WO2013153912A1 - バルブ、マイクロ流体デバイス、マイクロ構造体、及びバルブシート、並びに、バルブシートの製造方法、及びマイクロ流体デバイスの製造方法 - Google Patents

バルブ、マイクロ流体デバイス、マイクロ構造体、及びバルブシート、並びに、バルブシートの製造方法、及びマイクロ流体デバイスの製造方法 Download PDF

Info

Publication number
WO2013153912A1
WO2013153912A1 PCT/JP2013/057453 JP2013057453W WO2013153912A1 WO 2013153912 A1 WO2013153912 A1 WO 2013153912A1 JP 2013057453 W JP2013057453 W JP 2013057453W WO 2013153912 A1 WO2013153912 A1 WO 2013153912A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
flow path
fluid
shape memory
memory polymer
Prior art date
Application number
PCT/JP2013/057453
Other languages
English (en)
French (fr)
Inventor
一木 隆範
宏明 竹原
博文 塩野
Original Assignee
国立大学法人東京大学
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 株式会社ニコン filed Critical 国立大学法人東京大学
Priority to EP13776263.9A priority Critical patent/EP2837866A4/en
Priority to JP2014510090A priority patent/JP6304688B2/ja
Publication of WO2013153912A1 publication Critical patent/WO2013153912A1/ja
Priority to US14/511,907 priority patent/US20150028235A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0026Valves using channel deformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0036Operating means specially adapted for microvalves operated by temperature variations
    • F16K99/0038Operating means specially adapted for microvalves operated by temperature variations using shape memory alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • F16K99/0044Electric operating means therefor using thermo-electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • F16K99/0049Electric operating means therefor using an electroactive polymer [EAP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1861Means for temperature control using radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0661Valves, specific forms thereof with moving parts shape memory polymer valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0078Fabrication methods specifically adapted for microvalves using moulding or stamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/008Multi-layer fabrications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0084Chemistry or biology, e.g. "lab-on-a-chip" technology

Definitions

  • the present invention relates to a valve, a microfluidic device, a microstructure, a valve seat, a valve seat manufacturing method, and a microfluidic device manufacturing method.
  • ⁇ -TAS is superior to conventional inspection devices in that it can be measured and analyzed with a small amount of sample, can be carried, and can be disposable at low cost. Furthermore, in the case of using an expensive reagent or in the case of testing a small amount of a large number of specimens, the method is attracting attention as a highly useful method.
  • a microvalve is an indispensable element for controlling the flow of a fluid containing a biological sample or the like in a channel in a chip.
  • microvalves that have been proposed use a movable member such as an actuator, but in recent years, microvalves that close the flow path by applying gas pressure to the ceiling of the flow path have been proposed ( (See Patent Document 1 and Non-Patent Document 1.)
  • the present invention has been made in view of the above circumstances, and can be manufactured simply and at low cost, and a valve capable of easily and freely controlling the flow of fluid, a microchannel device including the valve, It is an object of the present invention to provide a microstructure, a valve seat in which the valves are arranged, and a method for manufacturing the valve seat and the microchannel device.
  • a valve according to an embodiment of the present invention is a valve made of a shape memory polymer disposed in a flow path, and is characterized by adjusting the flow of fluid in the flow path by being deformed. To do.
  • the structure in one embodiment of the present invention is a structure made of a shape memory polymer disposed in a flow path through which a biomolecule flows, and the amount of deformation is adjusted by controlling heating conditions. It is characterized by that.
  • a fluid device is a fluid device including a valve made of a shape memory polymer disposed in a flow path, and the valve is in a state in which a fluid flows in the flow path.
  • a normally open valve that is deformed from an open state to a closed state in which the fluid flow is blocked, and from a closed state in which the fluid flow in the flow path is blocked.
  • a normally closed valve that is deformed into an open state that is in a flowing state, and the normally closed valve and the normally open valve are at least selected from the group consisting of series valves arranged in series It is a type.
  • a fluid device is a fluid device including a valve made of a shape memory polymer disposed in a flow path, and the fluid device is disposed on a first surface, and the flow device A normally open valve that is deformed from an open state in which a fluid flows through the passage to a closed state in which the fluid flow is blocked, and a second surface that faces the first surface.
  • a normally closed valve that transforms from a closed state in which the flow of fluid in the flow path is blocked to an open state in which the fluid flows, and the normally open valve; The normally closed valve is disposed opposite to each other.
  • the fluid device is a fluid device including a pump including a plurality of valves made of a shape memory polymer disposed in a flow path, wherein the plurality of valves are the flow paths.
  • a normally open valve that deforms from an open state in which the fluid flows into a closed state in which the fluid flow is blocked, and a fluid flow in the flow path is blocked.
  • a normally closed valve that transforms from a closed state to an open state in which the fluid flows, and a series valve in which the normally closed valve and the normally open valve are arranged in series It is two or more selected from the group consisting of.
  • the valve seat according to an embodiment of the present invention is a valve seat in which valves made of shape memory polymer are arranged, and the valve is configured so that the fluid flows from an open state in which a fluid flows in a flow path.
  • a normally open valve that transforms into a closed state in which the flow of the fluid is blocked, an open state in which the fluid flows from a closed state in which the flow of the fluid in the flow path is blocked
  • the normally closed valve and the normally open valve are at least one selected from the group consisting of series valves arranged in series.
  • the first recess is formed in the sheet made of the shape memory polymer by molding or machining at a temperature lower than the melting point of the shape memory polymer.
  • the first through hole is formed on a sheet made of a shape memory polymer by molding or machining at a temperature lower than the melting point of the shape memory polymer. And forming an external force on the first through-hole to make the first through-hole flat at a temperature in a temperature range not lower than the melting point of the shape memory polymer and lower than the melting point.
  • a second through hole is formed on the sheet by applying an external force to the sheet at a temperature in a temperature range between the shape recovery temperature of the shape memory polymer and less than the melting point; And a step of forming a normally open valve.
  • a flow channel device manufacturing method is a flow channel device manufacturing method including a valve sheet and a flow channel forming layer, and the shape memory polymer is formed on a sheet including a shape memory polymer.
  • a first recess is formed by molding or machining at a temperature below the melting point, and an external force is applied to the first recess at a temperature in the temperature range from the shape recovery temperature of the shape memory polymer to less than the melting point.
  • a first through hole is formed by machining, and an external force is applied to the first through hole at a temperature within a temperature range not lower than the melting point of the shape memory polymer and lower than the melting point.
  • the flow of fluid can be easily controlled.
  • FIG. 1 It is a schematic diagram of the one aspect
  • 3 is a schematic diagram illustrating a manufacturing process of a microfluidic device in Example 1.
  • 3 is a result of confirming the operation of the microfluidic device in Example 1.
  • 3 is a result of confirming the operation of the microfluidic device in Example 1.
  • It is an operation
  • FIG. It is an operation
  • FIG. It is the operation
  • FIG. 10 is a result of confirming the operation of the microfluidic device in Example 5.
  • 10 is a result of confirming the operation of the microfluidic device in Example 6.
  • the valve of the present invention is a valve made of a shape memory polymer disposed in a flow path, and adjusts the flow of fluid in the flow path by being deformed.
  • a shape memory polymer is a polymer that recovers its original shape when heated above a certain temperature, even if deformed by applying external force after molding, and is reversible and has fluidity at a certain temperature (hereinafter referred to as the shape recovery temperature). It is composed of a stationary phase composed of a phase and a physical or chemical bonding site (crosslinking point) that does not deform at a temperature at which the reversible phase deforms. As shown in FIG. 1, the shape memory polymer memorizes the shape formed by molding or machining by the stationary phase in the resin, and the memorized shape at a temperature within the temperature range between the shape recovery temperature and the melting point. It can be transformed into a free shape.
  • the deformation can be fixed by cooling to a temperature lower than the shape recovery temperature while maintaining the deformed state.
  • the shape formed by molding or machining is restored by heating the fixed deformation after cooling to a temperature below the shape recovery temperature to a temperature above the shape recovery temperature and below the melting point.
  • the valve is molded from the shape memory polymer by molding or machining.
  • the valve is formed in an open state in which a fluid flows in the flow path or a closed state in which a fluid flow is blocked. Further, the valve is deformed at a temperature within the temperature range from the shape recovery temperature of the shape memory polymer to less than the melting point, and then cooled to a temperature lower than the shape recovery temperature to fix the deformation.
  • This deformation is a deformation for closing the valve in the open state or a deformation for opening the valve in the closed state.
  • the modified valve is disposed in the flow path. When the deformed valve is in the open state, the fluid freely flows in the flow path after the valve is disposed.
  • the fluid flow in the flow path is blocked after the valve is disposed.
  • the shape at the time of valve molding is restored.
  • the valve that has been deformed so as to be in the open state is closed by being heated, and the flow of the fluid in the flow path is blocked.
  • the valve, which has been deformed so as to be in the closed state is opened when heated, so that the fluid flows freely in the flow path.
  • the flow of the fluid in the flow path can be freely controlled by disposing the valve made of the shape memory polymer in the flow path.
  • valve according to the present invention can be manufactured easily and at low cost because at least a part of the shape memory polymer forms at least a part of the flow path, and the open state and the closed state can be controlled easily and freely. it can. Further, the valve of the present invention can be deformed into an open state in which a fluid flows in the flow path or a closed state in which the fluid flow is blocked by a temperature change such as heating.
  • a temperature change such as heating
  • the valve of the present embodiment is a microvalve suitably used for a microfluidic device (fluid device).
  • a microfluidic device fluid device
  • examples of the microvalve include a normally open valve, a normally closed valve, and a series valve in which these are arranged in series.
  • the microfluidic device in this embodiment may be a micrometer scale or a millimeter scale. Details of each microvalve will be described below.
  • FIG. 2 is a schematic cross-sectional view showing a first embodiment of the valve of the present invention.
  • the valve of the present embodiment is a normally open valve that is deformed from an open state in which a fluid flows in the flow path 2 to a closed state in which the fluid flow is blocked by heating when heated. 4.
  • the flow path 2 is formed by laminating a flow path forming layer 1 and a sheet 3.
  • the flow path forming layer 1 is laminated on the sheet 3 to form the flow path 2, but the sheet is laminated on the flow path forming layer regardless of their vertical relationship.
  • a flow path may be formed by this lamination.
  • the flow path forming layer 1 has a weir 1a, and the flow of fluid in the flow path 2 is blocked by the weir 1a.
  • the normally open valve 4 functions as a flow path (bypass path) as a bypass for diverting the fluid blocked by the weir 1a in a steady state.
  • the sheet 3 made of a shape memory polymer stores a flat shape when formed. In FIG.
  • the normally open valve 4 is formed into a concave shape by applying an external force at a temperature in the temperature range from the shape recovery temperature of the shape memory polymer to less than the melting point.
  • the normally open valve 4 has a shape for bypassing the closed state in which the fluid flow is blocked before heating, and is in an open state in which the fluid flows through the flow path 2.
  • the normally open valve 4 is in an open state in which it has a concave shape for bypassing the closed state. That is, the normally open valve 4 is in an open state of a concave shape in a steady state.
  • seat 3 will deform
  • the normally open valve 4 may be in an open state having a through shape for bypassing the closed state.
  • the normally open valve 4 is formed into a penetrating shape by applying an external force at a temperature in the temperature range from the shape recovery temperature of the shape memory polymer to less than the melting point. That is, the normally open valve 4 is in the open state of the penetrating shape in the steady state. After the heating, the normally open valve 4 is deformed to a closed state in which the fluid flow is blocked by restoring the seat 3 to a flat shape.
  • the shape memory polymer constituting the normally open valve 4 is not particularly limited, and examples thereof include a polymer material such as an elastomer having shape memory properties.
  • a polymer material such as an elastomer having shape memory properties.
  • Specific examples of the elastomer having shape memory include polyurethane, polyisoprene, polyethylene, polynorbornene, styrene-butadiene copolymer; epoxy resin, phenol resin, acrylic resin, polyester, melanin resin; polycaprolactone, polyvinyl chloride, Polymers such as polystyrene, polybutylene succinate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, etc., which are crosslinked by a thermal chemical crosslinking method using a peroxide such as an organic peroxide or benzoyl peroxide, for example. Can be mentioned.
  • FIG. 4 is a schematic sectional view showing a second embodiment of the valve of the present invention.
  • the valve of this embodiment is a normally closed valve that is deformed from a closed state in which the flow of fluid in the flow path 12 is blocked by heating to an open state in which the fluid flows. 5.
  • the flow path 12 is formed by laminating the flow path forming layer 1 and the sheet 13.
  • the vertical relationship between the sheet and the flow path forming layer is not limited.
  • the flow path forming layer 1 has a weir 1a, and the fluid flow in the flow path 12 is blocked by the weir 1a.
  • the normally closed valve 5 has a flat shape in a steady state and is in a state where the flow of fluid is blocked.
  • the sheet 13 made of a shape memory polymer stores a concave shape when formed. In FIG.
  • the normally closed valve 5 is formed into a flat shape by applying an external force at a temperature in the temperature range from the shape recovery temperature of the shape memory polymer to less than the melting point.
  • the normally closed valve 5 has a shape for bypassing the closed state in which the fluid flow is blocked after heating, and is in an open state in which the fluid flows through the flow path 12.
  • the normally closed valve 5 is in an open state having a concave shape for bypassing the closed state. Accordingly, after heating, the normally closed valve 5 is deformed into an open state in which a fluid flows through the flow path by restoring the seat 13 to a concave shape.
  • the normally closed valve 5 may be in an open state that has a through shape for bypassing the closed state.
  • the normally closed valve 5 is formed into a flat shape by applying an external force at a temperature in the temperature range from the shape recovery temperature of the shape memory polymer to less than the melting point. That is, the normally closed valve 5 is in a closed state having a flat shape in a steady state. Then, after heating, the normally closed valve 5 is deformed into an open state in which a fluid flows, by restoring the seat 3 to a penetrating shape.
  • Examples of the shape memory polymer constituting the normally closed valve 5 include the same shape memory polymers as those constituting the normally open valve 4.
  • FIG. 6 is a schematic cross-sectional view showing a third embodiment of the valve of the present invention.
  • the valve of the present embodiment is a series valve 6 in which a normally closed valve 24 and a normally open valve 25 are arranged in this order from the upstream side of the flow path 22.
  • the valve of the present embodiment is a series valve in which a normally closed valve 24 and a normally open valve 25 are arranged in series along the flow path 22.
  • the valve of the present embodiment may be a series valve in which the normally open valve 25 and the normally closed valve 24 are arranged in this order from the upstream side of the flow path 22.
  • the flow path 22 is formed by laminating a flow path forming layer 21 and a sheet 23.
  • the vertical relationship between the sheet and the flow path forming layer is not limited.
  • the flow path forming layer 21 has a weir 21b and a weir 21c in this order from the upstream side.
  • a normally closed valve 24 and a normally open valve 25 are respectively a weir 21b and a weir 21b.
  • the fluid flow is blocked by a weir 21b located on the upstream side of the flow path 22.
  • the normally closed valve 24 has a flat shape in the steady state, and the fluid flow remains blocked. Therefore, the series valve 6 is closed as a whole.
  • the normally closed valve 24 is opened so that the fluid flows by heating the side of the seat 23 where the normally closed valve 24 is not in contact with the flow path forming layer 21. Transforms into The fluid that bypasses the weir 21b can further bypass the weir 21c located on the downstream side when the normally open valve 25 is in the open state. Therefore, the series valve 6 is open as a whole.
  • the normally open valve 25 is in a state where the fluid flow is blocked by heating the side of the seat 23 where the normally open valve 25 is not in contact with the flow path forming layer 21. It transforms into a closed state. As a result, the flow of the fluid bypassing the weir 21b is blocked by the weir 21c when the normally open valve 25 is changed to the closed state. Therefore, the series valve 6 is closed as a whole. Due to the nature of the shape memory polymer, it is generally considered that a valve made of a shape memory polymer has an additive reversal in the open / close state. However, according to the valve of this embodiment, the valve is open from the closed state to the open state. Further, the fluid flow can be flexibly controlled by changing from the open state to the closed state.
  • valves of the present embodiment it is possible to manufacture simply and at a low cost simply by storing the shape in a sheet made of a shape memory polymer, and the flow of fluid can be simplified simply by performing a heating operation (temperature operation). And it can be freely controlled.
  • the microstructure of the present embodiment is made of a shape memory polymer disposed in the flow path.
  • the shape of the shape memory polymer is not particularly limited, and may be the above-described normally open valve, normally closed valve, in-line valve, or the like.
  • the microstructure of the present embodiment can be molded by the same molding method as the above-described normally open valve, normally closed valve, series valve and the like.
  • the microstructure according to the present embodiment is obtained by appropriately heating these valves, for example, by partially opening a normally open valve or by partially opening a normally closed valve. Preferably it consists of. In this way, as shown in FIG.
  • a molecule of a desired size in a fluid can be selected as shown in FIG. 7B without providing a gel filtration column device or the like in the microfluidic device.
  • red blood cells and circulating tumor cells (CTC; circulating blood cancer cells) in blood can be selected by size.
  • CTC circulating tumor cells
  • the flow of fluid can be selectively controlled freely by controlling the deformation amount of the microstructure according to the process.
  • the microstructure in this embodiment can function as a filter in the flow path by selectively controlling the deformation amount of the structure.
  • the flow path in the fluidic device of the present embodiment is formed by laminating the flow path forming layer and the sheet.
  • the valve seat and the flow path forming layer will be described.
  • the valve seat according to the present embodiment is a valve seat in which valves made of shape memory polymers are arranged, and the valve is heated to open the fluid from flowing into the flow path.
  • a normally open valve that deforms into a closed state in which the flow of the fluid is blocked, and the fluid flows from a closed state in which the flow of fluid in the flow path is blocked by heating.
  • a normally closed valve that is deformed into an open state, and the normally closed valve and the normally open valve are at least one selected from the group consisting of series valves arranged in series. is there.
  • FIG. 8 is a front view showing the basic configuration of the valve seat 50 of the present embodiment, and FIG.
  • valve seat 50 of this embodiment includes a normally open valve 51, a normally closed valve 52, and a series valve 53 provided in the microfluidic device 57 shown in FIG.
  • the fluid flows in the passages 54, 55, and 56 are arranged at positions that can be adjusted.
  • FIG. 8 shows a valve seat in which these valves are arranged one by one, the number and type of valves to be arranged are not particularly limited, and they are appropriately combined depending on the corresponding microchannel device.
  • the material of the valve seat 50 of the present embodiment is not particularly limited as long as the valve constituting the seat is made of a shape memory polymer, but from the viewpoint of easy manufacture and the viewpoint of stably ensuring the opening and closing function of the valve. Parts other than the valve are also preferably shape memory polymers.
  • the shape memory polymer as the material of the valve seat 50 includes the above-mentioned polyurethane, polyisoprene, polyethylene, polynorbornene, styrene-butadiene copolymer; epoxy resin, phenol resin, acrylic resin, polyester, melanin resin; polycaprolactone, poly Polymers such as vinyl chloride, polystyrene, polybutylene succinate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide; are crosslinked by thermal chemical crosslinking techniques using peroxides such as organic peroxides and benzoyl peroxide, for example. And an elastomer having shape memory properties.
  • the valve seat manufacturing method of the present embodiment includes forming a first recess in a sheet made of a shape memory polymer by molding or machining at a temperature lower than the melting point of the shape memory polymer. Forming a normally closed valve on the seat by applying an external force to the first recess and flattening the first recess under a temperature within a temperature range of the shape recovery temperature or higher and lower than the melting point; And / or applying an external force to the seat at a temperature in the range from the shape recovery temperature of the shape memory polymer to less than the melting point to provide a second recess to form a normally open valve on the seat.
  • the method for manufacturing a valve seat according to the present embodiment includes a step of forming a normally closed valve and / or a step of forming a normally open valve on the seat. These steps are appropriately combined depending on the number and type of valves arranged in the valve seat. Hereinafter, each step will be described.
  • the first recess is formed on the sheet 60 made of the shape memory polymer by molding or machining at a temperature lower than the melting point of the shape memory polymer. 61 is provided.
  • the molding process include injection molding and hot embossing.
  • Examples of the machining include cutting by an end mill 62.
  • the sheet 60 stores the concave shape of the first concave portion 61.
  • an external force is applied to the first recess 61 using a flat plate mold 66 at a temperature within the temperature range of the shape memory polymer to a shape recovery temperature or higher and lower than the melting point, thereby flattening the first recess 61.
  • a normally closed valve 63 is molded. By bonding (or bonding) the sheet 60 and the flow path forming layer 64, the flow path 65 is formed.
  • a convex shape is formed on a sheet 70 made of a shape memory polymer at a temperature in the temperature range from the shape recovery temperature of the shape memory polymer to less than the melting point.
  • An external force is applied to the seat 70 using the mold 76 having the second recess 71, and the normally open valve 73 is formed on the seat 70.
  • the sheet 70 stores a flat shape when the sheet is formed.
  • the flow path 75 is formed by bonding (or bonding) the sheet 70 and the flow path forming layer 74.
  • a first through hole is formed in a sheet made of a shape memory polymer by molding or machining at a temperature lower than the melting point of the shape memory polymer. Forming a normally closed valve on the seat by applying an external force to the first through-hole to flatten the first through-hole at a temperature within a temperature range not lower than the melting point of the polymer and lower than the melting point.
  • the valve seat manufacturing method of this embodiment includes a step of forming a normally closed valve and / or a step of forming a normally open valve on the seat, as in the first embodiment. These steps are appropriately combined depending on the number and type of valves arranged in the valve seat. Hereinafter, each step will be described.
  • the normally closed valve is formed by first forming a first memory through a sheet 80 made of a shape memory polymer by molding or machining at a temperature lower than the melting point of the shape memory polymer. Hole 81 is formed. It does not specifically limit about machining, For example, the cutting by the end mill 82 is mentioned.
  • the sheet 80 stores the penetrating shape of the first through hole 81.
  • the first through hole 81 is flattened by applying an external force to the first through hole 81 using the flat plate mold 86 at a temperature within the temperature range of the shape memory polymer shape recovery temperature or higher and lower than the melting point.
  • a normally closed valve 83 is formed on the seat 80.
  • the flow path 85 is formed by bonding (or bonding) the sheet 80 and the flow path forming layer 84.
  • a rod-shaped shape is formed on a sheet 90 made of a shape memory polymer at a temperature in the temperature range from the shape recovery temperature of the shape memory polymer to less than the melting point.
  • An external force is applied to the seat 90 using the mold 96 having the second through hole 91, and the normally open valve 93 is formed on the seat 90.
  • the sheet 90 stores a flat shape at the time of sheet formation.
  • the flow path 95 is formed by bonding (or bonding) the sheet 90 and the flow path forming layer 94.
  • This flow path forming layer constitutes the microfluidic device of this embodiment together with the valve seat of this embodiment. Although it does not specifically limit as this flow path formation layer, From a viewpoint which can manufacture a microfluidic device simply, it is preferable that it is a resin sheet with a flow path.
  • the material of the resin sheet with a flow path includes polyisoprene, polybutadiene, polychloroprene, polyisobutylene, poly (styrene-butadiene-styrene), polyurethane, silicone polymer; poly (bis (fluoroalkoxy) phosphazene) (PNF, Eypel-F) ), Poly (carborane-siloxane) (dexyl), poly (acrylonitrile-butadiene) (nitrile rubber), poly (1-butene), poly (chlorotrifluoroethylene-vinylidene fluoride) copolymer (Kel-F) , Poly (ethyl vinyl ether), poly (vinylidene fluoride), poly (vinylidene fluoride-hexafluoropropylene) copolymer (Viton), polyvinyl chloride (PVC) elastomer composition Polysulfone, polycarbonate, polymethyl
  • the dimensions of the flow path formed in the resin sheet made of these materials are not particularly limited as long as the flow of the fluid can be controlled by the valve of the present embodiment.
  • the ratio of width to depth is preferably 0.1: 1 to 100: 1, more preferably 1: 1 to 50: 1, and particularly preferably 2: 1 to 20: 1. Most preferably, it is 3: 1 to 15: 1.
  • Examples of the width of the channel include 0.01 to 1000 ⁇ m, 0.05 to 1000 ⁇ m, 0.2 to 500 ⁇ m, 1 to 250 ⁇ m, and 10 to 200 ⁇ m.
  • the width of the flow path is 0.01 to 100 mm, 0.05 to 100 mm, 0.2 to 50 mm, 1 to 25 mm, and 1.5 to 15 mm.
  • the depth of the flow path include 0.01 to 1000 ⁇ m, 0.05 to 500 ⁇ m, 0.2 to 250 ⁇ m, 1 to 100 ⁇ m, and 2 to 20 ⁇ m.
  • the depth of the channel may be 0.01 to 100 mm, 0.05 to 100 mm, 0.2 to 50 mm, 1 to 25 mm, 1.5 to 15 mm.
  • the microfluidic device of the present embodiment is a microfluidic device including a valve made of a shape memory polymer disposed in a flow path, and the valve is heated so that a fluid flows in the flow path
  • a normally open valve that transforms from the open state to the closed state in which the fluid flow is blocked, and the closed state in which the fluid flow in the flow path is blocked by heating.
  • the normally closed valve and the normally closed valve and the normally open valve are arranged in series in this order from the upstream of the flow path from the state to the open state in which the fluid flows. And at least one selected from the group consisting of serial valves.
  • the microfluidic device of this embodiment is formed by bonding (or bonding) the above-described valve seat and the flow path forming layer.
  • the microfluidic device of this embodiment includes means for controlling the open state and the closed state by changing the temperature of at least a part of the shape memory polymer by heating or the like.
  • the microchannel device of the present embodiment will be described.
  • FIG. 14 is a schematic diagram showing the basic configuration of the microfluidic device 30 of the present embodiment.
  • the microfluidic device 30 of this embodiment includes a drive source 31, a branch channel 32, a normally open valve 33, a normally closed valve 34, and a series valve 35.
  • the branch flow path 32 includes an upstream flow path 36 that is a flow path upstream of the branch point 37 and downstream flow paths 38, 39, and 40 that are flow paths downstream of the branch point 37.
  • the drive source 31 is connected to the upstream flow path 36 and sends fluid to the downstream side with a predetermined pushing force.
  • Examples of the drive source 31 include a syringe pump.
  • the normally open valve 33, the normally closed valve 34, and the series valve 35 are provided in the downstream flow paths 38, 39, and 40, respectively, and selectively (locally) the flow of fluid in each flow path. ) It is arranged in an adjustable position.
  • the microfluidic device 30 according to the present embodiment is used in a purified sample recovery unit when a biomolecule such as a nucleic acid is purified from a specimen such as blood.
  • the sample lysate which has been pushed away by the drive source 31 into the drive solution such as a buffer solution, passes through a branch point 37 through a purification device such as a column (not shown) existing in the upstream flow path 36.
  • the sample solution that first passes through the branch point 37 is an unnecessary substance and is discharged through the downstream flow path 38 provided with the normally open valve 33 in the open state.
  • the normally open valve 33 is closed by the heating means 33 a provided in the normally open valve 33.
  • the series valve 35 is opened by the heating means 35 a provided in the series valve 35.
  • the second sample solution that passes through the branch point 37 passes through the downstream flow path 40 and is collected as the first fraction material.
  • the series valve 35 is closed by the heating means 35a, and the normally closed valve 34 is opened by the heating means 34a provided to the normally closed valve 34.
  • the third sample solution that passes through the branch point 37 passes through the downstream flow path 39 and is collected as the second fraction material.
  • the sample solution can be efficiently fractionated in the purified sample recovery unit.
  • the heating means 33a, 34a, and 35a provided in the normally open valve 33, the normally closed valve 34, and the series valve 35 may be heated by a heater or by laser light irradiation. May be. Further, the heating means 33a, 34a, and 35a may be heating by electrodes.
  • a light-to-heat conversion layer 140 is provided on the surface opposite to the surface in contact with the flow path forming layer of the valve seat. It is preferable that The photothermal conversion layer 140 contains a light absorber. Radiant energy irradiated to the photothermal conversion layer 140 with laser light is absorbed by the light absorber and converted into thermal energy.
  • the microfluidic device of the present embodiment includes a heating unit using a light absorbent.
  • the heating means in the present embodiment may perform heating by selective (local) laser light irradiation using a mask, for example, on the valve seat provided with the photothermal conversion layer 140.
  • the light absorber is preferably one that absorbs radiant energy of a wavelength to be used.
  • the wavelength of the radiant energy is preferably 300 to 2000 nm, and more preferably 300 to 1500 nm.
  • the light absorber include fine particle metal powders such as carbon black, graphite powder, iron, aluminum, copper, nickel, cobalt, manganese, chromium, zinc, and tellurium; metal oxide powders such as black titanium oxide; aromatic diamino And dyes or pigments such as metal complex, aliphatic diamine metal complex, aromatic dithiol metal complex, mercaptophenol metal complex, squarylium compound, cyanine dye, methine dye, naphthoquinone dye, anthraquinone dye It is done.
  • the photothermal conversion layer 140 may be composed of these dyes or pigments and a resin.
  • the resin used for the photothermal conversion layer 140 is not particularly limited and may be the same as the shape memory polymer used for the valve seat.
  • the photothermal conversion layer 140 may be a film-like form containing these light absorbers including a metal vapor deposition film.
  • the valve seat and the photothermal conversion layer 140 are shown as independent, but the valve seat itself may be made of the shape memory polymer and the light absorber described above.
  • the concentration of the light absorbent in the photothermal conversion layer 140 varies depending on the kind of the light absorbent, the particle form, the degree of dispersion, etc., but is preferably 5 to 70% by volume. When the concentration is 5% by volume or more, the bulb is efficiently deformed by the heat generation of the photothermal conversion layer 140. When the concentration is 70 volume or less, the film-forming property of the photothermal conversion layer is good and the adhesion efficiency with the valve seat is good.
  • the thickness of the photothermal conversion layer is preferably 0.1 ⁇ m to 5 ⁇ m.
  • the thickness of the light-to-heat conversion layer is 0.1 ⁇ m, the concentration of the light-absorbing agent required for sufficient light absorption does not become too high. Good adhesion efficiency.
  • the thickness of the light-to-heat conversion layer is 5 ⁇ m or less, the light transmittance in the light-to-heat conversion layer is good, so the heat generation efficiency is good.
  • the change amount of the shape memory polymer can be controlled more by controlling the heating conditions.
  • the electrode has a configuration in which the electric resistance value decreases from the upstream side to the downstream side of the flow path.
  • FIG. 16 is a schematic diagram showing a basic configuration of the microfluidic device 141 of the present embodiment.
  • the microfluidic device 141 according to the present embodiment is used in a purification apparatus introduction section when purifying a biomolecule such as a nucleic acid from a specimen such as blood.
  • the valve seat 141 of the present embodiment has four liquid reservoirs 147, 148, 149, 150 downstream of the drive source 146, and the liquid reservoirs 147, 148, 149, In 150, an eluate, a solution, a washing solution, and a liquid specimen are respectively stored.
  • the driving liquid is stored in the liquid reservoir 151 located upstream of the driving source 146.
  • a normally closed valve 153, a normally open valve 154, and a series valve 155 are provided in the flow paths upstream of the liquid reservoirs 147, 148, and 149, respectively.
  • the drive liquid pushed out from the drive source 146 selectively pushes out the liquid stored in the liquid reservoir located downstream of each valve by opening and closing these valves, so that each liquid becomes liquid reservoir 147, 148, 149 and 150 are selectively extruded into a purifier 152 located downstream.
  • the liquid source stored in the liquid reservoir 150 and the solution stored in the liquid reservoir 148 provided with the normally open valve 154 in the open state are pushed out by the drive source 146.
  • the biomolecules in the specimen are dissolved through the purification device 152 constituted by a column or the like and captured by the purification device 152.
  • the normally open valve 154 is closed by the heating means 154 a provided in the normally open valve 154, and the inflow of the solution to the purifier 152 is stopped.
  • the series valve 155 is opened by the heating means 155 a provided in the series valve 155, the cleaning liquid stored in the liquid reservoir 155 flows into the purification device 152, and unnecessary substances are discharged from the purification device 152. .
  • the series valve 155 is closed by the heating means 155a, and the flow of the cleaning liquid into the purifier 152 is stopped.
  • the normally closed valve 153 is opened by the heating means 153 a provided in the normally closed valve 153, and the eluate stored in the liquid reservoir 147 flows into the purifier 152, and the purified sample is It is eluted from the purification device 152.
  • biomolecules can be purified efficiently.
  • FIG. 17 is a schematic diagram showing a basic configuration of the microfluidic device 241 of the present embodiment.
  • the microfluidic device 241 of this embodiment includes a normally open valve 242 disposed on the first surface and a normally closed valve disposed on the second surface facing the first surface. 243.
  • a normally open valve 242 and a normally closed valve 243 are disposed to face each other.
  • the fluid bypasses the normally closed valve 243 functioning as a weir via the normally open valve 242 formed in the lower part of the flow path 240.
  • the normally open valve 242 is closed by the heating means 242 a provided at the lower part of the normally open valve 242, and the fluid flow is blocked by the normally close valve 243.
  • the normally closed valve 243 is opened by the heating means 243a provided at the upper part of the normally closed valve 243, and the fluid that has been blocked flows out again.
  • the flow of fluid can be flexibly controlled because the microfluidic device 241 has a valve that deforms from the open state to the closed state and from the closed state to the open state as a whole.
  • the microfluidic device of the present embodiment includes a pump composed of a plurality of valves made of a shape memory polymer disposed in a flow path.
  • the drive source 3 in FIG. 14 and the drive source 146 in FIG. 16 are two selected from the group consisting of the normally open valve, the normally closed valve, and the series valve of the present embodiment described above. Consists of the above.
  • the types of the plurality of valves constituting the pump may be the same or different. For example, when the fluid always flows from the liquid reservoir 151 in FIG. 16, the plurality of valves function as drive sources (pumps) by controlling the open / close state of the valves.
  • the microfluidic device of this embodiment includes a heating unit that controls the deformation amount of the shape memory polymer by controlling heating conditions, and controls the flow rate of the fluid in the flow path.
  • heating conditions include time and heat.
  • the method for producing a microfluidic device according to the present embodiment is a method for producing a microfluidic device including a valve sheet and a flow path forming layer, and the sheet made of a shape memory polymer is subjected to a temperature below the melting point of the shape memory polymer
  • the first recess is formed by molding or machining, and an external force is applied to the first recess at a temperature in the temperature range of the shape memory polymer from the shape recovery temperature to the melting point and below the melting point.
  • the step of flattening the recesses and forming the first normally closed valve on the sheet, applying an external force to the sheet at a temperature in the range of the shape memory polymer shape recovery temperature to the melting point and below the melting point A step of forming a first normally open valve on the sheet, at a temperature lower than the melting point of the shape memory polymer, A first through hole is formed by processing, and an external force is applied to the first through hole at a temperature within a temperature range not lower than the melting point of the shape memory polymer and lower than the melting point, thereby forming the first through hole.
  • a first step for producing a valve seat by a method for producing a valve seat comprising two through holes, and having at least one step selected from the group consisting of a step of forming a second normally open valve on the seat; , And a second step of laminating the valve seat manufactured in the first step and the flow path forming layer.
  • the first step is a valve seat manufacturing step.
  • This first step includes the step of forming the above-described concave-shaped normally closed valve (first normally closed valve), the through-shaped normally closed valve (second normally closed valve) It consists of a molding process, a molding process for a concave-shaped normally open valve (first normally open valve), and a molding process for a through-shaped normally open valve (second normally open valve). It is a process of manufacturing a valve seat by appropriately combining from a group.
  • the first step also includes a series valve forming step that can be formed by using a normally closed valve forming step and a normally open valve forming step.
  • the second step is a step of laminating the valve seat manufactured in the first step and the flow path forming layer.
  • the flow path forming layer is formed by a known manufacturing method using the above-described materials.
  • the microchannel device of this embodiment is manufactured by the manufacturing method including the first step and the second step.
  • the microchannel device can be manufactured easily and at low cost.
  • Example 1 ⁇ Production of device member> [Preparation of PCL (polycaprolactone) sheet] PCL, xylene, and benzoyl peroxide were mixed at a weight ratio of 40: 60: 1 to prepare a mixed solution. This mixed solution was sandwiched between two glass plates and heated in an oven at 80 ° C. for 3 hours for crosslinking. A convex mold shape was formed on a part of the surface of the two glass plates in contact with the polymer of one glass plate, and the concave shape was stored in a part of the sheet during polymer crosslinking. After the cross-linking, it was taken out from the glass plate, and after removing xylene in acetone, it was dried to obtain a PCL sheet partially having a concave shape.
  • PCL polycaprolactone
  • the glass substrate with heater wiring was obtained by patterning the metal thin film by photolithography and wet etching.
  • a device was produced using the produced device member (see FIG. 18A).
  • [Shape memory of PCL sheet by hot embossing] By laminating a PCL sheet having a concave shape in part on a glass plate with a heater wiring so that the surface opposite to the surface having the concave shape is in contact with the surface of the glass plate, and heating to 80 ° C. The PCL sheet was bonded to a glass plate with wiring for heater. Next, a mold for hot embossing is placed on the PCL sheet, and a force of 10 kN is applied from above the mold at a temperature of 80 ° C., and a valve (normally open valve, normally closed valve). Was formed on a PCL sheet (see FIG.
  • This hot embossing mold has a convex mold shape at a position different from the concave shape formed on the corresponding PCL sheet, and other portions are flat. Therefore, the concave shape formed on the PCL sheet before embossing becomes flat, and a normally closed valve is formed on the PCL sheet. Further, a concave shape is formed at a location corresponding to the convex mold shape of the hot embossing mold, and a normally open valve is formed on the PCL sheet.
  • Oxygen plasma (100 W, 25 Pa) was irradiated for 10 seconds on the glass plate with heater wiring to which the PCL sheet was bonded and the PDMS sheet with flow passage, and the adhesion surfaces of the PCL sheet and the PDMS sheet with flow passage were surface-treated.
  • the PDMS sheet with a flow path is formed on the surface on which the flow path of the PDMS sheet with the flow path is formed and the glass plate with the heater wiring.
  • the device was assembled by laminating so that the surface of the bonded PCL sheet was in contact, and bonding the PDMS sheet with a flow path to the PCL sheet of the glass plate for heater wiring to which the PCL sheet was bonded (FIG. 18 ( c)).
  • FIG. 19A shows a cross-sectional view of the flow path and normally open valve before heating
  • the middle and lower stages of FIG. 19A show a front view of the flow path before heating and the normally open valve.
  • the upper part of FIG. 19B shows a sectional view of the flow path after heating and the normally open valve
  • the middle part of FIG. 19B is a front view of the flow path after heating by the hot plate and the normally open valve.
  • the lower part of FIG. 19 (b) shows a front view of the flow path after heating by the heater and the normally open valve.
  • the normally open valve was closed by heating, and it was confirmed that the flow of the solution containing the blue pigment was blocked.
  • FIG. 20 (a) shows a schematic cross-sectional view of the flow path and normally closed valve before heating
  • the lower part of FIG. 20 (a) shows the front view of the flow path and normally closed valve before heating.
  • the upper part of FIG. 20B shows a cross-sectional view of the flow path after heating and the normally open valve
  • the lower part of FIG. 20B shows a front view of the flow path after heating by the heater and the normally open valve. Show.
  • the normally closed valve was opened by heating, and the flow of the solution containing the blue pigment was confirmed.
  • Example 2 Instead of the glass substrate with wiring for the heater, a glass substrate in which a chromium thin film layer was laminated was used, and a PCL sheet in which a normally open valve was provided on this chromium thin film layer and a PDMS sheet with a flow path were laminated in this order.
  • a device was assembled in the same manner as in Example 1 except for the above.
  • a laser is used to irradiate the region where the normally open valve of the device is provided with a 1064 nm laser beam for 10 seconds from above the PDMS sheet.
  • the open valve was heated.
  • the normally open valve was closed by heating. It was confirmed that
  • Example 3 As shown in the upper part of FIG. 22A, a device was assembled in the same manner as in Example 1 except that a normally open valve having a penetrating shape was provided on the PCL sheet. Next, the device was heated with a heater to deform the PCL. As shown in the lower part of FIG. 22 (a) and the lower part of FIG. 22 (b), when the deformation of the normally open valve by heating was observed using an optical microscope, the normally open valve was closed by heating. It was confirmed that
  • Example 4 As shown in the upper part of FIG. 23 (a), the device was assembled in the same manner as in Example 1 except that a normally closed valve having a penetrating shape was provided on the PCL sheet. Next, the device was heated with a heater to deform the PCL. As shown in the lower part of FIG. 23A and the lower part of FIG. 23B, when the deformation of the normally closed valve by heating was observed using an optical microscope, the normally closed valve was opened by heating. It was confirmed that
  • Example 5 A device was produced in the same manner as in Example 1 except that the width of the flow channel was scaled up to 2 mm and the whole was scaled up at an equal ratio. Using a syringe pump, a solution containing a blue pigment was fed to the channel of the device, and the open / closed state of the valve was observed using an optical microscope.
  • FIG. 24A shows a front view of the flow path before heating and the normally open valve
  • FIG. 24B shows a front view of the flow path after heating and the normally open valve.
  • Example 6 A device was produced in the same manner as in Example 5. Using a syringe pump, a solution containing a fluorescent dye (0.05% by mass sulfodamine B) is sent to the microchannel of the device, and using a microheater, 0, 11, 22, 44, A calorie of 66,110 joules was added.
  • FIG. 25A shows an open state and a closed state of a normally open valve.
  • the fluorescence intensity in the region indicated by the broken-line circle was measured, and the fluorescence intensity ratio when each amount of heat was applied was calculated with the fluorescence intensity in the state where no amount of heat was applied (0 joule) being taken as 1. .
  • the results are shown in FIG. As shown in FIG.
  • valve can be easily manufactured and the flow of the fluid can be easily controlled without depriving the design freedom.
  • a valve that can be manufactured easily and at low cost and that can easily and freely control the flow of fluid, a micro-channel device including the valve, a valve seat on which the valve is arranged, and the valve seat and A method of manufacturing a microchannel device can be provided.
  • branch channel 33a, 34a, 35a, 153a, 154a, 155a, 242a, 243a: heating means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

 流路に配設された形状記憶ポリマーからなるバルブであって、変形することにより、前記流路中の流体の流れを調節することを特徴とするバルブ。

Description

バルブ、マイクロ流体デバイス、マイクロ構造体、及びバルブシート、並びに、バルブシートの製造方法、及びマイクロ流体デバイスの製造方法
本発明は、バルブ、マイクロ流体デバイス、マイクロ構造体、及びバルブシート、並びに、バルブシートの製造方法、及びマイクロ流体デバイスの製造方法に関する。
 近年、体外診断分野における試験の高速化、高効率化、および集積化、又は、検査機器の超小型化を目指したμ-TAS(Micro-Total Analysis Systems)の開発などが注目を浴びており、世界的に活発な研究が進められている。
μ-TASは、少量の試料で測定、分析が可能なこと、持ち運びが可能となること、低コストで使い捨てが可能なこと等、従来の検査機器に比べて優れている。
更に、高価な試薬を使用する場合や少量多検体を検査する場合において、有用性が高い方法として注目されている。
μ-TASにおいて、マイクロバルブは、チップ中の流路における生体試料等を含む流体の流れを制御するために不可欠な要素である。
 従来提案されているマイクロバルブは、アクチュエーター等の可動部材を用いるものが一般的であったが、近年では、流路の天井にガス圧をかけて流路を塞ぐマイクロバルブが提案されている(特許文献1、非特許文献1参照。)
特表2003-516129号公報
Marc A. Unger, et.al., Science, (2000) vol.288, pp.113-116.
しかしながら、特許文献1及び非特許文献1に記載のマイクロバルブでは、流体の流れる流路の上部に、ガス流路のネットワークを形成する必要があり、簡便にかつ低コストでマイクロバルブを製造するという点においては改良の余地がある。
また、このようなマイクロバルブを用いることにより、マイクロ流路デバイスの設計の自由度が奪われている。
更に、流路を塞ぐために逐一ガスをガス流路に送り込む必要があり、簡便に流体の流れを制御するという点においては改良の余地がある。
本発明は、上記事情に鑑みてなされたものであって、簡便にかつ低コストで製造でき、流体の流れを簡便かつ自在に制御することができるバルブ、該バルブを備えたマイクロ流路デバイス、マイクロ構造体、及び該バルブが配列されたバルブシート、並びに、該バルブシート及びマイクロ流路デバイスの製造方法を提供することを目的とする。
本発明者らは上記の課題を解決するため、鋭意研究を行った結果、形状記憶ポリマーを用いることにより課題を解決できることを見出した。本発明の一実施態様は、下記(1)~(9)を提供するものである。
(1)本発明の一実施態様におけるバルブは、流路に配設された形状記憶ポリマーからなるバルブであって、変形することにより、前記流路中の流体の流れを調節することを特徴とする。
(2)本発明の一実施態様における構造体は、生体分子が流される流路に配設された形状記憶ポリマーからなる構造体であって、加熱条件を制御することにより変形量が調節されることを特徴とする。
(3)本発明の一実施態様における流体デバイスは、流路に配設された形状記憶ポリマーからなるバルブを備えた流体デバイスであって、前記バルブは、前記流路中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブ、前記流路中の流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブ、並びに、前記ノーマリークローズ・バルブ及び前記ノーマリーオープン・バルブが、直列的に配設されてなる直列バルブからなる群から選ばれる少なくとも一種であることを特徴とする。
(4)本発明の一実施態様における流体デバイスは、流路に配設された形状記憶ポリマーからなるバルブを備えた流体デバイスであって、前記流体デバイスは、第一面に配置され、前記流路中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブと、前記第一面と対向した第二面に配置され、前記流路中の流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブと、を備え、前記ノーマリーオープン・バルブと前記ノーマリークローズ・バルブとが互いに対向して配置されたことを特徴とする。
(5)本発明の一実施態様における流体デバイスは、流路に配設された形状記憶ポリマーからなる複数のバルブからなるポンプを備えた流体デバイスであって、前記複数のバルブは、前記流路中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブ、前記流路中の流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブ、並びに、前記ノーマリークローズ・バルブ及び前記ノーマリーオープン・バルブが、直列的に配設されてなる直列バルブからなる群から選ばれる二つ以上であることを特徴とする。
(6)本発明の一実施態様におけるバルブシートは、形状記憶ポリマーからなるバルブが配列されたバルブシートであって、前記バルブは、流路中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブ、前記流路中の前記流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブ、並びに、前記ノーマリークローズ・バルブ及び前記ノーマリーオープン・バルブが、直列的に配設されてなる直列バルブからなる群から選ばれる少なくとも一種であることを特徴とする。
(7)本発明の一実施態様におけるバルブシートの製造方法は、形状記憶ポリマーからなるシートに、前記形状記憶ポリマーの融点未満の温度下で、成形加工若しくは機械加工により、第1の凹部を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記第1の凹部に外力を加えて前記第1の凹部を平坦にし、前記シート上に、ノーマリークローズ・バルブを形成する工程、及び/又は、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて第2の凹部を設け、前記シート上に、ノーマリーオープン・バルブを形成する工程を有することを特徴とする。
(8)本発明の一実施態様におけるバルブシートの製造方法は、形状記憶ポリマーからなるシートに、前記形状記憶ポリマーの融点未満の温度下で、成形加工若しくは機械加工により、第1の貫通孔を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記第1の貫通孔に外力を加えて前記第1の貫通孔を平坦にし、前記シート上に、ノーマリークローズ・バルブを形成する工程、及び/又は、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて第2の貫通孔を設け、前記シート上に、ノーマリーオープン・バルブを形成する工程を有することを特徴とする。
(9)本発明の一実施態様における流路デバイスの製造方法は、バルブシートと流路形成層からなる流路デバイスの製造方法であって、形状記憶ポリマーからなるシートに、前記形状記憶ポリマーの融点未満の温度下で、成形加工若しくは機械加工により、第1の凹部を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記第1の凹部に外力を加えて前記第1の凹部を平坦にし、前記シート上に、第1のノーマリークローズ・バルブを形成する工程、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて第2の凹部を設け、前記シート上に、第1のノーマリーオープン・バルブを形成する工程、前記形状記憶ポリマーの融点未満の温度下で、成形加工若しくは機械加工により、第1の貫通孔を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲内の温度下で、前記第1の貫通孔に外力を加えて前記第1の貫通孔を平坦にし、前記シート上に、第2のノーマリークローズ・バルブを形成する工程、及び、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて第2の貫通孔を設け、前記シート上に、第2のノーマリーオープン・バルブを形成する工程からなる群から選ばれる少なくとも一工程を有するバルブシートの製造方法によりバルブシートを製造する第1工程と、前記第1工程において製造されたバルブシートと流路形成層とを積層する第2工程と、を有することを特徴とする。
本発明によれば、流体の流れを簡便に制御することができる。
形状記憶ポリマーを説明するための模式図である。 本実施形態におけるバルブの一態様の概略断面図である。 本実施形態におけるバルブの一態様の概略断面図である。 本実施形態におけるバルブの一態様の概略断面図である。 本実施形態におけるバルブの一態様の概略断面図である。 本実施形態におけるバルブの一態様の概略断面図である。 本実施形態におけるマイクロ構造体の一態様の概略断面図である。 本実施形態におけるバルブシートの一態様の正面図である。 本実施形態におけるマイクロ流体デバイスの一態様の正面図である。 本実施形態におけるバルブシートの製造方法の一態様の模式図である。 本実施形態におけるバルブシートの製造方法の一態様の模式図である。 本実施形態におけるバルブシートの製造方法の一態様の模式図である。 本実施形態におけるバルブシートの製造方法の一態様の模式図である。 本実施形態におけるマイクロ流体デバイスの一態様の正面図である。 本実施形態におけるマイクロ流体デバイスの一態様の概略断面図である。 本実施形態におけるマイクロ流体デバイスの一態様の正面図である。 本実施形態におけるマイクロ流体デバイスの一態様の概略断面図である。 実施例1におけるマイクロ流体デバイスの製造工程を示す模式図である。 実施例1におけるマイクロ流体デバイスの動作確認結果である。 実施例1におけるマイクロ流体デバイスの動作確認結果である。 実施例2におけるマイクロ流体デバイスの動作確認結果である。 実施例3におけるマイクロ流体デバイスの動作確認結果である。 実施例4におけるマイクロ流体デバイスの動作確認結果である。 実施例5におけるマイクロ流体デバイスの動作確認結果である。 実施例6におけるマイクロ流体デバイスの動作確認結果である。
≪バルブ≫
本発明のバルブは、流路に配設された形状記憶ポリマーからなるバルブであって、変形することにより、前記流路中の流体の流れを調節する。
形状記憶ポリマーとは、成形加工後に外力を加えて変形しても、ある温度以上に加熱すると元の形状に回復するポリマーであり、ある温度(以下、形状回復温度)以上で流動性を帯びる可逆相と、可逆相が変形する温度では変形を生じない物理的又は化学的結合部位(架橋点)からなる固定相から構成されている。
図1に示すように、形状記憶ポリマーは、成形加工又は機械加工により形成した形状を樹脂中の固定相により記憶し、形状回復温度以上融点未満の温度範囲内の温度下において、記憶した形状を自由な形状に変形させることができる。そして、この変形させた状態を維持したまま形状回復温度未満の温度に冷却することで、この変形を固定することができる。この形状回復温度未満の温度に冷却して加えた変形を固定させたものを、形状回復温度以上で融点未満の温度に加熱することにより、成形加工又は機械加工により形成した形状が復元される。
本発明においては、成形加工又は機械加工により、形状記憶ポリマーからバルブを成形する。バルブは、流路中を流体が流れる状態とする開状態、又は流体の流れを堰き止めた状態とする閉状態に成形される。
更に、該形状記憶ポリマーの形状回復温度以上融点未満の温度範囲内の温度で、このバルブに変形を加えた後、形状回復温度未満の温度に冷却して変形を固定させる。この変形は、開状態のバルブを閉状態とする変形か、閉状態のバルブを開状態とする変形である。
このように変形の加えられたバルブを流路に配設する。変形の加えられたバルブの形状が、開状態である場合には、バルブ配設後、流路中を流体が自由に流れる。変形の加えられたバルブの形状が、閉状態である場合には、バルブ配設後、流路中の流体の流れは堰き止められている。
次いで、該バルブを形状記憶ポリマーの形状回復温度以上融点未満の温度範囲内の温度で加熱することにより、バルブ成形時の形状が復元する。開状態となるように変形の加えられたバルブは、加熱されることにより閉状態となり、流路中の流体の流れは堰き止められる。閉状態となるように変形の加えられたバルブは、加熱されることにより開状態となり、流路中を流体が自由に流れるようになる。
このように、本発明によれば、形状記憶ポリマーからなるバルブを流路に配設することにより、流路中の流体の流れを自在に制御することができる。
また、本発明によるバルブは、形状記憶ポリマーの少なくとも一部分が流路の少なくとも一部を形成しているため、簡便に低コストで製造でき、簡便かつ自在に開状態や閉状態を制御することができる。また、本発明のバルブは、加熱などの温度変化によって、流路中を流体が流れる状態とする開状態、又は流体の流れを堰き止めた状態とする閉状態、に変形可能である。
以下、本発明のバルブの好ましい実施形態について説明するが、これらの実施形態は、発明の趣旨をより良く理解させるために一例として説明するものであり、特に指定のない限り、本発明を限定するものではない。
<マイクロバルブ>
本実施形態のバルブは、マイクロ流体デバイス(流体デバイス)に好適に用いられるマイクロバルブである。該マイクロバルブとしては、ノーマリーオープン・バルブ、ノーマリークローズ・バルブ、又はこれらを直列に配設してなる直列バルブが挙げられる。なお、本実施形態におけるマイクロ流体デバイスはマイクロメートルスケールであっても、ミリメートルスケールであってもよい。
以下、各マイクロバルブの詳細について説明する。
[ノーマリーオープン・バルブ]
図2は、本発明のバルブの第1実施形態を示す概略断面図である。本実施形態のバルブは、加熱されることにより、流路2中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブ4である。
(凹型形状)
図2に示すように、流路2は、流路形成層1とシート3とが積層されることにより形成される。
尚、図2においては、シート3の上に流路形成層1が積層され流路2が形成されているが、これらの上下関係は問わず、流路形成層の上にシートが積層され、この積層により流路が形成されていてもよい。
流路形成層1は、堰1aを有しており、堰1aによって流路2中の流体の流れが堰き止められている。これに対し、ノーマリーオープン・バルブ4は、定常状態においては、堰1aによって堰き止められた流体を迂回させるためのバイパスとしての流路(バイパス路)として機能する。
形状記憶ポリマーからなるシート3は、その形成時に、平坦の形状を記憶している。図2において、ノーマリーオープン・バルブ4は、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、外力を加えることにより、凹型形状に成形されている。
ノーマリーオープン・バルブ4は、加熱前は、流体の流れが堰き止められた閉状態をバイパスするための形状を有し、流路2を流体が流れる状態とする開状態にある。ここで、図2において、ノーマリーオープン・バルブ4の開状態とは、閉状態をバイパスするための凹型形状を有する状態である。即ち、ノーマリーオープン・バルブ4は、定常状態では、凹型形状の開状態にある。
そして、加熱後は、シート3が平坦形状に復元することにより、流体の流れを堰き止めた状態とする閉状態へと変形する。
(貫通型形状) 
また、図3に示されるように、ノーマリーオープン・バルブ4の開状態とは、閉状態をバイパスするための貫通型形状を有する状態であってもよい。図3において、ノーマリーオープン・バルブ4は、形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、外力を加えることにより、貫通型形状に成形されている。即ち、ノーマリーオープン・バルブ4は、定常状態では、貫通型形状の開状態にある。
そして、加熱後は、シート3が平坦形状に復元することにより、ノーマリーオープン・バルブ4は、流体の流れを堰き止めた状態とする閉状態へと変形する。
 ノーマリーオープン・バルブ4を構成する形状記憶ポリマーとしては、特に限定されず、例えば、形状記憶性を有するエラストマー等の高分子材料を挙げることができる。
形状記憶性を有するエラストマーの具体例としては、ポリウレタン、ポリイソプレン、ポリエチレン、ポリノルボルネン、スチレン-ブタジエン共重合体;エポキシ樹脂、フェノール樹脂、アクリル樹脂、ポリエステル、メラニン樹脂;ポリカプロラクトン、ポリ塩化ビニル、ポリスチレン、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド;等のポリマーを、例えば有機過酸化物、過酸化ベンゾイルといった過酸化物を使用した熱による化学的架橋手法によって架橋されたものが挙げられる。
[ノーマリークローズ・バルブ]
図4は、本発明のバルブの第2実施形態を示す概略断面図である。本実施形態のバルブは、加熱されることにより、流路12中の流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブ5である。
(凹型形状バルブ)
図4に示すように、流路12は、流路形成層1とシート13とが積層されることにより形成される。尚、本実施形態においても、シートと流路形成層との上下関係は問わない。
流路形成層1は、堰1aを有しており、堰1aによって流路12中の流体の流れが堰き止められている。これに対し、ノーマリークローズ・バルブ5は、定常状態においては、平坦の形状を有しており、流体の流れが堰き止められた状態となっている。
形状記憶ポリマーからなるシート13は、その形成時に、凹型形状を記憶している。図4において、ノーマリークローズ・バルブ5は、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、外力を加えることにより、平坦の形状に成形されている。
ノーマリークローズ・バルブ5は、加熱後は、流体の流れが堰き止められた閉状態をバイパスするための形状を有し、流路12を流体が流れる状態とする開状態にある。ここで、図4において、ノーマリークローズ・バルブ5の開状態とは、閉状態をバイパスするための凹型形状を有する状態である。
よって、加熱後は、シート13が凹型形状に復元することにより、ノーマリークローズ・バルブ5は、流路中を流体が流れる状態とする開状態へと変形する。
(貫通型形状バルブ) 
また、図5に示されるように、ノーマリークローズ・バルブ5の開状態とは、閉状態をバイパスするための貫通型形状を有する状態であってもよい。図5において、ノーマリークローズ・バルブ5は、形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、外力を加えることにより、平坦の形状に成形されている。即ち、ノーマリークローズ・バルブ5は、定常状態では、平坦の形状の閉状態にある。
そして、加熱後は、シート3が貫通型形状に復元することにより、ノーマリークローズ・バルブ5は、流体が流れる状態とする開状態へと変形する。
 ノーマリークローズ・バルブ5を構成する形状記憶ポリマーとしては、ノーマリーオープン・バルブ4を構成する形状記憶ポリマーと同様のものを挙げることができる。
[直列バルブ]
図6は、本発明のバルブの第3実施形態を示す概略断面図である。例えば、本実施形態のバルブは、ノーマリークローズ・バルブ24及びノーマリーオープン・バルブ25が、流路22の上流から、この順に配設されてなる直列バルブ6である。また、本実施形態のバルブは、ノーマリークローズ・バルブ24及びノーマリーオープン・バルブ25が、流路22に沿って直列的に配置されている直列バルブである。尚、本実施形態のバルブは、ノーマリーオープン・バルブ25及びノーマリークローズ・バルブ24が、流路22の上流から、この順に配設されている直列バルブであってもよい。
本実施形態においては、ノーマリークローズ・バルブ24及びノーマリーオープン・バルブ25の開状態が、ともに凹型形状である場合について説明するが、ともに貫通型形状であってもよく、または、凹型形状及び貫通型形状の組合せであってもよい。
図6に示すように、流路22は、流路形成層21とシート23とが積層されることにより形成される。尚、本実施形態においても、シートと流路形成層との上下関係は問わない。
流路形成層21は、堰21b及び堰21cを上流側からこの順に有しており、それぞれの堰に対応するバルブとして、ノーマリークローズ・バルブ24及びノーマリーオープン・バルブ25がそれぞれ堰21b及び堰21cの直下に設けられている。
流体の流れは、先ず、流路22の上流側に位置する堰21bによって、堰き止められている。ノーマリークローズ・バルブ24は、定常状態においては、平坦の形状を有しており、流体の流れが堰き止められたままとなっている。従って、直列バルブ6は全体として閉状態にある。
次いで、シート23において、ノーマリークローズ・バルブ24が設けられている箇所の流路形成層21と接しない側を加熱することにより、ノーマリークローズ・バルブ24は、流体が流れる状態とする開状態へと変形する。堰21bを迂回した流体は、ノーマリーオープン・バルブ25が開状態であることにより、下流側に位置する堰21cをさらに迂回することができる。従って、直列バルブ6は全体として開状態にある。
次いで、シート23において、ノーマリーオープン・バルブ25が設けられている箇所の流路形成層21と接しない側を加熱することにより、ノーマリーオープン・バルブ25は、流体の流れを堰き止めた状態とする閉状態へと変形する。これにより、堰21bを迂回した流体の流れは、ノーマリーオープン・バルブ25が閉状態に変化することにより、堰21cによって堰き止められる。従って、直列バルブ6は全体として閉状態にある。
形状記憶ポリマーの性質上、形状記憶ポリマーからなるバルブは、開閉状態の変化が付加逆的であるものと一般的に考えられているが、本実施形態のバルブによれば、閉状態から開状態へ、さらに開状態から閉状態へと変形し、流体の流れを柔軟に制御することができる。
これら本実施形態のバルブによれば、形状記憶ポリマーからなるシートに形状を記憶させておくだけで簡便にかつ低コストで製造でき、加熱操作(温度操作)を行うだけで、流体の流れを簡便かつ自在に制御することができる。
<マイクロ構造体>
本実施形態のマイクロ構造体は、流路に配設された形状記憶ポリマーからなる。該形状記憶ポリマーの形としては特に限定されず、上述したノーマリーオープン・バルブ、ノーマリークローズ・バルブ、直列バルブ等であってもよい。本実施形態のマイクロ構造体は、上述したノーマリーオープン・バルブ、ノーマリークローズ・バルブ、直列バルブ等と同様の成型方法で成型することができる。本実施形態のマイクロ構造体は、これらのバルブを適度に加熱することにより、例えば、ノーマリーオープン・バルブを一部閉状態としたもの、又はノーマリークローズ・バルブを一部開状態としたものからなることが好ましい。このように、図7(a)に示すように、バルブを種々「半開き」の状態にすることにより、流路の幅及び深さを制限し、流体の流れを自在に選択的に制御することができる。
本実施形態のマイクロ構造体によれば、マイクロ流体デバイス中に別途ゲルろ過カラム装置等を設けずとも、図7(b)に示すように、流体中の所望の大きさの分子を選別することができる。例えば、本実施形態の構造体によれば、血液中の赤血球とCirculating tumor cell(CTC;血中循環がん細胞)を大きさで選別することができる。また、図7(c)に示すように、複数のマイクロ構造体を流路に配設した場合に、マイクロ構造体間の距離をあらかじめ調整することによって、液体中の所望の大きさの分子の選別をすることができる。 
また、本実施形態のマイクロ構造体によれば、工程に応じてマイクロ構造体の変形量を制御することで、流体の流れを自在に選択的に制御することができる。一例として、図7(d)に示すように、マイクロ構造体によって流体中の所望の大きさの分子を選別して一時的にせき止め、その後マイクロ構造体を加熱などによって完全に開状態にすることで、せき止めていた分子を流すことができる。
 このように、本実施形態におけるマイクロ構造体は、その構造体の変形量を選択的に制御することによって、流路中におけるフィルターとして機能させることが可能である。
上述した様に、本実施形態の流体デバイス中の流路は、流路形成層とシートとが積層されることにより形成される。
先ず、バルブシート及び流路形成層について説明する。
[バルブシート]
本実施形態のバルブシートは、形状記憶ポリマーからなるバルブが配列されたバルブシートであって、前記バルブは、加熱されることにより、流路中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブ、加熱されることにより、流路中の流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブ、並びに、前記ノーマリークローズ・バルブ及び前記ノーマリーオープン・バルブが、直列的に配設されてなる直列バルブからなる群から選ばれる少なくとも一種である。
図8は、本実施形態のバルブシート50の基本構成を示す正面図であり、図9は、本実施形態のバルブシート50を用いたマイクロ流体デバイス57の基本構成を示す模式図である。
図8に示すように、本実施形態のバルブシート50は、ノーマリーオープン・バルブ51、ノーマリークローズ・バルブ52、及び直列バルブ53が、図9に示されるマイクロ流体デバイス57に設けられた流路54,55,56中の流体の流れを調節できる位置に配列されている。図8において、各バルブが制御する流路、及び各バルブを加熱するためのヒーター用配線の対応位置を示してある。
図8においては、これらのバルブを1種類ずつ配列してなるバルブシートを示しているが、配列するバルブの数及び種類については、特に限定されず、対応するマイクロ流路デバイスによって適宜組み合わされる。
本実施形態のバルブシート50の材質としては、シートを構成するバルブが形状記憶ポリマーからなるものであれば、特に限定されないが、簡便に製造できる観点及びバルブの開閉機能を安定に担保する観点からバルブ以外の部分も形状記憶ポリマーであることが好ましい。
バルブシート50の材質としての形状記憶ポリマーとしては、上述したポリウレタン、ポリイソプレン、ポリエチレン、ポリノルボルネン、スチレン-ブタジエン共重合体;エポキシ樹脂、フェノール樹脂、アクリル樹脂、ポリエステル、メラニン樹脂;ポリカプロラクトン、ポリ塩化ビニル、ポリスチレン、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド;等のポリマーを、例えば有機過酸化物、過酸化ベンゾイルといった過酸化物を使用した熱による化学的架橋手法によって架橋された形状記憶性を有するエラストマーが挙げられる。
[バルブシートの製造方法]
(第1実施形態(凹型形状バルブシートの製造方法))
 本実施形態のバルブシートの製造方法は、形状記憶ポリマーからなるシートに、前記形状記憶ポリマーの融点未満の温度下で、成形加工若しくは機械加工により、第1の凹部を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲内の温度下で、前記第1の凹部に外力を加えて前記第1の凹部を平坦にし、前記シート上に、ノーマリークローズ・バルブを形成する工程、及び/又は、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて、第2の凹部を設け、前記シート上に、ノーマリーオープン・バルブを形成する工程を有する。
 このように、本実施形態のバルブシートの製造方法は、シート上に、ノーマリークローズ・バルブを形成する工程、及び/又は、ノーマリーオープン・バルブを形成する工程を有する。これらの工程は、バルブシートに配列するバルブの数及び種類によって適宜組み合わされる。以下、各工程について説明する。
(ノーマリークローズ・バルブの成形工程)
 図10に示されるように、ノーマリークローズ・バルブの形成工程において、先ず形状記憶ポリマーからなるシート60に、形状記憶ポリマーの融点未満の温度下で、成形加工若しくは機械加工により、第1の凹部61を設ける。成形加工としては、射出成形やホットエンボスによる加工が挙げられる。機械加工としては、例えば、エンドミル62による切削加工が挙げられる。シート60は、この第1の凹部61の凹型形状を記憶している。
 次いで、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲内の温度下で、平板の型66を用いて、第1の凹部61に外力を加えて第1の凹部61を平坦にし、シート60上に、ノーマリークローズ・バルブ63を成形する。シート60と流路形成層64を接着(又は接合)することにより、流路65が形成される。
(ノーマリーオープン・バルブの成形工程)
 図11に示されるように、ノーマリーオープン・バルブの成形工程は、形状記憶ポリマーからなるシート70に、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、凸型形状を有する型76を用いて、シート70に外力を加えて、第2の凹部71を設け、シート70上に、ノーマリーオープン・バルブ73を成形する。シート70は、シート形成時の平坦形状を記憶している。シート70と流路形成層74を接着(又は接合)することにより、流路75が形成される。
(第2実施形態(貫通型形状バルブシートの製造方法))
 本実施形態のバルブシートの製造方法は、形状記憶ポリマーからなるシートに、前記形状記憶ポリマーの融点未満の温度下で、成形加工若しくは機械加工により、第1の貫通孔を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲内の温度下で、前記第1の貫通孔に外力を加えて前記第1の貫通孔を平坦にし、前記シート上に、ノーマリークローズ・バルブを成形する工程、及び/又は、
前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて、第2の貫通孔を設け、前記シート上に、ノーマリーオープン・バルブを成形する工程を有する。
 本実施形態のバルブシートの製造方法は、第1の実施形態と同様、シート上に、ノーマリークローズ・バルブを成形する工程、及び/又は、ノーマリーオープン・バルブを成形成する工程を有する。これらの工程は、バルブシートに配列するバルブの数及び種類によって適宜組み合わされる。以下、各工程について説明する。
(ノーマリークローズ・バルブの成形工程)
 図12に示されるように、ノーマリークローズ・バルブの成形工程は、先ず形状記憶ポリマーからなるシート80に、形状記憶ポリマーの融点未満の温度下で、成形加工若しくは機械加工により、第1の貫通孔81を成形する。機械加工については、特に限定されず、例えば、エンドミル82による切削加工が挙げられる。シート80は、この第1の貫通孔81の貫通型形状を記憶している。
 次いで、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲内の温度下で、平板の型86を用いての第1の貫通孔81に外力を加えての第1の貫通孔81を平坦にし、シート80上に、ノーマリークローズ・バルブ83を成形する。シート80と流路形成層84を接着(又は接合)することにより、流路85が形成される。
(ノーマリーオープン・バルブの成形工程)
 図13に示されるように、ノーマリーオープン・バルブの成形工程は、形状記憶ポリマーからなるシート90に、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、棒型形状を有する型96を用いて、シート90に外力を加えて、第2の貫通孔91を設け、シート90上に、ノーマリーオープン・バルブ93を成形する。シート90は、シート形成時の平坦形状を記憶している。シート90と流路形成層94を接着(又は接合)することにより、流路95が形成される。
[流路形成層]
 次いで、本実施形態に用いられる流路形成層について説明する。この流路形成層は、本実施形態のバルブシートとともに、本実施形態のマイクロ流体デバイスを構成するものである。かかる流路形成層としては特に限定されないが、簡便にマイクロ流体デバイスを製造できる観点から、流路付き樹脂シートであることが好ましい。
流路付き樹脂シートの材質としては、ポリイソプレン、ポリブタジエン、ポリクロロプレン、ポリイソブチレン、ポリ(スチレン-ブタジエン-スチレン)、ポリウレタン、シリコーンポリマー;ポリ(ビス(フルオロアルコキシ)ホスファゼン)(PNF、Eypel-F)、ポリ(カルボラン-シロキサン)(デキシル(Dexsil))、ポリ(アクリロニトリル-ブタジエン)(ニトリルゴム)、ポリ(1-ブテン)、ポリ(クロロトリフルオロエチレン-ビニリデンフルオリド)コポリマー(Kel-F)、ポリ(エチルビニルエーテル)、ポリ(ビニリデンフルオリド)、ポリ(ビニリデンフルオリド-ヘキサフルオロプロピレン)コポリマー(バイトン(Viton))、ポリビニルクロリド(PVC)のエラストマー組成物、ポリスルホン、ポリカーボネート、ポリメチルメタクリレート(PMMA)、ポリテトラフルオロエチレン;クロロシラン、メチルシラン、エチルシラン、フェニルシラン、ポリジメチルシロキサン(PDMS)等が挙げられる。
これらの材質からなる樹脂シートに形成される流路の寸法としては、本実施形態のバルブによって、流体の流れを制御し得るものであれば特に限定されないが、例えば以下の寸法が好ましく挙げられる。
幅対深さの比としては0.1:1~100:1であることが好ましく、1:1~50:1であることがより好ましく、2:1~20:1であることが特に好ましく、3:1~15:1であることが最も好ましい。
流路の幅は、一例として、0.01~1000μm、0.05~1000μm、0.2~500μm、1~250μm、10~200μmが挙げられる。また、更に一例として、流路の幅は、0.01~100mm、0.05~100mm、0.2~50mm、1~25mm、1.5~15mmが挙げられる。
流路の深さとしては、一例として、0.01~1000μm、0.05~500μm、0.2~250μm、1~100μm、2~20μmが挙げられる。また、更に一例として、流路の深さとしては、0.01~100mm、0.05~100mm、0.2~50mm、1~25mm、1.5~15mmが挙げられる。
<マイクロ流体デバイス>
本実施形態のマイクロ流体デバイスは、流路に配設された形状記憶ポリマーからなるバルブを備えたマイクロ流体デバイスであって、前記バルブは、加熱されることにより、流路中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブ、加熱されることにより、流路中の流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へとノーマリークローズ・バルブ、並びに、前記ノーマリークローズ・バルブ及び前記ノーマリーオープン・バルブが、流路の上流から、この順に直列的に配設されてなる直列バルブからなる群から選ばれる少なくとも一種である。
 本実施形態のマイクロ流体デバイスは、上述したバルブシートと流路形成層を接着(又は接合)することにより形成される。また、本実施形態のマイクロ流体デバイスは、加熱などによって形状記憶ポリマーの少なくとも一部分の温度を変化させ、開状態及び閉状態を制御する手段を備えている。
 以下、本実施形態のマイクロ流路デバイスについて説明する。
(第1実施形態)
図14は、本実施形態のマイクロ流体デバイス30の基本構成を示す模式図である。図14に示すように、本実施形態のマイクロ流体デバイス30は、駆動源31、分岐流路32、ノーマリーオープン・バルブ33、ノーマリークローズ・バルブ34、及び直列バルブ35を備えている。分岐流路32は、分岐点37よりも上流側の流路である上流流路36と、分岐点37よりも下流側の流路である下流流路38,39,40と、からなる。
駆動源31は、上流流路36に接続されており、所定の押出力で流体を下流側に送るものである。駆動源31としては、シリンジポンプ等が挙げられる。
ノーマリーオープン・バルブ33、ノーマリークローズ・バルブ34、及び直列バルブ35は、それぞれ下流流路38,39,40中に設けられ、各流路中の流体の流れを選択的に(局所的に)調節できる位置に配列されている。
本実施形態のマイクロ流体デバイス30は、例えば血液等の検体から核酸等の生体分子を精製する場合の精製試料回収部に用いられる。
駆動源31によって、緩衝液等の駆動液に押し流された検体の溶解液は、上流流路36に存在する図示略のカラム等の精製装置を通り、分岐点37を通過する。検体の溶解液中、最初に分岐点37を通過するものは、不要物質であるため、開状態であるノーマリーオープン・バルブ33が設けられている下流流路38を通り、排出される。次いで、ノーマリーオープン・バルブ33に備え付けられた加熱手段33aによって、ノーマリーオープン・バルブ33は閉状態となる。
次いで、直列バルブ35に備え付けられた加熱手段35aによって、直列バルブ35は開状態となる。検体の溶解液中2番目に分岐点37を通過するものは、下流流路40を通り、第1分画物質として採取される。
次いで、加熱手段35aによって、直列バルブ35は閉状態となり、ノーマリークローズ・バルブ34に備え付けられた加熱手段34aによって、ノーマリークローズ・バルブ34は開状態となる。検体の溶解液中3番目に分岐点37を通過するものは、下流流路39を通り、第2分画物質として採取される。
このように本実施形態のマイクロ流体デバイス30によれば、精製試料回収部において検体溶解液の分画を効率よく行うことができる。
ここで、ノーマリーオープン・バルブ33、ノーマリークローズ・バルブ34、及び直列バルブ35に備え付けられた加熱手段33a,34a,35aは、ヒーターによる加熱であってもよく、レーザー光照射による加熱であってもよい。また、加熱手段33a,34a,35aは、電極による加熱であってもよい。
加熱手段33a,34a,35aがレーザー光照射による加熱である場合には、図15に示されるように、バルブシートの流路形成層に接する面とは反対の面側に光熱変換層140が設けられていることが好ましい。
光熱変換層140は光吸収剤を含むものである。光熱変換層140にレーザー光照射された放射エネルギーは、光吸収剤によって吸収され、熱エネルギーに変換される。発生した熱エネルギーによって、バルブは、加熱されて変形する。即ち、本実施形態のマイクロ流体デバイスは、光吸収剤を用いた加熱手段を備えていることが好ましい。
 なお、本実施形態における加熱手段は、例えば、光熱変換層140が設けられているバルブシートに対して、マスクを用いて選択的な(局所的な)レーザー光照射による加熱を行ってもよい。
光吸収剤としては、使用する波長の放射エネルギーを吸収するものであることが好ましい。放射エネルギーの波長としては、300~2000nmが好ましく、300~1500nmがより好ましい。
光吸収剤としては、例えば、カーボンブラック、グラファイト粉、鉄、アルミニウム、銅、ニッケル、コバルト、マンガン、クロム、亜鉛、テルル等の微粒子金属粉末;黒色酸化チタンなどの金属酸化物粉末;芳香族ジアミノ系金属錯体、脂肪族ジアミン系金属錯体、芳香族ジチオール系金属錯体、メルカプトフェノール系金属錯体、スクアリリウム系化合物、シアニン系色素、メチン系色素、ナフトキノン系色素、アントラキノン系色素等の染料又は顔料が挙げられる。光熱変換層140は、これらの染料又は顔料と樹脂からなるものであってもよい。光熱変換層140に用いられる樹脂としては、特に限定されず、バルブシートに用いられる形状記憶ポリマーと同じものであってもよい。
また、光熱変換層140は、これらの光吸収剤を、金属蒸着膜を含む膜状の形態としたものであってもよい。
また、図15には、バルブシートと光熱変換層140とが独立したものとして示されているが、バルブシート自体が、上述した形状記憶ポリマーと光吸収剤からなるものであってもよい。
光熱変換層140中の光吸収剤の濃度は、光吸収剤の種類、粒子形態、分散度等によっても異なるが、5~70体積%であることが好ましい。5体積%以上の濃度の場合、光熱変換層140の発熱によりバルブが効率よく変形する。70体積以下の濃度の場合、光熱変換層の成膜性がよく、バルブシートとの接着効率がよい。
光熱変換層の厚さとしては、0.1μm~5μmであることが好ましい。光熱変換層の厚さが、0.1μmの場合、十分な光吸収を行うために要求される光吸収剤の濃度が高くなりすぎないため、光熱変換層の成膜性がよく、バルブシートとの接着効率がよい。光熱変換層の厚さが、5μm以下の場合、光熱変換層中の光透過率がよいため、発熱効率がよい。
加熱手段として電極を備える場合には、加熱条件を制御することにより、形状記憶ポリマーの変化量をより制御できる。一例として電極は、流路の上流から下流に向けて電気抵抗値が減少する構成を有する。
(第2実施形態)
図16は、本実施形態のマイクロ流体デバイス141の基本構成を示す模式図である。本実施形態のマイクロ流体デバイス141は、例えば血液等の検体から核酸等の生体分子を精製する場合の精製装置導入部に用いられる。
図16に示すように、本実施形態のバルブシート141は、駆動源146の下流に、4つの液溜部147,148,149,150を有しており、液溜部147,148,149,150には、それぞれ、溶出液、溶解液、洗浄液、液状の検体が溜められている。そして、駆動源146の上流に位置する液溜部151には、駆動液が溜められている。更に、液溜部147,148,149の上流の流路には、それぞれ、ノーマリークローズ・バルブ153、ノーマリーオープン・バルブ154、直列バルブ155が設けられている。駆動源146から押出された駆動液が、これらバルブの開閉により、各バルブの下流に位置する液溜部に溜められている液体を選択的に押出ことにより、各液体が、液溜部147,148,149,150の下流に位置する精製装置152へと選択的に押出される。
駆動源146によって、液溜部150に溜められている液状の検体、及び開状態であるノーマリーオープン・バルブ154が上流に設けられている液溜部148に溜められている溶解液が押出され、カラム等で構成される精製装置152を通り、検体中の生体分子が溶解され、精製装置152に捕捉される。次いで、ノーマリーオープン・バルブ154に備え付けられた加熱手段154aによって、ノーマリーオープン・バルブ154は閉状態となり、精製装置152への溶解液の流入が止められる。
次いで、直列バルブ155に備え付けられた加熱手段155aによって、直列バルブ155は開状態となり、液溜部155に溜められている洗浄液が精製装置152へ流入し、精製装置152から不要物が排出される。
次いで、加熱手段155aによって、直列バルブ155は閉状態となり、精製装置152への洗浄液の流入が止められる。
次いで、ノーマリークローズ・バルブ153に備え付けられた加熱手段153aによって、ノーマリークローズ・バルブ153は開状態となり、液溜部147に溜められている溶出液が精製装置152へ流入し、精製試料が精製装置152から溶出される。
このように本実施形態のマイクロ流体デバイス141によれば、生体分子の精製を効率よく行うことができる。
(第3実施形態)
図17は、本実施形態のマイクロ流体デバイス241の基本構成を示す模式図である。図17に示すように、本実施形態のマイクロ流体デバイス241は、第一面に配置されたノーマリーオープン・バルブ242と、第一面と対向した第二面に配置されたノーマリークローズ・バルブ243と、を備えている。そして、本実施形態のマイクロ流体デバイス241において、ノーマリーオープン・バルブ242とノーマリークローズ・バルブ243とが互いに対向して配置されている。
定常状態において、流体は、流路240の下部に形成されたノーマリーオープンバルブ242を介して、堰として機能しているノーマリークローズバルブ243を迂回している。
次いで、ノーマリーオープンバルブ242の下部に備え付けられた加熱手段242aによって、ノーマリーオープンバルブ242は閉状態となり、流体の流れは、ノーマリークローズ・バルブ243によって堰き止められる。
次いで、ノーマリークローズバルブ243の上部に備え付けられた加熱手段243aによって、ノーマリークローズバルブ243は開状態となり、堰き止められていた流体は再び流れ出す。
本実施形態のマイクロ流体デバイス241によれば、全体として開状態から閉状態へ、さらに閉状態から開状態へと変形するバルブを有するため、流体の流れを柔軟に制御することができる。
(第4実施形態)
 本実施形態のマイクロ流体デバイスは、流路に配設された形状記憶ポリマーからなる複数のバルブから構成されるポンプを備えたものである。本実施形態においては、図14における駆動源3や図16における駆動源146が、上述した本実施形態のノーマリーオープン・バルブ、ノーマリークローズ・バルブ、及び直列バルブからなる群から選ばれる二つ以上からなる。ポンプを構成する複数のバルブの種類は同一でも、異なっていてもよい。
 例えば、図16における液溜部151から流体が常に流れる状態にしてある場合、バルブの開閉状態を制御することにより、複数のバルブは、駆動源(ポンプ)として機能する。
(第5実施形態)
 本実施形態のマイクロ流体デバイスは、加熱条件を制御することにより前記形状記憶ポリマーの変形量を制御し、前記流路中の流体の流量を制御する加熱手段を備える。加熱条件の例として、時間や熱量が挙げられる。
一例としてマイクロ流路デバイスを構成する流路の幅をミリメートルサイズにすることにより、加熱条件の変化に応じた形状記憶ポリマーの変化量が厳密に制御されたものとなる。
[マイクロ流体デバイスの製造方法]
本実施形態のマイクロ流体デバイスの製造方法は、バルブシートと流路形成層からなるマイクロ流路デバイスの製造方法であって、形状記憶ポリマーからなるシートに、前記形状記憶ポリマーの融点未満の温度下で、成形加工若しくは機械加工により、第1の凹部を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記第1の凹部に外力を加えて前記第1の凹部を平坦にし、前記シート上に、第1のノーマリークローズ・バルブを成形する工程、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて第2の凹部を設け、前記シート上に、第1のノーマリーオープン・バルブを成形する工程、前記形状記憶ポリマーの融点未満の温度下で、成形加工若しくは機械加工により、第1の貫通孔を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲内の温度下で、前記第1の貫通孔に外力を加えて前記第1の貫通孔を平坦にし、前記シート上に、第2のノーマリークローズ・バルブを成形する工程、及び、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて第2の貫通孔を設け、前記シート上に、第2のノーマリーオープン・バルブを成形する工程からなる群から選ばれる少なくとも一工程を有するバルブシートの製造方法によりバルブシートを製造する第1工程と、
前記第1工程において製造されたバルブシートと流路形成層とを積層する第2工程と、を有する。
第1工程は、バルブシートの製造工程である。この第1工程は、上述した凹型形状のノーマリークローズ・バルブ(第1のノーマリークローズ・バルブ)の成形工程、貫通型形状のノーマリークローズ・バルブ(第2のノーマリークローズ・バルブ)の成形工程、凹型形状のノーマリーオープン・バルブ(第1のノーマリーオープン・バルブ)の成形工程、及び貫通型形状のノーマリーオープン・バルブ(第2のノーマリーオープン・バルブ)の成形工程からなる群から適宜組み合わせてバルブシートを製造する工程である。
第1工程には、ノーマリークローズ・バルブの成形工程とノーマリーオープン・バルブの成形工程を用いることによって成形することができる直列バルブの形成工程も含まれる。
第2工程は、第1工程において製造されたバルブシートと流路形成層とを積層する工程である。流路形成層は、上述した材料を用いて公知の製造方法により成形される。
第2工程において、バルブシートと流路形成層とを積層した後、これらを位置合わせして接合させることが好ましい。係る第1工程及び第2工程を有する製造方法により本実施形態のマイクロ流路デバイスが製造される。
本実施形態のマイクロ流路デバイスの製造方法によれば、簡便にかつ低コストでマイクロ流路デバイスを製造することができる。 
以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
≪実施例1≫
<デバイス部材の作製>
[PCL(ポリカプロラクトン)シートの作製]
PCL、キシレン、及び過酸化ベンゾイルを40:60:1の重量比で混合して混合液を調製した。この混合液を2枚のガラス板ではさみ、オーブン中で80℃3時間加熱し、架橋した。
2枚のガラス板の内、片方のガラス板のポリマーと接する面の一部に、凸型モールド形状を形成しておき、ポリマー架橋時にシートの一部に凹型形状を記憶させた。
架橋後ガラス板から取り出し、アセトン中でキシレンを除去した後に乾燥させると、一部に凹型形状を有するPCLシートを得た。
[ヒーター用配線付きガラス基板の作製]
 ガラス基板上にスパッタリングにより、金属薄膜を形成した後、フォトリソグラフィーとウエットエッチングにより、金属薄膜をパターニングすることによりヒーター用配線付きガラス基板を得た。
[流路付きPDMS(ポリジメチルシロキサン)シートの作製]
モールド(型)上に架橋前のPDMSポリマーを流し込み、オーブン中で80℃1.5時間加熱し、架橋し、PDMSシートを得た。モールドからPDMSシートを剥がし、PDMSシートに穴をあけ、チューブを接続し、流路付きPDMSシートを得た。
<デバイスの作製>
 作製したデバイス部材を用いてデバイスを作製した(図18(a)参照)。
[ホットエンボスによるPCLシートの形状記憶]
 ヒーター用配線付きガラス板上に、一部に凹型形状を有するPCLシートを、凹型形状を有する面と反対の面が、ガラス板の表面と接するように、積層し、80℃に加熱することにより、ヒーター用配線付きガラス板にPCLシートを接着した。
次いで、このPCLシートの上に、ホットエンボス用のモールドを設置し、80℃の温度下で、モールドの上から、10kNの力を加え、バルブ(ノーマリーオープン・バルブ、ノーマリークローズ・バルブ)の形状をPCLシート上に形成した(図18(b)参照)。
このホットエンボス用のモールドは、対応するPCLシートに形成された凹型形状とは異なる位置に、凸型モールド形状を有しており、その他の箇所は平坦状である。
そのため、エンボス加工前にPCLシート上に形成されていた凹型形状は、平らになり、PCLシート上にノーマリークローズ・バルブが形成される。また、ホットエンボス用のモールドが有する凸型モールド形状に対応する箇所に、凹型形状が形成され、PCLシート上にノーマリーオープン・バルブが形成される。
[デバイスの組み立て]
 PCLシートが接着されたヒーター用配線付きガラス板、及び流路付きPDMSシートに、酸素プラズマ(100W、25Pa)を10sec照射し、PCLシート、及び流路付きPDMSシートの接着面を表面処理した。次いで、PCLシートが接着されたヒーター用配線付きガラス板のPCLシート上に、流路付きPDMSシートを、流路付きPDMSシートの流路が形成されている面と、ヒーター用配線付きガラス板に接着されたPCLシートの表面とが接するように、積層し、PCLシートが接着されたヒーター用配線付きガラス板のPCLシートに、流路付きPDMSシートを接着し、デバイスを組み立てた(図18(c)参照)。
[デバイスの動作確認]
 デバイス中のヒーター用配線に10mAの電流を流して、発熱したヒーターにより、ヒーター用配線上のPCLを変形させた。又は、80℃に熱したホットプレート上にデバイスを載せ、PCLを変形させた。
 シリンジポンプを用いて、青色色素を含む溶液をデバイスのマイクロ流路に送液し、バルブの開閉状態を、光学顕微鏡を用いて観察した。
図19(a)上段は、加熱前の流路及びノーマリーオープン・バルブの断面図を示し、図19(a)中段及び下段は、加熱前の流路及びノーマリーオープン・バルブの正面図を示す。
図19(b)上段は、加熱後の流路及びノーマリーオープン・バルブの断面図を示し、図19(b)中段は、ホットプレートによる加熱後の流路及びノーマリーオープン・バルブの正面図を示し、図19(b)下段は、ヒーターによる加熱後の流路及びノーマリーオープン・バルブの正面図を示す。
図19に示されるように、ノーマリーオープン・バルブは、加熱により閉状態となり、青色色素を含む溶液の流れが堰き止められていることが確認された。
図20(a)上段は、加熱前の流路及びノーマリークローズ・バルブの断面図模式図を示し、図20(a)下段は、加熱前の流路及びノーマリークローズ・バルブの正面図を示す。
図20(b)上段は、加熱後の流路及びノーマリーオープン・バルブの断面図を示し、図20(b)下段は、ヒーターによる加熱後の流路及びノーマリーオープン・バルブの正面図を示す。
20に示されるように、ノーマリークローズ・バルブは、加熱により開状態となり、青色色素を含む溶液の流れが確認された。
≪実施例2≫
 ヒーター用配線付きガラス基板に代えて、クロム薄膜層が積層されたガラス基板を用い、このクロム薄膜層にノーマリーオープン・バルブが設けられたPCLシートと、流路付きPDMSシートをこの順に積層した以外は、実施例1と同様の方法で、デバイスを組み立てた。
次いで、図21(a)上段に示すように、レーザーを用いて、PDMSシートの上から、デバイスのノーマリーオープン・バルブが設けられた領域に、1064nmのレーザー光を10秒間照射し、ノーマリーオープン・バルブを加熱した。図21(a)下段、図21(b)下段に示すように、加熱によるノーマリーオープン・バルブの変形を、光学顕微鏡を用いて観察したところ、ノーマリーオープン・バルブは、加熱により閉状態になっていることが確認された。
≪実施例3≫
 図22(a)上段に示すように、PCLシートに貫通型形状のノーマリーオープン・バルブを設けた以外は、実施例1と同様の方法で、デバイスを組み立てた。次いで、ヒーターでデバイスを加熱してPCLを変形させた。
図22(a)下段及び図22(b)下段に示すように、加熱によるノーマリーオープン・バルブの変形を、光学顕微鏡を用いて観察したところ、ノーマリーオープン・バルブは、加熱により閉状態になっていることが確認された。
≪実施例4≫
 図23(a)上段に示すように、PCLシートに貫通型形状のノーマリークローズ・バルブを設けた以外は、実施例1と同様の方法で、デバイスを組み立てた。次いで、ヒーターでデバイスを加熱してPCLを変形させた。
図23(a)下段及び図23(b)下段に示すように、加熱によるノーマリークローズ・バルブの変形を、光学顕微鏡を用いて観察したところ、ノーマリークローズ・バルブは、加熱により開状態になっていることが確認された。
≪実施例5≫ 
流路の幅を2mmにスケールアップするとともに、全体を等比率でスケールアップした以外は、実施例1と同様の方法にてデバイスを作製した。シリンジポンプを用いて、青色色素を含む溶液をデバイスの流路に送液し、バルブの開閉状態を、光学顕微鏡を用いて観察した。
図24(a)は、加熱前の流路及びノーマリーオープン・バルブの正面図を示し、図24(b)は、加熱後の流路及びノーマリーオープン・バルブの正面図を示す。
図24に示されるように、ノーマリーオープン・バルブは、加熱により閉状態となり、青色色素を含む溶液の流れが堰き止められていることが確認された。
≪実施例6≫ 
実施例5と同様の方法にてデバイスを作製した。シリンジポンプを用いて、蛍光色素(0.05質量%スルフォローダミンB)を含む溶液をデバイスのマイクロ流路に送液し、マイクロヒーターを用いて、流路に0,11,22,44,66,110ジュールの熱量を加えていった。図25(a)は、ノーマリーオープン・バルブの開状態と閉状態を示す。図25(a)中、破線円で示す領域の蛍光強度を測定し、熱量を加えていない状態(0ジュール)の蛍光強度を1として、各熱量を加えたときの蛍光強度の比を算出した。結果を図25(c)に示す。
図25(c)に示すように、加えた熱量に依存して蛍光強度が減少することが確認された。図25(b)に示すように、流路に加える熱量が0ジュールのとき、ノーマリーオープン・バルブは、開状態であり、流路に加える熱量が22ジュールのとき(NORMALIZED VALVE OPENINGが0.5のとき)、ノーマリーオープン・バルブは、「半開き」状態であり、流路に加える熱量が66ジュールのとき、ノーマリーオープン・バルブは、ほぼ閉状態であった。このように、流路に加える熱量により、流体の流量を制御できることが確認された。
以上の結果から、本実施形態によれば、設計の自由度を奪われることなく、容易にバルブを作製することができ、容易に流体の流れを制御できることが明らかである。
簡便にかつ低コストで製造でき、流体の流れを簡便かつ自在に制御することができるバルブ、該バルブを備えたマイクロ流路デバイス、及び該バルブが配列されたバルブシート、並びに、該バルブシート及びマイクロ流路デバイスの製造方法を提供できる。
1,21,64,74,84,94…流路形成層、1a,21b,21c…堰、2,12,22,65,75,85,95…流路、3,13,23,60,70,80,90…シート、4,25,33,51,73,93,154,242…ノーマリー・オープンバルブ、5,24,34,52,63,83,153,243…ノーマリー・クローズバルブ、6,35,53,155…直列バルブ、30,57,141,241…マイクロ流体デバイス、31,146…駆動源、32…分岐流路、33a,34a,35a,153a,154a,155a,242a,243a…加熱手段、36…上流流路、37…分岐点、38,39,40…下流流路、50…バルブシート、54,55,56…流路、61…第1の凹部、62,82…エンドミル、66,76,86…型、71…第2の凹部、81…第1の貫通孔、91…第2の貫通孔、140…光熱変換層、147,148,149,150,151…液溜部、152…精製装置

Claims (21)

  1.  流路に配設された形状記憶ポリマーからなるバルブであって、変形することにより、前記流路中の流体の流れを調節することを特徴とするバルブ。
  2.  前記形状記憶ポリマーの少なくとも一部分が前記流路の少なくとも一部を形成する請求項1に記載のバルブ。
  3.  温度変化によって、前記流路中を前記流体が流れる状態とする開状態、又は前記流体の流れを堰き止めた状態とする閉状態、に変形可能である請求項1又は2に記載のバルブ。
  4.  加熱されることにより、前記流路中を前記流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブである請求項1又は2に記載のバルブ。
  5.  加熱されることにより、前記流路中の前記流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブである請求項1又は2に記載のバルブ。
  6.  加熱されることにより、前記流路中の前記流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブ、及び加熱されることにより、前記流路中を前記流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブが、直列的に配設されてなる直列バルブである請求項1又は2に記載のバルブ。
  7.  前記開状態は、前記閉状態をバイパスするための凹型形状を有する状態である請求項3~6のいずれか一項に記載のバルブ。
  8.  前記開状態は、前記閉状態をバイパスするための貫通型形状を有する状態である請求項3~6のいずれか一項に記載のバルブ。
  9.  生体分子が流される流路に配設された形状記憶ポリマーからなる構造体であって、加熱条件を制御することにより変形量が調節されることを特徴とした構造体。
  10.  前記変形量の調節に応じて所定の生体分子を堰き止めることを特徴とする請求項9に記載の構造体。
  11. 流路に配設された形状記憶ポリマーからなるバルブを備えた流体デバイスであって、
    前記バルブは、前記流路中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブ、前記流路中の流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブ、並びに、前記ノーマリークローズ・バルブ及び前記ノーマリーオープン・バルブが、直列的に配設されてなる直列バルブからなる群から選ばれる少なくとも一種であることを特徴とする流体デバイス。
  12. 流路に配設された形状記憶ポリマーからなるバルブを備えた流体デバイスであって、前記流体デバイスは、
    第一面に配置され、前記流路中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブと、
    第一面と対向した第二面に配置され、前記流路中の流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブと、
    を備え、      
    ノーマリーオープンバルブとノーマリークローズバルブとが、互いに対向して配置されたことを特徴とする流体デバイス。
  13. 流路に配設された形状記憶ポリマーからなる複数のバルブからなるポンプを備えた流体デバイスであって、
     前記複数のバルブは、前記流路中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブ、前記流路中の流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブ、並びに、前記ノーマリークローズ・バルブ及び前記ノーマリーオープン・バルブが、直列的に配設されてなる直列バルブからなる群から選ばれる二つ以上であることを特徴とする流体デバイス。
  14.  前記形状記憶ポリマーの少なくとも一部分の温度を変化させることによって、前記開状態及び前記閉状態を制御する手段を備えた請求項11~13のいずれか一項に記載の流体デバイス。
  15.  加熱条件を制御することにより前記形状記憶ポリマーの変形量を制御し、前記流路中の流体の流量を制御する加熱手段を備えた請求項11~14のいずれか一項に記載流体デバイス。
  16.  前記加熱手段として電極を備えた請求項15に記載の流体デバイス。
  17. 光吸収剤を用いた加熱手段を備えた請求項15に記載の流体デバイス。
  18. 形状記憶ポリマーからなるバルブが配列されたバルブシートであって、
    前記バルブは、流路中を流体が流れる状態とする開状態から、前記流体の流れを堰き止めた状態とする閉状態へと変形するノーマリーオープン・バルブ、前記流路中の前記流体の流れを堰き止めた状態とする閉状態から、前記流体が流れる状態とする開状態へと変形するノーマリークローズ・バルブ、並びに、前記ノーマリークローズ・バルブ及び前記ノーマリーオープン・バルブが、直列的に配設されてなる直列バルブからなる群から選ばれる少なくとも一種であることを特徴とするバルブシート。
  19.  形状記憶ポリマーからなるシートに、前記形状記憶ポリマーの融点未満の温度下で成形加工若しくは機械加工により、第1の凹部を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記第1の凹部に外力を加えて前記第1の凹部を平坦にし、前記シート上に、ノーマリークローズ・バルブを成形する工程、及び/又は、
    前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて、第2の凹部を設け、前記シート上に、ノーマリーオープン・バルブを成形する工程を有することを特徴とするバルブシートの製造方法。
  20. 形状記憶ポリマーからなるシートに、前記形状記憶ポリマーの融点未満の温度下で成形加工若しくは機械加工により、第1の貫通孔を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記第1の貫通孔に外力を加えて前記第1の貫通孔を平坦にし、前記シート上に、ノーマリークローズ・バルブを成形する工程、及び/又は、
    前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて、第2の貫通孔を設け、前記シート上に、ノーマリーオープン・バルブを成形する工程を有することを特徴とするバルブシートの製造方法。
  21.  バルブシートと流路形成層からなる流路デバイスの製造方法であって、
    形状記憶ポリマーからなるシートに、前記形状記憶ポリマーの融点未満の温度下で成形加工若しくは機械加工により、第1の凹部を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記第1の凹部に外力を加えて前記第1の凹部を平坦にし、前記シート上に、第1のノーマリークローズ・バルブを成形する工程、
    前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて、第2の凹部を設け、前記シート上に、第1のノーマリーオープン・バルブを成形する工程、
    前記形状記憶ポリマーの融点未満の温度下で成形加工若しくは機械加工により、第1の貫通孔を形成し、前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲内の温度下で、前記第1の貫通孔に外力を加えて前記第1の貫通孔を平坦にし、前記シート上に、第2のノーマリークローズ・バルブを成形する工程、及び、
    前記形状記憶ポリマーの形状回復温度以上融点未満の温度範囲の温度下で、前記シートに外力を加えて、第2の貫通孔を設け、前記シート上に、第2のノーマリーオープン・バルブを成形する工程からなる群から選ばれる少なくとも一工程を有するバルブシートの製造方法によりバルブシートを製造する第1工程と、
    前記第1工程において製造されたバルブシートと流路形成層とを積層する第2工程と、を有することを特徴とする流体デバイスの製造方法。
PCT/JP2013/057453 2012-04-12 2013-03-15 バルブ、マイクロ流体デバイス、マイクロ構造体、及びバルブシート、並びに、バルブシートの製造方法、及びマイクロ流体デバイスの製造方法 WO2013153912A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13776263.9A EP2837866A4 (en) 2012-04-12 2013-03-15 VALVE, MICROFLUIDIC DEVICE, MICROSTRUCTURE, VALVE SEAT, METHOD FOR MANUFACTURING VALVE SEAT, AND METHOD FOR MANUFACTURING MICROFLUIDIC DEVICE
JP2014510090A JP6304688B2 (ja) 2012-04-12 2013-03-15 バルブ、マイクロ流体デバイス、マイクロ構造体、及びバルブシート、並びに、バルブシートの製造方法、及びマイクロ流体デバイスの製造方法
US14/511,907 US20150028235A1 (en) 2012-04-12 2014-10-10 Valve, microfluidic device, microstructure, valve sheet, method of manufacturing valve sheet, and method of manufacturing microfluidic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012091089 2012-04-12
JP2012-091089 2012-04-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/511,907 Continuation US20150028235A1 (en) 2012-04-12 2014-10-10 Valve, microfluidic device, microstructure, valve sheet, method of manufacturing valve sheet, and method of manufacturing microfluidic device

Publications (1)

Publication Number Publication Date
WO2013153912A1 true WO2013153912A1 (ja) 2013-10-17

Family

ID=49327486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057453 WO2013153912A1 (ja) 2012-04-12 2013-03-15 バルブ、マイクロ流体デバイス、マイクロ構造体、及びバルブシート、並びに、バルブシートの製造方法、及びマイクロ流体デバイスの製造方法

Country Status (4)

Country Link
US (1) US20150028235A1 (ja)
EP (1) EP2837866A4 (ja)
JP (1) JP6304688B2 (ja)
WO (1) WO2013153912A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136551A1 (ja) * 2015-02-25 2016-09-01 国立大学法人東京大学 バルブ、流体デバイスおよび流体デバイスの製造方法
JP2018517576A (ja) * 2015-05-13 2018-07-05 ベルキン ビーブイBerkin B.V. バルブユニットを備える流体流動装置、および、その製造方法
KR101911983B1 (ko) 2011-07-12 2018-10-25 로베르트 보쉬 게엠베하 1회 사용 밸브를 갖는 mems 및 작동 방법
JPWO2019187294A1 (ja) * 2018-03-30 2021-04-08 富士フイルム株式会社 チップ、混合装置及び混合方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014062719A2 (en) 2012-10-15 2014-04-24 Nanocellect Biomedical, Inc. Systems, apparatus, and methods for sorting particles
EP3452404A4 (en) * 2016-05-06 2019-12-25 The Board of Trustees of the Leland Stanford Junior University ELASTOMER FOCUSING VALVES
CN108443579B (zh) 2018-04-11 2020-06-26 利多(香港)有限公司 一种能控制液体流动的微阀及微流控芯片
SE544148C2 (en) * 2018-10-02 2022-01-11 Tintron Ab Drainage device with pressure relief valve where the pump unit of the drainage device being a peristaltic pump and the drainage device having a preprogrammed drainage cycle
US11589425B2 (en) * 2019-05-24 2023-02-21 Rai Strategic Holdings, Inc. Shape memory material for controlled liquid delivery in an aerosol delivery device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384274A (ja) * 1989-08-24 1991-04-09 Matsushita Electric Ind Co Ltd 流体制御装置
JPH03181684A (ja) * 1989-12-11 1991-08-07 Matsushita Electric Ind Co Ltd 流体制御装置
JPH11257233A (ja) * 1999-01-22 1999-09-21 Japan Science & Technology Corp 液体マイクロポンプ
JP2002036196A (ja) * 2000-07-24 2002-02-05 National Institute Of Advanced Industrial & Technology 光駆動型集積化学システム
JP2003516129A (ja) 1999-11-04 2003-05-13 カリフォルニア・インスティテュート・オブ・テクノロジー ポリヌクレオチド配列を解析する方法および装置
WO2008105308A1 (ja) * 2007-02-27 2008-09-04 Konica Minolta Holdings, Inc. 流路切換システム
JP2009168216A (ja) * 2008-01-18 2009-07-30 Nagano Keiki Co Ltd マイクロチップ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3039583B2 (ja) * 1991-05-30 2000-05-08 株式会社日立製作所 バルブ及びそれを用いた半導体製造装置
US5325880A (en) * 1993-04-19 1994-07-05 Tini Alloy Company Shape memory alloy film actuated microvalve
DE19749011A1 (de) * 1996-11-19 1998-05-20 Lang Volker Mikroventil
US6958379B2 (en) * 1999-12-03 2005-10-25 Acushnet Company Polyurea and polyurethane compositions for golf equipment
US6565526B2 (en) * 2000-03-09 2003-05-20 The Regents Of The University Of California Bistable microvalve and microcatheter system
US7607634B2 (en) * 2004-03-12 2009-10-27 Gm Global Technology Operations, Inc. Shape memory polymer conduits and methods of use
US7168680B2 (en) * 2004-07-22 2007-01-30 Harris Corporation Embedded control valve using electroactive material
US20060036045A1 (en) * 2004-08-16 2006-02-16 The Regents Of The University Of California Shape memory polymers
US7976795B2 (en) * 2006-01-19 2011-07-12 Rheonix, Inc. Microfluidic systems
DE102006030068A1 (de) * 2006-06-28 2008-01-03 M2P-Labs Gmbh Vorrichtung und Verfahren zur Zu- und Abfuhr von Fluiden in geschüttelten Mikroreaktoren Arrays
EP2052160A2 (en) * 2006-08-09 2009-04-29 Koninklijke Philips Electronics N.V. Micro-fluidic system
US8002235B2 (en) * 2006-09-11 2011-08-23 California Institute Of Technology Electrically actuated valves made from shape memory alloy wires embedded in elastomer
DE102009049445A1 (de) * 2009-10-14 2011-05-26 Michael Borchardt Kontaktfreies emissionsinduziertes Mikroventil
TWI537314B (zh) * 2010-04-08 2016-06-11 國立清華大學 智慧型可變型態高分子微流體動力裝置及其製作方法
WO2011134038A1 (en) * 2010-04-26 2011-11-03 National Research Council Of Canada Semipermanently closed microfluidic valve
WO2012170068A2 (en) * 2011-06-05 2012-12-13 University Of British Columbia Wireless microactuators and control methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384274A (ja) * 1989-08-24 1991-04-09 Matsushita Electric Ind Co Ltd 流体制御装置
JPH03181684A (ja) * 1989-12-11 1991-08-07 Matsushita Electric Ind Co Ltd 流体制御装置
JPH11257233A (ja) * 1999-01-22 1999-09-21 Japan Science & Technology Corp 液体マイクロポンプ
JP2003516129A (ja) 1999-11-04 2003-05-13 カリフォルニア・インスティテュート・オブ・テクノロジー ポリヌクレオチド配列を解析する方法および装置
JP2002036196A (ja) * 2000-07-24 2002-02-05 National Institute Of Advanced Industrial & Technology 光駆動型集積化学システム
WO2008105308A1 (ja) * 2007-02-27 2008-09-04 Konica Minolta Holdings, Inc. 流路切換システム
JP2009168216A (ja) * 2008-01-18 2009-07-30 Nagano Keiki Co Ltd マイクロチップ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARC A. UNGER, SCIENCE, vol. 288, 2000, pages 113 - 116
See also references of EP2837866A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101911983B1 (ko) 2011-07-12 2018-10-25 로베르트 보쉬 게엠베하 1회 사용 밸브를 갖는 mems 및 작동 방법
WO2016136551A1 (ja) * 2015-02-25 2016-09-01 国立大学法人東京大学 バルブ、流体デバイスおよび流体デバイスの製造方法
JPWO2016136551A1 (ja) * 2015-02-25 2017-11-30 国立大学法人 東京大学 バルブ、流体デバイスおよび流体デバイスの製造方法
JP2018517576A (ja) * 2015-05-13 2018-07-05 ベルキン ビーブイBerkin B.V. バルブユニットを備える流体流動装置、および、その製造方法
JPWO2019187294A1 (ja) * 2018-03-30 2021-04-08 富士フイルム株式会社 チップ、混合装置及び混合方法
JP7123125B2 (ja) 2018-03-30 2022-08-22 富士フイルム株式会社 チップ、混合装置及び混合方法
US11448332B2 (en) 2018-03-30 2022-09-20 Fujifilm Corporation Chip, mixing device, and mixing method

Also Published As

Publication number Publication date
EP2837866A4 (en) 2016-01-27
JPWO2013153912A1 (ja) 2015-12-17
JP6304688B2 (ja) 2018-04-04
US20150028235A1 (en) 2015-01-29
EP2837866A1 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP6304688B2 (ja) バルブ、マイクロ流体デバイス、マイクロ構造体、及びバルブシート、並びに、バルブシートの製造方法、及びマイクロ流体デバイスの製造方法
D'eramo et al. Microfluidic actuators based on temperature-responsive hydrogels
De Mello Focus: plastic fantastic?
Sugiura et al. Photoresponsive polymer gel microvalves controlled by local light irradiation
Ter Schiphorst et al. Light-responsive polymers for microfluidic applications
Garcia-Cordero et al. Optically addressable single-use microfluidic valves by laser printer lithography
Kieviet et al. Stimulus-responsive polymers and other functional polymer surfaces as components in glass microfluidic channels
JP2007170469A (ja) 温度応答性バルブおよびその製造方法
Jadhav et al. Photoresponsive microvalve for remote actuation and flow control in microfluidic devices
WO2008042482A2 (en) Disposable, high pressure microfluidic chips
Woolf et al. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices
Attia et al. Integration of functionality into polymer-based microfluidic devices produced by high-volume micro-moulding techniques
Takehara et al. Novel microfluidic valve technology based on shape memory effect of poly (ε-caprolactone)
WO2016136551A1 (ja) バルブ、流体デバイスおよび流体デバイスの製造方法
Jiang et al. A multilayer lateral-flow microfluidic device for particle separation
EP1333937B1 (de) Verfahren zum verbinden von kunststoffteilen
Cheon et al. Intermediate layer-based bonding techniques for polydimethylsiloxane/digital light processing 3D-printed microfluidic devices
WO2017056638A1 (ja) マイクロ流路デバイス及び該マイクロ流路デバイスの製造方法
Shahini et al. Fabrication of electro-microfluidic channel for single cell electroporation
Fan et al. Rapid and low-cost hot-embossing of polycaprolactone microfluidic devices
JP2004077258A (ja) 流路切替方法および流路切替装置
CN108843855B (zh) 一种微流控系统及常闭微阀、控制方法
CN108591610B (zh) 一种微流控系统及微阀、控制方法
Malainou et al. The fabrication of a microcolumn for gas separation using poly (dimethylsiloxane) as the structural and functional material
Alvankarian et al. Consideration of nonuniformity in elongation of microstructures in a mechanically tunable microfluidic device for size-based isolation of microparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014510090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013776263

Country of ref document: EP