WO2013151117A1 - Air-cooling control system and method, and modular-type apparatus using same - Google Patents

Air-cooling control system and method, and modular-type apparatus using same Download PDF

Info

Publication number
WO2013151117A1
WO2013151117A1 PCT/JP2013/060278 JP2013060278W WO2013151117A1 WO 2013151117 A1 WO2013151117 A1 WO 2013151117A1 JP 2013060278 W JP2013060278 W JP 2013060278W WO 2013151117 A1 WO2013151117 A1 WO 2013151117A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
cooling
temperature
air
control unit
Prior art date
Application number
PCT/JP2013/060278
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 隆
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013151117A1 publication Critical patent/WO2013151117A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/207Thermal management, e.g. cabinet temperature control

Definitions

  • the present invention relates to a modular device having a structure in which a module (also referred to as a unit or a card) is mounted and used as needed in a slot of a shelf (also referred to as a subrack or a device casing). More particularly, the present invention relates to an air cooling control system and method for a modular apparatus.
  • a module also referred to as a unit or a card
  • a shelf also referred to as a subrack or a device casing
  • modules are installed in the slots of the shelf as needed.
  • a plurality of cooling fans are attached to a shelf on which a module is mounted.
  • the direction in which air flows in the shelf is selected according to the mounting direction of the module.
  • a plurality of cooling fans are arranged in the shelf so that the inside of the shelf is uniformly blown.
  • the cooling fan is a component with a relatively short life, so it often needs to be replaced. For this reason, the cooling fan can be partially replaced so that the cooling air is not completely interrupted even if the cooling fan fails.
  • modules There are multiple types of modules depending on their capabilities and functions, and power consumption (ie, heat generation) varies depending on the type. Also, the number of modules mounted on the shelf varies depending on the usage status of the device. Furthermore, it is often operated with a slot open for future expansion or expansion.
  • a communication module is equipped with a spare module in preparation for a failure or a sudden line expansion, and such a module may be set in a power saving mode.
  • the power consumption (heat generation amount) of the modular device has a wide range
  • a control function that changes the capacity of the cooling fan as needed is important. If this is not done, the cooling fan will always operate at its maximum capacity (number of rotations) even in a shelf with only empty slots in extreme cases, and users will complain about wasting power and generating noise. Is easily expected.
  • Patent Document 1 discloses a noise reduction structure for a rack cabinet system, which is a technique for dealing with noise from a cooling fan. From the description of Patent Document 1, it can be seen that the noise of the cooling fan in a large-scale device is a serious problem.
  • Patent Documents 2 and 3 disclose techniques for automatically controlling a plurality of temperature sensors and a plurality of cooling fans in association with each other.
  • FIG. 5 is a configuration diagram showing an air cooling control system that automatically controls a plurality of temperature sensors and a plurality of fans in association with each other (hereinafter referred to as “related art air cooling control system”) and a modular apparatus using the air cooling control system.
  • related art air cooling control system an air cooling control system that automatically controls a plurality of temperature sensors and a plurality of fans in association with each other
  • the modular device 80 includes a plurality of modules 811 to 814, a plurality of temperature sensors 821 to 824, a plurality of cooling fans 831 to 836, a control unit 84, a PWM circuit 85, a shelf 86, a common line 87, a PWM dedicated line 88, and the like.
  • the air cooling control system 90 includes temperature sensors 821 to 824, cooling fans 831 to 836, a control unit 84, a PWM circuit 85, a common line 87, a PWM dedicated line 88, and the like.
  • the fan unit 91 includes cooling fans 831 to 836.
  • the air in the shelf 86 flows from bottom to top as indicated by wind flow 93.
  • Modules 811 to 814 are installed in slots in the shelf 86.
  • One temperature sensor 821 to 824 is provided for each of the modules 811 to 814, and the temperature of the modules 811 to 814 is most important.
  • the temperature information obtained by the temperature sensors 821 to 824 is output to the control unit 84 via the common line 87.
  • the PWM circuit 85 can individually PWM control the cooling fans 831 to 836.
  • the control unit 84 grasps the mounting information indicating which type of modules 811 to 814 are mounted (or not mounted) in which slot, artificially or automatically. Then, the control unit 84 determines increase / decrease in the number of rotations of the cooling fans 831 to 836 at the respective positions from the mounting information and the temperature information sent from the temperature sensors 821 to 824 attached to the modules 811 to 814. The rotation speed of the cooling fans 831 to 836 is changed through the PWM circuit 85.
  • a plurality of temperature sensors 821 to 824 and a plurality of cooling fans 831 to 836 are provided. Development needed to incorporate relationships into complex control algorithms.
  • a mechanism (wiring, etc.) for acquiring information from the plurality of temperature sensors 821 to 824 and a high-performance control unit 84 that issues instructions to the plurality of cooling fans 831 to 836 based on the plurality of real-time information are required.
  • a PWM circuit 85 for controlling the rotational speed of the cooling fans 831 to 836 is also necessary in many cases.
  • an object of the present invention is to provide an air cooling control system for a modular type apparatus that can simplify the development work and the configuration without impairing the control function for the cooling fan.
  • the air cooling control system is: An air cooling control system for cooling a modular device capable of mounting a plurality of modules, comprising a temperature sensor, a control unit and a cooling fan,
  • the temperature sensor measures the temperature of the air flowing through the periphery of the module;
  • the control unit inputs data related to the steady heat generation amount of the module from the module, and outputs a control signal corresponding to the heat generation amount,
  • the cooling fan generates an air flow around the module and controls the number of rotations of the cooling fan by itself based on a control signal output from the control unit and a temperature measured by the temperature sensor. Is.
  • An air cooling control method includes: An air cooling control method for cooling a modular device capable of mounting a plurality of modules, A cooling fan for generating an air flow around the module; Controlling the number of revolutions of the cooling fan based on the steady heat generation amount of the module and the temperature of the air flowing around the module; Is.
  • the modular device comprises: A modular device comprising a plurality of modules, a temperature sensor, a controller and a cooling fan,
  • the temperature sensor measures the temperature of the air flowing through the periphery of the module;
  • the control unit inputs data related to a steady heat generation amount from the module from the module, and outputs a control signal corresponding to the heat generation amount,
  • the cooling fan generates an air flow around the module and controls the number of rotations of the cooling fan by itself based on a control signal output from the control unit and a temperature measured by the temperature sensor. Is.
  • the controller since the relationship between the plurality of temperature sensors and the plurality of cooling fans is not incorporated into a complicated control algorithm, the control function for the cooling fans is not impaired, so that the development work can be simplified.
  • the controller does not need a mechanism (wiring or the like) for acquiring information from a plurality of temperature sensors, and does not need to give instructions to a plurality of cooling fans based on a plurality of real-time information. Therefore, the configuration of the control unit and its periphery can be simplified.
  • Embodiment 1 of the air-cooling control system and modular apparatus which concern on this invention. It is a block diagram which shows the specific example 1 of the air cooling control system in FIG. It is a block diagram which shows the specific example 2 of the air cooling control system in FIG. 4 is a chart showing characteristics of a fan main body in FIG. 3. It is a block diagram which shows the related art air-cooling control system and a modular apparatus.
  • the air cooling control method according to the present invention captures the operation of the air cooling control system according to the present invention as a method invention. Therefore, the embodiment of the air cooling control method according to the present invention will be described simultaneously in the embodiment of the air cooling control system according to the present invention.
  • FIG. 1 is a configuration diagram showing Embodiment 1 of an air cooling control system and a modular apparatus according to the present invention. Hereinafter, description will be given based on this drawing.
  • the modular apparatus 10 includes a plurality of modules 111 to 114, a plurality of temperature sensors 121 to 123, a plurality of cooling fans 131 to 136, a control unit 14, a shelf 16, a common line 17, an analog control signal line 18, and the like.
  • the air cooling control system 20 includes temperature sensors 121 to 123, cooling fans 131 to 136, a control unit 14, a common line 17, an analog control signal line 18, and the like.
  • the fan unit 21 includes cooling fans 131 to 136.
  • the air in the shelf 16 flows from bottom to top as indicated by the wind flow 23.
  • the modules 111 to 114 are installed in slots in the shelf 16.
  • the air cooling control system 20 cools the modular apparatus 10 to which a plurality of modules 111 to 114 can be mounted.
  • the fan unit 21 is divided into three units in the horizontal direction, and each unit includes temperature sensors 121 to 123, respectively.
  • the cooling fans 131 to 136 belonging to each unit can be optimized independently for each unit. Therefore, for example, the slot of the shelf 16 is divided into three sections of the left side, the center, and the right side, and the information of the modules 111 to 114 mounted in each section is used for each unit of the fan unit 21 that generates wind in each section. To be communicated to.
  • the temperature sensors 121 to 123 measure the temperature of the air flowing around the modules 111 to 114, that is, the air flowing in the vicinity of the cooling fans 131 to 136.
  • the control unit 14 inputs data regarding the steady heat generation amount of the modules 111 to 114 from the modules 111 to 114, and outputs a control signal Va corresponding to the heat generation amount.
  • the cooling fans 131 to 136 generate an air flow around the modules 111 to 114 and are provided on the downstream side of the air.
  • the cooling fans 131 to 136 are measured by the control signal Va output from the control unit 14 and the temperature sensors 121 to 123.
  • the number of rotations of the cooling fans 131 to 136 is controlled by itself based on the temperature.
  • the measured values of the temperature sensors 821 to 824 installed directly on the modules 811 to 814 and the surroundings of the modules 111 to 114 in this embodiment. It was found that there was a strong correlation with the measured values of the temperature sensors 121 to 123 installed on the downstream side of the air. Therefore, according to the temperature sensors 121 to 123 in the present embodiment, the rotation speed instructions similar to those in the case of comprehensively considering the measurement values greatly different for the temperature sensors 821 to 824 in the related art are given to the cooling fans 131 to 136. Can do.
  • control unit 14 in the present embodiment inputs data relating to the steady heat generation amount of the modules 111 to 114 from the modules 111 to 114, and outputs a control signal Va corresponding to the heat generation amount to the cooling fans 131 to 136. .
  • the cooling fans 131 to 136 can obtain information on the steady heat generation amount of the modules 111 to 114 in addition to the temperatures measured by the temperature sensors 121 to 123, so that the rotational speed with higher accuracy can be obtained based on these information. Control becomes possible.
  • each module 111-114 transmits its own heat generation amount to the control unit 14 also when the operation mode of each module 111-114 is switched from the normal mode to the low power consumption mode or vice versa.
  • the control unit 14 does not need a mechanism (wiring or the like) for acquiring information from the plurality of temperature sensors 121 to 124, and does not need to issue instructions to the plurality of cooling fans 131 to 136 based on the plurality of real-time information. . Therefore, the configuration of the control unit 14 and its surroundings can be simplified.
  • the temperature of each part is read out in real time from the plurality of modules 111 to 114, and a complicated control algorithm such as PWM control of the plurality of cooling fans 131 to 136 based on the temperature is mounted. Even without using a simple control circuit, it is possible to adjust the fan capacity close to the optimum according to the mounting state of the modules 111 to 114.
  • control unit 14 When the control unit 14 detects that the control unit 14 has failed, the control unit 14 may output a control signal Vb corresponding to the maximum rotational speed instead of the control signal Va. In this case, even if the control unit 14 breaks down, it is possible to achieve fail safe that operates in a safer direction.
  • FIG. 2 is a block diagram showing a specific example 1 of the air cooling control system in FIG.
  • FIG. 2 is a block diagram showing a specific example 1 of the air cooling control system in FIG.
  • a description will be given based on FIG. 1 and FIG.
  • the control unit 14 includes a microcomputer, a D / A converter, and the like.
  • the microcomputer may be a general computer including a CPU, a memory, an input / output interface, and the like.
  • the temperature sensor 121a of this example includes a series circuit of an NTC (NegativeegTemperature Coefficient) thermistor 31 and a resistor 32, and outputs a voltage at a connection point between the NTC thermistor 31 and the resistor 32 as a first analog voltage signal V1. .
  • NTC NearegativeegTemperature Coefficient
  • the cooling fan 131a in this example includes an analog adder 33, a DC motor 34, an impeller 35, and the like.
  • the analog adder 33 is a general one having an adder circuit including an operational amplifier and a resistor, a voltage follower, and the like, and controls the rotation speed of the DC motor 34 with an applied voltage.
  • the DC motor 34 has a property that the number of rotations increases or decreases in proportion to the applied voltage.
  • the impeller 35 is attached to the rotating shaft of the DC motor 34.
  • the cooling fan 131a receives a first analog voltage signal V1 corresponding to a temperature measurement value by the temperature sensor 121a from the temperature sensor 121, and inputs a second analog voltage signal V2 corresponding to the control signal Va from the control unit 14. Based on the added value V1 + V2 of the first analog voltage signal V1 and the second analog voltage signal V2, the number of rotations of the first analog voltage signal V1 and the second analog voltage signal V2 is controlled.
  • the cooling fan 131a increases the number of revolutions as the temperature measured by the temperature sensor 121a is higher or the steady heat generation amount of the modules 111 to 114 is increased, and the temperature measured by the temperature sensor 121a is higher and the modules 111 to 114 are higher. If there is a large amount of steady heat generation, the number of revolutions is further increased.
  • the configuration can be further simplified.
  • FIG. 3 is a block diagram showing a specific example 2 of the air cooling control system in FIG.
  • FIG. 4 is a chart showing the characteristics of the fan main body in FIG.
  • the control unit 14 is the same as in the first specific example.
  • the cooling fan 131b includes a fan main body 41, a voltage variable resistor 42, and the like.
  • the temperature sensor 121b is a thermistor.
  • the fan body 41 uses a commercially available temperature variable speed fan (see Non-Patent Document 1).
  • the fan main body 41 has a + terminal 41a, a ⁇ terminal 41b, and a control terminal 41c, and a series circuit of a voltage variable resistor 42 and a temperature sensor 121b is connected between the ⁇ terminal 41b and the control terminal 41c.
  • the voltage variable resistor 42 is also called a voltage-controlled resistor, which can be realized in a linear region of, for example, a bipolar transistor or a field effect transistor, and changes its resistance value Rs according to an applied control signal Va.
  • FIG. 4A is a graph showing an example of the relationship between the thermistor temperature, that is, the measured temperature (° C.) of the temperature sensor 121b, and the rate of change in rotation rate (%).
  • the thermistor temperature exceeds the temperature threshold TL
  • the low speed rotation 50%) shifts to variable speed rotation
  • the thermistor temperature exceeds the temperature threshold TH
  • the variable speed rotation shifts to high speed rotation (100%).
  • FIG. 4B is a table showing an example of the relationship between the resistance value Rs of the voltage variable resistor 42 and the temperature threshold values TL and TH.
  • the cooling fan 131b controls the rotational speed by lowering the temperature thresholds TL and TH, so that the cooling capacity is increased. In other words, the cooling fan 131b decreases the temperature threshold TL at which the rotation speed starts to increase and the temperature threshold TH at which the rotation starts at a high speed, as the amount of heat generated by the control signal Va increases.
  • the configuration can be further simplified.
  • the number of rotations of each cooling fan 131 to 136 is controlled by taking into account the mounting state of the modules 111 to 114 to the actual measured values of the temperature by the temperature sensors 121 to 123 installed in the vicinity of the cooling fans 131 to 136. Real-time temperature information in the modules 111 to 114 is not used for control.
  • Temperature sensors 121 to 123 are installed downstream of the air that has passed through the modules 111 to 114 that are heating elements.
  • the temperature sensors 121 to 123 may be incorporated in the fan unit 21.
  • the modular device 10 has a control unit 14 for communication between each module 111 to 114 and the outside of the device, state monitoring, and the like.
  • the control unit 14 holds information on the types and states (setting information such as the power saving mode) of the modules 111 to 114 installed in each slot in the form of module registration information. This information is basically set by a human and does not require monitoring at any time like temperature.
  • a mechanism is also used in which a module is automatically registered when the module is inserted into the slot, but it is the same if the module registration work performed by a human is automated.
  • the control unit 14 transmits a control signal Va corresponding to the mounting state of the modules 111 to 114 to the cooling fans 131 to 136.
  • This control signal Va is not information having real-time characteristics such as temperature information inside the modules 111 to 114. That is, the control unit 14 simply obtains information corresponding to the amount of generated heat from only the type and operation mode (whether the power saving mode is set) of the modules 111 to 114 mounted in the vicinity of the cooling fans 131 to 136.
  • the estimation and the information are converted into a simple signal format, for example, an analog voltage signal, and transmitted to the cooling fans 131 to 136 as a control signal Va.
  • Each of the cooling fans 131 to 136 simply adds the analog voltage signal from the control unit 14 to the analog voltage signal obtained from the temperature sensors 121 to 123, for example, and maintains the rotation speed based on the analog voltage signal.
  • a specific example of the operation will be described below.
  • the control unit 14 transmits to the cooling fans 131 to 136 a control signal Va that lowers the temperature threshold value at which high-speed rotation starts.
  • Va the temperature threshold value at which high-speed rotation starts.
  • the control unit 14 transmits a control signal Va for increasing the temperature threshold value to the cooling fans 131 to 136.
  • Va the control signal Va for increasing the temperature threshold value to the cooling fans 131 to 136.
  • the original information for generating the control signal Va is information originally stored as module registration information in the control unit 14. Therefore, it is not necessary to add a new mechanism for extracting information from the modules 111 to 114.
  • a monitoring circuit such as a watchdog timer built in the CPU issues a control signal that maximizes the number of rotations of the cooling fan.
  • a mechanism for not receiving (clipping) an out-of-range voltage at the entrance of the cooling fan that receives the control signal from the control unit is provided.
  • a circuit that maximizes the cooling fan speed should be used. The failure of the cooling fan itself is detected by a rotation sensor built in the cooling fan.
  • the present invention has been described with reference to each of the above embodiments, but the present invention is not limited to each of the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention. Further, the present invention includes a combination of some or all of the configurations of the above-described embodiments as appropriate.
  • An air-cooling control system for cooling a modular device in which a plurality of modules can be mounted comprising a temperature sensor, a control unit, and a cooling fan
  • the temperature sensor measures the temperature of the air flowing through the periphery of the module
  • the control unit inputs data related to the steady heat generation amount of the module from the module, and outputs a control signal corresponding to the heat generation amount
  • the cooling fan generates an air flow around the module and controls the number of rotations of the cooling fan by itself based on a control signal output from the control unit and a temperature measured by the temperature sensor.
  • Air cooling control system Air cooling control system.
  • the cooling fan inputs a first analog voltage signal corresponding to the measured value of the temperature from the temperature sensor, inputs a second analog voltage signal corresponding to the control signal from the control unit, and Controlling the number of revolutions based on an added value of the first analog voltage signal and the second analog voltage signal;
  • the air cooling control system according to appendix 1.
  • the cooling fan lowers a temperature threshold value at which the cooling fan begins to rotate at a higher speed as the heat generation amount indicated by the control signal increases.
  • the air cooling control system according to appendix 1 or 2.
  • control unit When the control unit detects that the control unit has failed, the control unit outputs a control signal corresponding to the maximum rotational speed instead of the control signal.
  • the air-cooling control system according to appendix 1, 2, or 3.
  • a modular apparatus including a plurality of modules, a temperature sensor, a control unit, and a cooling fan
  • the temperature sensor measures the temperature of the air flowing through the periphery of the module
  • the control unit inputs data related to the steady heat generation amount of the module from the module, and outputs a control signal corresponding to the heat generation amount
  • the cooling fan generates an air flow around the module and controls the number of rotations of the cooling fan by itself based on a control signal output from the control unit and a temperature measured by the temperature sensor.
  • the cooling fan receives a first analog voltage signal corresponding to the measured value of the temperature from the temperature sensor, inputs a second analog voltage signal corresponding to the control signal from the control unit, and Controlling the number of revolutions based on an added value of the first analog voltage signal and the second analog voltage signal;
  • the modular apparatus according to appendix 9.
  • the cooling fan lowers a temperature threshold value at which the cooling fan starts to rotate at a higher speed as the heating value indicated by the control signal increases.
  • the modular apparatus according to appendix 9 or 10.
  • control unit When the control unit detects that the control unit has failed, the control unit outputs a control signal corresponding to the maximum rotational speed instead of the control signal.
  • An air cooling control system for cooling a modular apparatus in which a plurality of modules can be mounted comprising a temperature sensor, a control unit, and a cooling fan
  • the temperature sensor measures the temperature of air flowing in the vicinity of the cooling fan
  • the control unit stores in advance a steady heat generation amount of the module, and outputs a control signal corresponding to the heat generation amount
  • the cooling fan generates an air flow around the module and is provided on the downstream side of the air.
  • the cooling fan is based on a control signal output from the control unit and a temperature measured by the temperature sensor. Self-controlling the rotation speed of Air cooling control system.
  • the present invention can be used for a device having a cabinet structure or a subrack structure, and typically, a communication device or a computer device.

Abstract

[Problem] To provide an air-cooling control system or the like for a modular-type apparatus, wherein development work therefor can be simplified, and the construction thereof can be simplified. [Solution] Temperature sensors (121-123) measure temperatures of air coming in through the periphery of modules (111-114). A control unit (14) receives as input, from the modules (111-114), data related to the amount of heat to be generated by the modules (111-114) in steady state, and outputs a control signal (Va) corresponding to the amount of heat generated. Cooling fans (131-136) generate air-flows around the periphery of the modules (111-114), and control the rotational speeds thereof by themselves, on the basis of the control signal (Va) output by the control unit (14) and the temperatures measured by the temperature sensors (121-123).

Description

空冷制御システム及び方法、並びにこれを用いたモジュラー型装置Air cooling control system and method, and modular apparatus using the same
 本発明は、シェルフ(サブラックや装置筐体などとも呼ばれる。)のスロットに、モジュール(ユニットやカードなどとも呼ばれる。)を、必要に応じて装着して使用する構造からなるモジュラー型装置に関し、詳しくはモジュラー型装置の空冷制御システム及び方法に関する。 The present invention relates to a modular device having a structure in which a module (also referred to as a unit or a card) is mounted and used as needed in a slot of a shelf (also referred to as a subrack or a device casing). More particularly, the present invention relates to an air cooling control system and method for a modular apparatus.
 装置内の電子回路などが運用中に発熱するため、ファンによる強制空冷手段が用いられる。電子回路の高性能化などに伴い消費電力が増えると、それに応じた強力な空冷手段が必要となる。その結果、空冷手段の消費電力や騒音が増えるという問題が生じている。 Since the electronic circuits in the device generate heat during operation, forced air cooling means using a fan is used. If the power consumption increases as the performance of electronic circuits increases, powerful air-cooling means will be required accordingly. As a result, there is a problem that power consumption and noise of the air cooling means increase.
 この問題を緩和するために、ファンの回転数を必要に応じて制御する自動制御が用いられる。その典型的かつ最も基本的な構成は、温度センサで現在の温度を取得し、それに応じてファンの回転数を制御するというものである(例えば特許文献4~7参照)。 ¡To alleviate this problem, automatic control is used to control the fan speed as needed. The typical and most basic configuration is to acquire the current temperature with a temperature sensor and control the rotational speed of the fan accordingly (see, for example, Patent Documents 4 to 7).
 また、大型のコンピュータや通信設備などでは、シェルフのスロットにモジュールを必要に応じて装着して使用するモジュラー型装置が広く用いられている。このような構造では、一般に、モジュールが装着されるシェルフに複数の冷却ファンを取り付ける。 Also, in large computers and communication facilities, modular devices are widely used in which modules are installed in the slots of the shelf as needed. In such a structure, generally, a plurality of cooling fans are attached to a shelf on which a module is mounted.
 シェルフ内に空気を流す方向は、モジュールの実装向きに応じて、最適なものが選ばれる。最も一般的な、モジュールを本棚の中の本のように立てて実装する場合は、空気を下から上へ垂直に流す。モジュールを横に寝かせて実装する場合は、空気も水平方向に流す。いずれにしても冷却ファンは、シェルフ内が均一に送風されるように、シェルフ内に複数配置される。 The direction in which air flows in the shelf is selected according to the mounting direction of the module. When the most common module is mounted upright like a book in a bookshelf, air flows vertically from bottom to top. When mounting the module on its side, air should flow horizontally. In any case, a plurality of cooling fans are arranged in the shelf so that the inside of the shelf is uniformly blown.
 冷却ファンは、比較的寿命の短い部品であるため、しばしば交換が必要である。そのため、冷却ファンが故障中でも冷却風が完全に途絶えてしまうことのないように、冷却ファンを部分的に交換できるようになっている。 ∙ The cooling fan is a component with a relatively short life, so it often needs to be replaced. For this reason, the cooling fan can be partially replaced so that the cooling air is not completely interrupted even if the cooling fan fails.
 モジュールには能力や機能によって複数の種類があり、その種類によって消費電力(すなわち発熱量)が異なる。また、モジュールのシェルフへの装着数も、その装置の使用状況によって異なる。更に、将来への拡張又は増設に備えて、スロットを空けた状態で運用することもよくある。 There are multiple types of modules depending on their capabilities and functions, and power consumption (ie, heat generation) varies depending on the type. Also, the number of modules mounted on the shelf varies depending on the usage status of the device. Furthermore, it is often operated with a slot open for future expansion or expansion.
 更に最近では、負荷状態や使用状況によって稼働率(すわなち消費電力)を増減させる省電力モードを備えるモジュールもある。通信装置では故障や急な回線増設に備えて予備のモジュールを実装している場合もあり、そのようなモジュールは省電力モードに設定されていることもある。 More recently, some modules have a power saving mode that increases or decreases the operating rate (ie, power consumption) depending on the load state and usage. In some cases, a communication module is equipped with a spare module in preparation for a failure or a sudden line expansion, and such a module may be set in a power saving mode.
 このようにモジュラー型装置の消費電力(発熱量)は、広い幅を持つことになるため、冷却ファンの能力を必要に応じて変える制御機能は重要である。それを行わなければ、極端なケースでは空きスロットばかりのシェルフでも、冷却ファンは常に最大能力(回転数)で稼働することになり、電力の無駄使い及び騒音の発生に対してユーザーから苦情が来ることが容易に予想される。 Thus, since the power consumption (heat generation amount) of the modular device has a wide range, a control function that changes the capacity of the cooling fan as needed is important. If this is not done, the cooling fan will always operate at its maximum capacity (number of rotations) even in a shelf with only empty slots in extreme cases, and users will complain about wasting power and generating noise. Is easily expected.
 特許文献1には、冷却ファンの騒音に対処する技術である、ラックキャビネットシステムの静音化構造が開示されている。この特許文献1の記載から、大型装置における冷却ファンの騒音が深刻な問題になっていることが分かる。 Patent Document 1 discloses a noise reduction structure for a rack cabinet system, which is a technique for dealing with noise from a cooling fan. From the description of Patent Document 1, it can be seen that the noise of the cooling fan in a large-scale device is a serious problem.
 しかしながら、このようなモジュラー型装置の冷却ファンにおいて、その能力(回転数)を状況に応じて可変するには、複数の温度センサと複数の冷却ファンとの関係を、制御アルゴリズムの中に組み入れる必要がある、ということに注意が必要である。つまり、単一の発熱源と単一の冷却ファンの場合の制御に比べて、その最適制御アルゴリズムは大幅に複雑となる。特許文献2、3には、複数の温度センサと複数の冷却ファンとを関係づけて自動制御する技術が開示されている。 However, in order to vary the capacity (number of revolutions) of such a modular device cooling fan according to the situation, it is necessary to incorporate the relationship between multiple temperature sensors and multiple cooling fans into the control algorithm. Note that there is. That is, the optimal control algorithm is significantly more complicated than the control in the case of a single heat source and a single cooling fan. Patent Documents 2 and 3 disclose techniques for automatically controlling a plurality of temperature sensors and a plurality of cooling fans in association with each other.
 図5は、複数の温度センサと複数のファンを関係づけて自動制御する空冷制御システム(以下「関連技術の空冷制御システム」という。)、及びこれを用いたモジュラー型装置を示す構成図である。以下、この図面に基づき説明する。 FIG. 5 is a configuration diagram showing an air cooling control system that automatically controls a plurality of temperature sensors and a plurality of fans in association with each other (hereinafter referred to as “related art air cooling control system”) and a modular apparatus using the air cooling control system. . Hereinafter, description will be given based on this drawing.
 モジュラー型装置80は、複数のモジュール811~814、複数の温度センサ821~824、複数の冷却ファン831~836、制御部84、PWM回路85、シェルフ86、共通線87、PWM専用線88などを備える。空冷制御システム90は、温度センサ821~824、冷却ファン831~836、制御部84、PWM回路85、共通線87、PWM専用線88などからなる。ファンユニット91は、冷却ファン831~836からなる。シェルフ86内の空気は、風の流れ93で示すように下から上に流れる。 The modular device 80 includes a plurality of modules 811 to 814, a plurality of temperature sensors 821 to 824, a plurality of cooling fans 831 to 836, a control unit 84, a PWM circuit 85, a shelf 86, a common line 87, a PWM dedicated line 88, and the like. Prepare. The air cooling control system 90 includes temperature sensors 821 to 824, cooling fans 831 to 836, a control unit 84, a PWM circuit 85, a common line 87, a PWM dedicated line 88, and the like. The fan unit 91 includes cooling fans 831 to 836. The air in the shelf 86 flows from bottom to top as indicated by wind flow 93.
 モジュール811~814は、シェルフ86内のスロットに装着されている。温度センサ821~824は、それぞれモジュール811~814に一個ずつ、モジュール811~814の温度が最も重要となる位置に設けられている。温度センサ821~824で得られた温度情報は、共通線87を介して制御部84へ出力される。PWM回路85は、冷却ファン831~836をそれぞれ独立にPWM制御できる。 Modules 811 to 814 are installed in slots in the shelf 86. One temperature sensor 821 to 824 is provided for each of the modules 811 to 814, and the temperature of the modules 811 to 814 is most important. The temperature information obtained by the temperature sensors 821 to 824 is output to the control unit 84 via the common line 87. The PWM circuit 85 can individually PWM control the cooling fans 831 to 836.
 制御部84は、どのスロットにどの種類のモジュール811~814が実装されているか(又は未実装か)という実装情報を、人為的に又は自動的に把握している。そして、制御部84は、その実装情報とモジュール811~814に取り付けられた温度センサ821~824から送られてくる温度情報とから、各位置の冷却ファン831~836の回転数の増減を決め、PWM回路85を通じて冷却ファン831~836の回転数を変化させる。 The control unit 84 grasps the mounting information indicating which type of modules 811 to 814 are mounted (or not mounted) in which slot, artificially or automatically. Then, the control unit 84 determines increase / decrease in the number of rotations of the cooling fans 831 to 836 at the respective positions from the mounting information and the temperature information sent from the temperature sensors 821 to 824 attached to the modules 811 to 814. The rotation speed of the cooling fans 831 to 836 is changed through the PWM circuit 85.
特開2009-64203号公報JP 2009-64203 A 米国特許第6487463号明細書US Pat. No. 6,487,463 米国特許第6101459号明細書US Pat. No. 6,101,459 特開平08-278834号公報Japanese Patent Laid-Open No. 08-278834 特開2010-108324号公報JP 2010-108324 A 特開2011-065444号公報JP 2011-065444 A 特開2011-085267号公報JP 2011-085267 A
 しかしながら、モジュラー型装置80の空冷制御システム90において、モジュール811~814の実装状態に応じてその制御能力を最適化するには、複数の温度センサ821~824と複数の冷却ファン831~836との関係を、複雑な制御アルゴリズムの中に組み入れる開発が必要であった。また、複数の温度センサ821~824からの情報を取得する仕組み(配線等)と、それら複数のリアルタイム情報に基づき複数の冷却ファン831~836に指示を出す高性能な制御部84とが必要であった。更に、冷却ファン831~836の回転数制御のためのPWM回路85も多くの場合に必要であった。 However, in the air cooling control system 90 of the modular apparatus 80, in order to optimize the control capability according to the mounting state of the modules 811 to 814, a plurality of temperature sensors 821 to 824 and a plurality of cooling fans 831 to 836 are provided. Development needed to incorporate relationships into complex control algorithms. In addition, a mechanism (wiring, etc.) for acquiring information from the plurality of temperature sensors 821 to 824 and a high-performance control unit 84 that issues instructions to the plurality of cooling fans 831 to 836 based on the plurality of real-time information are required. there were. Furthermore, a PWM circuit 85 for controlling the rotational speed of the cooling fans 831 to 836 is also necessary in many cases.
 このように、複雑な開発作業及び複雑な構成は、開発コスト及び装置コストを引き上げるという問題を生じる。 Thus, the complicated development work and the complicated configuration cause a problem of raising the development cost and the apparatus cost.
 そこで、本発明の目的は、冷却ファンに対する制御機能を損なうことなく、開発作業を簡素化でき、構成も簡素化できる、モジュラー型装置の空冷制御システム等を提供することにある。 Therefore, an object of the present invention is to provide an air cooling control system for a modular type apparatus that can simplify the development work and the configuration without impairing the control function for the cooling fan.
 本発明に係る空冷制御システムは、
 複数のモジュールを装着可能なモジュラー型装置を冷却するための空冷制御システムであって、温度センサ、制御部及び冷却ファンを備え、
 前記温度センサは、前記モジュールの周囲を通って流れてくる空気の温度を測定し、
 前記制御部は、前記モジュールの定常的な発熱量に関するデータを当該モジュールから入力し、この発熱量に相当する制御信号を出力し、
 前記冷却ファンは、前記モジュールの周囲に空気の流れを生じさせるとともに、前記制御部から出力される制御信号と前記温度センサで測定される温度とに基づき当該冷却ファンの回転数を自ら制御する、
 ものである。
The air cooling control system according to the present invention is:
An air cooling control system for cooling a modular device capable of mounting a plurality of modules, comprising a temperature sensor, a control unit and a cooling fan,
The temperature sensor measures the temperature of the air flowing through the periphery of the module;
The control unit inputs data related to the steady heat generation amount of the module from the module, and outputs a control signal corresponding to the heat generation amount,
The cooling fan generates an air flow around the module and controls the number of rotations of the cooling fan by itself based on a control signal output from the control unit and a temperature measured by the temperature sensor.
Is.
 本発明に係る空冷制御方法は、
 複数のモジュールを装着可能なモジュラー型装置を冷却するための空冷制御方法であって、
 前記モジュールの周囲に空気の流れを生じさせる冷却ファンを設け、
 前記モジュールの定常的な発熱量と前記モジュールの周囲を通って流れてくる前記空気の温度とに基づき、前記冷却ファンの回転数を制御する、
 ものである。
An air cooling control method according to the present invention includes:
An air cooling control method for cooling a modular device capable of mounting a plurality of modules,
A cooling fan for generating an air flow around the module;
Controlling the number of revolutions of the cooling fan based on the steady heat generation amount of the module and the temperature of the air flowing around the module;
Is.
 本発明に係るモジュラー型装置は、
 複数のモジュール、温度センサ、制御部及び冷却ファンを備えたモジュラー型装置であって、
 前記温度センサは、前記モジュールの周囲を通って流れてくる空気の温度を測定し、
 前記制御部は、前記モジュールから定常的な発熱量に関するデータを当該モジュールから入力し、この発熱量に対応する制御信号を出力し、
 前記冷却ファンは、前記モジュールの周囲に空気の流れを生じさせるとともに、前記制御部から出力される制御信号と前記温度センサで測定される温度とに基づき当該冷却ファンの回転数を自ら制御する、
 ものである。
The modular device according to the present invention comprises:
A modular device comprising a plurality of modules, a temperature sensor, a controller and a cooling fan,
The temperature sensor measures the temperature of the air flowing through the periphery of the module;
The control unit inputs data related to a steady heat generation amount from the module from the module, and outputs a control signal corresponding to the heat generation amount,
The cooling fan generates an air flow around the module and controls the number of rotations of the cooling fan by itself based on a control signal output from the control unit and a temperature measured by the temperature sensor.
Is.
 本発明によれば、複数の温度センサと複数の冷却ファンとの関係を、複雑な制御アルゴリズムの中に組み入れなくても、冷却ファンに対する制御機能を損なうことがないので、開発作業を簡素化できる。しかも、制御部は、複数の温度センサからの情報を取得する仕組み(配線等)が不要であり、複数のリアルタイム情報に基づき複数の冷却ファンに指示を出す必要もない。したがって、制御部及びその周辺の構成を簡素化できる。 According to the present invention, since the relationship between the plurality of temperature sensors and the plurality of cooling fans is not incorporated into a complicated control algorithm, the control function for the cooling fans is not impaired, so that the development work can be simplified. . In addition, the controller does not need a mechanism (wiring or the like) for acquiring information from a plurality of temperature sensors, and does not need to give instructions to a plurality of cooling fans based on a plurality of real-time information. Therefore, the configuration of the control unit and its periphery can be simplified.
本発明に係る空冷制御システム及びモジュラー型装置の実施形態1を示す構成図である。It is a block diagram which shows Embodiment 1 of the air-cooling control system and modular apparatus which concern on this invention. 図1における空冷制御システムの具体例1を示す構成図である。It is a block diagram which shows the specific example 1 of the air cooling control system in FIG. 図1における空冷制御システムの具体例2を示す構成図である。It is a block diagram which shows the specific example 2 of the air cooling control system in FIG. 図3におけるファン本体部の特性を示す図表である。4 is a chart showing characteristics of a fan main body in FIG. 3. 関連技術の空冷制御システム及びモジュラー型装置を示す構成図である。It is a block diagram which shows the related art air-cooling control system and a modular apparatus.
 以下、添付図面を参照しながら、本発明を実施するための形態(以下「実施形態」という。)について説明する。なお、本発明に係る空冷制御方法は、本発明に係る空冷制御システムの動作を方法の発明として捉えたものである。したがって、本発明に係る空冷制御方法の実施形態は、本発明に係る空冷制御システムの実施形態の中で同時に説明するものとする。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the accompanying drawings. The air cooling control method according to the present invention captures the operation of the air cooling control system according to the present invention as a method invention. Therefore, the embodiment of the air cooling control method according to the present invention will be described simultaneously in the embodiment of the air cooling control system according to the present invention.
 図1は、本発明に係る空冷制御システム及びモジュラー型装置の実施形態1を示す構成図である。以下、この図面に基づき説明する。 FIG. 1 is a configuration diagram showing Embodiment 1 of an air cooling control system and a modular apparatus according to the present invention. Hereinafter, description will be given based on this drawing.
 モジュラー型装置10は、複数のモジュール111~114、複数の温度センサ121~123、複数の冷却ファン131~136、制御部14、シェルフ16、共通線17、アナログ制御信号線18などを備える。空冷制御システム20は、温度センサ121~123、冷却ファン131~136、制御部14、共通線17、アナログ制御信号線18などからなる。ファンユニット21は、冷却ファン131~136からなる。シェルフ16内の空気は、風の流れ23で示すように下から上に流れる。 The modular apparatus 10 includes a plurality of modules 111 to 114, a plurality of temperature sensors 121 to 123, a plurality of cooling fans 131 to 136, a control unit 14, a shelf 16, a common line 17, an analog control signal line 18, and the like. The air cooling control system 20 includes temperature sensors 121 to 123, cooling fans 131 to 136, a control unit 14, a common line 17, an analog control signal line 18, and the like. The fan unit 21 includes cooling fans 131 to 136. The air in the shelf 16 flows from bottom to top as indicated by the wind flow 23.
 モジュール111~114は、シェルフ16内のスロットに装着されている。空冷制御システム20は、複数のモジュール111~114を装着可能なモジュラー型装置10を冷却する。図1に示す例では、ファンユニット21は横方向に三つの単位に分かれ、各単位がそれぞれ温度センサ121~123を備えている。各単位に属する冷却ファン131~136は、その回転数を各単位で独立に最適化できるようになっている。したがって、例えばシェルフ16のスロットを左側、中央、右側、の3区画に分け、各区画に実装されているモジュール111~114の情報が、その各区画に風を起こしているファンユニット21の各単位に伝わるようにしている。 The modules 111 to 114 are installed in slots in the shelf 16. The air cooling control system 20 cools the modular apparatus 10 to which a plurality of modules 111 to 114 can be mounted. In the example shown in FIG. 1, the fan unit 21 is divided into three units in the horizontal direction, and each unit includes temperature sensors 121 to 123, respectively. The cooling fans 131 to 136 belonging to each unit can be optimized independently for each unit. Therefore, for example, the slot of the shelf 16 is divided into three sections of the left side, the center, and the right side, and the information of the modules 111 to 114 mounted in each section is used for each unit of the fan unit 21 that generates wind in each section. To be communicated to.
 温度センサ121~123は、モジュール111~114の周囲を通って流れてくる空気、すなわち冷却ファン131~136の近傍に流れる空気の温度を測定する。制御部14は、モジュール111~114の定常的な発熱量に関するデータをモジュール111~114から入力し、この発熱量に相当する制御信号Vaを出力する。冷却ファン131~136は、モジュール111~114の周囲に空気の流れを生じさせるとともに当該空気の下流側に設けられ、制御部14から出力される制御信号Vaと温度センサ121~123で測定される温度とに基づき冷却ファン131~136の回転数を自ら制御する。 The temperature sensors 121 to 123 measure the temperature of the air flowing around the modules 111 to 114, that is, the air flowing in the vicinity of the cooling fans 131 to 136. The control unit 14 inputs data regarding the steady heat generation amount of the modules 111 to 114 from the modules 111 to 114, and outputs a control signal Va corresponding to the heat generation amount. The cooling fans 131 to 136 generate an air flow around the modules 111 to 114 and are provided on the downstream side of the air. The cooling fans 131 to 136 are measured by the control signal Va output from the control unit 14 and the temperature sensors 121 to 123. The number of rotations of the cooling fans 131 to 136 is controlled by itself based on the temperature.
 本発明者が実際に測定したところ、図5に示す関連技術において各モジュール811~814に直接設置された温度センサ821~824の測定値と、本実施形態において各モジュール111~114の周囲を通過した空気の下流側に設置された温度センサ121~123の測定値とには、強い相関関係があることがわかった。そのため、本実施形態における温度センサ121~123によれば、関連技術における温度センサ821~824ごとに大きく異なる測定値を総合勘案した場合と同様な回転数指示を、冷却ファン131~136に与えることができる。 When the inventor actually measured, in the related technique shown in FIG. 5, the measured values of the temperature sensors 821 to 824 installed directly on the modules 811 to 814 and the surroundings of the modules 111 to 114 in this embodiment. It was found that there was a strong correlation with the measured values of the temperature sensors 121 to 123 installed on the downstream side of the air. Therefore, according to the temperature sensors 121 to 123 in the present embodiment, the rotation speed instructions similar to those in the case of comprehensively considering the measurement values greatly different for the temperature sensors 821 to 824 in the related art are given to the cooling fans 131 to 136. Can do.
 また、本実施形態における制御部14は、モジュール111~114の定常的な発熱量に関するデータをモジュール111~114から入力し、この発熱量に相当する制御信号Vaを冷却ファン131~136へ出力する。そのため、冷却ファン131~136は、温度センサ121~123で測定される温度に加え、モジュール111~114の定常的な発熱量の情報も得ることができるので、これらに基づき更に精度のよい回転数制御が可能となる。なお、各モジュール111~114の動作モードが通常モードから低消費電力モードへ又はその逆に切り替わった時なども、各モジュール111~114が制御部14に自身の発熱量を伝える。 Further, the control unit 14 in the present embodiment inputs data relating to the steady heat generation amount of the modules 111 to 114 from the modules 111 to 114, and outputs a control signal Va corresponding to the heat generation amount to the cooling fans 131 to 136. . For this reason, the cooling fans 131 to 136 can obtain information on the steady heat generation amount of the modules 111 to 114 in addition to the temperatures measured by the temperature sensors 121 to 123, so that the rotational speed with higher accuracy can be obtained based on these information. Control becomes possible. It should be noted that each module 111-114 transmits its own heat generation amount to the control unit 14 also when the operation mode of each module 111-114 is switched from the normal mode to the low power consumption mode or vice versa.
 本実施形態によれば、複数の温度センサ121~123と複数の冷却ファン131~136との関係を、複雑な制御アルゴリズムの中に組み入れなくても、冷却ファン131~136に対する制御機能を損なうことがないので、開発作業を簡素化できる。しかも、制御部14は、複数の温度センサ121~124からの情報を取得する仕組み(配線等)が不要であり、複数のリアルタイム情報に基づき複数の冷却ファン131~136に指示を出す必要もない。したがって、制御部14及びその周辺の構成を簡素化できる。換言すると、本実施形態によれば、複数のモジュール111~114からリアルタイムに各個所の温度を読み出し、それに基づき複数の冷却ファン131~136をPWM制御する、などの複雑な制御アルゴリズムを搭載した高価な制御回路を用いずとも、各モジュール111~114の実装状態に応じて最適に近いファン能力調整が行える。 According to this embodiment, even if the relationship between the plurality of temperature sensors 121 to 123 and the plurality of cooling fans 131 to 136 is not incorporated into a complicated control algorithm, the control function for the cooling fans 131 to 136 is impaired. Because there is no, development work can be simplified. In addition, the control unit 14 does not need a mechanism (wiring or the like) for acquiring information from the plurality of temperature sensors 121 to 124, and does not need to issue instructions to the plurality of cooling fans 131 to 136 based on the plurality of real-time information. . Therefore, the configuration of the control unit 14 and its surroundings can be simplified. In other words, according to the present embodiment, the temperature of each part is read out in real time from the plurality of modules 111 to 114, and a complicated control algorithm such as PWM control of the plurality of cooling fans 131 to 136 based on the temperature is mounted. Even without using a simple control circuit, it is possible to adjust the fan capacity close to the optimum according to the mounting state of the modules 111 to 114.
 制御部14は、制御部14が故障したことを検出した場合に、制御信号Vaに代えて最高回転数に相当する制御信号Vbを出力するようにしてもよい。この場合は、制御部14が故障しても安全な方へ動作するフェイルセーフを達成できる。 When the control unit 14 detects that the control unit 14 has failed, the control unit 14 may output a control signal Vb corresponding to the maximum rotational speed instead of the control signal Va. In this case, even if the control unit 14 breaks down, it is possible to achieve fail safe that operates in a safer direction.
 図2は、図1における空冷制御システムの具体例1を示す構成図である。以下、図1及び図2に基づき説明する。 FIG. 2 is a block diagram showing a specific example 1 of the air cooling control system in FIG. Hereinafter, a description will be given based on FIG. 1 and FIG.
 温度センサ121~123はどれも同じ構成であるので、冷却ファン131~136もどれも同じ構成であるので、代表として温度センサ121及び冷却ファン131の各一例について説明する。制御部14は、マイクロコンピュータ、D/A変換器などからなる。マイクロコンピュータは、CPU、メモリ、入出力インタフェースなどからなる一般的なものでよい。 Since the temperature sensors 121 to 123 have the same configuration, the cooling fans 131 to 136 have the same configuration, and therefore, examples of the temperature sensor 121 and the cooling fan 131 will be described as representatives. The control unit 14 includes a microcomputer, a D / A converter, and the like. The microcomputer may be a general computer including a CPU, a memory, an input / output interface, and the like.
 本例の温度センサ121aは、NTC(Negative Temperature Coefficient)サーミスタ31と抵抗器32との直列回路からなり、NTCサーミスタ31と抵抗器32との接続点の電圧を第一アナログ電圧信号V1として出力する。 The temperature sensor 121a of this example includes a series circuit of an NTC (NegativeegTemperature Coefficient) thermistor 31 and a resistor 32, and outputs a voltage at a connection point between the NTC thermistor 31 and the resistor 32 as a first analog voltage signal V1. .
 本例の冷却ファン131aは、アナログ加算器33、直流モータ34、羽根車35などからなる。アナログ加算器33は、オペアンプ及び抵抗器からなる加算回路、ボルテージフォロアなどを有する一般的なものであり、直流モータ34の回転数を印加電圧で制御する。直流モータ34は、印加電圧にほぼ比例して回転数が増減する性質がある。羽根車35は、直流モータ34の回転軸に取り付けられている。 The cooling fan 131a in this example includes an analog adder 33, a DC motor 34, an impeller 35, and the like. The analog adder 33 is a general one having an adder circuit including an operational amplifier and a resistor, a voltage follower, and the like, and controls the rotation speed of the DC motor 34 with an applied voltage. The DC motor 34 has a property that the number of rotations increases or decreases in proportion to the applied voltage. The impeller 35 is attached to the rotating shaft of the DC motor 34.
 冷却ファン131aは、温度センサ121aによる温度の測定値に相当する第一アナログ電圧信号V1を温度センサ121から入力し、制御信号Vaに相当する第二アナログ電圧信号V2を制御部14から入力し、第一アナログ電圧信号V1と第二アナログ電圧信号V2との加算値V1+V2に基づき、それ自身の回転数を制御する。 The cooling fan 131a receives a first analog voltage signal V1 corresponding to a temperature measurement value by the temperature sensor 121a from the temperature sensor 121, and inputs a second analog voltage signal V2 corresponding to the control signal Va from the control unit 14. Based on the added value V1 + V2 of the first analog voltage signal V1 and the second analog voltage signal V2, the number of rotations of the first analog voltage signal V1 and the second analog voltage signal V2 is controlled.
 例えば、温度センサ121aの測定温度が高いほど第一アナログ電圧信号V1が高くなり、モジュール111~114の定常的な発熱量が多いほど第二アナログ電圧信号V2が高くなるとする。この場合、冷却ファン131aは、温度センサ121aの測定温度が高いほど又はモジュール111~114の定常的な発熱量が多いほど回転数を増加させ、温度センサ121aの測定温度が高くかつモジュール111~114の定常的な発熱量が多ければ更に回転数を増加させる。 For example, it is assumed that the higher the temperature measured by the temperature sensor 121a, the higher the first analog voltage signal V1, and the higher the steady amount of heat generated by the modules 111 to 114, the higher the second analog voltage signal V2. In this case, the cooling fan 131a increases the number of revolutions as the temperature measured by the temperature sensor 121a is higher or the steady heat generation amount of the modules 111 to 114 is increased, and the temperature measured by the temperature sensor 121a is higher and the modules 111 to 114 are higher. If there is a large amount of steady heat generation, the number of revolutions is further increased.
 本例によれば、PWM回路などの複雑な制御回路を必要としないので、更に構成を簡素化できる。 According to this example, since a complicated control circuit such as a PWM circuit is not required, the configuration can be further simplified.
 図3は、図1における空冷制御システムの具体例2を示す構成図である。図4は、図3におけるファン本体部の特性を示す図表である。以下、図1、図3及び図4に基づき説明する。 FIG. 3 is a block diagram showing a specific example 2 of the air cooling control system in FIG. FIG. 4 is a chart showing the characteristics of the fan main body in FIG. Hereinafter, a description will be given based on FIG. 1, FIG. 3, and FIG.
 温度センサ121~123はどれも同じ構成であるので、冷却ファン131~136もどれも同じ構成であるので、代表として温度センサ121及び冷却ファン131の各一例について説明する。制御部14は、具体例1と同じである。 Since the temperature sensors 121 to 123 have the same configuration, the cooling fans 131 to 136 have the same configuration, and therefore, examples of the temperature sensor 121 and the cooling fan 131 will be described as representatives. The control unit 14 is the same as in the first specific example.
 冷却ファン131bは、ファン本体部41、電圧可変抵抗器42などからなる。温度センサ121bはサーミスタからなる。ファン本体部41は、市販の温度可変速ファンを用いている(非特許文献1参照)。ファン本体部41は、+端子41a、-端子41b及び制御端子41cを有し、-端子41bと制御端子41cとの間に、電圧可変抵抗器42と温度センサ121bとの直列回路が接続されている。電圧可変抵抗器42は、voltage-controlled resistorとも呼ばれ、例えばバイポーラトランジスタや電界効果トランジスタの線形領域で実現でき、印加される制御信号Vaに応じてその抵抗値Rsを変える。 The cooling fan 131b includes a fan main body 41, a voltage variable resistor 42, and the like. The temperature sensor 121b is a thermistor. The fan body 41 uses a commercially available temperature variable speed fan (see Non-Patent Document 1). The fan main body 41 has a + terminal 41a, a − terminal 41b, and a control terminal 41c, and a series circuit of a voltage variable resistor 42 and a temperature sensor 121b is connected between the − terminal 41b and the control terminal 41c. Yes. The voltage variable resistor 42 is also called a voltage-controlled resistor, which can be realized in a linear region of, for example, a bipolar transistor or a field effect transistor, and changes its resistance value Rs according to an applied control signal Va.
 図4[A]は、サーミスタ温度すなわち温度センサ121bの測定温度(℃)と、回転率速度変化率(%)との、関係の一例を示すグラフである。サーミスタ温度が温度しきい値TLを超えると低速回転(50%)から可変速回転に移行し、更にサーミスタ温度が温度しきい値THを超えると可変速回転から高速回転(100%)へ移行する。図4[B]は、電圧可変抵抗器42の抵抗値Rsと、温度しきい値TL,THとの、関係の一例を示す表である。 FIG. 4A is a graph showing an example of the relationship between the thermistor temperature, that is, the measured temperature (° C.) of the temperature sensor 121b, and the rate of change in rotation rate (%). When the thermistor temperature exceeds the temperature threshold TL, the low speed rotation (50%) shifts to variable speed rotation, and when the thermistor temperature exceeds the temperature threshold TH, the variable speed rotation shifts to high speed rotation (100%). . FIG. 4B is a table showing an example of the relationship between the resistance value Rs of the voltage variable resistor 42 and the temperature threshold values TL and TH.
 例えば、モジュール111~114の定常的な発熱量が多いほど制御電圧Vaが高くなり、制御電圧Vaが高くなるほど電圧可変抵抗器42の抵抗値Rsが低くなるとすると、これにより温度しきい値TL,THも低くなる。ここで、モジュール111~114を定常的な発熱量の多いものに交換すると、制御電圧Vaが高くなる。その結果、冷却ファン131bは、温度しきい値TL,THを下げて回転数を制御することになるので、冷却能力が高まることになる。換言すると、冷却ファン131bは、制御信号Vaが示す発熱量が大きいほど、回転数を増やし始める温度しきい値TL及び高速回転し始める温度しきい値THを低下させる、 For example, if the steady heat generation amount of the modules 111 to 114 increases, the control voltage Va increases, and the resistance value Rs of the voltage variable resistor 42 decreases as the control voltage Va increases. TH also decreases. Here, if the modules 111 to 114 are replaced with modules having a large amount of steady heat generation, the control voltage Va increases. As a result, the cooling fan 131b controls the rotational speed by lowering the temperature thresholds TL and TH, so that the cooling capacity is increased. In other words, the cooling fan 131b decreases the temperature threshold TL at which the rotation speed starts to increase and the temperature threshold TH at which the rotation starts at a high speed, as the amount of heat generated by the control signal Va increases.
 本例によれば、PWM回路などの複雑な制御回路を必要としないので、更に構成を簡素化できる。 According to this example, since a complicated control circuit such as a PWM circuit is not required, the configuration can be further simplified.
 次に、図1に基づき本実施形態について更に詳しく説明する。 Next, this embodiment will be described in more detail based on FIG.
 各冷却ファン131~136の回転数は、冷却ファン131~136の近傍に設置した温度センサ121~123による温度の実測値に、モジュール111~114の実装状態を加味して制御される。モジュール111~114内のリアルタイムな温度情報は制御に用いない。 The number of rotations of each cooling fan 131 to 136 is controlled by taking into account the mounting state of the modules 111 to 114 to the actual measured values of the temperature by the temperature sensors 121 to 123 installed in the vicinity of the cooling fans 131 to 136. Real-time temperature information in the modules 111 to 114 is not used for control.
 温度センサ121~123は、発熱体であるモジュール111~114を通過した空気の下流に設置する。図1の構成では、ファンユニット21がモジュール111~114の下流にあるため、ファンユニット21に温度センサ121~123を内蔵すればよい。各モジュール111~114上に直接設置した温度センサの測定値と、モジュール111~114の周囲を通過した空気の下流側に設置した温度センサ121~123の値とには、強い相関がある。そのため、温度センサ121~123によれば、複数の温度センサから得る測定値を総合勘案した場合と同様な回転数指示を、冷却ファン131~136に与えることができる。 Temperature sensors 121 to 123 are installed downstream of the air that has passed through the modules 111 to 114 that are heating elements. In the configuration of FIG. 1, since the fan unit 21 is downstream of the modules 111 to 114, the temperature sensors 121 to 123 may be incorporated in the fan unit 21. There is a strong correlation between the measured values of the temperature sensors installed directly on the modules 111 to 114 and the values of the temperature sensors 121 to 123 installed downstream of the air that has passed around the modules 111 to 114. Therefore, according to the temperature sensors 121 to 123, it is possible to give the cooling fans 131 to 136 the same rotational speed instruction as in the case of comprehensive consideration of the measurement values obtained from the plurality of temperature sensors.
 モジュラー型装置10は、各モジュール111~114と装置外部との通信や状態監視などのための制御部14を持つ。制御部14は、各スロットに実装されているモジュール111~114の種類及び状態(省電力モードなどの設定情報)の情報を、モジュール登録情報という形で保持している。この情報は、基本的には人間が設定するものであり、温度のように随時モニタを要するものではない。モジュールをスロットに挿せば自動的にモジュールが登録される仕組みも使われているが、人間が行うモジュール登録作業を自動化したものと考えれば同じである。 The modular device 10 has a control unit 14 for communication between each module 111 to 114 and the outside of the device, state monitoring, and the like. The control unit 14 holds information on the types and states (setting information such as the power saving mode) of the modules 111 to 114 installed in each slot in the form of module registration information. This information is basically set by a human and does not require monitoring at any time like temperature. A mechanism is also used in which a module is automatically registered when the module is inserted into the slot, but it is the same if the module registration work performed by a human is automated.
 制御部14が、冷却ファン131~136に対して、モジュール111~114の実装状態に応じた制御信号Vaを伝える。この制御信号Vaは、モジュール111~114内部の温度情報のようなリアルタイム性を持つ情報ではない。つまり、制御部14は、冷却ファン131~136の近くに実装されたモジュール111~114の種類及び動作モード(省電力モードか否か)だけから、それらの発熱量に相当する情報を簡易的に見積もり、その情報を単純な信号形式、例えばアナログ電圧信号に変換して、制御信号Vaとして冷却ファン131~136に伝える。 The control unit 14 transmits a control signal Va corresponding to the mounting state of the modules 111 to 114 to the cooling fans 131 to 136. This control signal Va is not information having real-time characteristics such as temperature information inside the modules 111 to 114. That is, the control unit 14 simply obtains information corresponding to the amount of generated heat from only the type and operation mode (whether the power saving mode is set) of the modules 111 to 114 mounted in the vicinity of the cooling fans 131 to 136. The estimation and the information are converted into a simple signal format, for example, an analog voltage signal, and transmitted to the cooling fans 131 to 136 as a control signal Va.
 各冷却ファン131~136は、例えば、温度センサ121~123から得られるアナログ電圧信号に、制御部14から来たアナログ電圧信号を単純に加算し、それに基づきその回転数を維持する。動作の具体例を以下に説明する。 Each of the cooling fans 131 to 136 simply adds the analog voltage signal from the control unit 14 to the analog voltage signal obtained from the temperature sensors 121 to 123, for example, and maintains the rotation speed based on the analog voltage signal. A specific example of the operation will be described below.
 冷却ファン131~136の近くで、熱量の大きいモジュール111~114や風の通りの悪いモジュール111~114があるとする。この情報が制御部14に登録されると、制御部14は、高速回転し始める温度しきい値を下げる制御信号Vaを、冷却ファン131~136へ伝える。その結果、冷却ファン131~136は、温度センサ121~123で観測される温度が高くなっても、敏感に反応して高速回転ぎみに稼働する。 Suppose that there are modules 111-114 with a large amount of heat and modules 111-114 with bad wind path near the cooling fans 131-136. When this information is registered in the control unit 14, the control unit 14 transmits to the cooling fans 131 to 136 a control signal Va that lowers the temperature threshold value at which high-speed rotation starts. As a result, the cooling fans 131 to 136 react sensitively and operate at high speed rotation even when the temperature observed by the temperature sensors 121 to 123 increases.
 逆に、冷却ファン131~136の近くで、スロットが未実装である、又は、発熱量の小さいモジュールや省電力モードに設定されたモジュールが実装されているだけであるとする。この場合、制御部14は、温度しきい値を上げる制御信号Vaを、冷却ファン131~136へ伝える。その結果、冷却ファン131~136は、温度センサ121~123で観測される温度が高くなっても、鈍感に反応して低速回転ぎみに稼働する。 Conversely, it is assumed that a slot is not mounted near the cooling fans 131 to 136, or a module with a small amount of heat generation or a module set in the power saving mode is mounted. In this case, the control unit 14 transmits a control signal Va for increasing the temperature threshold value to the cooling fans 131 to 136. As a result, even if the temperature observed by the temperature sensors 121 to 123 increases, the cooling fans 131 to 136 operate in a low-speed rotation in response to insensitivity.
 この制御信号Vaを生成する元情報は、もともと制御部14にモジュール登録情報として保存されている情報である。そのため、新たにモジュール111~114から情報を取り出す仕組みを追加する必要はない。 The original information for generating the control signal Va is information originally stored as module registration information in the control unit 14. Therefore, it is not necessary to add a new mechanism for extracting information from the modules 111 to 114.
 本実施形態と関連技術とを比較する。本実施形態によれば、関連技術における各モジュール内の温度情報に基づく緻密な制御方式に比べると、制御結果には多少無駄が残るものの、ほぼ同様な制御結果を得ることができる。その一方で、本実施形態では、実現に要する仕組みが大幅に簡素化されているので、開発コスト及び部品資材コストの両面でメリットが大きい。また、本実施形態によれば、冷却ファン近傍の温度センサだけで制御する方式に比べると、実装されているモジュールの種類によっても冷却ファンの能力を調整するので、その分、より最適に制御できる。 本 Compare this embodiment with related technologies. According to the present embodiment, compared with the precise control method based on the temperature information in each module in the related art, almost the same control result can be obtained although the control result is somewhat wasted. On the other hand, in this embodiment, since the mechanism required for realization is greatly simplified, there are great advantages in both development costs and component material costs. In addition, according to the present embodiment, compared with a method of controlling only by a temperature sensor in the vicinity of the cooling fan, the capacity of the cooling fan is adjusted depending on the type of the mounted module, so that it can be controlled more optimally. .
 次に、本実施形態におけるフェイルセーフ(fail safe)について補足説明する。制御部が故障した場合は、そのCPUに内蔵されたウォッチドックタイマなどによる監視回路が、冷却ファンの回転数が最高になるような制御信号を出す。制御信号を伝える経路が異常になった場合に備えて、制御部からの制御信号を受け取る冷却ファンの入り口では、範囲外の電圧を受け取らない(クリップする)仕組みを設けておく。温度センサの故障についても、冷却ファンの回転数が最高になるような回路にしておく。冷却ファン自体の故障については、冷却ファンに内蔵された回転センサで検知する。 Next, a supplementary explanation will be given for fail-safe in this embodiment. When the control unit fails, a monitoring circuit such as a watchdog timer built in the CPU issues a control signal that maximizes the number of rotations of the cooling fan. In preparation for a case where a path for transmitting a control signal becomes abnormal, a mechanism for not receiving (clipping) an out-of-range voltage at the entrance of the cooling fan that receives the control signal from the control unit is provided. Even if the temperature sensor fails, a circuit that maximizes the cooling fan speed should be used. The failure of the cooling fan itself is detected by a rotation sensor built in the cooling fan.
 以上、上記各実施形態を参照して本発明を説明したが、本発明は上記各実施形態に限定されるものではない。本発明の構成や詳細については、当業者が理解し得るさまざまな変更を加えることができる。また、本発明には、上記各実施形態の構成の一部又は全部を相互に適宜組み合わせたものも含まれる。 As described above, the present invention has been described with reference to each of the above embodiments, but the present invention is not limited to each of the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention. Further, the present invention includes a combination of some or all of the configurations of the above-described embodiments as appropriate.
 上記の実施形態の一部又は全部は以下の付記のようにも記載され得るが、本発明は以下の構成に限定されるものではない。 Some or all of the above embodiments can be described as in the following supplementary notes, but the present invention is not limited to the following configurations.
 [付記1]複数のモジュールを装着可能なモジュラー型装置を冷却するための空冷制御システムであって、温度センサ、制御部及び冷却ファンを備え、
 前記温度センサは、前記モジュールの周囲を通って流れてくる空気の温度を測定し、
 前記制御部は、前記モジュールの定常的な発熱量に関するデータを当該モジュールから入力し、この発熱量に相当する制御信号を出力し、
 前記冷却ファンは、前記モジュールの周囲に空気の流れを生じさせるとともに、前記制御部から出力される制御信号と前記温度センサで測定される温度とに基づき当該冷却ファンの回転数を自ら制御する、
 空冷制御システム。
[Appendix 1] An air-cooling control system for cooling a modular device in which a plurality of modules can be mounted, comprising a temperature sensor, a control unit, and a cooling fan,
The temperature sensor measures the temperature of the air flowing through the periphery of the module;
The control unit inputs data related to the steady heat generation amount of the module from the module, and outputs a control signal corresponding to the heat generation amount,
The cooling fan generates an air flow around the module and controls the number of rotations of the cooling fan by itself based on a control signal output from the control unit and a temperature measured by the temperature sensor.
Air cooling control system.
 [付記2]前記冷却ファンは、前記温度の測定値に相当する第一アナログ電圧信号を前記温度センサから入力し、前記制御信号に相当する第二アナログ電圧信号を前記制御部から入力し、前記第一アナログ電圧信号と前記第二アナログ電圧信号との加算値に基づき前記回転数を制御する、
 付記1記載の空冷制御システム。
[Supplementary Note 2] The cooling fan inputs a first analog voltage signal corresponding to the measured value of the temperature from the temperature sensor, inputs a second analog voltage signal corresponding to the control signal from the control unit, and Controlling the number of revolutions based on an added value of the first analog voltage signal and the second analog voltage signal;
The air cooling control system according to appendix 1.
 [付記3]前記冷却ファンは、前記制御信号が示す前記発熱量が大きいほど高速回転し始める温度しきい値を低下させる、
 付記1又は2記載の空冷制御システム。
[Appendix 3] The cooling fan lowers a temperature threshold value at which the cooling fan begins to rotate at a higher speed as the heat generation amount indicated by the control signal increases.
The air cooling control system according to appendix 1 or 2.
 [付記4]前記制御部は、当該制御部が故障したことを検出した場合に、前記制御信号に代えて最高回転数に相当する制御信号を出力する、
 付記1、2又は3記載の空冷制御システム。
[Supplementary Note 4] When the control unit detects that the control unit has failed, the control unit outputs a control signal corresponding to the maximum rotational speed instead of the control signal.
The air-cooling control system according to appendix 1, 2, or 3.
 [付記5]複数のモジュールを装着可能なモジュラー型装置を冷却するための空冷制御方法であって、
 前記モジュールの周囲に空気の流れを生じさせる冷却ファンを設け、
 前記モジュールの定常的な発熱量と前記モジュールの周囲を通って流れてくる前記空気の温度とに基づき、前記冷却ファンの回転数を制御する、
 空冷制御方法。
[Supplementary Note 5] An air-cooling control method for cooling a modular apparatus in which a plurality of modules can be mounted,
A cooling fan for generating an air flow around the module;
Controlling the number of revolutions of the cooling fan based on the steady heat generation amount of the module and the temperature of the air flowing around the module;
Air cooling control method.
 [付記6]前記温度の測定値に相当する第一アナログ電圧信号と、前記モジュールの定常的な発熱量に相当する第二アナログ電圧信号とを加算し、この加算値に基づき前記回転数を制御する、
 付記5記載の空冷制御方法。
[Appendix 6] The first analog voltage signal corresponding to the temperature measurement value and the second analog voltage signal corresponding to the steady heat generation amount of the module are added, and the rotation speed is controlled based on the added value. To
The air-cooling control method according to appendix 5.
 [付記7]前記発熱量が大きいほど高速回転し始める温度しきい値を低下させる、
 付記5又は6記載の空冷制御方法。
[Appendix 7] The temperature threshold value at which high-speed rotation starts as the calorific value increases is decreased.
The air-cooling control method according to appendix 5 or 6.
 [付記8]故障を検出した場合に、前記発熱量に代えて最高回転数になるように前記冷却ファンの回転数を制御する、
 付記5、6又は7記載の空冷制御方法。
[Appendix 8] When a failure is detected, the number of revolutions of the cooling fan is controlled to be the maximum number of revolutions instead of the heat generation amount.
The air-cooling control method according to appendix 5, 6 or 7.
 [付記9]複数のモジュール、温度センサ、制御部及び冷却ファンを備えたモジュラー型装置であって、
 前記温度センサは、前記モジュールの周囲を通って流れてくる空気の温度を測定し、
 前記制御部は、前記モジュールの定常的な発熱量に関するデータを当該モジュールから入力し、この発熱量に対応する制御信号を出力し、
 前記冷却ファンは、前記モジュールの周囲に空気の流れを生じさせるとともに、前記制御部から出力される制御信号と前記温度センサで測定される温度とに基づき当該冷却ファンの回転数を自ら制御する、
 モジュラー型装置。
[Supplementary Note 9] A modular apparatus including a plurality of modules, a temperature sensor, a control unit, and a cooling fan,
The temperature sensor measures the temperature of the air flowing through the periphery of the module;
The control unit inputs data related to the steady heat generation amount of the module from the module, and outputs a control signal corresponding to the heat generation amount,
The cooling fan generates an air flow around the module and controls the number of rotations of the cooling fan by itself based on a control signal output from the control unit and a temperature measured by the temperature sensor.
Modular type device.
 [付記10]前記冷却ファンは、前記温度の測定値に相当する第一アナログ電圧信号を前記温度センサから入力し、前記制御信号に相当する第二アナログ電圧信号を前記制御部から入力し、前記第一アナログ電圧信号と前記第二アナログ電圧信号との加算値に基づき前記回転数を制御する、
 付記9記載のモジュラー型装置。
[Supplementary Note 10] The cooling fan receives a first analog voltage signal corresponding to the measured value of the temperature from the temperature sensor, inputs a second analog voltage signal corresponding to the control signal from the control unit, and Controlling the number of revolutions based on an added value of the first analog voltage signal and the second analog voltage signal;
The modular apparatus according to appendix 9.
 [付記11]前記冷却ファンは、前記制御信号が示す前記発熱量が大きいほど高速回転し始める温度しきい値を低下させる、
 付記9又は10記載のモジュラー型装置。
[Supplementary Note 11] The cooling fan lowers a temperature threshold value at which the cooling fan starts to rotate at a higher speed as the heating value indicated by the control signal increases.
The modular apparatus according to appendix 9 or 10.
 [付記12]前記制御部は、当該制御部が故障したことを検出した場合に、前記制御信号に代えて最高回転数に相当する制御信号を出力する、
 付記9、10又は11記載のモジュラー型装置。
[Supplementary Note 12] When the control unit detects that the control unit has failed, the control unit outputs a control signal corresponding to the maximum rotational speed instead of the control signal.
The modular device according to appendix 9, 10 or 11.
 [付記13]複数のモジュールを装着可能なモジュラー型装置を冷却するための空冷制御システムであって、温度センサ、制御部及び冷却ファンを備え、
 前記温度センサは、前記冷却ファンの近傍に流れる空気の温度を測定し、
 前記制御部は、前記モジュールの定常的な発熱量を予め記憶し、この発熱量に相当する制御信号を出力し、
 前記冷却ファンは、前記モジュールの周囲に空気の流れを生じさせるとともに当該空気の下流側に設けられ、前記制御部から出力される制御信号と前記温度センサで測定される温度とに基づき当該冷却ファンの回転数を自ら制御する、
 空冷制御システム。
[Supplementary Note 13] An air cooling control system for cooling a modular apparatus in which a plurality of modules can be mounted, comprising a temperature sensor, a control unit, and a cooling fan,
The temperature sensor measures the temperature of air flowing in the vicinity of the cooling fan;
The control unit stores in advance a steady heat generation amount of the module, and outputs a control signal corresponding to the heat generation amount,
The cooling fan generates an air flow around the module and is provided on the downstream side of the air. The cooling fan is based on a control signal output from the control unit and a temperature measured by the temperature sensor. Self-controlling the rotation speed of
Air cooling control system.
 この出願は2012年4月5日に出願された日本出願特願2012-086593を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-086593 filed on April 5, 2012, the entire disclosure of which is incorporated herein.
 本発明は、キャビネット構造やサブラック構造を持つ装置、代表的なものとしては通信装置やコンピュータ装置に利用可能である。 The present invention can be used for a device having a cabinet structure or a subrack structure, and typically, a communication device or a computer device.
 10 モジュラー型装置
 111~114 モジュール
 121~123,121a,121b 温度センサ
 131~136,131a,131b 冷却ファン
 14 制御部
 16 シェルフ
 17 共通線
 18 アナログ制御信号線
 20 空冷制御システム
 21 ファンユニット
 23 風の流れ
 31 NTCサーミスタ
 32 抵抗器
 33 アナログ加算器
 34 直流モータ
 35 羽根車
 41 ファン本体部
 41a +端子
 41b -端子
 41c 制御端子
 42 電圧可変抵抗器
 80 モジュラー型装置
 811~814 モジュール
 821~824 温度センサ
 831~836 冷却ファン
 84 制御部
 85 PWM回路
 86 シェルフ
 87 共通線
 88 PWM専用線
 90 空冷制御システム
 91 ファンユニット
 93 風の流れ
DESCRIPTION OF SYMBOLS 10 Modular apparatus 111-114 Module 121-123, 121a, 121b Temperature sensor 131-136, 131a, 131b Cooling fan 14 Control part 16 Shelf 17 Common line 18 Analog control signal line 20 Air-cooling control system 21 Fan unit 23 Flow of wind 31 NTC Thermistor 32 Resistor 33 Analog Adder 34 DC Motor 35 Impeller 41 Fan Body 41a + Terminal 41b-Terminal 41c Control Terminal 42 Voltage Variable Resistor 80 Modular Type Device 811-814 Module 821-824 Temperature Sensor 831-836 Cooling fan 84 Control unit 85 PWM circuit 86 Shelf 87 Common line 88 PWM dedicated line 90 Air cooling control system 91 Fan unit 93 Wind flow

Claims (10)

  1.  シェルフのスロットに複数のモジュールを装着可能なモジュラー型装置を冷却するための空冷制御システムであって、温度センサ、制御部及び冷却ファンを備え、
     前記温度センサは、前記モジュールの周囲を通って流れてくる空気の温度を測定し、
     前記制御部は、前記モジュールの定常的な発熱量に関するデータを当該モジュールから入力し、この発熱量に相当する制御信号を出力し、かつ、前記スロットに装着された前記モジュールの種類の情報、前記スロットに装着された前記モジュールのフルパワーモード、省電力モード等の動作モードのうち必要な情報、及び前記モジュールが装着されていない前記スロットの情報を入力し、
     前記冷却ファンは、前記モジュールの周囲に空気の流れを生じさせるとともに、前記制御部から出力される制御信号と前記温度センサで測定される温度とに基づき当該冷却ファンの回転数を自ら制御する、
     空冷制御システム。
    An air cooling control system for cooling a modular device in which a plurality of modules can be mounted in a slot of a shelf, comprising a temperature sensor, a control unit, and a cooling fan,
    The temperature sensor measures the temperature of the air flowing through the periphery of the module;
    The control unit inputs data related to the steady heat generation amount of the module from the module, outputs a control signal corresponding to the heat generation amount, and information on the type of the module installed in the slot, Input necessary information among the operation modes such as full power mode and power saving mode of the module installed in the slot, and information on the slot in which the module is not installed,
    The cooling fan generates an air flow around the module and controls the number of rotations of the cooling fan by itself based on a control signal output from the control unit and a temperature measured by the temperature sensor.
    Air cooling control system.
  2.  前記冷却ファンは、前記温度の測定値に相当する第一アナログ電圧信号を前記温度センサから入力し、前記制御信号に相当する第二アナログ電圧信号を前記制御部から入力し、前記第一アナログ電圧信号と前記第二アナログ電圧信号との加算値に基づき前記回転数を制御する、
     請求項1記載の空冷制御システム。
    The cooling fan inputs a first analog voltage signal corresponding to the measured value of the temperature from the temperature sensor, and inputs a second analog voltage signal corresponding to the control signal from the control unit, and the first analog voltage Controlling the number of revolutions based on a sum of a signal and the second analog voltage signal;
    The air cooling control system according to claim 1.
  3.  前記冷却ファンは、前記制御信号が示す前記発熱量が大きいほど高速回転し始める温度しきい値を低下させる、
     請求項1又は2記載の空冷制御システム。
    The cooling fan lowers a temperature threshold at which high-speed rotation starts as the heat generation amount indicated by the control signal increases.
    The air cooling control system according to claim 1 or 2.
  4.  前記制御部は、当該制御部が故障したことを検出した場合に、前記制御信号に代えて最高回転数に相当する制御信号を出力する、
     請求項1、2又は3記載の空冷制御システム。
    When the control unit detects that the control unit has failed, the control unit outputs a control signal corresponding to the maximum rotational speed instead of the control signal.
    The air cooling control system according to claim 1, 2 or 3.
  5.  複数のモジュールを装着可能なモジュラー型装置を冷却するための空冷制御方法であって、
     前記モジュールの周囲に空気の流れを生じさせる冷却ファンを設け、
     前記モジュールの定常的な発熱量と前記モジュールの周囲を通って流れてくる前記空気の温度とに基づき、前記冷却ファンの回転数を制御する、
     空冷制御方法。
    An air cooling control method for cooling a modular device capable of mounting a plurality of modules,
    A cooling fan for generating an air flow around the module;
    Controlling the number of revolutions of the cooling fan based on the steady heat generation amount of the module and the temperature of the air flowing around the module;
    Air cooling control method.
  6.  前記温度の測定値に相当する第一アナログ電圧信号と、前記モジュールの定常的な発熱量に相当する第二アナログ電圧信号とを加算し、この加算値に基づき前記回転数を制御する、
     請求項5記載の空冷制御方法。
    Adding a first analog voltage signal corresponding to the measured value of the temperature and a second analog voltage signal corresponding to a steady heat generation amount of the module, and controlling the rotational speed based on the added value;
    The air-cooling control method according to claim 5.
  7.  前記発熱量が大きいほど高速回転し始める温度しきい値を低下させる、
     請求項5又は6記載の空冷制御方法。
    Lowering the temperature threshold at which high-speed rotation starts as the calorific value increases,
    The air cooling control method according to claim 5 or 6.
  8.  故障を検出した場合に、前記発熱量に代えて最高回転数になるように前記冷却ファンの回転数を制御する、
     請求項5、6又は7記載の空冷制御方法。
    When a failure is detected, the number of revolutions of the cooling fan is controlled so as to be the maximum number of revolutions instead of the heat generation amount.
    The air cooling control method according to claim 5, 6 or 7.
  9.  複数のモジュール、温度センサ、制御部及び冷却ファンを備えたモジュラー型装置であって、
     前記温度センサは、前記モジュールの周囲を通って流れてくる空気の温度を測定し、
     前記制御部は、前記モジュールの定常的な発熱量に関するデータを当該モジュールから入力し、この発熱量に対応する制御信号を出力し、
     前記冷却ファンは、前記モジュールの周囲に空気の流れを生じさせるとともに、前記制御部から出力される制御信号と前記温度センサで測定される温度とに基づき当該冷却ファンの回転数を自ら制御する、
     モジュラー型装置。
    A modular device comprising a plurality of modules, a temperature sensor, a controller and a cooling fan,
    The temperature sensor measures the temperature of the air flowing through the periphery of the module;
    The control unit inputs data related to the steady heat generation amount of the module from the module, and outputs a control signal corresponding to the heat generation amount,
    The cooling fan generates an air flow around the module and controls the number of rotations of the cooling fan by itself based on a control signal output from the control unit and a temperature measured by the temperature sensor.
    Modular type device.
  10.  前記冷却ファンは、前記温度の測定値に相当する第一アナログ電圧信号を前記温度センサから入力し、前記制御信号に相当する第二アナログ電圧信号を前記制御部から入力し、前記第一アナログ電圧信号と前記第二アナログ電圧信号との加算値に基づき前記回転数を制御する、
     請求項9記載のモジュラー型装置。
    The cooling fan inputs a first analog voltage signal corresponding to the measured value of the temperature from the temperature sensor, and inputs a second analog voltage signal corresponding to the control signal from the control unit, and the first analog voltage Controlling the number of revolutions based on a sum of a signal and the second analog voltage signal;
    The modular device according to claim 9.
PCT/JP2013/060278 2012-04-05 2013-04-04 Air-cooling control system and method, and modular-type apparatus using same WO2013151117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-086593 2012-04-05
JP2012086593 2012-04-05

Publications (1)

Publication Number Publication Date
WO2013151117A1 true WO2013151117A1 (en) 2013-10-10

Family

ID=49300595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060278 WO2013151117A1 (en) 2012-04-05 2013-04-04 Air-cooling control system and method, and modular-type apparatus using same

Country Status (1)

Country Link
WO (1) WO2013151117A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088672A (en) * 2013-10-31 2015-05-07 富士通株式会社 Cooling device and cooling method
CN105578835A (en) * 2014-10-14 2016-05-11 鸿富锦精密工业(深圳)有限公司 Counter data center
JP2016207782A (en) * 2015-04-20 2016-12-08 富士通株式会社 Electronic apparatus and cooling method
JP2017084582A (en) * 2015-10-27 2017-05-18 株式会社デンソー Battery pack
CN106714512A (en) * 2016-12-05 2017-05-24 四川行之知识产权运营服务有限公司 Method for performing safe temperature control on electrical cabinet
CN107333457A (en) * 2017-09-06 2017-11-07 合肥宗平计算机科技有限公司 Communication cabinet heat abstractor
CN108650859A (en) * 2018-06-29 2018-10-12 中国联合网络通信集团有限公司 A kind of heat sink and cool-down method of cabinet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11184566A (en) * 1997-12-24 1999-07-09 Hitachi Ltd Cooling control method for electronic device
JP2002076665A (en) * 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd Rack device with cooler
JP2005019992A (en) * 2003-06-23 2005-01-20 Hewlett-Packard Development Co Lp Electronic component cooling method and system therefor
JP2012033105A (en) * 2010-08-02 2012-02-16 Toyo Netsu Kogyo Kk Air conditioner for ict equipment, air conditioning system for ict equipment and ict equipment room using only them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11184566A (en) * 1997-12-24 1999-07-09 Hitachi Ltd Cooling control method for electronic device
JP2002076665A (en) * 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd Rack device with cooler
JP2005019992A (en) * 2003-06-23 2005-01-20 Hewlett-Packard Development Co Lp Electronic component cooling method and system therefor
JP2012033105A (en) * 2010-08-02 2012-02-16 Toyo Netsu Kogyo Kk Air conditioner for ict equipment, air conditioning system for ict equipment and ict equipment room using only them

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088672A (en) * 2013-10-31 2015-05-07 富士通株式会社 Cooling device and cooling method
US9781864B2 (en) 2013-10-31 2017-10-03 Fujitsu Limited Cooling apparatus and cooling method
CN105578835A (en) * 2014-10-14 2016-05-11 鸿富锦精密工业(深圳)有限公司 Counter data center
CN105578835B (en) * 2014-10-14 2018-01-16 鸿富锦精密工业(深圳)有限公司 Container data center
JP2016207782A (en) * 2015-04-20 2016-12-08 富士通株式会社 Electronic apparatus and cooling method
JP2017084582A (en) * 2015-10-27 2017-05-18 株式会社デンソー Battery pack
CN106714512A (en) * 2016-12-05 2017-05-24 四川行之知识产权运营服务有限公司 Method for performing safe temperature control on electrical cabinet
CN107333457A (en) * 2017-09-06 2017-11-07 合肥宗平计算机科技有限公司 Communication cabinet heat abstractor
CN108650859A (en) * 2018-06-29 2018-10-12 中国联合网络通信集团有限公司 A kind of heat sink and cool-down method of cabinet

Similar Documents

Publication Publication Date Title
WO2013151117A1 (en) Air-cooling control system and method, and modular-type apparatus using same
US9918410B2 (en) Fan control system and method
US11006546B2 (en) Equipment enclosure fan control systems and methods
JP6279898B2 (en) Switching control device
JP2003101274A (en) Device provided with blower unit
US7844170B2 (en) Method for controlling fan speed
US8963465B2 (en) Multi-pressure-quantity fan control system and computer system having the same
US9223325B2 (en) Temperature estimation based on a fan control signal
US7715215B1 (en) Control of an AC-to-DC power supply assembly fed by a three-phase AC source
JP2008084173A (en) Information processor having cooling function
US10342157B2 (en) Fan control of a computer system based on power ratio
JP5022941B2 (en) Fan control device for electronic equipment casing
JP2011151332A (en) Fan air speed control configuration and method for device
WO2012009879A1 (en) Cassette network device and fan control method thereof
JP5079530B2 (en) Power supply
JP3220956U (en) Controller for compressor
JP2009038237A (en) Electronic device and cooling method of electronic device
GB2525052A (en) Motor drive and method of controlling a temperature of a motor drive
JP2011066366A (en) Electric apparatus, and method of controlling rotation number of cooling fan
CN112732053A (en) Server heat dissipation method, device, equipment and medium
JP5321706B2 (en) ICT equipment
JP6628311B2 (en) Fan control device, cooling fan system, computer device, fan control method and program
JP2014183079A (en) Cooling system and cooling method
JP2011186515A (en) Computer system
JP2014183659A (en) Drive controller for fan motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP