WO2013155094A1 - Metallic foil nail appliqués - Google Patents

Metallic foil nail appliqués Download PDF

Info

Publication number
WO2013155094A1
WO2013155094A1 PCT/US2013/035817 US2013035817W WO2013155094A1 WO 2013155094 A1 WO2013155094 A1 WO 2013155094A1 US 2013035817 W US2013035817 W US 2013035817W WO 2013155094 A1 WO2013155094 A1 WO 2013155094A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
nail
layer
base coat
applique
Prior art date
Application number
PCT/US2013/035817
Other languages
French (fr)
Inventor
Fa Young Park
Original Assignee
Fa Young Park
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fa Young Park filed Critical Fa Young Park
Priority to KR1020207008216A priority Critical patent/KR102240992B1/en
Priority to CN201380018908.9A priority patent/CN104203038B/en
Priority to ES13774972.7T priority patent/ES2641527T3/en
Priority to EP13774972.7A priority patent/EP2836095B1/en
Priority to KR1020147030761A priority patent/KR102093833B1/en
Priority to JP2015504771A priority patent/JP6275114B2/en
Publication of WO2013155094A1 publication Critical patent/WO2013155094A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D31/00Artificial nails
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D29/00Manicuring or pedicuring implements
    • A45D29/001Self adhesive nail coating blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/10Applying flat materials, e.g. leaflets, pieces of fabrics
    • B44C1/105Applying flat materials, e.g. leaflets, pieces of fabrics comprising an adhesive layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/10Applying flat materials, e.g. leaflets, pieces of fabrics
    • B44C1/14Metallic leaves or foils, e.g. gold leaf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C3/00Processes, not specifically provided for elsewhere, for producing ornamental structures
    • B44C3/02Superimposing layers

Definitions

  • the present invention relates to the field of nail polish and nail decorations, and, more specifically, to nail appliques for adorning a fingernail or toenail.
  • nail appliques allow a user to rapidly decorate finger or toe nails with colors, designs or images, or with metallic sheens. Such sheens may be provided through the use of nail appliques containing metallic foils or films (hereinafter, “foil appliques").
  • a nail applique according to an embodiment of the present invention includes a self-adhesive nail applique having a first adhesive layer; a partially-cured base coat on the first adhesive layer; a second adhesive layer on the base coat; a metallic foil layer on the second adhesive layer; and a partially-cured top coat on the metallic foil layer.
  • the second adhesive layer cures by exposure to ultraviolet radiation.
  • the nail applique is stretchable and the base coat, the second adhesive layer, and the top coat are stretchable at substantially the same rates as each other.
  • the base coat, the second adhesive layer, and the top coat are coextensive with each other in an uncured state, a partially-cured state, and a cured state.
  • the metallic foil layer is a single layer coextensive with the second adhesive layer.
  • a method of manufacturing a self-adhesive nail applique includes the steps of forming a first adhesive layer; forming a partially-cured base coat on the first adhesive layer; forming a second adhesive layer on the base coat; forming a metallic foil layer on the second adhesive layer; and forming a partially-cured top coat on the metallic foil layer.
  • the step of forming the second adhesive layer includes the step of exposing the adhesive to ultraviolet radiation after the step of forming the metallic foil layer.
  • FIG. 1 is a schematic diagram of a vertical cross-section of a multilayer foil nail applique on a removable substrate according to an embodiment of the present invention.
  • FIG. 2 is a schematic top plan view of a set of foil appliques after they have been cut from a laminated sheet prepared according to an embodiment of a method of the present invention.
  • the present invention includes a multi-layered nail applique having metallic foil or film as at least one of the layers ("foil applique).
  • the foil applique is built up in a layer-by-layer fashion on top of a releasable substrate.
  • the foil applique is soft and stretchable to cover a user's fingernail or toenail, but is hardened (e.g., with the aid of a user's body heat, or at room temperature) when it is applied to the fingernail or toe nail.
  • fingernails and toenails are referred to, collectively, as "nails”.
  • FIG. 1 is a schematic diagram of a vertical cross-section of foil applique 10 according to an embodiment of the present invention.
  • the foil applique 10 is provided adhered to a removable substrate 12 from which the foil applique 10 can be detached.
  • a foil applique 10 is a multi-layer structure including: a first adhesive layer 14, comprising an adhesive suitable for adhering the foil applique to the nail and removably adhering the foil applique to the substrate 12; a base coat 16 comprising nail enamel residing on the first adhesive layer 14; a second adhesive layer 18 residing on the base coat 16; a layer of metallic foil or film 20 residing on the second adhesive layer 18; and a top coat of a clear nail enamel 22 covering the metallic foil or film.
  • the second adhesive layer 18 includes an adhesive substance that may be cured (e.g., gelled and/or hardened) by exposure to ultraviolet radiation (also referred to as "UV radiation”), and is also referred to herein as a "UV adhesive layer".
  • suitable materials for each of the adhesive or nail enamel layers 14, 16, 18, 22 may be obtained commercially, or may be developed on a custom basis using materials and methods known in the art.
  • the aforesaid layers should maintain their dimensional stability during curing in the manufacturing process and/or while on the user's nail. If the dimensions of the layers do change, such changes should occur to a similar degree across each of the layers 14, 16, 18, 22 such that the layers 14, 16, 18, 22 remain co-extensive (i.e., cover each other to the same extent) to avoid wrinkling or distortion of the foil applique, or, more specifically, the foil layer.
  • the dimensional stability of the metallic foil or film layer 20 will typically be less of a concern for reasons discussed elsewhere herein.
  • the materials used for the various layers should also, when working together, provide a structure having physically properties (e.g., stretchability, flexibility, tear resistance, etc.) that are desired in the final product (i.e., the foil applique), and should stretch or flex without wrinkling the applique or the foil layer.
  • These properties may be similar to those of certain nail enamel appliques presently known in the art, such as those described in U.S. Patent Application No. 11/126,862, filed May 1 1 , 2005, (published as U.S. Patent Publication No. 2005/0255061 , published November 17, 2005), the entire disclosures of both of which are incorporated by reference herein.
  • the adhesive used therein should be able to adhere firmly to a nail when cured.
  • the adhesive may be applied to the substrate 12 as a liquid or melted from a hardened state, and may contain solvents that volatilize readily at a human body temperature or below, such as low-molecular- weight acetates or alcohols.
  • the adhesive of the first adhesive layer 14 should also be of a type that will release readily from the substrate 12, which may be made of a material, such as a thin sheet of silicon-coated release liner paper or aluminum laminate plastic film.
  • a suitable thickness for the first adhesive layer in some embodiments of the present invention would be about 10-15% of the total thickness of the finished applique.
  • Adhesives and substrates suitable for use in the present invention are similar to those discussed further in the aforesaid U.S. Patent Application No. 11/126,862 with regard to nail enamel appliques.
  • Exemplary adhesives suitable for the present invention include acrylic co-polymer adhesives.
  • the top coat 22 is made from a clear (e.g., transparent or translucent) enamel, so that the foil layer 20 may be seen, and the finished applique 10 has the desired metallic color and sheen.
  • the clear coat may include a color, or may include additives (e.g., glitter or mica chips) to enhance the appearance of the finished applique.
  • the top coat should be formulated so that the foil layer remains visible.
  • the base coat 16 may also be made of a clear enamel, but its purpose is to provide a mechanical barrier between the first adhesive layer 14 and the UV adhesive layer 18, and also provide a smooth surface for application of the UV adhesive layer 18.
  • Suitable thicknesses for the top and bottom coats 16, 22 include those in the range of about 35-45% of the total thickness of the finished applique.
  • the nail enamel may be organic solvent-based, or aqueous-based, or be of a UV-curable type. Desirable physical properties and compositions of the nail enamels will depend on such factors as the method of applying the respective base or top layers 16, 22, or the temperature at which the layer 16, 18 is to be cured.
  • Organic solvent-based nail enamels having viscosities of 1500-4000 centipoise (60 rpm) at room temperature (e.g., about 20° C) may have particular utility in the present invention.
  • Nail enamel properties and formulations are discussed in the aforesaid U.S. Patent Application No. 11/126,862 with regard to nail enamel appliques, any may readily be adapted by those having ordinary skill in the art to produce clear coats suitable for use with the present invention.
  • the UV adhesive layer 18 may include any of a broad range of materials that cure to a gelled or tacky state after an initial exposure to ultraviolet light, and are non-toxic in their cured form. Numerous such materials are available commercially, and include polyurethane resins, epoxy resins, polyacrylate resins, and mixtures thereof. One such material has a composition range, by weight, of:
  • metal foil or film layer 20 there are numerous commercially-available products that are suitable for use in the present invention. These products generally comprise a metallic film deposited on a plastic sheet (also referred to as a "metallized plastic sheet"). Such products are available in a number of metallic colors, including silver and gold, in multicolored forms, or in a holographic- finished form.
  • Aluminum is the metal most commonly-available on plastic sheet, with polyethylene terephthalate (PET) being among the most commonly-used plastics.
  • PET polyethylene terephthalate
  • the metal films may have thicknesses in the range of 10-1000 nm, more typically 50- 100 nm for aluminum. These thicknesses are sometimes expressed in the angstrom units (A), in which 1 nm equals 10 A.
  • the metallic film can readily be transferred intact onto an adhesive surface, such as that of UV adhesive layer 18 by simple contact between the film and the adhesive.
  • the resulting foil or film layer 20 is typically porous (i.e., there are very small gaps between metallic particles), but it appears to be solid in the applique, and may be highly reflective. Because the metallic film is porous and so thin, it may deform (e.g., stretch) to some degree without adversely affecting the appearance of the applique.
  • cold-stamp foils suitable for use with the present invention that will be recognized by those having ordinary skill in the art and possession of the present disclosure.
  • a laminated sheet of material is prepared having the layered structure desired for the foil applique.
  • the sheet is built up in a layer-by-layer fashion on the releasable substrate 12 by a continuous fabrication process.
  • a continuous process is discussed in the aforesaid U.S. Patent Application No. 11/126,862 with regard to nail enamel appliques, and suitable adaptations of this process for use in the present invention will be apparent to those having ordinary skill in the art and possession of the present disclosure.
  • the adhesive layer 14 is deposited directly onto the substrate 12 as a liquid or by melting a solid adhesive onto the substrate 12. Suitable means for depositing an adhesive layer onto a surface during a continuous fabrication process are known in the art.
  • the adhesive is allowed to gel or harden, while retaining its tackiness, before the next layer (i.e., base coat 16) is applied.
  • nail enamel is applied directly to the adhesive layer 14, so as to cover the adhesive layer 14, and form a smooth surface for subsequent application of the UV adhesive layer 18.
  • Nail enamels containing organic solvents or water may be heated to evaporate a portion of the solvents or water, thus partially curing the base coat 16.
  • the evaporation step may also be performed at room temperature, depending on the composition of the nail enamel used and the thickness of the base coat 16. The temperature and dwell time for this process are a matter of engineering choice, as they should be coordinated with the overall process rate and the desired quality of the final product.
  • a portion of the solvent or water is allowed to remain in the enamel (i.e., the enamel is "partially-cured"), so that the base coat 16 has a desired degree of stretchability.
  • the enamel is "partially-cured"
  • a heating step may not be needed, since the typical UV-curable enamel typically would not contain solvents or water. Instead, the enamel would be exposed to UV radiation to initiate the curing process. The duration and intensity of the exposure would depend on the formulation of the nail enamel, and would be understood by those knowledgeable in the relevant chemical art, or could be selected according to instructions provided by the manufacturer of the nail enamel.
  • the UV-curable mixture is applied to the surface of the base coat 16.
  • the UV-curable mixture is not exposed to UV radiation until after the foil layer 20 is applied.
  • the metallic surface of a roll of metallized plastic sheet is put in contact with the UV- curable mixture using methods known in various arts (e.g., in continuous contact printing).
  • the foil adheres to the UV-curable mixture in a porous layer and separates from the plastic sheet.
  • This "cold stamping" process which may be performed at room temperature, has advantages over the "hot stamping” process that is commonly used.
  • Hot stamping requires that application of heat to the foil, which would heat the entire multilayered structure, causing the lower layers of the applique to dry out and, possibly, disrupting them.
  • the hot stamping method also requires a die to transfer heat to the applique. Such dies often must be specially made. Neither a die nor the application of damaging degrees of heat are required for the cold stamping method used in embodiments of the present invention.
  • the UV-curable mixture is exposed to UV radiation through the porous metallic foil to initiate the curing process.
  • the duration and intensity of the exposure would depend on the formulation of the UV-curable mixture, and would be understood by those knowledgeable in the relevant chemical art, or could be selected according to instructions provided by the manufacturer of the adhesive.
  • top coat 22 nail enamel is applied directly over the foil layer 20, so as to cover the foil layer 20 and the UV adhesive layer 18.
  • the top coat 22 can include a single layer or multiple layers of nail enamel.
  • Nail enamels containing organic solvents or water may be heated to evaporate a portion of the solvents or water, thus partially curing the top coat 22.
  • the evaporation step may also be performed at room temperature, depending on the composition of the nail enamel used and the thickness of the top coat 22.
  • the temperature and dwell time for this process are a matter of engineering choice, as they should be coordinated with the overall process rate and the desired quality of the final product.
  • a portion of the solvent or water is allowed to remain in the enamel (i.e., the enamel is "partially-cured"), so that the top coat 16 has a desired degree of stretchability.
  • the enamel is "partially-cured"
  • a heating step may not be needed, since the typical UV-curable enamel typically would not contain solvents or water. Instead, the enamel would be exposed to UV radiation to initiate the curing process. The duration and intensity of the exposure would depend on the formulation of the nail enamel, and would be understood by those knowledgeable in the relevant chemical art, or could be selected according to instructions provided by the manufacturer of the nail enamel.
  • FIG. 2 is a schematic top plan view of an exemplary set 24 of foil appliques made according to the foregoing method.
  • Each set 24 may include appliques of different sizes, such as appliques 26, 28, 30, 32, 34, to accommodate nails of different sizes.
  • the appliques 26, 28, 30, 32, 34 are integrated with a connector 36.
  • the laminated sheet, and thus the foil appliques includes a small amount of solvent to keep the appliques stretchable until they are used.
  • the applique set 24 is sealed inside a package (not shown) that includes a vapor barrier to prevent the loss of solvent from the appliques.
  • the user opens the package and removes the desired applique 26, 28, 30, 32, 34 from the connector 36.
  • the user separates the applique from its substrate, and applies the adhesive layer 14 (see FIG. 1) to the nail.
  • the user then stretches the applique to cover the nail, removes any excess applique overhanging the nail, and trims the applique to match the end of the nail (e.g., using a nail file). Body heat from the finger or toe completes the curing process, hardening the applique.
  • the finished applique as provided in the package, is thin (e.g., about 3.5-5.5 mil, or about 0.10-0.15 mm in overall thickness), the residual solvent can evaporate quickly (e.g., in less than an hour, depending on the user's body temperature and environmental conditions).
  • the hardened applique can be detached from the nail using conventional nail polish remover.

Abstract

A multi-layered foil appliqué for decorating nails is cut from a laminated sheet having the following layers: a first adhesive layer residing on a releasable substrate; a base coat residing on the first adhesive layer; a UV-curable adhesive layer residing on the base coat; a foil layer residing on the UV-curable adhesive layer; and a top coat residing on the foil layer. The foil is applied to the UV-curable adhesive layer by contact between the metallic side of a metallized plastic sheet and the adhesive before the adhesive is cured. The bottom coat and top coat are formed from organic solvent-based nail enamels. Sufficient solvent remains in the appliqué to keep it stretchable before use. Residual solvent evaporates after the appliqué is applied to a user's nail.

Description

METALLIC FOIL NAIL APPLIQUES
Cross-Reference to Related Applications
The present application claims the benefit of U.S. Provisional Patent Application No. 61/621 ,887, filed April 9, 2012, and U.S. Provisional Patent Application No. 61/799,386, filed March 15, 2013, all of which aforesaid applications are incorporated by reference herein in their entireties.
Field of the Invention
The present invention relates to the field of nail polish and nail decorations, and, more specifically, to nail appliques for adorning a fingernail or toenail.
Background of the Invention
The use of an instant fingernail coating product whereby nail polish is applied to a fingernail by adhesively securing to it a dry form of nail polish has become a popular method of providing a manicure. Such products, also known as "nail appliques", allow a user to rapidly decorate finger or toe nails with colors, designs or images, or with metallic sheens. Such sheens may be provided through the use of nail appliques containing metallic foils or films (hereinafter, "foil appliques").
Summary of the Invention
A nail applique according to an embodiment of the present invention includes a self-adhesive nail applique having a first adhesive layer; a partially-cured base coat on the first adhesive layer; a second adhesive layer on the base coat; a metallic foil layer on the second adhesive layer; and a partially-cured top coat on the metallic foil layer. In some embodiments, the second adhesive layer cures by exposure to ultraviolet radiation. In some other embodiments, the nail applique is stretchable and the base coat, the second adhesive layer, and the top coat are stretchable at substantially the same rates as each other. In yet other embodiments, the base coat, the second adhesive layer, and the top coat are coextensive with each other in an uncured state, a partially-cured state, and a cured state. In further embodiments, the metallic foil layer is a single layer coextensive with the second adhesive layer.
A method of manufacturing a self-adhesive nail applique according to an embodiment of the present invention includes the steps of forming a first adhesive layer; forming a partially-cured base coat on the first adhesive layer; forming a second adhesive layer on the base coat; forming a metallic foil layer on the second adhesive layer; and forming a partially-cured top coat on the metallic foil layer. In some embodiments, the step of forming the second adhesive layer includes the step of exposing the adhesive to ultraviolet radiation after the step of forming the metallic foil layer. Brief Description of the Drawings
For a more complete understanding of the present invention, reference is made to the following detailed description of the invention considered in conjunction with the accompanying drawings, in which: FIG. 1 is a schematic diagram of a vertical cross-section of a multilayer foil nail applique on a removable substrate according to an embodiment of the present invention; and
FIG. 2 is a schematic top plan view of a set of foil appliques after they have been cut from a laminated sheet prepared according to an embodiment of a method of the present invention.
Detailed Description of the Invention
In some embodiments, the present invention includes a multi-layered nail applique having metallic foil or film as at least one of the layers ("foil applique). In a method according to an embodiment of the present invention, the foil applique is built up in a layer-by-layer fashion on top of a releasable substrate. The foil applique is soft and stretchable to cover a user's fingernail or toenail, but is hardened (e.g., with the aid of a user's body heat, or at room temperature) when it is applied to the fingernail or toe nail. For the purposes of the present disclosure, fingernails and toenails are referred to, collectively, as "nails".
FIG. 1 is a schematic diagram of a vertical cross-section of foil applique 10 according to an embodiment of the present invention. In one embodiment, the foil applique 10 is provided adhered to a removable substrate 12 from which the foil applique 10 can be detached. Turning to FIG. 1 , a foil applique 10 according to an embodiment of the present invention is a multi-layer structure including: a first adhesive layer 14, comprising an adhesive suitable for adhering the foil applique to the nail and removably adhering the foil applique to the substrate 12; a base coat 16 comprising nail enamel residing on the first adhesive layer 14; a second adhesive layer 18 residing on the base coat 16; a layer of metallic foil or film 20 residing on the second adhesive layer 18; and a top coat of a clear nail enamel 22 covering the metallic foil or film. The second adhesive layer 18 includes an adhesive substance that may be cured (e.g., gelled and/or hardened) by exposure to ultraviolet radiation (also referred to as "UV radiation"), and is also referred to herein as a "UV adhesive layer".
Turning now to the materials that may be used to form the layers of the foil applique 10, it may first be noted that suitable materials for each of the adhesive or nail enamel layers 14, 16, 18, 22 may be obtained commercially, or may be developed on a custom basis using materials and methods known in the art. In embodiments of the invention, the aforesaid layers should maintain their dimensional stability during curing in the manufacturing process and/or while on the user's nail. If the dimensions of the layers do change, such changes should occur to a similar degree across each of the layers 14, 16, 18, 22 such that the layers 14, 16, 18, 22 remain co-extensive (i.e., cover each other to the same extent) to avoid wrinkling or distortion of the foil applique, or, more specifically, the foil layer. The dimensional stability of the metallic foil or film layer 20 will typically be less of a concern for reasons discussed elsewhere herein. The materials used for the various layers should also, when working together, provide a structure having physically properties (e.g., stretchability, flexibility, tear resistance, etc.) that are desired in the final product (i.e., the foil applique), and should stretch or flex without wrinkling the applique or the foil layer. These properties may be similar to those of certain nail enamel appliques presently known in the art, such as those described in U.S. Patent Application No. 11/126,862, filed May 1 1 , 2005, (published as U.S. Patent Publication No. 2005/0255061 , published November 17, 2005), the entire disclosures of both of which are incorporated by reference herein. Turning to the first adhesive layer 14, the adhesive used therein should be able to adhere firmly to a nail when cured. The adhesive may be applied to the substrate 12 as a liquid or melted from a hardened state, and may contain solvents that volatilize readily at a human body temperature or below, such as low-molecular- weight acetates or alcohols. The adhesive of the first adhesive layer 14 should also be of a type that will release readily from the substrate 12, which may be made of a material, such as a thin sheet of silicon-coated release liner paper or aluminum laminate plastic film. A suitable thickness for the first adhesive layer in some embodiments of the present invention would be about 10-15% of the total thickness of the finished applique. Adhesives and substrates suitable for use in the present invention are similar to those discussed further in the aforesaid U.S. Patent Application No. 11/126,862 with regard to nail enamel appliques. Exemplary adhesives suitable for the present invention include acrylic co-polymer adhesives.
Turning to the base coat 6 and top coat 22, it should be noted that, in embodiments of the present invention, these coats may be formed from commercially-available or custom-made nail enamels. In one embodiment of the present invention, the top coat 22 is made from a clear (e.g., transparent or translucent) enamel, so that the foil layer 20 may be seen, and the finished applique 10 has the desired metallic color and sheen. In some embodiments, the clear coat may include a color, or may include additives (e.g., glitter or mica chips) to enhance the appearance of the finished applique. In such embodiments, the top coat should be formulated so that the foil layer remains visible. The base coat 16 may also be made of a clear enamel, but its purpose is to provide a mechanical barrier between the first adhesive layer 14 and the UV adhesive layer 18, and also provide a smooth surface for application of the UV adhesive layer 18. Suitable thicknesses for the top and bottom coats 16, 22 include those in the range of about 35-45% of the total thickness of the finished applique. The nail enamel may be organic solvent-based, or aqueous-based, or be of a UV-curable type. Desirable physical properties and compositions of the nail enamels will depend on such factors as the method of applying the respective base or top layers 16, 22, or the temperature at which the layer 16, 18 is to be cured. Organic solvent-based nail enamels having viscosities of 1500-4000 centipoise (60 rpm) at room temperature (e.g., about 20° C) may have particular utility in the present invention. Nail enamel properties and formulations are discussed in the aforesaid U.S. Patent Application No. 11/126,862 with regard to nail enamel appliques, any may readily be adapted by those having ordinary skill in the art to produce clear coats suitable for use with the present invention.
The UV adhesive layer 18 may include any of a broad range of materials that cure to a gelled or tacky state after an initial exposure to ultraviolet light, and are non-toxic in their cured form. Numerous such materials are available commercially, and include polyurethane resins, epoxy resins, polyacrylate resins, and mixtures thereof. One such material has a composition range, by weight, of:
10-25% Polyurethane resin;
1-25% Epoxy resin;
1-20% Polyacrylate resin; and
1-10% Photoinitiators and stabilizers.
Turning to the metal foil or film layer 20, there are numerous commercially-available products that are suitable for use in the present invention. These products generally comprise a metallic film deposited on a plastic sheet (also referred to as a "metallized plastic sheet"). Such products are available in a number of metallic colors, including silver and gold, in multicolored forms, or in a holographic- finished form. Aluminum is the metal most commonly-available on plastic sheet, with polyethylene terephthalate (PET) being among the most commonly-used plastics. The metal films may have thicknesses in the range of 10-1000 nm, more typically 50- 100 nm for aluminum. These thicknesses are sometimes expressed in the angstrom units (A), in which 1 nm equals 10 A. At such thicknesses, the metallic film can readily be transferred intact onto an adhesive surface, such as that of UV adhesive layer 18 by simple contact between the film and the adhesive. The resulting foil or film layer 20 is typically porous (i.e., there are very small gaps between metallic particles), but it appears to be solid in the applique, and may be highly reflective. Because the metallic film is porous and so thin, it may deform (e.g., stretch) to some degree without adversely affecting the appearance of the applique. There are numerous cold-stamp foils suitable for use with the present invention that will be recognized by those having ordinary skill in the art and possession of the present disclosure.
In a method of fabricating a foil applique, such as foil applique 10, according to an embodiment of the present invention, a laminated sheet of material is prepared having the layered structure desired for the foil applique. The sheet is built up in a layer-by-layer fashion on the releasable substrate 12 by a continuous fabrication process. Such a continuous process is discussed in the aforesaid U.S. Patent Application No. 11/126,862 with regard to nail enamel appliques, and suitable adaptations of this process for use in the present invention will be apparent to those having ordinary skill in the art and possession of the present disclosure.
Using foil applique 10 as a reference, the adhesive layer 14 is deposited directly onto the substrate 12 as a liquid or by melting a solid adhesive onto the substrate 12. Suitable means for depositing an adhesive layer onto a surface during a continuous fabrication process are known in the art. The adhesive is allowed to gel or harden, while retaining its tackiness, before the next layer (i.e., base coat 16) is applied.
Turning to base coat 16, nail enamel is applied directly to the adhesive layer 14, so as to cover the adhesive layer 14, and form a smooth surface for subsequent application of the UV adhesive layer 18. Nail enamels containing organic solvents or water may be heated to evaporate a portion of the solvents or water, thus partially curing the base coat 16. The evaporation step may also be performed at room temperature, depending on the composition of the nail enamel used and the thickness of the base coat 16. The temperature and dwell time for this process are a matter of engineering choice, as they should be coordinated with the overall process rate and the desired quality of the final product. In embodiments of the present invention, a portion of the solvent or water is allowed to remain in the enamel (i.e., the enamel is "partially-cured"), so that the base coat 16 has a desired degree of stretchability. If a UV-curable nail enamel is used, a heating step may not be needed, since the typical UV-curable enamel typically would not contain solvents or water. Instead, the enamel would be exposed to UV radiation to initiate the curing process. The duration and intensity of the exposure would depend on the formulation of the nail enamel, and would be understood by those knowledgeable in the relevant chemical art, or could be selected according to instructions provided by the manufacturer of the nail enamel.
Turning to the UV adhesive layer 18 and foil layer 20, the UV-curable mixture is applied to the surface of the base coat 16. In some embodiments of the present invention, the UV-curable mixture is not exposed to UV radiation until after the foil layer 20 is applied. In such an embodiment of the present invention, the metallic surface of a roll of metallized plastic sheet is put in contact with the UV- curable mixture using methods known in various arts (e.g., in continuous contact printing). The foil adheres to the UV-curable mixture in a porous layer and separates from the plastic sheet. This "cold stamping" process, which may be performed at room temperature, has advantages over the "hot stamping" process that is commonly used. Hot stamping requires that application of heat to the foil, which would heat the entire multilayered structure, causing the lower layers of the applique to dry out and, possibly, disrupting them. The hot stamping method also requires a die to transfer heat to the applique. Such dies often must be specially made. Neither a die nor the application of damaging degrees of heat are required for the cold stamping method used in embodiments of the present invention.
After the foil layer 20 is applied, the UV-curable mixture is exposed to UV radiation through the porous metallic foil to initiate the curing process. As discussed with respect to the UV nail enamel of some embodiments of base coat 16, the duration and intensity of the exposure would depend on the formulation of the UV-curable mixture, and would be understood by those knowledgeable in the relevant chemical art, or could be selected according to instructions provided by the manufacturer of the adhesive.
Turning to top coat 22, nail enamel is applied directly over the foil layer 20, so as to cover the foil layer 20 and the UV adhesive layer 18. The top coat 22 can include a single layer or multiple layers of nail enamel. Nail enamels containing organic solvents or water may be heated to evaporate a portion of the solvents or water, thus partially curing the top coat 22. The evaporation step may also be performed at room temperature, depending on the composition of the nail enamel used and the thickness of the top coat 22. As with the base coat 16, the temperature and dwell time for this process are a matter of engineering choice, as they should be coordinated with the overall process rate and the desired quality of the final product. In embodiments of the present invention, a portion of the solvent or water is allowed to remain in the enamel (i.e., the enamel is "partially-cured"), so that the top coat 16 has a desired degree of stretchability. If a UV-curable nail enamel is used, a heating step may not be needed, since the typical UV-curable enamel typically would not contain solvents or water. Instead, the enamel would be exposed to UV radiation to initiate the curing process. The duration and intensity of the exposure would depend on the formulation of the nail enamel, and would be understood by those knowledgeable in the relevant chemical art, or could be selected according to instructions provided by the manufacturer of the nail enamel.
When the top coat 22 of the foil applique has been partially-cured, sets of foil appliques on the substrate 12 are cut from the laminated sheet. FIG. 2 is a schematic top plan view of an exemplary set 24 of foil appliques made according to the foregoing method. Each set 24 may include appliques of different sizes, such as appliques 26, 28, 30, 32, 34, to accommodate nails of different sizes. In some embodiments, the appliques 26, 28, 30, 32, 34 are integrated with a connector 36.
In some of the embodiments of the invention discussed above, the laminated sheet, and thus the foil appliques, includes a small amount of solvent to keep the appliques stretchable until they are used. Thus, the applique set 24 is sealed inside a package (not shown) that includes a vapor barrier to prevent the loss of solvent from the appliques.
To use the foil applique, the user opens the package and removes the desired applique 26, 28, 30, 32, 34 from the connector 36. The user separates the applique from its substrate, and applies the adhesive layer 14 (see FIG. 1) to the nail. The user then stretches the applique to cover the nail, removes any excess applique overhanging the nail, and trims the applique to match the end of the nail (e.g., using a nail file). Body heat from the finger or toe completes the curing process, hardening the applique. Since the finished applique, as provided in the package, is thin (e.g., about 3.5-5.5 mil, or about 0.10-0.15 mm in overall thickness), the residual solvent can evaporate quickly (e.g., in less than an hour, depending on the user's body temperature and environmental conditions). The hardened applique can be detached from the nail using conventional nail polish remover.
It will be understood that the embodiments described herein are merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the spirit and scope of the invention. All such variations and modifications are intended to be included within the scope of the invention, as embodied in the appended claims.

Claims

Claims I claim:
1. A self-adhesive nail applique, comprising:
a first adhesive layer;
a partially-cured base coat on said first adhesive layer; a second adhesive layer on said base coat opposite said first adhesive layer;
a metallic foil layer on said second adhesive layer opposite said second base coat; and
a partially-cured top coat on said metallic foil layer opposite said second adhesive layer.
2. The nail applique of Claim 1 , wherein said second adhesive layer is cured by exposure to ultraviolet radiation.
3. The nail applique of Claim 2, wherein said nail applique is stretchable and said base coat, said second adhesive layer, and said top coat are stretchable at substantially the same rates as each other.
4. The nail applique of Claim 1 , wherein said base coat, said second adhesive layer, and said top coat are coextensive with each other in an uncured state, a partially-cured state, and a cured state.
5. The nail applique of Claim 1 , wherein said metallic foil layer is a single layer coextensive with said second adhesive layer and said top coat.
6. The nail applique of Claim 1 , wherein said metallic foil layer covers substantially all of the second adhesive layer and is covered by substantially all of said top coat.
7. The nail applique of Claim 1 , wherein said base coat is configured to form a mechanical barrier between said first adhesive layer and said second adhesive layer and to provide a smooth surface to which said second adhesive layer is adhered.
8. The nail applique of Claim 1 , wherein said second adhesive layer includes a polyurethane resin, an epoxy resin, and a polyacetate resin.
9. The nail applique of Claim 1 , wherein each of said base coat and said top coat includes nail enamel.
10. The nail applique of Claim 1 , wherein said metallic foil layer has a thickness in the range of about 10 to about 1000 nm.
11. The nail applique of Claim 1 , wherein said nail applique has a thickness in the range of about 0.10 mm to about 0.15 mm.
12. The nail applique of Claim 1 , further comprising a substrate, said first adhesive layer being releasably adhered to said substrate.
13. A method of manufacturing a self-adhesive nail applique, comprising the steps of:
forming a first adhesive layer;
forming a partially-cured base coat on the first adhesive layer;
forming a second adhesive layer on the base coat opposite the first adhesive layer;
forming a metallic foil layer on the second adhesive layer opposite the base coat; and
forming a partially-cured top coat on the metallic foil layer opposite the second adhesive layer.
14. The method of Claim 13, wherein said step of forming the second adhesive layer includes the steps of applying an adhesive curable by exposure to ultraviolet radiation to the base coat, and exposing the adhesive to ultraviolet radiation after the step of forming the metallic foil layer.
15. The method of Claim 13, wherein said step of forming a partially-cured base coat includes the steps of applying a first nail enamel having a first solvent to the first adhesive layer, and evaporating a portion of the first solvent such that said base coat is stretchable.
16. The method of Claim 13, wherein said step of forming a partially-cured top coat includes the steps of applying a second nail enamel having a second solvent to the metallic foil layer, and evaporating a portion of the second solvent such that said top coat is stretchable.
17. The method of Claim 13, wherein said step of forming a metallic foil on the second adhesive layer includes the steps of providing a substrate having a metallic foil thereupon, the metal foil having a thickness in the range of about 0 nm to about 1000 nm, contacting the metal foil with the second adhesive layer, and retracting the substrate such that the metallic foil adheres to the second adhesive layer and separates from the substrate.
18. The method of Claim 13, wherein the first adhesive layer is formed on a releasable substrate by said step of forming a first adhesive layer, said method including the further steps of removing the nail applique from the substrate, applying the first adhesive layer to a nail of a user, stretching the nail applique to cover the nail, and further curing the base coat and top coat with the body heat of the user, thereby hardening the nail applique.
19. The method of Claim 18, wherein the base coat, the second adhesive layer, and the top coat stretch at substantially the same rate.
20. The method of Claim 18, wherein the base coat, the second adhesive layer, and the top coat shrink by substantially the same amount during the further curing step, so as to inhibit the foil layer from wrinkling.
PCT/US2013/035817 2012-04-09 2013-04-09 Metallic foil nail appliqués WO2013155094A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207008216A KR102240992B1 (en) 2012-04-09 2013-04-09 Metallic foil nail appliques
CN201380018908.9A CN104203038B (en) 2012-04-09 2013-04-09 Metallic foil nail applique
ES13774972.7T ES2641527T3 (en) 2012-04-09 2013-04-09 Metal foil appliques for nails
EP13774972.7A EP2836095B1 (en) 2012-04-09 2013-04-09 Metallic foil nail appliqués
KR1020147030761A KR102093833B1 (en) 2012-04-09 2013-04-09 Metallic foil nail appliques
JP2015504771A JP6275114B2 (en) 2012-04-09 2013-04-09 Nail applique and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261621887P 2012-04-09 2012-04-09
US61/621,887 2012-04-09
US201361799386P 2013-03-15 2013-03-15
US61/799,386 2013-03-15

Publications (1)

Publication Number Publication Date
WO2013155094A1 true WO2013155094A1 (en) 2013-10-17

Family

ID=49328103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/035817 WO2013155094A1 (en) 2012-04-09 2013-04-09 Metallic foil nail appliqués

Country Status (6)

Country Link
EP (1) EP2836095B1 (en)
JP (1) JP6275114B2 (en)
KR (2) KR102093833B1 (en)
CN (1) CN104203038B (en)
ES (1) ES2641527T3 (en)
WO (1) WO2013155094A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8826917B2 (en) 2004-05-12 2014-09-09 Park Global Holdings, Llc Method and product for attaining a french manicure using a dry nail applique
US8905044B2 (en) 2004-05-12 2014-12-09 Fa Young Park Multi-layered color-enhancing nail applique
US9149106B2 (en) 2010-11-02 2015-10-06 Fa Young Park Method and apparatus for enhancing UV gel nail application
EP2965744A1 (en) * 2014-07-11 2016-01-13 Mycone Dental Supply Company Inc. Aluminum-containing high gloss coating for natural and artificial fingernails
US20230225481A1 (en) * 2020-11-05 2023-07-20 Brilliance of Beauty, Inc. Light-curable artificial nails, methods of preparation and methods of use thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3095614T3 (en) * 2015-05-22 2020-07-13 Agfa Nv Manufacturing of decorative surfaces by inkjet
FR3037779B1 (en) * 2015-06-29 2018-11-23 L V M H Recherche ARTICLE FOR DECORATING THE SKIN OR AN NAIL OF A HUMAN AND METHOD IMPLEMENTING SUCH A ARTICLE
KR101797203B1 (en) 2015-08-10 2017-11-15 (주)글루가 A semi hardening gel type nail-sticker for nail art and method making it
JP6557584B2 (en) * 2015-11-30 2019-08-07 谷丸 響子 Artificial nail patch, its manufacturing method and usage
GB201700478D0 (en) * 2017-01-11 2017-02-22 Landa Labs (2012) Ltd Nail polish
CN106580733A (en) * 2017-02-06 2017-04-26 上海名仕新材料有限公司 Process for making nail sticker coating
CN114379263A (en) * 2020-10-16 2022-04-22 天津长荣科技集团股份有限公司 Method for manufacturing creasing plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050150508A1 (en) * 2004-01-09 2005-07-14 Kim Downs Nail-art systems
US20050199253A1 (en) * 2004-03-09 2005-09-15 Fiore Sandra B. Nail veneer applique
WO2005112873A2 (en) * 2004-05-12 2005-12-01 Fa Young Park Dry nail polish applique and method of manufacturing same
US20080276951A1 (en) * 2004-05-12 2008-11-13 Fa Young Park Method and Product for attaining a French Manicure Using a Dry Nail Polish Applique
US20100212681A1 (en) * 2004-05-12 2010-08-26 Fa Young Park Multi-Layered Color-Enhancing Nail Applique

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395998A (en) * 1986-10-14 1988-04-26 中川 衛 Method of decorating lacquer ware
JP2688078B2 (en) * 1988-05-27 1997-12-08 ワ ヤン パーク Self-adhesive nail coating for nails and method for producing the same
JP2003009941A (en) * 2001-07-03 2003-01-14 Kametani Sangyo Kk False nails and their manufacturing method
JP3662569B2 (en) * 2003-05-08 2005-06-22 有限会社 有美 Method for manufacturing sheet with decorative body for attachment
JP2005205756A (en) * 2004-01-23 2005-08-04 Taisho Insatsu Kk Decorative sheet and method for manufacturing the same
US8092786B2 (en) * 2004-05-12 2012-01-10 Park Global Holdings, Llc Dry nail polish applique and method of manufacturing same
KR200393736Y1 (en) * 2005-06-14 2005-08-30 신선경 Nail buffer including the tatoo
JP2007136796A (en) * 2005-11-16 2007-06-07 Dear Laura:Kk Foil finishing seal sheet and its manufacturing method
JP4217754B1 (en) * 2008-03-28 2009-02-04 千恵 戸田 Nail or artificial nail decoration method and nail or artificial nail decoration tool used in this decoration method
JP4324241B1 (en) * 2009-01-23 2009-09-02 株式会社ビー・エヌ Flexible nail seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050150508A1 (en) * 2004-01-09 2005-07-14 Kim Downs Nail-art systems
US20050199253A1 (en) * 2004-03-09 2005-09-15 Fiore Sandra B. Nail veneer applique
WO2005112873A2 (en) * 2004-05-12 2005-12-01 Fa Young Park Dry nail polish applique and method of manufacturing same
US20080276951A1 (en) * 2004-05-12 2008-11-13 Fa Young Park Method and Product for attaining a French Manicure Using a Dry Nail Polish Applique
US20100212681A1 (en) * 2004-05-12 2010-08-26 Fa Young Park Multi-Layered Color-Enhancing Nail Applique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2836095A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8826917B2 (en) 2004-05-12 2014-09-09 Park Global Holdings, Llc Method and product for attaining a french manicure using a dry nail applique
US8905044B2 (en) 2004-05-12 2014-12-09 Fa Young Park Multi-layered color-enhancing nail applique
US9149106B2 (en) 2010-11-02 2015-10-06 Fa Young Park Method and apparatus for enhancing UV gel nail application
EP2965744A1 (en) * 2014-07-11 2016-01-13 Mycone Dental Supply Company Inc. Aluminum-containing high gloss coating for natural and artificial fingernails
US20230225481A1 (en) * 2020-11-05 2023-07-20 Brilliance of Beauty, Inc. Light-curable artificial nails, methods of preparation and methods of use thereof

Also Published As

Publication number Publication date
KR102093833B1 (en) 2020-03-27
EP2836095A1 (en) 2015-02-18
JP2015514473A (en) 2015-05-21
EP2836095B1 (en) 2017-06-07
ES2641527T3 (en) 2017-11-10
KR20200034823A (en) 2020-03-31
KR102240992B1 (en) 2021-04-16
EP2836095A4 (en) 2015-12-09
CN104203038A (en) 2014-12-10
KR20150002735A (en) 2015-01-07
CN104203038B (en) 2017-04-19
JP6275114B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
EP2836095B1 (en) Metallic foil nail appliqués
US9655429B2 (en) Metallic foil nail appliqués
US11213103B2 (en) Gel nail sticker and manufacturing method therefor
US9655430B2 (en) Double colored nail applique having an ultraviolet cured layer, method of making and using
US8586164B2 (en) Nail strips having a crosslinked polymer top coat
AU2007353368B2 (en) Methods and devices for applying solid nail coatings to mammalian and artificial nails
KR101949916B1 (en) Nail decoration sheet and Fabricating method of the same
KR101615436B1 (en) An adhesive goods for nail, a device for making the same and a method for making the same
TW201604037A (en) Transfer film and transfer molded article using same
TW201139163A (en) Transfer sheet having part light extinction and hard coating to prevent attachment of printing slurry
CN201328483Y (en) Nail decorative film
JPH0825789A (en) Transfer sheet
WO2014144316A1 (en) Textured nail appliques
JP4406975B2 (en) Makeup inorganic board
TWI329079B (en)
JPH04323088A (en) Surface processing method
AU2012200835A1 (en) Methods and devices for applying solid nail coatings to mammalian and artificial nails

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13774972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013774972

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013774972

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147030761

Country of ref document: KR

Kind code of ref document: A