WO2013154382A1 - 무선 통신 시스템에서 간섭 측정 방법 및 장치 - Google Patents

무선 통신 시스템에서 간섭 측정 방법 및 장치 Download PDF

Info

Publication number
WO2013154382A1
WO2013154382A1 PCT/KR2013/003080 KR2013003080W WO2013154382A1 WO 2013154382 A1 WO2013154382 A1 WO 2013154382A1 KR 2013003080 W KR2013003080 W KR 2013003080W WO 2013154382 A1 WO2013154382 A1 WO 2013154382A1
Authority
WO
WIPO (PCT)
Prior art keywords
crs
cell
interference
subframe
terminal
Prior art date
Application number
PCT/KR2013/003080
Other languages
English (en)
French (fr)
Inventor
김은선
서한별
김병훈
김기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/391,360 priority Critical patent/US9414242B2/en
Publication of WO2013154382A1 publication Critical patent/WO2013154382A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0059Out-of-cell user aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/001Orthogonal indexing scheme relating to orthogonal multiplex systems using small cells within macro cells, e.g. femto, pico or microcells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for measuring interference by a neighbor cell.
  • Wireless communication systems have been widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (0FDMA) systems, and SC-FDMAC single carrier frequency division multiple access (MC) system, MC—FDMA (national carrier frequency division multiple access) ⁇ 1 system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • MC—FDMA national carrier frequency division multiple access
  • the present invention discloses a measurement method and apparatus considering interference from a neighbor cell when measuring interference for channel state reporting.
  • the first technical aspect of the present invention is a method of performing interference measurements in a wireless terminal communication system, the method comprising: receiving a neighboring cell CRS (Cell specific Reference Signal) information; Performing CRS interference cancellation based on the CRS information; And measuring interference by applying a correction value to a result of performing the CRS interference invalidation, wherein the correction value is a subframe for limited measurement.
  • the interference measurement method which is set for each set.
  • a second technical aspect of the present invention is a terminal device in a wireless communication system, comprising: a receiving module; And a processor, wherein the processor receives neighbor cell CRS Cell specific Reference Signal information, performs CRS interference cancellation based on the CRS information, and corrects a result of performing the CRS interference cancellation. Interference is measured by applying, but the correction value is a terminal device that is set for each subframe set for limited measurement.
  • the first to second technical aspects of the present invention may include the following.
  • the correction value may be a ratio of Physical Downlink Shared Channel (PDSCH) Energy per Resource Element (EPRE) to CRS EPRE.
  • PDSCH Physical Downlink Shared Channel
  • EPRE Energy per Resource Element
  • the set of subframes for the limited measurement includes a first subframe set for ABS (Almost Blank Subframe) and a second subframe set for normal subframe, and the correction value is the first subframe.
  • the first correction value for the set and the second correction value for the second subframe set may be included.
  • the first correction value may be 0 and the second correction value may be 1.
  • the terminal, The second correction value is PDSCH EPRE vs. CRS of the serving cell of the terminal
  • the correction value may be included in the CRS information and transmitted to the terminal.
  • the CRS information may indicate whether a corresponding cell is a cooperative seal for a serving cell of the terminal.
  • the corresponding cell indicates sharing of the ABS configuration with the serving cell of the terminal.
  • the corresponding cell is the ABS configuration of the serving cell of the terminal. It may indicate that it is not related to.
  • the correction values set for each of the subframe sets may be the same.
  • the correction value for the subframe set related to the ABS may be 0, and the correction value for the subframe set related to the normal subframe may be 1.
  • the CRS information may include at least one of a cell ID, a CRS port number, frequency information through which the CRS is transmitted, and time information through which the CRS is transmitted.
  • the CRS information may be delivered to the terminal through higher layer signaling.
  • the interference measurement when the limited measurement is set, the interference measurement can be performed while more accurately reflecting the interference environment.
  • 1 is a diagram illustrating a structure of a radio frame.
  • 2 is a diagram illustrating a resource grid in a downlink slot.
  • 3 is a diagram illustrating a structure of a downlink subframe.
  • FIG. 4 is a diagram illustrating a structure of an uplink subframe.
  • 5 is a diagram for explaining a reference signal.
  • FIG. 6 is a diagram for explaining a cooperative transmission cluster.
  • FIG. 10 is a view for explaining an interference measurement according to an embodiment of the present invention.
  • 11 is a flowchart illustrating a correction value determination according to an embodiment of the present invention.
  • 12 is a diagram illustrating a configuration of a transmitting and receiving device.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with other components or features of another embodiment. Can be.
  • Embodiments of the present invention will be described with reference to the relationship between data transmission and reception between a base station and a terminal.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal. Certain operations described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), and an access point (AP).
  • the repeater may be replaced by terms such as relay node (RN) and relay station (RS).
  • RN relay node
  • RS relay station
  • the term 'terminal' may be replaced with terms such as use capability (LIE), mole le station (MS), MSSCMobi le Subscriber Station (MS), and subscribing station (SS).
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802 systems, 3GPP systems, 3GPP LTE and LTE-A (LTE-Advanced) systems, and 3GPP2 systems, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in this document may be described by the above standard document.
  • CDMA code division multiple access
  • FD frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC to FDMA single carrier frequency
  • CDMA may be implemented by radio technology such as UTRACUniversal Terrestrial Radio Access) or CDMA2000.
  • TDMA may be implemented in a wireless technology such as Global System for Mobile Communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the UMTS Universal Mobile Telecommunications System.
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs 0FDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced
  • WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
  • a structure of a radio frame will be described with reference to FIG. 1.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of 0FDM symbols.
  • the 3GPP LTE standard supports radio frame structure type 2 applicable to a possible FDD (Frequen C y Division Duplex) available type 1 radio frame (radio frame) (Time Division Duplex ) and TDD structure applied to.
  • FIG. 1 (a) is a diagram illustrating a structure of a type 1 radio frame, wherein a downlink radio frame includes 10 subframes, and one subframe includes a time domain. ) Consists of two slots. The time it takes for one subframe to be transmitted is called a transmission time interval ( ⁇ ). For example, one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of 0FDM symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain. In the 3GPP LTE system, since 0FDMA is used in downlink, the 0FDM symbol is divided into one symbol period. Indicates. An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period.
  • a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one slot.
  • the number of 0FOM symbols included in one slot may vary depending on the configuration of CPCCyclic Prefix).
  • CP has an extended CP (extended CP) and the normal CP normal CP (CP).
  • extended CP extended CP
  • CP normal CP normal CP
  • the number of OFDM symbols included in one slot may be seven.
  • the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first two or three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • FIG. 1B is a diagram showing the structure of a type 2 radio frame.
  • FIG. Type 2 radio frames consist of two half frames, each of which has five subframes, a Downlink Pi lot Time Slot (DwPTS), Guard Per iod (GP), and UpPTS (Uplink Pilot Time). Slot), and one subframe includes two slots.
  • DwPTS is used for initial cell search, synchronization, or channel estimation at the terminal.
  • UpPTS is used to synchronize the channel estimation at the base station and the uplink transmission synchronization of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • one subframe consists of two slots regardless of the radio frame type.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • One downlink slot includes seven OFDM symbols in the time domain and one resource block (RB) is shown to include 12 subcarriers in the frequency domain, but the present invention is not limited thereto.
  • one slot includes 7 OFDM symbols in the case of a general cyclic prefix (CP), but one slot may include 6 OFDM symbols in the case of an extended-CP (CP).
  • Each element on the resource grid is called a resource element.
  • One resource block includes 12 ⁇ 7 resource elements.
  • the number of NDLs of resource blocks included in a downlink slot depends on a downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe.
  • Up to three OFDM symbols at the front of the first slot in one subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to a data region to which a Physical Downlink Shared Chancel (PDSCH) is allocated.
  • Downlink control channels used in the 3GPP LTE system include, for example, a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical HARQ indicator channel. (Physical Hybrid automatic repeat request Indicator Channel; PHICH).
  • the PCFICH is transmitted in the first 0FOM symbol of a subframe and includes information on the number of OFDM symbols used for control channel transmission in the subframe.
  • PHICH includes a HARQ ACK / NACK signal as a response to uplink transmission.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group.
  • the PDCCH includes a resource allocation and transmission format of a DL shared channel (DL-SCH), resource allocation information of an uplink shared channel (UL-SCH), paging information of a paging channel (PCH), system information on a DL-SCH, and a PDSCH.
  • DL-SCH DL shared channel
  • UL-SCH uplink shared channel
  • PCH paging information of a paging channel
  • system information on a DL-SCH and a PDSCH.
  • a plurality of PDCCH can be transmitted in the control region have.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted in an aggregate of one or more consecutive Control Channel Elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
  • the CCE processes multiple resource element groups.
  • the format of the PDCCH and the number of available bits are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • CRC cyclic redundancy check
  • the CRC is masked with an identifier called a Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH. If the PDCCH is for a specific terminal, the cell-RNTKC-RNTI) identifier of the terminal may be masked to the CRC. Or, if the PDCCH is for a paging message, a paging indicator identifier (P-RNTI) may be masked to the CRC.
  • RNTI Radio Network Temporary Identifier
  • the system information identifier and system information RNTKSI-RNTI may be masked to the CRC.
  • RNTKSI-RNTI Random Access-RNTKRA-RNTI
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) including uplink control information is allocated to the control region.
  • a physical uplink shared channel (PUSCH) including user data is allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for two slots. This is called that the resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the transmitted packet When transmitting a packet in a wireless communication system, the transmitted packet is configured to Since it is transmitted through, the signal may be distorted during transmission. In order to directly receive the distorted signal at the receiving side, the distortion must be corrected in the received signal using the channel information. In order to find out the channel information, a signal known to both the transmitting side and the receiving side is transmitted, and a method of finding the channel information with a distortion degree when the signal is received through the channel is mainly used. The signal is called a pilot signal or a reference signal.
  • the reference signal may be divided into an uplink reference signal and a downlink reference signal.
  • an uplink reference signal as an uplink reference signal,
  • DM-RS DeModul at ion—Reference Signal
  • SRS Sounding Reference Signal
  • UE-specific reference signal UE only for a specific UE iii) when the PDSCH is transmitted for coherent demodulation (DeModul at ion-Reference Signal, DM-RS)
  • CSI-RS Channel State Information Reference Signal
  • MBSFN Reference Signal MBSFN Reference Signal transmitted for coherent demodulation of signals transmitted in Multimedia Broadcast Single Frequency Network (MBSFN) mode.
  • Reference signals can be classified into two types according to their purpose. There is a reference signal for obtaining channel information and a reference signal used for data demodulation. In the former, since the UE can acquire downlink channel information, it should be transmitted over a wide band and must receive the reference signal even if the UE does not receive downlink data in a specific subframe. It is also used in situations such as handovers.
  • the latter is a reference signal transmitted together with a corresponding resource when the base station transmits a downlink, and the terminal can demodulate data by performing channel measurement by receiving the reference signal. This reference signal shall be transmitted in the area where data is transmitted.
  • the CRS is used for two purposes of channel information acquisition and data demodulation, and the UE-specific reference signal is used only for data demodulation.
  • the CRS is transmitted every subframe for the broadband, and reference signals for up to four antenna ports are transmitted according to the number of transmit antennas of the base station.
  • CRSs for antenna ports 0 and 1 are transmitted, and if four, CRSs for antenna ports 0 to 3 are transmitted.
  • FIG. 5 is a diagram illustrating a pattern in which CRSs and DRSs defined in an existing 3GPP LTE system (eg, Release-8) are mapped onto a downlink resource block pair (RB pair).
  • a downlink resource block pair as a unit to which a reference signal is mapped may be expressed in units of 12 subcarriers on one subframe X frequency in time. That is, one resource block pair has 14 OFDM symbol lengths in the case of a general CP (FIG. 5 (a)) and 12 OFDM symbol lengths in the case of an extended CP (FIG. 5 (b)).
  • FIG. 5 shows a position of a reference signal on a resource block pair in a system in which a base station supports four transmit antennas.
  • Resource elements RE denoted by '0', '2' and '3' in FIG. 5 indicate positions of CRSs with respect to antenna port indexes 0, 1, 2, and 3, respectively.
  • a resource element denoted by 'D' in FIG. 5 indicates a position of DMRS.
  • the MIM0 approach is an open-loop and closed-loop approach. Can be distinguished.
  • the open-loop MIM0 scheme means that the transmitter performs MIM0 transmission without feedback of the CSI from the MIM0 receiver.
  • the closed-loop MIM0 scheme means that the MIM0 transmission is performed at the transmitting end by receiving CSI from the MIM0 receiving end.
  • each of the transmitter and the receiver may perform beamforming based on channel state information in order to obtain a multiplexing gain of the MIM0 transmit antenna.
  • the transmitting end eg, the base station
  • the fed back CSI may include a tank indicator (RI), a precoding matrix index (PMI), and a channel quality indicator (CQI).
  • RI tank indicator
  • PMI precoding matrix index
  • CQI channel quality indicator
  • RI is information about a channel tank.
  • the rank of a channel refers to the maximum number of layers (or streams) that can transmit different information over the same time-frequency resource.
  • the rank value is mainly determined by the long term fading of the channel, so that PMI and CQI In general, they can be fed back over a longer period.
  • the PMI is a value reflecting the spatial characteristics of the channel and the information about the precoding matrix used for transmission from the transmitter.
  • Precoding means mapping a transmission layer to a transmission antenna, and a layer-antenna mapping relationship may be determined by a precoding matrix.
  • the PMI corresponds to a precoding matrix index of a base station preferred by the terminal based on metrics such as signal-to-interference plus noise ratio (SINR).
  • SINR signal-to-interference plus noise ratio
  • a scheme in which the transmitter and the receiver share a codebook including various precoding matrices in advance, and a method of feeding back only an index indicating a specific precoding matrix in the corresponding codebook may be used.
  • a system supporting an extended antenna configuration (for example, LTE-A system) considers to acquire additional multiuser diversity using a multiuser MIMO (MU-MIM0) scheme.
  • MU-MIM0 multiuser MIMO
  • an interference channel exists between terminals multiplexed in an antenna domain, so that when a base station performs downlink transmission using a CSI fed back by one terminal of multiple users, interference is caused to another terminal. It is necessary to prevent this from happening.
  • MU-MIM0 For correct operation, higher accuracy CSI must be fed back than single-user MIMO (SU-MIM0).
  • a new CSI feedback scheme that improves CSIs consisting of RI, PMI, and CQI may be applied.
  • precoding information fed back by the receiver may be indicated by a combination of two PMIs.
  • One of the two PMIs (first PMI) has the property of long term and / or wideband and may be referred to as W1.
  • the other one of the two PMIs (the second PMI) has a short term and / or subband attribute and may be referred to as W2.
  • the CQI is information indicating channel quality or channel strength.
  • the CQI may be represented by an index corresponding to a predetermined MCS combination. That is, the fed back CQI index indicates a corresponding modulation scheme and code rate.
  • the CQI is a value that reflects the received SINR obtained when the base station configures a spatial channel using the PMI.
  • LTE / LTE-A defines a CSI Reference Resource related to channel measurement for CSI feedback / reporting as described above.
  • the CSI reference resource is defined as a group of physical RBs corresponding to a frequency band to which the calculated CQI is associated in the frequency domain.
  • n is defined as n-nCQI_ref, where n is a subframe to transmit / report CSI and nCQI_ref is i) the smallest value of 4 or more to be treated as a valid subframe in case of periodic CSI reporting, ii In the case of aperiodic CSI reporting, it is a valid subframe that the subframe in which the CSI request in the uplink DCI format is transmitted is transmitted, and iii) the case of the CSI request in the random access voice response grant in the aperiodic CSI report.
  • the valid subframe is to be a downlink subframe for the corresponding UE, not to be an MBSFN subframe except for transmission mode 9, and the length of the DwPTS in the TDD is greater than or equal to a certain size, and a measurement gap configured for the corresponding UE Should not be included in the (gap), if the CSI subframe set is set to the UE in the periodic CSI report, the elements of the CSI subframe set It means to satisfy the conditions of the applicable.
  • the CSI subframe set is for limited measurement as described below, and the CSI subframe set ( c csi, Q, c csu) may be configured in a corresponding UE by a higher layer.
  • the CSI reference resource may be included in any one of two subframe sets ( c csw .c csu, hereinafter C CSU) for convenience , and c csu is referred to as C1, but may not be included in both sets.
  • FIG. 6 illustrates a heterogeneous network wireless communication system including a macro base station (MeNB) and a micro base station (PeNB or FeNB).
  • HetNet heterogeneous network refers to a network in which a macro base station (MeNB) and a micro base station (PeNB or FeNB) coexist even though the same radio access technology (RAT) is used.
  • RAT radio access technology
  • a macro base station has a wide coverage and high transmit power and refers to a general base station of a wireless communication system.
  • the macro base station (MeNB) may be referred to as a macro base station.
  • a micro base station is, for example, a micro cell, a pico base station, a femto cell, a home eNB (HeNB), a relay, or the like. (The illustrated micro base station and macro base station may be collectively referred to as a transmission point).
  • a micro base station (PeNB or FeNB) is a compact version of a macro base station (MeNB) that can operate independently while performing most of the functions of a macro base station, and is not laid over or covered by the macro base station. A base station of the non-over lay type that can be installed in a shaded area.
  • a micro base station (PeNB or FeNB) can accommodate a smaller number of terminals with narrower coverage and lower transmission power than a macro base station (MeNB).
  • the terminal may be directly served by a macro base station (MeNB) (hereinafter referred to as a macro-terminal), and the terminal may be served by a micro base station (PeNB or FeNB) (hereinafter referred to as a micro-terminal).
  • MeNB macro base station
  • FeNB micro base station
  • micro base stations (MeNB) A UE (PUE) that is in coverage may be served by a macro base station (MeNB).
  • the micro base station may be classified into two types according to access restriction of the terminal.
  • the first type is an OSG Open Access Subscriber Group (OSG) or Non-CSG (Closed Access Subscriber Group) base station, which is a cell that allows access of a micro-terminal of an existing macro-terminal or another micro base station. Existing macro-terminals can be handed over to the 0SG type base station.
  • OSG OSG Open Access Subscriber Group
  • Non-CSG Cellular Access Subscriber Group
  • the second type is a CSG base station, which does not allow access of existing macro-terminals or micro-terminals of other micro base stations, and thus no handover to the CSG base station is possible.
  • CoMP transmission / reception technology (co-MIMO, collaborative MIMO or network MIM0, etc.) has been proposed.
  • CoMP technology can increase the performance of the terminal located at the cell edge (edge) and increase the average sector throughput (throughput).
  • inter-cell interference causes performance and average sector yield of a terminal located in a cell-boundary. Can be reduced.
  • the existing LTE / LTE-A system uses a simple passive technique such as fractional frequency reuse (FFR) through UE-specific power control in a cell that is limited by interference. -A method is applied so that the terminal located in the boundary has an appropriate yield performance.
  • FFR fractional frequency reuse
  • the CIP transmission scheme may be applied.
  • CoMP schemes applicable to downlink can be classified into joint processing (JP) techniques and coordinated scheduling / beamforming (CS / CB) techniques.
  • the JP scheme may use data at each transmission point (base station) of the CoMP cooperative unit.
  • CoMP cooperative unit means a set of base stations used in a cooperative transmission scheme.
  • the JP technique can be classified into a joint transmission technique and a dynamic cell selection technique.
  • the joint transmission scheme refers to a scheme in which PDSCH is transmitted from a plurality of transmission points (part or all of CoMP cooperative units) at a time. That is, data transmitted to a single terminal may be simultaneously transmitted from a plurality of transmission points. According to the joint transmission scheme, the quality of a received signal may be improved coherently or non-coherently, and may also actively cancel interference with other terminals. .
  • the dynamic cell selection scheme refers to a scheme in which a PDSCH is transmitted from one transmission point (of CoMP cooperative unit) at a time. That is, data transmitted to a single terminal at a specific time point is transmitted from one transmission point, and at that time, other transmission points in the cooperative unit do not transmit data to the corresponding terminal, and transmit data to the corresponding terminal. Can be dynamically selected.
  • CoMP cooperative units may cooperatively perform beamforming of data transmission for a single terminal.
  • data is transmitted only in the serving cell, but user scheduling / bumping may be determined by adjusting cells of the corresponding cooperative P cooperative unit.
  • coordinated multi-transmission point reception means receiving a signal transmitted by coordination of a plurality of geographically separated transmission points.
  • CoMP schemes applicable to uplink may be classified into joint reception (JR) and coordinated scheduling / beamforming (CS / CB).
  • the JR scheme means that a signal transmitted through a PUSCH is received at a plurality of reception transmission points.
  • a PUSCH is received at only one transmission point, but user scheduling / beamforming is a) ⁇ cooperation. It is determined by the adjustment of the cells of the unit.
  • the terminal can be jointly supported data from a multi-cell base station.
  • each base station is the same
  • the performance of the system can be improved by simultaneously supporting one or more terminals using a Same Radio Frequency Resource.
  • the base station may perform a space division multiple access (SDMA) method based on channel state information between the base station and the terminal.
  • SDMA space division multiple access
  • the serving base station and one or more cooperative base stations are connected to a scheduler through a backbone network.
  • the scheduler may operate by receiving feedback of channel information about channel states between respective terminals and the cooperative base stations measured by each base station through the backbone network.
  • the scheduler may schedule information for cooperative MIM0 operation for the serving base station and one or more cooperative base stations. That is, the scheduler may directly give an indication of the cooperative MIM0 operation to each base station.
  • the CoMP system may be referred to as operating as a virtual MIM0 system by combining a plurality of cells into one group, and basically, a communication technique of a MIM0 system using multiple antennas may be applied.
  • a CoMP cluster is a set of cells capable of performing CoMP operation, that is, cooperative scheduling and cooperative data transmission and reception, which are mutually cooperative. For example, as shown in FIG. It may be formed by being given another physical cell ID (PCID), and cells in a single cluster may be configured in the form of distributed antennas or RRHs of a single base station by sharing the same PCID as shown in FIG. In addition, some of the cells in a single cluster may share the same PCID in a modified form thereof.
  • PCID physical cell ID
  • cells in the same CoMP cluster are connected by a backhaul link, such as an optical fiber with high capacity and low latency, for cooperative scheduling and cooperative data transmission and reception. And it keeps exactly time synchronization and enables cooperative data transmission.
  • a backhaul link such as an optical fiber with high capacity and low latency
  • the difference in the reception time of the signals transmitted from each cell due to the propagation delay difference from each cell is determined by the cyclic prefix of the OFDM symbol.
  • the size of the C () MP cluster should be determined so as to fall within the cyclic prefix (CP) length.
  • the cells belonging to different clusters may be connected by a lower capacity backhaul link and may not maintain time synchronization.
  • a terminal performing CoMP performs cooperative scheduling and cooperative data transmission and reception by some black or all cells belonging to an MP cluster and transmits some or all cells of the CoMP cluster according to the quality of a signal received by the terminal. Measure the reference signal.
  • the UE measures the reference signal of each cell and reports the signal quality.
  • the cells to be measured by the UE are defined as a Cc) MP measurement set. can do.
  • a reference resource set for measuring and reporting a channel should be defined. This is because the CoMP scheme and downlink scheduling of the corresponding UE are determined according to channel information for each cell reported by the UE on the uplink.
  • the information on which cell the UE should measure / report from, i.e., the CoMP measurement set, should be transmitted as a higher layer signal, which can be signaled as a CSI-RS resource.
  • interference between neighboring cells may be a problem.
  • inter-cell interference coordination (ICIC) may be applied.
  • a given total frequency domain e.g., system bandwidth
  • one or more sub-domains e.g., in physical resource blocks (PRBs)
  • PRBs physical resource blocks
  • the way of dividing and exchanging ICIC messages between cells for each frequency sub-domain is defined.
  • Relative Narrowband Transmission Power (RNTP) related to downlink transmission power
  • UL 101 Interference Overhead Indication
  • uplink interference and UL HlK High Interference. Indication etc.
  • the RNTP is information indicating downlink transmission power used by a cell transmitting an ICIC message in a specific frequency subregion.
  • setting the RNTP field for a particular frequency sub-region to a first value means that frequency sub-field is set. It may mean that the downlink transmission power of the corresponding cell in the region does not exceed a predetermined threshold.
  • setting the RNTP field for a specific frequency subregion to a second value may mean that the cell cannot promise downlink transmission power in the frequency subregion. .
  • the value of the RNTP field is 0, the downlink transmission power of the corresponding cell in the frequency sub-domain may be considered low.
  • the value of the RNTP field is 1, the corresponding cell in the frequency sub-domain may be considered.
  • the downlink transmission power cannot be regarded as low.
  • UL 101 is information indicating an amount of uplink interference experienced (or received) by a cell transmitting an ICIC message in a specific frequency sub-domain. For example, setting the 101 field for a specific frequency subregion to a value corresponding to a high interference amount may mean that a corresponding cell is experiencing strong uplink interference in the frequency subregion.
  • the cell receiving the ICIC message may schedule a terminal using a low uplink transmission power among terminals served by the cell in a frequency sub region corresponding to 101 indicating strong uplink interference. Accordingly, since the UEs perform uplink transmission with low transmission power in the frequency subregion corresponding to 101 indicating strong uplink interference, uplink interference experienced by neighboring cells (that is, cells that transmit ICIC messages) may be alleviated. Can be.
  • the UL HII is information indicating the degree of interference (or uplink interference sensitivity) that an uplink transmission in a cell transmitting an ICIC message may cause for a corresponding frequency subregion. For example, when the HII field is set to a first value (for example, 1) for a specific frequency subregion, a cell transmitting an ICIC message may schedule a terminal of strong uplink transmission power for that frequency subregion. It can mean that there is a possibility. On the other hand, if the field ⁇ is set to a second value (for example, 0) for a specific frequency sub-region, the cell transmitting the ICIC message is unlikely to schedule a terminal of weak uplink transmission power for the frequency sub-region. It can mean that there is.
  • a first value for example, 1
  • a cell transmitting an ICIC message may schedule a terminal of strong uplink transmission power for that frequency subregion. It can mean that there is a possibility.
  • the field ⁇ is set to a second value (for example, 0)
  • the Sal receiving the ICIC message prior to scheduling the terminal in the frequency sub-area HII is set to the second value (for example, 0) and the frequency sub is set HII to the first value (for example, 1)
  • the second value for example, 0
  • the frequency sub is set HII to the first value (for example, 1)
  • the 3GPP LTE-A or 3GPP LTE Release -10) system as an example of the ICIC for the time resource
  • a given entire time domain is divided into one or more sub-domains (eg, subframe units) on frequency
  • the method of exchanging between siles whether or not silencing for each time sub-domain is defined.
  • the cell transmitting the ICIC message may transmit information indicating that silencing is performed in a specific subframe to neighboring cells, and do not schedule PDSCH or PUSCH in the subframe. Meanwhile, the cell receiving the ICIC message may schedule uplink and / or downlink transmission for the terminal on a subframe in which silencing is performed in the cell which transmitted the ICIC message.
  • Silence may refer to an operation in which a specific cell does not perform most signal transmission (or 0 or weak power transmission) on uplink and downlink in a specific subframe.
  • a specific cell is assigned a specific subframe.
  • ABSFN multicast broadcast single frequency network
  • a signal is transmitted only in the control region and no signal is transmitted in the data region.
  • an interfering cell may set a specific subframe to an Almost Blank Subframe (ABS) or ABS-with-MBSFN.
  • ABS refers to a subframe in which only the CRS is transmitted in the control region and the data region of the downlink subframe, and other control information and data are not transmitted (or only weak power transmission is performed).
  • ABS downlink channels and downlink signals such as PBCH, PSS, and SSS may be transmitted.
  • ABS-with-MBSFN means that the CRS of the data area is not transmitted in the above-described ABS.
  • silencing may be performed in units of a specific subframe, and information indicating whether silencing is performed may be referred to as a silent subframe pattern.
  • ABS signaling which is currently defined in 3GPP LTE-A standard, has largely ABS information and ABS status.
  • the ABS information is a bitmap indicating a subframe to be used as an ABS, and is composed of a bitmap of 40 bits in FDD and a maximum of 70 bits in TDD depending on the UL-DL configuration.
  • FDD frequency division duplex
  • 40 bits represent 40 subframes, and a value of 1 indicates ABS, and a value of 0 indicates non-ABS.
  • the measurement subset is a subset of ABS pattern information
  • the FDD is 40 bits.
  • TDD is a bitmap of up to 70 bits, and can be understood as a kind of limited measurement recommendation for setting limited measurement to the UE. Table 1 below shows ABS information defined in the existing LTE / LTE-A system.
  • Table 2 below shows ABS state information elements defined in the existing LTE / LTE-A system.
  • the ABS status information element is used for the purpose of helping the eNB whether to change the ABS pattern.
  • 'Usable ABS Pattern Info' is bitmap information which is a subset of ABS pattern information, and indicates whether or not a subframe designated as ABS is properly used for interference mitigation purposes.
  • the 'DL ABS status' is a ratio of the number of DL RBs scheduled in the subframe indicated by the 'Usable ABS Pattern Info' and the number of RBs allocated for the UE to be protected through the ABS. It shows how effectively you used it for your purpose.
  • Subframes and other subframes included in the ABS pattern may determine whether the transmission point is used as ABS autonomously according to the traffic load.
  • Measurement / Measurement Report The measurement report is for one or several methods of various methods (handover, random access, cell search, etc.) for guaranteeing mobility of the terminal. Since the measurement report requires some coherent demodulation, it may be performed after the UE acquires the synchronization and physical layer parameters except for the measurement of the received signal strength.
  • the measurement report includes Reference signal receive power (RSRP), Received signal strength indicator (RSSI), and reference signal reception that immediately determine the signal strength of the serving cell and the neighboring cell or the signal strength relative to the total received power.
  • RRM measurement such as quality (Reference signal received quality, RSRQ) and RLM measurement that can measure the radio link failure (radio link failure) by measuring the link quality with the serving cell.
  • RSRP is a linear average of power distribution of REs through which CRS is transmitted in downlink.
  • RSSI is a linear average of the total received power received by the terminal, and the OFDM symbol including the RS for antenna port 0 is a measurement value including interference and noise power from adjacent cells as the measurement target. If higher layer signaling indicates a specific subframe for measuring the RSRQ, the RSSI is measured for all OFDM symbols included in the indicated subframe.
  • RSRQ is a value measured in the form of N * RSRP / RSSi, where N is the number of RBs of a corresponding bandwidth in RSSI measurement.
  • the purpose of performing the RLM is for the terminal to monitor the downlink quality of its serving cell so that the terminal determines 'in-sync' or 'out-of-synch' for the corresponding cell.
  • RLM is based on CRS.
  • the downlink quality estimated by the terminal is compared with the 'in-synch threshold (Qin)' and the 'out-of-synch threshold (Qout)'.
  • Qin and Qin are values corresponding to 10% and 2% BLER, respectively.
  • Qin and Qout are values for the SINR of the received CRS. If the CRS received SINR is above a certain level (Qin), the UE determines that it is attaching to the corresponding cell, and if the received SINR is below a certain level (Qout). Declare RLF (Radio Link Failure).
  • the measurement report is based on the premise that CRS is performed.
  • FIG. 7 (b) when the cells share the same PCID, Since cells with the same PCID cannot be distinguished from the CRS, The measurement report including RSRP / RSRQ based on CRS cannot perform RRM for each cell. Therefore, when cells have the same PCID, additional RSRP / RSRQ measurement reporting can be performed based on CSI-RS transmitted separately.
  • neighboring cells do not transmit a signal to the corresponding CSI-RS transmitted RE, so that the CSI-RS transmission frequency is lower than that of the CRS. Measurement can be performed. Therefore, even when the cells have different PCIDs, the CRS based RSRP / RSRQ measurement report and the CSI-RS RSRP / RSRQ measurement report can be performed together to improve the accuracy of the RRM of the network.
  • Another main purpose of the transmission of the CSI-RS in each cell is to use a rank, a precoding matrix, a Modulation and Coding Scheme or a MCS to be used for downlink data transmission between the corresponding cell and the UE. This is for the CSI feedback performed by the terminal to help the scheduling of the base station for determining the CQI).
  • the UE In the CoMP transmission scheme, the UE must feed back CSI for downlink with a cooperative cell other than the serving cell. Feedback of CSI for some cells in the CoMP cluster, ie CoMP measurement set, that is worth the cooperative scheduling and cooperative data transmission because the overhead is too large to feed back the CSI for all cells in the CoMP cluster to which the serving cell of the UE belongs. It can be set to.
  • Determination of the CoMP measurement set for a specific terminal can be configured by selecting the cells that the RSRP is above a certain level, for this purpose, the terminal performs RSRP measurement report for the cells in the MP cluster to which it belongs.
  • the base station informs the CSI-RSs of the CSI-RSs to which the UE performs RSRP or RSRQ measurement by specifying a C () MP management set, and the UE transmits CSI-RS transmitted from cells belonging to the designated CoMP management set.
  • RSRP or RSRQ measurements can be performed on these devices and reports can be made if the results meet certain conditions.
  • the network and the UE may have a strong interference with the UEs in which neighboring CoMP clusters, and the UEs may have strong uplink interference to which cells.
  • the terminal performs RSRP measurement and report on the cells in the adjacent CoMP cluster.
  • a macro base station acts as an aggressor cell for a pico base station (Pico eNB).
  • the macro base station may secure / protect the performance of the pico base station by using the aforementioned ABS for a pico base station or a pico terminal, which is a victim cell.
  • the macro base station may reduce the transmission power up to 9 dB or transmit no signal at all in a specific subframe (s), which is a cell range extension (CRE) effect of the pico base station. Bring it.
  • s specific subframe
  • CRE cell range extension
  • the terminal located near the boundary of the sals receives the data of the pico base station, which is received at a noise level or less in a normal subframe, in a stable manner.
  • the received signal performance can be improved to the extent that the pico base station's cell coverage is actually expanded.
  • the measurement report may use restricted measurement.
  • the signal and / or interference level of the pico base station shown to the terminal varies greatly from subframe to subframe. It can prevent averaging.
  • CRE Cell Range Extent ion
  • the network may use any means or improve the capability of the terminal so that the handover may be performed even if the signal strength (eg, SINR) of the target base station is lower than the predetermined threshold. This operation may be referred to as CRE Cell Range Expansion.
  • a region where CRE is available may be referred to as a CRE region (region / area), and the CRE region may be expressed as a region where a reception performance of a reference signal of a corresponding base station is higher than a new threshold value Sth_CRE for the CRE. That is, the CRE region is a region satisfying the following equation (1).
  • a CRE region satisfying Equation 1 may correspond to a shaded portion.
  • the macro base station may perform traffic offloading by handing over a UE (PUE) in a CRE region to a pico base station (PeNB), thereby improving overall system yield.
  • PUE UE
  • PeNB pico base station
  • the CRE has the effect of extending the cell range or cell radius of the base station.
  • the reference signal reception strength of the pico base station may be represented by RSRP / RSRQ, and the criterion that the UE can attach to a specific cell is based on the RSRP of each cell. (best) The RSRP difference of a specific cell compared to RSRP is within 6dB.
  • the criterion may be adjusted to 6 dB or more (for example, 9 dB).
  • the terminal performs a handover to the pico base station for the CRE, the measurement of the pico base station as a serving cell after performing the handover, etc. Interference, due to other base stations), will be further increased. Therefore, the following proposes a method for solving various interference problems that may occur when raising the standard of the CRE as described above.
  • the terminal may have a FelCIC capability capable of supporting FelCKXFurther enhanced ICIC.
  • FelCIC means that the macro base station and the pico base station performs time / frequency ICIC while the pico base station performs a CRE of 6 dB or more.
  • the number of PSSs / SSSs that can be invalidated in one subframe or information about how many cells PSS / SSS can be invalidated can be included), and the ability to invalidate PBCH interference of adjacent cells.
  • PBCH IC capability including the number of PBCH to cancel, ie, the number of PBCHs that can be invalidated in one subframe or information on how many seals can be invalidated.
  • the capability related to the FelCIC capability will be referred to as the capability related to the CRE
  • the capability information of the terminal related to such a CRE may be transmitted from the terminal to the core network after the RRC connection.
  • the core network transmits UECapabilityEnquiry to the terminal through Not Access Statum (NAS) signaling, and the terminal transmits the terminal capability information as a voice answer.
  • NAS Not Access Statum
  • the UECapabilityEnquiry may be sent by the core network whenever needed.
  • measurement refers to at least one or more RRM / RLM / CSI enhancements, except where noted, wherein the neighboring cell being interfered with and the serving cell being interfered with are weak cells. cell or victim cell, the interfering cell may be called an aggressor cell.
  • the pico base station terminal in the sub-frame can receive the data / control channel in the environment in which the interference of the macro base station is relaxed, but the interference due to the CRS of the macro base station is not reduced. Therefore, in this case, the terminal may improve the reception performance of the terminal through a CRS interference cancellation / suppression technique.
  • the terminal In order for the terminal to remove / relax the CRS of the macro base station, the terminal needs to know CRS information of the neighbor cell. That is, in order for the UE to perform CRS handling (interference cancellation, rate matching at transmitter, suppression or puncturing, etc.) of the neighboring cell, the UE needs to perform such an operation, the cell IlXcell ID of the cells, the number of CRS ports, It is necessary to receive subframe information (eg, MBSFN configuration) through which the CRS is transmitted, bandwidth information through which the CRS of the corresponding cell is transmitted, and the like. Accordingly, the macro base station may transmit such CRS information to the UE, and the UE having received the CRS may perform CRS handling only on a subframe, bandwidth, and RE, to which an interference CRS is transmitted.
  • CRS information of the neighbor cell That is, in order for the UE to perform CRS handling (interference cancellation, rate matching at transmitter, suppression or puncturing, etc.) of the neighboring cell, the UE needs to perform such an operation, the
  • NeighborCellCRSInformation which is a message for transmitting such information, may be defined as shown in Table 4 below.
  • NeighborCellCRSInformation CHOICE ⁇ ; Cell ID
  • a plurality of cell IDs may be transmitted in NeighborCellCRSInformation, and the number of CRS ports for each cell ID, frequency CRS information transmission, and time information of CRS transmission may be transmitted. Although the number of CRS ports per specific cell ID must be transmitted, time information of frequency CRS information transmission and CRS transmission can be transmitted as necessary.
  • the frequency CRS information transmission is frequency information for transmitting the CRS described above, and may be expressed as information on the center frequency and bandwidth of a specific cell or the number and location of PRBs on which the CRS is transmitted.
  • the box may be represented as a subframe in which the CRS is transmitted as time information for transmitting the CRS. For example, the MBRSN subframe may be set.
  • the MBSFN may not be set at all, and in this case, it may be impossible to inform the MBSFN subframe setting of the corresponding cell. Or, because the base stations do not exchange information in real time over the X2 interface, a specific cell may set the MBSFN, but such information may not be updated to another cell, and thus may not transmit the MBSFN because the base station does not know the MBSFN subframe configuration of the specific cell of the serving cell. .
  • the UE when the UE receives only the number of CRS ports of a specific cell and does not receive the MBSFN subframe configuration, it is assumed that the corresponding cell is used as the MBSFN for all subframes, or vice versa. Can be assumed to use According to this assumption, the UE may perform an operation such as invalidation / relaxation / puncturing / suppression / rate matching for the CRS of the corresponding cell only in the normal subframe.
  • the neighboring cell is a MBSFN subframe and assumes that the UE is a normal subframe, and the UE assumes that the CRS exists even though the CRS of the corresponding cell is virtually absent, the CRS interference is invalidated. Rather, it increases. Therefore, if the UE does not know the MBSFN subframe configuration of the neighbor cell, it is preferable to assume that the MBSFN subframe configuration rather than the normal subframe.
  • the UE when the UE receives only the number of CRS ports of a neighbor cell and does not receive the MBSFN subframe configuration, the UE assumes that the corresponding cell uses all subframes as normal subframes, but invalidates CRS interference. Only CRS flattening can be performed.
  • the base station when the base station does not know the MBSFN subframe configuration of the neighbor cell, as described above, the base station may not send the MBSFN subframe configuration of the neighbor cell, but the base station transmits an arbitrary configuration to the terminal by specifying any configuration You can do For example, when the base station transmits information corresponding to the MBSFN subframe configuration of a specific cell that does not know the MBSFN subframe configuration, it may inform that all subframes of the cell are normal subframes (or MBSFN subframes).
  • the base station may signal information indicating whether or not the neighboring cell is a subframe in which MBSFN is set.
  • the information includes information that can guarantee the MBSFN subframe configuration of a neighbor cell and / or information about a subframe that is not sure whether the MBSFN subframe is a MBSFN subframe. It may include.
  • the UE Upon receipt of this, the UE does not use the CRS handling scheme for the MBSFN subframe of a specific cell, but does not use the CRS handling scheme for the normal subframe that is not the MBSFN subframe (for example, invalidation of interference, rate matching at the transmitter, and subtraction). Or puncturing).
  • the UE does not use a technique such as interference invalidation among CRS handling techniques, Can be used.
  • CRS collision case when a CRS location is transmitted at the same location as a serving cell and a neighboring macro cell and CRSs of several cells collide with each other (hereinafter referred to as this case, it is referred to as a CRS collision case).
  • CRS handling and information / operation necessary for it In particular, it looks at the interference measurement method of the terminal when the limited measurement is set,
  • a UE belongs to an area of a pico eNB, which is a serving cell (which may be a CRE area), and neighboring macro base stations (Macro eNB 1 and Macro eNB 2). May be interrupted by others.
  • the macro base stations adjacent to the pico base station may cooperate with each other in a manner of ABS, RNTP, HII, 101, and the like.
  • cells neighboring the pico base station may form one) ⁇ cluster.
  • the following description presupposes that the CRS of its serving cell and the neighboring macro base station are transmitted at the same location, and thus CRSs of multiple cells are collided (hereinafter, referred to as this case, referred to as a CRS stratified case). do.
  • the interference measurement for the CSI calculation of the UE may be performed by performing CRS interference invalidation through the CRS information (NeighborCellCRSInformation) of the IOT cell described above and estimating a channel based on the CSI and Data demodulation can be performed.
  • the interference (I) which is the measurement target of the interference may be expressed as Equation 2 below.
  • I N _CRS indicates interference from a particular base station.
  • I N — CRS is CRS interference due to a CRS of a neighbor cell transmitted at its serving cell CRS location, and may be the sum of a plurality of CRS interferences when CRSs of a plurality of cells stratify.
  • CRS interference of a plurality of sals constituting IM_CRS means CRS interference of a cell corresponding to a cell ID where a serving cell and a CRS collide with each other in a cell ID list provided with CRS information of a neighboring cell.
  • the terminal may determine which base station's CRS collides with the CRS of its serving cell based on the CRS information of the neighbor seal received from the serving cell, and may calculate and calculate CRS interference stratified based on this.
  • I c , k means CRS interference of the k-th sal between the serving cell and the CRS.
  • Equation 2 may be written as Equation 3 below.
  • I c and k are CRS interferences between the serving cell and the k-th cell stratified by the CRS, and are corrected to A k, which is a value capable of reflecting the actual interference according to a subframe or a measurement subframe subset.
  • I N _ CRS , k denotes CRS interference of a k-th neighbor cell.
  • Is-as Iw, ⁇ as a weighting factor (weighting factor) for the correction
  • I N in the actual interference calculation is a value to determine the CRS, such as, how much the reflection k. This value is representative of a specific interference environment and may be defined as a subframe-specific value.
  • the weighting for the correction is performed.
  • Factors ie, correction values
  • may be set for each subframe set (ie, for each measurement subset). For example, it may be set to l co in the measurement subset CO and / / and a in the measurement subset C1, respectively.
  • interference measurement in each subset (subframe set CO and C1) of the UE may be performed as follows.
  • the UE may invalidate the CRS of the neighboring macro base station in the measurement subset CO, calculate the CSI with the indicated interference, correct the CSI to a value that may reflect the actual interference, and report the result to the base station.
  • the CSI measurement for the measurement subset C1 of the UE is to invalidate the CRS of the neighboring macro base station, calculate the CSI by the interference shown, and correct the CSI to a value (, a ) that can reflect the actual interference in the corresponding measurement subset. You can report your CSI.
  • the correction values A k , co , A k , ci to reflect the actual interference may be different for each measurement subset since they represent liver characteristics, and preferably, may be expressed as a ratio of PDSCH EPRE to CRS EPRE for each measurement subset. have.
  • a correction value in a specific measurement subset used by neighboring cells as a normal subframe may be 1 (PDSCH EPRE to CRS EPRE ratio (p A , p B ) in the normal subframe), and the surrounding macro
  • the correction value in the particular measurement subset that the base stations use as ABS may be 0 (PDSCH EPRE to CRS EPRE ratio ( ⁇ ⁇ ′, ⁇ ⁇ ′) in the subframe where PDSCH is not scheduled). That is, A k , co may be a value that corresponds to the P.DSCH EPRE to CRS EPRE ratio value of the th cell in the measurement subset CO, and the PDSCH EPRE to CRS EPRE ratio value of the k th sal in the measurement subset C1.
  • the ⁇ , ⁇ , Z may be included in the CRS information of the neighbor cell described above and transmitted to the UE.
  • Table 5 illustrates CRS information elements of neighbor cells in this case. [142] [Table 5]
  • delta_C0 is a value corresponding to a PDSCH EPRE to CRS EPRE ratio in a subframe set used by the base station of the corresponding cell ID as ABS
  • delta_Cl ⁇ A k , ci) is a base station of the corresponding cell ID.
  • a k , co , A k , ci may be a value that can represent the interference for each measurement subset and the load information of adjacent cells, respectively. This value may be passed to higher trade signaling.
  • / ⁇ k , co , A k , ci may be 0 and 1, respectively.
  • Z and co 0, neighboring cells reduce transmission power (including neighboring cells when PDSCH transmission power is 0) and represent interference when scheduling PDSCH.
  • CRS interference invalidation may not be performed for the CRS stratified case.
  • an ABS configuration flag is signaled as a signal indicating whether the corresponding cell configures ABS cooperatively with the serving cell according to the cell ID in the NeighborCel lCRSInformat ion message that delivers the CRS information of the neighbor cell.
  • a correction value for interference may be determined according to the ABS configuration flag.
  • the interference correction value of the corresponding cell has an independent value for each subset of measurement subframes. Can be.
  • a subframe set used as a normal subframe for PDSCH scheduling without reducing transmission power that is, measurement subframe subset C1
  • interference is measured without invalidating CRS interference of the cell. It may be desirable.
  • step S1KH the terminal checks the value of the ABS configuration flag.
  • the terminal determines in step S1102 whether the current subframe belongs to the measurement subset CO or C1. In other words, the terminal determines whether the current subframe belongs to the measurement subset CO. If the current subframe belongs to the measurement subset CO, the terminal may determine the correction value as co. If the current subframe belongs to the listening subset C1, the UE may determine the correction value as ⁇ ( ⁇ . If the value of the ABS configuration flag is not 1, the UE determines l ⁇ ci as the correction value for all measurement subsets. Can be.
  • the PDSCH EPRE to CRS EPRE ratio for each cell that should invalidate the CRS interference is signaled to the UE, and in the case of the CRS stratification case, after the UE invalidates the CRS of a specific cell, the corresponding cell
  • the PDSCH EPRE to CRS EPRE ratio value of may be used to correct the actual interference.
  • an average interference correction value for each measurement subset may be signaled for CSI measurement of the UE.
  • the UE may calculate CSI by correcting the actual interference to different values for each measurement subset after the CRS interference invalidation according to the average value.
  • Equations 2 and 3 may be approximated as in Equation 4 below.
  • ⁇ ⁇ ⁇ in the measurement subset CO and l l Ci in the measurement subset C1.
  • the CSI measurement is performed in the subframe set used by the neighboring macro base station as the normal subframe.
  • the UE may assume that the PDSCH EPRE to CRS EPRE ratio value for each measurement subframe subset of its serving cell is applied to neighboring neighbor cells as it is.
  • the UE may invalidate the CRS interference and calculate only the CRS of its serving cell without calculating the interference, and calculate the CSI using the indicated interference. In this case, operation and signaling to a separate interference, compensation may not be necessary.
  • the UE measures the interference without invalidating the CRS interference in order to measure the CSI in the subframe set used by the neighboring macro base station as the normal subframe, and the neighboring macro base stations use the ABS. Only the female set can cancel the CRS interference of the corresponding cells, measure the interference, and calculate the CQI by correcting the actual interference with a separate value (l).
  • the UE may measure the PDSCH EPRE-to-CRS EPRE ratio of the adjacent cell to calculate the interference without additional signaling for the correction value (z). That is, if the UE measures power in an OFDM symbol not including CRS and this value is smaller than a certain level than the power of an OFDM symbol including CRS, the UE assumes that the cell uses ABS and the CRS of the cell The interference must be measured after the invalidation. On the other hand, if this value is maintained at a similar level, the CQI can be calculated without invalidating the CRS of the cell.
  • the terminal has a pico base station as a serving cell. However, even when the terminal receives a service from the macro base station, the above operation and signaling are required. If a plurality of measurement subsets are set for the CSI calculation of the macro terminal, and the CRS is a collision case, interference correction and signal correction must be simultaneously performed for the CSI calculation. That is, in a network in which a macro base station cooperatively uses ABS, when a measurement subset representing interference characteristics is set in a macro terminal, the terminal performs interference / signal correction for each measurement subset for CSI calculation after invalidating CRS interference of a neighboring cell. Can be performed.
  • CO and C1 are configured (CO is a macro base station with its own serving cell Corresponds to the subframe used as ABS, C1 corresponds to the subframe used by the neighboring macro base stations including the serving cell as the normal subframe), and in the CO, the neighboring macro base station when the PDSCH transmission power of the serving cell is reduced.
  • the interference level is also reduced.
  • the interference is corrected to a value that can reflect the actual interference ( ⁇ co ), and the PDSCH EPRE of the serving cell in the measurement subset CO after the CRS estimation of the serving cell is estimated.
  • the CSI is calculated by correcting the magnetic serving cell signal based on the CRS EPRE ratio value.
  • the UE corrects the interference to a value (/ ⁇ C1 ) that can reflect the actual interference with respect to the interference after invalidating the CRS interference of the neighbor cell.
  • CRS invalidation for CSI measurement in the measurement subframe subset represented by the normal subframe may not be significant. For more accurate interference measurement, rather than calculating CSI with visible interference after the terminal invalidates the CRS of the serving cell, the accuracy of the interference measurement can be increased while reducing the complexity of the calculation.
  • the case in which the terminal does not perform the CRS interference invalidation has also been mentioned, but this may be explicitly signaled.
  • an interference suppression flag indicating whether CRS interference invalidation should be performed for each measurement subset may be signaled.
  • the interference suppression flag may be determined according to the number of measurement subsets.
  • two interference subsets may be represented by two bits, ⁇ bl, b2 ⁇ .
  • bl may indicate whether to cancel the CRS interference of the cell in the measurement subset CO
  • b2 may indicate whether to cancel the CRS interference of the cell in the measurement subset C1. Specific examples in this case are shown in Table 7 below.
  • the interference suppression flag consists of only one bit, interference .
  • the suppress flag may be set to only indicate whether the measurement subset C1 should invalidate CRS interference of the corresponding cell. More specifically, if the measurement subset CO is related to ABS and the measurement subset C1 is related to the normal subframe, the interference subset flag whether or not to perform CRS interference invalidation in measurement subset C1 is performed by default in measurement subset CO. Can be directed through
  • the base station may perform rate matching with respect to the resource region corresponding to the CRS of the neighbor cell in the _PDSCH region based on the CRS information of neighboring neighbors adjacent to the base station.
  • the base station may transmit to the UE in the form of a neighbor cell information message (NeighborCellCRSInformation). Through this message, the UE knows that the PDSCH of its serving cell will be rate matched, and at which time, the location (RE) will be rate matched.
  • the base station may indicate the subframe information including the cell ID, the CRS port number, and the CRS of the neighbor cell.
  • the base station transmits an indicator indicating whether or not the base station has mapped serving cell data with respect to the positions of all neighboring CRSs designated by the neighbor cell information message, thereby allowing the terminal to perform data restoration operations. To be taken.
  • the base station may inform the terminal as a separate indicator of the position of the rate matching of the PDSCH in the neighbor cell information message. That is, the terminal receiving the CRS information of the neighbor cell may perform an operation such as invalidating or puncturing CRS interference by using the information of the neighbor cell information message according to its receiver capability.
  • the base station informs which cell's CRS is rate matched as a separate indicator, so that the specific RE is rate matched when the PDSCH is received. CRS interference from the cell can be avoided.
  • the separate indicator may be a cell ID list of cells that the base station performs rate matching during PDSCH mapping.
  • the UE may inform that the PDRS of the serving cell is rate matched at which cell's CRS location.
  • the rate matching flag indicates whether the PDSCH is rate matched with respect to the CRS location of a specific cell.
  • the UE can perform interference mitigation scheme such as invalidating interference at the receiver only for the CRS location of cells for which the rate matching flag is not set. Can be used.
  • Such a rate matching flag may be included in neighboring cell CRS information and transferred to higher layer signaling as illustrated in Table 8 below.
  • FIG. 12 is a diagram showing the configuration of a transmission point apparatus and a terminal apparatus according to an embodiment of the present invention.
  • the transmission point apparatus 1210 includes a reception module 1211, a transmission module 1212, a processor 1213, a memory 1214, and a plurality of antennas 1215. It may include.
  • the plurality of antennas 1215 refers to a transmission point device that supports MIM0 transmission and reception.
  • the receiving modules 1211 may receive various signals, data, and information on uplink from the terminal.
  • the transmission modules 1212 may transmit various signals, data, and information on downlink to the terminal.
  • the processor 1213 may control operations of the overall transmission point apparatus 1210.
  • the processor 1213 of the transmission point apparatus 1210 may operate to perform the above-described embodiments.
  • the processor 1213 of the transmission point apparatus 1210 may perform a processing operation on information received by the transmission point apparatus 1210 and information to be transmitted to the outside.
  • the memory 1214 may store the computed information and the like for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the terminal device 1220 includes a reception module 1221, a transmission module 1222, a processor 1223, a memory 1224, and a plurality of antennas 1225. ) May be included.
  • the plurality of antennas 1225 refers to a terminal device that supports MIM0 transmission and reception.
  • Receiving modules 1221 may receive various signals, data, and information on downlink from the base station.
  • the transmission modules 1222 may transmit various signals, data, and information on the uplink to the base station.
  • the processor 1223 may control operations of the entire terminal device 1220.
  • the processor 1223 of the terminal device 1220 may operate to perform the above-described embodiments.
  • the processor 1223 of the terminal device 1220 performs a function of processing the information received by the terminal device 1220, information to be transmitted to the outside, and the memory 1224 performs arithmetic processing on the information. It may be stored for a predetermined time, it may be replaced by a component such as a buffer (not shown).
  • the description of the transmission point apparatus 1210 may be similarly applied to the relay apparatus as the downlink transmission entity or the uplink reception entity, and the description of the terminal device 1220. The same can be applied to a relay apparatus as a downlink receiving entity or an uplink transmitting entity.
  • the above-described embodiments of the present invention may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware (firs are), software, or a combination thereof.
  • the method according to the embodiments of the present invention may include one or more ASICs (Applicat Specific Specific Circuits), DSPs (Digital Signal Processors), DSPDs (Digital Signal Processing Devices), and PLDs. Programmable Logic Devices), FPGAs (Field Programmable Gate Arrays), Processors, Controllers. It can be implemented by a microcontroller, a microprocessor, or the like.
  • ASICs Applicat Specific Specific Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • Processors Controllers. It can be implemented by a microcontroller, a microprocessor, or the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention as described above may be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 실시예는 무선통신시스템에서 단말이 간섭 측정을 수행하는 방법에 있어서, 이웃 셀 CRS(Cell specific Reference Signal) 정보를 수신하는 단계; 상기 CRS 정보에 기초하여 CRS 간섭 무효화(cancellation)을 수행하는 단계; 및 상기 CRS 간섭 무효화를 수행한 결과에 보정값을 적용하여 간섭을 측정하는 단계를 포함하며, 상기 보정값은 제한된 측정을 위한 서브프레임 세트별로 각각 설정된 것인, 간섭 측정 방법이다.

Description

【명세서】
【발명의 명칭】
무선 통신 시스템에서 간섭 측정 방법 및 장치
【기술분야】
[1] 이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 이웃 셀에 의한 간섭 측정 방법 및 장치에 대한 것이다.
【배경기술]
[2] 무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원 (대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA (code division multiple access) 시스템, FDMA( frequency division multiple access) 시스템, TDMA(t ime division multiple access) 시스템, 0FDMA( orthogon l frequency division multiple access) 시스템, SC-FDMAC single carrier frequency division multiple access) 시스템, MC— FDMA (國 lti carrier frequency division multiple access) 入 1스템 등이 있다.
【발명의 상세한 설명】
【기술적 과제】
[3] 본 발명에서는 채널 상태 보고를 위한 간섭 측정시 이웃 셀로부터의 간섭을 고려한 측정 방법 및 장치가 개시된다.
[4] 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】
[5] '본 발명의 제 1 기술적인 측면은, 무선통신시스템에서 단말이 간섭 측정을 수행하는 방법에 있어서, 이웃 셀 CRS(Cell specific Reference Signal) 정보를 수신하는 단계; 상기 CRS 정보에 기초하여 CRS 간섭 무효화 (cancellation)을 수행하는 단계; 및 상기 CRS 간섭 무효화를 수행한 결과에 보정값을 적용하여 간섭을 측정하는 단계를 포함하며, 상기 보정값은 제한된 측정을 위한 서브프레임 세트별로 각각 설정된 것인, 간섭 측정 방법이다.
[6] 본 발명의 제 2 기술적인 측면은, 무선통신시스템에서 단말 장치에 있어서, 수신 모듈; 및 프로세서를 포함하고, 상기 프로세서는, 이웃 셀 CRS Cell specific Reference Signal) 정보를 수신하고, 상기 CRS 정보에 기초하여 CRS 간섭 무효화 (cancellation)을 수행하며, 상기 CRS 간섭 무효화를 수행한 결과에 보정값을 적용하여 간섭을 측정하되, 상기 보정값은 제한된 측정을 위한 서브프레임 세트별로 각각 설정된 것인, 단말 장치이다.
[7] 상기 본 발명의 게 1 내지 제 2 기술적인 측면은 다음 사항을 포함할 수 있다.
[8] 상기 보정값은 PDSCH(Physical Downlink Shared Channel) EPRE( Energy per Resource Element) 대 CRS EPRE 비율일 수 있다.
[9] 상기 제한된 측정을 위한 서브프레임 세트는, ABS(Almost Blank Subframe)를 위한 제 1 서브프레임 세트 및 노멀 서브프레임을 위한 제 2 서브프레임 세트를 포함하며, 상기 보정값은 상기 게 1 서브프레임 세트를 위한 제 1 보정값 및 상기 제 2서브프레임 세트를 위한 계 2보정값을 포함할 수 있다.
[10] 상기 제 1 보정값은 0, 상기 제 2보정값은 1일 수 있다.
[11] 상기 단말은, 상기 제 2 보정값은 상기 단말의 서빙 셀의 PDSCH EPRE 대 CRS
EPRE와 동일하다고 가정할 수 있다.
[12] 상기 보정 값은 상기 CRS정보에 포함되어 상기 단말에게 전달될 수 있다.
[13] 상기 CRS 정보는, 해당 셀이 상기 단말의 서빙 셀에 대한 협력 씰인지 여부를 지시할 수 있다.
[14] 상기 ABS 설정 플래그가 1인 경우 상기 해당 셀은 상기 단말의 서빙 샐과 ABS 설정을 공유하는 것을 지시하며, 상기 ABS 설정 플래그가 0인 경우 상기 해당 셀은 상기 단말의 서빙 셀의 ABS설정과 관련 없음을 지시할 수 있다.
[15] 상기 ABS 설정 플래그가 0인 경우ᅳ 상기 서브프레임 세트별로 각각 설정된 보정값은 동일한 것일 수 있다.
[16] 상기 ABS 설정 플래그가 1인 경우, ABS에 관련된 서브프레임 세트를 위한 보정값은 0이고, 노멀 서브프레임에 관련된 서브프레임 세트를 위한 보정값은 1일 수 있다.
[17] 상기 CRS 정보는 셀 ID( Identity), CRS포트 수, CRS가 전송되는 주파수 정보 또는 CRS가 전송되는 시간 정보 중 하나 이상을 포함할 수 있다. [18] 상기 CRS 정보는 상위계층 시그널링으로 상기 단말에게 전달될 수 있다. 【유리한 효과】
[19] 본 발명에 따르면 제한된 측정 등이 설정된 경우 간섭 환경을 보다 정확하게 반영하면서 간섭 측정을 수행할 수 있다.
[20] 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
[21] 본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 프레임의 구조를 나타내는 도면이다.
도 2는 하향링크 슬롯에서의 자원 그리드 (resource grid)를 나타내는 도면이다. 도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 5는 참조신호를 설명하기 위한 도면이다.
도 6은 협력적 전송 클러스터를 설명하기 위한 도면이다.
도 8은 제한된 측정을 설명하기 위한 도면이다.
도 9는 CRE Cell Range Expansion)을 설명하기 위한 도면이다.
도 10은 본 발명의 일 실시예에 의한 간섭 측정을 설명하기 위한 도면이다.
도 11은 본 발명의 일 실시예에 의한 보정값 결정을 설명하기 위한 순서도이디-. 도 12는 송수신 장치의 구성을 도시한 도면이다.
【발명의 실시를 위한 최선의 형태】
[22] 이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다.
[23] 본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드 (terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드 (upper node)에 의해 수행될 수도 있다.
[24] 즉, 기지국을 포함하는 다수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국 (BS: Base Station)'은 고정국 (fixed station), Node B, eNode B(eNB), 액세스 포인트 (AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말 (Terminal )'은 LIE (Use r Equi ment) , MS(Mobi le Station), MSSCMobi le Subscriber Station), SS(Subscr iber Station) 등의 용어로 대체될 수 있다.
[25] 이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
[26] 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
[27] 본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE—A(LTE— Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다,
[28] 이하의 기술은 CDMA(Code Division Multiple Access), FD (Frequency Division Mult iple Access) , TDMA(Time Division Mult iple Access) , 0FDMA( Orthogonal Frequency Division Mult iple Access) , SC~FDMA( Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRACUniversal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communicat ions)/GPRS(General Packet Radio Service) /EDGE (Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA( Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project ) LTE( long term evolution)는 E-UTRA를 사용하는 E-UMTS( Evolved UMTS)의 일부로써, 하향링크에서 0FDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A( Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격 (WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격 (WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
[29] LTE/LTE-A자원 구조 /채널
[30] 도 1를 참조하여 무선 프레임의 구조에 대하여 설명한다.
[31] 셀를라 OFDM 무선 패킷 통신 시스템에서, 상 /하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 0FDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(FrequenCy Division Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDD (Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
[32] 도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다, 하향링크 무선 프레임 (radio frame)은 10개의 서브프레임 (subframe)으로 구성되고, 하나의 서브프레임은 시간 영역 (time domain)에서 2개의 슬롯 (slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 ΤΉ (transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 0FDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 0FDMA 를 사용하므로, 0FDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록 (Resource Block; RB)은 자원 할당 단위이고, 하나의 슬롯에서 복수개의 연속적인 부반송파 (subcarrier)를 포함할 수 있다.
[33] 하나의 슬롯에 포함되는 0FOM 심볼의 수는 CPCCyclic Prefix)의 구성 (configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP normal CP)가 있다. 예를 들어 OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
[34] 일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
[35] 도 1(b)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pi lot Time Slot), 보호구간 (Guard Per iod; GP) , UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된디-. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
[36] 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
[37] 도 2는 하향링크 슬롯에서의 자원 그리드 (resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고 , 하나의 자원블록 (RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼을 포함하지만, 확장된 CP (extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소 (resource element)라 한다. 하나의 자원블록은 12X7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 NDL의 개수는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
[38] 도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널 (Physical Downlink Shared Chancel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널 (Physical Control Format Indicator Channel; PCFICH) , 물리하향링크제어채널 (Physical Downlink Control Channel; PDCCH) , 물리 HARQ지시자채널 (Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 0FOM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한디-. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보 (Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케줄링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널 (DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널 (UL-SCH)의 자원 할당 정보, 페이징채널 (PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답 (Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소 (Control Channel Element; CCE)의 조합 (aggregat ion)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대웅한다. PDCCH의 포맷과 이용가능한 비트 수는 CCE의 개수와 CCE에 의해 제공되는 코딩 레이트 간의 상관관계에 따라서 결정된다. 기지국은 단말에게 전송되는 DCI에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사 (Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자 (Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된디-. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTKC-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자 (Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTKSI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해. 임의접속 -RNTKRA— RNTI)가 CRC에 마스킹될 수 있다.
[39] 도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널 (Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널 (Physical uplink shared channel; PUSCH)이 할당된다, 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍 (RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수 -호핑 (frequency-hopped)된다고 한다.
[40] 참조 신호 (Reference Signal; RS)
[41] 무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 을바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호 (Pi lot Signal) 또는 참조신호 (Reference Signal)라고 한다.
[42] 다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트 (port)별로 별도의 참조신호가 존재하여야 한다.
[43] 참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE 시스템에는 상향링크 참조신호로써 ,
i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트 (coherent )한 복조를 위한 채널 추정을 위한 복조 참조신호 (DeModul at ion— Reference Signal , DM-RS)
ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한사운딩 참조신호 (Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀 -특정 참조신호 (Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말 -특정 참조신호 (UE— specific Reference Signal) iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModul at ion-Reference Signal , DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보 (Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호 (Channel State Information- Reference Signal, CSI-RS)
v) MBSFN(Multimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호 (MBSFN Reference Signal )
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호 (Positioning Reference Signal)가 있다. [44] 참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득할 수 있는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드 오버 등의 상황에서도 사용된다 . 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조할 수 있게 된다. 이 참조신호는 데이터가 전송되는- 영역에 전송되어야 한다.
[45] CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 사용되며, 단말 특정 참조신호는 데이터 복조용으로만 사용된다. CRS는 광대역에 대해서 매 서브프레임마다 전송되며, 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대한 참조신호가 전송된다.
[46] 예를 들어 기지국의 송신 안테나의 개수가 2개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 4개인 경우 0~3번 안테나 포트에 대한 CRS가 각각 전송된다.
[47] 도 5는 기존의 3GPP LTE 시스템 (예를 들어, 릴리즈 -8)에서 정의하는 CRS 및 DRS가 하향링크 자원블록 쌍 (RB pair) 상에 매핑되는 패턴을 나타내는 도면이다. 참조신호가 매핑되는 단위로서의 하향링크 자원블록 쌍은 시간 상으로 하나의 서브프레임 X주파수 상으로 12 부반송파의 단위로 표현될 수 있다. 즉, 하나의 자원블록 쌍은 시간 상으로 일반 CP의 경우 (도 5(a))에는 14 개의 OFDM 심볼 길이 , 확장된 CP의 경우 (도 5(b))에는 12 개의 OFDM 심볼 길이를 가진다.
[48] 도 5는 기지국이 4 개의 전송 안테나를 지원하는 시스템에서 참조신호의 자원블록 쌍 상에서의 위치를 나타낸다. 도 5에서 '0', '2' 및 '3'으로 표시된 자원 요소 (RE)는, 각각 안테나 포트 인덱스 0, 1, 2 및 3에 대한 CRS의 위치를 나타낸다. 한편, 도 5에서 'D'로 표시된 자원 요소는 DMRS의 위치를 나타낸다.
[49] 채널상태정보 (Channel State Information, CSI) 피드백
[50] MIM0 방식은 개—루프 (open— loop) 방식과 폐 -루프 (closed-loop) 방식으로 구분될 수 있다. 개 -루프 MIM0 방식은 MIM0 수신단으로부터의 CSI의 피드백이 없이 송신단에서 MIM0 전송을 수행하는 것을 의미한다. 폐 -루프 MIM0 방식은 MIM0 수신단으로부터의 CSI를 피드백 받아 송신단에서 MIM0 전송을 수행하는 것을 의미한다. 폐 -루프 MIM0 방식에서는 MIM0 송신 안테나의 다중화 이득 (multiplexing gain)을 얻기 위해서 송신단과 수신단의 각각이 채널 상태정보를 바탕으로 빔포밍을 수행할 수 있다. 수신단 (예를 들어 단말)이 CSI를 피드백할 수 있도록 송신단 (예를 들어, 기지국)은 수신단 (예를 들어, 단말)에게 상향링크 제어 채널 또는 상향링크 공유 채널을 할당할 수 있다.
[51] 피드백되는 CSI는 탱크 지시자 (Rank Indicator, RI), 프리코딩 행렬 인덱스 (Precoding Matrix Indicator, PMI) 및 채널품질지시자 (Channel Quality Indicator, CQI)를 포함할 수 있다.
[52] RI는 채널 탱크에 대한 정보이다. 채널의 랭크는 동일한 시간-주파수 자원을 통해서 서로 다른 정보를 보낼 수 있는 레이어 (또는 스트림)의 최대 개수를 의미한다ᅳ 랭크 값은 채널의 장기간 (long term) 페이딩에 의해서 주로 결정되므로, PMI 및 CQI 에 비하여 일반적으로 더 긴 주기에 따라 피드백될 수 있다.
[53] PMI는 송신단으로부터의 전송에 이용되는 프리코딩 행렬에 대한 정보이몌 채널의 공간 특성을 반영하는 값이다. 프리코딩이란 전송 레이어를 송신 안테나에 매핑시키는 것을 의미하며, 프리코딩 행렬에 의해 레이어—안테나 매핑 관계가 결정될 수 있다. PMI 는 신호대잡음및간섭비 (Signal-to-Interference plus Noise Ratio; SINR) 등의 측정값 (metric)을 기준으로 단말이 선호하는 (preferred) 기지국의 프리코딩 행렬 인덱스에 해당한다. 프리코딩 정보의 피드백 오버헤드를 줄이기 위해서, 송신단과 수신단이 여러 가지 프리코딩 행렬을 포함하는 코드북을 미리 공유하고 있고, 해당 코드북에서 특정 프리코딩 행렬을 지시하는 인덱스만을 피드백하는 방식이 사용될 수 있다.
[54] 확장된 안테나 구성을 지원하는 시스템 (예를 들어, LTE-A 시스템 )에서는 다중사용자ᅳ MIMO (MU-MIM0) 방식을 이용하여 추가적인 다중사용자 다이버시티를 획득하는 것을 고려하고 있다. MU-MIM0 방식에서는 안테나 영역 (domain)에서 다중화되는 단말들 간의 간섭 채널이 존재하므로, 다중사용자 중 하나의 단말이 피드백하는 CSI를 기지국에서 이용하여 하향링크 전송을 수행하는 경우에 다른 단말에 대해서 간섭이 발생하지 않도록 하는 것이 필요하다. 따라서, MU-MIM0 동작이 올바르게 수행되기 위해서는 단일사용자— MIMO (SU-MIM0) 방식에 비하여 보다 높은 정확도의 CSI가 피드백되어야 한다.
[55] 이와 같이 보다 정확한 CSI를 측정 및 보고할 수 있도록, 기존의 RI, PMI 및 CQI 로 구성되는 CSI 를 개선한 새로운 CSI 피드백 방안이 적용될 수 있다. 예를 들어, 수신단이 피드백하는 프리코딩 정보가 2 개의 PMI 의 조합에 의해서 지시될 수 있다 . 2 개의 PMI 중 하나 (제 1 PMI)는, 장기간 및 /또는 광대역 (long term and/or wideband)의 속성을 가지고, W1으로 지칭될 수 있다. 2 개의 PMI 중 다른 하나 (제 2 PMI)는, 단기간 및 /또는 서브대역 (short term and/or subband)의 속성을 가지고, W2으로 지칭될 수 있다. W1 및 W2의 조합 (또는 함수)에 의해서 최종적인 PMI가 결정될 수 있다. 예를 들어, 최종 PMI 를 W라 하면, W=W1*W2또는 W=W2*W1 과 같이 정의될 수 있다.
[56] CQI는 채널 품질 또는 채널 세기를 나타내는 정보이다. CQI는 미리 결정된 MCS 조합에 해당하는 인덱스로 표현될 수 있다. 즉, 피드백되는 CQI 인덱스는 해당하는 변조기법 (modulation scheme) 및 코드 레이트 (code rate)를 나타낸디-. 일반적으로, CQI 는 기지국이 PMI 를 이용하여 공간 채널을 구성하는 경우에 얻을 수 있는 수신 SINR을 반영하는 값이 된다.
[57] 현재 LTE/LTE-A에서는 상술한 바와 같은 CSI 피브백 /보고를 위한 채널 측정에 관련된 CSI 참조 자원 (CSI Reference Resource)를 정의하고 있다. CSI 참조 자원은, 주파수 영역에서는 산출된 CQI가 연관된 주파수 대역에 해당하는 물리 RB의 그룹으로 정의된다. 그리고, 시간 영역에서는 n-nCQI_ref 로 정의되는데, 여기서 n은 CSI를 전송 /보고할 서브프레임이며 nCQI_ref 는 i) 주기적 CSI 보고의 경우 유효한 서브프레임에 대웅되기 위한, 4 이상의 값들 중 가장 작은 값, ii) 비주기적 CSI 보고의 경우 상향링크 DCI 포맷 내 CSI 요청 (request)이 전송된 서브프레임에 대웅되는 유효한 서브프레임, iii) 비주기적 CSI 보고에서 랜덤 액세스 웅답 승인 내 CSI 요청의 경우 4이다. 여기서, 유효한 서브프레임은, 해당 단말을 위한 하향랑크 서브프레임일 것, 전송 모드 9 이외의 경우에는 MBSFN 서브프레임이 아닐 것, TDD에서 DwPTS의 길이가 일정 크기 이상일 것, 해당 단말을 위해 설정된 측정 갭 (gap)에 포함되지 않을 것, 주기적 CSI 보고에서 단말에게 CSI 서브프레임 세트 (CSI sub frame set)로 설정된 경우 CSI 서브프레임 세트의 요소에 해당될 것의 조건을 만족시키는 것을 의미한다. CSI 서브프레임 세트는 후술되는 것과 같이 제한된 측정 (restricted measurement)를 위한 것으로써, CSI 서브프레임 세트 ( ccsi,Q , ccsu )는 상위 계층에 의해 해당 단말에 설정될 수 있다. CSI 참조 자원은 두 개의 서브프레임 세트 (ccsw . ccsu , 이하 편의상 CCSU)를 co, ccsu를 C1이라 기술한다.) 중 어느 하나에 포함되되, 두 세트 모두에는 포함되지 않을 수 있다.
[58] 이종 네트워크 환경 (Heterogeneous deployments)
[59] 도 6은 매크로 (macro) 기지국 (MeNB)과 마이크로 (micro) 기지국 (PeNB or FeNB)을 포함하는 이종 네트워크 무선 통신 시스템을 나타내는 도면이다. 본 문서에서 이종 네트워크 (heterogeneous network, HetNet)라는 용어는, 동일한 RAT(Radio Access Technology)를 사용하더라도 매크로 기지국 (MeNB)과 마이크로 기지국 (PeNB or FeNB)이 공존하는 네트워크를 의미한다.
[60] 매크로 기지국 (MeNB)은 넓은 커버리지 및 높은 전송 전력을 가지고, 무선 통신 시스템의 일반적인 기지국을 의미한다. 매크로 기지국 (MeNB)은 매크로 기지국으로 칭할 수도 있다.
[61] 마이크로 기지국 (PeNB or FeNB)은, 예를 들어, 마이크로 셀 (cell), 피코 기지국 (pico cell), 펨토 셀 (femto cell), 홈 (home) eNB(HeNB), 중계기 (relay) 등으로 칭하여질 수도 있다 (예시된 마이크로 기지국 및 매크로 기지국은 전송 포인트 (transmission point)로 통칭될 수도 있다). 마이크로 기지국 (PeNB or FeNB)은 매크로 기지국 (MeNB)의 소형 버전으로 매크로 기지국의 기능을 대부분 수행하면서 독립적으로 작동할 수 있으며, 매크로 기지국이 커버하는 영역 내에 설치 (over lay)되거나 매크로 기지국이 커버하지 못하는 음영 지역에 설치 될 수 있는 (non-over lay) 유형의 기지국이다. 마이크로 기지국 (PeNB or FeNB)은 매크로 기지국 (MeNB)에 비하여 좁은 커버리지 및 낮은 전송 전력을 가지고 보다 적은 개수의 단말을 수용할 수 있다.
[62] 단말은 매크로 기지국 (MeNB)으로부터 직접 서빙받을 수도 있고 (이하 매크로-단말이라 함), 단말은 마이크로 기지국 (PeNB or FeNB)로부터 서빙받을 수도 있다 (이하, 마이크로-단말이라 함). 어떤 경우에는, 마이크로 기지국 (MeNB)의 커버리지 내에 존재하는 단말 (PUE)이 매크로 기지국 (MeNB)으로부터 서빙받을 수도 있다.
[63] 마이크로 기지국은 단말의 액세스 제한 여부에 따라 두 가지 타입으로 분류될 수 있다.
[64] 첫 번째 타입은 OSG Open access Subscriber Group) 또는 non-CSG( Closed access subscriber Group) 기지국으로써, 기존 매크로ᅳ단말 또는 다른 마이크로 기지국의 마이크로—단말의 액세스를 허용하는 셀이다. 기존 매크로 -단말 등은 0SG 타입의 기지국으로 핸드오버가 가능하다.
[65] 두 번째 타입은 CSG 기지국으로써 기존 매크로—단말 또는 다른 마이크로 기지국의 마이크로-단말의 액세스를 허용하지 않으며, 따라서 CSG 기지국으로의 핸드오버도 불가하다.
[66] 협력 멀티 포인트 (Coordinated Multi-Point: CoMP)
[67] 3GPP LTE-A 시스템의 개선된 시스템 성능 요구조건에 따라서, CoMP 송수신 기술 (co-MIMO, 공동 (collaborative) MIMO 또는 네트워크 MIM0 등으로 표현되기도 함)이 제안되고 있다. CoMP 기술은 샐 -경계 (cell -edge)에 위치한 단말의 성능을 증가시키고 평균 섹터 수율 (throughput)을 증가시킬 수 있다.
[68] 일반적으로, 주파수 재사용 인자 (frequency reuse factor)가 1 인 다중一셀 환경에서, 샐-간 간섭 (Inter-Cell Interference; ICI)으로 인하여 셀—경계에 위치한 단말의 성능과 평균 섹터 수율이 감소될 수 있디-. 이러한 ICI를 저감하기 위하여 , 기존의 LTE/LTE-A 시스템에서는 단말 특정 전력 제어를 통한 부분 주파수 재사용 (fractional frequency reuse; FFR)과 같은 단순한 수동적인 기법을 이용하여 간섭에 의해 제한을 받은 환경에서 셀-경계에 위치한 단말이 적절한 수율 성능을 가지도록 하는 방법이 적용되었다. 그러나, 셀 당 주파수 자원 사용을 낮추기보다는, ICI를 저감하거나 ICI를 단말이 원하는 신호로 재사용하는 것이 보다 바람직할 수 있다. 위와 같은 목적을 달성하기 위하여, C이P 전송 기법이 적용될 수 있다.
[69] 하향링크의 경우에 적용될 수 있는 CoMP 기법은 크게 조인트-프로세싱 (joint processing; JP) 기법 및 조정 스케들링 /빔포밍 (coordinated scheduling/beamforming; CS/CB) 기법으로 분류할 수 있다. [70] JP 기법은 CoMP 협력 단위의 각각의 전송포인트 (기지국)에서 데이터를 이용할 수 있다. CoMP 협력 단위는 협력 전송 기법에 이용되는 기지국들의 집합을 의미한다. JP 기법은 조인트 전송 (Joint Transmission) 기법과 동적 씰 선택 (Dynamic cell selection) 기법으로 분류할 수 있다.
[71] 조인트 전송 기법은, PDSCH 가 한번에 복수개의 전송포인트 (CoMP 협력 단위의 일부 또는 전부)로부터 전송되는 기법을 말한다. 즉, 단일 단말로 전송되는 데이터는 복수개의 전송포인트로부터 동시에 전송될 수 있다. 조인트 전송 기법에 의하면, 코히어런트하게 (coherently) 또는 넌-코히어런트하게 (non— coherent ly) 수신 신호의 품질이 향상될 수 있고, 또한, 다른 단말에 대한 간섭을 능동적으로 소거할 수도 있다.
[72] 동적 셀 선택 기법은, PDSCH가 한번에 (CoMP 협력 단위의) 하나의 전송포인트로부터 전송되는 기법을 말한다. 즉, 특정 시점에서 단일 단말로 전송되는 데이터는 하나의 전송포인트로부터 전송되고, 그 시점에 협력 단위 내의 다른 전송포인트는 해당 .단말에 대하여 데이터 전송을 하지 않으며, 해당 단말로 데이터를 전송하는 전송포인트는 동적으로 선택될 수 있다.
[73] 한편, CS/CB 기법에 의하면 CoMP 협력 단위들이 단일 단말에 대한 데이터 전송의 빔포밍을 협력적으로 수행할 수 있다. 여기서, 데이터는 서빙 셀에서만 전송되지만, 사용자 스케들링 /범포밍은 해당 c이P 협력 단위의 셀들의 조정에 꾀하여 결정될 수 있다.
[74] 한편, 상향링크의 경우에, 조정 (coordinated) 다중 -전송포인트 수신은 지리적으로 떨어진 복수개의 전송포인트들의 조정에 의해서 전송된 신호를 수신하는 것을 의미한다. 상향링크의 경우에 적용될 수 있는 CoMP 기법은 조인트 수신 (Joint Reception; JR) 및 조정 스케들링 /빔포밍 (coordinated scheduling/beamforming; CS/CB)으로 분류할 수 있다.
[75] JR 기법은 PUSCH를 통해 전송된 신호가 복수개의 수신 전송포인트에서 수신되는 것을 의미하고, CS/CB 기법은 PUSCH 가 하나의 전송포인트에서만 수신되지만 사용자 스케들링 /빔포밍은 )ΜΡ 협력 단위의 셀들의 조정에 의해 결정되는 것을 의미한다.
[76] 이러한 CoMP 시스템을 이용하면, 단말은 다중-셀 기지국 (Multi— cell base station)으로부터 공동으로 데이터를 지원받을 수 있다. 또한, 각 기지국은 동일한 무선 주파수 자원 (Same Radio Frequency Resource)을 이용하여 하나 이상의 단말에 동시에 지원함으로써 시스템의 성능을 향상시킬 수 있다. 또한, 기지국은 기지국과 단말 간의 채널상태정보에 기초하여 공간 분할 다중접속 (Space Division Multiple Access: SDMA) 방법을 수행할 수도 있다.
[77] CoMP 시스템에서 서빙 기지국 및 하나 이상의 협력 기지국들은 백본망 (Backbone Network)을 통해 스케줄러 (scheduler )에 연결된다. 스케줄러는 백본망을 통하여 각 기지국이 측정한 각 단말 및 협력 기지국 간의 채널 상태에 관한 채널 정보를 피드백 받아 동작할 수 있다. 예를 들어, 스케줄러는 서빙 기지국 및 하나 이상의 협력 기지국에 대하여 협력적 MIM0 동작을 위한 정보를 스케들링할 수 있다. 즉, 스케줄러에서 각 기지국으로 협력적 MIM0 동작에 대한 지시를 직접 내릴 수 있다.
[78] 상술한 바와 같이 CoMP 시스템은 복수개의 셀들을 하나의 그룹으로 묶어 가상 MIM0 시스템으로 동작하는 것이라 할 수 있으며, 기본적으로는 다중 안테나를 사용하는 MIM0 시스템의 통신 기법이 적용될 수 있다.
[79] CoMP 클러스터 (cluster)란 상호 협력적으로 CoMP 동작, 즉 협력 스케줄링 및 협력 데이터 송수신을 수행할 수 있는 샐들의 집합으로서, 예를 들어 도 7(a)에서와 같이 단일 클러스터 내의 셀들이 서로 다른 물리 셀 ID (PCID)를 부여 받아 형성될 수도 있으며, 도 7(b)에서와 같이 단일 클러스터 내의 셀들이 동일한 PCID를 공유하여 단일 기지국의 분산 안테나 또는 RRH의 형태로 구성될 수도 있다. 또한 이들의 변형된 형태로 단일 클러스터 내의 셀들 중 일부 셀들끼리 동일한 PCID를 공유할 수 있다
[80] 일반적으로 동일 CoMP 클러스터 내의 셀들은 협력 스케줄링 및 협력 데이터 송수신을 위해서 용량 (capacity)이 높고 지연 (latency)이 낮은 광 섬유와 같은 백홀 링크 (backhaul link)로 연결되어 있어 협력 스케줄링이 가능하며, 정확히 시간 동기가 맞은 상태로 유지되어 있어 협력 데이터 전송이 가능하도록 한다. 또한 협력 전송에 참여하는 CoMP 클러스터 내의 셀들로부터 전송된 신호들을 수신할 때에, 각 샐들로부터의 전파 지연 (propagation delay) 차이에 의하여 각 샐로부터 전송된 신호들의 수신 시점의 차이가 OFDM 심볼의 순환 전치 (cyclic prefix, CP) 길이 이내로 들어을 수 있도록 C()MP 클러스터의 크기가 결정되어야 한다. 이와 달리, 서로 다른 클러스터에 속하는 샐들 사이에는 보다 낮은 용량의 백홀 링크로 연결되어 있을 수 있으며, 시간 동기도 유지하지 않을 수 있다.
[81] CoMP를 수행하는 단말은 )MP 클러스터 내에 속하는 일부 흑은 전체 셀들에 의한 협력 스케줄링 및 협력 데이터 송수신을 하게 되고, 단말이 수신하는 신호의 품질에 따라서 CoMP 클러스터의 일부 혹은 전체 샐들이 전송하는 기준 신호를 측정한다. 단말과 각 셀들로의 링크 성능을 측정하기 위한 목적으로 단말은 각 셀들의 기준 신호를 측정하고 신호 품질을 보고하게 되는데, 특히 단말이 측정 해야 하는 셀들을 Cc)MP 측정 세트 (measurement set)로 정의할 수 있다.
[82] CoMP를 위해서는 단말이 채널을 측정하고 보고해야 하는 참조 자원 세트 (reference resource set)가 정의되어야 한다. 단말이 상향 링크로 보고하는 각 셀 별 채널 정보에 따라서 해당 단말의 CoMP 스킴 (scheme) 및 하향 링크 스케줄링 등이 결정되기 때문이다. 단말이 어떤 셀로부터의 신호를 측정 /보고해야 하는 지의 정보, 즉 CoMP 측정 세트는 상위 계층 신호로 전달되어야 하는데, 이를 CSI-RS 자원으로써 시그널링해 줄 수 있다.
[83] 샐간 간섭 조정 (Inter Cell Interference Coordination, ICIC)
[84] 이종 네트워크 환경 및 /또는 Ck)MP 환경에 있어서 이웃하는 샐 간의 간섭이 문제될 수 있다. 이러한 셀 간 간섭의 문제를 해결하기 위해 셀간 간섭 조정 (ICIC)이 적용될 수 있다.
[85] 주파수 자원에 대한 ICIC의 예시로서 3GPP LTE 릴리즈 -8 시스템에서는, 주어진 전체 주파수 영역 (예를 들어, 시스템 대역폭)을 하나 이상의 서브 영역 (예를 들어, 물리자원블록 (PRB) 단위)으로 나누고, 각각의 주파수 서브 영역에 대한 ICIC 메시지를 샐들 사이에서 교환하는 방식이 정의되어 있다. 예를 들어, 주파수 자원에 대한 ICIC 메시지에 포함되는 정보로서, 하향링크 전송 전력과 관련된 RNTP(Relative Narrowband Transmission Power)가 정의되어 있고, 상향링크 간섭과 관련된 UL 101 (Interference Overhead Indication), UL HlKHigh Interference Indication) 등이 정의되어 있다.
[86] RNTP는 ICIC 메시지를 전송하는 샐이 특정 주파수 서브 영역에서 사용하는 하향링크 전송 전력을 나타내는 정보이다. 예를 들어, 특정 주파수 서브 영역에 대한 RNTP 필드가 제 1 값 (예를 들어, 0)으로 설정되는 것은, 해당 주파수 서브 영역에서 해당 셀의 하향링크 전송 전력이 소정의 임계치를 넘지 않는 것을 의미할 수 있다. 또는, 특정 주파수 서브 영역에 대한 RNTP 필드가 제 2 값 (예를 들어, 1)로 설정되는 것은, 해당 주파수 서브 영역에서 해당 셀이 하향링크 전송 전력에 대한 약속을 할 수 없음을 의미할 수 있다. 달리 표현하자면, RNTP 필드의 값이 0인 경우 해당 주파수 서브 영역에서의 해당 셀의 하향링크 전송 전력이 낮을 것으로 간주할 수 있지만, RNTP 필드의 값이 1인 경우 해당 주파수 서브 영역에서의 해당 샐의 하향링크 전송 전력이 낮은 것으로 간주할 수 없다.
[87] UL 101는 ICIC 메시지를 전송하는 셀이 특정 주파수 서브 영역에서 겪는 (또는 받는) 상향링크 간섭의 양을 나타내는 정보이다. 예를 들어 특정 주파수 서브 영역에 대한 101 필드가 높은 간섭량에 해당하는 값으로 설정되는 것은, 해당 주파수 서브 영역에서 해당 셀이 강한 상향링크 간섭을 겪고 있다는 것을 의미할 수 있다. ICIC 메시지를 수신한 셀은, 강한 상향링크 간섭을 나타내는 101에 해당하는 주파수 서브 영역에서는, 자신이 서빙하는 단말들 중에서 낮은 상향링크 전송 전력을 사용하는 단말을 스케즐링할 수 있다. 이에 따라, 강한 상향링크 간섭을 나타내는 101에 해당하는 주파수 서브 영역에서 단말들이 낮은 전송 전력으로 상향링크 전송을 수행하므로, 이웃 셀 (즉, ICIC 메시지를 전송한 셀)이 겪는 상향링크 간섭이 완화될 수 있다.
[88] UL HII는 ICIC 메시지를 전송하는 셀에서의 상향링크 전송이 해당 주파수 서브 영역에 대해서 유발할 수 있는 간섭의 정도 (또는 상향링크 간섭 민감도 (interference sensitivity))를 나타내는 정보이다. 예를 들어, 특정 주파수 서브 영역에 대해서 HII 필드가 제 1 값 (예를 들어, 1)으로 설정되는 것은 ICIC 메시지를 전송하는 셀이 해당 주파수 서브 영역에 대해서 강한 상향링크 전송 전력의 단말을 스케줄링할 가능성이 있음을 의미할 수 있다. 반면, 특정 주파수 서브 영역에 대해서 ΗΠ 필드가 제 2 값 (예를 들어, 0)으로 설정되는 것은 ICIC 메시지를 전송하는 셀이 해당 주파수 서브 영역에 대해서 약한 상향링크 전송 전력의 단말을 스케줄링할 가능성이 있음을 의미할 수 있다. 한편, ICIC 메시지를 수신한 샐은, HII가 제 2 값 (예를 들어, 0)으로 설정된 주파수 서브 영역에 우선적으로 단말을 스케줄링하고 HII가 제 1 값 (예를 들어, 1)으로 설정된 주파수 서브 영역에서는 강한 간섭에서도 잘 동작할 수 있는 단말들을 스케줄링함으로써, ICIC 메시지를 전송한 셀로부터의 간섭을 회피할 수 있다. [89] 한편, 시간 자원에 대한 ICIC의 예시로서 3GPP LTE-A (또는 3GPP LTE 릴리즈 -10) 시스템에서는, 주어진 전체 시간 영역을 주파수 상에서 하나 이상의 서브 영역 (예를 들어, 서브프레임 단위)으로 나누고, 각각의 시간 서브 영역에 대한 사일런싱 (silencing) 여부를 샐들 사이에서 교환하는 방식이 정의되어 있다. ICIC 메시지를 전송하는 셀은, 특정 서브프레임에서 사일런싱이 수행되는 것을 나타내는 정보를 이웃 셀들에게 전달할 수 있고 해당 서브프레임에서 PDSCH나 PUSCH를 스케줄링하지 않는다. 한편, ICIC 메시지를 수신하는 셀에서는 ICIC 메시지를 전송한 셀에서 사일런싱이 수행되는 서브프레임 상에서 단말에 대한 상향링크 및 /또는 하향링크 전송을 스케줄링할 수 있다.
[90] 사일런싱이란, 특정 셀이 특정 서브프레임에서 상향링크 및 하향링크 상에서 대부분의 신호 전송을 수행하지 않는 (또는 0 또는 약한 전력의 전송이 수행되는) 동작을 의미할 수 있다. 사일런싱 동작의 일례로서, 특정 셀이 특정 서브프레임을
MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임으로 설정 (configure)할 수 있다. BSFN 서브프레임으로 설정되는 하향링크 서브프레임에서는 제어 영역에서만 신호가 전송되고 데이터 영역에서는 신호가 전송되지 않는다. 사일런싱 동작의 다른 일례로서, 간섭을 주는 셀이 특정 서브프레임을 ABS(Almost Blank Subframe) 또는 ABS-with-MBSFN 으로 설정할 수도 있다. ABS 는 하향링크 서브프레임의 제어 영역 및 데이터 영역에서 CRS 만을 전송하고 그 외의 제어 정보 및 데이터는 전송되지 않는 (또는 약한 전력의 전송만이 수행되는) 서브프레임을 의미한다. 다만 ABS 에서도 PBCH, PSS, SSS 등의 하향링크 채널 및 하향링크 신호는 전송될 수 있다. ABS-with-MBSFN 는 전술한 ABS 에서 데이터 영역의 CRS 도 전송되지 않는 경우를 의미한다. 이와 같이 특정 서브프레임의 단위로 사일런싱이 수행될 수 있으며, 사일런싱 수행 여부를 나타내는 정보는 사일런트 (silent) 서브프레임 패턴이라고 칭할 수 있다.
[91] ABS와 관련하여, 현재 3GPP LTE-A 표준에서 규정하고 있는 ABS 시그널링은 크게 ABS 정보 (information)과 ABS 상태 (status)가 있다. 먼저 ABS 정보는 ABS로 사용할 서브프레임을 비트맵으로 나타낸 정보이며, FDD에서는 40비트, TDD의 경우 UL-DL 설정에 따라 다르지만 최대 70 비트의 비트맵으로 구성된다. FDD의 경우를 예로 들어 설명하면, 40비트는 40개의 서브프레임을 나타내며, 비트의 값이 1이면 ABS를, 0이면 non-ABS를 지칭한다. 제한돤측정을 UE에게 설정해 줄 때, CRS 측정을 위해서 해당 셀의 CRS 안테나 포트 개수를 알려준다. 그리고 측정 서브셋 (Measurement Subset)은 ABS 패턴 정보의 서브셋으로 역시 FDD는 40비트. TDD는 최대 70비트의 비트맵으로써, 단말에게 제한된 측정을 설정해 주기 위한 일종의 제한된 측정의 추천으로 이해될 수 있다. 다음 표 1은 기존 LTE/LTE-A 시스템에서 정의된 ABS 정보를 나타낸다.
[92] 【표 1】
Figure imgf000022_0001
Figure imgf000023_0001
[93] 다음 표 2는 기존 LTE/LTE-A 시스템에서 정의된 ABS 상태 정보요소를 나타낸다. ABS 상태 정보요소는 eNB가 ABS 패턴을 바꾸어야 하는지의 여부를 돕기 위한 목적으로 사용된다. 표 2에서 'Usable ABS Pattern Info' 는 ABS 패턴 정보의 서브셋인 비트맵 정보로써, ABS로 지정된 서브프레임이 간섭 완화를 위한 목적으로 제대로 사용되었는지 그렇지 않은 지의 여부를 나타낸다. 그리고 'DL ABS status' 는 'Usable ABS Pattern Info' 에서 지시된 서브프레임에서 스케줄링된 DL RB 개수와 이들 중 ABS를 통해 보호 받아야 하는 단말을 위해 할당된 RB수의 비율로서, ABS를 회생 셀에서 본연의 목적에 맞게 얼마나 효율적으로 활용 했는지의 정보를 나타낸다.
[94] 【표 2】
Figure imgf000023_0002
서브프레임이몌 ABS 패턴에 포함되는 그 외의 다른 서브프레임들은 전송포인트가 트래픽 로드 (traffic load)에 따라서 자율적으로 ABS로 활용할지 여부를 결정할 수 있다. 측정 /측정 보고 (Measurement /Measurement Report) [97] 측정 보고는 단말의 이동성 (mobility) 보장을 위한 여러 방법들 (핸드오버, 랜덤 액세스, 셀 탐색 등) 중 하나 또는 그 여러 방법들을 위한 것이다. 측정 보고는 어느 정도 코히런트한 복조가 필요하므로 수신신호강도 측정을 제외하고는 단말이 동기 및 물리계층 파라미터들을 획득한 이후에 수행될 수 있다. 측정 보고는 서빙 셀 및 이웃 셀의 신호 세기 혹은 총 수신 전력 대비 신호 세기 등을 즉정하는 참조신호 수신 전력 (Reference signal receive power , RSRP) , 수신신호강도 (Received signal strength indicator , RSSI ) , 참조신호수신품질 (Reference signal received quality, RSRQ) 등의 RRM 측정과 서빙 셀과의 링크 품질을 측정하여 라디오 링크 실패 (radio link failure) 여부를 평가할 수 있는 RLM 측정을 포함하는 개념이다.
[98] RRM과 관련하여, RSRP는 하향링크에서 CRS가 전송되는 RE의 전력 분배의 선형 평균이다. RSSI는 해당 단말에 의해 수신되는 총 수신 전력의 선형 평균으로써 안테나 포트 0을 위한 RS를 포함하는 OFDM 심볼이 그 측정 대상으로써, 인접한 셀들로부터의 간섭 및 노이즈 전력 등을 포함하는 측정값이다. 만약, 상위계층 시그널링이 RSRQ의 측정을 위해 특정 서브프레임을 지시하는 경우, RSSI는 그 지시된 서브프레임에 포함된 모든 OFDM 심볼에 대해 측정된다. RSRQ는 N*RSRP/RSSi 형태로 측정되는 값이며, 이때 N은 RSSI 측정 시 해당 대역폭의 RB 개수이다.
[99] RLM을 수행하는 목적은 단말이 자신의 서빙 셀의 하향 링크 품질을 모니터하도록 하여, 단말이 해당 샐에 대해서 'in-sync' 또는 'out-of-synch' 를 판단하기 위함이다. 이 때 RLM은 CRS 기반으로 한다. 단말이 추정한 하향 링크 품질은 'in-synch threshold(Qin)' 와 'out-of-synch threshold(Qout)' 와 비교된다. 이들 임계값 (threshold)은 서빙 셀의 PDCCH BLERCBlock Error Rate)로서 표현될 수 있는데, 특히 Qout 과 Qin 은 각각 10%, 2% BLER에 해당하는 값이다. 실제로 Qin 과 Qout 은 수신된 CRS의 SINR에 대웅하는 값으로, CRS 수신 SINR이 일정 수준 이상 (Qin)이면 단말은 해당 샐에 어태치 하고 있을 것을 결정하고, 수신 SINR이 일정 수준 이하 (Qout)이면 RLF (Radio Link Failure)를 선언한다.
[100] 위에서 설명된 RSRP 등의 정의에서 알 수 있듯, 측정 보고는 CRS를 이용하여 수행되는 것을 기본 전제로 하고 있다ᅳ 다만, 앞서 도 7(b)와 같이 셀들이 동일한 PCID를 공유하는 경우는 CRS로부터 동일 PCID를 갖는 셀들을 구분할 수 없으므로, CRS에 기반하여 RSRP/RSRQ를 포함하는 측정 보고만으로는 각 셀에 대한 RRM을 수행할 수 없다. 그러므로 셀들이 동일한 PCID를 갖는 경우에는 개별적으로 전송하는 CSI-RS에 기반하여 추가적인 RSRP/RSRQ 측정 보고를 수행하도록 할 수 있다. 특정 셀의 CSI-RS를 수신할 때에 수신 정확도를 높이기 위해, 이웃 셀들이 해당 CSI— RS가 전송되는 RE에 신호 전송을 하지 않음으로써, CSI-RS의 전송 빈도가 CRS보다 낮음에도 불구하고 더 정확한 측정을 수행할 수 있다. 그러므로 셀들이 다른 PCID를 갖는 경우에도 CRS 기반 RSRP/RSRQ 측정 보고와 CSI-RS RSRP/RSRQ 측정 보고를 함께 수행하여 네트워크의 RRM의 정확도를 향상할 수 있다.
[101] 각 샐에서 CSI-RS의 전송의 또 다른 주 목적은 해당 샐과 단말 사이의 하향링크 데이터 전송시에 사용될 탱크 (rank), 프리코딩 행렬 (precoding matrix), MCS(Modulation and Coding Scheme 또는 CQI)등을 결정하는 기지국의 스케들링을 돕기 위하여 단말이 수행하는 CSI 피드백을 위해서이다. CoMP 전송 방식에서 단말은 서빙 셀 이외의 협력 셀과의 하향링크에 대해서도 CSI를 피드백 하여야 한다. 단말의 서빙 셀이 속하는 CoMP 클러스터 내의 모든 셀들에 대한 CSI를 피드백 하기에는 오버해드가 너무 큼으로 협력 스케들링 및 협력 데이터 전송의 가치가 있는 CoMP 클러스터 내의 일부 셀들, 즉 CoMP 측정 세트에 대한 CSI를 피드백 하도록 설정될 수 있다. 특정 단말에 대한 CoMP 측정 세트의 결정은 RSRP가 일정 레벨 이상이 되는 셀들을 선택하여 구성할 수 있는데, 이를 위해서 단말은 자신이 속하는 )MP 클러스터 내의 셀들에 대한 RSRP 측정 보고를 수행한다. 또는 기지국은 단말이 RSRP 또는 RSRQ 측정을 수행할 CSI-RS들의 설정들을 C()MP 관리 세트 (CoMP management set)로 지정하여 알려주고, 단말은 지정 받은 CoMP 관리 세트에 속하는 셀들로부터 전송되는 CSI—RS들에 대해 RSRP 또는 RSRQ 측정을 수행하여, 그 결과가 특정 조건을 만족하면 보고를 수행할 수 있다.
[102] 이와 더불어 CoMP 클러스터 사이의 ICIC를 가능하도록 하기 위하여, 네트워크와 단말은 인접 CoMP 클러스터의 셀들 중에서 어떤 썰이 해딩- 단말에게 강한 간섭을 주고 있는지, 그리고 해당 단말이 어떤 샐에게 강한 상향링크 간섭을 주고 있는지를 파악하기 위하여, 단말은 인접 CoMP 클러스터 내의 셀들에 대한 RSRP 측정 및 보고를 수행한다.
[103] 단말의 핸드오버 등의 이동성 관리를 위한 CRS 기반의 RSRP/RSRQ 측정 보고와 더불어, CoMP 측정 세트 (CoMP measurement set) 구성 및 ICIC를 위하여 CSI-RS 기반의 RS P/RSRQ 측정 보고를 함께 수행하여 네트워크의 腿의 정확도 및 유연성을 향상시킬 수 있다.
[104] 제한된 측정 (restricted measurement )
[105] 샐이 특정 자원 영역에서 전송 전력을 낮출 경우, 인접 셀이 수신하게 되는 각 자원 영역별 간섭 신호의 변동 폭이 커지게 된다. 이러한 간섭 신호를 자원 영역과 관계없이 평균을 취하게 되면, CoMP 및 ICIC의 효과를 제대로 얻어내기가 어렵다. 이에 대해 도 8을 참조하여 설명한다.
[106] 도 8에서는 일반적인 상황의 경우 매크로 기지국 (Macro eNB)이 피코 기지국 (Pico eNB)에 대해 어그레서 셀 (Aggressor cell)로서 작용한다. 매크로 기지국은 희생 셀 (Victim cell)인 피코 기지국 또는 피코 단말을 위해 앞서 언급된 ABS를 사용하여 피코 기지국의 성능을 확보 /보호해 줄 수 있다. 구체적으로 매크로 기지국이 특정 서브프레임 (들)에서 최대 9dB까지의 전송 전력을 감소 (deboost) 시켜 주거나 또는 신호를 아예 전송하지 않을 수 있고, 이는 피코 기지국의 셀 영역 확장 (cell range extension, CRE) 효과를 가져온다. 다시 말해, 매크로 기지국이 ABS에서 하향 링크 전송 전력을 줄이게 되면, 샐들의 경계 부근에 위치한 단말은 일반적인 서브프레임에서는 잡음 레벨 (noise level) 이하로 수신되던 피코 기지국의 신호가 ABS에서는 데이터를 안정적으로 수신할 수 있는 정도로 수신 신호 성능이 향상되어 사실상 피코 기지국의 셀 커버리지가 확장되는 것으로 볼 수 있는 것이다ᅳ
[107] 이와 같은 상황에서 측정 보고는 제한된 측정 (restricted measurement )가 사용될 수 있다. 다시 말해, 매크로 기지국이 ABS를 통해 특정 서브프레임에서의 전송 전력을 줄여줄 경우, 단말에게 보이는 피코 기지국의 신호 및 /또는 간섭 레벨이 서브프레임별로 크게 달라지는데, 제한된 측정을 도입함으로써 신호가 단순히 평균 (averaging)되는 현상을 막을 수 있다.
[108] 이러한 제한된 측정을 위해, 상위 계층 신호로서 채널 측정을 위한 복수개의 CSI 서브프레임 세트 (예를 들어, 앞서 언급된 것과 같이 CO, C1)를 알려주면, 단말은 CSI 서브프레임 세트 특정의 채널 측정 및 보고를 수행할 수 있다. 또한, RLM/RRM을 위해서는 단말이 매크로 기지국의 ABS에서 측정을 수행하는 것이 바람직하다. [109] CRE (Cell Range Extent ion)
[110] 매크로 기지국의 커버리지 내에 여러 개의 작은 피코 기지국을 설치함으로써, 매크로 기지국으로부터 서비스 받는 단말들이 피코 기지국으로 핸드오버할 수 있게 함으로써 매크로 기지국의 트래픽 분산효과를 얻을 수 있게 된다. 서빙 기지국으로부터 타겟 기지국으로의 핸드오버는, 단말이 타겟 기지국에 대한 측정 결과가 소정 임계값 (Sth— conv) 이상일 때 이루어지게 된다. 여기서, 네크워크가 임의의 수단을 동원하여, 또는 단말의 능력을 개선함으로써 타겟 기지국의 신호 강도 (예를 들어, SINR)가 위 소정 임계값보다 낮아도 핸드오버가 이루어 질 수 있도록 할 수 있다. 이러한 동작을 CRE Cell Range Expansion)라고 칭할 수 있다. CRE가 가능한 지역은 CRE 영역 (region/area)라고 하고 CRE 영역은 해당 기지국의 기준 신호의 수신 성능 (Sreceived)이 CRE를 위한 새로운 임계값 (Sth_CRE)보다 높은 영역으로 표현될 수 있다. 즉 CRE 영역은 다음 수학식 1을 만족하는 영역이다.
[111] 【수학식 1】
Sth_conv >= Sreceived >= Sth_CRE
[112] 이해를 돕기 위해, 도 9를 참조하면, 위 수학식 1을 만족하는 CRE 영역은 음영 부분에 해당될 수 있다.
[113] 도 9에서 매크로 기지국 (Macro eNB)은 CRE 영역에 있는 단말 (PUE)을 피코 기지국 (PeNB)으로 핸드오버 시켜서 트래픽 분산 (traffic offloading)을 할 수 있으며, 이를 통해서 전체 시스템 수율을 향상시킬 수 있다. CRE는 결과적으로 해당 기지국의 셀 영역 (cell range) 또는 셀 반경 (cell radius)을 확장시키는 효과가 있다. 기존 LTE/LTE-A 시스템에서, 피코 기지국의 기준 신호 수신 강도는 RSRP/RSRQ로 표현될 수 있고, 단말이 특정 셀에 어태치할 수 있는 기준은 각 셀 별 RSRP를 기준으로 할 때, 가장 좋은 (best) RSRP 대비 특정 셀의 RSRP 차이가 6dB이내이다. 그런데, 피코 기지국으로의 트래픽 분산 효과를 더 크게 보기 위하여, 그 기준을 6dB 이상 (예를 들어 9dB 등)으로 조정할 수 있다. 이러한 경우, 단말의 피코 기지국에 대한 측정, CRE를 위해 단말이 피코 기지국으로 핸드오버를 수행, 핸드오버를 수행한 후 서빙 셀인 피코 기지국에 대한 측정 등에 있어서, 매크로 기지국 (피코 기지국에 인접하며 미도시된 다른 기지국을 포함)으로 인한 간섭의 영향은 더욱 커질 수 밖에 없다. [114] 따라서 이하에서는 위와 같이 CRE의 기준을 상향하는 경우 발생할 수 있는 다양한 간섭 문제를 해결하기 위한 방안들을 제안한다.
[115] 이하의 설명에서, 단말은 FelCKXFurther enhanced ICIC)를 지원할 수 있는 FelCIC능력을 가진 것일 수 있다. 여기서 , FelCIC란 피코 기지국이 6dB 이상 CRE를 하면서, 매크로 기지국과 피코 기지국이 시간 /주파수 ICIC를 수행하는 것을 의미한다. FelCIC 능력과 관련된 단말의 능력으로써, CRS 간섭을 무효화 (cancellation)할 수 있는 능력인 CRS IC 능력 (CRS Interference Cancel 1 at ion capability, Number of CRSs to cancel , 즉, 한 서브프레임에 무효화할 수 있는 CRS개수 또는 몇 개 샐의 CRS를 무효화할 수 있는지 등에 대한 정보를 포함할 수 있음), 인접 셀의 PSS/SSS간섭을 무효화할 수 있는 능력인 PSS/SSS IC능력 (Number of PSS/SSS to cancelᅳ 즉, 한 서브프레임에 무효화할 수 있는 PSS/SSS 개수 또는, 몇 개 셀의 PSS/SSS를 무효화할 수 있는지에 대한 정보를 포함할 수 있음), 인접 셀의 PBCH 간섭을 무효화할 수 있는 능력인 PBCH IC능력 (Number of PBCH to cancel , 즉, 한 서브프레임에 무효화할 수 있는 PBCH 개수 또는, 몇 개 씰의 PBCH를 무효화할 수 있는지에 대한 정보를 포함) 등이 있을 수 있다. (이하, FelCIC능력과 관련된 단말의 능력을 CRE에 관련된 능력이라 부르기로 한다) 이와 같은 CRE에 관련된 단말의 능력 정보는 RRC 연결 후 단말로부터 코어 네트워크로 전달된 것일 수 있다. 보다 상세히, 일반적으로 단말의 RRC 연결 후 코어 네트워크는 비 접속 계층 시그널링 (Not Access Statum, NAS) 시그널링으로 단말에게 UECapabilityEnquiry를 전송하고, 단말은 이에 대한 웅답으로써 단말능력정보를 전송한다. UECapabilityEnquiry는 필요할 때마다, 코어 네트워크가 전송할 수도 있다.
[116] 이하의 설명에서, 측정은 특별히 언급되는 것을 제외하고는 RRM/RLM/CSI 증 적어도 하나 이상에 대한 것올 의미하며, 간섭을 받고 있는 이웃 셀 및 간섭을 받고 있는 서빙 셀은 위크 셀 (weak cell) 또는 희생 셀 (victim cell)로, 간섭을 주는 셀은 어그레서 셀 (aggressor cell)로 불릴 수 있다.
[117] 간섭 상황에서 단말의 CRS핸들링 방법 및 이웃 셀 CRS정보 [118] 매크로 기지국의 ABS를 통해서, 해당 서브 프레임에서 피코 기지국 단말은 매크로 기지국의 간섭이 완화된 환경에서 데이터 /제어 채널을 수신할 수 있지만, 매크로 기지국의 CRS로 인한 간섭은 줄지 않는다. 따라서, 이 경우 단말은 매크로 기지국의 CRS 간섭 신호를 제거 및 완화 (CRS interference cancellation/suppression) 기법을 통해서, 단말의 수신 성능을 향상시킬 수 있다.
[119] 단말이 매크로 기지국의 CRS를 제거 /완화하기 위해서는 단말이 인접 셀의 CRS 정보를 알아야 한다. 즉, 단말이 인접 셀의 CRS 핸들링 (interference cancellation, rate matching at transmitter , suppression or puncturing 등)을 위해서 단말은 이러한 동작을 수행해야 하는 셀들의 셀 IlXcell ID), CRS 포트 수 (number of CRS ports), CRS가 전송되는 서브 프레임 정보 (예를 들어, MBSFN configuration), 해당 셀의 CRS가 전송되는 대역폭 정보 등을 수신할 필요가 있다. 따라서, 매크로 기지국은 이와 같은 CRS 정보를 단말에게 전달해 줄 수 있고, 이를- 수신한 단말은 간섭인 CRS가 전송되는 서브 프레임, 대역폭 및 RE에서만 CRS 핸들링을 수행할 수 있다.
[120] 이러한 정보가 전달되는 메시지인 NeighborCellCRSInformation는 다음 표 4와 같이 정의될 수 있다.
[121] 【표 4】
NeighborCellCRSInformation ::= CHOICE { ; Cell ID
{ number of CRS ports,
frequency information of CRS transmission,
time information of CRS transmission }
}
[122] NeighborCellCRSInformation에서 복수 개의 샐 ID가 전송될 수 있으며, 각 셀 ID별 CRS 포트 개수, 주파수 CRS 정보 전송 그리고 CRS 전송의 시간 정보 등이 전송될 수 있다. 특정 샐 ID 당 CRS 포트 개수는 반드시 전송되어야 하지만, 주파수 CRS 정보 전송 및 CRS 전송의 시간 정보는 필요에 따라 전송될 수 있다. 여기서 주파수 CRS 정보 전송이라 함은 앞서 설명한 CRS가 전송되는 주파수 정보로서 특정 셀의 중심 주파수 및 대역폭, 또는 CRS가 전송되는 PRB의 개수 및 위치에 대한 정보로 표현될 수 있으며, CRS 전송의 시간 정보라 함은 CRS가 전송되는 시간 정보로서 CRS가 전송되는 서브프레임으로 표현될 수 있으며, 그 예로써 MBSFN서브프레임 설정이 있다. [123] 셀에 따라서는 MBSFN을 전혀 설정하지 않는 경우가 있으며 이 경우 해당 셀의 MBSFN 서브프레임 설정을 알려주는 것 자체가 불가능할 수 있다. 또는, 기지국들이 X2 인터페이스로 실시간 정보교환을 하지 않는 이유로 인해서, 특정 셀이 MBSFN을 설정했으나 이러한 정보가 다른 셀로 업데이트되지 못하여 서빙 샐의 특정 셀의 MBSFN서브프레임 설정을 몰라서 MBSFN을 전달해 주지 못할 수 있다.
[124] 따라서, 단말이 특정 샐의 CRS 포트 개수만 수신하고 MBSFN 서브프레임 설정을 수신하지 못한 경우, 모든 서브프레임에 대해서 해당 셀이 MBSFN으로 사용한다고 가정하거나, 반대로 모든 서브프레임을 노멀 서브프레임으로 사용한다고 가정할 수 있다. 이러한 가정에 따라서, 단말은 노멀 서브프레임일 경우에만 해당 셀의 CRS에 대한 무효화 /완화 /펑처링 /서프레션 / 레이트 매칭 등의 동작을 수행할 수 있다. 다만, 이웃 셀이 MBSFN 서브프레임임에도 불구하고 노멀 서브프레임으로 가정하여 단말이 해당 셀의 CRS가 사실상은 존재하지 않음에도 불구하고 CRS가 존재한다고 가정하고 CRS 간섭 무효화를 하게 되면, 채널 추정의 오차가 도리어 증가하게 된다. 따라서, 단말이 이웃 셀의 MBSFN 서브프레임 설정을 모르는 경우라면, 노멀 서브프레임보다는 MBSFN 서브프레임 설정이라고 가정하는 것이 바람직하다.
[125] 다른 실시 예로서, 단말이 이웃 셀의 CRS 포트 개수만 받고 MBSFN 서브프레임 설정을 수신하지 못한 경우, 단말은 해당 셀이 모든 서브프레임을 노멀 서브프레임으로 사용한다고 가정하되 , CRS 간섭을 무효화하지 않고 CRS 평처링만 수행할 수 있다.
[126] 다른 실시 예로서, 기지국이 이웃 셀의 MBSFN 서브프레임 설정을 모르는 경우, 앞서 설명한 바와 같이 이웃 샐의 MBSFN 서브프레임 설정을 보내지 않을 수도 있지만, 기지국이 임의의 설정을 전송함으로써 단말에게 지정된 동작을 하도록 할 수 있다. 예를 들어, 기지국이 MBSFN 서브프레임 설정을 알지 못하는 특정 셀의 MBSFN 서브프레임 설정에 해당하는 정보를 전송할 때, 해당 셀의 모든 서브프레임이 노멀 서브프레임 (또는 MBSFN서브프레임)이라고 알려줄 수 있다.
[127] 다른 실시 예로서, 기지국이, 이웃 샐이 확실히 MBSFN을 설정한 서브프레임인지 아닌지의 여부를 알려주는 정보를 시그널링 해 줄 수 있다. 상기 정보는 이웃 셀의 MBSFN 서브프레임 설정을 보장 (guarantee)해 줄 수 있는 정보 및 /또는 MBSFN 서브프레임인지 여부가 확실하지 않은 서브 프레임에 대한 정보를 포함할 수 있다. 이를 수신한 단말은 특정 셀의 MBSFN 서브프레임에 대해서는 CRS 핸들링 기법을 사용하지 않고, MBSFN 서브프레임이 아닌 노멀 서브프레임에 대해서는 CRS 핸들링 기법 (예를 들면 간섭 무효화, 전송단에서의 레이트 메칭, 서브레션 또는 펑처링 등)을 사용할 수 있다. 반면, 서빙 셀이 특정 서브 프레임에 대해서 특정 기지국이 MBSFN 서브프레임으로 확실히 설정했는지에 대해서 보장해 즐 수 없는 서브 프레임에서, 단말은 CRS 핸들링 기법 중 간섭 무효화와 같은 기법은 사용하지 않고, 펑처링 등의 방식을 사용할 수 있다.
[128] 제한된 측정이 설정된 경우 단말의 간섭 측정 방법
[129] 이하에서는, CRS의 위치가 자신의 서빙 셀과 주변의 매크로 셀과 동일한 위치에서 전송되어 여러 셀의 CRS가 충돌하는 경우 (이하, 이러한 경우를 지칭하여, CRS 충돌 케이스 라 한다) 단말의 CRS 핸들링 및 이에 필요한 정보 /동작에 대해 살펴본다. 특히, 제한된 측정이 설정된 경우 단말의 간섭 측정 방법에 대해 살펴본다,
[130] 이하의 설명은 도 10에 예시된 것과 같은 환경의 단말에게 적용될 수 있다. 보다 구체적으로 도 10을 참조하면, 단말 (UE)는 서빙 샐인 피코 기지국 (Pico eNB)의 영역 (CRE 영역일 수 있음)에 속해 있으며, 이웃 해 있는 매크로 기지국들 (Macro eNB 1, Macro eNB 2)들에 의해 간섭을 받고 있을 수 있다. 여기서 피코 기지국에 이웃한 매크로 기지국들은 ABS, RNTP, HII, 101 등의 방식으로 서로 협력하는 것일 수 있다. 또한 도시된 바와 달리 피코 기지국에 이웃한 셀들이 하나의 )ΜΡ 클러스터를 형성하는 것일 수도 있다. 또한, 이하의 설명은 자신의 서빙 셀의 CRS와 이웃한 매크로 기지국의 CRS가 동일한 위치에서 전송되어 여러 셀의 CRS가 층돌하는 경우 (이하, 이러한 경우를 지칭하여, CRS 층돌 케이스라 한다)를 전제한다.
[131] 단말 (간섭 무효화 능력을 가진)의 CSI 계산을 위한 간섭 측정의 수행은, 앞서 설명된 이옷 셀의 CRS 정보 (NeighborCellCRSInformation)를 통해 CRS 간섭 무효화를 수행하고 이를 기반으로 채널을 추정하여 CSI 및 데이터 복조를 수행할 수 있다. 여기서 , 간섭의 측정 대상인 간섭 (I)는 다음 수학식 2와 같이 표현될 수 있다.
[132] 【수학식 2】 A — 0 1 N _ CRS 二 Ic,k
Figure imgf000032_0001
[133] 상기 수학식 2에서 I 는 서빙 셀의 CRS 위치에서 측정되는 간섭을, I。는 전체 간섭 증에서 이옷 샐의 CRS 간섭을 제외한 나머지 간섭을 의미한다. IN_CRS 는 특정 기지국으로부터의 간섭을 지시한다. 구체적으로 CRS 층돌 케이스의 경우, INCRS는 자신의 서빙 셀 CRS 위치에서 전송되는 이웃 셀의 CRS로 인한 CRS 간섭으로써, 복수 개의 셀의 CRS가 층돌하는 경우 복수 개의 CRS 간섭의 합일 수 있다. 여기서 IM_CRS 를 구성하는 복수 개의 샐의 CRS 간섭이라 함은, 이웃 샐의 CRS 정보가 제공된 샐 ID 리스트 중에서, 서빙 셀과 CRS가 층돌하는 셀 ID에 해당하는 셀의 CRS 간섭을 의미한다. 단말은 서빙 셀로부터 수신한 이웃 씰의 CRS 정보를 기반으로 어떤 기지국의 CRS가 자신의 서빙 셀의 CRS와 층돌하는지 파악할 수 있고, 이를 기반으로 층돌하는 CRS 간섭을 측정하여 계산할 수 있다. Ic,k 는 서빙 셀과 CRS가 층돌하는 k 번째 샐의 CRS 간섭을 의미한다.
[134] 상기 수학식 2는 다음 수학식 3과 같이 쓰여질 수 있다.
[135] 【수학식 3】
Figure imgf000032_0002
k
[136] 상기 수학식 3에서, Ic,k 는 서빙 셀과 CRS가 층돌하는 k 번째 셀의 CRS 간섭으로써, 서브프레임 또는 측정 서브프레임 서브셋에 따라 실제 간섭을 반영할 수 있는 값인 Ak 로 보정된 값이다. IN_CRS, k 는 k번째 이웃 셀의 CRS 간섭을 나타낸다. 는 Iw—as,^ 상기 보정을 위한 가중 팩터 (weighting factor)로써, 실제 간섭 계산시 INCRS, k를 얼마나 반영할지 등을 결정할 수 있는 값이다. 이는 특정 간섭환경을 대표할 수 있는 값이며, 서브프레임 -특정 (subframe-specific)한 값으로 정의될 수 있다. 이는, 단말이 수신한 이웃 셀의 CRS 정보를 기반으로 CRS 간섭을 무효화하는 것만으로는 정확한 CSI 보고가 어려울 있음을 반영한 것이다. 보다 상세히, 단말이 CRS 간섭을 무효화함으로써 이웃 샐의 CRS로 인한 간섭은 제거할 수 있지만, PDSCH 영역에 대한 이웃 셀의 간섭은 여전히 존재하기 때문이다. 따라서 이를 위해, 이웃 셀의 PDSCH EPRE 대 CRS EPRE 비율 또는 트래픽 로딩 (Traffic Loading) 등에 해당하는 정보인 보정값을 적용할 수 있다.
[137] 상술한 설명에서, 특히 단말에게 제한된 측정이 설정된 경우, 즉 단말에게 ABS에 관련된 제 1 서브프레임 세트 CO 및 노멀 서브프레임에 관련된 거 12 서브프레임 세트 C1이 설정된 경우, 상기 보정을 위한 가중 팩터 (즉, 보정값)은 각 서브프레임 세트 별 (즉, 측정 서브셋 별)로 각각 설정될 수 있다. 예를 들어 측정 서브셋 CO에서는 l co , 측정 서브셋 C1에서는 / =/ ,a 로 각각 설정될 수 있다.
[138] 이와 같이, 측정 서브셋 별로 보정값이 각각 설정된 경우, 단말의 각 서브셋 (서브프레임 세트 CO, C1)에서의 간섭 측정은 다음과 같이 수행될 수 있다.
[139] 단말은 측정 서브셋 CO에서 주변의 매크로 기지국의 CRS를 무효화하고 나타난 간섭으로 CSI를 계산하고, 실제 간섭을 반영할 수 있는 값 으로 CSI를 보정한 후 기지국에게 보고할 수 있다. 단말의 측정 서브셋 C1에 대한 CSI 측정은, 주변의 매크로 기지국의 CRS를 무효화하고 나타난 간섭으로 CSI를 계산하고, 해당 측정 서브셋에서 실제 간섭을 반영할 수 있는 값 ( ,a)으로 CSI를 보정하여 기지국에게 CSI를 보고 할 수 있다. 여기서, 실제 간섭을 반영하기 위한 보정 값 Ak,co, Ak,ci 은 간 특성을 대변하므로 측정 서브셋별로 상이할 수 있으며, 바람직하게는 각 측정 서브셋별 PDSCH EPRE 대 CRS EPRE 비율로 표현될 수 있다.
[140] 특히, 주변의 셀들이 노멀 서브프레임으로 사용하는 특정 측정 서브셋에서의 보정 값은 1 (노멀 서브프레임에서 PDSCH EPRE 대 CRS EPRE 비율 ( pA, pB)) 일 수 있고, 주변의 매크로 기지국들이 ABS로 사용하는 특정 측정 서브셋에서의 보정 값은 0 (PDSCH가 스케줄링되지 않는 서브프레임에서 PDSCH EPRE 대 CRS EPRE 비율 ( ρΑ' , Ρ Β' ))일 수 있다. 즉, Ak,co은 측정 서브셋 CO에서 번째 셀의 P.DSCH EPRE 대 CRS EPRE 비율 값에, 은 측정 서브셋 C1에서의 k번째 샐의 PDSCH EPRE 대 CRS EPRE 비율 값에 대웅하는 값일 수 있다.
[141] 상기 ^,ω, Z , 은 앞서 설명된 이웃 샐의 CRS 정보에 포함되어 단말에게 전달될 수 있다. 다음 표 5는 이러한 경우 이웃 셀의 CRS 정보 요소를 예시하고 있다. [142] 【표 5】
NeighborCel lCRSInformat ion ::= CHOICE {
Cell ID
{ number of CRS ports ,
frequency information of CRS transmission,
time information of CRS transmission,
delta— CO,
delta_Cl}
}
[143] 상기 표 5에서, delta_C0 는 해당 샐 ID의 기지국이 ABS로 사용하는 서브 프레임 세트에서의 PDSCH EPRE 대 CRS EPRE 비율에 해당하는 값이고, delta_Cl { Ak,ci )은 해당 샐 ID의 기지국이 노멀 서브프레임으로 사용하는 서브 프레임 세트에서의 PDSCH EPRE 대 CRS EPRE 비율에 해당하는 값을 의미한다.
[144] 한편, Ak,co, Ak,ci 은 각각 측정 서브셋별 간섭 및 인접 샐의 로드 (load)정보를 대표할 수 있는 값일 수 있다. 이 값은 상위계충 시그널링으로 전달될 수 있다.
[145] 이러한값의 예로써, /\k,co, Ak,ci은 각각 0, 1일 수 있다. Z ,co=0 인 경우, 이웃 셀들이 전송 전력을 줄여서 (이웃 셀들의 PDSCH 전송 전력이 0인 경우를 포함) PDSCH를 스케줄링하는 경우의 간섭을 대표하는 값이다. ,C0=1인 경우는 이웃 셀들이 전송 전력을 줄이지 않고 PDSCH 스케줄링을 하는 경우의 간섭을 대표하는 값으로, 이러한 측정 서브셋에서는 CRS 층돌 케이스에 대해서 CRS 간섭 무효화를 수행하지 않을 수 있다.
[146] 이 경우, 이웃 셀의 CRS 정보를 전달해 주는 NeighborCel lCRSInformat ion 메시지에 셀 ID 별로 해당 셀이 서빙 셀과 협력적으로 ABS 설정을 하는지 여부를 알려주는 신호로써 ABS 설정 플래그 (flag)를 시그널링 해 줄 수 있다.
[147] 【표 6】
NeighborCel lCRSInformat ion ::= CHOICE {
Cell ID
{ number of CRS ports,
frequency information of CRS transmission, time information of CRS transmission,
ABS configuration flag}
}
[148] ABS 설정 플래그가 세팅되어 있는 셀 ID에 대해서, 해당 셀의 CRS가 서빙 셀의 CRS가 층돌하는 경우, 측정 서브프레임 서브셋 CO에서 해당 셀의 CRS를 무효화하고 나서 l^co, 예를 들면 l^co =0으로 해당 샐로부터의 간섭을 보정한다. ABS 설정 플래그가 세팅되어 있지 않은 샐 ID에 대해서 해당 셀의 CRS와 서빙 샐의 CRS가 층돌하는 경우, 측정 서브프레임 서브셋 CO에서 해당 셀의 CRS는 무효화하지 않거나 무효화하더라도 이후의 보정 값은 0이 될 수 없으며, 이 값은 예를 들면 l^co - 1 이 될 수 있다. 즉, 해당 셀의 측정 서브프레임 서브셋 CO (주변의 매크로 기지국이 ABS를 사용하는 서브프레임 세트)에서 ABS를 사용하지 않을 가능성이 있기 때문이다.
[149] 이와 같이 별도의 ABS 설정 플래그를 시그널링해 주는 경우, 간섭에 대한 보정 값은 ABS 설정 플래그에 따라 결정될 수 있다.
[150] 즉, 특정 셀의 ABS 설정 플래그 = 0로 세팅된 경우 (해당 셀은 ABS를 사용하여 서빙 셀과 협력하지 않는 경우), 해당 셀의 보정값 = Δ ^ζχ 로써 보정값은 측정 서브프레임에 공통된 값을 가질 수 있고, 이 경우 해당 셀의 CRS 간섭을 무효화하는 것은 모든 측정 서브프레임 서브셋에서 별다른 의미가 없으므로 단말이 CSI 계산을 할 때, 해당 샐에 CRS 간섭은 무효화나 별도의 간섭 완화 (mitigation) 기법을 사용하지 않을 수 있다.
[151] 반면, 특정 셀의 ABS 설정 플래그 = 1로 세팅된 경우 (해당 셀은 ABS를 사용하여 서빙 셀과 협력하는 경우), 해당 셀의 간섭 보정 값은 측정 서브프레임 서브셋별로 독립적인 값을 가질 수 있다. 또한 이러한 셀에 대하여서도, 해당 셀이 전송 전력을 줄이지 않고 PDSCH 스케줄링을 하는 노멀 서브프레임으로 사용하는 서브 프레임 세트, 즉 측정 서브프레임 서브셋 C1에서는, 해당 셀의 CRS 간섭을 무효화 하지 않고 간섭을 측정하는 것이 바람직할 수 있다. 그리고 이 경우, 측정 서브프레임 서브셋 C1에서의 간섭 보정값 z ,Ci 은 별도의 시그널링 없이 단말이 1로 (PDSCH EPRE 대 CRS EPRE 비율 = 1 로 가정)가정할 수 있고, 반면 측정 서브프레임 서브셋 C0에서의 간섭 보정 값 z ,co 만 단말에게 시그널링될 수 있다.
[152] 만약, 상술한 ABS 설정 플래그 및 측정 서브셋 별 보정값을 모두 시그널링 받은 경우, 보정값의 결정은 도 11과 같을 수 있다. 도 11을 참조하면, 단계 S1KH에서 단말은 ABS 설정 플래그의 값을 확인한다. ABS 설정 플래그의 값이 1인 경우, 단말은 단계 S1102에서 현재 서브프레임이 측정 서브셋 CO, C1 중 어디에 속하는지 판단한다. 다른 표현으로, 단말은 현재 서브프레임이 측정 서브셋 CO에 속하는지 판단한다. 만약 현재 서브프레임이 측정 서브셋 CO에 속한다면 단말은 보정값을 co로 결정할 수 있다. 현재 서브프레임이 측청 서브셋 C1에 속한다면 단말은 보정값을 ^^(^로 결정할 수 있다. ABS 설정 플래그의 값이 1이 아닌 경우, 단말은 모든 측정 서브셋에 대해 l^ci을 보정값으로 결정할 수 있다.
[153] 앞서 설명된 바와 같이, CRS 간섭을 무효화해야 하는 셀 각각에 대한 PDSCH EPRE 대 CRS EPRE 비율이 단말에게 시그널링되어, CRS 층돌 케이스의 경우 단말이 특정 셀의 CRS를 무효화하고 난 후, 해당 ᅵ셀의 PDSCH EPRE 대 CRS EPRE 비율 값을 이용하여 실제 간섭을 보정하도록 할 수 있다. 그러나 시그널링 오버헤드 측면을 고려하면, 단말의 CSI 측정을 위해 측정 서브셋별 평균 간섭 보정 값이 시그널링 될 수도 있다. 단말은 이 평균 값에 따라서, CRS 간섭 무효화 이후 측정 서브셋별 서로 다른 값으로 실제 간섭을 보정하여 CSI를 계산할 수 있다.
[154] 즉, 상기 수학식 2 및 3은 다음 수학식 4와 같이 근사화될 수 있다.
[155] 【수학식 4】
1 10 ^ 1 N CRS ¬세 N CRS ,k
k
= Λ) + ᅀ , ^N— CRS
[156] 상기 수학식에서, 측정 서브셋 CO에서는 ΐ ΐα^, 측정 서브셋 C1에서는 l= lCi 일 수 있다. 은 측정 서브셋 CO에서의 CRS 위치가 층돌하는 샐들의 간섭을 보정하는 대표값이고, 은 측정 서브셋 C1에서의 CRS 위치가 층돌하는 셀들의 간섭을 보정하는 대표값이다.
[157] 만약, 보정값이 명시적으로 시그널링되지 않는 경우, 주변의 매크로 기지국이 노멀 서브프레임으로 사용하는 서브 프레임 세트에서의 CSI 측정을 위해서는, 단말은 이웃 셀의 PDSCH EPRE 대 CRS EPRE 비율은 1 (PDSCH EPRE = CRS EPRE)로 가정하여 CSI를 계산할 수 있다.
[158] 또는 단말은 자신의 서빙 샐의 측정 서브프레임 서브셋별 PDSCH EPRE 대 CRS EPRE 비율 값이 주변 이웃 셀에서도 그대로 적용된다고 가정할 수 있다. 특히 이 경우, 주변의 간섭을 계산하는 다른 방법으로는 단말이 CRS 간섭을 무효화해서 간섭을 계산하지 않고 자신의 서빙 셀의 CRS만을 무효화하고 나타난 간섭으로 CSI를 계산할 수 있다. 이 경우에는 별도의 간섭 '보정을 위한 동작 및 시그널링은 필요하지 않을 수 있다.
[159] 또는, 단말은 주변의 매크로 기지국이 노멀 서브프레임으로 사용하는 서브 프레임 세트에서의 CSI 측정올 위해서, CRS 간섭을 무효화하지 않고 간섭을 측정하고, 주변의 매크로 기지국들이 ABS를사용하는 서브 프레암세트에서만 해당 샐들의 CRS 간섭 무효화를 하고 간섭을 측정하고 별도의 값 ( l)으로 실제 간섭을 보정하여 CQI를 계산할 수 있다.
[160] 또는 이러한 보정 값 (z )에 대하여 별도의 시그널링을 하지 않고 단말이 인접 샐의 PDSCH EPRE 대 CRS EPRE 비율을 측정하도록 하여 간섭을 계산하도록 할 수 있다. 즉, 단말이 CRS를 포함하지 않는 OFDM 심볼에서의 파워를 측정하여 이 값이 CRS를 포함한 OFDM 심볼의 파워보다 일정 수준 이상 작다면, 단말은 해당 샐이 ABS를 사용하고 있다고 가정하고 해당 셀의 CRS를 무효화한 후 간섭을 측정해야 한다. 반면 이 값이 비슷한 수준으로 유지된다면, 해당 셀의 CRS를 무효화하지 않고 CQI를 계산할 수 있다.
[161] 상술한 설명은 단말이 피코 기지국을 서빙 셀로 갖는 경우를 전제로 설명하였으나, 단말이 매크로 기지국으로부터 서비스를 받는 경우에도 상술한 바와 같은 동작 및 시그널링이 필요하다. 매크로 단말의 CSI 계산을 위해 복수 개의 측정 서브셋이 설정되어 있는 경우, 그리고 CRS가 충돌 케이스의 경우, CSI 계산을 위해서 간섭 보정 및 신호 보정이 동시에 이루어 져야 한다. 즉, 매크로 기지국이 ABS를 협력적으로 사용하는 네트워크에서, 매크로 단말에게 간섭 특성을 대표하는 측정 서브셋이 설정된 경우, 단말은 이웃 셀의 CRS 간섭 무효화 이후 CSI 계산을 위해서 측정 서브셋별 간섭 /신호 보정 작업을 수행할 수 있다. 예를 들어, 두 개의 측정 서브셋 CO, C1이 구성되고 (CO는 자신의 서빙 샐을 포함한 매크로 기지국들이 ABS로 사용하는 서브 프레임에 해당하고, C1은 서빙 셀을 포함한 주변 매크로 기지국들이 노멀 서브프레임으로 사용하는 서브 프레임에 해당), CO에서는 서빙 샐의 PDSCH 전송 전력이 감소 (reduced)되면, 주변 매크로 기지국들의 동일한 동작에 따라 간섭 레벨도 감소된다.
[162] 이웃 셀의 CRS 간섭을 무효화하고 나서 보이는 간섭에 대해서 실제 간섭올 반영할 수 있는 값 (Δ co)으로 간섭을 보정하고, 서빙 샐의 CRS 추정 이후 측정 서브셋 CO에서의 서빙 샐의 PDSCH EPRE 대 CRS EPRE 비율 값을 기반으로 자기 서빙 셀 신호를 보정하여 CSI를 계산한다. 측정 서브셋 C1에서의 CSI 측정을 위해서, 단말은 이웃 셀의 CRS 간섭을 무효화한 후의 간섭에 대하여 실제 간섭을 반영할 수 있는 값 (/\C1)으로 간섭을 보정한다. 그러나 노멀 서브프레임으로 대표되는 측정 서브프레임 서브셋에서의 CSI 측정을 위한 CRS 무효화는 큰 의미는 없을 수 있디-. 보다 정확한 간섭 측정을 위해서는 오히려 단말이 서빙 셀의 CRS를 무효화하고 나서 보이는 간섭으로 CSI를 계산하는 것이 계산의 복잡도를 낮추면서 간섭 측정의 정확도를 높일 수 있다.
[163] 한편 상술한 설명에서 단말이 CRS 간섭 무효화를 수행하지 않는 경우도 언급되었는데, 이를 명시적으로 시그널링해 줄 수도 있다. 보다 상세히, 단말이 CSI를 계산할 때 측정 서브셋 각각에 대해 CRS 간섭 무효화를 수행해야 하는지 여부를 지시하는 간섭 서프레스 (suppress) 플래그를 시그널링 해 줄 수 있다.
[164] 간섭 서프레스 플래그는 측정 서브셋의 개수에 따라 결정될 수 있으며, 예를 들어, 측정 서브셋이 두 개인 경우 두 비트, {bl, b2}로 표현될 수 있다. 여기서, bl은 측정 서브셋 CO에서 해당 셀의 CRS 간섭을 무효화하여야 하는지 여부를, b2는 측정 서브셋 C1에서 해당 셀의 CRS 간섭을 무효화하여야 하는지 여부를 각각 지시할 수 있다. 이러한 경우에서의 구체적인 예시가 다음 표 7에 도시되어 있다.
[165] 【표 7】
Figure imgf000038_0001
Figure imgf000039_0001
[166] 만약, 측정 서브셋이 두 개인 경우이고 간섭 서프레스 플래그가 1비트로만 이루어지는 경우, 간섭. 서프레스 플래그는 측정 서브셋 C1에서 해당 셀의 CRS 간섭을 무효화하여야 하는지 여부만 지시하도록 설정될 수 있다. 보다 상세히, 측정 서브셋 CO가 ABS에 관련되고 측정 서브셋 C1이 노멀 서브프레임에 관련된 경우, 측정 서브셋 CO에서는 디폴트로 CRS 간섭 무효화를 수행하도록 하면서 측정 서브셋 C1에서의 CRS 간섭 무효화 수행 여부를 간섭 서프레스 플래그를 통해 지시할 수 있다.
[167] 이하에서는, 송신단에서의 CRS 간섭 핸들링 방식 중 레이트 매칭 (rate matching)에 대해 설명한다.
[168] 기지국은 자신에 인접한 이웃 샐들의 CRS 정보에 기초하여, _PDSCH 영역에서 이웃 셀의 CRS에 해당하는 자원 영역에 대해 레이트 매칭을 할 수 있다. 기지국은 이웃 셀 정보 메시지 (NeighborCellCRSInformation)의 형태로 단말에게 전달할 수 있다ᅳ 이러한 메세지를 통해 단말은 자신의 서빙 셀의 PDSCH가 레이트 매칭될 것임을 알게 되고, 이 때 어떤 위치 (RE)가 레이트 매칭 될 것인지, 인접 샐의 셀 ID, CRS 포트 번호 및 CRS를 포함하는 서브프레임 정보로써 기지국이 지시해 줄 수 있다.
[169] 다른 예시로써, 기지국이 상기 이웃 셀 정보 메시지에 의해 지정되는 인접 셀 전체 CRS들의 위치에 대해 서빙 셀 데이터를 매핑했는지 여부를 알려주는 지시자를 전송함으로써, 단말 가 이에 상웅하는 데이터 복원 동작을 취할 수 있도록 한다.
[170] 다른 예시로써, 기지국이 이웃 셀 정보 메시지 중에서 실제로 PDSCH 의 레이트 매칭을 하는 위치를 별도의 지시자로써 단말에게 알려줄 수 있다. 즉, 이웃 셀의 CRS 정보를 수신한 단말은 자신의 수신기 능력 (receiver capability)에 따라서 이웃 셀 정보 메시지의 정보를 이용하여 CRS 간섭 무효화나 펑처링 등의 동작을 수행할 수 있다. 반면, 기지국이 별도의 지시자로써 어떤 셀의 CRS가 레이트 매칭되었는지를 알려줌으로써, PDSCH 수신 시 특정 RE를 레이트 매칭하여 특정 셀로부터의 CRS 간섭을 피할 수 있다. 이 때 별도의 지시자는 기지국이 PDSCH 매핑시 레이트 매칭하는 셀들의 셀 ID 리스트일 수 있다.
[171] 다른 예시로써, 이웃 셀 정보 메시지에 레이트 매칭 플래그를 추가함으로써 단말이 서빙 셀의 PDSCH가 어떤 셀의 CRS 위치에서 레이트 매칭되었는지를 알려 줄 수 있다. 레이트 매칭 플래그를 통해서 특정 셀의 CRS 위치에 대해서 PDSCH가 레이트 매칭되었는지를 지시해 주게 되고, 이 경우 단말은 레이트 매칭 플래그가 설정되지 않은 셀들의 CRS 위치에 대해서만 수신단에서의 간섭 무효화와 같은 간섭 완화 기법을 사용할 수 있다. 이와 같은 레이트 매칭 플래그는 다음 표 8에 예시된 바와 같이 이웃 셀 CRS 정보에 포함되어 상위계충 시그널링으로 전달될 수 있디-.
[172] 【표 8】
Ne i ghborCe 11 CRSInf ormat i on : : = CHOICE {
cell ID
{ number of CRS ports,
f reqrency information of CRS transmission,
time information of CRS transmission,
rate matching flag}
}
[173] 도 12는 본 발명의 실시 형태에 따른 전송포인트 장치 및 단말 장치의 구성을 도시한 도면이다.
[174] 도 12를 참조하여 본 발명에 따른 전송포인트 장치 (1210)는 , 수신모들 (1211), 전송모듈 (1212), 프로세서 (1213), 메모리 (1214) 및 복수개의 안테나 (1215)를 포함할 수 있다. 복수개의 안테나 (1215)는 MIM0 송수신을 지원하는 전송포인트 장치를 의미한다. 수신모들 (1211)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모들 (1212)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서 (1213)는 전송포인트 장치 (1210) 전반의 동작을 제어할 수 있다.
[175] 본 발명의 일 실시예에 따른 전송포인트 장치 (1210)의 프로세서 (1213)는 , 앞서 설명된 실시예들이 수행되도록 동작 할 수 있다.
[176] 전송포인트 장치 (1210)의 프로세서 (1213)는 그 외에도 전송포인트 장치 (1210)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리 (1214)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼 (미도시 ) 등의 구성요소로 대체될 수 있다.
[177] 계속해서 도 12를 참조하면 본 발명에 따른 단말 장치 (1220)는, 수신모들 (1221), 전송모들 (1222), 프로세서 (1223), 메모리 (1224) 및 복수개의 안테나 (1225)를 포함할 수 있다. 복수개의 안테나 (1225)는 MIM0 송수신을 지원하는 단말 장치를 의미한다. 수신모들 (1221)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모들 (1222)은 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서 (1223)는 단말 장치 (1220) 전반의 동작을 제어할 수 있다.
[178] 본 발명의 일 실시예에 따른 단말 장치 (1220)의 프로세서 (1223)는 앞서 설명된 실시예들이 수행될 수 있도톡 동작할 수 있다.
[179] 단말 장치 (1220)의 프로세서 (1223)는 그 외에도 단말 장치 (1220)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리 (1224)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼 (미도시) 등의 구성요소로 대체될 수 있다.
[180] 위와 같은 전송포인트 장치 및 단말 장치의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거니- 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
[181] 또한, 도 12에 대한 설명에 있어서 전송포인트 장치 (1210)에 대한 설명은 하향링크 전송 주체 또는 상향링크 수신 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있고, 단말 장치 (1220)에 대한 설명은 하향링크 수신 주체 또는 상향링크 전송 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있다. [182] 상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어 (fir薩 are), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다。
[183] 하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Appl icat ion Specific Integrated Circuits) , DSPs(Digital Signal Processors) , DSPDs(Digital Signal Processing Devices) , PLDs (Programmable Logic Devices), FPGAs (Field Progra議 able Gate Arrays), 프로세서, 컨트를러. 마이크로 컨트를러, 마이크로 프로세서 등에 의해 구현될 수 있다.
[184] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
[185] 상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
[186] 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한ᅤ 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
【산업상 이용가능성】
[187] 상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims

【청구의 범위】
【청구항 11
무선통신시스템에서 단말이 간섭 측정을 수행하는 방법에 있어서,
이웃 셀 CRS Cell specific Reference Signal) 정보를 수신하는 단계;
상기 CRS 정보에 기초하여 CRS 간섭 무효화 (cancellation)을 수행하는 단겨 1; 및
상기 CRS 간섭 무효화를 수행한 결과에 보정값올 적용하여 간섭을 측정하는 단계;
를 포함하며,
상기 보정값은 제한된 측정을 위한 서브프레임 세트별로 각각 설정된 것인, 간섭 측정 방법 .
【청구항 2】
거 U항에 있어서,
상기 보정값은 PDSCH (Physical Downlink Shared Channel) EPRE(Energy per Resource Element) 대 CRS EPRE 비율인 간섭 측정 방법.
【청구항 3】 .
제 1항에 있어서,
상기 제한된 측정을 위한 서브프레임 세트는 ABS(Almost Blank Subfranie)를 위한 제 1 서브프레임 세트 및 노멀 서브프레임을 위한 제 2 서브프레임 세트를 포함하며 ,
상기 보정값은 상기 제 1 서브프레임 세트를 위한 제 1 보정값 및 상기 제 2 서브프레임 세트를 위한 계 2 보정값을 포함하는, 간섭 측정 방법 .
【청구항 4】
제 3항에 있어서,
상기 제 1 보정값은 0, 상기 제 2 보정값은 1인, 간섭 측정 방법.
【청구항 5]
거 13항에 있어서,
상기 단말은, 상기 게 2 보정값은 상기 단말의 서빙 샐의 PDSCH EPRE 대 CRS EPRE와 동일하다고 가정하는, 간섭 측정 방법 .
【청구항 6】 제 1항에 있어서,
상기 보정 값은 상기 CRS 정보에 포함되어 상기 단말에게 전달되는, 간섭 측정 방법.
【청구항 7]
거 U항에 있어서, ᅳ
상기 CRS 정보는, 해당 셀이 상기 단말의 서빙 셀에 대한 협력 셀인지 여부를 지시하는, ABS 설정 플래그를 포함하는, 간섭 측정 방법 .
【청구항 8】
제 7에 있어서,
상기 ABS 설정 플래그가 1인 경우 상기 해당 샐은 상기 단말의 서빙 셀과 ABS 설정을 공유하는 것을 지시하며 , 상기 ABS 설정 플래그가 0인 경우 상기 해당 셀은 상기 단말의 서빙 셀의 ABS 설정과 관련 없음을 지시하는, 간섭 측정 방법.
【청구항 9】
제 7항에 있어서,
상기 ABS 설정 플래그가 0인 경우, 상기 서브프레임 세트별로 각각 설정된 보정값은 동일한 것인, 간섭 측정 방법.
【청구항 10]
제 1항에 있어서,
상기 ABS 설정 플래그가 1인 경우, ABS에 관련된 서브프레임 세트를 위한 보정값은 0이고, 노멀 서브프레임에 관련된 서브프레임 세트를 위한 보정값은 1인, 간섭 측정 방법 ,
【청구항 11】
게 1항에 있어서,
상기 CRS 정보는 셀 ID( Identity), CRS 포트 수, CRS가 전송되는 주파수 정보 또는 CRS가 전송되는 시간 정보 중 하나 이상을 포함하는, 간섭 측정 방법 .
【청구항 123
게 1항에 있어서,
상기 CRS 정보는 상위계층 시그널링으로 상기 단말에게 전달되는, 간섭 측정 방법.
【청구항 13】 무선통신시스템에서 단말 장치에 있어서,
수신 모들; 및
프로세서를 포함하고,
상기 프로세서는, 이웃 샐 CRSCCell specific Reference Signal) 정보를 수신하고, 상기 CRS 정보에 기초하여 CRS 간섭 무효화 (cancellation)을 수행하며, 상기 CRS 간섭 무효화를 수행한 결과에 보정값을 적용하여 간섭을 측정하되,
상기 보정값은 제한된 측정을 위한 서브프레임 세트별로 각각 설정된 것인, 단말 장치 ·
PCT/KR2013/003080 2012-04-12 2013-04-12 무선 통신 시스템에서 간섭 측정 방법 및 장치 WO2013154382A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/391,360 US9414242B2 (en) 2012-04-12 2013-04-12 Method and device for measuring interference in wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261623550P 2012-04-12 2012-04-12
US61/623,550 2012-04-12
US201261650967P 2012-05-23 2012-05-23
US61/650,967 2012-05-23

Publications (1)

Publication Number Publication Date
WO2013154382A1 true WO2013154382A1 (ko) 2013-10-17

Family

ID=49327880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003080 WO2013154382A1 (ko) 2012-04-12 2013-04-12 무선 통신 시스템에서 간섭 측정 방법 및 장치

Country Status (2)

Country Link
US (1) US9414242B2 (ko)
WO (1) WO2013154382A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015157463A1 (en) * 2014-04-08 2015-10-15 Qualcomm Incorporated Interference cancellation
US9425915B2 (en) 2010-04-30 2016-08-23 Qualcomm Incorporated Interference cancellation
CN111294298A (zh) * 2014-01-29 2020-06-16 寰发股份有限公司 消除相邻小区数据传输的方法及用户设备

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9807632B2 (en) 2012-03-18 2017-10-31 Lg Electronics Inc. Method and apparatus for acquiring system information in wireless communication system
US9331786B2 (en) * 2012-10-05 2016-05-03 Futurewei Technologies, Inc. Managing downstream non-broadcast transmission in an ethernet passive optical network (EPON) protocol over coax (EPoC) network
USRE49468E1 (en) * 2012-10-24 2023-03-21 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving common channel information in wireless communication system
KR20150109334A (ko) * 2013-01-18 2015-10-01 엘지전자 주식회사 간섭 제거를 통한 측정 수행 방법 및 단말
US10091766B2 (en) * 2013-04-05 2018-10-02 Qualcomm Incorporated Interference cancellation/suppression in TDD wireless communications systems
JP6096142B2 (ja) * 2013-08-08 2017-03-15 株式会社Nttドコモ ユーザ端末、基地局及び無線通信方法
US9351307B2 (en) * 2014-03-31 2016-05-24 Qualcomm Incorporated CSI report with different receiver capabilities
US9525466B2 (en) * 2014-04-14 2016-12-20 Lg Electronics Inc. Method of performing interference cancellation and apparatus therefor
KR102301826B1 (ko) 2014-08-27 2021-09-14 삼성전자 주식회사 무선 통신 시스템 및 그 시스템에서 간섭 조정을 위한 자원 관리 방법
US9621301B1 (en) * 2014-12-11 2017-04-11 Sprint Spectrum L.P. Systems and methods for determining a modulation and coding scheme for a small cell
EP3547742A1 (en) * 2015-01-29 2019-10-02 Sony Corporation Apparatus and method
WO2017177366A1 (en) * 2016-04-11 2017-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for bearer establishment
US11038559B2 (en) * 2018-11-29 2021-06-15 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving signal based on beamforming in communication system
CN112637856A (zh) * 2019-10-09 2021-04-09 中兴通讯股份有限公司 终端间干扰判断方法、终端、基站及存储介质
CN115485979A (zh) * 2020-05-06 2022-12-16 联发科技股份有限公司 共存的基于ofdm无线电接入技术的干扰减轻方法
EP4009551A1 (en) * 2020-12-04 2022-06-08 Samsung Electronics Co., Ltd. Electronic device performing interference cancellation and operating method thereof
EP4200998A4 (en) * 2020-12-07 2024-02-21 Samsung Electronics Co., Ltd. DEVICE AND METHOD FOR INTERCELL INTERFERENCE CONTROL FOR A WIRELESS COMMUNICATIONS SYSTEM
US11937106B2 (en) * 2021-08-23 2024-03-19 Qualcomm Incorporated CRS rate matching request in DSS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110267937A1 (en) * 2010-04-30 2011-11-03 Qualcomm Incorporated Interference cancellation
WO2012018611A1 (en) * 2010-07-26 2012-02-09 Qualcomm Incorporated Enodeb physical layer signaling to user equipment in a wireless communication system
US20120034926A1 (en) * 2010-02-19 2012-02-09 Qualcomm Incorporated Computation of channel state feedback in systems using common reference signal interference cancelation
US20120082022A1 (en) * 2010-04-13 2012-04-05 Qualcomm Incorporated Method and apparatus for inferring user equipment interference suppression capability from measurements report

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101875616B1 (ko) * 2011-01-06 2018-08-02 엘지전자 주식회사 셀간 간섭을 해소하기 위한 방법 및 장치
KR102585652B1 (ko) * 2011-01-07 2023-10-05 인터디지탈 패튼 홀딩스, 인크 다중 송신 포인트의 채널 상태 정보(csi) 전달
WO2013009043A2 (ko) * 2011-07-08 2013-01-17 엘지전자 주식회사 무선 통신 시스템에서 하향링크 harq 송수신 방법 및 장치
EP2742716A1 (en) * 2011-08-12 2014-06-18 Interdigital Patent Holdings, Inc. Interference measurement in wireless networks
US9277513B2 (en) * 2011-09-05 2016-03-01 Lg Electronics Inc. Terminal apparatus for controlling downlink transmission power and method for same
US9225485B2 (en) * 2011-10-26 2015-12-29 Lg Electronics Inc. Method and apparatus for controlling inter-cell interference in wireless communication system
US9386535B2 (en) * 2011-10-26 2016-07-05 Lg Electronics Inc. Method for determining transmission power information of downlink subframe and apparatus therefor
CN108111196B (zh) * 2012-06-04 2021-06-18 交互数字专利控股公司 传递多个传输点的信道状态信息(csi)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034926A1 (en) * 2010-02-19 2012-02-09 Qualcomm Incorporated Computation of channel state feedback in systems using common reference signal interference cancelation
US20120082022A1 (en) * 2010-04-13 2012-04-05 Qualcomm Incorporated Method and apparatus for inferring user equipment interference suppression capability from measurements report
US20110267937A1 (en) * 2010-04-30 2011-11-03 Qualcomm Incorporated Interference cancellation
WO2012018611A1 (en) * 2010-07-26 2012-02-09 Qualcomm Incorporated Enodeb physical layer signaling to user equipment in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KDDI: "Performance evaluations of the signaling schemes for transmission power information", R1-120673, 3GPP TSG RAN WG1 MEETING #68, 10 February 2012 (2012-02-10), DRESDEN, GERMANY *
SAMSUNG: "Views on signalling requirements for CRS interference handling", R2-121495, 3GPP TSG-RAN2 MEETING #77BIS, 30 March 2012 (2012-03-30), JEJU, KOREA *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425915B2 (en) 2010-04-30 2016-08-23 Qualcomm Incorporated Interference cancellation
US9762426B2 (en) 2010-04-30 2017-09-12 Qualcomm Incorporated Interference cancellation
CN111294298A (zh) * 2014-01-29 2020-06-16 寰发股份有限公司 消除相邻小区数据传输的方法及用户设备
WO2015157463A1 (en) * 2014-04-08 2015-10-15 Qualcomm Incorporated Interference cancellation
CN106165324A (zh) * 2014-04-08 2016-11-23 高通股份有限公司 干扰消除
CN106165324B (zh) * 2014-04-08 2018-08-14 高通股份有限公司 干扰消除
EP3522406A1 (en) * 2014-04-08 2019-08-07 Qualcomm Incorporated Interference cancellation

Also Published As

Publication number Publication date
US9414242B2 (en) 2016-08-09
US20150103683A1 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
KR101618132B1 (ko) 무선 통신 시스템에서 측정 방법 및 장치
US9807632B2 (en) Method and apparatus for acquiring system information in wireless communication system
US9781623B2 (en) Method and device for measuring a downlink in a wireless communication system
KR101611328B1 (ko) 무선 통신 시스템에서 채널상태정보 전송 방법 및 장치
WO2013154382A1 (ko) 무선 통신 시스템에서 간섭 측정 방법 및 장치
US9661516B2 (en) Method and apparatus for performing measurement in wireless communication system
US9641298B2 (en) Method and device for receiving downlink signal in wireless communication system
US10009785B2 (en) Method and apparatus for carrying out measurement report in wireless communication system
WO2014025139A1 (ko) 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
US9654989B2 (en) Method and apparatus for measuring neighbor cell in wireless communication system
KR20150035556A (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
KR20150035555A (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
KR101678445B1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
WO2013133597A1 (ko) 무선 통신 시스템에서 보고를 위한 정보 전송 방법 및 장치
KR20140143162A (ko) 무선 통신 시스템에서 하향링크 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775144

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14391360

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775144

Country of ref document: EP

Kind code of ref document: A1