WO2013154057A1 - Particles for display, dispersion liquid for electrophoretic display, display medium, and display device - Google Patents

Particles for display, dispersion liquid for electrophoretic display, display medium, and display device Download PDF

Info

Publication number
WO2013154057A1
WO2013154057A1 PCT/JP2013/060543 JP2013060543W WO2013154057A1 WO 2013154057 A1 WO2013154057 A1 WO 2013154057A1 JP 2013060543 W JP2013060543 W JP 2013060543W WO 2013154057 A1 WO2013154057 A1 WO 2013154057A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
particles
particle
colorant
electrophoretic
Prior art date
Application number
PCT/JP2013/060543
Other languages
French (fr)
Japanese (ja)
Inventor
尚 森川
氷治 直樹
保夫 山本
中山 大輔
浦野 千里
関 三枝子
真鍋 力
良太 水谷
軍 曹
佐藤 忠伸
律子 森田
Original Assignee
富士ゼロックス株式会社
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士ゼロックス株式会社, 富士フイルム株式会社 filed Critical 富士ゼロックス株式会社
Publication of WO2013154057A1 publication Critical patent/WO2013154057A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type

Definitions

  • the present invention relates to display particles, a dispersion for electrophoretic display, a display medium, and a display device.
  • the polymer fine particle in an electrophoretic particle in which a pigment is dispersed in a polymer fine particle, the polymer fine particle is grafted to a pigment, and the first polymer portion is bonded to the first polymer portion.
  • Electrophoretic particles obtained by polymerizing the polymerizable monomer are disclosed.
  • Japanese Patent Application Laid-Open No. 2008-145713 discloses a polymer graft fine particle for electrophoresis dispersed in an electrophoretic dispersion, wherein 16 to 100% by mass of the polymer is grafted to the pigment fine particle. Graft microparticles are disclosed.
  • Japanese Patent Application Laid-Open No. 2005-352054 discloses a method for producing electrophoretic particles, in which a polymer fine particle dispersion in which polymer fine particles having a functional group are dispersed in a liquid, and a colorant are dispersed in the liquid.
  • a method for producing electrophoretic particles is disclosed.
  • JP 2009-031794 discloses a shell-type electrophoretic particle having a shell having an internal cavity, an inner surface of the shell, a charged layer having an electrical polarity, Shell-type electrophoretic particles comprising an ionic liquid enclosed in a cavity of a shell are disclosed.
  • ⁇ 1> Display particles in which the colorant is unevenly distributed in a region between the surface of the particle and a depth of 5% to 35% of the volume average particle diameter of the particle from the surface toward the center.
  • the colorant is unevenly distributed in a region between the surface of the display particles and a depth of 12% or more and 23% or less of the volume average particle diameter of the display particles from the surface toward the center side.
  • ⁇ 3> a core portion including a binder resin, a pigment that is the colorant, and a coating portion that includes the pigment dispersant and covers the core portion, and the binder resin and the dispersant.
  • a dispersion liquid for electrophoretic display comprising a dispersion medium and the group of display particles according to any one of ⁇ 1> to ⁇ 3> dispersed in the dispersion medium.
  • a difference in refractive index between the dispersion medium and the display particles is less than 0.3.
  • ⁇ 6> A pair of substrates at least one of which is translucent and disposed with a gap, and the dispersion liquid for electrophoretic display according to ⁇ 4> or ⁇ 5> enclosed between the pair of substrates,
  • a display medium comprising: ⁇ 7> A pair of electrodes at least one of which is translucent and disposed with a gap; a region having the dispersion liquid for electrophoretic display according to ⁇ 4> or ⁇ 5> between the pair of electrodes;
  • a display medium comprising: ⁇ 8>
  • a display device comprising: the display medium according to ⁇ 6> or ⁇ 7>; and an electric field applying unit that applies a voltage between the pair of substrates of the display medium or the pair of electrodes.
  • ⁇ 1>, ⁇ 2>, or ⁇ 3> there are provided display particles having a small variation in optical density when arranged in a single layer as compared with the case without the above-described configuration.
  • ⁇ 4>, ⁇ 5>, ⁇ 6>, ⁇ 7>, or ⁇ 8> compared with a case where display particles in which the colorant is not unevenly distributed on the surface side of the particles are applied.
  • the dispersion liquid for electrophoretic display, the display medium, or the display device in which the variation in optical density when arranged in the above is small is provided.
  • FIG. 1 schematically shows a cross section of an example of display particles according to the present embodiment.
  • the display particles 11 shown in FIG. 1 are a core portion 13 (sometimes referred to as a “core portion”) and a covering portion 15 (sometimes referred to as a “shell portion”) covering the core portion 13.
  • the core portion 13 does not contain a colorant and is transparent, and the colorant is included in the coating portion 15 so that it is unevenly distributed in a specific region of the particle 11. If the display particles according to the present embodiment are used, variation in optical density when arranged in a single layer is reduced. The reason is presumed as follows.
  • FIG. 6 schematically shows a cross section of the display particles in which the colorant is evenly dispersed throughout the particles.
  • the optical path length passing through the colored region in the particles varies greatly depending on the direction in which the light L is incident.
  • the difference in optical density tends to be large between a portion corresponding to the vicinity of the center of the particles 61 and a portion corresponding to the vicinity of the outer periphery in plan view. Therefore, when such display particles 61 are displayed side by side in a single layer, the optical density varies greatly between the center and the outer periphery of each particle 61, and the density unevenness also increases as a whole display. easy.
  • the display particle 11 according to the present embodiment since the colorant is unevenly distributed in a specific region of the particle 11, the light L incident on the display particle 11 and the particle 11 are incident as shown in FIG. 1.
  • the difference in the optical path length in the region where the colorant is present in the particles 11 is small regardless of the direction in which the particles are taken. Therefore, when the display particles 11 are observed from the outside, the difference in optical density between the center and the outer periphery of the particles 11 in plan view is smaller than that of the display particles 61 shown in FIG. Therefore, when the display particles 11 according to the present embodiment are displayed in a single layer, the optical density variation is small near the center and the outer periphery of each particle 11, and the density unevenness is also observed in the entire display. It is suppressed.
  • the colorant is at least 35% of the volume average particle diameter of the display particles 11 from the surface toward the center side of the display particles 11 according to the present embodiment.
  • % That is, a region that is unevenly distributed in the region from the surface of the particle 11 to a depth of 5% to 35% of the volume average particle diameter. It is more desirable to be unevenly distributed in a region from 7% to 30% of the diameter, and to be unevenly distributed from the surface of the particle 11 to a depth of 12% to 23% of the volume average particle diameter. Is more desirable.
  • the colorant is unevenly distributed in a region between the surface of the display particle 11 and a depth of 5% or more of the volume average particle diameter of the display particle 11 from the surface toward the center, a high optical density is obtained. If it is unevenly distributed in a region between the surface and a depth of 35% or less of the volume average particle diameter, variation in the optical density of the display particles 11 in a plan view can be effectively suppressed, and a pigment used as a colorant, etc. The amount of use is suppressed. For example, as shown in FIG. 1, if the display particles 11 and the core portion 13 are each spherical, it is desirable that the transparent core portion 13 is 65% to 95% of the diameter of the display particles 11.
  • volume average particle diameter of the display particle 11 is a value measured by an SEM image. Specifically, after obtaining an image by SEM (scanning electron microscope S-4800, manufactured by Hitachi High-Technologies Corporation), the particle diameter (longest portion) r1 of each particle was measured. After measuring 100 particles 11 as r1 to r100, respectively, r1 to r100 are converted into sphere diameters to determine the volume, and the value when the accumulation from the first to the 100th becomes 50% is the volume average. The particle size.
  • the region where the colorant is present is evaluated by TEM observation of the cross section of the particle, and the particle is deformed into an elliptical shape by cutting the particle in the preparation of the observation sample. Therefore, the average value of the diameter of the inscribed circle and the diameter of the circumscribed circle in the cross section of the particle after cutting is taken as the volume average particle size, and the ratio of the colorant existing region to the volume average particle size is obtained.
  • FIG. 2 schematically shows another example of display particles according to the present embodiment.
  • a colorant is present from the surface to a deeper region than the display particles 11 shown in FIG.
  • the colorant is not present in the vicinity of the center of the particles 21 or a minute amount is present, and the difference in optical path length in the colored region is smaller than that of the display particles 61 shown in FIG. 6. Therefore, even when the display particles 21 according to this embodiment are displayed in a single layer, the optical density variation is small between the center and the outer periphery of each particle 21 in plan view, and the density of the entire display is also high. Unevenness is suppressed.
  • the display particles 11 and 21 shown in FIGS. 1 and 2 include transparent core portions 13 and 23 that do not include a colorant, and covering portions 15 and 25 that include the colorant and cover the core portions 13 and 23.
  • the display particles according to the present embodiment are not limited to these configurations, and the colorant may be unevenly distributed in a specific region on the surface side rather than the center side of the particles.
  • the colorant may be unevenly distributed in a specific region on the surface side so that the concentration of the colorant gradually increases from the center of the display particle 31 toward the surface.
  • examples of the structure of the display particles according to the present embodiment include particles having the following structure.
  • display particles having the structure of any of (1) to (4) above, display particles (hereinafter referred to as particles) in which display particles are dispersed in a liquid dispersion medium and electrophoresed in the dispersion medium by applying a voltage.
  • the non-hollow particles having the structure (1) or (3) are preferable, and the non-hollow particles having the structure (1) are more preferable.
  • grains which have a structure of (3) it is desirable to use the same kind as a dispersion medium from the balance with the specific gravity of a dispersion medium.
  • the hollow particles having the above structure (2) or (4) are dispersed in a dispersion medium, the inside of the particles is hollow, so that buoyancy affects the migration. Therefore, the hollow particles having the structure (2) or (4) are desirably used as display particles that move in a gas dispersion medium such as air by applying a voltage without using a liquid dispersion medium.
  • the display particle 11 shown in FIG. 1 includes a core portion 13 including a binder resin that is a transparent material, a pigment that is a colorant, and a dispersant for the pigment, and a covering portion 15 that covers the core portion 13.
  • the core 13 of the display particle 11 includes a transparent material.
  • the transparent material contained in the core 13 include binder resins such as thermoplastic resins and thermosetting resins. Glass may be used as the transparent material contained in the core portion 13.
  • “transparent” means that the visible light transmittance is 60% or more, and desirably 80% or more.
  • the transmittance means a maximum value in a wavelength range from 400 nm to 700 nm, which is measured by a spectrophotometer (U-4000, manufactured by Hitachi).
  • thermoplastic resin used for the display particles 11 examples include styrenes such as styrene and chlorostyrene; monoolefins such as ethylene, propylene, butylene, and isoprene; vinyl acetate, vinyl propionate, vinyl benzoate, vinyl butyrate, and the like.
  • Vinyl ester ⁇ -methylene aliphatic mono, such as methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dodecyl methacrylate Carboxylic acid esters; vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and vinyl butyl ether; homopolymers or copolymers of vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone and vinyl isopropenyl ketone Combined are exemplified.
  • ⁇ -methylene aliphatic mono such as methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, phenyl acrylate, methyl methacryl
  • thermosetting resin used for the display particles 11 examples include cross-linked copolymers mainly composed of divinylbenzene and cross-linked resins such as cross-linked polymethyl methacrylate; phenol resins, urea resins, melamine resins, polyester resins, A silicone resin etc. are mentioned.
  • Typical binder resins include polystyrene, styrene-alkyl acrylate copolymer, styrene-alkyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer.
  • the polymer examples include polyethylene, polypropylene, polyester, polyurethane, epoxy resin, silicone resin, polyamide, modified rosin, and paraffin wax.
  • an organic or inorganic pigment, an oil-soluble dye, or the like is used as the colorant contained in the covering portion 15 of the display particle 11 according to the present embodiment.
  • Magnetic powder such as magnetite, ferrite, carbon black, titanium oxide, magnesium oxide, zinc oxide, phthalocyanine copper-based cyan color material, azo-based yellow color material, azo-based magenta color material, quinacridone-based magenta color material, red color material, green
  • Well-known colorants such as a color material and a blue color material, are mentioned.
  • the covering portion 15 of the display particle 11 according to the present embodiment may include a dispersing agent for dispersing a pigment as a coloring agent, a binder resin included in the core portion 13, and the like in addition to the coloring agent.
  • the core 13 of the display particle 11 according to the present embodiment may contain some colorant.
  • the concentration of the colorant in the core 13 needs to be lower than at least the concentration of the colorant in the covering 15. Specifically, it is preferably 1/5 or less, and more preferably 1/10 or less, of the concentration of the colorant in the covering portion 15.
  • the display particles 11 may include a charge control agent as necessary.
  • a charge control agent known ones used for electrophotographic toner materials can be used. Quaternary ammonium salts such as cetylpyridyl chloride, BONTRON (registered trademark) P-51, BONTRON P-53, BONTRON E-84, BONTRON E-81 (above, manufactured by Orient Chemical Industries), salicylic acid metal complexes, phenols Examples thereof include system condensates, tetraphenyl compounds, metal oxide particles, and metal oxide particles surface-treated with various coupling agents.
  • a magnetic material may be mixed in the core portion 13 and / or the covering portion 15 of the display particle 11 according to the present embodiment, if necessary.
  • the magnetic material an inorganic magnetic material or an organic magnetic material that is color-coated as required is used.
  • a transparent magnetic material in particular, a transparent organic magnetic material does not hinder the color development of the color pigment, and the specific gravity is smaller than that of the inorganic magnetic material, so that it is more desirable.
  • the colored magnetic powder for example, a small-diameter colored magnetic powder described in JP-A-2003-131420 may be used. Colored magnetic powder comprising magnetic particles serving as nuclei and a colored layer laminated on the surface of the magnetic particles is used.
  • the colored layer may be selected by coloring the magnetic powder opaque with a pigment or the like, but it is desirable to use, for example, a light interference thin film.
  • This optical interference thin film is a thin film having a thickness equivalent to the wavelength of light made of an achromatic material such as SiO 2 or TiO 2 , and reflects light in a wavelength selective manner by optical interference in the thin film. is there.
  • An external additive may be attached to the surface of the display particles 11 as necessary.
  • the color of the external additive is desirably transparent so as not to affect the color of the display particles 11.
  • inorganic particles such as metal oxides such as silicon oxide (silica), titanium oxide, and alumina are used.
  • metal oxides such as silicon oxide (silica), titanium oxide, and alumina
  • they may be surface-treated with a coupling agent or silicone oil.
  • Coupling agents include positively chargeable ones such as aminosilane coupling agents, aminotitanium coupling agents, nitrile coupling agents, and silanes that do not contain nitrogen atoms (consisting of atoms other than nitrogen). There are negatively charged ones such as coupling agents, titanium-based coupling agents, epoxy silane coupling agents, and acrylic silane coupling agents. Silicone oil includes positively charged ones such as amino-modified silicone oil, dimethyl silicone oil, alkyl-modified silicone oil, ⁇ -methylsulfone-modified silicone oil, methylphenyl silicone oil, chlorophenyl silicone oil, fluorine-modified silicone. Examples include negatively chargeable oils. These are selected according to the desired resistance of the external additive.
  • titanium oxide examples include chlorosilane, alkoxysilane, silazane, and a special silylating agent.
  • This titanium compound is produced by reacting TiO (OH) 2 produced in a wet process with a silane compound or silicone oil and then drying. Since it does not pass through the firing step of several hundred degrees, strong bonds between Ti are not formed, there is no aggregation, and the migrating particles are in the state of primary particles.
  • the silane compound or silicone oil reacts directly with TiO (OH) 2 , the amount of silane compound or silicone oil treated can be increased, and the charging characteristics can be controlled by adjusting the amount of silane compound treated. And the charging ability imparted is significantly improved over that of conventional titanium oxide.
  • the primary particles of the external additive are generally 1 nm or more and 100 nm or less, and preferably 5 nm or more and 50 nm or less, but are not limited thereto.
  • the blending ratio of the external additive and the display particle 11 is adjusted based on the balance between the particle size of the display particle 11 and the particle size of the external additive. If the added amount of the external additive is too large, at least a part of the external additive is liberated from the surface of the display particles 11 and adheres to the surface of the other display particles 11 so that desired charging characteristics cannot be obtained. .
  • the amount of the external additive is more preferably 0.01 parts by mass or more and 3 parts by mass or less, and more preferably 0.05 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the display particles. .
  • a plurality of types of display particles 11 having different colors may be used in combination.
  • the external additive may be added only to any one of the plurality of types of display particles 11, or a plurality of types or all types of display particles. 11 may be added.
  • the external additive is added to the surface of all the display particles 11, the external additive is applied to the surface of the display particles 11 with an impact force, or the surface of the display particles 11 is heated to display the external additive. It is desirable to adhere to the surface of the particles 11 for use.
  • the external additive is released from the display particles 11, the external additive having a different polarity is strongly aggregated, and formation of an aggregate of the external additive that is difficult to dissociate with an electric field is prevented. As a result, image quality deterioration is prevented.
  • the method for producing the display particles 11 according to this embodiment is not particularly limited as long as the colorant is unevenly distributed so that the concentration is higher in a specific region on the surface side than the center side of the particles 11.
  • a dispersing agent that contains a transparent binder resin and produces core particles to be a core portion (core portion) 13 by a submerged drying method, and disperses the pigment and the pigment on the surface of the core particles by a coacervation method.
  • the display particle 11 which has the core part 13 containing basic binder resin and the coating
  • the particles may be formed using an acidic binder resin and a basic pigment dispersant.
  • the dispersion liquid for electrophoretic display according to the present embodiment may be referred to as a group of display particles in which the dispersion medium and the colorant described above are unevenly distributed on the surface side (hereinafter referred to as “electrophoretic particles” or “electrophoretic particle group”).
  • the display medium according to the present embodiment includes at least one of a pair of substrates having translucency and disposed with a gap, and an electrophoretic display dispersion liquid sealed between the pair of substrates.
  • the display device according to the present embodiment includes the display medium and an electric field applying unit that applies a voltage between the pair of substrates or the pair of electrodes of the display medium.
  • FIG. 4 schematically shows an example of the configuration of the display device according to the present embodiment.
  • the display device 10 illustrated in FIG. 4 includes a display medium 12 and a voltage application unit 16 that applies a voltage to the display medium 12 to form an electric field between the display substrate 20 and the back substrate 22 of the display medium 12. .
  • a part (one cell) of the display medium 12 is shown enlarged.
  • the display medium 12 includes a display side support substrate 38, a back side support substrate 44, a display side electrode 40, a back side electrode 48, and a gap member 24.
  • the display substrate 20 includes a display-side support substrate 38 and a display-side electrode 40
  • the back substrate 22 includes a back-side support substrate 44 and a back-side electrode 48.
  • the dispersion liquid for electrophoretic display of the embodiment is filled.
  • the display-side support substrate 38 is an image display surface and has translucency (as a specific example, the visible light transmittance is 70% or more).
  • the back side support substrate 44 which is a non-display surface, is disposed with a gap so as to face the display side support substrate 38.
  • the back side support substrate 44 does not necessarily have translucency, but rather the visibility can be improved by blocking incident light from the back side.
  • Examples of materials included in the display side support substrate 38 and the back side support substrate 44 include glass, plastic, polyethylene terephthalate resin, polyethylene naphthalate resin, polycarbonate resin, acrylic resin, polyimide resin, polyester resin, epoxy resin, and polyether. A sulfone resin etc. are mentioned.
  • a display side electrode 40 and a back side electrode 48 are provided on the inside (opposite side) of the display side support substrate 38 and the back side support substrate 44, respectively.
  • Examples of materials included in the display side electrode 40 and the back side electrode 48 include oxides such as indium, tin, cadmium, and antimony; composite oxides such as ITO; metals such as gold, silver, copper, and nickel; polypyrrole, Examples thereof include organic materials such as polythiophene. These materials constitute the electrodes 40 and 48 as, for example, a single layer film, a mixed film or a composite film.
  • the thickness of the display side electrode 40 and the back side electrode 48 is, for example, 100 mm or more and 2000 mm or less (10 nm or more and 200 nm or less).
  • the display side electrode 40 and the back side electrode 48 may be formed in a matrix shape or a stripe shape, for example.
  • the display side electrode 40 and the back side electrode 48 are electrically connected to the voltage application unit 16.
  • the voltage application unit 16 is connected to the control unit 18 so as to exchange signals.
  • the control unit 18 stores in advance various programs such as a CPU (central processing unit) that controls the operation of the entire apparatus, a RAM (Random Access Memory) that temporarily stores various data, and a control program that controls the entire apparatus. Further, it may be configured as a microcomputer including a ROM (Read Only Memory).
  • the voltage application unit 16 has a function of applying a voltage according to the control of the control unit 18 to the display side electrode 40 and the back side electrode 48. By applying a voltage between the display side electrode 40 and the back side electrode 48 by the voltage application unit 16, an electric field is formed between the display side electrode 40 and the back side electrode 48.
  • the voltage application unit 16 of the display device 10 may be detachably connected to the display medium 12 (the display side electrode 40 and the back side electrode 48). In this case, for example, when it is necessary to rewrite or display the display medium 12, the display medium 12 is connected to the voltage application unit 16 to display image information. It is configured to improve portability.
  • the display medium 12 of the present embodiment includes the display-side electrode 40 and the back-side electrode 48, both of which are connected to the voltage application unit 16.
  • the present invention is not limited to this.
  • One of the 40 and the back side electrode 48 may be grounded, and the other may be connected to the voltage applying unit 16.
  • a surface layer that covers the electrodes 40, 48 may be provided with a fluororesin or the like.
  • the space between the display substrate 20 and the back substrate 22 (between the display side electrode 40 and the back side electrode 48) is partitioned into a plurality of closed spaces (cells) by the gap member 24.
  • the gap member 24 has a function of maintaining a distance between the display substrate 20 and the back substrate 22 and a function of partitioning a plurality of gaps between the display substrate 20 and the back substrate 22.
  • Examples of the constituent material of the gap member 24 include thermoplastic resins, thermosetting resins, electron beam curable resins, photo curable resins, rubbers, metals, and the like.
  • the gap member 24 may be colored or colorless, but is preferably colorless and transparent so as not to adversely affect the display image displayed on the display medium 12.
  • polystyrene, polyester, acrylic, etc. Transparent resin or the like is used.
  • the gap member 24 has transparency, it is only necessary to have a transmittance of 25% or more with respect to visible light.
  • the dispersion medium examples include an insulating liquid. Insulating property in this embodiment refers to a case where the volume resistance value is 10 7 ⁇ ⁇ cm or more as a specific example.
  • dispersion medium examples include silicone oil and hydrocarbon oil. Specifically, hexane, cyclohexane, toluene, xylene, decane, hexadecane, kerosene, paraffin, isoparaffin, silicone oil, modified silicone oil, dichloroethylene, and trichloroethylene.
  • Perchlorethylene high-purity petroleum, ethylene glycol, alcohols, ethers, esters, dimethylformamide, dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, 2-pyrrolidone, N-methylformamide, acetonitrile, tetrahydrofuran, propylene carbonate , Ethylene carbonate, benzine, diisopropylnaphthalene, olive oil, isopropanol, trichlorotrifluoroethane, tetrachloro Ethane, and the like dibromotetrafluoroethane, mixtures thereof suitably.
  • the insulating liquid that can be used as the dispersion medium include water from which impurities are removed so as to obtain the following volume resistance value (so-called pure water).
  • Examples of the dispersion medium include polymers.
  • Examples of the polymer include a polymer gel and a polymer.
  • examples of the polymer include gelatin, polyvinyl alcohol, poly (meth) acrylamide and the like.
  • the dispersion medium may be composed of an insulating liquid alone or a polymer alone, but may be a mixture of a resin insulating liquid and a polymer resin.
  • the volume resistance value of the dispersion medium 50 is, for example, 10 7 ⁇ ⁇ cm or more, preferably 10 7 ⁇ ⁇ cm or more and 10 19 ⁇ ⁇ cm or less, more preferably 10 10 ⁇ ⁇ cm or more and 10 19 ⁇ or less. -It is cm or less.
  • the difference in refractive index between the dispersion medium and the display particles 11 is preferably less than 0.3, and more preferably less than 0.1.
  • the difference in refractive index between the dispersion medium and the display particles 11 is calculated with reference to literature values.
  • the electrophoretic particle group 11 is composed of a plurality of display particles (electrophoretic particles) 11 according to the present embodiment, each of which is positively or negatively charged, and is a solid particle group having electrophoretic properties in the dispersion medium 50. is there. That is, the direction of the electric field that has a large positive or negative charge in the dispersion medium 50 and is generated between the display-side electrode 40 and the back-side electrode 48 (that is, between the display substrate 20 and the back-side substrate 22). And moves in the dispersion medium 50 according to the strength.
  • the change in the display color on the display medium 12 is caused by the movement of the migrating particles 11 constituting the migrating particle group 11 in the dispersion medium 50.
  • the migrating particle group 11 may be a particle group having a color corresponding to the image to be formed.
  • the migrating particle group 11 may be, for example, one type (single color) or a plurality of types (multiple colors, for example, Y: yellow, C: cyan, M: magenta, R: red).
  • the resin constituting the migrating particle group 11 may be mixed with, for example, a charge control agent that controls chargeability, if necessary. Moreover, you may mix a magnetic material in the inside and the surface of the migrating particle group 11 as needed. Further, an external additive (for example, a polymer graft chain such as a silicone chain) may be attached to the surface of the migrating particle group 11 as necessary.
  • a charge control agent that controls chargeability
  • a pigment having charging properties is used as the colorant unevenly distributed on the surface side of the migrating particles 11, variations in optical density when arranged in a single layer are suppressed, and charging properties are provided on the surface side of the particles 11. Due to the uneven distribution of the pigment to be contained, the charge of the migrating particles 11 as a whole is stabilized.
  • the content of the migrating particle group 11 (content (% by mass) with respect to the total mass of the display dispersion in the cell) is not particularly limited as long as the desired hue can be obtained. It is preferable that the layers are uniformly arranged in a single layer. For example, it is selected from the range of 0.5% by mass or more and 20% by mass or less depending on the particle diameter.
  • Examples of the volume average particle diameter of each particle 11 of the migrating particle group include 0.3 ⁇ m or more and 15 ⁇ m or less.
  • the volume average particle diameter of each migrating particle 11 is a value measured by an SEM photograph.
  • the particle size of the migrating particles 11 in each particle group may be different or the same.
  • an additive for the purpose of acid, alkali, salt, dispersion stabilizer, antioxidant, ultraviolet absorption, etc. Etc.
  • charge control agents anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, fluorosurfactants, silicone surfactants, metal soaps, alkyl phosphate esters Or succinimides
  • FIG. 4 shows a form including one color of migrating particles 11, but is not limited to this.
  • a non-migrating particle group that does not substantially move in the dispersion medium may be used in combination.
  • the non-electrophoretic particle group is a solid particle having a color different from that of the electrophoretic particle group 11 and not having electrophoretic properties in the dispersion medium 50. That is, the non-electrophoretic particle group has no charge in the dispersion medium 50 or has a small positive or negative charge, but the dispersion medium 50 is caused by the electric field generated between the display-side electrode 40 and the back-side electrode 48. Even if it does not move inside or moves, it is a particle group that can be regarded as not migrating (moving) because the average moving distance is much smaller than that of the migrating particle group 11.
  • each particle of the migrating particle group 11 passes through the gap between the non-migrating particle group and from the back substrate 22 side.
  • Display is performed by migrating (moving) from the display substrate 20 side or the display substrate 20 side to the back substrate 22 side.
  • each non-electrophoretic particle constituting the non-electrophoretic particle group may be a color different from the color of each electrophoretic particle of the electrophoretic particle group 11.
  • white or black may be selected so as to be the background color, but other colors may be used.
  • the non-electrophoretic particle group may be an uncharged particle group (that is, a particle group that does not move in response to an electric field), or a charged particle group (moves in accordance with an electric field, It may be a particle group whose movement distance is much smaller than that of the migrating particle group 11).
  • the non-electrophoretic particle group is composed of white particles
  • examples of the constituent material include white pigments (titanium oxide, silicon oxide, zinc oxide, etc.) and resins (polystyrene resin, polyethylene resin, polypropylene resin, polycarbonate resin, Examples thereof include particles dispersed in methyl methacrylate resin (PMMA), acrylic resin, phenol resin, formaldehyde condensate, etc., resin particles such as polystyrene, polyethylene, and vinyl naphthalene.
  • PMMA methyl methacrylate resin
  • acrylic resin acrylic resin
  • phenol resin formaldehyde condensate
  • resin particles such as polystyrene, polyethylene, and vinyl naphthalene.
  • the above-described resin particles containing a pigment or dye of a desired color may be used. If a pigment or dye is RGB or YMC color, for example, the general pigment or dye currently used for printing ink or a color toner is mentioned.
  • the volume average particle diameter of each particle of the non-electrophoretic particle group is, for example, 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the volume average particle diameter of each non-electrophoretic particle is a value measured by an SEM image.
  • the volume average particle diameter of the non-electrophoretic particles is measured in the same manner as the volume average particle diameter of the display particles 11.
  • the voltage application unit 16 applies a voltage according to the image formed on the display side electrode 40 and the back side electrode 48, and thereby at a position where the image is formed according to the electric field generated in the cell.
  • the migrating particle group 11 is positioned on the corresponding display substrate 20 side to form an image.
  • a white background is displayed by the non-migrating particle group.
  • the display particles according to the present embodiment in which the colorant is unevenly distributed in a specific region on the surface side of each particle are used as the migrating particle 11. It is more desirable to use.
  • the display medium 12 and the display device 10 include a bulletin board, a circulation board, an electronic blackboard, an advertisement, a signboard, a flashing sign, electronic paper, an electronic newspaper, an electronic book, or a copying machine that can store and rewrite images. Used for shared document sheets.
  • the configuration of the display particles, the display medium 12, and the display device 10 described in the present embodiment, the constituent materials of the dispersion medium 50, the migrating particle group 11, and the non-migrating particle group are examples, and depending on the application and the like. You only have to set it.
  • the embodiment in which one type (one color) of particle group is mainly applied as the electrophoretic particle group 11 has been described. It is also possible to adopt a form to which the electrophoretic particle group is applied.
  • Example 1> [Preparation of display particles] 1) Preparation of core (core particles) (in-liquid drying method) Water dispersion Emacol (registered trademark) SF Blue H524F containing 7.2 g of X345 (trade name, manufactured by Seiko PMC) as a water-soluble resin (carboxylic acid) and 26% by mass of cyan pigment PB15: 3 (basic) 18.8 g (trade name, manufactured by Sanyo Color Co., Ltd.) and 24.1 g of distilled water were mixed while heating to 60 ° C., and the ink solid content concentration was 15% by mass and the pigment concentration after drying was 50% by mass.
  • a dispersed phase was prepared as follows.
  • surfactant KF-6028 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in silicone oil KF-96-2cs (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare 350 g of a continuous phase.
  • 50 g of the above dispersed phase was added thereto, and emulsification was carried out for 10 minutes at a rotational speed of 10000 rpm and a temperature of 30 ° C. using an internal tooth tabletop disperser ROBOMICS (trade name, manufactured by Tokushu Kika Kogyo Co., Ltd.).
  • ROBOMICS trade name, manufactured by Tokushu Kika Kogyo Co., Ltd.
  • the sedimentation step using a centrifuge and the redispersion step using an ultrasonic washer were repeated three times to remove excess surfactant KF-6028, and concentrated to a core. 6 g of particles were obtained. Centrifugation conditions are 15 minutes at 6000 rpm. As a result of SEM observation of the obtained particles and image analysis, the volume average particle size was 0.6 ⁇ m and the CV value was 30.
  • silaplane FM-0721 (trade name, manufactured by JNC) which is a silicone macromonomer, 32 g of hydroxyethyl methacrylate, 18 g of AMP-10G (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.) containing a phenoxy group, 2 g of Karenz MOI-BP (registered trademark, manufactured by Showa Denko KK), which is a monomer containing a blocked isocyanate group, was mixed and dissolved in 200 g of isopropyl alcohol.
  • silaplane FM-0721 (trade name, manufactured by JNC) which is a silicone macromonomer, 32 g of hydroxyethyl methacrylate, 18 g of AMP-10G (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.) containing a phenoxy group
  • Karenz MOI-BP registered trademark, manufactured by Showa Denko KK
  • Pigment concentration About the actual pigment concentration (substantial amount%) of the obtained cyan particles, when the thermogravimetric decrease was measured by EXSTAR6000 (TG / DTA6200) manufactured by Seiko Instruments Inc., there was a clear difference between the decomposition temperature of the resin component and the pigment component. From the two peak ratios, the pigment concentration was 33% by mass.
  • the migration threshold is measured at the same time as the charge amount, and the reflection spectrum of the cell surface is measured using a fiber optic spectrometer manufactured by Ocean Optics.
  • the saturation optical density at a wavelength of 650 nm is measured for C particles, and the saturation optics at a wavelength of 500 nm for R particles.
  • the concentration was measured, and the suitability of the migration threshold was evaluated according to the following criteria. Note that that the migration threshold value is matched means that the optical density reaches 90% or more of the saturated optical density when 15 V is applied at a gap of 50 ⁇ m. An electric field strength of 0.25 V / ⁇ m or more is not suitable.
  • the uniformity of the optical density of one particle was evaluated by the following method. Microscopic observation of the core emulsified liquid before drying is performed, a photograph of particles of 3 ⁇ m or larger is taken, and the diameter of the particle is measured from the center of a plurality of particles using image analysis software WinROOF (trade name, manufactured by Mitani Corporation). A comparison of the optical density of the part up to 80% was performed. Specifically, the maximum amount of change in the relative optical density represented by the following formula was examined at a wavelength of 650 nm for C particles and at a wavelength of 500 nm for R particles, and evaluated according to the following criteria.
  • the volume average particle size is determined by the method described above, that is, by obtaining an image of 100 particles by SEM (scanning electron microscope S-4800, manufactured by Hitachi High-Technologies Corporation) ) Was measured to determine the volume by spherical diameter conversion, and the value when the accumulation from the first to the 100th became 50% was taken as the volume average particle diameter.
  • the determined volume average particle diameter is set to 100, and a site at a distance X from the center of the particle is represented as “X% site”.
  • Relative optical density at the X% site from the center (Optical density at the X% site from the center) / (Maximum optical density from the center to the 80% site) A: 0.78 or more and 1 or less B: 0.72 or more and less than 0.78 C: 0.70 or more and less than 0.72 D: less than 0.70
  • the colorant existing region depth was evaluated by TEM observation. Specifically, 10 particles having a particle diameter of 400 nm to 600 nm are selected from the observation field, and the depth from the particle surface of the region where the colorant is ubiquitous with respect to the particle radius is evaluated by cross-sectional observation of each particle. did.
  • the volume average particle diameter is obtained as an average value of the diameter of the inscribed circle and the diameter of the circumscribed circle, The ratio of the depth obtained above to the volume average particle diameter was obtained.
  • the refractive index of air is 1.00
  • the refractive index of water is 1.30
  • the refractive index of X345 resin and phthalocyanine pigment is 1.53
  • the refractive index of silicone oil is 1.50.
  • the refractive index difference from the particles for use was calculated.
  • ⁇ Comparative example 2> Preparation of dispersion A-1A- The following ingredients were mixed, and ball milling was performed for 20 hours with 10 mm ⁇ zirconia balls to prepare dispersion A-1A. -53 parts by weight of methyl methacrylate-0.3 parts by weight of 2- (diethylamino) ethyl methacrylate-R pigment (Red 3090: trade name, manufactured by Sanyo Dye) 1.5 parts by weight
  • dispersion A-1B (calcium carbonate dispersion A-1B)- The following components were mixed and finely pulverized with a ball mill in the same manner as described above to prepare a calcium carbonate dispersion A-1B. ⁇ 40 parts by weight of calcium carbonate ⁇ 60 parts by weight of water
  • this emulsified liquid was put into a flask, and a silicone bottle was put on it. Using an injection needle, vacuum deaeration was sufficiently performed and sealed with nitrogen gas. Next, it was reacted at 65 ° C. for 15 hours to prepare particles. After cooling, the particles were filtered, and the obtained particle powder was dispersed in ion-exchanged water, and calcium carbonate was decomposed with hydrochloric acid water, followed by filtration. Thereafter, it was washed with sufficient distilled water, and sieved through nylon sieves having openings of 5 ⁇ m and 1 ⁇ m to make the particle sizes uniform. The obtained particles had a volume average primary particle size of 3 ⁇ m and an actual pigment concentration of 9.6% by mass.
  • ⁇ Comparative Example 3> Preparation of aqueous phase- To 50 g of water, 0.5 g of an aqueous polymerization initiator VA057 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) and 0.5 g of a reactive surfactant Latemul PD420 (trade name, manufactured by Kao Chemical Co., Ltd.) were added and stirred. The aqueous phase was adjusted.
  • VA057 trade name, manufactured by Wako Pure Chemical Industries, Ltd.
  • Latemul PD420 trade name, manufactured by Kao Chemical Co., Ltd.
  • oil phase- 1 g of surfactant KF-6028 is added to 100 g of silicone oil 10 CS, 5 g of methyl methacrylate and 0.5 g of diethylene glycol dimethacrylate are added as monomers, and solvent soluble blue colorant New Dymic N-DYM8626 (trade name, Dainichi Seika) 5 g) was added and stirred to adjust the oil phase.
  • aqueous phase was added to the oil phase, and emulsification was performed for 10 minutes under the conditions of a rotational speed of 10,000 rpm and a temperature of 30 ° C. using an internal tooth tabletop dispersing machine ROBOMICS (trade name, manufactured by Tokushu Kika Kogyo Co., Ltd.). As a result, an emulsion having a volume average particle diameter of about 1 ⁇ m was obtained. With this transferred to a sample bottle and capped, the reaction was carried out for 18 hours at a water bath temperature of 65 ° C. As a result of microscopic observation, blue shell capsule particles having an aqueous phase inside were obtained.
  • ROBOMICS trade name, manufactured by Tokushu Kika Kogyo Co., Ltd.
  • the thickness of the shell was 40 nm as a result of SEM observation. Further, the sedimentation step using a centrifugal separator and the redispersion step using an ultrasonic washer are repeated three times for this dispersion of capsule particles to remove excess surfactant KF-6028 and unreacted monomers. 20 g of capsule particles were obtained. Centrifugation is performed at 3000 rpm for 10 minutes. Regarding the pigment concentration in the shell, the obtained capsule particles were heated and dried at 100 ° C. for 1 hour, and subjected to thermal analysis. The pigment concentration was determined in the same manner as other particles, and the pigment concentration was 20% by mass. The capsule particles were taken out from the dispersion and evaluated in the same manner as the other particles.
  • Cyan particles having a pigment concentration of 27% by mass were prepared in the same manner as in Example 1 except that the pigment concentration was changed. Next, it was heated and dried at 100 ° C. for 1 hour, and the silicone oil present around the particles was removed, and evaluation was performed in the same manner as other particles.
  • Table 1 shows the structures and evaluation results of the particles prepared in Examples and Comparative Examples. Moreover, the cross section of the particle

Abstract

Particles for display, wherein a coloring agent is eccentrically located in the particles for display in a region from the surface of the particles to a depth of 5% or more and 35% or less of the volume average particle diameter of the particles towards the center.

Description

表示用粒子、電気泳動表示用分散液、表示媒体、及び表示装置Display particles, electrophoretic display dispersion, display medium, and display device
 本発明は、表示用粒子、電気泳動表示用分散液、表示媒体、及び表示装置に関する。 The present invention relates to display particles, a dispersion for electrophoretic display, a display medium, and a display device.
 帯電した着色粒子を対向配置された一対の電極間に配置し、電極間に電圧を印加して分散液中の粒子の一部を移動させることで表示を行う表示装置が提案されている。 There has been proposed a display device in which charged colored particles are arranged between a pair of opposed electrodes and a voltage is applied between the electrodes to move a part of the particles in the dispersion to perform display.
 例えば、特開2006-113390号公報には、ポリマー微粒子内に顔料が分散された電気泳動粒子において、前記ポリマー微粒子が、顔料にグラフト化した第1のポリマー部分と、該第1のポリマー部分に共重合した第2のポリマー部分とを有し、該第1のポリマー部分となるポリマーがグラフト化した顔料を、前記第2のポリマー部分とを形成するための重合性モノマー中に分散させた状態で該重合性モノマーを重合することで得られたものであることを特徴とする電気泳動粒子が開示されている。 For example, in Japanese Patent Application Laid-Open No. 2006-113390, in an electrophoretic particle in which a pigment is dispersed in a polymer fine particle, the polymer fine particle is grafted to a pigment, and the first polymer portion is bonded to the first polymer portion. A pigment having a copolymerized second polymer portion and a polymer grafted with the polymer to be the first polymer portion dispersed in a polymerizable monomer for forming the second polymer portion Electrophoretic particles obtained by polymerizing the polymerizable monomer are disclosed.
 特開2008-145713号公報には、電気泳動分散液に分散する電気泳動用のポリマーグラフト微粒子であって、顔料微粒子に対しその16~100質量%のポリマーをグラフト化したことを特徴とするポリマーグラフト微粒子が開示されている。 Japanese Patent Application Laid-Open No. 2008-145713 discloses a polymer graft fine particle for electrophoresis dispersed in an electrophoretic dispersion, wherein 16 to 100% by mass of the polymer is grafted to the pigment fine particle. Graft microparticles are disclosed.
 特開2005-352054号公報には、電気泳動粒子の製造方法であって、官能基を有するポリマー微粒子を液中に分散させてなるポリマー微粒子分散液と、着色剤を液中に分散させてなる着色剤分散液とを混合し、該ポリマー微粒子と該着色剤とを凝集させて凝集粒子を形成する工程、該凝集粒子を加熱して融合させ、ポリマーと着色剤からなる複合体粒子を形成する工程、該複合体粒子の官能基にリビングラジカル重合開始基を導入する工程、ならびに該導入されたリビングラジカル重合開始基からリビングラジカル重合によって高分子鎖を形成する工程を含むことを特徴とする電気泳動粒子の製造方法が開示されている。 Japanese Patent Application Laid-Open No. 2005-352054 discloses a method for producing electrophoretic particles, in which a polymer fine particle dispersion in which polymer fine particles having a functional group are dispersed in a liquid, and a colorant are dispersed in the liquid. A step of mixing the colorant dispersion and aggregating the polymer fine particles and the colorant to form aggregated particles, and heating and coalescing the aggregated particles to form composite particles composed of the polymer and the colorant. And a step of introducing a living radical polymerization initiating group into a functional group of the composite particle, and a step of forming a polymer chain from the introduced living radical polymerization initiating group by living radical polymerization. A method for producing electrophoretic particles is disclosed.
 特開2009-031794号公報には、シェル型電気泳動粒子であって、内部空洞部を有するシェルと、前記シェルの内面に形成されるものであって、電気的極性を有する荷電層と、前記シェルの空洞部に封入されるイオン性液体と、を備えるシェル型電気泳動粒子が開示されている。 JP 2009-031794 discloses a shell-type electrophoretic particle having a shell having an internal cavity, an inner surface of the shell, a charged layer having an electrical polarity, Shell-type electrophoretic particles comprising an ionic liquid enclosed in a cavity of a shell are disclosed.
 本発明は、単層で配置された場合の光学濃度のばらつきが小さい表示用粒子を提供することを目的とする。 It is an object of the present invention to provide display particles having a small variation in optical density when arranged in a single layer.
 上記目的を達成するために、以下の発明が提供される。
 <1> 着色剤が、粒子の表面と該表面から中心側に向けて前記粒子の体積平均粒子径の5%以上35%以下の深さとの間の領域に偏在している表示用粒子。
 <2> 前記着色剤が、前記表示用粒子の表面と該表面から中心側に向けて前記表示用粒子の体積平均粒子径の12%以上23%以下の深さとの間の領域に偏在している<1>に記載の表示用粒子。
 <3> 結着樹脂を含む芯部と、前記着色剤である顔料及び前記顔料の分散剤を含み、前記芯部を被覆する被覆部と、を有し、前記結着樹脂及び前記分散剤の一方が塩基性であり、他方が酸性である<1>又は<2>に記載の表示用粒子。
 <4> 分散媒と、前記分散媒中に分散した<1>~<3>のいずれかに記載の表示用粒子の群と、を含む電気泳動表示用分散液。
 <5> 前記分散媒と、前記表示用粒子との屈折率の差が0.3未満である<4>に記載の電気泳動表示用分散液。
 <6> 少なくとも一方が透光性を有し、間隙をもって配置された一対の基板と、前記一対の基板間に封入された<4>又は<5>に記載の電気泳動表示用分散液と、を備えた表示媒体。
 <7> 少なくとも一方が透光性を有し、間隙をもって配置された一対の電極と、前記一対の電極間に<4>又は<5>に記載の電気泳動表示用分散液を有する領域と、を備えた表示媒体。
 <8> <6>又は<7>に記載の表示媒体と、前記表示媒体の一対の基板間又は前記一対の電極間に電圧を印加する電界印加手段と、を備えた表示装置。
In order to achieve the above object, the following invention is provided.
<1> Display particles in which the colorant is unevenly distributed in a region between the surface of the particle and a depth of 5% to 35% of the volume average particle diameter of the particle from the surface toward the center.
<2> The colorant is unevenly distributed in a region between the surface of the display particles and a depth of 12% or more and 23% or less of the volume average particle diameter of the display particles from the surface toward the center side. The display particle according to <1>.
<3> a core portion including a binder resin, a pigment that is the colorant, and a coating portion that includes the pigment dispersant and covers the core portion, and the binder resin and the dispersant. The display particle according to <1> or <2>, wherein one is basic and the other is acidic.
<4> A dispersion liquid for electrophoretic display, comprising a dispersion medium and the group of display particles according to any one of <1> to <3> dispersed in the dispersion medium.
<5> The dispersion liquid for electrophoretic display according to <4>, wherein a difference in refractive index between the dispersion medium and the display particles is less than 0.3.
<6> A pair of substrates at least one of which is translucent and disposed with a gap, and the dispersion liquid for electrophoretic display according to <4> or <5> enclosed between the pair of substrates, A display medium comprising:
<7> A pair of electrodes at least one of which is translucent and disposed with a gap; a region having the dispersion liquid for electrophoretic display according to <4> or <5> between the pair of electrodes; A display medium comprising:
<8> A display device comprising: the display medium according to <6> or <7>; and an electric field applying unit that applies a voltage between the pair of substrates of the display medium or the pair of electrodes.
 <1>、<2>、又は<3>の発明によれば、上記構成を有さない場合に比べ、単層で配置された場合の光学濃度のばらつきが小さい表示用粒子が提供される。
 <4>、<5>、<6>、<7>、又は<8>の発明によれば、着色剤が粒子の表面側に偏在していない表示用粒子を適用した場合に比べ、単層で配置された場合の光学濃度のばらつきが小さい電気泳動表示用分散液、表示媒体、又は表示装置が提供される。
According to the invention <1>, <2>, or <3>, there are provided display particles having a small variation in optical density when arranged in a single layer as compared with the case without the above-described configuration.
According to the invention of <4>, <5>, <6>, <7>, or <8>, compared with a case where display particles in which the colorant is not unevenly distributed on the surface side of the particles are applied. The dispersion liquid for electrophoretic display, the display medium, or the display device in which the variation in optical density when arranged in the above is small is provided.
本実施形態に係る表示用粒子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the particle | grains for a display which concerns on this embodiment. 本実施形態に係る表示用粒子の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the particle | grains for a display which concerns on this embodiment. 本実施形態に係る表示用粒子の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the particle | grains for a display which concerns on this embodiment. 本実施形態に係る表示用粒子を用いた表示装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the display apparatus using the particle | grains for a display which concerns on this embodiment. 実施例で作製した表示用粒子の断面を観察したTEM写真である。It is the TEM photograph which observed the cross section of the particle | grains for a display produced in the Example. 着色剤が粒子全体に分散している表示用粒子を示す概略断面図である。It is a schematic sectional drawing which shows the particle | grains for a display in which the coloring agent has disperse | distributed to the whole particle | grain.
 以下、適宜図面を参照しながら、本発明の実施の形態に係る表示用粒子、並びに、それを用いた電気泳動表示用分散液、表示媒体及び表示装置について説明する。 Hereinafter, the display particles according to the embodiment of the present invention, the dispersion liquid for electrophoretic display, the display medium, and the display device using the same will be described with reference to the drawings as appropriate.
<表示用粒子>
 本実施形態に係る表示用粒子(単に「粒子」と記す場合がある)は、着色剤が、粒子の表面と該表面から中心側に向けて前記粒子の体積平均粒子径の5%以上35%以下の深さとの間の領域(以下「特定の領域」と記す場合がある)に偏在している。
 図1は、本実施形態に係る表示用粒子の一例の断面を概略的に示している。図1に示される表示用粒子11は、芯部13(「コア部」と称する場合がある。)と、芯部13を被覆する被覆部15(「シェル部」と称する場合がある。)と、を有し、芯部13は着色剤を含まず透明であり、着色剤が被覆部15に含まれることで粒子11の特定の領域に偏在している。本実施形態に係る表示用粒子を用いれば、単層で並んだ場合の光学濃度のばらつきが小さくなる。その理由は以下のように推測される。
<Display particles>
In the display particles according to the present embodiment (which may be simply referred to as “particles”), the colorant is 5% or more and 35% of the volume average particle diameter of the particles from the surface toward the center side. It is unevenly distributed in a region between the following depths (hereinafter may be referred to as “specific region”).
FIG. 1 schematically shows a cross section of an example of display particles according to the present embodiment. The display particles 11 shown in FIG. 1 are a core portion 13 (sometimes referred to as a “core portion”) and a covering portion 15 (sometimes referred to as a “shell portion”) covering the core portion 13. The core portion 13 does not contain a colorant and is transparent, and the colorant is included in the coating portion 15 so that it is unevenly distributed in a specific region of the particle 11. If the display particles according to the present embodiment are used, variation in optical density when arranged in a single layer is reduced. The reason is presumed as follows.
 図6は、着色剤が粒子全体に均等に分散している表示用粒子の断面を概略的に示している。このような表示用粒子61に光Lが入射した場合、粒子61に入射する方向によって粒子内の着色領域を通過する光路長が大きく異なる。そのため、外から表示用粒子61を観察したときに、平面視における粒子61の中心付近に相当する部分と外周付近に相当する部分とでは光学濃度の差が大きくなり易い。そのため、このような表示用粒子61が単層で並んで表示を行った場合には、各粒子61の中心付近と外周付近とでは光学濃度のばらつきが大きく、表示全体としても濃度ムラが大きくなり易い。 FIG. 6 schematically shows a cross section of the display particles in which the colorant is evenly dispersed throughout the particles. When the light L is incident on such display particles 61, the optical path length passing through the colored region in the particles varies greatly depending on the direction in which the light L is incident. For this reason, when the display particles 61 are observed from the outside, the difference in optical density tends to be large between a portion corresponding to the vicinity of the center of the particles 61 and a portion corresponding to the vicinity of the outer periphery in plan view. Therefore, when such display particles 61 are displayed side by side in a single layer, the optical density varies greatly between the center and the outer periphery of each particle 61, and the density unevenness also increases as a whole display. easy.
 一方、本実施形態に係る表示用粒子11では、粒子11の特定の領域に着色剤が偏在しているため、図1に示すように、表示用粒子11に入射した光L、粒子11に入射する方向によらず粒子11内の着色剤が存在する領域における光路長の差が小さい。そのため、外から表示用粒子11を観察したときに、図6に示す表示用粒子61に比べ、平面視における粒子11の中心付近と外周付近での光学濃度の差が小さくなる。従って、本実施形態に係る表示用粒子11が単層で並んで表示を行った場合には、各粒子11の中心付近と外周付近とでは光学濃度のばらつきが小さく、表示全体としても濃度ムラが抑制される。 On the other hand, in the display particle 11 according to the present embodiment, since the colorant is unevenly distributed in a specific region of the particle 11, the light L incident on the display particle 11 and the particle 11 are incident as shown in FIG. 1. The difference in the optical path length in the region where the colorant is present in the particles 11 is small regardless of the direction in which the particles are taken. Therefore, when the display particles 11 are observed from the outside, the difference in optical density between the center and the outer periphery of the particles 11 in plan view is smaller than that of the display particles 61 shown in FIG. Therefore, when the display particles 11 according to the present embodiment are displayed in a single layer, the optical density variation is small near the center and the outer periphery of each particle 11, and the density unevenness is also observed in the entire display. It is suppressed.
 なお、本発明者らの実験によれば、着色剤は、本実施形態に係る表示用粒子11の表面と該表面から中心側に向けて表示用粒子11の体積平均粒子径の5%以上35%以下の深さとの間の領域、すなわち、粒子11の表面から体積平均粒子径の5%以上35%以下の深さまでの領域に偏在していることが望ましく、粒子11の表面から体積平均粒子径の7%以上30%以下の深さまでの領域に偏在していることがより望ましく、粒子11の表面から体積平均粒子径の12%以上23%以下の深さまでの領域に偏在していることがさらに望ましい。着色剤が表示用粒子11の表面と該表面から中心に向けて表示用粒子11の体積平均粒子径の5%以上の深さとの間の領域に偏在していれば高い光学濃度が得られ、表面と体積平均粒子径の35%以下の深さとの間の領域に偏在していれば平面視における表示用粒子11の光学濃度のばらつきが効果的に抑制され、また、着色剤として用いる顔料等の使用量が抑制される。
 例えば、図1に示されるように表示用粒子11及び芯部13がそれぞれ真球状であれば、透明な芯部13が表示用粒子11の直径の65%以上95%以下であることが望ましい。
According to the experiments by the present inventors, the colorant is at least 35% of the volume average particle diameter of the display particles 11 from the surface toward the center side of the display particles 11 according to the present embodiment. %, That is, a region that is unevenly distributed in the region from the surface of the particle 11 to a depth of 5% to 35% of the volume average particle diameter. It is more desirable to be unevenly distributed in a region from 7% to 30% of the diameter, and to be unevenly distributed from the surface of the particle 11 to a depth of 12% to 23% of the volume average particle diameter. Is more desirable. If the colorant is unevenly distributed in a region between the surface of the display particle 11 and a depth of 5% or more of the volume average particle diameter of the display particle 11 from the surface toward the center, a high optical density is obtained. If it is unevenly distributed in a region between the surface and a depth of 35% or less of the volume average particle diameter, variation in the optical density of the display particles 11 in a plan view can be effectively suppressed, and a pigment used as a colorant, etc. The amount of use is suppressed.
For example, as shown in FIG. 1, if the display particles 11 and the core portion 13 are each spherical, it is desirable that the transparent core portion 13 is 65% to 95% of the diameter of the display particles 11.
 なお、表示用粒子11全体の体積平均粒径としては、例えば、0.3μm以上15μm以下が挙げられる。各表示用粒子11の体積平均粒径は、SEM画像によって測定される値である。具体的には、SEM(走査電子顕微鏡S-4800、日立ハイテクノロジーズ社製)により画像を得た後、粒子一つにつき粒子の径(最長部分)r1を測定した。これを100個の粒子11についてそれぞれr1~r100として測定した後、r1~r100を球径換算して体積を求め、1番目から100番目までの累積が50%となったときの値を体積平均粒径とする。
 一方、粒子の体積平均粒子径に対する着色剤の存在領域については、粒子断面のTEM観察により着色剤の存在領域を評価し、また、観察サンプルの作製において粒子を切削することで楕円形状に変形するため、切削後の粒子断面の内接円の直径と外接円の直径の平均値を体積平均粒子径として、体積平均粒子径に対する着色剤の存在領域の割合を求める。
In addition, as a volume average particle diameter of the display particle 11 whole, 0.3 micrometer or more and 15 micrometers or less are mentioned, for example. The volume average particle diameter of each display particle 11 is a value measured by an SEM image. Specifically, after obtaining an image by SEM (scanning electron microscope S-4800, manufactured by Hitachi High-Technologies Corporation), the particle diameter (longest portion) r1 of each particle was measured. After measuring 100 particles 11 as r1 to r100, respectively, r1 to r100 are converted into sphere diameters to determine the volume, and the value when the accumulation from the first to the 100th becomes 50% is the volume average. The particle size.
On the other hand, for the region where the colorant is present relative to the volume average particle diameter of the particle, the region where the colorant is present is evaluated by TEM observation of the cross section of the particle, and the particle is deformed into an elliptical shape by cutting the particle in the preparation of the observation sample. Therefore, the average value of the diameter of the inscribed circle and the diameter of the circumscribed circle in the cross section of the particle after cutting is taken as the volume average particle size, and the ratio of the colorant existing region to the volume average particle size is obtained.
 図2は、本実施形態に係る表示用粒子の他の例を概略的に示している。図2に示す表示用粒子21は図1に示す表示用粒子11よりも表面から深い領域まで着色剤が存在している。この表示用粒子21でも、粒子21の中心付近には着色剤が存在しないか、存在しても微量であり、図6に示す表示用粒子61に比べて着色領域における光路長の差が小さい。そのため、本実施形態に係る表示用粒子21が単層で並んで表示を行った場合も、平面視における各粒子21の中心付近と外周付近とで光学濃度のばらつきが小さく、表示全体としても濃度ムラが抑制される。 FIG. 2 schematically shows another example of display particles according to the present embodiment. In the display particles 21 shown in FIG. 2, a colorant is present from the surface to a deeper region than the display particles 11 shown in FIG. Even in the display particles 21, the colorant is not present in the vicinity of the center of the particles 21 or a minute amount is present, and the difference in optical path length in the colored region is smaller than that of the display particles 61 shown in FIG. 6. Therefore, even when the display particles 21 according to this embodiment are displayed in a single layer, the optical density variation is small between the center and the outer periphery of each particle 21 in plan view, and the density of the entire display is also high. Unevenness is suppressed.
 図1及び図2に示した表示用粒子11,21は、着色剤を含まない透明な芯部13,23と、着色剤を含み、芯部13,23を被覆する被覆部15,25とを有しているが、本実施形態に係る表示用粒子は、これらの構成に限定されず、着色剤が粒子の中心側よりも表面側の特定の領域に偏在していればよい。例えば、図3に示すように、表示用粒子31の中心から表面に向けて着色剤の濃度が徐々に高くなるように着色剤が表面側の特定の領域に偏在した構成でもよい。 The display particles 11 and 21 shown in FIGS. 1 and 2 include transparent core portions 13 and 23 that do not include a colorant, and covering portions 15 and 25 that include the colorant and cover the core portions 13 and 23. However, the display particles according to the present embodiment are not limited to these configurations, and the colorant may be unevenly distributed in a specific region on the surface side rather than the center side of the particles. For example, as shown in FIG. 3, the colorant may be unevenly distributed in a specific region on the surface side so that the concentration of the colorant gradually increases from the center of the display particle 31 toward the surface.
 また、本実施形態に係る表示用粒子の構造としては、主に以下の構造を有する粒子が挙げられる。
(1)樹脂、ガラスなどの透明材料で構成された芯部と、着色剤を含み、芯部を被覆する被覆部と、を有する非中空粒子。
(2)樹脂、ガラスなどの透明材料と着色剤とを含んで構成された中空粒子。
(3)樹脂、ガラスなどの透明材料と着色剤とを含んで構成された中空粒子の内部が透明な液体で満たされた非中空粒子。
(4)樹脂、ガラスなどの透明材料で構成された透明中空粒子が着色剤で被覆された中空粒子。
In addition, examples of the structure of the display particles according to the present embodiment include particles having the following structure.
(1) A non-hollow particle having a core portion made of a transparent material such as resin or glass, and a covering portion that includes a colorant and covers the core portion.
(2) Hollow particles comprising a transparent material such as resin or glass and a colorant.
(3) Non-hollow particles in which hollow particles composed of a transparent material such as resin and glass and a colorant are filled with a transparent liquid.
(4) Hollow particles in which transparent hollow particles made of a transparent material such as resin and glass are coated with a colorant.
 上記(1)から(4)のいずれかの構造を有する表示用粒子のうち、表示用粒子を液体の分散媒中に分散させて電圧の印加によって分散媒中を電気泳動させる表示用粒子(以下「泳動粒子」と記す場合がある。)としては、(1)又は(3)の構造を有する非中空粒子が望ましく、(1)の構造を有する非中空粒子がより望ましい。なお、(3)の構造を有する非中空粒子の内部に含まれる液体としては、分散媒の比重とのバランスから、分散媒と同種のものを用いることが望ましい。
 一方、上記(2)又は(4)の構造を有する中空粒子は、分散媒中に分散させると粒子内部が中空であるため、泳動に浮力が影響する。そのため、(2)又は(4)の構造を有する中空粒子は、液体の分散媒を用いず、電圧の印加によって空気などの気体の分散媒中を移動させる表示用粒子として用いることが望ましい。
Among the display particles having the structure of any of (1) to (4) above, display particles (hereinafter referred to as particles) in which display particles are dispersed in a liquid dispersion medium and electrophoresed in the dispersion medium by applying a voltage. The non-hollow particles having the structure (1) or (3) are preferable, and the non-hollow particles having the structure (1) are more preferable. In addition, as a liquid contained in the inside of the non-hollow particle | grains which have a structure of (3), it is desirable to use the same kind as a dispersion medium from the balance with the specific gravity of a dispersion medium.
On the other hand, if the hollow particles having the above structure (2) or (4) are dispersed in a dispersion medium, the inside of the particles is hollow, so that buoyancy affects the migration. Therefore, the hollow particles having the structure (2) or (4) are desirably used as display particles that move in a gas dispersion medium such as air by applying a voltage without using a liquid dispersion medium.
 次に、本実施形態に係る表示用粒子を構成する材料について具体的に説明する。なお、以下では、本実施形態に係る表示用粒子の一例として、図1に示す構成を有する表示用粒子11及び該表示用粒子11を分散媒に分散させて泳動粒子として用いる場合について主に説明する。
 図1に示す表示用粒子11は、透明材料である結着樹脂を含む芯部13と、着色剤である顔料及び前記顔料の分散剤を含み、前記芯部13を被覆する被覆部15と、を有する。
Next, the material constituting the display particles according to the present embodiment will be specifically described. Hereinafter, as an example of the display particles according to the present embodiment, the display particles 11 having the configuration shown in FIG. 1 and the case where the display particles 11 are dispersed in a dispersion medium and used as electrophoretic particles are mainly described. To do.
The display particle 11 shown in FIG. 1 includes a core portion 13 including a binder resin that is a transparent material, a pigment that is a colorant, and a dispersant for the pigment, and a covering portion 15 that covers the core portion 13. Have
-透明材料-
 本実施形態に係る表示用粒子11の芯部13は、透明材料を含む。芯部13に含まれる透明材料としては、熱可塑性樹脂、熱硬化性樹脂などの結着樹脂が挙げられる。芯部13に含まれる透明材料としてガラスを用いてもよい。なお、本実施形態において「透明」とは、可視光の透過率が60%以上であることを意味し、望ましくは80%以上である。ここで、透過率は分光光度計(U-4000、日立社製)により測定される、400nmから700nmまでの波長域における最大値を意味する。
-Transparent materials-
The core 13 of the display particle 11 according to this embodiment includes a transparent material. Examples of the transparent material contained in the core 13 include binder resins such as thermoplastic resins and thermosetting resins. Glass may be used as the transparent material contained in the core portion 13. In the present embodiment, “transparent” means that the visible light transmittance is 60% or more, and desirably 80% or more. Here, the transmittance means a maximum value in a wavelength range from 400 nm to 700 nm, which is measured by a spectrophotometer (U-4000, manufactured by Hitachi).
 表示用粒子11に使用される熱可塑性樹脂としては、スチレン、クロロスチレン等のスチレン類;エチレン、プロピレン、ブチレン、イソプレン等のモノオレフィン;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ドデシル、アクリル酸オクチル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ドデシル等のα-メチレン脂肪族モノカルボン酸エステル類;ビニルメチルエーテル、ビニルエチルエーテル、ビニルブチルエーテル等のビニルエーテル類、ビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロペニルケトン等のビニルケトン類の単独重合体あるいは共重合体が例示される。 Examples of the thermoplastic resin used for the display particles 11 include styrenes such as styrene and chlorostyrene; monoolefins such as ethylene, propylene, butylene, and isoprene; vinyl acetate, vinyl propionate, vinyl benzoate, vinyl butyrate, and the like. Vinyl ester; α-methylene aliphatic mono, such as methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dodecyl methacrylate Carboxylic acid esters; vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and vinyl butyl ether; homopolymers or copolymers of vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone and vinyl isopropenyl ketone Combined are exemplified.
 また、表示用粒子11に使用される熱硬化性樹脂としては、ジビニルベンゼンを主成分とする架橋共重合体や架橋ポリメチルメタクリレート等の架橋樹脂;フェノール樹脂、尿素樹脂、メラミン樹脂、ポリエステル樹脂、シリコーン樹脂等が挙げられる。特に代表的な結着樹脂としては、ポリスチレン、スチレン-アクリル酸アルキル共重合体、スチレン-メタクリル酸アルキル共重合体、スチレン-アクリロニトリル共重合体、スチレン-ブタジエン共重合体、スチレン-無水マレイン酸共重合体、ポリエチレン、ポリプロピレン、ポリエステル、ポリウレタン、エポキシ樹脂、シリコーン樹脂、ポリアミド、変性ロジン、パラフィンワックス等が挙げられる。 Examples of the thermosetting resin used for the display particles 11 include cross-linked copolymers mainly composed of divinylbenzene and cross-linked resins such as cross-linked polymethyl methacrylate; phenol resins, urea resins, melamine resins, polyester resins, A silicone resin etc. are mentioned. Typical binder resins include polystyrene, styrene-alkyl acrylate copolymer, styrene-alkyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer. Examples of the polymer include polyethylene, polypropylene, polyester, polyurethane, epoxy resin, silicone resin, polyamide, modified rosin, and paraffin wax.
-着色剤-
 本実施形態に係る表示用粒子11の被覆部15に含まれる着色剤としては、有機若しくは無機の顔料、油溶性染料等が使用される。マグネタイト、フェライト等の磁性紛、カーボンブラック、酸化チタン、酸化マグネシウム、酸化亜鉛、フタロシアニン銅系シアン色材、アゾ系イエロー色材、アゾ系マゼンタ色材、キナクリドン系マゼンタ色材、レッド色材、グリーン色材、ブルー色材等の公知の着色剤が挙げられる。具体的には、アニリンブルー、カルコイルブルー、クロムイエロー、ウルトラマリンブルー、デュポンオイルレッド、キノリンイエロー、メチレンブルークロリド、フタロシアニンブルー、マラカイトグリーンオキサレート、ランプブラック、ローズベンガル、C.I.ピグメント・レッド48:1、C.I.ピグメント・レッド122、C.I.ピグメント・レッド57:1、C.I.ピグメント・イエロー97、C.ブルー15:1、C.I.ピグメント・ブルー15:3、等が代表的なものとして例示される。
-Colorant-
As the colorant contained in the covering portion 15 of the display particle 11 according to the present embodiment, an organic or inorganic pigment, an oil-soluble dye, or the like is used. Magnetic powder such as magnetite, ferrite, carbon black, titanium oxide, magnesium oxide, zinc oxide, phthalocyanine copper-based cyan color material, azo-based yellow color material, azo-based magenta color material, quinacridone-based magenta color material, red color material, green Well-known colorants, such as a color material and a blue color material, are mentioned. Specifically, aniline blue, calcoil blue, chrome yellow, ultramarine blue, DuPont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green oxalate, lamp black, rose bengal, C.I. I. Pigment red 48: 1, C.I. I. Pigment red 122, C.I. I. Pigment red 57: 1, C.I. I. Pigment yellow 97, C.I. Blue 15: 1, C.I. I. Pigment Blue 15: 3, etc. are exemplified as typical examples.
 なお、本実施形態に係る表示用粒子11の被覆部15には、着色剤のほか、着色剤としての顔料を分散させる分散剤、芯部13に含まれる結着樹脂などを含んでもよい。
 また、本実施形態に係る表示用粒子11の芯部13にも着色剤を多少含んでもよいが、芯部13における着色剤の濃度は、少なくとも被覆部15における着色剤の濃度よりも低い必要があり、具体的には、被覆部15における着色剤の濃度の1/5以下が望ましく、1/10以下がより望ましい。
The covering portion 15 of the display particle 11 according to the present embodiment may include a dispersing agent for dispersing a pigment as a coloring agent, a binder resin included in the core portion 13, and the like in addition to the coloring agent.
Further, the core 13 of the display particle 11 according to the present embodiment may contain some colorant. However, the concentration of the colorant in the core 13 needs to be lower than at least the concentration of the colorant in the covering 15. Specifically, it is preferably 1/5 or less, and more preferably 1/10 or less, of the concentration of the colorant in the covering portion 15.
-その他の成分-
 本実施形態に係る表示用粒子11は、必要に応じて、帯電制御剤を含んでもよい。帯電制御剤としては、電子写真用トナー材料に使用される公知のものが使用できる。セチルピリジルクロライド、BONTRON(登録商標) P-51、BONTRON P-53、BONTRON E-84、BONTRON E-81(以上、オリエント化学工業社製)等の第4級アンモニウム塩、サリチル酸系金属錯体、フェノール系縮合物、テトラフェニル系化合物、酸化金属粒子、各種カップリング剤により表面処理された酸化金属粒子が挙げられる。
-Other ingredients-
The display particles 11 according to the present embodiment may include a charge control agent as necessary. As the charge control agent, known ones used for electrophotographic toner materials can be used. Quaternary ammonium salts such as cetylpyridyl chloride, BONTRON (registered trademark) P-51, BONTRON P-53, BONTRON E-84, BONTRON E-81 (above, manufactured by Orient Chemical Industries), salicylic acid metal complexes, phenols Examples thereof include system condensates, tetraphenyl compounds, metal oxide particles, and metal oxide particles surface-treated with various coupling agents.
 本実施形態に係る表示用粒子11の芯部13及び/又は被覆部15には、必要に応じて、磁性材料を混合してもよい。磁性材料は必要に応じてカラーコートした無機磁性材料又は有機磁性材料を使用する。また、透明な磁性材料、特に、透明有機磁性材料は着色顔料の発色を阻害せず、比重も無機磁性材料に比べて小さく、より望ましい。
 着色した磁性粉として、例えば、特開2003-131420号公報記載の小径着色磁性粉を用いてもよい。核となる磁性粒子と該磁性粒子表面上に積層された着色層とを備えた着色磁性粉が用いられる。そして、着色層としては、顔料等により磁性粉を不透過に着色する等選定して差し支えないが、例えば光干渉薄膜を用いるのが望ましい。この光干渉薄膜とは、SiO、TiO等の無彩色材料を光の波長と同等な厚みを有する薄膜にしたものであり、薄膜内の光干渉により光を波長選択的に反射するものである。
A magnetic material may be mixed in the core portion 13 and / or the covering portion 15 of the display particle 11 according to the present embodiment, if necessary. As the magnetic material, an inorganic magnetic material or an organic magnetic material that is color-coated as required is used. Further, a transparent magnetic material, in particular, a transparent organic magnetic material does not hinder the color development of the color pigment, and the specific gravity is smaller than that of the inorganic magnetic material, so that it is more desirable.
As the colored magnetic powder, for example, a small-diameter colored magnetic powder described in JP-A-2003-131420 may be used. Colored magnetic powder comprising magnetic particles serving as nuclei and a colored layer laminated on the surface of the magnetic particles is used. The colored layer may be selected by coloring the magnetic powder opaque with a pigment or the like, but it is desirable to use, for example, a light interference thin film. This optical interference thin film is a thin film having a thickness equivalent to the wavelength of light made of an achromatic material such as SiO 2 or TiO 2 , and reflects light in a wavelength selective manner by optical interference in the thin film. is there.
 表示用粒子11の表面には、必要に応じて、外添剤を付着させてもよい。外添剤の色は、表示用粒子11の色に影響を与えないように、透明であることが望ましい。 An external additive may be attached to the surface of the display particles 11 as necessary. The color of the external additive is desirably transparent so as not to affect the color of the display particles 11.
 外添剤としては、酸化ケイ素(シリカ)、酸化チタン、アルミナ等の金属酸化物等の無機粒子が用いられる。粒子の帯電性、流動性、及び環境依存性等を調整するために、これらをカップリング剤又はシリコーンオイルで表面処理してもよい。 As the external additive, inorganic particles such as metal oxides such as silicon oxide (silica), titanium oxide, and alumina are used. In order to adjust the charging property, fluidity, and environment dependency of the particles, they may be surface-treated with a coupling agent or silicone oil.
 カップリング剤には、アミノシラン系カップリング剤、アミノチタン系カップリング剤、ニトリル系カップリング剤等の正帯電性のものと、窒素原子を含まない(窒素以外の原子で構成される)シラン系カップリング剤、チタン系カップリング剤、エポキシシランカップリング剤、アクリルシランカップリング剤等の負帯電性のものがある。また、シリコーンオイルには、アミノ変性シリコーンオイル等の正帯電性のものと、ジメチルシリコーンオイル、アルキル変性シリコーンオイル、α-メチルスルホン変性シリコーンオイル、メチルフェニルシリコーンオイル、クロルフェニルシリコーンオイル、フッ素変性シリコーンオイル等の負帯電性のものが挙げられる。これらは外添剤の所望の抵抗に応じて選択される。 Coupling agents include positively chargeable ones such as aminosilane coupling agents, aminotitanium coupling agents, nitrile coupling agents, and silanes that do not contain nitrogen atoms (consisting of atoms other than nitrogen). There are negatively charged ones such as coupling agents, titanium-based coupling agents, epoxy silane coupling agents, and acrylic silane coupling agents. Silicone oil includes positively charged ones such as amino-modified silicone oil, dimethyl silicone oil, alkyl-modified silicone oil, α-methylsulfone-modified silicone oil, methylphenyl silicone oil, chlorophenyl silicone oil, fluorine-modified silicone. Examples include negatively chargeable oils. These are selected according to the desired resistance of the external additive.
 上記外添剤の中では、よく知られている疎水性シリカ及び疎水性酸化チタンが望ましく、特に特開平10-3177号公報に記載のTiO(OH)と、シランカップリング剤等のシラン化合物との反応で得られるチタン化合物が好適である。シラン化合物としては、クロロシラン、アルコキシシラン、シラザン、及び特殊シリル化剤が挙げられる。このチタン化合物は、湿式工程の中で作製されるTiO(OH)にシラン化合物あるいはシリコーンオイルを反応させた後、乾燥させて作製される。数百度という焼成工程を通らないため、Ti同士の強い結合が形成されず、凝集が全くなく、泳動粒子は一次粒子の状態である。さらに、TiO(OH)にシラン化合物あるいはシリコーンオイルを直接反応させるため、シラン化合物やシリコーンオイルの処理量を多くすることができて、シラン化合物の処理量等を調整することにより帯電特性を制御でき、且つ付与される帯電能も従来の酸化チタンのそれより顕著に改善される。 Of the above external additives, well-known hydrophobic silica and hydrophobic titanium oxide are desirable. In particular, TiO (OH) 2 described in JP-A-10-3177 and a silane compound such as a silane coupling agent The titanium compound obtained by the reaction with is suitable. Examples of the silane compound include chlorosilane, alkoxysilane, silazane, and a special silylating agent. This titanium compound is produced by reacting TiO (OH) 2 produced in a wet process with a silane compound or silicone oil and then drying. Since it does not pass through the firing step of several hundred degrees, strong bonds between Ti are not formed, there is no aggregation, and the migrating particles are in the state of primary particles. Furthermore, since the silane compound or silicone oil reacts directly with TiO (OH) 2 , the amount of silane compound or silicone oil treated can be increased, and the charging characteristics can be controlled by adjusting the amount of silane compound treated. And the charging ability imparted is significantly improved over that of conventional titanium oxide.
 外添剤の一次粒子は、一般的には1nm以上100nm以下であり、5nm以上50nm以下であることがより良いが、これに限定されない。 The primary particles of the external additive are generally 1 nm or more and 100 nm or less, and preferably 5 nm or more and 50 nm or less, but are not limited thereto.
 外添剤と表示用粒子11の配合比は表示用粒子11の粒径と外添剤の粒径の兼ね合いから調整される。外添剤の添加量が多すぎると表示用粒子11の表面から外添剤の少なくとも一部が遊離し、これが他の表示用粒子11の表面に付着して、所望の帯電特性が得られなくなる。一般的には、外添剤の量は、表示用粒子100質量部に対して、0.01質量部以上3質量部以下、また0.05質量部以上1質量部以下であることがより望ましい。 The blending ratio of the external additive and the display particle 11 is adjusted based on the balance between the particle size of the display particle 11 and the particle size of the external additive. If the added amount of the external additive is too large, at least a part of the external additive is liberated from the surface of the display particles 11 and adheres to the surface of the other display particles 11 so that desired charging characteristics cannot be obtained. . Generally, the amount of the external additive is more preferably 0.01 parts by mass or more and 3 parts by mass or less, and more preferably 0.05 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the display particles. .
 また、本実施形態では、色が異なる複数種類の表示用粒子11を併用してもよい。色が異なる複数種類の表示用粒子11を併用する場合、外添剤は、複数種類の表示用粒子11のいずれか1種にだけ添加してもよいし、複数種又は全種類の表示用粒子11へ添加してもよい。
 全表示用粒子11の表面に外添剤を添加する場合は、表示用粒子11の表面に外添剤を衝撃力で打込んだり、表示用粒子11の表面を加熱して外添剤を表示用粒子11の表面に固着したりすることが望ましい。これにより、外添剤が表示用粒子11から遊離し、異極性の外添剤が強固に凝集して、電界で解離させることが困難な外添剤の凝集体を形成することが防止され、ひいては画質劣化が防止される。
In the present embodiment, a plurality of types of display particles 11 having different colors may be used in combination. When a plurality of types of display particles 11 having different colors are used in combination, the external additive may be added only to any one of the plurality of types of display particles 11, or a plurality of types or all types of display particles. 11 may be added.
When an external additive is added to the surface of all the display particles 11, the external additive is applied to the surface of the display particles 11 with an impact force, or the surface of the display particles 11 is heated to display the external additive. It is desirable to adhere to the surface of the particles 11 for use. As a result, the external additive is released from the display particles 11, the external additive having a different polarity is strongly aggregated, and formation of an aggregate of the external additive that is difficult to dissociate with an electric field is prevented. As a result, image quality deterioration is prevented.
 本実施形態に係る表示用粒子11を製造する方法としては、着色剤を粒子11の中心側よりも表面側の特定の領域で濃度が高くなるように偏在させる方法であれば特に限定されない。例えば、透明な結着樹脂を含み、芯部(コア部)13となるコア粒子を液中乾燥法により作製し、コアセルベーション法によりコア粒子の表面に、顔料と、顔料を分散させる分散剤を含み、被覆部(シェル部)15となるシェル用樹脂を被覆させる方法が挙げられる。
 また粒子を液中乾燥法により作製する場合、粒子を構成する結着樹脂と顔料に含まれる分散剤の一方が塩基性であり、他方が酸性であることで、図1に示すように芯部13と被覆部15とを有し、着色剤が被覆部15に偏在した表示用粒子11が容易に製造される。このような製法で作製された表示用粒子11であれば、例えば、塩基性の結着樹脂を含む芯部13と、酸性の分散剤を含む被覆部15とを有する表示用粒子11となる。
 なお、酸性の結着樹脂と塩基性の顔料分散剤を用いて粒子を形成してもよい。
The method for producing the display particles 11 according to this embodiment is not particularly limited as long as the colorant is unevenly distributed so that the concentration is higher in a specific region on the surface side than the center side of the particles 11. For example, a dispersing agent that contains a transparent binder resin and produces core particles to be a core portion (core portion) 13 by a submerged drying method, and disperses the pigment and the pigment on the surface of the core particles by a coacervation method. And a method of coating the shell resin to be the covering portion (shell portion) 15.
When the particles are produced by a submerged drying method, one of the binder resin constituting the particles and the dispersant contained in the pigment is basic, and the other is acidic. 13 and the covering portion 15, and the display particles 11 in which the colorant is unevenly distributed in the covering portion 15 are easily manufactured. If it is the display particle 11 produced by such a manufacturing method, it becomes the display particle 11 which has the core part 13 containing basic binder resin and the coating | coated part 15 containing an acidic dispersing agent, for example.
The particles may be formed using an acidic binder resin and a basic pigment dispersant.
<電気泳動表示用分散液、表示媒体、及び表示装置>
 次に、本実施形態に係る表示用粒子を用いた電気泳動表示用分散液、表示媒体、及び表示装置について説明する。
 本実施形態に係る電気泳動表示用分散液は、分散媒と、前記した着色剤が表面側に偏在した表示用粒子の群(以下、「泳動粒子」、「泳動粒子群」と記す場合がある。)と、を含む。
 また、本実施形態に係る表示媒体は、少なくとも一方が透光性を有し、間隙をもって配置された一対の基板と、前記一対の基板間に封入された電気泳動表示用分散液と、を備える。
 さらに、本実施形態に係る表示装置は、前記表示媒体と、前記表示媒体の一対の基板間又は前記一対の電極間に電圧を印加する電界印加手段と、を備える。
<Electrophoretic display dispersion, display medium, and display device>
Next, the dispersion liquid for electrophoretic display, the display medium, and the display device using the display particles according to the present embodiment will be described.
The dispersion for electrophoretic display according to the present embodiment may be referred to as a group of display particles in which the dispersion medium and the colorant described above are unevenly distributed on the surface side (hereinafter referred to as “electrophoretic particles” or “electrophoretic particle group”). And).
In addition, the display medium according to the present embodiment includes at least one of a pair of substrates having translucency and disposed with a gap, and an electrophoretic display dispersion liquid sealed between the pair of substrates. .
Furthermore, the display device according to the present embodiment includes the display medium and an electric field applying unit that applies a voltage between the pair of substrates or the pair of electrodes of the display medium.
 図4は、本実施形態に係る表示装置の構成の一例を概略的に示している。図4に示す表示装置10は、表示媒体12と、表示媒体12に電圧を印加して表示媒体12の表示基板20と背面基板22との間に電界を形成する電圧印加部16と、を備える。なお、図4では、表示媒体12の一部(1つのセル)を拡大して示している。 FIG. 4 schematically shows an example of the configuration of the display device according to the present embodiment. The display device 10 illustrated in FIG. 4 includes a display medium 12 and a voltage application unit 16 that applies a voltage to the display medium 12 to form an electric field between the display substrate 20 and the back substrate 22 of the display medium 12. . In FIG. 4, a part (one cell) of the display medium 12 is shown enlarged.
 表示媒体12は、表示側支持基板38と、背面側支持基板44と、表示側電極40と、背面側電極48と、間隙部材24と、を備える。表示基板20は表示側支持基板38と表示側電極40を含み、背面基板22は背面側支持基板44と背面側電極48を含む。
 そして、一対の基板20,22及び間隙部材24で囲まれた閉空間であるセル内(一対の電極40,48間の領域内)に、分散媒50と、泳動粒子群11と、を含む本実施形態の電気泳動表示用分散液が充填されている。
The display medium 12 includes a display side support substrate 38, a back side support substrate 44, a display side electrode 40, a back side electrode 48, and a gap member 24. The display substrate 20 includes a display-side support substrate 38 and a display-side electrode 40, and the back substrate 22 includes a back-side support substrate 44 and a back-side electrode 48.
A book including the dispersion medium 50 and the migrating particle group 11 in a cell (in a region between the pair of electrodes 40 and 48) that is a closed space surrounded by the pair of substrates 20 and 22 and the gap member 24. The dispersion liquid for electrophoretic display of the embodiment is filled.
 表示側支持基板38は、画像表示面とされ、透光性(具体的一例として、可視光の透過率が70%以上)を有している。
 非表示面とされる背面側支持基板44は、表示側支持基板38と対向して間隙をもって配置されている。なお、背面側支持基板44は必ずしも透光性を有する必要はなく、むしろ裏面からの入射光を遮断できる方が視認性が向上する。
The display-side support substrate 38 is an image display surface and has translucency (as a specific example, the visible light transmittance is 70% or more).
The back side support substrate 44, which is a non-display surface, is disposed with a gap so as to face the display side support substrate 38. In addition, the back side support substrate 44 does not necessarily have translucency, but rather the visibility can be improved by blocking incident light from the back side.
 表示側支持基板38及び背面側支持基板44に含まれる材料としては、例えば、ガラス、プラスチック、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリイミド樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエーテルサルフォン樹脂等が挙げられる。 Examples of materials included in the display side support substrate 38 and the back side support substrate 44 include glass, plastic, polyethylene terephthalate resin, polyethylene naphthalate resin, polycarbonate resin, acrylic resin, polyimide resin, polyester resin, epoxy resin, and polyether. A sulfone resin etc. are mentioned.
 表示側支持基板38及び背面側支持基板44の内側(対向する側)には、それぞれ表示側電極40及び背面側電極48が設けられている。
 表示側電極40及び背面側電極48に含まれる材料としては、例えば、インジウム・スズ・カドミウム・アンチモン等の酸化物;ITO等の複合酸化物;金、銀、銅、ニッケル等の金属;ポリピロール、ポリチオフェン等の有機材料等が挙げられる。これらの材料は、例えば、単層膜、混合膜あるいは複合膜として電極40,48を構成する。
A display side electrode 40 and a back side electrode 48 are provided on the inside (opposite side) of the display side support substrate 38 and the back side support substrate 44, respectively.
Examples of materials included in the display side electrode 40 and the back side electrode 48 include oxides such as indium, tin, cadmium, and antimony; composite oxides such as ITO; metals such as gold, silver, copper, and nickel; polypyrrole, Examples thereof include organic materials such as polythiophene. These materials constitute the electrodes 40 and 48 as, for example, a single layer film, a mixed film or a composite film.
 表示側電極40及び背面側電極48の厚さは、例えば、100Å以上2000Å以下(10nm以上200nm以下)である。
 表示側電極40及び背面側電極48は、例えば、マトリックス状、又はストライプ状に形成されていてもよい。
The thickness of the display side electrode 40 and the back side electrode 48 is, for example, 100 mm or more and 2000 mm or less (10 nm or more and 200 nm or less).
The display side electrode 40 and the back side electrode 48 may be formed in a matrix shape or a stripe shape, for example.
 表示側電極40及び背面側電極48は、電圧印加部16に電気的に接続されている。
 また、電圧印加部16は、制御部18に信号授受されるように接続されている。
The display side electrode 40 and the back side electrode 48 are electrically connected to the voltage application unit 16.
The voltage application unit 16 is connected to the control unit 18 so as to exchange signals.
 制御部18は、装置全体の動作を司るCPU(中央処理装置)と、各種データを一時的に記憶するRAM(Random Access Memory)と、装置全体を制御する制御プログラム等の各種プログラムが予め記憶されたROM(Read Only Memory)と、を含むマイクロコンピュータとして構成されていてもよい。 The control unit 18 stores in advance various programs such as a CPU (central processing unit) that controls the operation of the entire apparatus, a RAM (Random Access Memory) that temporarily stores various data, and a control program that controls the entire apparatus. Further, it may be configured as a microcomputer including a ROM (Read Only Memory).
 電圧印加部16は、制御部18の制御に応じた電圧を表示側電極40及び背面側電極48に印加するための機能を有する。電圧印加部16によって電圧を表示側電極40及び背面側電極48間に印加することにより、表示側電極40及び背面側電極48との間に電界が形成される。 The voltage application unit 16 has a function of applying a voltage according to the control of the control unit 18 to the display side electrode 40 and the back side electrode 48. By applying a voltage between the display side electrode 40 and the back side electrode 48 by the voltage application unit 16, an electric field is formed between the display side electrode 40 and the back side electrode 48.
 表示装置10の電圧印加部16は、表示媒体12(表示側電極40及び背面側電極48)と切り離し可能に接続されていてもよい。この場合では、例えば、表示媒体12の書き換え又は表示が必要な時に、表示媒体12を電圧印加部16に接続して画像情報の表示を行い、保存時は互いに切り離しておいて表示媒体12の可搬性をよくするように構成される。 The voltage application unit 16 of the display device 10 may be detachably connected to the display medium 12 (the display side electrode 40 and the back side electrode 48). In this case, for example, when it is necessary to rewrite or display the display medium 12, the display medium 12 is connected to the voltage application unit 16 to display image information. It is configured to improve portability.
 なお、本実施形態の表示媒体12は、表示側電極40及び背面側電極48を備え、両者共が電圧印加部16に接続されている構成としているが、これに限らず、例えば、表示側電極40及び背面側電極48の一方が接地され、他方が電圧印加部16に接続されるように構成してもよい。 Note that the display medium 12 of the present embodiment includes the display-side electrode 40 and the back-side electrode 48, both of which are connected to the voltage application unit 16. However, the present invention is not limited to this. One of the 40 and the back side electrode 48 may be grounded, and the other may be connected to the voltage applying unit 16.
 また、表示側電極40及び背面側電極48を保護するため、フッ素樹脂等により各電極40,48を覆う表面層を設けてもよい。 In order to protect the display-side electrode 40 and the back-side electrode 48, a surface layer that covers the electrodes 40, 48 may be provided with a fluororesin or the like.
 表示基板20と背面基板22との間(表示側電極40と背面側電極48との間)は、間隙部材24により、複数の閉空間(セル)に区画されている。間隙部材24は、表示基板20と背面基板22との基板間の間隔を保持する機能と、表示基板20と背面基板22との基板間の間隙を複数に区画する機能とを有している。 The space between the display substrate 20 and the back substrate 22 (between the display side electrode 40 and the back side electrode 48) is partitioned into a plurality of closed spaces (cells) by the gap member 24. The gap member 24 has a function of maintaining a distance between the display substrate 20 and the back substrate 22 and a function of partitioning a plurality of gaps between the display substrate 20 and the back substrate 22.
 間隙部材24の構成材料としては、熱可塑性樹脂、熱硬化性樹脂、電子線硬化樹脂、光硬化樹脂、ゴム、金属等が挙げられる。 Examples of the constituent material of the gap member 24 include thermoplastic resins, thermosetting resins, electron beam curable resins, photo curable resins, rubbers, metals, and the like.
 間隙部材24は、有色でも無色でもよいが、表示媒体12に表示される表示画像に悪影響を及ぼさないように無色透明であることが望ましく、その場合には、例えば、ポリスチレン、ポリエステル、アクリルなどの透明樹脂等が使用される。なお、ここで間隙部材24が透明性を有する場合は、可視光に対して25%以上の透過率を有すればよい。 The gap member 24 may be colored or colorless, but is preferably colorless and transparent so as not to adversely affect the display image displayed on the display medium 12. In this case, for example, polystyrene, polyester, acrylic, etc. Transparent resin or the like is used. Here, when the gap member 24 has transparency, it is only necessary to have a transmittance of 25% or more with respect to visible light.
-分散媒-
 分散媒としては、例えば、絶縁性液体が挙げられる。本実施形態で絶縁性とは、具体的一例として、体積抵抗値が10Ω・cm以上である場合を指している。
-Dispersion medium-
Examples of the dispersion medium include an insulating liquid. Insulating property in this embodiment refers to a case where the volume resistance value is 10 7 Ω · cm or more as a specific example.
 分散媒としては、シリコーン系オイルと炭化水素系オイルが挙げられ、具体的には、ヘキサン、シクロヘキサン、トルエン、キシレン、デカン、ヘキサデカン、ケロセン、パラフィン、イソパラフィン、シリコーンオイル、変性シリコーンオイル、ジクロロエチレン、トリクロロエチレン、パークロロエチレン、高純度石油、エチレングリコール、アルコール類、エーテル類、エステル類、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン、2-ピロリドン、N-メチルホルムアミド、アセトニトリル、テトラヒドロフラン、プロピレンカーボネート、エチレンカーボネート、ベンジン、ジイソプロピルナフタレン、オリーブ油、イソプロパノール、トリクロロトリフルオロエタン、テトラクロロエタン、ジブロモテトラフルオロエタンなどや、それらの混合物が好適に挙げられる。
 分散媒として使用し得る絶縁性液体としては、例えば、下記体積抵抗値となるように不純物を除去した水(所謂、純水)も挙げられる。
Examples of the dispersion medium include silicone oil and hydrocarbon oil. Specifically, hexane, cyclohexane, toluene, xylene, decane, hexadecane, kerosene, paraffin, isoparaffin, silicone oil, modified silicone oil, dichloroethylene, and trichloroethylene. Perchlorethylene, high-purity petroleum, ethylene glycol, alcohols, ethers, esters, dimethylformamide, dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, 2-pyrrolidone, N-methylformamide, acetonitrile, tetrahydrofuran, propylene carbonate , Ethylene carbonate, benzine, diisopropylnaphthalene, olive oil, isopropanol, trichlorotrifluoroethane, tetrachloro Ethane, and the like dibromotetrafluoroethane, mixtures thereof suitably.
Examples of the insulating liquid that can be used as the dispersion medium include water from which impurities are removed so as to obtain the following volume resistance value (so-called pure water).
 分散媒としては、例えば、高分子も挙げられる。高分子としては、高分子ゲル、高分子ポリマー等が挙げられる。具体的には、高分子としては、ゼラチン、ポリビニルアルコール、ポリ(メタ)アクリルアミド等が挙げられる。 Examples of the dispersion medium include polymers. Examples of the polymer include a polymer gel and a polymer. Specifically, examples of the polymer include gelatin, polyvinyl alcohol, poly (meth) acrylamide and the like.
 分散媒は、絶縁性液体単独又は高分子単独で構成してもよいが、樹脂絶縁性液体と高分子樹脂との混合物であってもよい。
 分散媒50の体積抵抗値としては、例えば、10Ω・cm以上であり、望ましくは10Ω・cm以上1019Ω・cm以下であり、より望ましくは1010Ω・cm以上1019Ω・cm以下である。この範囲の体積抵抗値とすることで、泳動粒子群に電界が印加され、かつ、電極反応に起因する分散媒の電気分解による気泡の発生が抑制される。
The dispersion medium may be composed of an insulating liquid alone or a polymer alone, but may be a mixture of a resin insulating liquid and a polymer resin.
The volume resistance value of the dispersion medium 50 is, for example, 10 7 Ω · cm or more, preferably 10 7 Ω · cm or more and 10 19 Ω · cm or less, more preferably 10 10 Ω · cm or more and 10 19 Ω or less. -It is cm or less. By setting the volume resistance value in this range, an electric field is applied to the migrating particle group, and generation of bubbles due to electrolysis of the dispersion medium due to electrode reaction is suppressed.
 分散媒と表示用粒子11との屈折率差は、0.3未満であることが好ましく、0.1未満であることがより好ましい。分散媒と表示用粒子11との屈折率差を0.3未満とすることで、粒子を透過した透過光が集光されたり、粒子表面で光が反射されたりして光学濃度がばらつくことが抑制される。なお、分散媒と表示用粒子11との屈折率差は、文献値を参照して算出する。 The difference in refractive index between the dispersion medium and the display particles 11 is preferably less than 0.3, and more preferably less than 0.1. By setting the difference in refractive index between the dispersion medium and the display particles 11 to be less than 0.3, the transmitted light that has passed through the particles is collected or the light is reflected on the particle surface, resulting in a variation in optical density. It is suppressed. The refractive index difference between the dispersion medium and the display particles 11 is calculated with reference to literature values.
-泳動粒子群-
 本実施形態に係る表示装置では、泳動粒子群11として、前記した着色剤が表面側に偏在した表示用粒子11の群が用いられている。
 泳動粒子群11は、本実施形態に係る複数の表示用粒子(泳動粒子)11から構成され、それぞれ正又は負に帯電されており、分散媒50中で、電気泳動性を有する固体粒子群である。すなわち、分散媒50中で正または負の大きい電荷を有し、表示側電極40と背面側電極48との間に(すなわち、表示基板20と背面基板22との間に)発生した電界の向き及び強度に応じて分散媒50中を移動する。表示媒体12における表示色の変化は、この泳動粒子群11を構成する各泳動粒子11の分散媒50中の移動によって生じる。
-Electrophoretic particle group-
In the display device according to the present embodiment, as the migrating particle group 11, a group of display particles 11 in which the colorant is unevenly distributed on the surface side is used.
The electrophoretic particle group 11 is composed of a plurality of display particles (electrophoretic particles) 11 according to the present embodiment, each of which is positively or negatively charged, and is a solid particle group having electrophoretic properties in the dispersion medium 50. is there. That is, the direction of the electric field that has a large positive or negative charge in the dispersion medium 50 and is generated between the display-side electrode 40 and the back-side electrode 48 (that is, between the display substrate 20 and the back-side substrate 22). And moves in the dispersion medium 50 according to the strength. The change in the display color on the display medium 12 is caused by the movement of the migrating particles 11 constituting the migrating particle group 11 in the dispersion medium 50.
 泳動粒子群11は、形成する画像に応じた色の粒子群であればよい。泳動粒子群11は、例えば、一種類(一色)であってもよいし、複数種類(複数色、例えば、Y:イエロー、C:シアン、M:マゼンタ、R:レッド)であってもよい。 The migrating particle group 11 may be a particle group having a color corresponding to the image to be formed. The migrating particle group 11 may be, for example, one type (single color) or a plurality of types (multiple colors, for example, Y: yellow, C: cyan, M: magenta, R: red).
 泳動粒子群11を構成する樹脂には、例えば、必要に応じて、帯電性を制御する帯電制御剤を混合してもよい。また、泳動粒子群11の内部や表面には、必要に応じて、磁性材料を混合してもよい。また、泳動粒子群11の表面には、必要に応じて、外添剤(例えばシリコーン鎖等のポリマーグラフト鎖等)を付着させてもよい。 The resin constituting the migrating particle group 11 may be mixed with, for example, a charge control agent that controls chargeability, if necessary. Moreover, you may mix a magnetic material in the inside and the surface of the migrating particle group 11 as needed. Further, an external additive (for example, a polymer graft chain such as a silicone chain) may be attached to the surface of the migrating particle group 11 as necessary.
 なお、泳動粒子11の表面側に偏在した着色剤として帯電性を有する顔料を用いれば、単層で配置された場合の光学濃度のばらつきが抑制されるほか、粒子11の表面側に帯電性を有する顔料が偏在することにより、泳動粒子11の全体としての電荷が安定する。 If a pigment having charging properties is used as the colorant unevenly distributed on the surface side of the migrating particles 11, variations in optical density when arranged in a single layer are suppressed, and charging properties are provided on the surface side of the particles 11. Due to the uneven distribution of the pigment to be contained, the charge of the migrating particles 11 as a whole is stabilized.
 泳動粒子群11の含有量(セル中の表示用分散液全質量に対する含有量(質量%))は、所望の色相が得られる濃度であれば特に限定されるものではないが、粒子が表示面に単層で均一に並ぶ事が好ましく、例えば、粒径に応じて0.5質量%以上20質量%以下の範囲から選択される。 The content of the migrating particle group 11 (content (% by mass) with respect to the total mass of the display dispersion in the cell) is not particularly limited as long as the desired hue can be obtained. It is preferable that the layers are uniformly arranged in a single layer. For example, it is selected from the range of 0.5% by mass or more and 20% by mass or less depending on the particle diameter.
 泳動粒子群の各粒子11の体積平均粒径としては、例えば、0.3μm以上15μm以下が挙げられる。ここで、各泳動粒子11の体積平均粒径は、SEM写真によって測定される値である。
 なお、色が異なる泳動粒子群11を2種以上含む場合は、各粒子群の泳動粒子11の粒径は異なってもよいし、同じでもよい。
Examples of the volume average particle diameter of each particle 11 of the migrating particle group include 0.3 μm or more and 15 μm or less. Here, the volume average particle diameter of each migrating particle 11 is a value measured by an SEM photograph.
When two or more types of migrating particle groups 11 having different colors are included, the particle size of the migrating particles 11 in each particle group may be different or the same.
-その他-
 本実施形態に係る表示用分散液には、例えば、必要に応じて、酸、アルカリ、塩、分散安定剤、酸化防止、紫外線吸収などを目的とした添加剤(安定剤、抗菌剤、防腐剤等)などを添加してもよい。また、例えば、帯電制御剤(陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤、非イオン界面活性剤、フッ素系界面活性剤、シリコーン系界面活性剤、金属石鹸、アルキルリン酸エステル類、コハク酸イミド類等)を添加してもよい。なお、いずれの場合においても上記体積抵抗値の範囲となるように添加することが望ましい。
-Other-
In the display dispersion according to the present embodiment, for example, if necessary, an additive (stabilizer, antibacterial agent, antiseptic agent) for the purpose of acid, alkali, salt, dispersion stabilizer, antioxidant, ultraviolet absorption, etc. Etc.) may be added. Also, for example, charge control agents (anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, fluorosurfactants, silicone surfactants, metal soaps, alkyl phosphate esters Or succinimides) may be added. In any case, it is desirable to add so as to be in the range of the volume resistance value.
 また、図4では、1色の泳動粒子11を含む形態を示しているが、これに限定されず、例えば、実質的に分散媒中で移動しない非泳動粒子群を併用してもよい。 FIG. 4 shows a form including one color of migrating particles 11, but is not limited to this. For example, a non-migrating particle group that does not substantially move in the dispersion medium may be used in combination.
 非泳動粒子群は泳動粒子群11とは異なる色を有し、分散媒50中で電気泳動性を有しない固体粒子である。すなわち、非泳動粒子群は、分散媒50中で電荷を有しないか、あるいは正または負の小さい電荷を有するが、表示側電極40と背面側電極48との間に発生した電界により分散媒50中を移動しないか、あるいは移動した場合でも、平均的な移動距離が泳動粒子群11に比べて非常に小さいため泳動(移動)していないとみなせる粒子群である。 The non-electrophoretic particle group is a solid particle having a color different from that of the electrophoretic particle group 11 and not having electrophoretic properties in the dispersion medium 50. That is, the non-electrophoretic particle group has no charge in the dispersion medium 50 or has a small positive or negative charge, but the dispersion medium 50 is caused by the electric field generated between the display-side electrode 40 and the back-side electrode 48. Even if it does not move inside or moves, it is a particle group that can be regarded as not migrating (moving) because the average moving distance is much smaller than that of the migrating particle group 11.
 表示基板20と背面基板22(表示側電極40と背面側電極48)との間に発生した電界により、泳動粒子群11の各粒子が非泳動粒子群の間隙を通って、背面基板22側から表示基板20側、又は表示基板20側から背面基板22側へ泳動(移動)することにより表示が行われる。 Due to the electric field generated between the display substrate 20 and the back substrate 22 (display side electrode 40 and back side electrode 48), each particle of the migrating particle group 11 passes through the gap between the non-migrating particle group and from the back substrate 22 side. Display is performed by migrating (moving) from the display substrate 20 side or the display substrate 20 side to the back substrate 22 side.
 非泳動粒子群を構成する各非泳動粒子の色は、泳動粒子群11の各泳動粒子の色とは異なる色であればよい。例えば、背景色となるように白色又は黒色を選択することがよいが、その他の色であってもよい。また、非泳動粒子群は、帯電されていない粒子群(つまり電界に応じて移動しない粒子群)であってもよいし、帯電されている粒子群(電界に応じて移動するが、平均的な移動距離が泳動粒子群11に比べて非常に小さい粒子群)であってもよい。 The color of each non-electrophoretic particle constituting the non-electrophoretic particle group may be a color different from the color of each electrophoretic particle of the electrophoretic particle group 11. For example, white or black may be selected so as to be the background color, but other colors may be used. The non-electrophoretic particle group may be an uncharged particle group (that is, a particle group that does not move in response to an electric field), or a charged particle group (moves in accordance with an electric field, It may be a particle group whose movement distance is much smaller than that of the migrating particle group 11).
 非泳動粒子群を白色の粒子で構成する場合、構成材料としては、例えば、白色顔料(酸化チタン、酸化ケイ素、酸化亜鉛など)を、樹脂(ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、ポリメチルメタクリレート樹脂(PMMA)、アクリル樹脂、フェノール樹脂、ホルムアルデヒド縮合物等)に分散した粒子、ポリスチレン、ポリエチレン、ビニルナフタレン等の樹脂粒子等が挙げられる。
 また、非泳動粒子群の粒子として、白色以外の粒子を適用する場合、例えば、所望の色の顔料、あるいは染料を内包した前記した樹脂粒子を使用してもよい。顔料又は染料は、例えばRGB又はYMC色であれば、印刷インキ又はカラートナーに使用されている一般的な顔料又は染料が挙げられる。
When the non-electrophoretic particle group is composed of white particles, examples of the constituent material include white pigments (titanium oxide, silicon oxide, zinc oxide, etc.) and resins (polystyrene resin, polyethylene resin, polypropylene resin, polycarbonate resin, Examples thereof include particles dispersed in methyl methacrylate resin (PMMA), acrylic resin, phenol resin, formaldehyde condensate, etc., resin particles such as polystyrene, polyethylene, and vinyl naphthalene.
Moreover, when applying particles other than white as the particles of the non-electrophoretic particle group, for example, the above-described resin particles containing a pigment or dye of a desired color may be used. If a pigment or dye is RGB or YMC color, for example, the general pigment or dye currently used for printing ink or a color toner is mentioned.
 非泳動粒子群の各粒子の体積平均粒径は、例えば、0.1μm以上1.0μm以下である。各非泳動粒子の体積平均粒径は、SEM画像によって測定される値である。なお、非泳動粒子の体積平均粒径は、表示用粒子11の体積平均粒径と同様にして測定される。 The volume average particle diameter of each particle of the non-electrophoretic particle group is, for example, 0.1 μm or more and 1.0 μm or less. The volume average particle diameter of each non-electrophoretic particle is a value measured by an SEM image. The volume average particle diameter of the non-electrophoretic particles is measured in the same manner as the volume average particle diameter of the display particles 11.
 画像を形成する場合は、電圧印加部16が表示側電極40及び背面側電極48に形成する画像に応じて電圧を印加し、これによりセル内に発生した電界に応じて画像を形成する位置に応じた表示基板20側に泳動粒子群11が位置されることにより画像が形成される。一方、泳動粒子群11が背面基板22側に位置される部分(非画像形成部分)では、非泳動粒子群により白色の背景が表示された状態となる。 In the case of forming an image, the voltage application unit 16 applies a voltage according to the image formed on the display side electrode 40 and the back side electrode 48, and thereby at a position where the image is formed according to the electric field generated in the cell. The migrating particle group 11 is positioned on the corresponding display substrate 20 side to form an image. On the other hand, in a portion where the migrating particle group 11 is located on the back substrate 22 side (non-image forming portion), a white background is displayed by the non-migrating particle group.
 なお、本実施形態において、泳動粒子群11と非泳動粒子群を併用する場合、泳動粒子11として、着色剤が各粒子の表面側の特定の領域に偏在した本実施形態に係る表示用粒子を用いることがより望ましい。 In this embodiment, when the migrating particle group 11 and the non-migrating particle group are used in combination, the display particles according to the present embodiment in which the colorant is unevenly distributed in a specific region on the surface side of each particle are used as the migrating particle 11. It is more desirable to use.
 本実施形態の表示媒体12及び表示装置10は、画像の保存及び書き換えの可能な掲示板、回覧板、電子黒板、広告、看板、点滅標識、電子ペーパー、電子新聞、電子書籍、又は複写機等と共用されるドキュメントシート等に使用される。 The display medium 12 and the display device 10 according to the present embodiment include a bulletin board, a circulation board, an electronic blackboard, an advertisement, a signboard, a flashing sign, electronic paper, an electronic newspaper, an electronic book, or a copying machine that can store and rewrite images. Used for shared document sheets.
 なお、本実施形態で説明した表示用粒子、表示媒体12、及び表示装置10の構成、分散媒50、泳動粒子群11、非泳動粒子群の構成材料等は一例であり、用途等に応じて設定すればよい。 The configuration of the display particles, the display medium 12, and the display device 10 described in the present embodiment, the constituent materials of the dispersion medium 50, the migrating particle group 11, and the non-migrating particle group are examples, and depending on the application and the like. You only have to set it.
 また、上記本実施形態に係る表示媒体12及び表示装置10では、主に、泳動粒子群11として1種類(1色)の粒子群を適用した形態を説明したが、2種類(2色)以上の泳動粒子群を適用した形態であってもよい。 Further, in the display medium 12 and the display device 10 according to the above-described embodiment, the embodiment in which one type (one color) of particle group is mainly applied as the electrophoretic particle group 11 has been described. It is also possible to adopt a form to which the electrophoretic particle group is applied.
 以下、本発明の実施例について説明するが、本発明は以下の実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
<実施例1>
[表示用粒子の作製]
1)芯部(コア粒子)の作製(液中乾燥法)
 水溶性樹脂(カルボン酸)としてX345(商品名、星光PMC社製)を7.2gと、シアン顔料PB15:3(塩基性)を26質量%含む水分散液 Emacol(登録商標) SF Blue H524F(商品名、三洋色素社製)18.8gと、蒸留水24.1gとを、60℃に加温しながら混合し、インク固形分濃度が15質量%、乾燥後の顔料濃度が50質量%となるように分散相を調製した。
<Example 1>
[Preparation of display particles]
1) Preparation of core (core particles) (in-liquid drying method)
Water dispersion Emacol (registered trademark) SF Blue H524F containing 7.2 g of X345 (trade name, manufactured by Seiko PMC) as a water-soluble resin (carboxylic acid) and 26% by mass of cyan pigment PB15: 3 (basic) 18.8 g (trade name, manufactured by Sanyo Color Co., Ltd.) and 24.1 g of distilled water were mixed while heating to 60 ° C., and the ink solid content concentration was 15% by mass and the pigment concentration after drying was 50% by mass. A dispersed phase was prepared as follows.
 次に界面活性剤KF-6028(商品名、信越化学工業社製)3.5gをシリコーンオイルKF-96-2cs(商品名、信越化学工業社製)に溶解して連続相350gを調製し、これに上記分散相50gを加えて内歯式卓上分散機 ROBOMICS(商品名、特殊機化工業社製)を用い、回転数10000rpm、温度30℃で10分間乳化を行った。その結果、乳化液滴径が約2μmの乳化液を得た。これをロータリーエバポレーターを用いて真空度20mbar、水浴温度40℃で18時間乾燥を行った。 Next, 3.5 g of surfactant KF-6028 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in silicone oil KF-96-2cs (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare 350 g of a continuous phase. 50 g of the above dispersed phase was added thereto, and emulsification was carried out for 10 minutes at a rotational speed of 10000 rpm and a temperature of 30 ° C. using an internal tooth tabletop disperser ROBOMICS (trade name, manufactured by Tokushu Kika Kogyo Co., Ltd.). As a result, an emulsified liquid having an emulsified droplet diameter of about 2 μm was obtained. This was dried using a rotary evaporator at a vacuum degree of 20 mbar and a water bath temperature of 40 ° C. for 18 hours.
 更にこのシリコーンオイル粒子分散液を用い、遠心分離器を用いた沈降工程と、超音波洗浄機を用いた再分散工程を3回繰り返し、過剰な界面活性剤KF-6028を除き、濃縮してコア粒子6gを得た。遠心分離の条件は6000rpmで15分である。得られた粒子をSEM観察して、画像解析した結果、体積平均粒径は0.6μm、CV値は30であった。 Furthermore, using this silicone oil particle dispersion, the sedimentation step using a centrifuge and the redispersion step using an ultrasonic washer were repeated three times to remove excess surfactant KF-6028, and concentrated to a core. 6 g of particles were obtained. Centrifugation conditions are 15 minutes at 6000 rpm. As a result of SEM observation of the obtained particles and image analysis, the volume average particle size was 0.6 μm and the CV value was 30.
2)被覆部(シェル)の形成(コアセルベーション法)
 シリコーンマクロモノマーであるサイラプレーンFM-0721(商品名、JNC社製)50gと、ヒドロキシエチルメタクリレート32gと、フェノキシ基を含むモノマーであるAMP-10G(商品名、新中村化学社製)18gと、ブロックイソシアネート基を含むモノマーであるカレンズMOI-BP(登録商標、昭和電工社製)2gとを、イソプロピルアルコール200gに混合して溶解した。これに重合開始剤としてAIBN(2,2’-アゾビス(イソブチロニトリル))を0.2gを溶解し、窒素下で70℃、6時間重合を行なった。
 生成物を、シクロヘキサンを再沈殿溶媒として精製、乾燥し、シェル形成用樹脂を得た。このシェル形成用樹脂2gをt-ブタノール溶媒20gに溶解し、シェル形成用溶液を作製した。
2) Formation of coating (shell) (coacervation method)
50 g of silaplane FM-0721 (trade name, manufactured by JNC) which is a silicone macromonomer, 32 g of hydroxyethyl methacrylate, 18 g of AMP-10G (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.) containing a phenoxy group, 2 g of Karenz MOI-BP (registered trademark, manufactured by Showa Denko KK), which is a monomer containing a blocked isocyanate group, was mixed and dissolved in 200 g of isopropyl alcohol. 0.2 g of AIBN (2,2′-azobis (isobutyronitrile)) as a polymerization initiator was dissolved in this, and polymerization was carried out at 70 ° C. for 6 hours under nitrogen.
The product was purified and dried using cyclohexane as a reprecipitation solvent to obtain a shell-forming resin. 2 g of this shell forming resin was dissolved in 20 g of t-butanol solvent to prepare a shell forming solution.
 上記コア粒子1gを200mLのナスフラスコに取り、シリコーンオイルKF-96-2csを15g加え、25℃で超音波を加えながら撹拌分散してコア粒子分散液とした。これに、t-ブタノールを7.5g、上記シェル形成用溶液を22g、シリコーンオイルKF-96-2csを12.5g、順次加えた。投入速度は全て2mL/sで行った。
 上記ナスフラスコをロータリーエバポレーターに接続し、真空度20mbar、水浴温度50℃で1時間、t-ブタノールの除去を行った。
1 g of the above core particles was placed in a 200 mL eggplant flask, 15 g of silicone oil KF-96-2cs was added, and the mixture was stirred and dispersed at 25 ° C. while applying ultrasonic waves to obtain a core particle dispersion. To this, 7.5 g of t-butanol, 22 g of the above-mentioned shell forming solution, and 12.5 g of silicone oil KF-96-2cs were sequentially added. The input speed was all 2 mL / s.
The eggplant flask was connected to a rotary evaporator, and t-butanol was removed at a vacuum of 20 mbar and a water bath temperature of 50 ° C. for 1 hour.
 これをさらに撹拌しながらオイルバス中で加温した。まず100℃で1時間加温し、残留水分と残留するt-ブタノールを除いた後、続けて130℃で1.5時間の加熱を行い、ブロックイソシアネート基のブロック基を脱離させ、シェル材料の架橋反応を行った。
冷却後、シリコーンオイル粒子分散液を遠心分離器を用いた沈降工程と、超音波洗浄機を用いた再分散工程を3回繰り返し、過剰なシェル形成用樹脂を除去した。最終的に得られたシアン粒子は0.6gであった。
This was further heated in an oil bath with stirring. First, after heating at 100 ° C. for 1 hour to remove residual moisture and residual t-butanol, heating is continued at 130 ° C. for 1.5 hours to remove the blocking group of the blocked isocyanate group, thereby forming a shell material. The crosslinking reaction was performed.
After cooling, the silicone oil particle dispersion was subjected to a sedimentation process using a centrifuge and a redispersion process using an ultrasonic cleaner three times to remove excess shell forming resin. The finally obtained cyan particles were 0.6 g.
[粒子の評価]
 得られたシアン粒子を用いて電気泳動表示用分散液及び評価用セルを作製し、以下の評価を行った。
[Evaluation of particles]
Using the obtained cyan particles, a dispersion for electrophoretic display and an evaluation cell were prepared, and the following evaluation was performed.
(顔料濃度)
 得られたシアン粒子の実際の顔料濃度(実質量%)について、セイコーインスツル株式会社製EXSTAR6000(TG/DTA6200)によって熱重量減少を測定したところ樹脂成分と顔料成分の分解温度に明確な差が現れ、この2つのピーク比から顔料濃度は33質量%だった。
(Pigment concentration)
About the actual pigment concentration (substantial amount%) of the obtained cyan particles, when the thermogravimetric decrease was measured by EXSTAR6000 (TG / DTA6200) manufactured by Seiko Instruments Inc., there was a clear difference between the decomposition temperature of the resin component and the pigment component. From the two peak ratios, the pigment concentration was 33% by mass.
(帯電量)
 得られたシアン粒子をシリコーンオイルKF-96-2csに1質量%に希釈して電気泳動表示用分散液とし、対向する電極をサイトップCTL-809M(商品名、旭硝子社製)で表面処理した電極間の間隙が50μmの評価用セルに封入した。この評価用セルに対し、液晶セルイオン濃度測定器(東洋テクニカ社製)により±30Vの三角波電圧を印加して帯電量を調べたところ、7nC程度の安定した値が得られた。
(Charge amount)
The obtained cyan particles were diluted to 1% by mass in silicone oil KF-96-2cs to give a dispersion for electrophoretic display, and the opposite electrode was surface-treated with Cytop CTL-809M (trade name, manufactured by Asahi Glass Co., Ltd.). The gap between the electrodes was sealed in an evaluation cell having a thickness of 50 μm. When the charge amount was examined by applying a triangular wave voltage of ± 30 V to this evaluation cell using a liquid crystal cell ion concentration measuring instrument (manufactured by Toyo Technica Co., Ltd.), a stable value of about 7 nC was obtained.
(泳動閾値)
 泳動閾値は帯電量の測定と同時に、セル表面の反射スペクトルをオーシャンオプティクス製ファイバー光学分光器を用いて測定し、C粒子では波長650nmでの飽和光学濃度を、R粒子では波長500nmでの飽和光学濃度を測定し、泳動閾値の適合性を下記の基準で評価した。なお、泳動閾値が適合するとは、ギャップ50μmで15V印加時に光学濃度が飽和光学濃度の90%以上に達する事を示す。電界強度では0.25V/μm以上は適合外である。また閾値が低すぎる場合はメモリー性がないため、電界を除去した後に表示を保っていられず、0.10V/μm以下は適合外とした。
A:0.20V/μm以上
B:0.10V/μm以上0.20V/μm未満
C:0.10V/μm未満
(Electrophoresis threshold)
The migration threshold is measured at the same time as the charge amount, and the reflection spectrum of the cell surface is measured using a fiber optic spectrometer manufactured by Ocean Optics. The saturation optical density at a wavelength of 650 nm is measured for C particles, and the saturation optics at a wavelength of 500 nm for R particles. The concentration was measured, and the suitability of the migration threshold was evaluated according to the following criteria. Note that that the migration threshold value is matched means that the optical density reaches 90% or more of the saturated optical density when 15 V is applied at a gap of 50 μm. An electric field strength of 0.25 V / μm or more is not suitable. When the threshold is too low, there is no memory property, so the display cannot be maintained after the electric field is removed, and 0.10 V / μm or less is out of conformity.
A: 0.20 V / μm or more B: 0.10 V / μm or more and less than 0.20 V / μm C: less than 0.10 V / μm
(粒子内の光学濃度均一性)
 また、1粒子の光学濃度の均一性を以下の方法により評価した。
 コアの乳化液の乾燥前の状態で顕微鏡観察を行い、3μm以上の粒子の写真を撮影し、画像解析ソフトWinROOF(商品名、三谷商事社製)を用いて複数の粒子の中心部から直径の80%までの部位の光学濃度の比較を行った。具体的には、C粒子では波長650nmでの、R粒子では波長500nmでの下記式で表される相対光学濃度の変動の最大減少量を検討し、下記基準で評価した。なお、ここでの体積平均粒径は、前述した方法、すなわち、100個の粒子についてSEM(走査電子顕微鏡S-4800、日立ハイテクノロジーズ社製)により画像を得て、各粒子の径(最長部分)を測定して球径換算により体積を求め、1番目から100番目までの累積が50%となったときの値を体積平均粒径とした。求められた体積平均粒径を100として、粒子の中心部からXの距離にある部位を「X%部位」と表わす。
 中心からX%部位の相対光学濃度=(中心からX%部位の光学濃度)/(中心から80%部位までの最大光学濃度)
A:0.78以上1以下
B:0.72以上0.78未満
C:0.70以上0.72未満
D:0.70未満
(Optical density uniformity within the particle)
Further, the uniformity of the optical density of one particle was evaluated by the following method.
Microscopic observation of the core emulsified liquid before drying is performed, a photograph of particles of 3 μm or larger is taken, and the diameter of the particle is measured from the center of a plurality of particles using image analysis software WinROOF (trade name, manufactured by Mitani Corporation). A comparison of the optical density of the part up to 80% was performed. Specifically, the maximum amount of change in the relative optical density represented by the following formula was examined at a wavelength of 650 nm for C particles and at a wavelength of 500 nm for R particles, and evaluated according to the following criteria. Here, the volume average particle size is determined by the method described above, that is, by obtaining an image of 100 particles by SEM (scanning electron microscope S-4800, manufactured by Hitachi High-Technologies Corporation) ) Was measured to determine the volume by spherical diameter conversion, and the value when the accumulation from the first to the 100th became 50% was taken as the volume average particle diameter. The determined volume average particle diameter is set to 100, and a site at a distance X from the center of the particle is represented as “X% site”.
Relative optical density at the X% site from the center = (Optical density at the X% site from the center) / (Maximum optical density from the center to the 80% site)
A: 0.78 or more and 1 or less B: 0.72 or more and less than 0.78 C: 0.70 or more and less than 0.72 D: less than 0.70
(粒子内の着色剤存在領域の表面からの深さの評価)
 着色剤存在領域深さはTEM観察により評価した。具体的には、観察視野より粒子径400nmから600nmの粒子を10個選択し、各粒子の断面観察により粒子の半径に対して着色剤が遍在する領域の、粒子表面からの深さを評価した。また、観察サンプルの作製時に切削を行うと、粒子が変形して楕円形状となってしまうことを考慮して、体積平均粒子径は内接円の直径と外接円の直径の平均値として求め、先で求めた深さの体積平均粒子径に対する割合を求めた。また粒子の内部には一部の着色剤が薄く分布している箇所も存在するが、画像からは着色剤が遍在する領域とは明確に区別可能であるため、このような箇所は評価の対象外とした。
(Evaluation of the depth from the surface of the colorant existing area in the particle)
The colorant existing region depth was evaluated by TEM observation. Specifically, 10 particles having a particle diameter of 400 nm to 600 nm are selected from the observation field, and the depth from the particle surface of the region where the colorant is ubiquitous with respect to the particle radius is evaluated by cross-sectional observation of each particle. did. In addition, when cutting during the preparation of the observation sample, considering that the particles are deformed and become elliptical, the volume average particle diameter is obtained as an average value of the diameter of the inscribed circle and the diameter of the circumscribed circle, The ratio of the depth obtained above to the volume average particle diameter was obtained. In addition, there are locations where some of the colorant is thinly distributed inside the particle, but it can be clearly distinguished from the region where the colorant is ubiquitous from the image. Not applicable.
(分散媒との屈折率差の評価)
 文献値から、空気の屈折率を1.00、水の屈折率を1.30、X345樹脂及びフタロシアニン顔料の屈折率を1.53、シリコーンオイルの屈折率を1.50として、分散媒と表示用粒子との屈折率差を算出した。
(Evaluation of refractive index difference from dispersion medium)
Based on literature values, the refractive index of air is 1.00, the refractive index of water is 1.30, the refractive index of X345 resin and phthalocyanine pigment is 1.53, and the refractive index of silicone oil is 1.50. The refractive index difference from the particles for use was calculated.
<実施例2乃至9>
 顔料濃度を変更した以外は実施例1と同様にしてシアン粒子を作製し、実施例1と同様に評価した。
<Examples 2 to 9>
Cyan particles were produced in the same manner as in Example 1 except that the pigment concentration was changed, and evaluated in the same manner as in Example 1.
<比較例1>
 C粒子のコア仕込み時の顔料濃度を80質量%以上にした場合、得られたシアン粒子の実際の顔料濃度(実質量%)は64質量%以上にならず、TEM観察の結果、顔料がほぼ均一に中心部まで充填されている事が分かった。
<Comparative Example 1>
When the pigment concentration at the time of preparing the core of C particles is 80% by mass or more, the actual pigment concentration (substantial amount%) of the obtained cyan particles is not 64% by mass or more. It was found that the center part was uniformly filled.
<比較例2>
-分散液A-1Aの調製-
 下記成分を混合し、10mmΦのジルコニアボールにてボールミル粉砕を20時間実施して分散液A-1Aを調製した。
・メタクリル酸メチル 53質量部
・メタクリル酸2-(ジエチルアミノ)エチル 0.3質量部
・R顔料(Red3090:商品名、山陽色素社製) 1.5質量部
<Comparative example 2>
-Preparation of dispersion A-1A-
The following ingredients were mixed, and ball milling was performed for 20 hours with 10 mmφ zirconia balls to prepare dispersion A-1A.
-53 parts by weight of methyl methacrylate-0.3 parts by weight of 2- (diethylamino) ethyl methacrylate-R pigment (Red 3090: trade name, manufactured by Sanyo Dye) 1.5 parts by weight
-分散液A-1B(炭酸カルシウム分散液A-1B)の調製-
 下記成分を混合し、上記と同様にボールミルにて微粉砕して炭酸カルシウム分散液A-1Bを調製した。
・炭酸カルシウム 40質量部
・水 60質量部
-Preparation of dispersion A-1B (calcium carbonate dispersion A-1B)-
The following components were mixed and finely pulverized with a ball mill in the same manner as described above to prepare a calcium carbonate dispersion A-1B.
・ 40 parts by weight of calcium carbonate ・ 60 parts by weight of water
-混合液A-1Cの調製-
 下記成分を混合し、超音波機で脱気を10分間おこない、ついで乳化機で攪拌して混合液A-1Cを調製した。
・炭酸カルシウム分散液A-1B 60g
・20%食塩水 4g
-Preparation of mixture A-1C-
The following components were mixed, degassed with an ultrasonic machine for 10 minutes, and then stirred with an emulsifier to prepare a mixed solution A-1C.
・ Calcium carbonate dispersion A-1B 60g
・ 20% saline 4g
-着色粒子の調製-
 分散液A-1A:20g、ジメタクリル酸エチレングリコール:0.6g、重合開始剤V601(Dimethyl 2,2’-azobis(2-methylpropionate):商品名、和光純薬工業社製):0.2g、を計りとり、充分混合し、超音波機で脱気を10分行った。これを前記混合液A-1Cに加え、内歯式卓上分散機ROBOMICS(商品名、特殊機化工業社製)を用い回転数10000rpm、温度30℃で10分間乳化を行った。次にこの乳化液をフラスコに入れ、シリコーン詮をし、注射針を使用し、減圧脱気を充分行い、窒素ガスで封入した。次に65℃で15時間反応させ粒子を調製した。
 冷却後、粒子を濾過し、得られた粒子粉をイオン交換水中に分散させ、塩酸水で炭酸カルシウムを分解させ、ろ過を行った。
 その後充分な蒸留水で洗浄し、目開き:5μm、1μmのナイロン篩にかけ、粒度を揃えた。得られた粒子は、体積平均一次粒径3μm、実際の顔料濃度は9.6質量%であった。帯電量を調べたところ、0.8nC程度の値が得られた。
 この粒子を顕微鏡観察した結果、顔料が粒子内でランダムに遍在し、粒子により遍在位置はバラバラで、粒子内光学濃度均一性の評価は不可能であった。
 このため、この粒子を用いたセルのR表示面の官能評価を行った。R色を表示させた時の色の均一性は悪かった。
-Preparation of colored particles-
Dispersion A-1A: 20 g, ethylene glycol dimethacrylate: 0.6 g, polymerization initiator V601 (Dimethyl 2,2′-azobis (2-methylpropionate): trade name, manufactured by Wako Pure Chemical Industries, Ltd.): 0.2 g Were measured, mixed well, and deaerated with an ultrasonic machine for 10 minutes. This was added to the mixed solution A-1C and emulsified for 10 minutes at a rotational speed of 10000 rpm and a temperature of 30 ° C. using an internal tooth tabletop dispersing machine ROBOMICS (trade name, manufactured by Tokushu Kika Kogyo Co., Ltd.). Next, this emulsified liquid was put into a flask, and a silicone bottle was put on it. Using an injection needle, vacuum deaeration was sufficiently performed and sealed with nitrogen gas. Next, it was reacted at 65 ° C. for 15 hours to prepare particles.
After cooling, the particles were filtered, and the obtained particle powder was dispersed in ion-exchanged water, and calcium carbonate was decomposed with hydrochloric acid water, followed by filtration.
Thereafter, it was washed with sufficient distilled water, and sieved through nylon sieves having openings of 5 μm and 1 μm to make the particle sizes uniform. The obtained particles had a volume average primary particle size of 3 μm and an actual pigment concentration of 9.6% by mass. When the charge amount was examined, a value of about 0.8 nC was obtained.
As a result of microscopic observation of the particles, the pigments were ubiquitous randomly in the particles, the omnipresent positions were different depending on the particles, and it was impossible to evaluate the optical density uniformity within the particles.
For this reason, sensory evaluation of the R display surface of the cell using these particles was performed. When the R color was displayed, the color uniformity was poor.
<比較例3>
-水相の調製-
 水50gに対し、水系の重合開始剤VA057(商品名、和光純薬工業社製)0.5g、反応性界面活性剤ラテムルPD420(商品名、花王ケミカル社製)0.5gを加え撹拌して水相を調整した。
<Comparative Example 3>
-Preparation of aqueous phase-
To 50 g of water, 0.5 g of an aqueous polymerization initiator VA057 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) and 0.5 g of a reactive surfactant Latemul PD420 (trade name, manufactured by Kao Chemical Co., Ltd.) were added and stirred. The aqueous phase was adjusted.
-油相の調製-
 シリコーンオイル10CS、100gに界面活性剤KF-6028を1g加え、モノマーとしてメチルメタクリレート5g、ジエチレングリコールジメタクリレート0.5gを加え、さらに溶剤可溶性ブルー着色剤ニューダイミックN-DYM8626(商品名、大日精化社製)を5g加え撹拌して油相を調整した。
-Preparation of oil phase-
1 g of surfactant KF-6028 is added to 100 g of silicone oil 10 CS, 5 g of methyl methacrylate and 0.5 g of diethylene glycol dimethacrylate are added as monomers, and solvent soluble blue colorant New Dymic N-DYM8626 (trade name, Dainichi Seika) 5 g) was added and stirred to adjust the oil phase.
-着色粒子の調製-
 油相に水相を加え、内歯式卓上分散機ROBOMICS(商品名、特殊機化工業社製)を用い、回転数10000rpm、温度30℃の条件で10分間乳化を行った。その結果、体積平均粒径が約1μmの乳化液を得た。これをサンプル瓶に移して蓋をした状態で、水浴温度を65℃として18時間反応を行った。顕微鏡観察の結果、内側に水相を有する青いシェルのカプセル粒子が得られた。シェルの厚さはSEM観察の結果40nmであった。
 更に、このカプセル粒子の分散液に対して、遠心分離器を用いた沈降工程と超音波洗浄機を用いた再分散工程を3回繰り返し、過剰な界面活性剤KF-6028および未反応モノマーを除き、カプセル粒子20gを得た。遠心分離の条件は3000rpmで10分である。シェル内の顔料濃度について、得られたカプセル粒子を100℃で1時間加熱乾燥させ、熱分析を行い他の粒子と同様に顔料濃度を求めたところ、顔料濃度は20質量%であった。
 このカプセル粒子を分散液中から取り出し、他の粒子と同様に評価を行った。
-Preparation of colored particles-
The aqueous phase was added to the oil phase, and emulsification was performed for 10 minutes under the conditions of a rotational speed of 10,000 rpm and a temperature of 30 ° C. using an internal tooth tabletop dispersing machine ROBOMICS (trade name, manufactured by Tokushu Kika Kogyo Co., Ltd.). As a result, an emulsion having a volume average particle diameter of about 1 μm was obtained. With this transferred to a sample bottle and capped, the reaction was carried out for 18 hours at a water bath temperature of 65 ° C. As a result of microscopic observation, blue shell capsule particles having an aqueous phase inside were obtained. The thickness of the shell was 40 nm as a result of SEM observation.
Further, the sedimentation step using a centrifugal separator and the redispersion step using an ultrasonic washer are repeated three times for this dispersion of capsule particles to remove excess surfactant KF-6028 and unreacted monomers. 20 g of capsule particles were obtained. Centrifugation is performed at 3000 rpm for 10 minutes. Regarding the pigment concentration in the shell, the obtained capsule particles were heated and dried at 100 ° C. for 1 hour, and subjected to thermal analysis. The pigment concentration was determined in the same manner as other particles, and the pigment concentration was 20% by mass.
The capsule particles were taken out from the dispersion and evaluated in the same manner as the other particles.
<比較例4>
 顔料濃度を変更した以外は実施例1と同様にして、顔料濃度が27質量%のシアン粒子を作製した。次に、100℃で1時間加熱乾燥させて粒子の周囲に存在するシリコーンオイルを除き、他の粒子と同様に評価を行った。
<Comparative Example 4>
Cyan particles having a pigment concentration of 27% by mass were prepared in the same manner as in Example 1 except that the pigment concentration was changed. Next, it was heated and dried at 100 ° C. for 1 hour, and the silicone oil present around the particles was removed, and evaluation was performed in the same manner as other particles.
 実施例及び比較例で作製した粒子の構成及び評価結果を表1に示す。
 また、実施例5で製造した粒子の断面をTEMにより観察し、図5に示した。
Table 1 shows the structures and evaluation results of the particles prepared in Examples and Comparative Examples.
Moreover, the cross section of the particle | grains manufactured in Example 5 was observed by TEM, and was shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 日本特許出願2012-089766の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許、特許出願、および技術規格は、個々の文献、特許、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The entire disclosure of Japanese Patent Application No. 2012-089766 is incorporated herein by reference.
All documents, patents, patent applications, and technical standards described herein are specifically and individually described as individual documents, patents, patent applications, and technical standards are incorporated by reference. To the same extent, it is incorporated herein by reference.

Claims (8)

  1.  着色剤が、粒子の表面と該表面から中心側に向けて前記粒子の体積平均粒子径の5%以上35%以下の深さとの間の領域に偏在している表示用粒子。 Display particles in which the colorant is unevenly distributed in a region between the surface of the particle and a depth of 5% to 35% of the volume average particle diameter of the particle from the surface toward the center.
  2.  前記着色剤が、前記表示用粒子の表面と該表面から中心側に向けて前記表示用粒子の体積平均粒子径の12%以上23%以下の深さとの間の領域に偏在している請求項1に記載の表示用粒子。 The colorant is unevenly distributed in a region between a surface of the display particles and a depth of 12% or more and 23% or less of a volume average particle diameter of the display particles from the surface toward the center. 2. The display particle according to 1.
  3.  結着樹脂を含む芯部と、
     前記着色剤である顔料及び前記顔料の分散剤を含み、前記芯部を被覆する被覆部と、を有し、
     前記結着樹脂及び前記分散剤の一方が塩基性であり、他方が酸性である請求項1又は請求項2に記載の表示用粒子。
    A core containing a binder resin;
    Including a pigment that is the colorant and a dispersant for the pigment, and a covering portion that covers the core portion,
    The display particles according to claim 1, wherein one of the binder resin and the dispersant is basic and the other is acidic.
  4.  分散媒と、
     前記分散媒中に分散した請求項1~請求項3のいずれか一項に記載の表示用粒子の群と、
     を含む電気泳動表示用分散液。
    A dispersion medium;
    The group of display particles according to any one of claims 1 to 3, dispersed in the dispersion medium,
    A dispersion for electrophoretic display.
  5.  前記分散媒と、前記表示用粒子との屈折率の差が0.3未満である請求項4に記載の電気泳動表示用分散液。 The dispersion liquid for electrophoretic display according to claim 4, wherein a difference in refractive index between the dispersion medium and the display particles is less than 0.3.
  6.  少なくとも一方が透光性を有し、間隙をもって配置された一対の基板と、
     前記一対の基板間に封入された請求項4又は請求項5に記載の電気泳動表示用分散液と、
     を備えた表示媒体。
    A pair of substrates at least one of which is translucent and disposed with a gap;
    The dispersion liquid for electrophoretic display according to claim 4 or 5 enclosed between the pair of substrates,
    A display medium comprising:
  7.  少なくとも一方が透光性を有し、間隙をもって配置された一対の電極と、
     前記一対の電極間に請求項4又は請求項5に記載の電気泳動表示用分散液を有する領域と、
     を備えた表示媒体。
    A pair of electrodes, at least one of which is translucent and disposed with a gap;
    A region having the dispersion liquid for electrophoretic display according to claim 4 or 5 between the pair of electrodes,
    A display medium comprising:
  8.  請求項6又は請求項7に記載の表示媒体と、
     前記表示媒体の一対の基板間又は前記一対の電極間に電圧を印加する電界印加手段と、
     を備えた表示装置。
    A display medium according to claim 6 or 7, and
    An electric field applying means for applying a voltage between a pair of substrates of the display medium or between the pair of electrodes;
    A display device comprising:
PCT/JP2013/060543 2012-04-10 2013-04-05 Particles for display, dispersion liquid for electrophoretic display, display medium, and display device WO2013154057A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-089766 2012-04-10
JP2012089766A JP2013218184A (en) 2012-04-10 2012-04-10 Display particle, fluid dispersion for electrophoretic display, display medium, and display device

Publications (1)

Publication Number Publication Date
WO2013154057A1 true WO2013154057A1 (en) 2013-10-17

Family

ID=49327621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060543 WO2013154057A1 (en) 2012-04-10 2013-04-05 Particles for display, dispersion liquid for electrophoretic display, display medium, and display device

Country Status (2)

Country Link
JP (1) JP2013218184A (en)
WO (1) WO2013154057A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166918A (en) * 1990-10-31 1992-06-12 Hitachi Chem Co Ltd Display liquid for electrophoresis display device and electrophoresis display device using the display liquid
WO2003099941A1 (en) * 2002-05-24 2003-12-04 Canon Kabushiki Kaisha Colored material and method for producing the colored material
JP2004526210A (en) * 2001-05-15 2004-08-26 イー−インク コーポレイション Electrophoretic particles
JP2004258615A (en) * 2002-10-29 2004-09-16 Matsushita Electric Ind Co Ltd Display device and method for manufacturing particle utilized for image display
JP2008506149A (en) * 2004-07-09 2008-02-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light modulator
JP2010209325A (en) * 2009-02-12 2010-09-24 Mitsumasa Kimata White fine particle, and method for producing the same fine particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166918A (en) * 1990-10-31 1992-06-12 Hitachi Chem Co Ltd Display liquid for electrophoresis display device and electrophoresis display device using the display liquid
JP2004526210A (en) * 2001-05-15 2004-08-26 イー−インク コーポレイション Electrophoretic particles
WO2003099941A1 (en) * 2002-05-24 2003-12-04 Canon Kabushiki Kaisha Colored material and method for producing the colored material
JP2004258615A (en) * 2002-10-29 2004-09-16 Matsushita Electric Ind Co Ltd Display device and method for manufacturing particle utilized for image display
JP2008506149A (en) * 2004-07-09 2008-02-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light modulator
JP2010209325A (en) * 2009-02-12 2010-09-24 Mitsumasa Kimata White fine particle, and method for producing the same fine particle

Also Published As

Publication number Publication date
JP2013218184A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5510593B2 (en) Image display medium and image display device
KR101935294B1 (en) Dispersion liquid for electrophoretic display, display medium, and display device
US8477404B2 (en) Display medium and display device
TWI588581B (en) Electrophoretic particle, electrophoretic particle dispersion liquid, display medium, and display device
TWI537662B (en) Dispersion liquid for display, display medium, and display device
JP2008139803A (en) Display medium, display device, and display method
CN102411243B (en) Show media and display device
JP2010181477A (en) Driving gear for image display medium and image display device
KR20060124035A (en) Color microcapsule for electrophoresis display and manufacturing process thereof
KR20130098196A (en) Display particles, display particle dispersion liquid, display medium, and display device
JP2008310003A (en) Display medium and display device
JP5682660B2 (en) White particles for display, particle dispersion for display, display medium, and display device
JP5412723B2 (en) Display medium and display device
WO2013154057A1 (en) Particles for display, dispersion liquid for electrophoretic display, display medium, and display device
JP2008216321A (en) Display medium and display apparatus
JP5959321B2 (en) White particles for display, particle dispersion for display, display medium, and display device
JP5380801B2 (en) Display medium and display device
JP6371623B2 (en) Display dispersion, display medium, and display device
JP5387437B2 (en) Display particle dispersion, display medium, and display device
JP2011118225A (en) Electrophoretic display element and display device
JP2008134536A (en) Display medium and display device
JP2008122447A (en) Display medium and display device
JP2014215407A (en) Display medium, manufacturing method thereof, and display device
JP2009145652A (en) Display medium and display device
JP5392394B2 (en) Display medium and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775942

Country of ref document: EP

Kind code of ref document: A1