WO2013154077A1 - Article having fine pattern on surface thereof, manufacturing method therefor, optical article, manufacturing method therefor, and method for manufacturing duplicate mold - Google Patents

Article having fine pattern on surface thereof, manufacturing method therefor, optical article, manufacturing method therefor, and method for manufacturing duplicate mold Download PDF

Info

Publication number
WO2013154077A1
WO2013154077A1 PCT/JP2013/060655 JP2013060655W WO2013154077A1 WO 2013154077 A1 WO2013154077 A1 WO 2013154077A1 JP 2013060655 W JP2013060655 W JP 2013060655W WO 2013154077 A1 WO2013154077 A1 WO 2013154077A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine pattern
transfer material
mold
region
material film
Prior art date
Application number
PCT/JP2013/060655
Other languages
French (fr)
Japanese (ja)
Inventor
公介 高山
寛 坂本
海田 由里子
健太郎 石橋
水野 潤
庄子 習一
Original Assignee
旭硝子株式会社
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社, 学校法人早稲田大学 filed Critical 旭硝子株式会社
Publication of WO2013154077A1 publication Critical patent/WO2013154077A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention relates to an article having a fine pattern on its surface and a method for producing the same, and an optical article, a method for producing the same, and a method for producing a replica mold.
  • a nanoimprint lithography method As a method for producing an optical article having a fine pattern on its surface (for example, a wire grid polarizing element having a line-and-space fine pattern, an antireflection member having a moth-eye structure, etc.), a nanoimprint lithography method has attracted attention.
  • a method for producing the optical article by the nanoimprint lithography method for example, the following method is known. Apply the coating composition on the surface of the substrate, irradiate the light in a state where the photocurable resin composition is sandwiched between the mold and the substrate having a reverse pattern of the target fine pattern on the surface, A method of forming a cured resin layer having a desired fine pattern on the surface of a substrate after separating the mold after curing the photocurable resin composition.
  • a mold used in the nanoimprint lithography method is usually produced by forming a fine reversal pattern on the surface of a silicon or quartz substrate by an electron beam drawing method.
  • the mold since the mold has the following problems, it is difficult to increase the area of the mold. -It takes a long time to form a fine reversal pattern on the surface of a quartz substrate by an electron beam drawing method. Since the apparatus used for the electron beam drawing method has a high running cost per unit time, the mold becomes considerably expensive when the area of the mold is increased.
  • a nanoimprint mold is also produced using a stepper exposure method or a multi-beam interference exposure method.
  • a stepper exposure method or a multi-beam interference exposure method it is possible to produce a mold having a large area at a lower cost than in the electron beam drawing method, but there is a drawback that it is difficult to produce a fine pattern sufficiently smaller than the wavelength of light.
  • methods for producing regular patterns of large areas by methods such as alumina anodization and self-organization methods have also been proposed, but these methods are very easy to produce (shape, size, arrangement, etc.). There is a problem that it is limited and lacks versatility.
  • a relatively large area is used by using a relatively small area master mold as in the following method.
  • a method for producing a replica mold is conceivable.
  • a reversal pattern of a relatively small area master mold is repeatedly transferred in parallel to a transfer material film (resist film) on the surface of a relatively large area substrate to form a continuous mask pattern, and the surface of the substrate A method of forming a continuous fine pattern.
  • the method (i) since the method (i) has the following problems, it is actually difficult to produce a replica mold having a relatively large area.
  • excess transfer material is pushed out to the periphery of the master mold, so that the periphery of the area where the reverse pattern of the master mold is transferred rises. Therefore, the master mold cannot be pressed against the transfer material film in the area adjacent to the area during the next transfer.
  • When transferring, it is necessary to cure the transfer material film by irradiating light with the master mold pressed against the transfer material film, but light leaks around the area where the reverse pattern of the master mold is transferred. As a result, the transfer material film is cured.
  • the master mold cannot be pressed against the transfer material film in the area adjacent to the area during the next transfer. -When the master mold is pressed against the transfer material film, excess transfer material is pushed out to the periphery of the master mold, so it is pushed out to the area where the mask pattern is already formed adjacent to the area where the transfer is performed. The transfer material will flow and become contaminated.
  • Patent Document 1 As a method for solving this problem, the following method has been proposed (Patent Document 1). (Ii) a step of forming a transfer material film on the surface of the substrate, a step of repeatedly transferring the reverse pattern of the master mold to the transfer material film, a step of etching using the transfer material film as an etching mask, and removing the remaining transfer material film
  • the first step is to form a fine pattern having the same area as the reverse pattern of the master mold in the first cycle, and a fine pattern having the same area as the reverse pattern of the master mold in the second cycle.
  • a method of repeating the cycle twice so that the formed second regions are adjacent and alternately arranged see FIGS. 3 and 4 of Patent Document 1).
  • the plurality of first regions in which the fine pattern is formed in the first cycle can be separated from the second region in which the fine pattern is formed in the second cycle. it can.
  • the plurality of second regions in which the fine pattern is formed in the second cycle can be separated by the amount of the first region in which the fine pattern is formed in the first cycle. Accordingly, each problem in the method (i) is solved in each cycle of the method (ii).
  • the method (ii) has the following problems.
  • a part of the transfer material applied on the first region of the surface of the substrate flows into the concave portion of the fine pattern formed in the first region.
  • the thickness of the transfer material film existing thereon is reduced (see FIGS. 4 and 5 of Patent Document 1). Therefore, depending on the target etching depth, during the etching in the second cycle, the transfer material film existing on the first region is completely etched, and the fine pattern in the first region is further etched. Thus, a fine pattern having a desired shape may not be obtained. For this reason, the fine pattern of the first region becomes a defect, or the fine pattern varies between the first region and the second region.
  • the present invention includes a step of forming a transfer material film on the surface of a substrate, a step of transferring a mold reversal pattern to the transfer material film, a step of etching using the transfer material film as an etching mask, and removing the remaining transfer material film.
  • the fine pattern formed in the first cycle is etched in the second cycle. Provide a method that never happens.
  • the method for producing an article having a fine pattern on the surface of the present invention forms a fine pattern in each of the first region on the surface of the substrate and the second region at a position different from the first region.
  • a method for producing an article having a fine pattern on its surface (A) applying a coating composition containing a transfer material to the surface of the substrate to form a first transfer material film; (B) In the first region, the reversal pattern of the mold having the reversal pattern of the fine pattern on the surface is transferred to the first transfer material film, and the fine pattern is transferred to the first transfer material film.
  • r is the etching rate of the second transfer material film
  • H is the target etching depth in the second region
  • R is the etching rate of the substrate
  • t It is the thickness of the remaining film between the concave portion of the mask pattern and the base material in the second region.
  • the first region and the second region are preferably adjacent to each other.
  • the base material preferably includes a plurality of the first regions and a plurality of the second regions, and the first regions and the second regions are alternately arranged.
  • the coating composition and its coating amount in the step (a) are the same as the coating composition and its coating amount in the step (e), and the mold and the coating in the step (b)
  • the formation conditions of the mask pattern are the same as the formation conditions of the mold and the mask pattern in the step (f), and the etching conditions in the step (c) are the same as the etching conditions in the step (g). Preferably there is.
  • the article having the fine pattern of the present invention on the surface is produced by the method for producing an article having the fine pattern of the present invention on the surface.
  • the optical article manufacturing method of the present invention is a method of manufacturing an optical article having a fine pattern on its surface, the article having the fine pattern of the present invention on its surface, and a reverse pattern of the fine pattern of the optical article on its surface. It is used as a mold having, and the reverse pattern of the mold is transferred to the surface of a transparent substrate.
  • the manufacturing method of the optical article of this invention has the following process. (X) The process of apply
  • (Y) An article having the fine pattern on the surface is used as a mold having a reverse pattern of the fine pattern of the optical article on the surface, and the photocurable resin layer is sandwiched between the mold and the transparent substrate. The process of irradiating light in a state and curing the photocurable resin layer to form a cured resin layer.
  • the optical article of the present invention is manufactured by the method for manufacturing an optical article of the present invention (for example, a wire grid polarizing element, an antireflection member, etc.).
  • the method for producing a replica mold of the present invention is to manufacture a replica mold using the article having the fine pattern of the present invention on the surface as a master mold, or to further manufacture a replica mold using the replica mold as a master mold. It is characterized by.
  • the step of forming a transfer material film on the surface of the substrate, the step of transferring the reverse pattern of the mold to the transfer material film, and using the transfer material film as an etching mask In the method of manufacturing an article having a fine pattern on the surface by repeating the cycle twice, the step of performing etching and the step of removing the remaining transfer material film being performed twice, during the etching in the second cycle, The fine pattern formed in the first cycle is not etched.
  • the article having the fine pattern of the present invention on the surface has a relatively large fine pattern and few defects in the fine pattern and variations in shape.
  • an optical article can be produced in which the fine pattern has a relatively large area and the fine pattern has few defects and variations in shape.
  • the fine pattern has a relatively large area, and there are few defects in the fine pattern and variations in shape.
  • a replication mold can be manufactured in which a fine pattern has a relatively large area and there are few defects in the fine pattern and variations in shape.
  • FIG. 2 is a II-II sectional view of an article having the fine pattern of FIG. 1 on its surface.
  • FIG. 3 is a cross-sectional view for explaining steps (a) to (d) in the method for producing an article having a fine pattern on the surface according to the present invention.
  • FIG. 5 is a cross-sectional view for explaining steps (e) to (h) in the method for producing an article having a fine pattern on the surface thereof according to the present invention. It is sectional drawing of the base material which has the 2nd transcription
  • FIG. 5 is a cross-sectional view for explaining steps (x) to (z) in the method for producing an optical article of the present invention.
  • a fine pattern or inverted pattern refers to a shape composed of one or more protrusions and / or recesses having a minimum dimension of 1 nm to 100 ⁇ m among width, length and height (ie, depth).
  • the region refers to a region where a fine pattern obtained by inverting the reversal pattern for one mold is formed, that is, a region having substantially the same area as the reversal pattern of the mold.
  • the transfer material film is a film made of a transfer material (for example, a photocurable resin, a thermosetting resin, a thermoplastic resin, or the like), a film in which the transfer material in the film is chemically changed, or an original transfer material film.
  • the transfer material refers to a film that has changed physically (for example, its shape has changed). Therefore, when the transfer material is a curable resin, the transfer material film before and after transferring the fine pattern of the mold changes to a chemically different state due to curing, and before or after transferring the fine pattern of the mold or etched. Although the shape of the transfer material film before and after the change has changed, these are all called transfer material films. In addition, when the transfer material is a thermoplastic resin, the shape of the transfer material film before and after the transfer of the fine pattern of the mold or before and after the etching is changed, all of which are referred to as a transfer material film.
  • the (meth) acryloyloxy group refers to an acryloyloxy group or a methacryloyloxy group.
  • (Meth) acrylate refers to acrylate or methacrylate.
  • the fine pattern is formed in each of the first region on the surface of the substrate and the second region at a position different from the first region. It has been done.
  • FIG. 1 is a top view showing an example of an article having a fine pattern on its surface
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the article 10 has a fine pattern 20 composed of a plurality of convex portions 22 and concave portions 24 between the convex portions 22 on the surface of the substrate 12.
  • a rectangular first region (I) in which a fine pattern 20 is formed in a first cycle described later and a rectangular second region in which a fine pattern 20 is formed in a second cycle described later. (II) are adjacent to each other and alternately arranged in the X direction and the Y direction.
  • base material examples include silicon (for example, single crystal silicon, polysilicon, amorphous silicon, etc.), quartz, glass, silicon nitride, aluminum nitride, silicon carbide, sapphire, lithium niobate, lithium tantalate, metal (for example, Aluminum, nickel, copper, etc.), metal oxides (eg, alumina, zinc oxide, magnesium oxide, etc.), and oxide and / or metal layers (eg, chromium, aluminum, nickel, molybdenum) on the surface of these substrates , Tantalum, tungsten, ITO, tin oxide, gold, silver, copper, platinum, titanium, etc.), and various resins.
  • silicon, quartz or glass is preferable when an article having a fine pattern to be obtained is used as a mold.
  • the base material may be surface-treated from the viewpoint of further improving the adhesion with a transfer material film described later.
  • Surface treatment includes primer coating treatment, ozone treatment, UV cleaning treatment, plasma treatment, corona treatment, flame treatment, itro treatment (a kind of treatment of Combustion Chemical Vapor Deposition developed by ITRO), SPM (Sulfuric Acid Hydrogen Peroxide) Mixture) and the like.
  • primer include silane coupling agents, alkoxysilanes, and silazanes.
  • a fine pattern is formed on the surface of the substrate.
  • the fine pattern is a pattern formed by transferring a reverse pattern on the surface of the mold to be described later.
  • the fine pattern is composed of a plurality of convex portions and concave portions between the convex portions.
  • Examples of the shape of the ridge include a straight line, a curved line, a bent shape, and the like as shown in the illustrated example. As shown in the illustrated example, a plurality of ridges may exist in parallel to form stripes. Examples of the cross-sectional shape of the ridge in the direction perpendicular to the longitudinal direction include a rectangle, a trapezoid, a triangle, and a semicircle as shown in the illustrated example. Examples of the shape of the protrusion include a triangular prism, a quadrangular prism, a hexagonal prism, a cylinder, a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, a cone, a hemisphere, and a polyhedron.
  • the width of the ridge is preferably 1 nm to 100 ⁇ m, more preferably 1 nm to 10 ⁇ m, and particularly preferably 10 nm to 500 nm.
  • the width of the ridge means the full width at half maximum in the cross section in the direction orthogonal to the longitudinal direction.
  • the width of the protrusion is preferably 1 nm to 100 ⁇ m, more preferably 1 nm to 10 ⁇ m, and particularly preferably 10 nm to 500 nm.
  • the width of the protrusion means the full width at half maximum in the cross section perpendicular to the longitudinal direction when the bottom surface is elongated, and when the bottom surface of the protrusion is not elongated, it passes through the center of gravity in the horizontal section at a position half the height of the protrusion. Means the minimum length of a line.
  • the height of the convex portion is preferably 1 nm to 100 ⁇ m, more preferably 1 nm to 10 ⁇ m, and even more preferably 10 nm to 500 nm.
  • the interval between adjacent convex portions is preferably 1 nm to 100 ⁇ m, more preferably 1 nm to 10 ⁇ m, and even more preferably 10 nm to 500 nm.
  • the interval between the adjacent convex portions means the distance from the starting end of the base of the cross section of the convex portion to the starting end of the base of the cross section of the adjacent convex portion.
  • Each dimension is an average of dimensions measured at three locations.
  • the minimum dimension of the convex portion is preferably 1 nm to 100 ⁇ m, more preferably 1 nm to 10 ⁇ m, and particularly preferably 10 nm to 500 nm.
  • the minimum dimension means the minimum dimension among the width, length, and height of the convex portion.
  • the minimum dimension of the recess is preferably 1 nm to 100 ⁇ m, more preferably 1 nm to 10 ⁇ m, and particularly preferably 10 nm to 500 nm.
  • the minimum dimension means the minimum dimension among the width, length and depth of the recess.
  • the first region is a region where a fine pattern is formed by steps (a) to (d) described later.
  • step (b) which will be described later, a reversal pattern for one mold is transferred to form a mask pattern.
  • step (c) a region in which a fine pattern corresponding to the mask pattern is formed by etching is designated as one region. Count as the first region. Therefore, in the step (b), when the reversal pattern of the mold is repeatedly transferred to the first transfer material film, the same number of first regions as the number of repetitions exists on the surface of the substrate.
  • the second region is a region where a fine pattern is formed by steps (e) to (h) described later.
  • step (f) described later a reversal pattern for one mold is transferred to form a mask pattern, and in step (g), a region where a fine pattern corresponding to the mask pattern is formed by etching Count as the second region. Therefore, in the step (f), when the reversal pattern of the mold is repeatedly transferred to the second transfer material film, the same number of second regions as the number of repetitions exists on the surface of the substrate.
  • the first region and the second region may be adjacent to each other or may be separated from each other.
  • the first region and the second region are preferably adjacent to each other from the point that the fine pattern can be enlarged and the area utilization efficiency can be increased.
  • the fine pattern of the first region and the fine pattern of the second region are continuous. That is, in the case of ridges and grooves, these extend without a break in the longitudinal direction and without shifting in the width direction, and in the case of protrusions or holes, it is preferable that these exist periodically and repeatedly.
  • the base material may have one each of the first region and the second region, and may have either one or a plurality of both.
  • the base material preferably has a plurality of first regions and a plurality of second regions from the viewpoint of efficiently increasing the area of the fine pattern.
  • the first region and the second region are not caused by the problem in the conventional method (i) described above. It is preferable that the lengths of the first region and the second region that are alternately arranged are as short as possible.
  • Articles having fine patterns on the surface obtained by the production method of the present invention can be used as molds, optical articles (for example, optical elements, antireflection members, etc.), biochips, microreactor chips, catalyst carriers, and the like. .
  • Articles having a fine pattern on the surface obtained by the production method of the present invention can be used as a mold for producing optical articles, semiconductor devices, recording media, etc. by the nanoimprint lithography method, and require a large-area mold. Suitable for the production of optical articles.
  • the method for producing an article having a fine pattern on the surface of the present invention comprises a first cycle comprising the following steps (a) to (d) and a second cycle comprising the following steps (e) to (h): It is the method which has.
  • etching is performed using the second transfer material film 16 on which the mask pattern 28 is formed as an etching mask, and the fine pattern 20 is formed in the second region (II) on the surface of the substrate 12.
  • Forming step. (H) A step of removing the second transfer material film 16 remaining on the surface of the substrate 12 as shown in FIG.
  • the transfer device is preferably a device provided with an XY movable stage for mechanically adjusting the transfer position.
  • the first transfer material film 14 is formed by applying a liquid coating composition containing a transfer material to the surface of the substrate 12 and drying it when the coating composition contains a solvent.
  • a coating method of the coating composition spin coating method, die coating method, dip coating method, ink jet method, potting method, roll coating method, casting method, bar coating method, spray coating method, blade coating method, gravure coating method Etc.
  • a spin coating method, a die coating method, a spray coating method or an ink jet method is preferable.
  • the drying temperature is preferably 60 ° C. or higher, and more preferably 80 ° C. or higher. If drying temperature is 60 degreeC or more, there exists an advantage which can remove a solvent in a short time.
  • the upper limit of the drying temperature is preferably 200 ° C. from the viewpoint of suppressing thermal decomposition of the coating composition.
  • the drying time is preferably 30 seconds to 5 minutes.
  • the thickness of the first transfer material film (here, when the coating composition contains a solvent, the thickness after drying), that is, the coating amount of the coating composition is the target etching depth. What is necessary is just to set suitably according to (that is, the depth of the recessed part of a fine pattern), the etching rate of a transfer material film, and the etching rate of a base material.
  • the substrate examples include those described above.
  • silicon, quartz or glass is preferable.
  • the transfer material is a photocurable resin
  • at least one of the base material and the mold is a material that transmits 40% or more of light having a wavelength at which the photopolymerization initiator of the coating composition acts.
  • the transfer material examples include a photocurable resin, a thermosetting resin, and a thermoplastic resin. From the viewpoint that the step (b) can be carried out efficiently, the transfer material is preferably a photocurable resin. In the following description, only the case where the transfer material is a photocurable resin is described, and the case where the transfer material is a thermosetting resin or a thermoplastic resin is omitted.
  • the coating composition contains a photocurable resin, and optionally contains a fluorine-containing surfactant, a photopolymerization initiator, a solvent, and other additives.
  • a compound having a (meth) acryloyloxy group is preferable from the viewpoint that the curing speed is high and the transparency of the cured product is high.
  • a compound having a (meth) acryloyloxy group hereinafter also referred to as a (meth) acrylate compound
  • a compound having 1 to 15 (meth) acryloyloxy groups per molecule is preferable.
  • the (meth) acrylate compound may be a relatively low molecular compound (hereinafter referred to as an acrylate monomer), and a relatively high molecular weight compound (hereinafter referred to as (meth) acrylate) having two or more repeating units. May be referred to as a system oligomer).
  • Examples of the (meth) acrylate compound include one or more (meth) acrylate monomers, one or more (meth) acrylate oligomers, one or more (meth) acrylate monomers (meth) And) one or more of acrylate oligomers.
  • the (meth) acrylate-based oligomer has a molecular structure (meta) having a molecular chain having two or more repeating units (for example, a polyurethane chain, a polyester chain, a polyether chain, a polycarbonate chain, etc.) and a (meth) acryloyloxy group. ) Acrylate oligomers, urethane bond and two or more (meth) acryloyl from the viewpoint of easy adjustment of the flexibility and surface hardness of the cured film and excellent adhesion to the substrate.
  • metal molecular structure having a molecular chain having two or more repeating units (for example, a polyurethane chain, a polyester chain, a polyether chain, a polycarbonate chain, etc.) and a (meth) acryloyloxy group.
  • a urethane (meth) acrylate oligomer having an oxy group is more preferable, and a urethane (meth) acrylate oligomer having a urethane bond and 6 to 15 (meth) acryloyloxy groups is more preferable.
  • the ratio of the solvent in the coating composition is preferably designed so as to obtain a target film thickness after drying, depending on the coating means used. Diluting with a solvent reduces the viscosity of the coating composition and makes it easier to apply a thin film, and evaporates the solvent after application to reduce the film thickness, which makes it easier to obtain a thin film. .
  • the coating composition preferably contains a fluorine-containing surfactant from the viewpoint of flatness of the transfer material film and releasability between the transfer material film and the mold.
  • a fluorine-containing surfactant a fluorine-containing surfactant having a fluorine content of 10 to 70% by mass is preferable, and a fluorine-containing surfactant having a fluorine content of 10 to 40% by mass is more preferable.
  • the fluorine-containing surfactant may be water-soluble or fat-soluble.
  • an anionic fluorine-containing surfactant an anionic fluorine-containing surfactant, a cationic fluorine-containing surfactant, an amphoteric fluorine-containing surfactant, or a nonionic fluorine-containing surfactant is preferable, and the compatibility in the coating composition From the viewpoint of dispersibility in the transfer material film, a nonionic fluorine-containing surfactant is more preferable.
  • the proportion of the fluorine-containing surfactant in the coating composition is preferably 0.05 to 5% by mass, based on 100% by mass of the component remaining as the cured resin in the coating composition, 1 to 5% by mass is more preferable.
  • the ratio of the fluorine-containing surfactant is 0.05% by mass or more, the flatness of the transfer material film and the releasability between the transfer material film and the mold are good. If the ratio of a fluorine-containing surfactant is 5 mass% or less, it will be easy to maintain the state of uniform mixing stably with the other component of the coating composition, and the influence on the resin pattern shape after hardening will also be suppressed.
  • the composition for coating contains a photoinitiator from a photocurable point of view.
  • photopolymerization initiators acetophenone photopolymerization initiator, benzoin photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, ⁇ -aminoketone photopolymerization initiator, ⁇ -hydroxyketone photopolymerization initiator Polymerization initiator, ⁇ -acyl oxime ester, benzyl- (o-ethoxycarbonyl) - ⁇ -monooxime, acyl phosphine oxide, glyoxy ester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, tetramethylthiuram sulfide, azo Examples thereof include bisisobutyronitrile, benzoyl peroxide, dialkyl peroxide, tert-butyl peroxypivalate and the
  • acetophenone photopolymerization initiator benzoin photopolymerization initiator, ⁇ - Aminoketone photopolymerization initiator
  • benzophenone photopolymerization initiator is preferred.
  • the proportion of the photopolymerization initiator in the coating composition is preferably 0.01 to 5.0% by mass, based on 100% by mass of the component remaining as the cured resin in the coating composition. More preferably, the content is 1 to 3.0% by mass. If the ratio of the photopolymerization initiator is 0.01% by mass or more, curing can be carried out with a small amount of light, and therefore the time required for the process can be shortened. If the ratio of a photoinitiator is 5.0 mass% or less, it will be easy to mix uniformly with the other component of the coating composition, and the fall of the intensity
  • the coating composition contains a solvent.
  • the solvent include esters, ketones, alcohols, cyclic ethers and the like.
  • the coating composition contains other additives such as photosensitizers, polymerization inhibitors, resins, metal oxide fine particles, carbon compounds, metal fine particles, and other organic compounds as long as the effects of the present invention are not impaired. May be included.
  • the mold 30 having a rectangular surface (the surface on which the reversal pattern 26 is formed) in contact with the first transfer material film 14 is pressed against the first transfer material film 14, thereby In a state where the first transfer material film 14 is sandwiched between the material 12, only the first transfer material film 14 sandwiched between the mold 30 and the substrate 12 is selectively irradiated with light, The first transfer material film 14 is cured. After the first transfer material film 14 is cured, the mold 30 is separated from the first transfer material film 14. In this way, the reverse pattern 26 of the mold 30 is transferred to the first transfer material film 14, and the mask pattern 28 corresponding to the fine pattern 20 is formed on the first transfer material film 14 in the first region (I). Form.
  • the step (b) is repeated for the number of first regions (I). Further, when the step (b) is repeatedly performed, the first region (I) and the second region (II) are adjacent to each other and the X direction and the Y direction are transferred to the next step (b). It is preferable to move the mold 30 or the substrate 12 in the plane direction (X direction or Y direction) and in parallel by the second region (II) so as to be alternately arranged in each direction. After the mask pattern 28 is formed on the first transfer material film 14 in all the first regions (I), the entire surface of the first transfer material film 14 is irradiated with light, and the regions other than the first region (I) The first transfer material film 14 is cured.
  • the pressure applied from the mold to the transfer material film is preferably 0.05 MPa or more, more preferably 0.3 MPa or more, and particularly preferably 2 MPa or more.
  • the pressure applied to the transfer material film from the mold is preferably 50 MPa or less from the viewpoint of the durability of the substrate and the mold.
  • the sandwiching of the transfer material film between the mold and the base material may be performed under atmospheric pressure or under reduced pressure.
  • a large-scale apparatus for depressurization is not required, the time for the process is shortened, and volatilization of components contained in the transfer material film is suppressed.
  • reduced pressure there is an advantage that the entrapment of bubbles at the time of pinching is suppressed and the photocurable resin is easily filled in the grooves and holes.
  • Examples of the light applied to the transfer material film include ultraviolet rays, visible rays, infrared rays, electron beams, and radiation.
  • Examples of ultraviolet light sources include germicidal lamps, ultraviolet fluorescent lamps, carbon arcs, xenon lamps, high pressure mercury lamps for copying, medium or high pressure mercury lamps, ultrahigh pressure mercury lamps, electrodeless lamps, metal halide lamps, natural light, and the like. Irradiation with light may be performed under normal pressure or under reduced pressure. Moreover, you may carry out in air and you may carry out in inert gas atmospheres, such as nitrogen atmosphere and a carbon dioxide atmosphere.
  • the mold material examples include a non-light-transmitting material and a light-transmitting material.
  • the non-translucent material include silicon, metal (for example, nickel, copper, stainless steel, titanium, etc.), SiC, mica, and the like.
  • the light-transmitting material include quartz, glass, and various resins (for example, polydimethylsiloxane, cyclic polyolefin, polycarbonate, polyethylene terephthalate, and transparent fluororesin).
  • At least one of the mold and the base material is a material that transmits 40% or more of light having a wavelength at which the photopolymerization initiator acts.
  • Etching is performed using the first transfer material film 14 on which the mask pattern 28 is formed as an etching mask to form the fine pattern 20 in the first region (I) on the surface of the substrate 12.
  • the etching method include known methods, and an etching method using a halogen-based gas is preferable.
  • the first transfer material film 14 remaining on the surface of the substrate 12 is removed.
  • the removal method include wet treatment with a stripping solution, dry treatment with oxygen plasma, vacuum ultraviolet rays, and the like, and heat treatment at a temperature that promotes thermal decomposition of the transfer material.
  • Process (e) Formation of second transfer material film
  • a liquid coating composition containing a transfer material is applied to the surface of the substrate 12 on which the fine pattern 20 is formed in the first region (I), and is dried when the coating composition contains a solvent.
  • the second transfer material film 16 is formed.
  • the step (e) may be performed in the same manner as the step (a), and the description of the same contents as the step (a) is omitted.
  • the thickness of the second transfer material film (the thickness after drying when the coating composition contains a solvent), that is, the coating amount of the coating composition is the target etching depth in the second region ( In other words, the depth of the concave portion of the fine pattern), the etching rate of the transfer material film, and the etching rate of the substrate may be set as appropriate.
  • the step (f) is repeated for the number of the second regions (II).
  • the first region (I) and the second region (II) are adjacent to each other and the X direction and the Y direction are transferred to the next step (f). It is preferable to move the mold 30 or the substrate 12 in the plane direction (X direction or Y direction) and in parallel by the first region (I) so as to be alternately arranged in each direction.
  • the entire surface of the second transfer material film 16 is irradiated with light, and the regions other than the second region (II)
  • the second transfer material film 16 is cured.
  • the position of the mold or the substrate is corrected so that the fine pattern in the first region and the fine pattern in the second region are continuous. Preferably it is done. Correction of the position of the mold or the substrate can be performed by a known method such as a correction method described in Patent Document 1.
  • Step (g) Etching is performed using the second transfer material film 16 on which the mask pattern 28 is formed as an etching mask to form the fine pattern 20 in the second region (II) on the surface of the substrate 12.
  • the step (g) may be performed in the same manner as the step (c), and the description of the same contents as the step (c) is omitted.
  • FIG. 5 is a cross-sectional view of the base material 12 having the second transfer material film 16 on which the mask pattern 28 is formed on the surface just before the step (g).
  • the thickness d of the second transfer material film 16 existing on the first region (I) on the surface of the substrate 12 is expressed by the following formula (1). It is necessary to be satisfied. r ⁇ (H / R) + t ⁇ d (1).
  • d is the thickness of the second transfer material film 16 existing on the first region (I) on the surface of the substrate 12, that is, the depressed portion from the top of the fine pattern 20 in the first region (I). It is the distance in the thickness direction to the bottom of 18.
  • r is the etching rate of the second transfer material film 16. In the case where the second transfer material film 16 is etched in advance with a thickness smaller than the thickness t of the remaining film by etching using oxygen gas, when etching using halogen gas is performed, halogen gas is used.
  • Etching rate in etching using H is the target etching depth in the second region (II), that is, the depth of the concave portion 24 of the fine pattern 20.
  • R is the etching rate of the substrate 12.
  • t is the thickness of the remaining film between the concave portion of the mask pattern 28 and the substrate 12 in the second region (II).
  • Equation (1) is the time required to etch the substrate 12 by the target etching depth H. Therefore, “r ⁇ (H / R)” in Equation (1) is the thickness of the second transfer material film 16 that is etched while the substrate 12 is being etched by the target etching depth H. Therefore, the thickness d is equal to the thickness of the second transfer material film 16 to be etched while the remaining film is being etched (equal to the thickness t), and the substrate 12 is etched by the target etching depth H. If the thickness is larger than the sum of the thickness (r ⁇ (H / R)) of the second transfer material film 16 that is etched during the process, the surface of the substrate 12 is obtained even at the end of the step (g).
  • the second transfer material film 16 remains on the first region (I). Therefore, the fine pattern 20 in the first region (I) is not etched in the step (g), and the fine pattern 20 having a desired shape is obtained also in the first region (I). As a result, defects in the fine pattern 20 in the first region (I) and variations in the fine pattern 20 between the first region (I) and the second region (II) are reduced.
  • the thickness d In order for the thickness d to satisfy the formula (1), for example, the following adjustment is performed. ( ⁇ ) The target etching depth H in the second region (II) is decreased. ( ⁇ ) The thickness d of the second transfer material film 16 existing on the first region (I) on the surface of the substrate 12 is increased. ( ⁇ ) Increase the resist selectivity (R / r). ( ⁇ ) Decrease the thickness t of the remaining film. ( ⁇ ) A preliminary experiment is performed to examine the coating amount of the coating composition having a thickness d satisfying the formula (1).
  • the amount of the coating composition flowing into the concave portion 24 of the fine pattern 20 in the first region (I) is reduced, and the thickness d can be increased.
  • the depth of the concave portion 24 of the fine pattern 20 in the first region (I) is decreased.
  • the aperture ratio of the fine pattern 20 in the first region (I) (the width of the concave portion 24 / (the width of the convex portion 22 + the width of the concave portion 24)) is reduced.
  • the remaining film thickness t can be reduced and the left side of the above formula (1) can be reduced.
  • (1) Reduce the coating amount of the coating composition.
  • (2) The pressure applied from the mold 30 to the second transfer material film 16 is increased.
  • (3) The depth of the concave portion of the reversal pattern 26 of the mold 30 is increased.
  • (4) The aperture ratio of the reversal pattern 26 of the mold 30 is increased. Since the thickness d is also reduced in the method (1), it is preferable to adjust the thickness t of the remaining film by the methods (2) to (4).
  • the following methods (1) to (3) are particularly effective among ( ⁇ ) to ( ⁇ ).
  • the coating composition and its coating amount in the step (a) are the same as the coating composition and its coating amount in the step (e), and the mold and the coating in the step (b)
  • the formation conditions of the mask pattern are the same as the formation conditions of the mold and the mask pattern in the step (f), and the etching conditions in the step (c) are the same as the etching conditions in the step (g). Preferably there is.
  • Step (h) After the etching, the second transfer material film 16 remaining on the surface of the substrate 12 is removed. Step (h) may be performed in the same manner as step (d), and the description of the same contents as step (d) will be omitted.
  • the step of forming the transfer material film on the surface of the substrate, the step of transferring the reversal pattern of the mold to the transfer material film, the transfer material film In the method of performing the etching using the etching mask and the step of removing the remaining transfer material film as one cycle and repeating the cycle twice (that is, the method having the steps (a) to (h) described above), the second time Of the second pattern existing on the fine pattern formed in the first cycle (that is, on the first region of the surface of the substrate) immediately before the etching of the cycle (that is, step (g) described above).
  • the second pattern is formed on the fine pattern formed in the first cycle even at the end of the second cycle etching. Copy material film remains. Therefore, the fine pattern formed in the first cycle is not etched during the etching in the second cycle.
  • an article having a fine pattern on the surface obtained by the production method of the present invention includes a step of forming a transfer material film on the surface of a substrate, a step of transferring a reverse pattern of a mold to the transfer material film, and etching the transfer material film. Since the process of etching as a mask and the process of removing the remaining transfer material film are defined as one cycle and the cycle is repeated twice (that is, the method having the steps (a) to (h) described above), A fine pattern has a relatively large area. Further, since the fine pattern formed in the first cycle is manufactured by a method in which the fine pattern formed in the first cycle is not etched during etching in the second cycle, there are few fine pattern defects and shape variations.
  • optical article of the present invention is manufactured by the optical article manufacturing method of the present invention described later.
  • the description of the same content as the article having the fine pattern of the present invention on the surface is omitted.
  • FIG. 6 is a cross-sectional view showing an example of an optical article.
  • the optical article 40 includes a transparent substrate 42 and a cured resin layer 44 formed on the surface of the transparent substrate 42, and the cured resin layer 44 has a fine pattern 50.
  • Examples of the material of the transparent substrate 42 include quartz, glass, metal oxide, various resins, and the like.
  • the transparent substrate 42 may be surface-treated from the viewpoint of further improving the adhesion with the cured resin layer 44.
  • the curable resin layer 44 is formed by applying a coating composition containing a photocurable resin (that is, a photocurable resin composition) to the surface of the transparent substrate 42 and curing the photocurable resin composition by light irradiation. It is a layer formed by this.
  • a photocurable resin that is, a photocurable resin composition
  • the cured resin layer 44 has a fine pattern 50 on the surface.
  • the fine pattern 50 is a pattern formed by transferring a reverse pattern on the surface of the mold to be described later.
  • the fine pattern 50 includes a plurality of convex portions 52 and concave portions 54 between the convex portions 52.
  • the convex part 52 As the convex part 52, the protruding item
  • the above-described optical article can obtain a fine pattern having a relatively large area, has few defects in the fine pattern and variations in shape, and can be preferably used as an optical component such as a wire grid polarizing element or an antireflection member. .
  • the method for producing an optical article of the present invention uses an article having the fine pattern of the present invention on the surface as a mold having a reverse pattern of the fine pattern of the optical article on the surface, and uses the reverse pattern of the mold on the surface of the transparent substrate. It is a method of transcription.
  • Examples of methods for transferring the mold reversal pattern to the surface of the transparent substrate include photo nanoimprint lithography using a photocurable resin as a transfer material, and thermal nanoimprint lithography using a thermosetting resin or thermoplastic resin as a transfer material. Can be mentioned.
  • the optical nanoimprint lithography method is preferable from the viewpoint that the reversal pattern of the mold can be efficiently transferred onto the surface of the transparent substrate. In the following description, only the case where the transfer method is an optical nanoimprint lithography method will be described, and the case where the transfer method is a thermal nanoimprint lithography method will be omitted.
  • Examples of the method for producing an optical article of the present invention include a method having the following steps (x) to (z).
  • (X) A step of forming a photocurable resin layer 46 by applying a coating composition containing a photocurable resin as a transfer material to the surface of the transparent substrate 42 as shown in FIG.
  • (Y) As shown in FIG. 7, light is irradiated in a state where a photocurable resin layer 46 is sandwiched between a mold 60 having a reverse pattern of the fine pattern 50 on the surface and a transparent substrate 42, A step of curing the photocurable resin layer 46 to form a cured resin layer 44.
  • (Z) A step of obtaining the optical article 40 by separating the mold 60 from the cured resin layer 44.
  • Step (x) may be performed in the same manner as step (a), and the description of the same contents as step (a) will be omitted. What is necessary is just to use the thing similar to the composition for coating in a process (a) as a composition for coating in this process.
  • Step (y) may be performed in the same manner as step (b), and the description of the same contents as step (b) is omitted.
  • the mold 60 the article 10 having the fine pattern of the present invention on the surface and the mold having the reverse pattern of the fine pattern 50 of the optical article 40 on the surface are used.
  • Examples of the method for separating the mold 60 from the cured resin layer 44 include a method in which both are fixed by vacuum suction and moved in a direction in which one is released, a method in which both are mechanically fixed and moved in a direction in which one is released. It is done. After separating the mold 60 from the cured resin layer 44, the cured resin layer 44 may be further cured. Examples of the curing method include heat treatment and light irradiation. By the manufacturing method including the steps (x) to (z) described above, an optical component such as a wire grid polarizing element or an antireflection member can be preferably manufactured.
  • An optical article obtained by the manufacturing method of the present invention is manufactured using an article having a fine pattern of the present invention on its surface as a mold, which has a relatively large fine pattern and few defects and variations in shape of the fine pattern. Therefore, the fine pattern has a relatively large area, and there are few defects and variations in the shape of the fine pattern.
  • the method for producing a replication mold of the present invention is a method for manufacturing a replication mold (that is, a child mold) using the article having the fine pattern of the present invention on the surface as a master mold.
  • the following method etc. are mentioned as a concrete manufacturing method of a replication mold.
  • the obtained replica mold may be used as a master mold to further manufacture a replica mold (that is, a grandchild mold).
  • the thickness of the transfer material film present on the flat surface of the substrate was measured using a tabletop film thickness measurement system (F20, manufactured by Filmetrics).
  • the thickness d of the second transfer material film existing on the first region on the surface of the substrate was determined as follows. For the peripheral edge of the depressed portion formed in the second transfer material film existing on the first region, the step amount is measured using a scanning probe microscope (SII Nanotechnology, L-trace, Nanoavi). went. The thickness d was determined by subtracting the step amount from the thickness of the second transfer material film present on the flat surface of the substrate.
  • a fine pattern of the obtained article was observed using a scanning probe microscope (manufactured by SII Nanotechnology, L-trace, Nanoavi) and evaluated according to the following criteria.
  • Example 1 (Process (a)) The prepared primer is dropped with a dropper onto the surface of a circular silicon substrate having a diameter of 4 inches (SUMCO Co., Ltd., thickness: 525 ⁇ m, ⁇ 1.0.0> surface, single-sided mirror wafer), and 4000 rpm using a spin coater. Then, spin coating was performed for 20 seconds, followed by heat treatment at 130 ° C. for 10 minutes on a hot plate. .
  • the coating composition is dropped onto the surface of the silicon substrate subjected to the primer treatment with a dropper, spin-coated at 3000 rpm for 20 seconds using a spin coater, and then heated at 70 ° C. for 2 minutes on a hot plate. Then, the solvent was removed from the coating film to form a first transfer material film. Table 1 shows the thickness of the first transfer material film.
  • a quartz mold having a fine pattern of line and space (pattern area size: 22 mm ⁇ 22 mm, line width: 60 nm, space groove width: 60 nm, and first transfer material film in the first region, (Pitch: 120 nm, groove depth: 120 nm, external size: 22 mm ⁇ 22 mm, thickness: 6.35 mm) using a nanoimprint apparatus (manufactured by Toshiba Machine Co., Ltd., ST50) at 25 ° C. under atmospheric pressure at 3 MPa. The pressure was pressed for 40 seconds so as to be in close contact, and the fine pattern area of the quartz mold was irradiated with ultraviolet rays (1000 mJ / cm 2 ) through the quartz mold in that state. Thereafter, the quartz mold was peeled off, and further, ultraviolet rays (1000 mJ / cm 2 ) were irradiated in a vacuum chamber to cure the entire transfer material, thereby obtaining a silicon substrate with a mask pattern.
  • a nanoimprint apparatus
  • the silicon substrate with a mask pattern was subjected to anisotropic etching by sequentially performing the following three steps using a dry etching apparatus.
  • the surface layer (thickness: 35 nm) of the first transfer material film was removed by O 2 etching.
  • the etching time is such that the transfer material film of the actually etched sample is peeled off, and the groove depth of the silicon substrate is measured with a scanning probe microscope so that the target etching depth H is achieved. It was adjusted.
  • Ashing was performed for an excessive amount of time using O 2 plasma, and the deposited film derived from the C 4 F 8 gas plasma adhered to the surface was removed.
  • Steps (g) to (h) Anisotropic etching was performed in the same manner as in step (c).
  • the target etching depth H is shown in Table 1.
  • the second transfer material film was peeled off to obtain an article having a fine pattern on the surface. The evaluation results are shown in Table 1.
  • Examples 2 to 8 Except for changing the target etching depth H in the step (c), the thickness of the second transfer material film in the step (e), and the target etching depth H in the step (g) as shown in Table 1, In the same manner as in Example 1, an article having a fine pattern on the surface was obtained. The evaluation results are shown in Table 1.
  • the method for producing an article having a fine pattern on the surface thereof according to the present invention includes a mold used for nanoimprint lithography, an optical article (for example, an optical element, an antireflection member, etc. Specifically, it has a line-and-space fine pattern. Wire grid polarizing element, antireflection member having moth-eye structure, etc.), biochip, microreactor chip, catalyst carrier and the like.

Abstract

In this method for manufacturing an article having a fine pattern on the surface thereof, a cycle consisting of the following steps is repeated twice: a step in which a transfer-material film is formed on the surface of a substrate; a step in which a negative pattern on a mold is transferred to the transfer-material film; a step in which etching is performed using the transfer-material film as an etching mask; and a step in which the remaining transfer-material film is removed. In this method, a fine pattern formed in the first cycle is not etched during the etching in the second cycle. Immediately before the etching in the second cycle, the thickness (d) of the transfer-material film on top of the fine pattern formed in the first cycle satisfies the relation r∙(H/R) + t < d (where r represents the rate at which the transfer-material film is etched, H represents the target etching depth, R represents the rate at which the substrate is etched, and t represents the thickness of the remaining film).

Description

微細パターンを表面に有する物品およびその製造方法、ならびに光学物品、その製造方法および複製モールドの製造方法Article having fine pattern on surface and method for producing the same, optical article, method for producing the same, and method for producing replica mold
 本発明は、微細パターンを表面に有する物品およびその製造方法、ならびに光学物品、その製造方法および複製モールドの製造方法に関する。 The present invention relates to an article having a fine pattern on its surface and a method for producing the same, and an optical article, a method for producing the same, and a method for producing a replica mold.
 微細パターンを表面に有する光学物品(たとえば、ライン・アンド・スペースの微細パターンを有するワイヤグリッド偏光素子、モスアイ構造を有する反射防止部材等)を製造する方法として、ナノインプリントリソグラフィ法が注目されている。ナノインプリントリソグラフィ法によって該光学物品を製造する方法としては、たとえば、下記の方法が知られている。
 塗工用組成物を基材の表面に塗布し、目的の微細パターンの反転パターンを表面に有するモールドと基材との間に光硬化性樹脂組成物を挟んだ状態にて光を照射し、光硬化性樹脂組成物を硬化させた後、モールドを分離して、目的の微細パターンを有する硬化樹脂層を基材の表面に形成する方法。
As a method for producing an optical article having a fine pattern on its surface (for example, a wire grid polarizing element having a line-and-space fine pattern, an antireflection member having a moth-eye structure, etc.), a nanoimprint lithography method has attracted attention. As a method for producing the optical article by the nanoimprint lithography method, for example, the following method is known.
Apply the coating composition on the surface of the substrate, irradiate the light in a state where the photocurable resin composition is sandwiched between the mold and the substrate having a reverse pattern of the target fine pattern on the surface, A method of forming a cured resin layer having a desired fine pattern on the surface of a substrate after separating the mold after curing the photocurable resin composition.
 ナノインプリントリソグラフィ法において用いられるモールドは、通常、シリコンまたは石英基材の表面に電子線描画法によって微細な反転パターンを形成することによって作製される。しかし、該モールドには、下記の問題があるため、モールドの大面積化が困難である。
 ・石英基材の表面に電子線描画法によって微細な反転パターンを形成するには、長時間が必要である。電子線描画法に用いる装置は、単位時間あたりのランニングコストが高いため、モールドを大面積化すると、モールドがかなり高価になる。
A mold used in the nanoimprint lithography method is usually produced by forming a fine reversal pattern on the surface of a silicon or quartz substrate by an electron beam drawing method. However, since the mold has the following problems, it is difficult to increase the area of the mold.
-It takes a long time to form a fine reversal pattern on the surface of a quartz substrate by an electron beam drawing method. Since the apparatus used for the electron beam drawing method has a high running cost per unit time, the mold becomes considerably expensive when the area of the mold is increased.
 また、ステッパー露光法や多光束干渉露光法を用いてナノインプリント用のモールドを作製することも行われている。これら方法では、電子線描画法に比べて大面積のモールドを安価に作製することは可能であるが、光の波長よりも充分に小さい微細パターンを作製することが困難であるという欠点が存在する。
 その他、アルミナ陽極酸化法、自己組織化法等の方法で大面積の規則性パターンを作製する方法も提言されているが、これらの方法は作製できるパターン(形状、サイズ、配列等)が非常に限られてしまい、汎用性に欠けるといった問題がある。
In addition, a nanoimprint mold is also produced using a stepper exposure method or a multi-beam interference exposure method. In these methods, it is possible to produce a mold having a large area at a lower cost than in the electron beam drawing method, but there is a drawback that it is difficult to produce a fine pattern sufficiently smaller than the wavelength of light. .
In addition, methods for producing regular patterns of large areas by methods such as alumina anodization and self-organization methods have also been proposed, but these methods are very easy to produce (shape, size, arrangement, etc.). There is a problem that it is limited and lacks versatility.
 モールドの反転パターンが、ライン・アンド・スペースやモスアイ構造のような同一の形状の繰り返しである場合には、下記の方法のように、比較的小面積のマスタモールドを用いて、比較的大面積のレプリカモールドを作製する方法が考えられる。
 (i)比較的小面積のマスタモールドの反転パターンを、比較的大面積の基材の表面の転写材料膜(レジスト膜)に繰り返し並列転写して連続したマスクパターンを形成し、基材の表面に連続した微細パターンを形成する方法。
When the reversal pattern of the mold is a repeat of the same shape such as a line-and-space or moth-eye structure, a relatively large area is used by using a relatively small area master mold as in the following method. A method for producing a replica mold is conceivable.
(I) A reversal pattern of a relatively small area master mold is repeatedly transferred in parallel to a transfer material film (resist film) on the surface of a relatively large area substrate to form a continuous mask pattern, and the surface of the substrate A method of forming a continuous fine pattern.
 しかし、(i)の方法には、下記の問題があるため、実際には比較的大面積のレプリカモールドを作製することは困難である。
 ・マスタモールドを転写材料膜に押し付けた際に、余分な転写材料がマスタモールドの周辺に押し出されるため、マスタモールドの反転パターンを転写する領域の周辺が盛り上がってしまう。そのため、次の転写の際に該領域の隣接する領域の転写材料膜にマスタモールドを押し付けることができない。
 ・転写の際には、マスタモールドを転写材料膜に押し付けた状態で光を照射して転写材料膜を硬化させる必要があるが、マスタモールドの反転パターンを転写する領域の周辺にも光が漏れて転写材料膜が硬化してしまう。そのため、次の転写の際に該領域の隣接する領域の転写材料膜にマスタモールドを押し付けることができない。
 ・マスタモールドを転写材料膜に押し付けた際に、余分な転写材料がマスタモールドの周辺に押し出されるため、転写を行っている領域に隣接する、すでにマスクパターンが形成された領域に、押し出された転写材料が流れ込み、汚染してしまう。
However, since the method (i) has the following problems, it is actually difficult to produce a replica mold having a relatively large area.
When the master mold is pressed against the transfer material film, excess transfer material is pushed out to the periphery of the master mold, so that the periphery of the area where the reverse pattern of the master mold is transferred rises. Therefore, the master mold cannot be pressed against the transfer material film in the area adjacent to the area during the next transfer.
・ When transferring, it is necessary to cure the transfer material film by irradiating light with the master mold pressed against the transfer material film, but light leaks around the area where the reverse pattern of the master mold is transferred. As a result, the transfer material film is cured. Therefore, the master mold cannot be pressed against the transfer material film in the area adjacent to the area during the next transfer.
-When the master mold is pressed against the transfer material film, excess transfer material is pushed out to the periphery of the master mold, so it is pushed out to the area where the mask pattern is already formed adjacent to the area where the transfer is performed. The transfer material will flow and become contaminated.
 該問題を解決する方法としては、下記の方法が提案されている(特許文献1)。
 (ii)転写材料膜を基材の表面に形成する工程、マスタモールドの反転パターンを転写材料膜に繰り返し転写する工程、転写材料膜をエッチングマスクとしてエッチングを行う工程、残った転写材料膜を除去する工程を1サイクルとし、1回目のサイクルにおいてマスタモールドの反転パターンと同じ面積の微細パターンが形成される第1の領域と、2回目のサイクルにおいてマスタモールドの反転パターンと同じ面積の微細パターンが形成される第2の領域とが、隣接しかつ交互に配列するように、前記サイクルを2回繰り返す方法(特許文献1の図3、図4参照)。
As a method for solving this problem, the following method has been proposed (Patent Document 1).
(Ii) a step of forming a transfer material film on the surface of the substrate, a step of repeatedly transferring the reverse pattern of the master mold to the transfer material film, a step of etching using the transfer material film as an etching mask, and removing the remaining transfer material film The first step is to form a fine pattern having the same area as the reverse pattern of the master mold in the first cycle, and a fine pattern having the same area as the reverse pattern of the master mold in the second cycle. A method of repeating the cycle twice so that the formed second regions are adjacent and alternately arranged (see FIGS. 3 and 4 of Patent Document 1).
日本特開2008-247022号公報Japanese Unexamined Patent Publication No. 2008-247022
 (ii)の方法によれば、1回目のサイクルにおいて微細パターンが形成される複数の第1の領域は、2回目のサイクルにおいて微細パターンが形成される第2の領域の分だけ離間することができる。同様に、2回目のサイクルにおいて微細パターンが形成される複数の第2の領域は、1回目のサイクルにおいて微細パターンが形成される第1の領域の分だけ離間することができる。よって、(ii)の方法の各サイクルにおいて、(i)の方法における各問題が解決される。 According to the method (ii), the plurality of first regions in which the fine pattern is formed in the first cycle can be separated from the second region in which the fine pattern is formed in the second cycle. it can. Similarly, the plurality of second regions in which the fine pattern is formed in the second cycle can be separated by the amount of the first region in which the fine pattern is formed in the first cycle. Accordingly, each problem in the method (i) is solved in each cycle of the method (ii).
 しかし、(ii)の方法には、下記の問題がある。
 ・2回目のサイクルにおいて、基材の表面の第1の領域の上に塗布された転写材料の一部が、第1の領域に形成された微細パターンの凹部に流れ込むため、第1の領域の上に存在する転写材料膜の厚さが薄くなる(特許文献1の図4、図5参照)。そのため、目標とするエッチング深さによっては、2回目のサイクルにおけるエッチングの際に、第1の領域の上に存在する転写材料膜が完全にエッチングされ、第1の領域の微細パターンもさらにエッチングされて、所望の形状の微細パターンが得られないことがある。そのため、第1の領域の微細パターンが欠陥となったり、第1の領域と第2の領域とで微細パターンのバラツキが発生したりする。
However, the method (ii) has the following problems.
In the second cycle, a part of the transfer material applied on the first region of the surface of the substrate flows into the concave portion of the fine pattern formed in the first region. The thickness of the transfer material film existing thereon is reduced (see FIGS. 4 and 5 of Patent Document 1). Therefore, depending on the target etching depth, during the etching in the second cycle, the transfer material film existing on the first region is completely etched, and the fine pattern in the first region is further etched. Thus, a fine pattern having a desired shape may not be obtained. For this reason, the fine pattern of the first region becomes a defect, or the fine pattern varies between the first region and the second region.
 本発明は、転写材料膜を基材の表面に形成する工程、モールドの反転パターンを転写材料膜に転写する工程、転写材料膜をエッチングマスクとしてエッチングを行う工程、残った転写材料膜を除去する工程を1サイクルとし、該サイクルを2回繰り返すことによって微細パターンを表面に有する物品を製造する方法において、2回目のサイクルにおけるエッチングの際に、1回目のサイクルにおいて形成された微細パターンがエッチングされることがない方法を提供する。 The present invention includes a step of forming a transfer material film on the surface of a substrate, a step of transferring a mold reversal pattern to the transfer material film, a step of etching using the transfer material film as an etching mask, and removing the remaining transfer material film. In the method of manufacturing an article having a fine pattern on the surface by repeating the cycle twice, the fine pattern formed in the first cycle is etched in the second cycle. Provide a method that never happens.
 本発明の微細パターンを表面に有する物品の製造方法は、基材の表面の第1の領域と、該第1の領域とは異なる位置にある第2の領域のそれぞれに微細パターンを形成することによって、微細パターンを表面に有する物品を製造する方法であって、
 (a)前記基材の表面に、転写材料を含む塗工用組成物を塗布し、第1の転写材料膜を形成する工程と、
 (b)前記第1の領域において、前記微細パターンの反転パターンを表面に有するモールドの、該反転パターンを前記第1の転写材料膜に転写して、前記第1の転写材料膜に前記微細パターンに対応するマスクパターンを形成する工程と、
 (c)前記マスクパターンが形成された前記第1の転写材料膜をエッチングマスクとしてエッチングを行い、前記基材の表面の前記第1の領域に前記微細パターンを形成する工程と、
 (d)前記基材の表面に残った前記第1の転写材料膜を除去する工程と、
 (e)前記第1の領域に前記微細パターンが形成された前記基材の表面に、転写材料を含む塗工用組成物を塗布し、第2の転写材料膜を形成する工程と、
 (f)前記第2の領域において、前記微細パターンの反転パターンを表面に有するモールドの、該反転パターンを前記第2の転写材料膜に転写して、前記第2の転写材料膜に前記微細パターンに対応するマスクパターンを形成する工程と、
 (g)前記マスクパターンが形成された前記第2の転写材料膜をエッチングマスクとしてエッチングを行い、前記基材の表面の前記第2の領域に前記微細パターンを形成する工程と、
 (h)前記基材の表面に残った前記第2の転写材料膜を除去する工程と、
 を有し、
 前記工程(g)の直前にて、前記基材の表面の前記第1の領域の上に存在する前記第2の転写材料膜の厚さdが、下式(1)を満足することを特徴とする。
 r×(H/R)+t<d ・・・(1)。
 ただし、rは、前記第2の転写材料膜のエッチングレートであり、Hは、前記第2の領域における目標のエッチング深さであり、Rは、前記基材のエッチングレートであり、tは、前記第2の領域における前記マスクパターンの凹部と前記基材との間の残膜の厚さである。
The method for producing an article having a fine pattern on the surface of the present invention forms a fine pattern in each of the first region on the surface of the substrate and the second region at a position different from the first region. A method for producing an article having a fine pattern on its surface,
(A) applying a coating composition containing a transfer material to the surface of the substrate to form a first transfer material film;
(B) In the first region, the reversal pattern of the mold having the reversal pattern of the fine pattern on the surface is transferred to the first transfer material film, and the fine pattern is transferred to the first transfer material film. Forming a mask pattern corresponding to
(C) performing etching using the first transfer material film on which the mask pattern is formed as an etching mask, and forming the fine pattern in the first region of the surface of the substrate;
(D) removing the first transfer material film remaining on the surface of the substrate;
(E) applying a coating composition containing a transfer material to the surface of the substrate on which the fine pattern is formed in the first region, and forming a second transfer material film;
(F) In the second region, the reverse pattern of the mold having the reverse pattern of the fine pattern on the surface is transferred to the second transfer material film, and the fine pattern is transferred to the second transfer material film. Forming a mask pattern corresponding to
(G) performing etching using the second transfer material film on which the mask pattern is formed as an etching mask, and forming the fine pattern in the second region of the surface of the substrate;
(H) removing the second transfer material film remaining on the surface of the substrate;
Have
Immediately before the step (g), the thickness d of the second transfer material film existing on the first region on the surface of the substrate satisfies the following formula (1). And
r × (H / R) + t <d (1).
Where r is the etching rate of the second transfer material film, H is the target etching depth in the second region, R is the etching rate of the substrate, and t is It is the thickness of the remaining film between the concave portion of the mask pattern and the base material in the second region.
 前記第1の領域と前記第2の領域とは、隣接していることが好ましい。
 前記基材は、複数の前記第1の領域と複数の前記第2の領域とを有し、かつ前記第1の領域と前記第2の領域とは、交互に配列されていることが好ましい。
 前記工程(a)における前記塗工用組成物およびその塗布量と、前記工程(e)における前記塗工用組成物およびその塗布量とが同じであり、前記工程(b)における前記モールドおよび前記マスクパターンの形成条件と、前記工程(f)における前記モールドおよび前記マスクパターンの形成条件とが同じであり、前記工程(c)におけるエッチング条件と、前記工程(g)におけるエッチング条件とが同じであることが好ましい。
The first region and the second region are preferably adjacent to each other.
The base material preferably includes a plurality of the first regions and a plurality of the second regions, and the first regions and the second regions are alternately arranged.
The coating composition and its coating amount in the step (a) are the same as the coating composition and its coating amount in the step (e), and the mold and the coating in the step (b) The formation conditions of the mask pattern are the same as the formation conditions of the mold and the mask pattern in the step (f), and the etching conditions in the step (c) are the same as the etching conditions in the step (g). Preferably there is.
 本発明の微細パターンを表面に有する物品は、本発明の微細パターンを表面に有する物品の製造方法によって製造されたものであることを特徴とする。
 本発明の光学物品の製造方法は、微細パターンを表面に有する光学物品を製造する方法であって、本発明の微細パターンを表面に有する物品を、前記光学物品の微細パターンの反転パターンを表面に有するモールドとして用い、該モールドの反転パターンを透明基材の表面に転写することを特徴とする。
 また、本発明の光学物品の製造方法は、下記の工程を有することが好ましい。
 (x)透明基材の表面に、転写材料として光硬化性樹脂を含む塗工用組成物を塗布し、光硬化性樹脂層を形成する工程。
 (y)前記した微細パターンを表面に有する物品を、前記光学物品の微細パターンの反転パターンを表面に有するモールドとして用い、当該モールドと透明基材との間に、前記光硬化性樹脂層を挟んだ状態にて光を照射し、光硬化性樹脂層を硬化させて硬化樹脂層とする工程。
 (z)硬化樹脂層からモールドを分離して光学物品を得る工程。
 本発明の光学物品は、本発明の光学物品の製造方法によって製造されたもの(たとえば、ワイヤグリッド偏光素子、反射防止部材等)であることを特徴とする。
 本発明の複製モールドの製造方法は、本発明の微細パターンを表面に有する物品をマスタモールドとして用いて複製モールドを製造する、または、該複製モールドをマスタモールドとして用いてさらに複製モールドを製造することを特徴とする。
The article having the fine pattern of the present invention on the surface is produced by the method for producing an article having the fine pattern of the present invention on the surface.
The optical article manufacturing method of the present invention is a method of manufacturing an optical article having a fine pattern on its surface, the article having the fine pattern of the present invention on its surface, and a reverse pattern of the fine pattern of the optical article on its surface. It is used as a mold having, and the reverse pattern of the mold is transferred to the surface of a transparent substrate.
Moreover, it is preferable that the manufacturing method of the optical article of this invention has the following process.
(X) The process of apply | coating the composition for coating containing a photocurable resin as a transfer material on the surface of a transparent base material, and forming a photocurable resin layer.
(Y) An article having the fine pattern on the surface is used as a mold having a reverse pattern of the fine pattern of the optical article on the surface, and the photocurable resin layer is sandwiched between the mold and the transparent substrate. The process of irradiating light in a state and curing the photocurable resin layer to form a cured resin layer.
(Z) A step of separating the mold from the cured resin layer to obtain an optical article.
The optical article of the present invention is manufactured by the method for manufacturing an optical article of the present invention (for example, a wire grid polarizing element, an antireflection member, etc.).
The method for producing a replica mold of the present invention is to manufacture a replica mold using the article having the fine pattern of the present invention on the surface as a master mold, or to further manufacture a replica mold using the replica mold as a master mold. It is characterized by.
 本発明の微細パターンを表面に有する物品の製造方法によれば、転写材料膜を基材の表面に形成する工程、モールドの反転パターンを転写材料膜に転写する工程、転写材料膜をエッチングマスクとしてエッチングを行う工程、残った転写材料膜を除去する工程を1サイクルとし、該サイクルを2回繰り返すことによって微細パターンを表面に有する物品を製造する方法において、2回目のサイクルにおけるエッチングの際に、1回目のサイクルにおいて形成された微細パターンがエッチングされることがない。 According to the method for manufacturing an article having a fine pattern on the surface of the present invention, the step of forming a transfer material film on the surface of the substrate, the step of transferring the reverse pattern of the mold to the transfer material film, and using the transfer material film as an etching mask In the method of manufacturing an article having a fine pattern on the surface by repeating the cycle twice, the step of performing etching and the step of removing the remaining transfer material film being performed twice, during the etching in the second cycle, The fine pattern formed in the first cycle is not etched.
 本発明の微細パターンを表面に有する物品は、微細パターンが比較的大面積であり、かつ微細パターンの欠陥や形状のバラツキが少ない。
 本発明の光学物品の製造方法によれば、微細パターンが比較的大面積であり、かつ微細パターンの欠陥や形状のバラツキが少ない光学物品を製造できる。
 本発明の光学物品は、微細パターンが比較的大面積であり、かつ微細パターンの欠陥や形状のバラツキが少ない。
 本発明の複製モールドの製造方法によれば、微細パターンが比較的大面積であり、かつ微細パターンの欠陥や形状のバラツキが少ない複製モールドを製造できる。
The article having the fine pattern of the present invention on the surface has a relatively large fine pattern and few defects in the fine pattern and variations in shape.
According to the method for producing an optical article of the present invention, an optical article can be produced in which the fine pattern has a relatively large area and the fine pattern has few defects and variations in shape.
In the optical article of the present invention, the fine pattern has a relatively large area, and there are few defects in the fine pattern and variations in shape.
According to the method for producing a replication mold of the present invention, a replication mold can be manufactured in which a fine pattern has a relatively large area and there are few defects in the fine pattern and variations in shape.
本発明の製造方法で得られる微細パターンを表面に有する物品の一例を示す上面図である。It is a top view which shows an example of the articles | goods which have the fine pattern obtained by the manufacturing method of this invention on the surface. 図1の微細パターンを表面に有する物品のII-II断面図である。FIG. 2 is a II-II sectional view of an article having the fine pattern of FIG. 1 on its surface. 本発明の微細パターンを表面に有する物品の製造方法における工程(a)~(d)を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining steps (a) to (d) in the method for producing an article having a fine pattern on the surface according to the present invention. 本発明の微細パターンを表面に有する物品の製造方法における工程(e)~(h)を説明するための断面図である。FIG. 5 is a cross-sectional view for explaining steps (e) to (h) in the method for producing an article having a fine pattern on the surface thereof according to the present invention. 工程(g)の直前における、マスクパターンが形成された第2の転写材料膜を表面に有する基材の断面図である。It is sectional drawing of the base material which has the 2nd transcription | transfer material film in which the mask pattern was formed in the surface just before a process (g). 本発明の製造方法で得られる光学物品の一例を示す断面図である。It is sectional drawing which shows an example of the optical article obtained with the manufacturing method of this invention. 本発明の光学物品の製造方法における工程(x)~(z)を説明するための断面図である。FIG. 5 is a cross-sectional view for explaining steps (x) to (z) in the method for producing an optical article of the present invention.
 本明細書においては、以下のように定義する。
 微細パターンないし反転パターンとは、幅、長さおよび高さ(すなわち、深さ)のうち最小の寸法が1nm~100μmである1つ以上の凸部および/または凹部からなる形状をいう。
 領域とは、モールド1つ分の反転パターンが反転した微細パターンが形成される領域、すなわちモールドの反転パターンと略同じ面積の領域をいう。
 転写材料膜とは、転写材料(たとえば、光硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂等)からなる膜または該膜における転写材料が化学的に変化した膜、もしくは元の転写材料膜が物理的に変化した(たとえば形状が変化した)膜をいう。したがって、転写材料が硬化性樹脂である場合、モールドの微細パターンを転写する前後における転写材料膜は、硬化によって化学的に異なる状態に変化し、また、モールドの微細パターンを転写する前後ないしエッチングを行う前後における転写材料膜は、形状が変化しているが、これらはすべて転写材料膜という。また、転写材料が熱可塑性樹脂である場合、モールドの微細パターンを転写する前後ないしエッチングを行う前後における転写材料膜は、形状が変化しているが、これらはすべて転写材料膜という。
 (メタ)アクリロイルオキシ基は、アクリロイルオキシ基またはメタクリロイルオキシ基をいう。
 (メタ)アクリレートは、アクリレートまたはメタクリレートをいう。
In this specification, the definition is as follows.
A fine pattern or inverted pattern refers to a shape composed of one or more protrusions and / or recesses having a minimum dimension of 1 nm to 100 μm among width, length and height (ie, depth).
The region refers to a region where a fine pattern obtained by inverting the reversal pattern for one mold is formed, that is, a region having substantially the same area as the reversal pattern of the mold.
The transfer material film is a film made of a transfer material (for example, a photocurable resin, a thermosetting resin, a thermoplastic resin, or the like), a film in which the transfer material in the film is chemically changed, or an original transfer material film. It refers to a film that has changed physically (for example, its shape has changed). Therefore, when the transfer material is a curable resin, the transfer material film before and after transferring the fine pattern of the mold changes to a chemically different state due to curing, and before or after transferring the fine pattern of the mold or etched. Although the shape of the transfer material film before and after the change has changed, these are all called transfer material films. In addition, when the transfer material is a thermoplastic resin, the shape of the transfer material film before and after the transfer of the fine pattern of the mold or before and after the etching is changed, all of which are referred to as a transfer material film.
The (meth) acryloyloxy group refers to an acryloyloxy group or a methacryloyloxy group.
(Meth) acrylate refers to acrylate or methacrylate.
<微細パターンを表面に有する物品>
 本発明の製造方法で得られる微細パターンを表面に有する物品は、基材の表面の第1の領域と、該第1の領域とは異なる位置にある第2の領域のそれぞれに微細パターンが形成されたものである。
<Article having a fine pattern on its surface>
In the article having the fine pattern obtained by the production method of the present invention on the surface, the fine pattern is formed in each of the first region on the surface of the substrate and the second region at a position different from the first region. It has been done.
 図1は、微細パターンを表面に有する物品の一例を示す上面図であり、図2は、図1のII-II断面図である。物品10は、基材12の表面に複数の凸部22と凸部22間の凹部24とからなる微細パターン20を有する。該表面においては、後述する1回目のサイクルで微細パターン20が形成される矩形の第1の領域(I)と、後述する2回目のサイクルで微細パターン20が形成される矩形の第2の領域(II)とが、隣接しかつX方向およびY方向のそれぞれに交互に配列している。 FIG. 1 is a top view showing an example of an article having a fine pattern on its surface, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG. The article 10 has a fine pattern 20 composed of a plurality of convex portions 22 and concave portions 24 between the convex portions 22 on the surface of the substrate 12. On the surface, a rectangular first region (I) in which a fine pattern 20 is formed in a first cycle described later and a rectangular second region in which a fine pattern 20 is formed in a second cycle described later. (II) are adjacent to each other and alternately arranged in the X direction and the Y direction.
(基材)
 基材の材料としては、シリコン(たとえば、単結晶シリコン、ポリシリコン、アモルファスシリコン等)、石英、ガラス、窒化珪素、窒化アルミニウム、シリコンカーバイド、サファイア、ニオブ酸リチウム、タンタル酸リチウム、金属(たとえば、アルミニウム、ニッケル、銅等)、金属酸化物(たとえば、アルミナ、酸化亜鉛、酸化マグネシウム等)、およびこれらの基材の表面に酸化物層および/または金属層(たとえば、クロム、アルミニウム、ニッケル、モリブデン、タンタル、タングステン、ITO、酸化錫、金、銀、銅、白金、チタン等を主成分とするもの)を形成したもの、ならびに各種樹脂等が挙げられる。基材の材料としては、得られる微細パターンを表面に有する物品をモールドとして用いる場合、シリコン、石英またはガラスが好ましい。
(Base material)
Examples of the material of the base material include silicon (for example, single crystal silicon, polysilicon, amorphous silicon, etc.), quartz, glass, silicon nitride, aluminum nitride, silicon carbide, sapphire, lithium niobate, lithium tantalate, metal (for example, Aluminum, nickel, copper, etc.), metal oxides (eg, alumina, zinc oxide, magnesium oxide, etc.), and oxide and / or metal layers (eg, chromium, aluminum, nickel, molybdenum) on the surface of these substrates , Tantalum, tungsten, ITO, tin oxide, gold, silver, copper, platinum, titanium, etc.), and various resins. As a material for the base material, silicon, quartz or glass is preferable when an article having a fine pattern to be obtained is used as a mold.
 基材は、後述する転写材料膜との密着性をさらに向上させる点から、表面処理されていてもよい。表面処理としては、プライマ塗布処理、オゾン処理、紫外線洗浄処理、プラズマ処理、コロナ処理、フレーム処理、イトロ処理(ITRO株式会社が開発したCombustion Chemical Vapor Deposition の一種の処理)、SPM(Sulfuric Acid Hydrogen Peroxide Mixture)洗浄等が挙げられる。プライマとしては、シランカップリング剤、アルコキシシラン、シラザン等が挙げられる。 The base material may be surface-treated from the viewpoint of further improving the adhesion with a transfer material film described later. Surface treatment includes primer coating treatment, ozone treatment, UV cleaning treatment, plasma treatment, corona treatment, flame treatment, itro treatment (a kind of treatment of Combustion Chemical Vapor Deposition developed by ITRO), SPM (Sulfuric Acid Hydrogen Peroxide) Mixture) and the like. Examples of the primer include silane coupling agents, alkoxysilanes, and silazanes.
(微細パターン)
 基材は、その表面に微細パターンが形成される。微細パターンは、後述するモールドの表面の反転パターンを転写して形成されるパターンである。
 微細パターンは、複数の凸部と凸部間の凹部とからなる。凸部としては、図示例のような基材の表面に延在する凸条、表面に点在する突起等が挙げられる。
(Fine pattern)
A fine pattern is formed on the surface of the substrate. The fine pattern is a pattern formed by transferring a reverse pattern on the surface of the mold to be described later.
The fine pattern is composed of a plurality of convex portions and concave portions between the convex portions. As a convex part, the protrusion extended on the surface of a base material like the example of illustration, the processus | protrusion scattered on the surface, etc. are mentioned.
 凸条の形状としては、図示例のような直線、曲線、折れ曲がり形状等が挙げられる。凸条は、図示例のように複数が平行に存在して縞状をなしていてもよい。
 凸条の、長手方向に直交する方向の断面形状としては、図示例のような長方形、台形、三角形、半円形等が挙げられる。
 突起の形状としては、三角柱、四角柱、六角柱、円柱、三角錐、四角錐、六角錐、円錐、半球、多面体等が挙げられる。
Examples of the shape of the ridge include a straight line, a curved line, a bent shape, and the like as shown in the illustrated example. As shown in the illustrated example, a plurality of ridges may exist in parallel to form stripes.
Examples of the cross-sectional shape of the ridge in the direction perpendicular to the longitudinal direction include a rectangle, a trapezoid, a triangle, and a semicircle as shown in the illustrated example.
Examples of the shape of the protrusion include a triangular prism, a quadrangular prism, a hexagonal prism, a cylinder, a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, a cone, a hemisphere, and a polyhedron.
 凸条の幅は、1nm~100μmが好ましく、1nm~10μmがより好ましく、10nm~500nmが特に好ましい。凸条の幅とは、長手方向に直交する方向の断面における半値全幅を意味する。
 突起の幅は、1nm~100μmが好ましく、1nm~10μmがより好ましく、10nm~500nmが特に好ましい。突起の幅とは、底面が細長い場合、長手方向に直交する方向の断面における半値全幅を意味し、また突起の底面が細長くない場合、突起の高さの半分の位置の水平断面における重心を通る線の最小長さを意味する。
 凸部の高さ(凹部の深さ)は、1nm~100μmが好ましく、1nm~10μmがより好ましく、10nm~500nmがさらに好ましい。
The width of the ridge is preferably 1 nm to 100 μm, more preferably 1 nm to 10 μm, and particularly preferably 10 nm to 500 nm. The width of the ridge means the full width at half maximum in the cross section in the direction orthogonal to the longitudinal direction.
The width of the protrusion is preferably 1 nm to 100 μm, more preferably 1 nm to 10 μm, and particularly preferably 10 nm to 500 nm. The width of the protrusion means the full width at half maximum in the cross section perpendicular to the longitudinal direction when the bottom surface is elongated, and when the bottom surface of the protrusion is not elongated, it passes through the center of gravity in the horizontal section at a position half the height of the protrusion. Means the minimum length of a line.
The height of the convex portion (depth of the concave portion) is preferably 1 nm to 100 μm, more preferably 1 nm to 10 μm, and even more preferably 10 nm to 500 nm.
 微細パターンが密集している領域において、隣接する凸部間の間隔は、1nm~100μmが好ましく、1nm~10μmがより好ましく、10nm~500nmがさらに好ましい。隣接する凸部間の間隔とは、凸部の断面の底辺の始端から、隣接する凸部の断面の底辺の始端までの距離を意味する。
 前記各寸法は、3箇所で測定した寸法を平均したものである。
In a region where fine patterns are densely packed, the interval between adjacent convex portions is preferably 1 nm to 100 μm, more preferably 1 nm to 10 μm, and even more preferably 10 nm to 500 nm. The interval between the adjacent convex portions means the distance from the starting end of the base of the cross section of the convex portion to the starting end of the base of the cross section of the adjacent convex portion.
Each dimension is an average of dimensions measured at three locations.
 凸部の最小寸法は、1nm~100μmが好ましく、1nm~10μmがより好ましく、10nm~500nmが特に好ましい。最小寸法とは、凸部の幅、長さおよび高さのうち最小の寸法を意味する。
 凹部の最小寸法は、1nm~100μmが好ましく、1nm~10μmがより好ましく、10nm~500nmが特に好ましい。最小寸法とは、凹部の幅、長さおよび深さのうち最小の寸法を意味する。
The minimum dimension of the convex portion is preferably 1 nm to 100 μm, more preferably 1 nm to 10 μm, and particularly preferably 10 nm to 500 nm. The minimum dimension means the minimum dimension among the width, length, and height of the convex portion.
The minimum dimension of the recess is preferably 1 nm to 100 μm, more preferably 1 nm to 10 μm, and particularly preferably 10 nm to 500 nm. The minimum dimension means the minimum dimension among the width, length and depth of the recess.
(第1の領域および第2の領域)
 第1の領域は、後述する工程(a)~(d)によって微細パターンが形成される領域である。後述する工程(b)において、モールド1つ分の反転パターンが転写されてマスクパターンが形成され、工程(c)において、エッチングによって該マスクパターンに対応する微細パターンが形成される領域を、1つの第1の領域と数える。よって、工程(b)において、モールドの反転パターンを第1の転写材料膜に繰り返し転写した場合、該繰り返し回数と同じ数の第1の領域が基材の表面に存在する。
(First region and second region)
The first region is a region where a fine pattern is formed by steps (a) to (d) described later. In step (b), which will be described later, a reversal pattern for one mold is transferred to form a mask pattern. In step (c), a region in which a fine pattern corresponding to the mask pattern is formed by etching is designated as one region. Count as the first region. Therefore, in the step (b), when the reversal pattern of the mold is repeatedly transferred to the first transfer material film, the same number of first regions as the number of repetitions exists on the surface of the substrate.
 第2の領域は、後述する工程(e)~(h)によって微細パターンが形成される領域である。後述する工程(f)において、モールド1つ分の反転パターンが転写されてマスクパターンが形成され、工程(g)において、エッチングによって該マスクパターンに対応する微細パターンが形成される領域を、1つの第2の領域と数える。よって、工程(f)において、モールドの反転パターンを第2の転写材料膜に繰り返し転写した場合、該繰り返し回数と同じ数の第2の領域が基材の表面に存在する。 The second region is a region where a fine pattern is formed by steps (e) to (h) described later. In step (f) described later, a reversal pattern for one mold is transferred to form a mask pattern, and in step (g), a region where a fine pattern corresponding to the mask pattern is formed by etching Count as the second region. Therefore, in the step (f), when the reversal pattern of the mold is repeatedly transferred to the second transfer material film, the same number of second regions as the number of repetitions exists on the surface of the substrate.
 第1の領域と第2の領域とは、隣接していてもよく、離間していてもよい。微細パターンを大面積化できる点および面積利用効率を高くできる点から、第1の領域と第2の領域とは、隣接していることが好ましい。第1の領域と第2の領域とが隣接している場合、第1の領域の微細パターンと第2の領域の微細パターンとが連続していることが好ましい。すなわち、凸条や溝の場合は、これらが長手方向に切れ目なくかつ幅方向にずれることなく延び、突起や孔の場合は、これらが周期的に繰り返し存在していることが好ましい。 The first region and the second region may be adjacent to each other or may be separated from each other. The first region and the second region are preferably adjacent to each other from the point that the fine pattern can be enlarged and the area utilization efficiency can be increased. When the first region and the second region are adjacent to each other, it is preferable that the fine pattern of the first region and the fine pattern of the second region are continuous. That is, in the case of ridges and grooves, these extend without a break in the longitudinal direction and without shifting in the width direction, and in the case of protrusions or holes, it is preferable that these exist periodically and repeatedly.
 基材は、第1の領域および第2の領域をそれぞれ1つずつ有していてもよく、いずれか一方または両方を複数有していてもよい。効率よく微細パターンを大面積化できる点から、基材は、複数の第1の領域と複数の第2の領域とを有することが好ましい。 The base material may have one each of the first region and the second region, and may have either one or a plurality of both. The base material preferably has a plurality of first regions and a plurality of second regions from the viewpoint of efficiently increasing the area of the fine pattern.
 基材が複数の第1の領域と複数の第2の領域とを有する場合、上述した従来の(i)の方法における問題を発生させない点から、第1の領域と第2の領域とは、交互に配列されている、すなわち第1の領域同士、第2の領域同士が接する長さが極力短くなるようにすることが好ましい。 In the case where the substrate has a plurality of first regions and a plurality of second regions, the first region and the second region are not caused by the problem in the conventional method (i) described above. It is preferable that the lengths of the first region and the second region that are alternately arranged are as short as possible.
(用途)
 本発明の製造方法で得られる微細パターンを表面に有する物品は、モールド、光学物品(たとえば、光学素子、反射防止部材等)、バイオチップ、マイクロリアクターチップ、触媒の担持体等として用いることができる。
 本発明の製造方法で得られる微細パターンを表面に有する物品は、光学物品、半導体デバイス、記録メディア等をナノインプリントリソグラフィ法にて製造する際のモールドとして用いることができ、大面積のモールドが必要とされる光学物品の製造に好適である。
(Use)
Articles having fine patterns on the surface obtained by the production method of the present invention can be used as molds, optical articles (for example, optical elements, antireflection members, etc.), biochips, microreactor chips, catalyst carriers, and the like. .
Articles having a fine pattern on the surface obtained by the production method of the present invention can be used as a mold for producing optical articles, semiconductor devices, recording media, etc. by the nanoimprint lithography method, and require a large-area mold. Suitable for the production of optical articles.
<微細パターンを表面に有する物品の製造方法>
 本発明の微細パターンを表面に有する物品の製造方法は、下記の工程(a)~(d)からなる1回目のサイクルと、下記の工程(e)~(h)からなる2回目のサイクルとを有する方法である。
<Method for producing article having fine pattern on surface>
The method for producing an article having a fine pattern on the surface of the present invention comprises a first cycle comprising the following steps (a) to (d) and a second cycle comprising the following steps (e) to (h): It is the method which has.
(1回目のサイクル)
 (a)図3に示すように、基材12の表面に、転写材料を含む塗工用組成物を塗布し、第1の転写材料膜14を形成する工程。
 (b)図3に示すように、第1の領域(I)において、微細パターン20の反転パターン26を表面に有するモールド30の、該反転パターン26を第1の転写材料膜14に転写して、第1の転写材料膜14に微細パターン20に対応するマスクパターン28を形成する工程。
 (c)図3に示すように、マスクパターン28が形成された第1の転写材料膜14をエッチングマスクとしてエッチングを行い、基材12の表面の第1の領域(I)に微細パターン20を形成する工程。
 (d)図3に示すように、基材12の表面に残った第1の転写材料膜14を除去する工程。
(First cycle)
(A) The process of forming the 1st transfer material film | membrane 14 by apply | coating the composition for coating containing a transfer material to the surface of the base material 12, as shown in FIG.
(B) In the first region (I), as shown in FIG. 3, the reversal pattern 26 of the mold 30 having the reversal pattern 26 of the fine pattern 20 on the surface is transferred to the first transfer material film 14. A step of forming a mask pattern 28 corresponding to the fine pattern 20 on the first transfer material film 14.
(C) As shown in FIG. 3, etching is performed using the first transfer material film 14 on which the mask pattern 28 is formed as an etching mask, and the fine pattern 20 is formed in the first region (I) on the surface of the substrate 12. Forming step.
(D) A step of removing the first transfer material film 14 remaining on the surface of the substrate 12 as shown in FIG.
(2回目のサイクル)
 (e)図4に示すように、第1の領域(I)に微細パターン20が形成された基材12の表面に、転写材料を含む塗工用組成物を塗布し、第2の転写材料膜16を形成する工程。
 (f)図4に示すように、第2の領域(II)において、微細パターン20の反転パターン26を表面に有するモールド30の、該反転パターン26を第2の転写材料膜16に転写して、第2の転写材料膜16に微細パターン20に対応するマスクパターン28を形成する工程。
 (g)図4に示すように、マスクパターン28が形成された第2の転写材料膜16をエッチングマスクとしてエッチングを行い、基材12の表面の第2の領域(II)に微細パターン20を形成する工程。
 (h)図4に示すように、基材12の表面に残った第2の転写材料膜16を除去する工程。
(Second cycle)
(E) As shown in FIG. 4, a coating composition containing a transfer material is applied to the surface of the substrate 12 on which the fine pattern 20 is formed in the first region (I), and the second transfer material Forming the film 16;
(F) As shown in FIG. 4, in the second region (II), the reversal pattern 26 of the mold 30 having the reversal pattern 26 of the fine pattern 20 on the surface is transferred to the second transfer material film 16. A step of forming a mask pattern 28 corresponding to the fine pattern 20 on the second transfer material film 16.
(G) As shown in FIG. 4, etching is performed using the second transfer material film 16 on which the mask pattern 28 is formed as an etching mask, and the fine pattern 20 is formed in the second region (II) on the surface of the substrate 12. Forming step.
(H) A step of removing the second transfer material film 16 remaining on the surface of the substrate 12 as shown in FIG.
(製造装置)
 工程(a)~(h)を実施するための製造装置としては、特許文献1に記載された転写装置等、ナノインプリントリソグラフィ法を採用した公知の製造装置が挙げられる。
 転写装置は、転写位置を機械的に調節するためのXY可動ステージを備えた物が好ましい。
(Manufacturing equipment)
As a manufacturing apparatus for performing the steps (a) to (h), a known manufacturing apparatus employing a nanoimprint lithography method such as a transfer apparatus described in Patent Document 1 can be cited.
The transfer device is preferably a device provided with an XY movable stage for mechanically adjusting the transfer position.
(工程(a))
 基材12の表面に、転写材料を含む液状の塗工用組成物を塗布し、塗工用組成物が溶媒を含む場合は乾燥させることによって、第1の転写材料膜14を形成する。
(Process (a))
The first transfer material film 14 is formed by applying a liquid coating composition containing a transfer material to the surface of the substrate 12 and drying it when the coating composition contains a solvent.
 塗工用組成物の塗布方法としては、スピンコート法、ダイコート法、ディップコート法、インクジェット法、ポッティング法、ロールコート法、キャスト法、バーコート法、スプレーコート法、ブレードコート法、グラビアコート法等が挙げられる。塗布方法としては、スピンコート法、ダイコート法、スプレーコート法またはインクジェット法が好ましい。 As a coating method of the coating composition, spin coating method, die coating method, dip coating method, ink jet method, potting method, roll coating method, casting method, bar coating method, spray coating method, blade coating method, gravure coating method Etc. As a coating method, a spin coating method, a die coating method, a spray coating method or an ink jet method is preferable.
 塗工用組成物が溶媒を含む場合の乾燥温度は、60℃以上が好ましく、80℃以上がより好ましい。乾燥温度は60℃以上であれば、溶媒を短時間で除去できる利点がある。乾燥温度の上限は、塗工用組成物の熱分解を抑制する観点から、200℃が好ましい。乾燥時間は、30秒~5分間が好ましい。 When the coating composition contains a solvent, the drying temperature is preferably 60 ° C. or higher, and more preferably 80 ° C. or higher. If drying temperature is 60 degreeC or more, there exists an advantage which can remove a solvent in a short time. The upper limit of the drying temperature is preferably 200 ° C. from the viewpoint of suppressing thermal decomposition of the coating composition. The drying time is preferably 30 seconds to 5 minutes.
 第1の転写材料膜の厚さ(ここにおいて、塗工用組成物が溶媒を含む場合は乾燥後の厚さをいう。)、すなわち塗工用組成物の塗布量は、目標のエッチング深さ(すなわち、微細パターンの凹部の深さ)、転写材料膜のエッチングレート、基材のエッチングレートに応じて適宜設定すればよい。 The thickness of the first transfer material film (here, when the coating composition contains a solvent, the thickness after drying), that is, the coating amount of the coating composition is the target etching depth. What is necessary is just to set suitably according to (that is, the depth of the recessed part of a fine pattern), the etching rate of a transfer material film, and the etching rate of a base material.
(基材)
 基材としては、上述した材料のものが挙げられる。基材の材料としては、シリコン、石英またはガラスが好ましい。転写材料が光硬化性樹脂の場合、基材およびモールドのうち少なくとも一方は、塗工用組成物の光重合開始剤が作用する波長の光を40%以上透過する材料とする。
(Base material)
Examples of the substrate include those described above. As a material for the substrate, silicon, quartz or glass is preferable. When the transfer material is a photocurable resin, at least one of the base material and the mold is a material that transmits 40% or more of light having a wavelength at which the photopolymerization initiator of the coating composition acts.
(転写材料)
 転写材料としては、光硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂等が挙げられる。工程(b)を効率よく実施できる点から、転写材料としては、光硬化性樹脂が好ましい。
 以降の説明は、転写材料が光硬化性樹脂である場合についての説明のみとし、転写材料が熱硬化性樹脂、熱可塑性樹脂である場合の説明は省略する。
(Transfer material)
Examples of the transfer material include a photocurable resin, a thermosetting resin, and a thermoplastic resin. From the viewpoint that the step (b) can be carried out efficiently, the transfer material is preferably a photocurable resin.
In the following description, only the case where the transfer material is a photocurable resin is described, and the case where the transfer material is a thermosetting resin or a thermoplastic resin is omitted.
(塗工用組成物)
 塗工用組成物は、光硬化性樹脂を含み、必要に応じて含フッ素界面活性剤、光重合開始剤、溶媒、他の添加剤を含む。
(Coating composition)
The coating composition contains a photocurable resin, and optionally contains a fluorine-containing surfactant, a photopolymerization initiator, a solvent, and other additives.
 光硬化性樹脂としては、硬化速度が速く、硬化物の透明性が高い点から、(メタ)アクリロイルオキシ基を有する化合物が好ましい。
 (メタ)アクリロイルオキシ基を有する化合物(以下、(メタ)アクリレート系化合物とも記す。)としては、1分子あたり(メタ)アクリロイルオキシ基を1~15個有する化合物が好ましい。
As the photocurable resin, a compound having a (meth) acryloyloxy group is preferable from the viewpoint that the curing speed is high and the transparency of the cured product is high.
As a compound having a (meth) acryloyloxy group (hereinafter also referred to as a (meth) acrylate compound), a compound having 1 to 15 (meth) acryloyloxy groups per molecule is preferable.
 (メタ)アクリレート系化合物は、比較的低分子の化合物(以下、アクリレート系モノマーと記す。)であってもよく、繰り返し単位を2個以上有する比較的高分子量の化合物(以下、(メタ)アクリレート系オリゴマーと記す。)であってもよい。
 (メタ)アクリレート系化合物としては、(メタ)アクリレート系モノマーの1種以上からなるもの、(メタ)アクリレート系オリゴマーの1種以上からなるもの、(メタ)アクリレート系モノマーの1種以上と(メタ)アクリレート系オリゴマーの1種以上とからなるものが挙げられる。
The (meth) acrylate compound may be a relatively low molecular compound (hereinafter referred to as an acrylate monomer), and a relatively high molecular weight compound (hereinafter referred to as (meth) acrylate) having two or more repeating units. May be referred to as a system oligomer).
Examples of the (meth) acrylate compound include one or more (meth) acrylate monomers, one or more (meth) acrylate oligomers, one or more (meth) acrylate monomers (meth) And) one or more of acrylate oligomers.
 (メタ)アクリレート系オリゴマーとしては、繰り返し単位を2個以上有する分子鎖(たとえば、ポリウレタン鎖、ポリエステル鎖、ポリエーテル鎖、ポリカーボネート鎖等)と(メタ)アクリロイルオキシ基とを有する分子構造の(メタ)アクリレート系オリゴマーが挙げられ、硬化後の膜の柔軟性や表面硬度の調整が容易であること、さらに基材との密着性に優れるという点から、ウレタン結合と2個以上の(メタ)アクリロイルオキシ基とを有するウレタン(メタ)アクリレート系オリゴマーがより好ましく、ウレタン結合と6~15個の(メタ)アクリロイルオキシ基とを有するウレタン(メタ)アクリレート系オリゴマーがさらに好ましい。 The (meth) acrylate-based oligomer has a molecular structure (meta) having a molecular chain having two or more repeating units (for example, a polyurethane chain, a polyester chain, a polyether chain, a polycarbonate chain, etc.) and a (meth) acryloyloxy group. ) Acrylate oligomers, urethane bond and two or more (meth) acryloyl from the viewpoint of easy adjustment of the flexibility and surface hardness of the cured film and excellent adhesion to the substrate. A urethane (meth) acrylate oligomer having an oxy group is more preferable, and a urethane (meth) acrylate oligomer having a urethane bond and 6 to 15 (meth) acryloyloxy groups is more preferable.
 塗工用組成物中の溶媒の割合は、使用する塗工手段に応じて、乾燥後に目標とする膜厚が得られるように設計することが好ましい。溶媒で希釈することで、塗工用組成物の粘度を低減させて薄膜塗工しやすくする効果と、塗工後に溶媒を蒸発させることで膜厚減少するために薄膜を得やすくなる効果がある。 The ratio of the solvent in the coating composition is preferably designed so as to obtain a target film thickness after drying, depending on the coating means used. Diluting with a solvent reduces the viscosity of the coating composition and makes it easier to apply a thin film, and evaporates the solvent after application to reduce the film thickness, which makes it easier to obtain a thin film. .
 塗工用組成物は、転写材料膜の平坦性、転写材料膜とモールドとの離型性の点から、含フッ素界面活性剤を含むことが好ましい。
 含フッ素界面活性剤としては、フッ素含有量が10~70質量%の含フッ素界面活性剤が好ましく、フッ素含有量が10~40質量%の含フッ素界面活性剤がより好ましい。含フッ素界面活性剤は、水溶性であってもよく、脂溶性であってもよい。
The coating composition preferably contains a fluorine-containing surfactant from the viewpoint of flatness of the transfer material film and releasability between the transfer material film and the mold.
As the fluorine-containing surfactant, a fluorine-containing surfactant having a fluorine content of 10 to 70% by mass is preferable, and a fluorine-containing surfactant having a fluorine content of 10 to 40% by mass is more preferable. The fluorine-containing surfactant may be water-soluble or fat-soluble.
 含フッ素界面活性剤としては、アニオン性含フッ素界面活性剤、カチオン性含フッ素界面活性剤、両性含フッ素界面活性剤、またはノニオン性含フッ素界面活性剤が好ましく、塗工用組成物における相溶性、および転写材料膜における分散性の点から、ノニオン性含フッ素界面活性剤がより好ましい。 As the fluorine-containing surfactant, an anionic fluorine-containing surfactant, a cationic fluorine-containing surfactant, an amphoteric fluorine-containing surfactant, or a nonionic fluorine-containing surfactant is preferable, and the compatibility in the coating composition From the viewpoint of dispersibility in the transfer material film, a nonionic fluorine-containing surfactant is more preferable.
 塗工用組成物における含フッ素界面活性剤の割合は、塗工用組成物のうち硬化樹脂として残る成分の量を100質量%としたときに、0.05~5質量%が好ましく、0.1~5質量%がより好ましい。含フッ素界面活性剤の割合が0.05質量%以上であれば、転写材料膜の平坦性、転写材料膜とモールドとの離型性が良好となる。含フッ素界面活性剤の割合が5質量%以下であれば、塗工用組成物の他の成分と安定的に均一混合の状態を保ちやすく、硬化後の樹脂パターン形状への影響も抑えられる。 The proportion of the fluorine-containing surfactant in the coating composition is preferably 0.05 to 5% by mass, based on 100% by mass of the component remaining as the cured resin in the coating composition, 1 to 5% by mass is more preferable. When the ratio of the fluorine-containing surfactant is 0.05% by mass or more, the flatness of the transfer material film and the releasability between the transfer material film and the mold are good. If the ratio of a fluorine-containing surfactant is 5 mass% or less, it will be easy to maintain the state of uniform mixing stably with the other component of the coating composition, and the influence on the resin pattern shape after hardening will also be suppressed.
 塗工用組成物は、光硬化性の点から、光重合開始剤を含むことが好ましい。
 光重合開始剤としては、アセトフェノン系光重合開始剤、ベンゾイン系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、α-アミノケトン系光重合開始剤、α-ヒドロキシケトン系光重合開始剤、α-アシルオキシムエステル、ベンジル-(o-エトキシカルボニル)-α-モノオキシム、アシルホスフィンオキシド、グリオキシエステル、3-ケトクマリン、2-エチルアンスラキノン、カンファーキノン、テトラメチルチウラムスルフィド、アゾビスイソブチロニトリル、ベンゾイルパーオキシド、ジアルキルパーオキシド、tert-ブチルパーオキシピバレート等が挙げられ、感度および相溶性の点から、アセトフェノン系光重合開始剤、ベンゾイン系光重合開始剤、α-アミノケトン系光重合開始剤またはベンゾフェノン系光重合開始剤が好ましい。
It is preferable that the composition for coating contains a photoinitiator from a photocurable point of view.
As photopolymerization initiators, acetophenone photopolymerization initiator, benzoin photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, α-aminoketone photopolymerization initiator, α-hydroxyketone photopolymerization initiator Polymerization initiator, α-acyl oxime ester, benzyl- (o-ethoxycarbonyl) -α-monooxime, acyl phosphine oxide, glyoxy ester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, tetramethylthiuram sulfide, azo Examples thereof include bisisobutyronitrile, benzoyl peroxide, dialkyl peroxide, tert-butyl peroxypivalate and the like. From the viewpoint of sensitivity and compatibility, acetophenone photopolymerization initiator, benzoin photopolymerization initiator, α- Aminoketone photopolymerization initiator A benzophenone photopolymerization initiator is preferred.
 塗工用組成物における光重合開始剤の割合は、塗工用組成物のうち硬化樹脂として残る成分の量を100質量%としたときに、0.01~5.0質量%が好ましく、0.1~3.0質量%がより好ましい。光重合開始剤の割合が0.01質量%以上であれば、少ない光量で硬化を進めることができるため、プロセスにかかる時間を短くできる。光重合開始剤の割合が5.0質量%以下であれば、塗工用組成物の他の成分と均一に混ざりやすく、光硬化後の分子量低下による強度の低下を抑制できる。 The proportion of the photopolymerization initiator in the coating composition is preferably 0.01 to 5.0% by mass, based on 100% by mass of the component remaining as the cured resin in the coating composition. More preferably, the content is 1 to 3.0% by mass. If the ratio of the photopolymerization initiator is 0.01% by mass or more, curing can be carried out with a small amount of light, and therefore the time required for the process can be shortened. If the ratio of a photoinitiator is 5.0 mass% or less, it will be easy to mix uniformly with the other component of the coating composition, and the fall of the intensity | strength by the molecular weight fall after photocuring can be suppressed.
 塗工用組成物は、溶媒を含むことが好ましい。溶媒としては、エステル類、ケトン類、アルコール類、環式エーテル類等が挙げられる。
 塗工用組成物は、本発明の効果を損なわない範囲で、光増感剤、重合禁止剤、樹脂、金属酸化物微粒子、炭素化合物、金属微粒子、他の有機化合物等の他の添加剤を含んでいてもよい。
It is preferable that the coating composition contains a solvent. Examples of the solvent include esters, ketones, alcohols, cyclic ethers and the like.
The coating composition contains other additives such as photosensitizers, polymerization inhibitors, resins, metal oxide fine particles, carbon compounds, metal fine particles, and other organic compounds as long as the effects of the present invention are not impaired. May be included.
(工程(b))
 第1の領域(I)において、第1の転写材料膜14と接する面(反転パターン26が形成された面)が矩形のモールド30を、第1の転写材料膜14に押し付け、モールド30と基材12との間に第1の転写材料膜14を挟んだ状態にて、モールド30と基材12との間に挟まれた第1の転写材料膜14のみに光を選択的に照射し、該第1の転写材料膜14を硬化させる。第1の転写材料膜14を硬化させた後、第1の転写材料膜14からモールド30を分離する。このようにして、モールド30の反転パターン26を第1の転写材料膜14に転写して、第1の領域(I)の第1の転写材料膜14に微細パターン20に対応するマスクパターン28を形成する。
(Process (b))
In the first region (I), the mold 30 having a rectangular surface (the surface on which the reversal pattern 26 is formed) in contact with the first transfer material film 14 is pressed against the first transfer material film 14, thereby In a state where the first transfer material film 14 is sandwiched between the material 12, only the first transfer material film 14 sandwiched between the mold 30 and the substrate 12 is selectively irradiated with light, The first transfer material film 14 is cured. After the first transfer material film 14 is cured, the mold 30 is separated from the first transfer material film 14. In this way, the reverse pattern 26 of the mold 30 is transferred to the first transfer material film 14, and the mask pattern 28 corresponding to the fine pattern 20 is formed on the first transfer material film 14 in the first region (I). Form.
 第1の領域(I)が複数ある場合は、工程(b)を第1の領域(I)の数だけ繰り返し実施する。
 また、工程(b)を繰り返し実施する場合、次の工程(b)に移行する際には、第1の領域(I)と第2の領域(II)とが隣接し、かつX方向およびY方向のそれぞれに交互に配列するように、モールド30または基材12を面方向(X方向またはY方向)に、かつ第2の領域(II)の分だけ平行に移動させることが好ましい。
 すべての第1の領域(I)の第1の転写材料膜14にマスクパターン28を形成した後、第1の転写材料膜14の全面に光を照射し、第1の領域(I)以外の第1の転写材料膜14を硬化させる。
When there are a plurality of first regions (I), the step (b) is repeated for the number of first regions (I).
Further, when the step (b) is repeatedly performed, the first region (I) and the second region (II) are adjacent to each other and the X direction and the Y direction are transferred to the next step (b). It is preferable to move the mold 30 or the substrate 12 in the plane direction (X direction or Y direction) and in parallel by the second region (II) so as to be alternately arranged in each direction.
After the mask pattern 28 is formed on the first transfer material film 14 in all the first regions (I), the entire surface of the first transfer material film 14 is irradiated with light, and the regions other than the first region (I) The first transfer material film 14 is cured.
 モールドを第1の領域に移動させる手段としては、特許文献1に記載された手段等、公知の手段を用いればよい。
 モールドを転写材料膜に押し付ける際の、モールドや基材の位置の調整は、特許文献1に記載された調整方法等、公知の方法によって行えばよい。
As means for moving the mold to the first region, known means such as the means described in Patent Document 1 may be used.
Adjustment of the position of the mold or the substrate when the mold is pressed against the transfer material film may be performed by a known method such as the adjustment method described in Patent Document 1.
 モールドから転写材料膜に加わる圧力は、0.05MPa以上が好ましく、0.3MPa以上がより好ましく、2MPa以上が特に好ましい。圧力が0.05MPa以上であれば、モールドと光硬化性樹脂の接触が促進され、接触不良が低減する。さらに圧力が2MPa以上であれば、残膜の厚さの均一性が向上する。モールドから転写材料膜に加わる圧力は、基材やモールドの耐久性の点から、50MPa以下が好ましい。 The pressure applied from the mold to the transfer material film is preferably 0.05 MPa or more, more preferably 0.3 MPa or more, and particularly preferably 2 MPa or more. When the pressure is 0.05 MPa or more, contact between the mold and the photocurable resin is promoted, and contact failure is reduced. Further, when the pressure is 2 MPa or more, the uniformity of the thickness of the remaining film is improved. The pressure applied to the transfer material film from the mold is preferably 50 MPa or less from the viewpoint of the durability of the substrate and the mold.
 モールドと基材との間への転写材料膜の挟みこみは、大気圧下で行ってもよく、減圧下で行ってもよい。大気圧下で行った場合、減圧のための大掛かりな装置が不要となり、また、該工程の時間が短縮され、また、転写材料膜に含まれる成分の揮発が抑えられる。減圧下で行なった場合、挟みこみ時の泡の噛みこみが抑えられ、溝や孔に対して光硬化性樹脂が充填しやすいといった利点がある。 The sandwiching of the transfer material film between the mold and the base material may be performed under atmospheric pressure or under reduced pressure. When the process is performed under atmospheric pressure, a large-scale apparatus for depressurization is not required, the time for the process is shortened, and volatilization of components contained in the transfer material film is suppressed. When carried out under reduced pressure, there is an advantage that the entrapment of bubbles at the time of pinching is suppressed and the photocurable resin is easily filled in the grooves and holes.
 転写材料膜に照射される光としては、紫外線、可視光線、赤外線、電子線、放射線等が挙げられる。
 紫外線の光源としては、殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧または高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、自然光等が挙げられる。
 光の照射は、常圧下で行ってもよく、減圧下で行ってもよい。また、空気中で行ってもよく、窒素雰囲気、二酸化炭素雰囲気等の不活性ガス雰囲気で行ってもよい。
Examples of the light applied to the transfer material film include ultraviolet rays, visible rays, infrared rays, electron beams, and radiation.
Examples of ultraviolet light sources include germicidal lamps, ultraviolet fluorescent lamps, carbon arcs, xenon lamps, high pressure mercury lamps for copying, medium or high pressure mercury lamps, ultrahigh pressure mercury lamps, electrodeless lamps, metal halide lamps, natural light, and the like.
Irradiation with light may be performed under normal pressure or under reduced pressure. Moreover, you may carry out in air and you may carry out in inert gas atmospheres, such as nitrogen atmosphere and a carbon dioxide atmosphere.
(モールド)
 モールドの材料としては、非透光材料または透光材料が挙げられる。
 非透光材料としては、シリコン、金属(たとえば、ニッケル、銅、ステンレス、チタン等)、SiC、マイカ等が挙げられる。
 透光材料としては、石英、ガラス、各種樹脂(たとえば、ポリジメチルシロキサン、環状ポリオレフィン、ポリカーボネート、ポリエチレンテレフタレート、透明フッ素樹脂等)等が挙げられる。
 モールドおよび基材のうち少なくとも一方は、光重合開始剤が作用する波長の光を40%以上透過する材料とする。
(mold)
Examples of the mold material include a non-light-transmitting material and a light-transmitting material.
Examples of the non-translucent material include silicon, metal (for example, nickel, copper, stainless steel, titanium, etc.), SiC, mica, and the like.
Examples of the light-transmitting material include quartz, glass, and various resins (for example, polydimethylsiloxane, cyclic polyolefin, polycarbonate, polyethylene terephthalate, and transparent fluororesin).
At least one of the mold and the base material is a material that transmits 40% or more of light having a wavelength at which the photopolymerization initiator acts.
(工程(c))
 マスクパターン28が形成された第1の転写材料膜14をエッチングマスクとしてエッチングを行い、基材12の表面の第1の領域(I)に微細パターン20を形成する。
 エッチングの方法としては、公知の方法が挙げられ、ハロゲン系ガスを用いたエッチング法が好ましい。
(Process (c))
Etching is performed using the first transfer material film 14 on which the mask pattern 28 is formed as an etching mask to form the fine pattern 20 in the first region (I) on the surface of the substrate 12.
Examples of the etching method include known methods, and an etching method using a halogen-based gas is preferable.
(工程(d))
 エッチングの後、基材12の表面に残った第1の転写材料膜14を除去する。
 除去方法としては、剥離液等によるウエット処理、酸素プラズマや真空紫外線等によるドライ処理、転写材料の熱分解を促す温度での熱処理等が挙げられる。
(Process (d))
After the etching, the first transfer material film 14 remaining on the surface of the substrate 12 is removed.
Examples of the removal method include wet treatment with a stripping solution, dry treatment with oxygen plasma, vacuum ultraviolet rays, and the like, and heat treatment at a temperature that promotes thermal decomposition of the transfer material.
(工程(e))
(第2の転写材料膜の形成)
 第1の領域(I)に微細パターン20が形成された基材12の表面に、転写材料を含む液状の塗工用組成物を塗布し、塗工用組成物が溶媒を含む場合は乾燥させることによって、第2の転写材料膜16を形成する。
 工程(e)は、工程(a)と同様に行えばよく、工程(a)と同じ内容については、その説明を省略する。
(Process (e))
(Formation of second transfer material film)
A liquid coating composition containing a transfer material is applied to the surface of the substrate 12 on which the fine pattern 20 is formed in the first region (I), and is dried when the coating composition contains a solvent. Thus, the second transfer material film 16 is formed.
The step (e) may be performed in the same manner as the step (a), and the description of the same contents as the step (a) is omitted.
 工程(e)において基材12の表面の第1の領域(I)の上に塗布された塗工用組成物の一部が、第1の領域(I)に形成された微細パターン20の凹部24に流れ込むため、第1の領域(I)の上に存在する第2の転写材料膜16には陥没部18が形成される。陥没部18の分だけ、第1の領域(I)の上に存在する第2の転写材料膜16の厚さが薄くなる。 A concave portion of the fine pattern 20 in which a part of the coating composition applied on the first region (I) on the surface of the substrate 12 in the step (e) is formed in the first region (I). Therefore, a depression 18 is formed in the second transfer material film 16 existing on the first region (I). The thickness of the second transfer material film 16 existing on the first region (I) is reduced by the amount corresponding to the depressed portion 18.
 第2の転写材料膜の厚さ(塗工用組成物が溶媒を含む場合は乾燥後の厚さ)、すなわち塗工用組成物の塗布量は、第2の領域における目標のエッチング深さ(すなわち、微細パターンの凹部の深さ)、転写材料膜のエッチングレート、基材のエッチングレートに応じて適宜設定すればよい。 The thickness of the second transfer material film (the thickness after drying when the coating composition contains a solvent), that is, the coating amount of the coating composition is the target etching depth in the second region ( In other words, the depth of the concave portion of the fine pattern), the etching rate of the transfer material film, and the etching rate of the substrate may be set as appropriate.
(工程(f))
 第2の領域(II)において、モールド30のうち、反転パターン26が形成された面を第2の転写材料膜16に押し付け、モールド30と基材12との間に第2の転写材料膜16を挟んだ状態にて、モールド30と基材12との間に挟まれた第2の転写材料膜16のみに光を選択的に照射し、該第2の転写材料膜16を硬化させる。第2の転写材料膜16を硬化させた後、第2の転写材料膜16からモールド30を分離する。このようにして、モールド30の反転パターン26を第2の転写材料膜16に転写して、第2の領域(II)の第2の転写材料膜16に微細パターン20に対応するマスクパターン28を形成する。
 工程(f)は、工程(b)と同様に行えばよく、工程(b)と同じ内容については、その説明を省略する。
(Process (f))
In the second region (II), the surface of the mold 30 on which the reverse pattern 26 is formed is pressed against the second transfer material film 16, and the second transfer material film 16 is interposed between the mold 30 and the substrate 12. In this state, only the second transfer material film 16 sandwiched between the mold 30 and the substrate 12 is selectively irradiated with light to cure the second transfer material film 16. After the second transfer material film 16 is cured, the mold 30 is separated from the second transfer material film 16. In this way, the reverse pattern 26 of the mold 30 is transferred to the second transfer material film 16, and the mask pattern 28 corresponding to the fine pattern 20 is formed on the second transfer material film 16 in the second region (II). Form.
The step (f) may be performed in the same manner as the step (b), and the description of the same contents as the step (b) is omitted.
 第2の領域(II)が複数ある場合は、工程(f)を第2の領域(II)の数だけ繰り返し実施する。
 また、工程(f)を繰り返し実施する場合、次の工程(f)に移行する際には、第1の領域(I)と第2の領域(II)とが隣接し、かつX方向およびY方向のそれぞれに交互に配列するように、モールド30または基材12を面方向(X方向またはY方向)に、かつ第1の領域(I)の分だけ平行に移動させることが好ましい。
 すべての第2の領域(II)の第2の転写材料膜16にマスクパターン28を形成した後、第2の転写材料膜16の全面に光を照射し、第2の領域(II)以外の第2の転写材料膜16を硬化させる。
When there are a plurality of second regions (II), the step (f) is repeated for the number of the second regions (II).
In addition, when the step (f) is repeatedly performed, the first region (I) and the second region (II) are adjacent to each other and the X direction and the Y direction are transferred to the next step (f). It is preferable to move the mold 30 or the substrate 12 in the plane direction (X direction or Y direction) and in parallel by the first region (I) so as to be alternately arranged in each direction.
After the mask pattern 28 is formed on the second transfer material film 16 in all the second regions (II), the entire surface of the second transfer material film 16 is irradiated with light, and the regions other than the second region (II) The second transfer material film 16 is cured.
 第2の領域の第2の転写材料膜にモールドを押し付ける際には、第1の領域の微細パターンと第2の領域の微細パターンとが連続するように、モールドや基材の位置の補正を行うことが好ましい。モールドや基材の位置の補正は、特許文献1に記載された補正方法等、公知の方法によって行うことができる。 When pressing the mold against the second transfer material film in the second region, the position of the mold or the substrate is corrected so that the fine pattern in the first region and the fine pattern in the second region are continuous. Preferably it is done. Correction of the position of the mold or the substrate can be performed by a known method such as a correction method described in Patent Document 1.
(工程(g))
 マスクパターン28が形成された第2の転写材料膜16をエッチングマスクとしてエッチングを行い、基材12の表面の第2の領域(II)に微細パターン20を形成する。
 工程(g)は、工程(c)と同様に行えばよく、工程(c)と同じ内容については、その説明を省略する。
(Process (g))
Etching is performed using the second transfer material film 16 on which the mask pattern 28 is formed as an etching mask to form the fine pattern 20 in the second region (II) on the surface of the substrate 12.
The step (g) may be performed in the same manner as the step (c), and the description of the same contents as the step (c) is omitted.
 図5は、工程(g)の直前における、マスクパターン28が形成された第2の転写材料膜16を表面に有する基材12の断面図である。
 本発明においては、工程(g)の直前にて、基材12の表面の第1の領域(I)の上に存在する第2の転写材料膜16の厚さdが、下式(1)を満足している必要がある。
 r×(H/R)+t<d ・・・(1)。
FIG. 5 is a cross-sectional view of the base material 12 having the second transfer material film 16 on which the mask pattern 28 is formed on the surface just before the step (g).
In the present invention, immediately before the step (g), the thickness d of the second transfer material film 16 existing on the first region (I) on the surface of the substrate 12 is expressed by the following formula (1). It is necessary to be satisfied.
r × (H / R) + t <d (1).
 dは、基材12の表面の第1の領域(I)の上に存在する第2の転写材料膜16の厚さ、すなわち第1の領域(I)の微細パターン20の最頂部から陥没部18の最底部までの厚さ方向の距離である。
 rは、第2の転写材料膜16のエッチングレートである。なお、酸素ガスを用いたエッチングによって、残膜の厚さtよりも薄い厚さで第2の転写材料膜16をあらかじめエッチングした後、ハロゲン系ガスを用いたエッチングを行う場合は、ハロゲン系ガスを用いたエッチングにおけるエッチングレートとする。
 Hは、第2の領域(II)における目標のエッチング深さ、すなわち微細パターン20の凹部24の深さである。
 Rは、基材12のエッチングレートである。
 tは、第2の領域(II)におけるマスクパターン28の凹部と基材12との間の残膜の厚さである。
d is the thickness of the second transfer material film 16 existing on the first region (I) on the surface of the substrate 12, that is, the depressed portion from the top of the fine pattern 20 in the first region (I). It is the distance in the thickness direction to the bottom of 18.
r is the etching rate of the second transfer material film 16. In the case where the second transfer material film 16 is etched in advance with a thickness smaller than the thickness t of the remaining film by etching using oxygen gas, when etching using halogen gas is performed, halogen gas is used. Etching rate in etching using
H is the target etching depth in the second region (II), that is, the depth of the concave portion 24 of the fine pattern 20.
R is the etching rate of the substrate 12.
t is the thickness of the remaining film between the concave portion of the mask pattern 28 and the substrate 12 in the second region (II).
 式(1)における「H/R」は、基板12を目標のエッチング深さHだけエッチングするのに必要な時間である。よって、式(1)における「r×(H/R)」は、基板12を目標のエッチング深さHだけエッチングしている間にエッチングされる第2の転写材料膜16の厚さとなる。
 したがって、厚さdが、残膜をエッチングしている間にエッチングされる第2の転写材料膜16の厚さ(厚さtと等しい)と、基板12を目標のエッチング深さHだけエッチングしている間にエッチングされる第2の転写材料膜16の厚さ(r×(H/R))との合計よりも厚ければ、工程(g)の終了時においても、基材12の表面の第1の領域(I)の上に第2の転写材料膜16が残存することになる。よって、工程(g)において第1の領域(I)の微細パターン20がエッチングされることがなく、第1の領域(I)においても所望の形状の微細パターン20が得られる。その結果、第1の領域(I)の微細パターン20の欠陥や、第1の領域(I)と第2の領域(II)との間での微細パターン20のバラツキが少なくなる。
“H / R” in Equation (1) is the time required to etch the substrate 12 by the target etching depth H. Therefore, “r × (H / R)” in Equation (1) is the thickness of the second transfer material film 16 that is etched while the substrate 12 is being etched by the target etching depth H.
Therefore, the thickness d is equal to the thickness of the second transfer material film 16 to be etched while the remaining film is being etched (equal to the thickness t), and the substrate 12 is etched by the target etching depth H. If the thickness is larger than the sum of the thickness (r × (H / R)) of the second transfer material film 16 that is etched during the process, the surface of the substrate 12 is obtained even at the end of the step (g). The second transfer material film 16 remains on the first region (I). Therefore, the fine pattern 20 in the first region (I) is not etched in the step (g), and the fine pattern 20 having a desired shape is obtained also in the first region (I). As a result, defects in the fine pattern 20 in the first region (I) and variations in the fine pattern 20 between the first region (I) and the second region (II) are reduced.
 厚さdが式(1)を満足するようにするためには、たとえば、下記の調整を行う。
 (α)第2の領域(II)における目標のエッチング深さHを浅くする。
 (β)基材12の表面の第1の領域(I)の上に存在する第2の転写材料膜16の厚さdを厚くする。
 (γ)レジスト選択比(R/r)を大きくする。
 (δ)残膜の厚さtを薄くする。
 (ε)予備実験を行い、厚さdが式(1)を満足する塗工用組成物の塗布量を調べる。
In order for the thickness d to satisfy the formula (1), for example, the following adjustment is performed.
(Α) The target etching depth H in the second region (II) is decreased.
(Β) The thickness d of the second transfer material film 16 existing on the first region (I) on the surface of the substrate 12 is increased.
(Γ) Increase the resist selectivity (R / r).
(Δ) Decrease the thickness t of the remaining film.
(Ε) A preliminary experiment is performed to examine the coating amount of the coating composition having a thickness d satisfying the formula (1).
 (α)について:
 製造条件上の制約から、エッチングレートr、R、厚さt、dを変更できない場合、目標のエッチング深さHを浅くすることによって、式(1)の左辺を小さくできる。
About (α):
If the etching rates r, R, and thicknesses t and d cannot be changed due to restrictions on manufacturing conditions, the left side of the equation (1) can be reduced by reducing the target etching depth H.
 (β)について:
 下記する(1)又は(2)の方法等によって、第1の領域(I)の微細パターン20の凹部24に流れ込む塗工用組成物の量が減り、厚さdを厚くすることができる。
 (1)第1の領域(I)の微細パターン20の凹部24の深さを浅くする。
 (2)第1の領域(I)の微細パターン20の開口比(凹部24の幅/(凸部22の幅+凹部24の幅))を小さくする。
About (β):
By the method (1) or (2) described below, the amount of the coating composition flowing into the concave portion 24 of the fine pattern 20 in the first region (I) is reduced, and the thickness d can be increased.
(1) The depth of the concave portion 24 of the fine pattern 20 in the first region (I) is decreased.
(2) The aperture ratio of the fine pattern 20 in the first region (I) (the width of the concave portion 24 / (the width of the convex portion 22 + the width of the concave portion 24)) is reduced.
 (γ)について:
 基材12の材料や転写材料を選択できる場合には、レジスト選択比(R/r)が大きくなるように材料を選択することによって、式(1)の左辺を小さくできる。
About (γ):
When the material of the substrate 12 and the transfer material can be selected, the left side of the formula (1) can be reduced by selecting the material so that the resist selectivity (R / r) is increased.
 (δ)について:
 下記する(1)~(4)の方法等によって、残膜の厚さtを薄くし、上記式(1)の左辺を小さくすることができる。
 (1)塗工用組成物の塗布量を少なくする。
 (2)モールド30から第2の転写材料膜16に加わる圧力を大きくする。
 (3)モールド30の反転パターン26の凹部の深さを深くする。
 (4)モールド30の反転パターン26の開口比を大きくする。
 なお、(1)の方法では厚さdも薄くなってしまうため、(2)~(4)の方法で残膜の厚さtを調整することが好ましい。
About (δ):
By the following methods (1) to (4), the remaining film thickness t can be reduced and the left side of the above formula (1) can be reduced.
(1) Reduce the coating amount of the coating composition.
(2) The pressure applied from the mold 30 to the second transfer material film 16 is increased.
(3) The depth of the concave portion of the reversal pattern 26 of the mold 30 is increased.
(4) The aperture ratio of the reversal pattern 26 of the mold 30 is increased.
Since the thickness d is also reduced in the method (1), it is preferable to adjust the thickness t of the remaining film by the methods (2) to (4).
 (ε)について:
 物品の設計上、製造条件上の制約から、エッチングレートr、R、厚さt、目標のエッチング深さHを変更できない場合、予備実験にて塗工用組成物の塗布量を変化させながら基材12の表面の第1の領域(I)の上に第2の転写材料膜16を形成し、厚さdが式(1)を満足するような塗工用組成物の塗布量の範囲を調べる。
About (ε):
When the etching rate r, R, thickness t, and target etching depth H cannot be changed due to restrictions on manufacturing conditions due to the design of the article, it is necessary to change the coating amount of the coating composition in a preliminary experiment. The second transfer material film 16 is formed on the first region (I) on the surface of the material 12, and the coating amount range of the coating composition is such that the thickness d satisfies the formula (1). Investigate.
 物品の設計上、あらかじめ目標とする微細パターンが決まっている場合、(α)~(ε)のうち、以下の方法(1)~(3)の方法が特に有効である。
 (1)(γ)レジスト選択比を大きくする。
 (2)(δ)の(2)モールド30から第2の転写材料膜16に加わる圧力を大きくする。
 (3)(δ)の(3)モールド30の反転パターン26の凹部の深さを深くする。
When the target fine pattern is determined in advance in the design of the article, the following methods (1) to (3) are particularly effective among (α) to (ε).
(1) (γ) Increase the resist selectivity.
(2) (δ) (2) The pressure applied from the mold 30 to the second transfer material film 16 is increased.
(3) (δ) (3) The depth of the concave portion of the reversal pattern 26 of the mold 30 is increased.
 前記工程(a)における前記塗工用組成物およびその塗布量と、前記工程(e)における前記塗工用組成物およびその塗布量とが同じであり、前記工程(b)における前記モールドおよび前記マスクパターンの形成条件と、前記工程(f)における前記モールドおよび前記マスクパターンの形成条件とが同じであり、前記工程(c)におけるエッチング条件と、前記工程(g)におけるエッチング条件とが同じであることが好ましい。全く同じ条件で工程を進めることによって、1回目のサイクルと2回目のサイクルでそれぞれ基板上に形成される微細パターンの形状を容易に一致させることが可能になる。 The coating composition and its coating amount in the step (a) are the same as the coating composition and its coating amount in the step (e), and the mold and the coating in the step (b) The formation conditions of the mask pattern are the same as the formation conditions of the mold and the mask pattern in the step (f), and the etching conditions in the step (c) are the same as the etching conditions in the step (g). Preferably there is. By proceeding under exactly the same conditions, it becomes possible to easily match the shapes of the fine patterns formed on the substrate in the first cycle and the second cycle, respectively.
(工程(h))
 エッチングの後、基材12の表面に残った第2の転写材料膜16を除去する。
 工程(h)は、工程(d)と同様に行えばよく、工程(d)と同じ内容については、その説明を省略する。
(Process (h))
After the etching, the second transfer material film 16 remaining on the surface of the substrate 12 is removed.
Step (h) may be performed in the same manner as step (d), and the description of the same contents as step (d) will be omitted.
(作用効果)
 以上説明した本発明の微細パターンを表面に有する物品の製造方法にあっては、転写材料膜を基材の表面に形成する工程、モールドの反転パターンを転写材料膜に転写する工程、転写材料膜をエッチングマスクとしてエッチングを行う工程、残った転写材料膜を除去する工程を1サイクルとし、該サイクルを2回繰り返す方法(すなわち上述した工程(a)~(h)を有する方法)において、2回目のサイクルのエッチング(すなわち上述した工程(g))の直前にて、1回目のサイクルで形成された微細パターンの上(すなわち基材の表面の第1の領域の上)に存在する第2の転写材料膜の厚さdが、式(1)を満足するため、2回目のサイクルのエッチングの終了時においても、1回目のサイクルで形成された微細パターンの上に第2の転写材料膜が残存する。そのため、2回目のサイクルにおけるエッチングの際に、1回目のサイクルにおいて形成された微細パターンがエッチングされることがない。
(Function and effect)
In the method for manufacturing an article having the fine pattern on the surface according to the present invention described above, the step of forming the transfer material film on the surface of the substrate, the step of transferring the reversal pattern of the mold to the transfer material film, the transfer material film In the method of performing the etching using the etching mask and the step of removing the remaining transfer material film as one cycle and repeating the cycle twice (that is, the method having the steps (a) to (h) described above), the second time Of the second pattern existing on the fine pattern formed in the first cycle (that is, on the first region of the surface of the substrate) immediately before the etching of the cycle (that is, step (g) described above). Since the thickness d of the transfer material film satisfies the expression (1), the second pattern is formed on the fine pattern formed in the first cycle even at the end of the second cycle etching. Copy material film remains. Therefore, the fine pattern formed in the first cycle is not etched during the etching in the second cycle.
 また、本発明の製造方法で得られる微細パターンを表面に有する物品は、転写材料膜を基材の表面に形成する工程、モールドの反転パターンを転写材料膜に転写する工程、転写材料膜をエッチングマスクとしてエッチングを行う工程、残った転写材料膜を除去する工程を1サイクルとし、該サイクルを2回繰り返す方法(すなわち上述した工程(a)~(h)を有する方法)で製造されるため、微細パターンが比較的大面積である。また、2回目のサイクルにおけるエッチングの際に、1回目のサイクルにおいて形成された微細パターンがエッチングされることがない方法で製造されるため、微細パターンの欠陥や形状のバラツキが少ない。 In addition, an article having a fine pattern on the surface obtained by the production method of the present invention includes a step of forming a transfer material film on the surface of a substrate, a step of transferring a reverse pattern of a mold to the transfer material film, and etching the transfer material film. Since the process of etching as a mask and the process of removing the remaining transfer material film are defined as one cycle and the cycle is repeated twice (that is, the method having the steps (a) to (h) described above), A fine pattern has a relatively large area. Further, since the fine pattern formed in the first cycle is manufactured by a method in which the fine pattern formed in the first cycle is not etched during etching in the second cycle, there are few fine pattern defects and shape variations.
<光学物品>
 本発明の光学物品は、後述する本発明の光学物品の製造方法によって製造されたものである。
 本発明の微細パターンを表面に有する物品と同じ内容については、その説明を省略する。
<Optical article>
The optical article of the present invention is manufactured by the optical article manufacturing method of the present invention described later.
The description of the same content as the article having the fine pattern of the present invention on the surface is omitted.
 図6は、光学物品の一例を示す断面図である。光学物品40は、透明基材42と、透明基材42の表面に形成された硬化樹脂層44とを有し、硬化樹脂層44が微細パターン50を有するものである。 FIG. 6 is a cross-sectional view showing an example of an optical article. The optical article 40 includes a transparent substrate 42 and a cured resin layer 44 formed on the surface of the transparent substrate 42, and the cured resin layer 44 has a fine pattern 50.
(基材)
 透明基材42の材料としては、石英、ガラス、金属酸化物、各種樹脂等が挙げられる。
 透明基材42は、硬化樹脂層44との密着性をさらに向上させる点から、表面処理されていてもよい。
(Base material)
Examples of the material of the transparent substrate 42 include quartz, glass, metal oxide, various resins, and the like.
The transparent substrate 42 may be surface-treated from the viewpoint of further improving the adhesion with the cured resin layer 44.
(硬化樹脂層)
 硬化樹脂層44は、光硬化性樹脂を含む塗工用組成物(すなわち、光硬化性樹脂組成物)を透明基材42の表面に塗布し、光照射によって光硬化性樹脂組成物を硬化させることによって形成される層である。
(Cured resin layer)
The curable resin layer 44 is formed by applying a coating composition containing a photocurable resin (that is, a photocurable resin composition) to the surface of the transparent substrate 42 and curing the photocurable resin composition by light irradiation. It is a layer formed by this.
(微細パターン)
 硬化樹脂層44は、表面に微細パターン50を有する。微細パターン50は、後述するモールドの表面の反転パターンを転写して形成されるパターンである。
 微細パターン50は、複数の凸部52と凸部52間の凹部54とからなる。凸部52としては、図示例のような硬化樹脂層44の表面に延在する凸条、表面に点在する突起等が挙げられる。
 上記した光学物品は、比較的大面積の微細パターンを得ることができ、かつ微細パターンの欠陥や形状のバラツキが少なく、ワイヤグリッド偏光素子また反射防止部材等の光学部品として好ましく使用することができる。
(Fine pattern)
The cured resin layer 44 has a fine pattern 50 on the surface. The fine pattern 50 is a pattern formed by transferring a reverse pattern on the surface of the mold to be described later.
The fine pattern 50 includes a plurality of convex portions 52 and concave portions 54 between the convex portions 52. As the convex part 52, the protruding item | line extended on the surface of the cured resin layer 44 like the example of illustration, the process scattered on the surface, etc. are mentioned.
The above-described optical article can obtain a fine pattern having a relatively large area, has few defects in the fine pattern and variations in shape, and can be preferably used as an optical component such as a wire grid polarizing element or an antireflection member. .
<光学物品の製造方法>
 本発明の光学物品の製造方法は、本発明の微細パターンを表面に有する物品を、光学物品の微細パターンの反転パターンを表面に有するモールドとして用い、該モールドの反転パターンを透明基材の表面に転写する方法である。
<Method for manufacturing optical article>
The method for producing an optical article of the present invention uses an article having the fine pattern of the present invention on the surface as a mold having a reverse pattern of the fine pattern of the optical article on the surface, and uses the reverse pattern of the mold on the surface of the transparent substrate. It is a method of transcription.
 モールドの反転パターンを透明基材の表面に転写する方法としては、転写材料として光硬化性樹脂を用いる光ナノインプリントリソグラフィ法、転写材料として熱硬化性樹脂または熱可塑性樹脂を用いる熱ナノインプリントリソグラフィ法等が挙げられる。効率よくモールドの反転パターンを透明基材の表面に転写できる点から、光ナノインプリントリソグラフィ法が好ましい。
 以降の説明は、転写方法が光ナノインプリントリソグラフィ法である場合についての説明のみとし、転写方法が熱ナノインプリントリソグラフィ法である場合の説明は省略する。
Examples of methods for transferring the mold reversal pattern to the surface of the transparent substrate include photo nanoimprint lithography using a photocurable resin as a transfer material, and thermal nanoimprint lithography using a thermosetting resin or thermoplastic resin as a transfer material. Can be mentioned. The optical nanoimprint lithography method is preferable from the viewpoint that the reversal pattern of the mold can be efficiently transferred onto the surface of the transparent substrate.
In the following description, only the case where the transfer method is an optical nanoimprint lithography method will be described, and the case where the transfer method is a thermal nanoimprint lithography method will be omitted.
 本発明の光学物品の製造方法としては、たとえば、下記の工程(x)~(z)を有する方法が挙げられる。
 (x)図7に示すように、透明基材42の表面に、転写材料として光硬化性樹脂を含む塗工用組成物を塗布し、光硬化性樹脂層46を形成する工程。
 (y)図7に示すように、微細パターン50の反転パターンを表面に有するモールド60と、透明基材42との間に、光硬化性樹脂層46を挟んだ状態にて光を照射し、光硬化性樹脂層46を硬化させて硬化樹脂層44とする工程。
 (z)硬化樹脂層44からモールド60を分離して光学物品40を得る工程。
Examples of the method for producing an optical article of the present invention include a method having the following steps (x) to (z).
(X) A step of forming a photocurable resin layer 46 by applying a coating composition containing a photocurable resin as a transfer material to the surface of the transparent substrate 42 as shown in FIG.
(Y) As shown in FIG. 7, light is irradiated in a state where a photocurable resin layer 46 is sandwiched between a mold 60 having a reverse pattern of the fine pattern 50 on the surface and a transparent substrate 42, A step of curing the photocurable resin layer 46 to form a cured resin layer 44.
(Z) A step of obtaining the optical article 40 by separating the mold 60 from the cured resin layer 44.
(工程(x))
 工程(x)は、工程(a)と同様に行えばよく、工程(a)と同じ内容については、その説明を省略する。
 この工程における塗工用組成物としては、工程(a)における塗工用組成物と同様のものを用いればよい。
(Process (x))
Step (x) may be performed in the same manner as step (a), and the description of the same contents as step (a) will be omitted.
What is necessary is just to use the thing similar to the composition for coating in a process (a) as a composition for coating in this process.
(工程(y))
 工程(y)は、工程(b)と同様に行えばよく、工程(b)と同じ内容については、その説明を省略する。
 モールド60としては、本発明の微細パターンを表面に有する物品10を、光学物品40の微細パターン50の反転パターンを表面に有するモールドを用いる。
(Process (y))
Step (y) may be performed in the same manner as step (b), and the description of the same contents as step (b) is omitted.
As the mold 60, the article 10 having the fine pattern of the present invention on the surface and the mold having the reverse pattern of the fine pattern 50 of the optical article 40 on the surface are used.
(工程(z))
 硬化樹脂層44からモールド60を分離する方法としては、真空吸着によって双方を固定して片方を離す方向に移動させる方法、機械的に双方を固定して片方を離す方向に移動させる方法等が挙げられる。
 硬化樹脂層44からモールド60を分離した後、硬化樹脂層44をさらに硬化させてもよい。硬化の方法としては、加熱処理、光照射等が挙げられる。
 上記した工程(x)~(z)を有する製造方法により、ワイヤグリッド偏光素子また反射防止部材等の光学部品を好ましく製造することができる。
(Process (z))
Examples of the method for separating the mold 60 from the cured resin layer 44 include a method in which both are fixed by vacuum suction and moved in a direction in which one is released, a method in which both are mechanically fixed and moved in a direction in which one is released. It is done.
After separating the mold 60 from the cured resin layer 44, the cured resin layer 44 may be further cured. Examples of the curing method include heat treatment and light irradiation.
By the manufacturing method including the steps (x) to (z) described above, an optical component such as a wire grid polarizing element or an antireflection member can be preferably manufactured.
(作用効果)
 以上説明した本発明の光学物品の製造方法にあっては、微細パターンが比較的大面積であり、かつ微細パターンの欠陥や形状のバラツキが少ない本発明の微細パターンを表面に有する物品をモールドとして用いているため、微細パターンが比較的大面積であり、かつ微細パターンの欠陥や形状のバラツキが少ない光学物品を1回の転写で製造できる。
(Function and effect)
In the method for producing an optical article of the present invention described above, an article having a fine pattern of the present invention on its surface having a relatively large area and a small number of fine pattern defects and shape variations is used as a mold. Therefore, an optical article having a relatively small area and a small pattern defect and shape variation can be produced by a single transfer.
 本発明の製造方法で得られる光学物品は、微細パターンが比較的大面積であり、かつ微細パターンの欠陥や形状のバラツキが少ない本発明の微細パターンを表面に有する物品をモールドとして用いて製造されるため、微細パターンが比較的大面積であり、かつ微細パターンの欠陥や形状のバラツキが少ない。 An optical article obtained by the manufacturing method of the present invention is manufactured using an article having a fine pattern of the present invention on its surface as a mold, which has a relatively large fine pattern and few defects and variations in shape of the fine pattern. Therefore, the fine pattern has a relatively large area, and there are few defects and variations in the shape of the fine pattern.
<複製モールドおよびその製造方法>
 本発明の複製モールドの製造方法は、本発明の微細パターンを表面に有する物品を、マスタモールドとして用いて複製モールド(すなわち、子モールド)を製造する方法である。
 複製モールドの具体的な製造方法としては、以下の方法等が挙げられる。
 ・光学物品の製造方法と同様にしてマスタモールドの微細パターンを基材の表面に転写して複製モールドを得る方法。
 ・マスタモールドの微細パターンの表面に電鋳(ニッケル電鋳等)によって金属を析出させ、微細パターンが転写された金属基材からなる複製モールドを得る方法。
 得られた複製モールドをマスタモールドとして用いて、さらに複製モールド(すなわち、孫モールド)を製造してもよい。
<Replication mold and manufacturing method thereof>
The method for producing a replication mold of the present invention is a method for manufacturing a replication mold (that is, a child mold) using the article having the fine pattern of the present invention on the surface as a master mold.
The following method etc. are mentioned as a concrete manufacturing method of a replication mold.
A method for obtaining a replica mold by transferring a fine pattern of a master mold onto the surface of a substrate in the same manner as in the method for producing an optical article.
A method of obtaining a replica mold made of a metal substrate on which a fine pattern is transferred by depositing metal on the surface of the fine pattern of the master mold by electroforming (nickel electroforming or the like).
The obtained replica mold may be used as a master mold to further manufacture a replica mold (that is, a grandchild mold).
(作用効果)
 以上説明した本発明の複製モールドの製造方法にあっては、微細パターンが比較的大面積であり、かつ微細パターンの欠陥や形状のバラツキが少ない本発明の微細パターンを表面に有する物品をマスタモールドとして用いているため、微細パターンが比較的大面積であり、かつ微細パターンの欠陥や形状のバラツキが少ない複製モールドを1回の転写で製造できる。
(Function and effect)
In the method for producing a replica mold of the present invention described above, an article having a fine pattern of the present invention on its surface having a relatively large area and a small number of fine pattern defects and shape variations is master mold. Therefore, a replica mold having a relatively large area and a small pattern defect and shape variation can be produced by one transfer.
 以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されない。
 例1、2、4、7は実施例であり、例3、5、6、8は比較例である。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
Examples 1, 2, 4, and 7 are examples, and examples 3, 5, 6, and 8 are comparative examples.
(転写材料膜の厚さ)
 基材の平坦面の上に存在する転写材料膜の厚さは、卓上膜厚測定システム(フィルメトリクス社製、F20)を用いて測定した。
(Thickness of transfer material film)
The thickness of the transfer material film present on the flat surface of the substrate was measured using a tabletop film thickness measurement system (F20, manufactured by Filmetrics).
 基材の表面の第1の領域の上に存在する第2の転写材料膜の厚さdは、下記のようにして求めた。
 第1の領域の上に存在する第2の転写材料膜に形成された陥没部の周縁について、走査型プローブ顕微鏡(SIIナノテクノロジ社製、L-trace、Nanonavi)を用いて段差量の測定を行った。基材の平坦面の上に存在する第2の転写材料膜の厚さから段差量を差し引くことによって厚さdを求めた。
The thickness d of the second transfer material film existing on the first region on the surface of the substrate was determined as follows.
For the peripheral edge of the depressed portion formed in the second transfer material film existing on the first region, the step amount is measured using a scanning probe microscope (SII Nanotechnology, L-trace, Nanoavi). went. The thickness d was determined by subtracting the step amount from the thickness of the second transfer material film present on the flat surface of the substrate.
(残膜の厚さt)
 実施例と同条件で作製したダミーサンプルを割断し、割断面における残膜の厚さtを、走査型電子顕微鏡(日立製作所社製、S4300)を用いて測定した。
(Residual film thickness t)
The dummy sample produced on the same conditions as an Example was cleaved, and the thickness t of the remaining film in a cut surface was measured using the scanning electron microscope (Hitachi Ltd. make, S4300).
(微細パターンの評価)
 得られた物品の微細パターンを、走査型プローブ顕微鏡(SIIナノテクノロジ社製、L-trace、Nanonavi)を用いて観察し、下記の基準にて評価した。
 ○:第1の領域の微細パターンの形状が、1回目のサイクル終了時の状態と比べた時に差を見出せない。
 ×:第1の領域の微細パターンの形状が、1回目のサイクル終了時の状態と比べた時に差がある。
(Evaluation of fine pattern)
A fine pattern of the obtained article was observed using a scanning probe microscope (manufactured by SII Nanotechnology, L-trace, Nanoavi) and evaluated according to the following criteria.
A: The difference in the shape of the fine pattern in the first region cannot be found when compared with the state at the end of the first cycle.
X: There is a difference when the shape of the fine pattern in the first region is compared with the state at the end of the first cycle.
(プライマの調製)
 バイヤル容器に、2-プロパノール(純正化学社製、電子工業用試薬)の9g、KBM-503(信越化学工業社製、3-メタクリロキシプロピルトリメトキシシラン)の4μL、テトラエトキシシラン(東京化成工業社製、特級試薬)の6μL、酢酸水溶液(関東化学社製、特級、20質量%水溶液)の1gをはかりとり、充分な撹拌を行ない、プライマを調製した。
(Preparation of primer)
In a vial container, 9 g of 2-propanol (manufactured by Junsei Chemical Co., Ltd., reagent for electronic industry), 4 μL of KBM-503 (manufactured by Shin-Etsu Chemical Co., Ltd., 3-methacryloxypropyltrimethoxysilane), tetraethoxysilane (Tokyo Chemical Industry) A primer was prepared by weighing out 1 μg of an aqueous acetic acid solution (manufactured by Kanto Chemical Co., Ltd., special grade, 20% by mass aqueous solution) and stirring sufficiently.
(塗工用組成物の調製)
 バイヤル容器に、U-6H(新中村化学工業社製、ウレタンメタクリレート系反応性オリゴマー)の1.00g、S420(AGCセイミケミカル社製、ノニオン性含フッ素界面活性剤)の0.03g、IRGACURE907(BASFジャパン社製、光重合開始剤)の0.03gをはかりとり、さらに、酢酸イソブチル(関東化学社製、鹿特級)の19.00gを加え、充分な撹拌を行ない、塗工用組成物を得た。
(Preparation of coating composition)
In a vial container, 1.00 g of U-6H (manufactured by Shin-Nakamura Chemical Co., Ltd., urethane methacrylate type reactive oligomer), 0.03 g of S420 (manufactured by AGC Seimi Chemical Co., Ltd., nonionic fluorine-containing surfactant), IRGACURE907 ( Weigh out 0.03 g of BASF Japan Co., photopolymerization initiator), and then add 19.00 g of isobutyl acetate (Kanto Chemical Co., Ltd., Deer Special Grade), stir well, and apply coating composition. Obtained.
〔例1〕
(工程(a))
 直径4インチの円形のシリコン基材(SUMCO社製、厚さ:525μm、<1.0.0>面、片面ミラーウエハ)の表面に、調製したプライマをスポイトで滴下し、スピンコータを用い、4000rpmで20秒間のスピンコートを行い、その後、ホットプレート上にて130℃で10分間の熱処理を行った。
[Example 1]
(Process (a))
The prepared primer is dropped with a dropper onto the surface of a circular silicon substrate having a diameter of 4 inches (SUMCO Co., Ltd., thickness: 525 μm, <1.0.0> surface, single-sided mirror wafer), and 4000 rpm using a spin coater. Then, spin coating was performed for 20 seconds, followed by heat treatment at 130 ° C. for 10 minutes on a hot plate.
.
 プライマ処理を行ったシリコン基材の表面に、塗工用組成物をスポイトで滴下し、スピンコータを用い、3000rpmで20秒間のスピンコートを行い、その後、ホットプレート上にて70℃で2分間加熱して塗膜を脱溶媒し、第1の転写材料膜を形成した。第1の転写材料膜の厚さを表1に示す。 The coating composition is dropped onto the surface of the silicon substrate subjected to the primer treatment with a dropper, spin-coated at 3000 rpm for 20 seconds using a spin coater, and then heated at 70 ° C. for 2 minutes on a hot plate. Then, the solvent was removed from the coating film to form a first transfer material film. Table 1 shows the thickness of the first transfer material film.
(工程(b))
 第1の領域の第1の転写材料膜に対して、ライン・アンド・スペースの微細パターンを有する石英モールド(パターンエリアサイズ:22mm×22mm、ラインの線幅:60nm、スペースの溝幅:60nm、ピッチ:120nm、溝深さ:120nm、外形サイズ:22mm×22mm、厚さ:6.35mm)を、ナノインプリント装置(東芝機械社製、ST50)を用い、大気圧下、25℃にて、3MPaの圧力で40秒間押し付けて密着させ、その状態のまま石英モールド越しに、石英モールドの微細パターンエリアに紫外線(1000mJ/cm)を照射した。その後、石英モールドを剥がし取り、さらに真空下チャンバー中で紫外線(1000mJ/cm)を照射して転写材料を全面硬化させ、マスクパターン付きシリコン基材を得た。
(Process (b))
A quartz mold having a fine pattern of line and space (pattern area size: 22 mm × 22 mm, line width: 60 nm, space groove width: 60 nm, and first transfer material film in the first region, (Pitch: 120 nm, groove depth: 120 nm, external size: 22 mm × 22 mm, thickness: 6.35 mm) using a nanoimprint apparatus (manufactured by Toshiba Machine Co., Ltd., ST50) at 25 ° C. under atmospheric pressure at 3 MPa. The pressure was pressed for 40 seconds so as to be in close contact, and the fine pattern area of the quartz mold was irradiated with ultraviolet rays (1000 mJ / cm 2 ) through the quartz mold in that state. Thereafter, the quartz mold was peeled off, and further, ultraviolet rays (1000 mJ / cm 2 ) were irradiated in a vacuum chamber to cure the entire transfer material, thereby obtaining a silicon substrate with a mask pattern.
(工程(c))
 マスクパターン付きシリコン基材について、ドライエッチング装置を用いて、次の3つのステップを順に行い、異方性エッチングを行なった。
 1)Oエッチングによって、第1の転写材料膜の表層(厚さ35nm)を除去した。
 2)フッ素系のガス(SF、C)を用い、表1に示す目標のエッチング深さHまでシリコン基材をドライエッチングした。エッチングの時間は、実際にエッチングを行ったサンプルの転写材料膜を剥離し、シリコン基材の溝の深さを走査型プローブ顕微鏡で測定することによって、目標とするエッチング深さHになるように調整した。
 3)Oプラズマによって過剰な時間アッシングを行い、表面に付着したCガスプラズマ由来の堆積膜の除去を行った。
(Process (c))
The silicon substrate with a mask pattern was subjected to anisotropic etching by sequentially performing the following three steps using a dry etching apparatus.
1) The surface layer (thickness: 35 nm) of the first transfer material film was removed by O 2 etching.
2) Using a fluorine-based gas (SF 6 , C 4 F 8 ), the silicon substrate was dry-etched to the target etching depth H shown in Table 1. The etching time is such that the transfer material film of the actually etched sample is peeled off, and the groove depth of the silicon substrate is measured with a scanning probe microscope so that the target etching depth H is achieved. It was adjusted.
3) Ashing was performed for an excessive amount of time using O 2 plasma, and the deposited film derived from the C 4 F 8 gas plasma adhered to the surface was removed.
(工程(d))
 ドライエッチングを行ったシリコン基材を、ホットプレート上で80℃に加熱した濃硫酸に20分間浸漬させた後、さらに80℃に加熱したピラニア液(濃硫酸:過酸化水素水(30%)=3:1(体積比))に20分間浸漬させ、第1の転写材料膜を剥離した。
 引き揚げたシリコン基材を超純水で充分に洗浄し、エアーを吹きつけて完全に乾燥させて、第1の領域に微細パターンが形成されたシリコン基材を得た。
(Process (d))
The silicon substrate subjected to dry etching was immersed in concentrated sulfuric acid heated to 80 ° C. for 20 minutes on a hot plate and then further heated to 80 ° C. (concentrated sulfuric acid: hydrogen peroxide solution (30%) = 3: 1 (volume ratio)) for 20 minutes to peel off the first transfer material film.
The pulled silicon substrate was sufficiently washed with ultrapure water and completely dried by blowing air to obtain a silicon substrate having a fine pattern formed in the first region.
(工程(e))
 工程(a)と同様にして、プライマ塗布処理を行い、次いで、工程(a)と同様にして、第1の領域に微細パターンが形成されたシリコン基材の表面に塗工用組成物を塗布し、第2の転写材料膜を形成した。第2の転写材料膜の厚さを表1に示す。
(Process (e))
In the same manner as in the step (a), a primer coating treatment is performed, and then, in the same manner as in the step (a), the coating composition is applied to the surface of the silicon substrate on which the fine pattern is formed in the first region. Then, a second transfer material film was formed. Table 1 shows the thickness of the second transfer material film.
(工程(f))
 第2の領域の第2の転写材料膜に対して、工程(b)と同様にして石英モールドを押し付けて密着させ、紫外線を石英モールド越しに、石英モールドの微細パターンエリアに照射した。その後、石英モールドを剥がし取り、さらに真空下チャンバー中で紫外線(1000mJ/cm)を照射して転写材料を全面硬化させ、マスクパターン付きシリコン基材を得た。基材の表面の第1の領域の上に存在する第2の転写材料膜の厚さd、残膜の厚さtを表1に示す。
(Process (f))
The quartz mold was pressed against and adhered to the second transfer material film in the second region in the same manner as in the step (b), and the fine pattern area of the quartz mold was irradiated through the quartz mold. Thereafter, the quartz mold was peeled off, and further, ultraviolet rays (1000 mJ / cm 2 ) were irradiated in a vacuum chamber to cure the entire transfer material, thereby obtaining a silicon substrate with a mask pattern. Table 1 shows the thickness d of the second transfer material film and the thickness t of the remaining film existing on the first region on the surface of the substrate.
(工程(g)~(h))
 工程(c)と同様にして異方性エッチングを行なった。目標のエッチング深さHを表1に示す。
 工程(d)と同様にして第2の転写材料膜を剥離し、微細パターンを表面に有する物品を得た。評価結果を表1に示す。
(Steps (g) to (h))
Anisotropic etching was performed in the same manner as in step (c). The target etching depth H is shown in Table 1.
In the same manner as in the step (d), the second transfer material film was peeled off to obtain an article having a fine pattern on the surface. The evaluation results are shown in Table 1.
〔例2~8〕
 工程(c)における目標のエッチング深さH、工程(e)における第2の転写材料膜の厚さ、工程(g)における目標のエッチング深さHを表1に示すように変更した以外は、例1と同様にして微細パターンを表面に有する物品を得た。評価結果を表1に示す。
[Examples 2 to 8]
Except for changing the target etching depth H in the step (c), the thickness of the second transfer material film in the step (e), and the target etching depth H in the step (g) as shown in Table 1, In the same manner as in Example 1, an article having a fine pattern on the surface was obtained. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の微細パターンを表面に有する物品の製造方法は、ナノインプリントリソグラフィ法に用いるモールド、光学物品(たとえば、光学素子、反射防止部材等。具体的には、ライン・アンド・スペースの微細パターンを有するワイヤグリッド偏光素子、モスアイ構造を有する反射防止部材等。)、バイオチップ、マイクロリアクターチップ、触媒の担持体等の製造に有用である。
 なお、2012年4月9日に出願された日本特許出願2012-088636号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The method for producing an article having a fine pattern on the surface thereof according to the present invention includes a mold used for nanoimprint lithography, an optical article (for example, an optical element, an antireflection member, etc. Specifically, it has a line-and-space fine pattern. Wire grid polarizing element, antireflection member having moth-eye structure, etc.), biochip, microreactor chip, catalyst carrier and the like.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2012-088636 filed on April 9, 2012 are incorporated herein as the disclosure of the present invention. .
 10 物品
 12 基材
 14 第1の転写材料膜
 16 第2の転写材料膜
 18 陥没部
 20 微細パターン
 22 凸部
 24 凹部
 26 反転パターン
 28 マスクパターン
 30 モールド
 40 光学物品
 42 透明基材
 44 硬化樹脂層
 46 光硬化性樹脂層
 50 微細パターン
 52 凸部
 54 凹部
 60 モールド
DESCRIPTION OF SYMBOLS 10 Article 12 Base material 14 1st transcription | transfer material film | membrane 16 2nd transcription | transfer material film | membrane 18 Depression part 20 Fine pattern 22 Convex part 24 Concave part 26 Inversion pattern 28 Mask pattern 30 Mold 40 Optical article 42 Transparent base material 44 Curing resin layer 46 Photocurable resin layer 50 Fine pattern 52 Convex part 54 Concave part 60 Mold

Claims (11)

  1.  基材の表面の第1の領域と、該第1の領域とは異なる位置にある第2の領域のそれぞれに微細パターンを形成することによって、微細パターンを表面に有する物品を製造する方法であって、
     (a)前記基材の表面に、転写材料を含む塗工用組成物を塗布し、第1の転写材料膜を形成する工程と、
     (b)前記第1の領域において、前記微細パターンの反転パターンを表面に有するモールドの、該反転パターンを前記第1の転写材料膜に転写して、前記第1の転写材料膜に前記微細パターンに対応するマスクパターンを形成する工程と、
     (c)前記マスクパターンが形成された前記第1の転写材料膜をエッチングマスクとしてエッチングを行い、前記基材の表面の前記第1の領域に前記微細パターンを形成する工程と、
     (d)前記基材の表面に残った前記第1の転写材料膜を除去する工程と、
     (e)前記第1の領域に前記微細パターンが形成された前記基材の表面に、転写材料を含む塗工用組成物を塗布し、第2の転写材料膜を形成する工程と、
     (f)前記第2の領域において、前記微細パターンの反転パターンを表面に有するモールドの、該反転パターンを前記第2の転写材料膜に転写して、前記第2の転写材料膜に前記微細パターンに対応するマスクパターンを形成する工程と、
     (g)前記マスクパターンが形成された前記第2の転写材料膜をエッチングマスクとしてエッチングを行い、前記基材の表面の前記第2の領域に前記微細パターンを形成する工程と、
     (h)前記基材の表面に残った前記第2の転写材料膜を除去する工程と、
     を有し、
     前記工程(g)の直前にて、前記基材の表面の前記第1の領域の上に存在する前記第2の転写材料膜の厚さdが、下式(1)を満足する、微細パターンを表面に有する物品の製造方法。
     r×(H/R)+t<d ・・・(1)。
     ただし、rは、前記第2の転写材料膜のエッチングレートであり、Hは、前記第2の領域における目標のエッチング深さであり、Rは、前記基材のエッチングレートであり、tは、前記第2の領域における前記マスクパターンの凹部と前記基材との間の残膜の厚さである。
    A method of manufacturing an article having a fine pattern on a surface by forming a fine pattern in each of a first region on a surface of a substrate and a second region at a position different from the first region. And
    (A) applying a coating composition containing a transfer material to the surface of the substrate to form a first transfer material film;
    (B) In the first region, the reversal pattern of the mold having the reversal pattern of the fine pattern on the surface is transferred to the first transfer material film, and the fine pattern is transferred to the first transfer material film. Forming a mask pattern corresponding to
    (C) performing etching using the first transfer material film on which the mask pattern is formed as an etching mask, and forming the fine pattern in the first region of the surface of the substrate;
    (D) removing the first transfer material film remaining on the surface of the substrate;
    (E) applying a coating composition containing a transfer material to the surface of the substrate on which the fine pattern is formed in the first region, and forming a second transfer material film;
    (F) In the second region, the reverse pattern of the mold having the reverse pattern of the fine pattern on the surface is transferred to the second transfer material film, and the fine pattern is transferred to the second transfer material film. Forming a mask pattern corresponding to
    (G) performing etching using the second transfer material film on which the mask pattern is formed as an etching mask, and forming the fine pattern in the second region of the surface of the substrate;
    (H) removing the second transfer material film remaining on the surface of the substrate;
    Have
    Just before the step (g), the fine pattern in which the thickness d of the second transfer material film existing on the first region of the surface of the base material satisfies the following formula (1) A method for manufacturing an article having a surface thereof.
    r × (H / R) + t <d (1).
    Where r is the etching rate of the second transfer material film, H is the target etching depth in the second region, R is the etching rate of the substrate, and t is It is the thickness of the remaining film between the concave portion of the mask pattern and the base material in the second region.
  2.  前記第1の領域と前記第2の領域とが隣接している、請求項1に記載の微細パターンを表面に有する物品の製造方法。 The method for producing an article having the fine pattern on the surface according to claim 1, wherein the first region and the second region are adjacent to each other.
  3.  前記基材が、複数の前記第1の領域と複数の前記第2の領域とを有し、かつ前記第1の領域と前記第2の領域とが交互に配列された、請求項1または2に記載の微細パターンを表面に有する物品の製造方法。 The said base material has several said 1st area | region and several said 2nd area | region, and the said 1st area | region and the said 2nd area | region were arranged alternately. The manufacturing method of the articles | goods which have the fine pattern of description on the surface.
  4.  前記工程(a)における前記塗工用組成物およびその塗布量と、前記工程(e)における前記塗工用組成物およびその塗布量とが同じであり、
     前記工程(b)における前記モールドおよび前記マスクパターンの形成条件と、前記工程(f)における前記モールドおよび前記マスクパターンの形成条件とが同じであり、
     前記工程(c)におけるエッチング条件と、前記工程(g)におけるエッチング条件とが同じである、請求項1~3のいずれか一項に記載の微細パターンを表面に有する物品の製造方法。
    The coating composition and its coating amount in the step (a) are the same as the coating composition and its coating amount in the step (e),
    The forming conditions of the mold and the mask pattern in the step (b) are the same as the forming conditions of the mold and the mask pattern in the step (f),
    The method for producing an article having a fine pattern on its surface according to any one of claims 1 to 3, wherein the etching conditions in the step (c) and the etching conditions in the step (g) are the same.
  5.  請求項1~4のいずれか一項に記載の微細パターンを表面に有する物品の製造方法によって製造された、微細パターンを表面に有する物品。 An article having a fine pattern on its surface, produced by the method for producing an article having a fine pattern on its surface according to any one of claims 1 to 4.
  6.  微細パターンを表面に有する光学物品を製造する方法であって、
     請求項5に記載の微細パターンを表面に有する物品を、前記光学物品の微細パターンの反転パターンを表面に有するモールドとして用い、該モールドの反転パターンを透明基材の表面に転写する、光学物品の製造方法。
    A method for producing an optical article having a fine pattern on its surface,
    An article having the fine pattern according to claim 5 on a surface thereof as a mold having on the surface a reverse pattern of the fine pattern of the optical article, and transferring the reverse pattern of the mold onto the surface of a transparent substrate. Production method.
  7.  微細パターンを表面に有する光学物品を製造する方法であって、下記の工程を有する請求項6に記載の光学物品の製造方法。
     (x)透明基材の表面に、転写材料として光硬化性樹脂を含む塗工用組成物を塗布し、光硬化性樹脂層を形成する工程。
     (y)請求項5に記載の微細パターンを表面に有する物品を、前記光学物品の微細パターンの反転パターンを表面に有するモールドとして用い、当該モールドと透明基材との間に、前記光硬化性樹脂層を挟んだ状態にて光を照射し、光硬化性樹脂層を硬化させて硬化樹脂層とする工程。
     (z)硬化樹脂層からモールドを分離して光学物品を得る工程。
    It is a method of manufacturing the optical article which has a fine pattern on the surface, Comprising: The manufacturing method of the optical article of Claim 6 which has the following process.
    (X) The process of apply | coating the composition for coating containing a photocurable resin as a transfer material on the surface of a transparent base material, and forming a photocurable resin layer.
    (Y) The article having the fine pattern according to claim 5 on the surface is used as a mold having a reverse pattern of the fine pattern of the optical article on the surface, and the photocurability is between the mold and the transparent substrate. The process of irradiating light in the state which pinched | interposed the resin layer, hardening a photocurable resin layer, and setting it as a cured resin layer.
    (Z) A step of separating the mold from the cured resin layer to obtain an optical article.
  8.  請求項6または7に記載の光学物品の製造方法によって製造された、光学物品。 An optical article manufactured by the method for manufacturing an optical article according to claim 6 or 7.
  9.  請求項6または7に記載の光学物品の製造方法を用いて製造された、ワイヤグリッド偏光素子または反射防止部材。 A wire grid polarizing element or an antireflection member manufactured using the method for manufacturing an optical article according to claim 6 or 7.
  10.  請求項5に記載の微細パターンを表面に有する物品をマスタモールドとして用いて複製モールドを製造する、複製モールドの製造方法。 A method for producing a replica mold, wherein a replica mold is manufactured using the article having the fine pattern according to claim 5 on its surface as a master mold.
  11.  請求項10に記載の複製モールドの製造方法によって製造された複製モールドをマスタモールドとして用いてさらに複製モールドを製造する、複製モールドの製造方法。 A method for manufacturing a replication mold, wherein the replication mold manufactured by the method for manufacturing a replication mold according to claim 10 is used as a master mold to further manufacture a replication mold.
PCT/JP2013/060655 2012-04-09 2013-04-08 Article having fine pattern on surface thereof, manufacturing method therefor, optical article, manufacturing method therefor, and method for manufacturing duplicate mold WO2013154077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012088636 2012-04-09
JP2012-088636 2012-04-09

Publications (1)

Publication Number Publication Date
WO2013154077A1 true WO2013154077A1 (en) 2013-10-17

Family

ID=49327640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060655 WO2013154077A1 (en) 2012-04-09 2013-04-08 Article having fine pattern on surface thereof, manufacturing method therefor, optical article, manufacturing method therefor, and method for manufacturing duplicate mold

Country Status (3)

Country Link
JP (1) JPWO2013154077A1 (en)
TW (1) TW201403662A (en)
WO (1) WO2013154077A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046860B2 (en) * 2014-03-13 2016-12-21 富士フイルム株式会社 Optical component, infrared camera, and method of manufacturing optical component
CN106575605A (en) * 2014-07-25 2017-04-19 综研化学株式会社 Method for manufacturing microscopic structural body
CN113169045A (en) * 2018-10-16 2021-07-23 Scivax株式会社 Method for forming fine pattern, method for manufacturing imprint mold, and optical device
US11812238B2 (en) * 2018-05-04 2023-11-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Impedance matching device, transducer device and method of manufacturing an impedance matching device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116972A1 (en) * 2006-04-07 2007-10-18 Asahi Glass Company, Limited Wire grid polarizer and method for producing the same
JP2008247022A (en) * 2007-03-08 2008-10-16 Toshiba Mach Co Ltd Method of forming micropattern, mold formed by this method of forming micropattern, transfer method and micropattern forming method using this mold
JP2009162965A (en) * 2008-01-04 2009-07-23 Toshiba Corp Forming method for reflection preventing structure, and reflection preventing structure
JP2009177146A (en) * 2007-12-26 2009-08-06 Canon Inc Method of processing substrate by imprinting
JP2009182075A (en) * 2008-01-30 2009-08-13 Canon Inc Manufacturing method of structure by imprint
JP2011113631A (en) * 2009-11-30 2011-06-09 Asahi Glass Co Ltd Wire grid polarizer and optical head device
JP2011172917A (en) * 2010-01-29 2011-09-08 Hoya Corp Liquid retaining member, intraocular observation lens, and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116972A1 (en) * 2006-04-07 2007-10-18 Asahi Glass Company, Limited Wire grid polarizer and method for producing the same
JP2008247022A (en) * 2007-03-08 2008-10-16 Toshiba Mach Co Ltd Method of forming micropattern, mold formed by this method of forming micropattern, transfer method and micropattern forming method using this mold
JP2009177146A (en) * 2007-12-26 2009-08-06 Canon Inc Method of processing substrate by imprinting
JP2009162965A (en) * 2008-01-04 2009-07-23 Toshiba Corp Forming method for reflection preventing structure, and reflection preventing structure
JP2009182075A (en) * 2008-01-30 2009-08-13 Canon Inc Manufacturing method of structure by imprint
JP2011113631A (en) * 2009-11-30 2011-06-09 Asahi Glass Co Ltd Wire grid polarizer and optical head device
JP2011172917A (en) * 2010-01-29 2011-09-08 Hoya Corp Liquid retaining member, intraocular observation lens, and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046860B2 (en) * 2014-03-13 2016-12-21 富士フイルム株式会社 Optical component, infrared camera, and method of manufacturing optical component
JPWO2015137197A1 (en) * 2014-03-13 2017-04-06 富士フイルム株式会社 Optical component, infrared camera, and method of manufacturing optical component
CN106575605A (en) * 2014-07-25 2017-04-19 综研化学株式会社 Method for manufacturing microscopic structural body
EP3196924A4 (en) * 2014-07-25 2018-01-10 Soken Chemical & Engineering Co., Ltd. Method for manufacturing microscopic structural body
TWI663472B (en) * 2014-07-25 2019-06-21 日商綜研化學股份有限公司 Manufacturing method of fine structure
US11812238B2 (en) * 2018-05-04 2023-11-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Impedance matching device, transducer device and method of manufacturing an impedance matching device
CN113169045A (en) * 2018-10-16 2021-07-23 Scivax株式会社 Method for forming fine pattern, method for manufacturing imprint mold, and optical device

Also Published As

Publication number Publication date
TW201403662A (en) 2014-01-16
JPWO2013154077A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
WO2013154075A1 (en) Method for manufacturing article having fine pattern on surface thereof
CN109075033B (en) Pattern forming method, method for manufacturing processed substrate, method for manufacturing optical module, method for manufacturing circuit substrate, method for manufacturing electronic module, and method for manufacturing imprint mold
JP5065101B2 (en) Pattern formation method
JP5879086B2 (en) Replica mold for nanoimprint
JP5480530B2 (en) Fine structure transfer method and fine structure transfer apparatus
US20110189329A1 (en) Ultra-Compliant Nanoimprint Lithography Template
del Campo et al. Generating micro-and nanopatterns on polymeric materials
JP2007245702A (en) Method for manufacturing template and processed base material having transfer fine pattern
WO2013154077A1 (en) Article having fine pattern on surface thereof, manufacturing method therefor, optical article, manufacturing method therefor, and method for manufacturing duplicate mold
Lan Soft UV nanoimprint lithography and its applications
CN107643652A (en) Nano-imprint stamp and preparation method thereof and application
Handte et al. Manufacturing of nanostructures with high aspect ratios using soft UV-nanoimprint lithography with bi-and trilayer resist systems
JP5733747B2 (en) Method for manufacturing article having fine pattern on surface
JP6083178B2 (en) Resist substrate manufacturing method, replica template manufacturing method, and nanoimprint lithography method
Si et al. A study of imprint and etching behavior on fused silica of a new tailored resist mr-NIL213FC for soft UV-NIL
JP5872369B2 (en) Manufacturing method of substrate with fine uneven pattern
JP6267802B2 (en) Method for producing pattern forming body
Kim et al. Development of a very large-area ultraviolet imprint lithography process
JP2018127522A (en) Photocurable composition for imprint, article having fine pattern on surface thereof and method for producing the same
Si et al. The NanoTuFe—Fabrication of large area periodic nanopatterns with tunable feature sizes at low cost
Wang et al. Recent Progress in Ultraviolet Nanoimprint Lithography and Its Applications
KR101721127B1 (en) Methods for providing spaced lithography features on a substrate by self-assembly of block copolymers
JP7147045B2 (en) Concavo-convex structure manufacturing method
WO2018105353A1 (en) Method for producing nanoimprint mold
JP2019106514A (en) Method for manufacturing cured product pattern, method for manufacturing processed substrate, method for manufacturing circuit board, method for manufacturing electronic components, and method for manufacturing imprint mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014510163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13776069

Country of ref document: EP

Kind code of ref document: A1