WO2013152674A1 - Système de commande de positionnement de rétroaction en boucle fermée double d'un applicateur d'échantillons et procédé de commande - Google Patents

Système de commande de positionnement de rétroaction en boucle fermée double d'un applicateur d'échantillons et procédé de commande Download PDF

Info

Publication number
WO2013152674A1
WO2013152674A1 PCT/CN2013/073422 CN2013073422W WO2013152674A1 WO 2013152674 A1 WO2013152674 A1 WO 2013152674A1 CN 2013073422 W CN2013073422 W CN 2013073422W WO 2013152674 A1 WO2013152674 A1 WO 2013152674A1
Authority
WO
WIPO (PCT)
Prior art keywords
control system
loop feedback
servo motor
positioning
inner loop
Prior art date
Application number
PCT/CN2013/073422
Other languages
English (en)
Chinese (zh)
Inventor
王振宇
魏显东
戴良
Original Assignee
无锡国盛精密模具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡国盛精密模具有限公司 filed Critical 无锡国盛精密模具有限公司
Publication of WO2013152674A1 publication Critical patent/WO2013152674A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42075Two position loops

Definitions

  • the invention relates to a biochip spotting instrument, in particular to a double closed loop feedback positioning control system and a control method for a biochip spotting instrument, which are used for precise control of spotting needle positioning.
  • biochip technology has revolutionized the fields of disease diagnosis and treatment, new drug development, molecular biology, forensic identification, food hygiene and environmental monitoring.
  • the emergence of biochips has provided humans with the ability to At the same time, the development of biochip technology has spawned the continuous development of biochip spotting technology that plays an important role in the industry chain.
  • spotting instruments are widely used in the preparation of biochips.
  • the existing spotting instruments also have the following disadvantages:
  • the degree of regularity that is, the degree of alignment of the points on the microarray, is an important indicator because it determines how easy it is to extract data from the microarray image. When the surface of the substrate and the preparation environment meet the requirements, it affects the regularity. The main factor of the degree is the accuracy of the spotter. At present, most of the spotting instruments have a positioning accuracy of ⁇ 10um, but with the influence of other factors, such as substrate placement, the positioning accuracy will be reduced, so this is not enough for high-quality microarray preparation.
  • the applicant has made research and improvement on the above problems, and provided a double closed loop feedback positioning control system and control method for the spotting instrument, which improves the positioning accuracy of the spotting needle and improves the regularity of the spotted substrate microarray. degree.
  • the present invention adopts the following technical solutions:
  • a double closed loop feedback positioning control system for a biochip spotting instrument comprising an inner loop feedback compensation system and an outer loop feedback compensation system
  • the inner loop feedback compensation system comprises an X-direction motion mechanism for driving the spot needle positioning, a Y-direction motion mechanism and The inner ring control system
  • the X-direction servo motor is connected to the X-direction moving mechanism
  • the Y-direction servo motor is connected to the Y-direction moving mechanism
  • the X-direction servo motor and the Y-direction servo motor are respectively provided with encoders
  • the encoder is connected to the inner ring control system.
  • the outer loop feedback compensation system includes an X-direction grating connected to the X-direction moving mechanism, an X-direction grating read head, a Y-direction grating head connected to the Y-direction moving mechanism, a Y-direction grating read head, an X-direction grating read head, and a Y-direction grating
  • the read head is connected to the outer ring control system; the encoder detects the X-direction servo motor and the Y-direction servo motor rotation number signal and feeds back to the inner loop control system to form an inner loop feedback signal; the X-direction grating read head and the Y-direction grating readout
  • the head detects the actual positioning position signal of the sample needle and feeds back to the outer loop control system to form an outer loop feedback signal, an inner loop feedback signal and an outer loop feedback signal.
  • the numbers together form a double closed loop control system.
  • the control method of the double closed loop feedback positioning control system of the biochip spotting instrument, the X-direction servo motor and the Y-direction servo motor rotating circle number signal detected by the encoder of the inner loop feedback compensation system are fed back to the inner ring by the pulse number
  • the inner loop control system calculates the difference between the number of pulses fed back and the set value of the inner loop of the target position of the sample needle.
  • the inner loop control system calculates the compensation pulse value to be corrected and sends it to the servo drive of the X-direction servo motor and the Y-direction servo motor, and drives the X-direction servo motor and the Y-direction servo motor to correct the position of the sample needle, and the inner loop feedback compensation system
  • the difference calculation is performed again until the difference is zero and the positioning completion signal is output; after receiving the positioning completion signal of the inner loop feedback compensation system, the X-direction grating read head and the Y-direction grating read head of the outer loop feedback compensation system will be spotted.
  • the actual positioning position value of the needle is fed back to the outer ring control system, and the actual positioning position value and the spotting needle position of the spotting needle by the outer ring control system
  • the outer ring set value of the target position is compared and the position error value of the sample pin is calculated. If the position error value exceeds the set position tolerance range, the feedback signal of the outer loop feedback compensation system is used to calculate the required compensation value.
  • the compensation value is converted into a pulse number and sent to the inner loop feedback compensation system to recalibrate the positioning point sample. If the position error value is within the set position tolerance range, the needle positioning is completed.
  • the double closed-loop feedback positioning control system and the control method of the spotting instrument disclosed by the invention are used for the initial positioning correction of the sample needle by the inner loop feedback compensation system, and the outer loop feedback compensation system corrects and compensates the spot needle positioning. Eliminate the positioning error of the spotting needle, improve the positioning accuracy of the spotting needle, and improve the point The regularity of the sample microarray is better, and the double-closed feedback positioning control ensures the success of the positioning judgment and improves the stability and reliability of the system.
  • Figure 1 is a schematic view of the structure of the present invention.
  • FIG. 2 is a flow chart of a control method of the present invention.
  • the double closed loop feedback positioning control system of the spotting instrument comprises an inner loop feedback compensation system and an outer loop feedback compensation system
  • the inner loop feedback compensation system comprises an X-direction motion mechanism 1 and a Y-direction motion mechanism 2, by X direction.
  • the moving mechanism 1 and the Y-moving mechanism 2 drive the spotting needle to perform the X-direction and the Y-direction movement, and position the position of the spotting needle relative to the spotting substrate, and the X-direction servo motor 3 is connected to the X-direction moving mechanism 1, Y.
  • the servo motor 4 is connected to the Y-direction moving mechanism 2, and the X-direction servo motor 3 and the Y-direction servo motor 4 are respectively provided with encoders (not shown), X-direction servo motor 3 and Y-direction servo motor 4
  • the encoder at the shaft end is connected to the inner loop control system.
  • the outer loop feedback compensation system includes an X-direction grating scale 5 connected to the X-direction motion mechanism 1, an X-direction grating read head 6 and a Y-direction grating scale 7 connected to the Y-direction motion mechanism 2, a Y-direction grating read head 8, and an X-direction grating scale.
  • the setting direction of 5 is parallel to the moving direction of the X-direction moving mechanism 1
  • the Y-direction grating 7 is set parallel to the moving direction of the Y-direction moving mechanism 2
  • the X-direction grating reading head 6 and the Y-direction grating reading head 8 are used as the outer ring feedback.
  • the positioning feedback sensor of the compensation system, the X-direction grating reading head 6 and the Y-direction grating reading head 8 are connected to the outer ring control system.
  • the encoder detects the X-direction servo motor 3 and the Y-direction servo motor 4 rotation number signal feedback to the inner loop control system to form an inner loop feedback signal; the X-direction grating read head 6 and the Y-direction grating read head 8 detect the spot needle
  • the actual positioning position signal is fed back to the outer loop control system to form an outer loop feedback signal.
  • the inner loop feedback signal and the outer loop feedback signal together form a double closed loop control system.
  • the inner loop control system and the outer loop control system are each provided by respective hardware. And software composition, manufactured according to the prior art design.
  • the encoder acts as a sensor for the inner loop feedback, and the detected X-direction servo motor 3 and the Y-direction servo motor 4 rotate the number of turns signal.
  • the pulse number is fed back to the inner loop control system.
  • the inner loop control system calculates the number of pulses fed back, and then calculates the hardware difference value with the inner loop set value (pulse number) of the target position of the sample needle. If it is zero, the positioning completion signal is output to the outer loop feedback compensation system; if the difference is not zero, the inner loop control system calculates the compensation pulse value to be corrected and sends it to the X servo motor 3 and the Y servo.
  • Servo motor 4 servo drive, X servo motor 3 and Y servo motor 4 rotate position pulse compensation, after the end of the rotation, the encoder again feedback the position signal to the inner loop control system by pulse number, inner loop control system The above difference calculation is performed again. If the difference is zero, the positioning completion signal is output, otherwise feedback compensation is performed again until the difference between the pulse value and the inner ring set value of the target position of the sample needle is zero.
  • the feedback signals of the inner loop feedback compensation system during the positioning correction process are the number of pulses of the number of rotations of the X-direction servo motor 3 and the Y-direction servo motor 4 which indirectly represent the displacement of the sample needle, and are not directly obtained by the actual spotting needle.
  • the inner loop feedback compensation system can compare the number of rotation pulses fed back by the encoder to the inner loop setting value of the target position of the sample needle in the inner loop control system, and send the difference directly.
  • the drive X is position-compensated to the servo motor 3 and the Y-direction servo motor 4.
  • the outer loop feedback compensation system When receiving the signal that the inner loop feedback compensation system is positioned, the outer loop feedback compensation system starts to work, and the X-direction grating read head 6 and the Y-direction grating read head 8 transmit the actual positioning position signal of the sample needle to the outer loop control system. After the hardware analysis of the signal, the outer loop control system finally obtains the actual position data of the sample needle, and the data is compared with the outer ring set value of the target position of the sample needle. If the difference is within the set tolerance range, If the difference is outside the set tolerance range, the outer loop control system calculates the displacement to be compensated, and converts the displacement into the number of pulses required to complete the compensation, and sends it to the inner loop feedback compensation system.
  • the inner loop feedback compensation system performs positioning correction on the spotting needle; after the inner loop feedback compensation system is positioned and corrected, the outer loop feedback compensation system detects the actual positioning position of the spotting needle again, and the outer loop control system determines that the positioning is successful within the tolerance range. On the contrary, the above process is repeated.
  • the outer loop feedback compensation system calculates the compensation value and sends it to the inner loop feedback compensation system again. The actual position of the positioning pin until spotted in the tolerance range of the set, the syringe positioning completion point.
  • the sampling needle can obtain an accurate positioning accuracy, and the positioning is completed immediately, but if the outer ring If the actual positioning position error of the spotting needle detected and calculated by the feedback compensation system exceeds the set tolerance range, it is necessary to perform the positioning correction compensation by the inner loop feedback compensation system for the third or more times.
  • the inner loop feedback compensation system and the outer loop feedback compensation system during the positioning process of the spotting needle, the inner loop setting value of the target needle target position of the inner loop feedback compensation system and the target position of the outer loop feedback compensation system The theoretical values of the outer ring set values are the same.
  • the unit of the inner ring set value is the number of pulses, and the outer ring set value is the actual size. Both represent the same meaning and can be converted to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

La présente invention concerne un système de commande de positionnement de rétroaction en boucle fermée double d'un applicateur d'échantillons et un procédé de commande associé. Le système est formé par un système de compensation de rétroaction en boucle interne et un système de compensation de rétroaction en boucle externe. Le système de compensation de rétroaction en boucle interne comprend un mécanisme de déplacement dans le sens des X entraînant le positionnement d'une aiguille d'application d'échantillons, un mécanisme de déplacement dans le sens des Y, et un système de commande en boucle interne. Le système de compensation de rétroaction en boucle externe comprend une règle à grille dans le sens des X et une tête de lecture de réseau dans le sens des X qui sont connectées au mécanisme de déplacement dans le sens des X, et une règle à grille dans le sens des Y et une tête de lecture de réseau dans le sens des Y qui sont connectées au mécanisme de déplacement dans le sens des Y. La tête de lecture de réseau dans le sens des X et la tête de lecture de réseau dans le sens des Y sont connectées à un système de commande en boucle externe. Le système de commande de positionnement de rétroaction en boucle fermée double garantit la réussite d'une évaluation de positionnement, et améliore la stabilité et la fiabilité de fonctionnement du système.
PCT/CN2013/073422 2012-04-10 2013-03-29 Système de commande de positionnement de rétroaction en boucle fermée double d'un applicateur d'échantillons et procédé de commande WO2013152674A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210101102.3 2012-04-10
CN2012101011023A CN102637018A (zh) 2012-04-10 2012-04-10 点样仪的双闭环反馈定位控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2013152674A1 true WO2013152674A1 (fr) 2013-10-17

Family

ID=46621435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073422 WO2013152674A1 (fr) 2012-04-10 2013-03-29 Système de commande de positionnement de rétroaction en boucle fermée double d'un applicateur d'échantillons et procédé de commande

Country Status (2)

Country Link
CN (1) CN102637018A (fr)
WO (1) WO2013152674A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637018A (zh) * 2012-04-10 2012-08-15 无锡国盛精密模具有限公司 点样仪的双闭环反馈定位控制系统及控制方法
CN103217324B (zh) * 2013-04-10 2015-06-17 上海裕隆生物科技有限公司 一种生物芯片点样仪
CN103712956B (zh) * 2014-01-15 2016-05-11 中国科学院化学研究所 一种微阵列点样装置
CN105785908B (zh) * 2016-03-24 2018-10-12 江苏科技大学 一种直流电机角位移数字伺服控制系统及控制方法
CN109613295A (zh) * 2018-12-14 2019-04-12 贵州大学 一种高通量液滴阵列微流体点样控制装置
CN111805301B (zh) * 2020-06-16 2022-06-10 深圳市裕展精密科技有限公司 量测装置及量测方法
CN115112047B (zh) * 2022-08-19 2022-12-20 南京木木西里科技有限公司 激光往复扫描系统及其方法
CN117351077A (zh) * 2023-09-14 2024-01-05 广东凯普科技智造有限公司 一种点样仪动态预测的视觉修正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004123A1 (fr) * 2000-07-06 2002-01-17 Robodesign International, Inc. Distribution de microreseaux avec verification et inspection en temps reel
US20070184546A1 (en) * 2005-12-02 2007-08-09 Hudson Control Group, Inc. Systems and methods for automated proteomics research
CN102637018A (zh) * 2012-04-10 2012-08-15 无锡国盛精密模具有限公司 点样仪的双闭环反馈定位控制系统及控制方法
CN202886933U (zh) * 2012-04-10 2013-04-17 无锡国盛精密模具有限公司 点样仪的双闭环反馈定位控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004123A1 (fr) * 2000-07-06 2002-01-17 Robodesign International, Inc. Distribution de microreseaux avec verification et inspection en temps reel
US20070184546A1 (en) * 2005-12-02 2007-08-09 Hudson Control Group, Inc. Systems and methods for automated proteomics research
CN102637018A (zh) * 2012-04-10 2012-08-15 无锡国盛精密模具有限公司 点样仪的双闭环反馈定位控制系统及控制方法
CN202886933U (zh) * 2012-04-10 2013-04-17 无锡国盛精密模具有限公司 点样仪的双闭环反馈定位控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN, XIANYONG ET AL.: "Two Closed-loop Controlled Biochip Microarrayer", CHINA INSTRUMENTATION, no. 11, November 2004 (2004-11-01), pages 37 - 38 *

Also Published As

Publication number Publication date
CN102637018A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
WO2013152674A1 (fr) Système de commande de positionnement de rétroaction en boucle fermée double d'un applicateur d'échantillons et procédé de commande
CN103123478B (zh) 同步控制装置
CN102649270B (zh) 机器人系统、机器人控制装置以及机器人控制方法
CN101050955A (zh) 回转窑筒体轴线动态测量方法及测控系统
CN105058388A (zh) 用于获取机器人关节位置反馈信息的传感器数据融合方法
CN109782815B (zh) 基于多轴联动系统的复杂型面自适应测量路径规划方法
CN104802802B (zh) 一种用于摆臂式履带机器人零位校准的误差辨识方法
CN100533102C (zh) 小模数齿轮传动误差测量方法
CN111366908A (zh) 一种激光雷达转台及其测量装置和测量方法
CN103226008A (zh) 测量齿轮形貌数据的同步采集方法
CN106862975A (zh) 一种激光自动对齿方法
CN110794878B (zh) 一种随动系统俯仰角度跟踪控制方法
CN110779556A (zh) 一种基于增量式编码器的电位计满量程角度标定装置及标定方法
US10500733B2 (en) Displacement detecting apparatus, torque detecting apparatus, robot apparatus and displacement detecting method
CN110617785B (zh) 基于调制周期光电检测的转盘偏心误差测量方法
CN2911606Y (zh) 隧道限界检测快速测量装置
CN202886933U (zh) 点样仪的双闭环反馈定位控制系统
CN109739128A (zh) 电动床及其控制方法
TW201041686A (en) Center calibration device and method for swing head main shaft
CN110617784B (zh) 转盘偏心误差测量方法
JP2008041011A (ja) 工作機械における位置補正方法
CN1256609C (zh) 精密旋转双棱镜光束扫描器及其控制方法
CN207423137U (zh) 一种凸轮测量装置
CN109556974A (zh) 一种板料平面内扭转测试装置及方法
CN109213109A (zh) 编码器分辨率检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13776271

Country of ref document: EP

Kind code of ref document: A1