side through the output winding of the transformer can be cut off, and the efficiency of the cell balance processing can be improved.
 また、本発明は、上記実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
 
The present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the gist of the present invention.

Claims (3)

  1.  複数の電池が直列に接続される組電池と、
     第1の巻線と前記電池各々に並列に接続される複数の第2の巻線を有するトランスと、
     前記第1の巻線と直列に接続され、前記組電池と並列に接続される第1のスイッチと、
     前記電池と前記第2の巻線とを接続する配線の間に設けられる複数の第2のスイッチと、
     前記電池各々の電圧を計測する計測部と、
     前記第2の巻線から前記電池へ一定方向の電流を流すダイオードと、
     前記計測部が計測した前記電池電圧を取得し、最も低い電圧の電池を特定し、特定した電池に対応する第2のスイッチを接続状態にさせ、他の第2のスイッチを遮断状態にさせ、特定した電池電圧が全ての前記電池の平均電圧に同じまたは超えるまで前記第1のスイッチに接続と遮断を繰り返させる制御をする制御部と、
     を備えることを特徴とする電池充電装置。
    An assembled battery in which a plurality of batteries are connected in series;
    A transformer having a first winding and a plurality of second windings connected in parallel to each of the batteries;
    A first switch connected in series with the first winding and connected in parallel with the assembled battery;
    A plurality of second switches provided between wires connecting the battery and the second winding;
    A measuring unit for measuring the voltage of each of the batteries;
    A diode for flowing a current in a certain direction from the second winding to the battery;
    The battery voltage measured by the measurement unit is acquired, the battery having the lowest voltage is specified, the second switch corresponding to the specified battery is connected, and the other second switch is disconnected. A control unit for controlling the first switch to repeatedly connect and disconnect until the specified battery voltage is equal to or exceeds the average voltage of all the batteries;
    A battery charger comprising:
  2.  前記第2のスイッチは、前記電池の正極端子とダイオードのカソードとの間に設けることを特徴とする請求項1に記載の電池充電装置。 The battery charging device according to claim 1, wherein the second switch is provided between a positive terminal of the battery and a cathode of a diode.
  3.   複数の電池が直列に接続される組電池と、第1の巻線と前記電池各々に並列に接続される複数の第2の巻線を有するトランスと、前記第1の巻線と直列に接続され、前記組電池と並列に接続される第1のスイッチと、前記電池と前記第2の巻線とを接続する配線の間に設けられる複数の第2のスイッチと、前記電池各々の電圧を計測する計測部と、前記第2の巻線から前記電池へ一定方向の電流を流すダイオードと、を有する電池充電装置の前記電池各々の電圧均等化方法であって、
     前記電池各々の電圧を計測する計測部が計測した前記電池電圧を取得し、
     取得した前記電池の電圧を比較して最も低い電圧の電池を特定し、
     特定した電池に対応する第2のスイッチを接続状態にするとともに他の第2のスイッチを遮断状態にし、
     特定した電池電圧が全ての前記電池の平均電圧と同じまたは超えるまで前記第1のスイッチの接続と遮断を繰り返す、
     処理を行うことを特徴とする電圧均等化方法。
     
    An assembled battery in which a plurality of batteries are connected in series, a transformer having a first winding and a plurality of second windings connected in parallel to each of the batteries, and a connection in series with the first winding A first switch connected in parallel with the assembled battery, a plurality of second switches provided between wires connecting the battery and the second winding, and a voltage of each of the batteries. A voltage equalization method for each of the batteries of the battery charging device, comprising: a measuring unit for measuring; and a diode for passing a current in a predetermined direction from the second winding to the battery,
    Obtaining the battery voltage measured by the measurement unit that measures the voltage of each of the batteries,
    Compare the acquired battery voltage to identify the battery with the lowest voltage,
    The second switch corresponding to the identified battery is connected and the other second switch is disconnected,
    Repeatedly connecting and disconnecting the first switch until the identified battery voltage is equal to or exceeds the average voltage of all the batteries;
    A voltage equalization method characterized by performing processing.
PCT/JP2013/061193 2012-04-16 2013-04-15 Cell charger and voltage equalization method WO2013157518A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012092957A JP2013223320A (en) 2012-04-16 2012-04-16 Battery charger and voltage equalization method
JP2012-092957 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013157518A1 true WO2013157518A1 (en) 2013-10-24

Family

ID=49383474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061193 WO2013157518A1 (en) 2012-04-16 2013-04-15 Cell charger and voltage equalization method

Country Status (2)

Country Link
JP (1) JP2013223320A (en)
WO (1) WO2013157518A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884175A (en) * 2022-06-10 2022-08-09 上海派智能源有限公司 Charging control method of battery pack, power supply system and charger

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5567684B2 (en) * 2009-12-14 2014-08-06 リーチ インターナショナル コーポレイション Battery balancing circuit and method for balancing energy stored in a plurality of cells of a battery having a first terminal and a second terminal
JP2015136209A (en) * 2014-01-16 2015-07-27 株式会社リコー Power storage voltage comparison and detection circuit, power storage voltage adjustment circuit, and battery pack
KR101593685B1 (en) * 2014-03-25 2016-02-25 주식회사 에너닉스 BI-DIRECTIONAL ACTIVE BALANCING CONTROL APPARATUS and METHOD THERE OF
JP7441692B2 (en) 2020-03-23 2024-03-01 Fdk株式会社 Battery voltage equalization device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333762A (en) * 2002-05-14 2003-11-21 Japan Storage Battery Co Ltd Voltage level equalization device for battery pack
JP2009142071A (en) * 2007-12-06 2009-06-25 Honda Motor Co Ltd Charge controller and cell voltage equalizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333762A (en) * 2002-05-14 2003-11-21 Japan Storage Battery Co Ltd Voltage level equalization device for battery pack
JP2009142071A (en) * 2007-12-06 2009-06-25 Honda Motor Co Ltd Charge controller and cell voltage equalizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884175A (en) * 2022-06-10 2022-08-09 上海派智能源有限公司 Charging control method of battery pack, power supply system and charger

Also Published As

Publication number Publication date
JP2013223320A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
US10826305B2 (en) Fast charging method and related device for parallel battery pack
US8692508B2 (en) Battery voltage monitoring device
US8120322B2 (en) Charge equalization apparatus
KR101294378B1 (en) BATTERY BALANCING CONTROL APPARATUS and METHOD THEREOF
US8294421B2 (en) Cell balancing systems employing transformers
TWI804503B (en) Power storage system and electric equipment
WO2017086349A1 (en) Control device, power storage device, and power storage system
US20140009116A1 (en) Balance correction apparatus and electric storage system
KR20130073915A (en) Balancing system for power battery and corresponding load balancing method
WO2013157518A1 (en) Cell charger and voltage equalization method
CN103548234A (en) Battery device
US9083188B2 (en) Balance correcting apparatus and electricity storage system
US10615612B2 (en) Battery apparatus and cell balancing circuits
KR20130013108A (en) Balancing apparatus of secondary battery
TWI390822B (en) Circuits and methods for balancing battery cells
US20170117723A1 (en) Battery fleet charging system
TWI524626B (en) Modularized bidirectional push/pull type battery balancing monitoring system
WO2010103182A2 (en) Charge management of a battery pack
JP2016154423A (en) Voltage balance device
WO2021192581A1 (en) Battery voltage equalization device
JP2014007885A (en) Battery charger and voltage equalization method
KR20210012224A (en) Power system
TWI792793B (en) Battery cell balance circuit and method of operating the same
JP2013183555A (en) Cell balance device
JP2014030309A (en) Voltage equalization device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778345

Country of ref document: EP

Kind code of ref document: A1