WO2013152561A1 - 一种微波系统的同步与均衡联合设计方法和装置 - Google Patents

一种微波系统的同步与均衡联合设计方法和装置 Download PDF

Info

Publication number
WO2013152561A1
WO2013152561A1 PCT/CN2012/077405 CN2012077405W WO2013152561A1 WO 2013152561 A1 WO2013152561 A1 WO 2013152561A1 CN 2012077405 W CN2012077405 W CN 2012077405W WO 2013152561 A1 WO2013152561 A1 WO 2013152561A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
module
frequency offset
data
time
Prior art date
Application number
PCT/CN2012/077405
Other languages
English (en)
French (fr)
Inventor
曹南山
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP12873947.1A priority Critical patent/EP2838208B1/en
Publication of WO2013152561A1 publication Critical patent/WO2013152561A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03484Tapped delay lines time-recursive
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a synchronization and equalization combined design method and apparatus for a microwave system.
  • Microwave Communication is a technology that uses microwaves (electromagnetic waves with wavelengths between 0.1 mm and 1 m) to communicate. Microwave communication does not require a solid medium, and microwave transmission can be used when the distance between two points is unobstructed. The use of microwave for communication has a large capacity, good quality and can be transmitted to a long distance. Therefore, it is an important communication means of the national communication network, and is also widely applicable to various dedicated communication networks.
  • the main mode of microwave communication is line-of-sight communication. Relay forwarding is required after the line of sight is exceeded.
  • a relay station is required every 50 kilometers or so to extend and extend the radio wave. This type of communication, also known as microwave relay communication or microwave relay communication. Long-distance microwave communication trunks can be transmitted to thousands of kilometers after dozens of relays to maintain high communication quality.
  • the frequency bandwidth of the communication band has a large transmission information capacity.
  • the frequency band occupied by the microwave band is about 300 GHz, and the total frequency band occupied by all the long-wave, medium-wave and short-wave bands is less than 30 MHz.
  • a microwave relay communication device can accommodate thousands or even tens of thousands of voice channels at the same time, or transmit broadband signal signals such as TV image signals.
  • Microwave relay communication uses relay mode to achieve far-reaching on the ground Distance communication, and can cross special geographical environments such as swamps, rivers, and mountains. In the event of disasters such as earthquakes, floods, wars, etc., it is easier to establish and transfer communications, which are more flexible than wired communications.
  • the antenna has high gain and strong directivity.
  • the antenna gain is inversely proportional to the square of the operating wavelength. Since the working wavelength of microwave communication is short, the antenna size can be made small, and it is usually made into a planar antenna with high gain and strong directivity. This can reduce the output power of the microwave transmitter, and use the strong directivity of the microwave antenna to align the microwave electromagnetic wave propagation direction with the next receiving station, thereby reducing mutual interference in communication.
  • the synchronization and equalization design of the receiving end is an extremely basic and important part of microwave communication.
  • the synchronization and equalization design are two independent parts.
  • the synchronous module completes the system time and frequency synchronization
  • the equalization module completes the channel compensation.
  • the time-domain autocorrelation or cross-correlation technology commonly used in time synchronization by designing specific synchronization symbols, the receiver performs related search and completes time synchronization;
  • the frequency synchronization is mostly based on time synchronization, through design Synchronization symbols or pilots are used for estimation;
  • the design of the equalizer is mostly implemented with fractional tap filters, and generally has a feedback mechanism.
  • the technical problem solved by the present invention is to provide a synchronization and equalization joint design method and device for a microwave system to complete synchronization and equalization of the receiving end.
  • the present invention provides a synchronization and equalization joint design method in a microwave system, including:
  • the reception is adjusted according to the obtained synchronization position adjustment value.
  • the time coarse synchronization includes:
  • the maximum value of the delay correlation value is searched for, and the position corresponding to the maximum value of the delay correlation value is a coarse synchronization result.
  • the time synchronization is performed, including:
  • Performing FFT transform on the locally stored synchronization symbol to obtain a second frequency domain symbol sequence performing inverse fast Fourier transform (IFFT) on the ratio of the first frequency domain symbol sequence and the second frequency domain symbol sequence, Domain impulse response;
  • IFFT inverse fast Fourier transform
  • the maximum value of the time domain impulse response is searched for, and the position corresponding to the maximum value of the time domain impulse response is the synchronization position adjustment value.
  • the shifting the equalizer filter coefficient according to the synchronization position adjustment value includes:
  • the equalizer filter coefficient is shifted to the left by d data
  • the equalizer filter coefficient is shifted right by abs(d) data
  • abs(d) is the absolute value of d.
  • the performing channel equalization includes:
  • the equalizer filter coefficient is converged; when the received symbol is data, the data is input to the filter one by one, and the equalized data is filtered and output.
  • the present invention also provides a synchronization and equalization joint design device in a microwave system, the device comprising: a frequency synchronization module, configured to: perform frequency offset compensation on the received data according to the frequency offset estimation result;
  • Time coarse synchronization module which is set to: complete time coarse synchronization
  • a time fine synchronization module which is configured to: adjust a timing position of the received symbol according to the obtained synchronization position adjustment value
  • the adaptive equalizer is configured to: perform channel equalization after shifting the equalizer filter coefficients according to the synchronous position adjustment value.
  • the time coarse synchronization module includes a data cache module, a correlation calculation module, and a peak search module.
  • the data cache module is configured to: cache the received data
  • the correlation value calculation module is configured to: calculate a delay correlation value according to two consecutive synchronization symbols sent in the received data;
  • the peak search module is configured to: a maximum value of the delay correlation value, wherein a position corresponding to a maximum value of the delay correlation value is a coarse synchronization result.
  • the time fine synchronization module comprises a synchronization symbol buffer module, an FFT/IFFT module, and
  • the synchronization symbol cache module is configured to: extract N received data starting from a coarse synchronization result
  • the FFT/IFFT module is configured to: perform FFT transformation on the extracted N received data to obtain a first frequency domain symbol sequence; and perform FFT transformation on the locally stored synchronization symbol to obtain a second frequency domain symbol sequence.
  • the CIR estimation and search module is configured to: perform an IFFT transformation on a ratio of the first frequency domain symbol sequence to the second frequency domain symbol sequence to obtain a time domain impulse response; and search for the time domain impulse response.
  • the maximum value, the position corresponding to the maximum value of the time domain impulse response is the synchronization position adjustment value.
  • the frequency synchronization module includes a frequency offset estimation module and a frequency offset compensation module, and the frequency offset estimation module is configured to: estimate a carrier frequency offset;
  • the frequency offset compensation module is configured to: perform compensation of a carrier frequency offset according to the carrier frequency offset estimation result.
  • the adaptive equalizer comprises an error estimation module, a coefficient control module and a lateral filtering module,
  • the error estimation module is configured to: calculate an equalization error
  • the coefficient control module is configured to: complete shifting of equalizer filter coefficients
  • the horizontal filtering module is configured to: implement data filtering.
  • the embodiment of the present invention proposes a time synchronization scheme based on FFT (Fast Fourier Transform)/IFFT (Inverse Fast Fourier Transform), and jointly designs synchronization and equalization, thereby effectively improving the estimation performance of time synchronization.
  • FFT Fast Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • FIG. 1 is a schematic flowchart of a joint design of synchronization and equalization according to an embodiment of the present invention
  • 2 is a schematic diagram of a transmitted synchronization symbol
  • FIG. 3 is a schematic structural diagram of a synchronization and equalization joint design apparatus according to an embodiment of the present invention. Preferred embodiment of the invention
  • the present embodiment provides a synchronization and equalization joint design method for a microwave system, and uses the following scheme:
  • Frequency offset compensation Perform frequency offset compensation on the received data according to the frequency offset estimation result
  • Time coarse synchronization Calculate the delay correlation value according to the cached synchronization symbol, and search for the maximum value of the delay correlation value as the result of the time coarse synchronization;
  • Time fine synchronization adjust the timing position of the received symbol according to the obtained synchronization position adjustment value;
  • Frequency offset estimation Using a delay correlation algorithm, the frequency offset estimation result is obtained;
  • Adaptive equalization After the equalizer coefficients are shifted according to the synchronization position adjustment value, channel equalization is completed.
  • the synchronization position adjustment value may be obtained as follows: starting from the coarse synchronization result, extracting N received data and performing fast Fourier transform to obtain a first frequency domain symbol sequence;
  • the maximum value of the time domain impulse response is searched for, and the position corresponding to the maximum value of the time domain impulse response is the synchronization position adjustment value.
  • the synchronization and equalization joint design flow of the microwave system in this embodiment mainly includes the following steps: Step 1: Perform frequency offset compensation on the received data according to the frequency offset value output by the frequency offset estimation module. Step 2: Cache the received data and calculate the delay correlation value based on the two complete consecutive synchronization symbols in the data.
  • the synchronization symbol is a known sequence constrained by both the transmitting and receiving parties, and two synchronization symbols are continuously transmitted each time, as shown in FIG. 2 .
  • the third step Search for the maximum value of y, the position corresponding to the maximum value is the result of the coarse synchronization.
  • the fourth step taking the coarse synchronization result as a starting point, extracting N received data a(n), and performing FFT transformation to obtain N frequency domain symbols A(n), where N is a positive integer.
  • This step can be implemented by directly storing B(k) locally in advance.
  • Step 6 Calculate the time domain impulse response.
  • a single-tap channel estimation algorithm can be used to calculate the frequency domain channel.
  • the IFFT transform is performed on the frequency domain channel response, and the time domain impulse response c(n) can be obtained.
  • Step 7 Search for the maximum value of c(n).
  • the position of the maximum value is the synchronous position adjustment value d.
  • the system adjusts the timing position of the received symbol based on the value of the synchronous position adjustment value d.
  • Step 8 Frequency offset estimation.
  • a typical delay correlation algorithm can be used to delay the correlation of the repeatedly transmitted training sequences, and the dephasing is used to calculate the phase angle.
  • the carrier frequency offset can be estimated by the phase angle and the sampling time. Pilots, pilots can also be used for frequency offset estimation.
  • Step 9 Perform frequency offset compensation on the received data according to the frequency offset estimation result (ie, the estimated carrier frequency offset).
  • the frequency offset compensation is located before the time coarse synchronization, and the specific compensation method is to perform corresponding phase rotation on each received data.
  • Step 10 Shift the filter coefficient of the equalizer according to the synchronous position adjustment value d.
  • the filter coefficient is shifted to the left by d data, followed by 0; otherwise, the filter coefficient is shifted right by abs(d) data, and 0 is filled in front.
  • abs means to find an absolute value operation.
  • Step 11 Perform equalization filtering. This step is common adaptive equalization. It can use LMS (Least mean square) or other adaptive algorithm. The filter structure is multi-tap FIR. This algorithm has been very common and mature, and will not be described here.
  • the embodiment of the present invention further provides a synchronization and equalization joint design device in a microwave system, and the device mainly includes the following modules:
  • Time coarse synchronization module used to complete time coarse synchronization.
  • Time fine synchronization module used to complete time fine synchronization.
  • Frequency synchronization module used to complete frequency synchronization.
  • An adaptive equalizer for channel equalization is an adaptive equalizer for channel equalization.
  • the time coarse synchronization module further includes a data cache module, a correlation value calculation module, and a peak search module.
  • a data cache module configured to store received data
  • a correlation value calculation module configured to calculate a delay correlation value at each moment
  • a peak search module configured to search for a maximum delay correlation value.
  • the time fine synchronization module further includes a synchronization symbol buffer module, an FFT/IFFT module, a time domain impulse response (CIR) estimation, and a search module.
  • a synchronization symbol buffer module configured to buffer the received synchronization symbol and sent to the frequency offset estimation module; an FFT/IFFT module for implementing FFT and IFFT transformation; and a CIR estimation and search module for implementing time domain impulse response estimation, And search for the largest time domain impulse response value.
  • the frequency synchronization module further includes a frequency offset estimation module and a frequency offset compensation module.
  • a frequency offset estimation module is used to implement carrier frequency offset estimation; a frequency offset compensation module is used to complete carrier frequency offset compensation.
  • the adaptive equalizer described above further includes an error estimation module, a coefficient control module, and a lateral filtering module.
  • An error calculation module is configured to calculate an equalization error value;
  • a coefficient control module is configured to perform shifting and updating of the filter coefficients according to the fine synchronization position and the calculated equalization error value; and
  • a transverse filtering module for implementing data filtering.
  • Step 101 Cache data of two synchronization symbol lengths, and calculate a delay correlation value. Specifically, the following calculation method may be used:
  • N is the length of the sync symbol.
  • Step 102 Search for the maximum value of y, and the position corresponding to the maximum value is the result of the coarse synchronization.
  • Step 103 Extracting N received data a(n) starting from the coarse synchronization result, and performing FFT transformation to obtain N frequency domain symbols A(n).
  • Step 104 Perform FFT transformation on the locally stored synchronization symbol b(n) to obtain B(k).
  • Step 105 Calculate the time domain impulse response, and calculate the method as follows:
  • Step 106 Search for the maximum value of c(n), and the position of the maximum value is the synchronization position adjustment value d.
  • Step 107 frequency offset estimation, using a typical delay correlation algorithm, the estimation method is as follows:
  • Step 108 Perform frequency offset compensation on the received data according to the frequency offset estimation result:
  • phase rotation can be realized by using a lookup table or a CORDIC (Coordinate Rotation Digital Computer) algorithm.
  • Step 109 Shift the equalizer coefficient according to the synchronous position adjustment value d.
  • Coef_new is the filter coefficient after fine synchronization adjustment
  • Coef_old is the historical value of the filter coefficient
  • k is the filter order.
  • Step 110 Adaptive equalization.
  • the equalization coefficient is converged by the LMS algorithm; when the received symbol is data, the data is input to the filter one by one, and the equalized data is filtered and output.
  • the embodiment of the present invention effectively avoids the reconvergence of the equalizer when the synchronization position is adjusted by using the synchronous and equalization joint design. Meanwhile, the synchronization can be based on the current The situation adjusts the synchronization position at any time to avoid the synchronous drift caused by the error of the sample clock; in addition, by replacing the traditional local correlation with the delay correlation, the resource overhead of the correlator is greatly reduced.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any particular combination of hardware and software.
  • the synchronization position can be adjusted at any time according to the current situation during synchronization to avoid the accumulation of synchronous drift caused by the error of the sample clock.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

微波系统中同步与均衡联合设计方法和装置,根据频偏估计结果,对接收数据进行频偏补偿;完成时间粗同步和时间精同步后,根据得到的同步位置调整值调整接收符号的定时位置;并根据同步位置调整值对均衡器滤波系数进行移位后,完成信道均衡。采用该方案,当同步位置发生调整时,能够有效避免均衡器的重新收敛问题。

Description

一种微波系统的同步与均衡联合设计方法和装置
技术领域
本发明涉及无线通信技术领域, 尤其涉及一种微波系统的同步与均衡联 合设计方法和装置。
背景技术
微波通信( Microwave Communication )是使用微波(波长在 0.1毫米至 1 米之间的电磁波)进行通信的技术。 微波通信不需要固体介质, 当两点间直 线距离内无障碍时就可以使用微波传送。 利用微波进行通信具有容量大、 质 量好并可传至很远的距离, 因此是国家通信网的一种重要通信手段, 也广泛 适用于各种专用通信网。
由于微波的频率极高, 波长又很短, 其在空中的传播特性与光波相近, 也就是直线前进, 遇到阻挡就被反射或被阻断, 因此, 微波通信的主要方式 是视距通信, 超过视距以后需要中继转发。 一般说来, 由于地球曲面的影响 以及空间传输的损耗, 每隔 50公里左右, 就需要设置中继站, 将电波放大转 发而延伸。 这种通信方式, 也称为微波中继通信或称微波接力通信。 长距离 微波通信干线可以经过几十次中继而传至数千公里仍可保持很高的通信质 量。
微波通信的主要优点为:
1 )通信频段的频带宽,传输信息容量大。微波频段占用的频带约 300GHz, 而全部长波、 中波和短波频段占有的频带总和不足 30MHz。 一套微波中继通 信设备可以容纳几千甚至上万条话路同时工作, 或传输电视图像信号等宽频 带信号。
2 )通信稳定、 可靠。 当通信频率高于 100MHz时,工业干扰、 天电干扰 及太阳黑子的活动对其影响小。 由于微波频段频率高, 这些干扰对微波通信 的影响极小。
3 )通信灵活性较大。 微波中继通信釆用中继方式, 可以实现地面上的远 距离通信, 并且可以跨越沼泽、 江河、 高山等特殊地理环境。 在遭遇地震、 洪水、 战争等灾祸时, 通信的建立及转移都较容易, 这些方面比有线通信具 有更大的灵活性。
4 )天线增益高、 方向性强。 当天线面积给定时, 天线增益与工作波长的 平方成反比。 由于微波通信的工作波长短, 天线尺寸可做得很小, 通常做成 增益高, 方向性强的面式天线。 这样可以降低微波发信机的输出功率, 利用 微波天线强的方向性使微波电磁波传播方向对准下一接收站, 减少通信中的 相互干扰。
5 )投资少、 建设快。 与其它有线通信相比, 在通信容量和质量基本相同 的条件下, 按话路公里计算, 微波中继通信线路的建设费用低, 建设周期短。
在微波通信中, 接收端的同步与均衡设计都是微波通信极为基础和重要 的部分。 传统的微波接收端中, 同步和均衡设计是两个独立的部分, 同步模 块完成系统时间及频率同步, 均衡模块完成信道补偿。 其中, 时间同步普遍 釆用的时域自相关或互相关技术, 通过设计特定的同步符号, 接收机进行相 关搜索, 完成时间上同步; 频率同步大多建立在时间同步的基础之上, 通过 设计的同步符号或者导频进行估计; 均衡器的设计大多釆用分数倍的抽头滤 波器实现, 一般还会带有反馈机制。 这些传统的设计, 将同步和均衡完全独 立, 导致同步设计受到很大限制, 当出现同步偏移及恢复时, 会导致均衡器 重新收敛, 致使影响接收解码; 同时, 时间同步也大都限制在时域范围之内, 在恶劣环境下的性能难以保证。 发明内容
本发明解决的技术问题是提供一种微波系统的同步与均衡联合设计方法 和装置, 以完成接收端的同步及均衡。
为解决上述技术问题, 本发明提供了一种微波系统中同步与均衡联合设 计方法, 包括:
根据频偏估计结果, 对接收数据进行频偏补偿;
完成时间粗同步和时间精同步后, 根据得到的同步位置调整值调整接收 符号的定时位置;并根据所述同步位置调整值对均衡器滤波系数进行移位后, 完成信道均衡。
优选地, 所述时间粗同步, 包括:
緩存接收到的数据, 并根据所述数据中发送的两个连续的同步符号, 计 算延迟相关值;
搜索所述延迟相关值的最大值, 所述延迟相关值的最大值所对应的位置 即为粗同步结果。
优选地, 所述时间精同步, 包括:
以粗同步结果为起点, 提取 N个接收数据并进行快速傅立叶变换 (FFT), 得到第一频域符号序列;
对本地存储的同步符号进行 FFT变换后, 得到第二频域符号序列; 对所述第一频域符号序列与所述第二频域符号序列的比值进行逆快速傅 立叶变换 (IFFT), 得到时域冲击响应;
搜索所述时域冲击响应的最大值, 所述时域冲击响应的最大值所对应的 位置即为所述同步位置调整值。
优选地, 所述的根据所述同步位置调整值对均衡器滤波系数进行移位, 包括:
如果所述同步位置调整值 d=0, 则均衡器滤波系数保持不变;
如果 d>0, 则将均衡器滤波系数左移 d个数据;
如果 d<0, 则将均衡器滤波系数右移 abs(d)个数据;
其中, abs(d)为 d的绝对值。
优选地, 所述的完成信道均衡, 包括:
当接收符号为同步符号或者导频时, 对均衡器滤波系数进行收敛; 接收符号为数据时, 将数据逐个输入滤波器, 滤波输出均衡后的数据。 此外, 本发明还提供了一种微波系统中同步与均衡联合设计装置, 所述 装置包括: 频率同步模块, 其设置为: 根据频偏估计结果, 对接收数据进行频偏补 偿;
时间粗同步模块, 其设置为: 完成时间粗同步;
时间精同步模块, 其设置为: 根据得到的同步位置调整值调整接收符号 的定时位置;
自适应均衡器, 其设置为: 根据所述同步位置调整值对均衡器滤波系数 进行移位后, 完成信道均衡。
优选地, 所述时间粗同步模块包括数据緩存模块、 相关计算模块和峰值 搜索模块,
所述数据緩存模块设置为: 緩存接收到的数据;
所述相关值计算模块设置为: 根据所述接收到的数据中发送的两个连续 的同步符号, 计算延迟相关值;
所述峰值搜索模块设置为: 所述延迟相关值的最大值, 其中所述延迟相 关值的最大值所对应的位置即为粗同步结果。
优选地, 所述时间精同步模块包括同步符号緩存模块、 FFT/IFFT模块和
CIR估计及搜索模块;
所述同步符号緩存模块设置为: 以粗同步结果为起点, 提取 N个接收数 据;
所述 FFT/IFFT模块设置为: 对提取的所述 N个接收数据进行 FFT变换, 得到第一频域符号序列; 以及, 对本地存储的同步符号进行 FFT变换后, 得 到第二频域符号序列; 所述 CIR估计及搜索模块设置为: 对所述第一频域符号序列与所述第二 频域符号序列的比值进行 IFFT变换, 得到时域冲击响应; 并搜索所述时域冲 击响应的最大值, 所述时域冲击响应的最大值所对应的位置即为所述同步位 置调整值。
优选地, 所述频率同步模块包括频偏估计模块和频偏补偿模块, 所述频偏估计模块设置为: 估计载波频偏; 所述频偏补偿模块设置为: 根据所述载波频偏估计结果, 完成载波频偏 的补偿。
优选地, 所述自适应均衡器包括误差估计模块、 系数控制模块和横向滤 波模块,
所述误差估计模块设置为: 计算均衡误差;
所述系数控制模块设置为: 完成均衡器滤波系数的移位;
所述横向滤波模块设置为: 实现数据滤波。
综上所述, 本发明实施例提出了一种基于 FFT (快速傅立叶变换 )/IFFT (逆 快速傅立叶变换)的时间同步方案, 并将同步和均衡进行联合设计, 有效提高 了时间同步的估计性能, 同时, 解决了均衡器对同步调整的限制, 提高了接 收机的整体性能。 附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1为本发明实施例的同步与均衡联合设计的流程示意图;
图 2为发送的同步符号的示意图;
图 3为本发明实施例的同步与均衡联合设计装置的结构示意图。 本发明的较佳实施方式
如图 1所示,本实施方式提供一种微波系统的同步与均衡联合设计方法, 釆用如下方案:
频偏补偿: 根据频偏估计结果, 对接收数据进行频偏补偿;
时间粗同步: 根据緩存的同步符号计算延迟相关值, 并搜索延迟相关值 的最大值作为时间粗同步的结果;
时间精同步: 根据得到的同步位置调整值调整接收符号的定时位置; 频偏估计: 釆用延迟相关算法, 得出频偏估计结果;
自适应均衡: 根据所述同步位置调整值对均衡器系数进行移位后, 完成 信道均衡。
具体地, 所述时间精同步中, 可按照以下方式得到同步位置调整值: 以粗同步结果为起点, 提取 N个接收数据并进行快速傅立叶变换, 得到 第一频域符号序列;
对本地存储的同步符号进行 FFT变换后, 得到第二频域符号序列; 对第一频域符号序列与第二频域符号序列的比值进行逆快速傅立叶变 换, 得到时域冲击响应;
搜索时域冲击响应的最大值, 该时域冲击响应的最大值所对应的位置即 为所述同步位置调整值。
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
本实施例的微波系统的同步与均衡联合设计流程, 主要包括如下步骤: 第一步: 根据频偏估计模块输出的频偏值, 对接收数据进行频偏补偿。 第二步: 緩存接收到的数据, 根据数据中的两个完整的连续的同步符号, 计算延迟相关值 。
其中, 同步符号为收发双方约束好的已知序列, 每次连续发送 2个同步 符号, 如图 2所示。
第三步: 搜索 y的最大值, 最大值所对应的位置即为粗同步的结果。 第四步: 以粗同步结果为起点, 提取 N个接收数据 a(n), 并进行 FFT变 换, 得到 N个频域符号 A(n), 其中, N为正整数。
第五步: 对本地存储的同步符号 b(n)进行 FFT变换, 得到 N个频域符号 B(k), k=0,l,…… ,N-1。
该步骤可以事先在本地直接存储 B(k)即可实现。
第六步: 计算时域冲击响应。
利用 A(n)、 B(k)序列, 釆用单抽头信道估计算法, 可计算得到频域信道 响应 , 再对频域信道响应进行 IFFT变换 , 可以得到时域冲击响应 c(n)。
第七步: 搜索 c(n)的最大值, 最大值的位置即为同步位置调整值 d。 系统根据同步位置调整值 d的数值, 调整接收符号的定时位置。
第八步: 频偏估计。
可釆用典型的延迟相关算法, 对重复发送的训练序列进行延迟相关, 并 釆用累加去噪, 计算其相角, 通过相角和釆样时间可以估计出载波频偏。 导频, 也可以使用导频进行频偏估计。
第九步: 根据频偏估计结果(即估计出的载波频偏) , 对接收数据进行 频偏补偿。
其中, 频偏补偿位于时间粗同步之前, 具体补偿方法为对各个接收数据 进行相应的相位旋转。
第十步: 根据同步位置调整值 d, 对均衡器的滤波系数进行移位。
具体地, 如果 d>0, 则滤波系数左移 d个数据, 后面填 0; 否则, 滤波器 系数右移 abs(d)个数据, 前面填 0。 "abs"表示求绝对值运算。
第十一步: 进行均衡滤波, 该步骤即为普通的自适应均衡, 可釆用 LMS ( Least mean square, 最小均方算法)或者其他自适应算法, 滤波器结构为多 抽头 FIR。 该算法已经非常普遍和成熟, 此处不再赘述。
如图 3所示, 本发明实施例中还提供了一种微波系统中同步与均衡联合 设计装置, 该装置主要包括以下几个模块:
时间粗同步模块, 用于完成时间粗同步。
时间精同步模块, 用于完成时间精同步。
频率同步模块, 用于完成频率同步。
自适应均衡器, 用于完成信道均衡。
其中, 上述的时间粗同步模块, 又包括数据緩存模块、 相关值计算模块 和峰值搜索模块。 数据緩存模块, 用于存储接收数据; 相关值计算模块, 用 于计算各个时刻的延迟相关值; 峰值搜索模块, 用于搜索最大延迟相关值。 其中, 上述的时间精同步模块, 又包括同步符号緩存模块、 FFT/IFFT模 块、 时域冲击响应 (CIR)估计及搜索模块。 同步符号緩存模块, 用于緩存接收 到的同步符号,并发送给频偏估计模块; FFT/IFFT模块,用于实现 FFT和 IFFT 变换; CIR估计及搜索模块, 用于实现时域冲击响应估计, 并搜索最大的时 域冲击响应值。
其中, 上述的频率同步模块, 又包括频偏估计模块和频偏补偿模块。 频 偏估计模块, 用于实现载波频偏估计; 频偏补偿模块, 用于完成载波频偏的 补偿。
其中, 上述的自适应均衡器, 又包括误差估计模块、 系数控制模块和横 向滤波模块。 误差计算模块, 用于计算均衡误差值; 系数控制模块, 用于根 据精同步位置和计算的均衡误差值完成滤波系数的移位和更新; 横向滤波模 块, 用于实现数据滤波。
以下将给出一个具体实例对本发明的实施作进一步详细说明。 该具体实 例, 主要包括如下步骤:
步骤 101、 緩存两个同步符号长度的数据, 计算延迟相关值, 具体可以 釆用如下计算方法:
N-1
y(j) = ^ x(i) * x(i + N)'
i=0 其中, N为同步符号的长度。
步骤 102、 搜索 y的最大值, 最大值所对应的位置即为粗同步的结果。 步骤 103、 以粗同步结果为起点, 提取 N个接收数据 a(n), 并进行 FFT 变换, 得到 N个频域符号 A(n)。
步骤 104、 对本地存储的同步符号 b(n)进行 FFT变换, 得到 B(k)。
步骤 105、 计算时域冲击响应, 计算方法如下:
C(k)=A(k)/B(k);
c(n)=IFFT[C(k)]。
步骤 106、 搜索 c(n)的最大值, 最大值的位置即为同步位置调整值 d。 步骤 107、 频偏估计, 釆用典型的延迟相关算法, 估计方法如下:
Af = arg[∑)M =0 a{_1)k * a- k]
2π * N * Ts 其中, arg表示求角度, M为多次累加的个数, N为同步符号长度, Ts 为每个数据的长度; M = 1 ,表示釆用连续的两个同步符号进行一次频偏估计。
步骤 108、 根据频偏估计结果, 对接收数据进行频偏补偿:
a(n) = a(n) * θ)*Δ **η*τ^ 其中, a(n)为频偏补偿之后的数据, Af为频偏估计值, Ts为釆样间隔。 根据实际情况, 可釆用查找表或者 CORDIC ( Coordinate Rotation Digital Computer, 坐标旋转数字计算方法)算法来实现相位旋转。
步骤 109、 根据同步位置调整值 d, 对均衡器系数进行移位。
如果 d<0, 则滤波系数循环左移 d个数据, 后面填充 d个 0; 如果 d>0, 则滤波器系数右移 abs(d)个数据, 前面填充 abs(d)个 0。 具体操作如下:
如果 d=0, 系数不做调整;
如果 d>0,将 Coef— old的后 k-d个数据赋值给 Coef— new的前 k-d个数据, Coef— new其余系数赋 0;
如果 d<0 ,将 Coef— old的前 k+d个数据赋值给 Coef— new的后 k+d个数据, Coef— new其余系数赋 0。
其中 Coef— new为根据精同步调整之后的滤波器系数, Coef— old为滤波器 系数的历史值; k为滤波器阶数。
步骤 110、 自适应均衡。
当接收符号为同步符号或者导频时,利用 LMS算法对均衡器系数进行收 敛; 当接收符号为数据时, 逐个数据输入滤波器, 滤波输出均衡后的数据。
综上所述, 本发明实施例通过釆用同步与均衡联合设计, 在同步位置发 生调整时, 有效避免了均衡器的重新收敛问题; 同时, 同步时可以根据当前 状况随时调整同步位置, 避免釆样钟误差导致的同步漂移; 此外, 通过用延 迟相关替换了传统的本地相关, 极大的减小了相关器的资源开销。
以上仅为本发明的优选实施案例而已, 并不用于限制本发明, 本发明还 可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域 的技术人员可根据本发明做出各种相应的改变和变形, 但这些相应的改变和 变形都应属于本发明所附的权利要求的保护范围。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。
工业实用性 釆用上述技术方案后, 至少具有如下有益效果:
1.釆用同步、 均衡联合设计, 同步位置发生调整时, 有效避免了均衡器 的重新收敛问题;
2.釆用 FFT/IFFT方法进行时间同步,用延迟相关替换了传统的本地相关, 极大的减小了相关器的资源开销;
3.釆用联合设计的结构后, 同步时可以才艮据当前状况随时调整同步位置, 避免釆样钟误差导致的同步漂移累积。

Claims

权 利 要 求 书
1、 一种微波系统中同步与均衡联合设计方法, 包括:
根据频偏估计结果, 对接收数据进行频偏补偿;
完成时间粗同步和时间精同步后, 根据得到的同步位置调整值调整接收 符号的定时位置;并根据所述同步位置调整值对均衡器滤波系数进行移位后, 完成信道均衡。
2、 如权利要求 1所述的方法, 其中, 所述时间粗同步, 包括:
緩存接收到的数据, 并根据所述数据中发送的两个连续的同步符号, 计 算延迟相关值;
搜索所述延迟相关值的最大值, 所述延迟相关值的最大值所对应的位置 即为粗同步结果。
3、 如权利要求 1或 2所述的方法, 其中, 所述时间精同步, 包括: 以粗同步结果为起点, 提取 N个接收数据并进行快速傅立叶变换 (FFT), 得到第一频域符号序列;
对本地存储的同步符号进行 FFT变换后, 得到第二频域符号序列; 对所述第一频域符号序列与所述第二频域符号序列的比值进行逆快速傅 立叶变换 (IFFT), 得到时域冲击响应;
搜索所述时域冲击响应的最大值, 所述时域冲击响应的最大值所对应的 位置即为所述同步位置调整值。
4、 如权利要求 1所述的方法, 其中,
所述的根据所述同步位置调整值对均衡器滤波系数进行移位, 包括: 如果所述同步位置调整值 d=0, 则均衡器滤波系数保持不变;
如果 d>0, 则将均衡器滤波系数左移 d个数据;
如果 d<0, 则将均衡器滤波系数右移 abs(d)个数据;
其中, abs(d)为 d的绝对值。
5、 如权利要求 1或 4所述的方法, 其中, 所述的完成信道均衡, 包括:
当接收符号为同步符号或者导频时, 对均衡器滤波系数进行收敛; 接收符号为数据时, 将数据逐个输入滤波器, 滤波输出均衡后的数据。
6、 一种微波系统中同步与均衡联合设计装置, 所述装置包括:
频率同步模块, 其设置为: 根据频偏估计结果, 对接收数据进行频偏补 偿;
时间粗同步模块, 其设置为: 完成时间粗同步;
时间精同步模块, 其设置为: 根据得到的同步位置调整值调整接收符号 的定时位置;
自适应均衡器, 其设置为: 根据所述同步位置调整值对均衡器滤波系数 进行移位后, 完成信道均衡。
7、 如权利要求 6所述的装置, 其中, 所述时间粗同步模块包括数据緩存 模块、 相关计算模块和峰值搜索模块,
所述数据緩存模块设置为: 緩存接收到的数据;
所述相关值计算模块设置为: 根据所述接收到的数据中发送的两个连续 的同步符号, 计算延迟相关值;
所述峰值搜索模块设置为: 所述延迟相关值的最大值, 其中所述延迟相 关值的最大值所对应的位置即为粗同步结果。
8、 如权利要求 6所述的装置, 其中, 所述时间精同步模块包括同步符号 緩存模块、 FFT/IFFT模块和 CIR估计及搜索模块;
所述同步符号緩存模块设置为: 以粗同步结果为起点, 提取 N个接收数 据;
所述 FFT/IFFT模块设置为: 对提取的所述 N个接收数据进行 FFT变换, 得到第一频域符号序列; 以及, 对本地存储的同步符号进行 FFT变换后, 得 到第二频域符号序列;
所述 CIR估计及搜索模块设置为: 对所述第一频域符号序列与所述第二 频域符号序列的比值进行 IFFT变换, 得到时域冲击响应; 并搜索所述时域冲 击响应的最大值, 所述时域冲击响应的最大值所对应的位置即为所述同步位 置调整值。
9、 如权利要求 6所述的装置, 其中, 所述频率同步模块包括频偏估计模 块和频偏补偿模块,
所述频偏估计模块设置为: 估计载波频偏;
所述频偏补偿模块设置为: 根据所述载波频偏估计结果, 完成载波频偏 的补偿。
10、 如权利要求 6所述的装置, 其中, 所述自适应均衡器包括误差估计 模块、 系数控制模块和横向滤波模块,
所述误差估计模块设置为: 计算均衡误差;
所述系数控制模块设置为: 完成均衡器滤波系数的移位;
所述横向滤波模块设置为: 实现数据滤波。
PCT/CN2012/077405 2012-04-12 2012-06-25 一种微波系统的同步与均衡联合设计方法和装置 WO2013152561A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12873947.1A EP2838208B1 (en) 2012-04-12 2012-06-25 Synchronization and equalization combined design method and device for microwave system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210107241.7 2012-04-12
CN201210107241.7A CN103379061B (zh) 2012-04-12 2012-04-12 一种微波系统的同步与均衡联合设计方法和装置

Publications (1)

Publication Number Publication Date
WO2013152561A1 true WO2013152561A1 (zh) 2013-10-17

Family

ID=49327035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077405 WO2013152561A1 (zh) 2012-04-12 2012-06-25 一种微波系统的同步与均衡联合设计方法和装置

Country Status (3)

Country Link
EP (1) EP2838208B1 (zh)
CN (1) CN103379061B (zh)
WO (1) WO2013152561A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112422472A (zh) * 2020-11-09 2021-02-26 上海微波技术研究所(中国电子科技集团公司第五十研究所) 联合频偏估计方法及系统
CN113890591A (zh) * 2021-10-19 2022-01-04 中国电子科技集团公司第五十四研究所 一种低轨星座系统终端载波同步方法及载波同步解调装置
CN113890802A (zh) * 2021-09-01 2022-01-04 杭州电子科技大学富阳电子信息研究院有限公司 一种基于pn序列的符号定时同步方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105684371B (zh) * 2013-12-27 2019-10-22 华为技术有限公司 一种无线通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787509A (zh) * 2005-12-12 2006-06-14 北京北方烽火科技有限公司 一种用于WiMAX系统基站接收端的整数倍频偏校正方法
CN101022295A (zh) * 2007-02-28 2007-08-22 华南理工大学 世界微波互操作性发射和接收系统及其发射接收信号方法
TW200917683A (en) * 2007-10-01 2009-04-16 Chunghwa Telecom Co Ltd Channel measurement and estimation method and device for orthogonal frequency division multiplexing system
US20090147900A1 (en) * 2007-12-11 2009-06-11 Industrial Technology Research Institute Method and device for detecting a synchronization signal in a communication system
CN101958745A (zh) * 2009-07-20 2011-01-26 华为技术有限公司 实现时间同步的方法、装置及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985523B2 (en) * 2001-01-10 2006-01-10 Hughes Electronics Corp. Method and system for adaptive equalization for receivers in a wide-band satellite communications system
CN1259780C (zh) * 2002-10-31 2006-06-14 电子科技大学 一种ofdm时间、频率同步方法
CN1773979B (zh) * 2004-11-09 2010-06-23 华为技术有限公司 正交频分复用精确时间同步、帧同步以及同步跟踪的方法
EP2260624A1 (en) * 2008-03-05 2010-12-15 Nxp B.V. Low complexity fine timing synchronization method and system for stimi
CN101883068A (zh) * 2009-05-09 2010-11-10 电子科技大学中山学院 一种叠加训练序列时间粗细同步方法
CN101883067A (zh) * 2009-05-09 2010-11-10 电子科技大学中山学院 一种适用于ofdm时间同步的训练序列构造及同步算法
CN101902428B (zh) * 2009-05-26 2013-06-05 中兴通讯股份有限公司 一种定时同步方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787509A (zh) * 2005-12-12 2006-06-14 北京北方烽火科技有限公司 一种用于WiMAX系统基站接收端的整数倍频偏校正方法
CN101022295A (zh) * 2007-02-28 2007-08-22 华南理工大学 世界微波互操作性发射和接收系统及其发射接收信号方法
TW200917683A (en) * 2007-10-01 2009-04-16 Chunghwa Telecom Co Ltd Channel measurement and estimation method and device for orthogonal frequency division multiplexing system
US20090147900A1 (en) * 2007-12-11 2009-06-11 Industrial Technology Research Institute Method and device for detecting a synchronization signal in a communication system
CN101958745A (zh) * 2009-07-20 2011-01-26 华为技术有限公司 实现时间同步的方法、装置及系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112422472A (zh) * 2020-11-09 2021-02-26 上海微波技术研究所(中国电子科技集团公司第五十研究所) 联合频偏估计方法及系统
CN112422472B (zh) * 2020-11-09 2022-07-26 上海微波技术研究所(中国电子科技集团公司第五十研究所) 联合频偏估计方法及系统
CN113890802A (zh) * 2021-09-01 2022-01-04 杭州电子科技大学富阳电子信息研究院有限公司 一种基于pn序列的符号定时同步方法
CN113890802B (zh) * 2021-09-01 2023-04-25 杭州电子科技大学富阳电子信息研究院有限公司 一种基于pn序列的符号定时同步方法
CN113890591A (zh) * 2021-10-19 2022-01-04 中国电子科技集团公司第五十四研究所 一种低轨星座系统终端载波同步方法及载波同步解调装置
CN113890591B (zh) * 2021-10-19 2023-12-29 中国电子科技集团公司第五十四研究所 一种低轨星座系统终端载波同步方法及载波同步解调装置

Also Published As

Publication number Publication date
EP2838208B1 (en) 2018-09-12
EP2838208A1 (en) 2015-02-18
EP2838208A4 (en) 2015-09-02
CN103379061A (zh) 2013-10-30
CN103379061B (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
CA2560497C (en) Hybrid domain block equalizer
CN101507219B (zh) 数据符号的时间误差估计方法和系统
US7907690B2 (en) Interference cancellation system and method using impulse response
KR100936392B1 (ko) 무선시스템에서 저복잡도 공액 그레디언트 기반의 등화방법 및 시스템
JP2008543186A (ja) チャネル推定のための適応補間器
KR101485785B1 (ko) 무선 통신 시스템에서 주파수 추정 방법 및 장치
JP6540295B2 (ja) 適応等化回路、ディジタルコヒーレント受信器および適応等化方法
CN103873411B (zh) 基于联合导频的最大似然频偏估计方法及装置
WO2013152561A1 (zh) 一种微波系统的同步与均衡联合设计方法和装置
CN102195908A (zh) 用均衡器适配的频率误差补偿进行干扰消除的方法和设备
CN104486266A (zh) 一种基于mimo-ofdm系统的信道估计方法及装置
US9755864B1 (en) Fractionally spaced adaptive equalizer with non-integer sampling
CN111212005A (zh) 一种基于重定时同步和干扰抵消的信号检测方法
WO2017183631A1 (ja) Los-mimo復調装置、通信装置、los-mimo伝送システム、los-mimo復調方法及びプログラム
CN102164110B (zh) 频域均衡方法和系统
CN106789791B (zh) 基于共轭对称训练序列的移动通信系统载波频偏估计方法
JP2003218826A (ja) 直交周波数分割多重信号の受信方式及び受信機
WO2014210518A1 (en) All-analog and hybrid radio interference cancelation using cables, attenuators and power splitters
JP5246771B2 (ja) 位相雑音補償受信機
CN104301282A (zh) 一种超高速移动ofdm系统的ici自适应抑制方法
CN101971536B (zh) 接收装置、集成电路和接收方法
Zhao et al. A burst SC-FDE scheme for high-speed communication based on radar
EP3090519B1 (en) Methods and devices for doppler shift compensation in a mobile communication system
Ali et al. A SOS subspace method for blind channel identification and equalization in bandwidth efficient OFDM systems based on receive antenna diversity
KR100801669B1 (ko) 적응형 주파수 영역 등화기 및 주파수 영역 등화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012873947

Country of ref document: EP