WO2013151026A1 - Diagnostic marker and diagnostic method for cancer cell resistant to pi3k inhibitor - Google Patents

Diagnostic marker and diagnostic method for cancer cell resistant to pi3k inhibitor Download PDF

Info

Publication number
WO2013151026A1
WO2013151026A1 PCT/JP2013/060027 JP2013060027W WO2013151026A1 WO 2013151026 A1 WO2013151026 A1 WO 2013151026A1 JP 2013060027 W JP2013060027 W JP 2013060027W WO 2013151026 A1 WO2013151026 A1 WO 2013151026A1
Authority
WO
WIPO (PCT)
Prior art keywords
igf1r
cancer
expression level
gene
pi3k inhibitor
Prior art date
Application number
PCT/JP2013/060027
Other languages
French (fr)
Japanese (ja)
Inventor
矢守 隆夫
慎吾 旦
Original Assignee
公益財団法人がん研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人がん研究会 filed Critical 公益財団法人がん研究会
Publication of WO2013151026A1 publication Critical patent/WO2013151026A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/575Hormones
    • G01N2333/65Insulin-like growth factors (Somatomedins), e.g. IGF-1, IGF-2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/71Assays involving receptors, cell surface antigens or cell surface determinants for growth factors; for growth regulators

Definitions

  • the present invention relates to a diagnostic marker and a diagnostic method for determining whether or not a cancer cell is resistant to a PI3K inhibitor.
  • Phosphatidylinositol 3-kinase are enzymes that phosphorylate the 3-position of the inositol phospholipids to localize in biological membranes, survival of carcinogenesis and cancer growth, play an important role for cancer, such as metastatic Therefore, it is considered as a powerful target for cancer treatment.
  • the PI3K pathway is activated, and inhibition of PI3K can suppress cancer growth (Non-patent Documents 1 and 2, etc.).
  • an antitumor agent comprising such a PI3K inhibitor has been developed (Patent Document 1, etc.).
  • IGF1R insulin-like growth factor 1 receptor
  • PI3K activity was correlated with the activation and positive IGF1R, activation of the PI3K pathway activity of IGF1R It is reported that activation of IGF1R indicates activation of the PI3K pathway (Patent Document 2). Furthermore, it is known that an inhibitor of IGF1R is an antitumor agent (Non-patent Document 3).
  • one anticancer drug may not work for all cancers, and may or may not work depending on the cancer patient.
  • the effect of the drug cannot be predicted at the time of prescribing the drug, that is, before the drug is administered, and the effect is not known until the drug is used.
  • molecular target anticancer drugs such as PI3K inhibitors target target molecules with cancer abnormalities. It is considered.
  • an object of the present application is to provide a diagnostic marker and a diagnostic method for determining whether a cancer cell is resistant (treatment resistance) to a PI3K inhibitor.
  • an antitumor agent comprising a PI3K inhibitor Before prescribing an antitumor agent comprising a PI3K inhibitor to a patient by such a diagnostic marker and method, it is predicted in advance whether the drug will work, or an antitumor agent comprising a PI3K inhibitor is administered. It can be determined whether the patient's cancer has acquired drug resistance.
  • the present inventors produced anti-cancer drug-resistant cells comprising PI3K inhibitor (ZSTK474), compared gene expression of the resistant strain and the parent strain with GeneChip, and found the gene overexpressed in the resistant strain. Identified as drug resistance marker candidates.
  • the gene was screened with siRNA to identify a gene (IGF1R gene) that is functionally involved in PI3K inhibitor resistance (data not shown).
  • the expression of this IGF1R gene is commonly increased among the four acquired resistant strains (Example 1 described later), and it is found that PI3K inhibitors are not effective for cancer cells with high expression of the IGF1R gene. It was.
  • the present invention relates to a diagnostic marker for determining whether a cancer patient's cancer is resistant to a PI3K inhibitor, the diagnostic marker comprising IGF1R mRNA, cDNA or protein, It is a diagnostic marker determined by the expression level of the IGF1R gene in cancer cells or cancer tissues collected from patients. Furthermore, the present invention is a diagnostic method for determining whether or not a cancer of a cancer patient is resistant to a PI3K inhibitor when treating the cancer patient with a PI3K inhibitor, This is a diagnostic method for determination based on the expression level of the IGF1R gene in cancer cells or cancer tissues collected from patients. This diagnostic method may consist of the following steps.
  • a step of creating a tissue section after fixing a piece (xenograft) with formalin and embedding in paraffin (ii) a process of preparing a control tissue section by treating a tumor sample as a control in the same manner as in (i), (iii) a step of deparaffinizing the tissue section prepared in (i) and (ii), treating with a primary antibody specific for the IGF1R protein, staining with a secondary antibody, and quantifying the staining intensity; iv) By comparing the staining intensity obtained from the tumor sample of the cancer patient with the staining intensity obtained from the control tumor sample, it is determined whether or not the cancer of the cancer patient is resistant to the PI3K inhibitor. Judgment process
  • the vertical axis represents GI50 (drug concentration (M) required to suppress the growth of cancer cells by 50%), and the horizontal axis represents the expression level of the IGF1R gene (relative value, Example 2, FIG. 2). Show.
  • the cell line marked with ⁇ indicates the reference cell line. It is a graph which shows the relationship between the tolerance with respect to PI3K inhibitor (NVP-BEZ235) of 39 types of cancer cells untreated with PI3K inhibitor and the expression level of IGF1R protein.
  • the vertical axis represents GI50 (M), and the horizontal axis represents the expression level of the IGF1R gene (relative value, Example 2, FIG. 2).
  • the cell line marked with ⁇ indicates the reference cell line.
  • the vertical axis represents GI50 (M), and the horizontal axis represents the expression level of the IGF1R gene (relative value, Example 2, FIG. 2).
  • the cell line marked with ⁇ indicates the reference cell line.
  • xenograft tumor pieces tumor pieces obtained by transplanting human-derived cancer cells subcutaneously into nude mice
  • xenograft tumor pieces tumor pieces obtained by transplanting human-derived cancer cells subcutaneously into nude mice
  • the vertical axis represents T / C (size of tumor in the drug-treated group (Treated) / size of tumor in the non-drug-treated group (Control)) (%), and the horizontal axis represents the expression of IGF1R protein in the transplanted tumor piece. Indicates the amount.
  • the cell line marked with ⁇ indicates the reference cell line.
  • PI3K inhibitors can suppress the growth of various cancers (Non-patent Document 1, etc.), but there is a significant difference in treatment responsiveness to PI3K inhibitors in both PIK3CA and PTEN abnormal and normal cancers. (Non-patent Document 2), PIK3CA and PTEN gene abnormalities do not serve as diagnostic markers for treatment responsiveness of PI3K inhibitors.
  • the PI3K inhibitor may or may not be effective, and even a cancer cell to which the PI3K inhibitor is effective may acquire drug resistance upon administration.
  • the diagnostic marker and diagnostic method of the present invention determine whether or not such cancer cells are resistant (both acquired resistance and natural resistance) to a PI3K inhibitor. Therefore, in cancer treatment with PI3K inhibitors, PI3K inhibition is achieved for patients with low IGF1R gene expression by measuring the expression level of IGF1R gene in cancer patients using the diagnostic marker and diagnosis method of the present invention. It is effective to administer the agent.
  • PI3K inhibitor examples include the following compounds. These compounds have been confirmed to inhibit PI3K, while it has also been confirmed that inhibition of PI3K suppresses the growth of cancer cells (Non-patent Document 1, etc.).
  • the cancer to which the diagnostic marker and the diagnostic method of the present invention are applied is not particularly limited.
  • lung cancer, colon cancer, stomach cancer, breast cancer, ovarian cancer, brain tumor, kidney cancer examples include prostate cancer, liver cancer, pancreatic cancer, esophageal cancer, mesothelioma, and melanoma.
  • cancer cells or tissues are collected from a subject (cancer patient).
  • Tissue cells (cancer cells) at the target site of the subject may be collected by biopsy or the like, or if necessary, only cancer cells may be accurately collected by laser microdissection.
  • the test subject's tumor tissue may be extract
  • the expression level of the IGF1R gene in cancer cells is used as an index in order to determine whether the cancer is resistant (both acquired resistance and natural resistance) to the PI3K inhibitor.
  • Human IGF1R gene the base sequence of SEQ ID NO: 1 (GenBank Accession NM_000875, NM_015883, its coding region is from 51 to 4154 th of the base sequence.), Or, a base sequence encoding the amino acid sequence of the following human IGF1R protein .
  • Human IGF1R protein consists of the amino acid sequence of SEQ ID NO: 2 (GenBank Accession AAI43722).
  • the cancer of the cancer patient is diagnosed as resistant to the PI3K inhibitor, and if the expression level is low, the cancer of the cancer patient Is not resistant to PI3K inhibitors.
  • it is effective to administer a PI3K inhibitor to a patient with a low expression level of the IGF1R gene.
  • PI3K inhibitors are considered appropriate for cancers that do not show any expression of IGF1R, but for patients with other IGF1R expression to some extent, an appropriate threshold is set, depending on the patient's circumstances, etc. It can be said that it should be judged.
  • this IGF1R gene may be measured as an absolute amount per cell or as a relative amount. This relative amount may be determined using the expression level of the reference gene or 18S ribosomal RNA.
  • a gene that is expected to be expressed to the same extent in cancer cells resistant and non-resistant to PI3K inhibitors such as ⁇ -actin (GenBank Ac No. X00351) and GAPDH (NM_002046) May be used.
  • the expression level of IGF1R gene in cancer cells or cancer tissues collected from cancer patients Compared with the expression level of the IGF1R gene in these reference cell samples, the resistance of the patient to the PI3K inhibitor may be determined.
  • the expression level of the IGF1R gene is not more than a predetermined constant value, it is determined that the patient's cancer is not resistant to the PI3K inhibitor, and in other cases or a predetermined constant value If larger, the patient's cancer may be determined to be resistant to the PI3K inhibitor.
  • Such a reference cell sample may be selected from 39 types of human cancer cell lines (Table 3) examined for the IGF1R gene in Example 2.
  • Table 3 39 types of human cancer cell lines examined for the IGF1R gene in Example 2.
  • the IGF1R expression level in Table 3 is 1.5 or higher
  • the IGF1R expression level in Table 3 is 0.5 or lower. May be.
  • NCI-H23 cells ATCC No. CRL
  • PC-3 cells ATCC No. CRL-1435 are preferably used as a reference cell sample exhibiting a low expression level of IGF1R gene.
  • the expression level of the IGF1R gene in the specimen may be evaluated as a relative value to the expression level. This diagnosis can be performed, for example, by calculating the following ratio X (%).
  • A is the expression level of the IGF1R gene in the specimen
  • B is the expression level of the IGF1R gene of the reference cell sample showing a high expression level of the IGF1R gene
  • C is the IGF1R gene of the reference cell sample showing a low expression level of the IGF1R gene. Represents the expression level of.
  • X is, for example, 20% or less, or 10% or less, it is determined that the cancer of the sample is not resistant to the PI3K inhibitor (therapeutic compatibility with the PI3K inhibitor), and If X is otherwise, or higher than 50% or higher than 80%, the specimen's cancer is resistant to a PI3K inhibitor (therapeutic resistance that is not therapeutically compatible with a PI3K inhibitor, May be determined).
  • resistance to PI3K inhibitors can be obtained only by measuring the expression level of the IGF1R gene in a specimen without measuring such a standard for each test. It is also possible to determine to a certain extent whether or not (the presence or absence of therapeutic suitability).
  • Quantification of IGF1R gene expression can be performed by measuring the expression level of IGF1R mRNA or cDNA or the expression level of IGF1R protein.
  • the expression level of IGF1R mRNA or cDNA is measured, for example, as follows: Methods for quantifying mRNA expression include, for example, oligonucleotides consisting of IGF1R mRNA or its cDNA base sequence or a part of their complementary base sequences, which bind site-specifically to IGF1R mRNA or cDNA. And a method using a primer or probe containing an oligonucleotide to be used.
  • the primer and probe may be variously modified for detecting and quantifying mRNA as long as the oligonucleotide forms a site-specific base pair with IGF1R mRNA or its cDNA.
  • Extraction of total RNA and mRNA from tissue cells (cancer cells) at the target site can be performed based on known methods.
  • Reagent kits for extracting total RNA are commercially available from various manufacturers. For example, RNeasy mini kit (Qiagen) or TRIzol (Invitrogen) can be used.
  • any gene expression quantification method such as RT-PCR method, Northern blot method, DNA chip (manufactured by Affymetrix, etc.) can be used.
  • a real-time quantitative PCR method which is one of RT-PCR methods, is preferable in that a very small amount of DNA can be detected with high sensitivity.
  • mRNA of the IGF1R gene is reverse transcribed to produce first strand cDNA, which is used as a template for PCR amplification with primers specific to the gene.
  • Applied Biosystems High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) can be used.
  • the real-time quantitative PCR method for example, TaqMan (registered trademark) Gene Expression Assays provided by Applied Biosystems can be used.
  • Amplified products can be separated and quantified by electrophoresis or the like, but it is preferable that the quantification is performed accurately and conveniently using a real-time quantitative PCR instrument such as Applied Biosystems ABI PRISM 7000 Sequence Detection System.
  • IGF1R mRNA can be quantified using various measurement methods (DNA array, Northern blot, ATAC-PCR method, etc.).
  • a primer for PCR a fragment consisting of about 10 to 30 base sequences sandwiching at least 50 bases, preferably 100 to 1,000 bases of a polynucleotide consisting of the base sequence of SEQ ID NO: 1 is usually used. .
  • a fragment consisting of at least 15 consecutive nucleotide sequences of a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1 is usually used.
  • the probe base sequence is usually 15-30 bases, preferably 20-25 bases.
  • the expression level of IGF1R protein is measured, for example, as follows: Examples of the method for quantifying IGF1R protein include a method using an antibody specific for IGF1R protein, and specifically, Western blotting, dot blotting, slot blotting, ELISA, and RIA. Can be detected. Moreover, the expression level can also be quantified by performing an immunohistochemical method. As the ELISA / RIA sample, for example, the collected cell extract or serum is used as it is, or an appropriately diluted buffer is used.
  • the cell extract is used as it is or diluted appropriately with a buffer, and a sample buffer (Sigma) containing 2-mercaptoethanol for SDS-polyacrylamide gel electrophoresis. Used in combination with other products.
  • a sample buffer Sigma
  • 2-mercaptoethanol for SDS-polyacrylamide gel electrophoresis Used in combination with other products.
  • a sample buffer for example, a collected cell extract or serum itself, or a solution diluted appropriately with a buffer solution, which is directly adsorbed on a membrane using a blotting apparatus or the like is used.
  • antibodies reactive with IGF1R protein e.g., Cell Signaling Technology, Inc.
  • IGF-I Receptor ⁇ (111A9) Rabbit mAb and SantaCruz's IGF1R ⁇ (C20) may be a commercially available antibody of (sc-713) or the like, Moreover, you may use and make an appropriate antibody.
  • the antibody is directly labeled, or the antibody is used as a primary antibody for detection in cooperation with a labeled secondary antibody that specifically recognizes the primary antibody (recognizes an antibody derived from the animal from which the antibody was produced). It is done.
  • This label is preferably an enzyme (alkaline phosphatase or horseradish peroxidase, etc.), a fluorescent dye (Alexa680, IRDye800, etc.), or biotin (however, an operation for further binding an enzyme-labeled streptavidin to the biotin of the secondary antibody) Is mentioned.
  • Various pre-labeled antibodies (or streptavidin) are commercially available as labeled secondary antibodies (or labeled streptavidin).
  • RIA an antibody labeled with a radioisotope such as 125 I is used, and the measurement is performed using a liquid scintillation counter or the like.
  • the expression level of the antigen is quantified by measuring the activity of these labeled enzymes or the fluorescence intensity of the labeled fluorescent dye excited by laser light.
  • the following immunohistochemical method is effective.
  • IHC method a tumor sample of a subject is collected, and after formalin fixation and paraffin embedding, a tissue section is prepared. For those obtained cell samples, they are transplanted subcutaneously into nude mice, and tumor pieces (xenografts) are taken out and used. This tumor section is deparaffinized, then treated with an appropriate primary antibody specific for IGF1R protein, stained with an appropriate secondary antibody, and the staining intensity is quantified.
  • the antibody that reacts with the IGF1R protein the above-mentioned antibodies can be used.
  • the stained section may be converted into a digital image using an Aperio Technologies Scanscope XT slide scanner or the like, and the staining intensity may be quantified using the company's Spectrum software or the like.
  • Various tumor pieces may be prepared as a tissue microarray, and multiple samples may be measured simultaneously on one slide, or may be measured on separate slides. In that case, it is necessary to perform the staining step under the same conditions as the control sample to be compared.
  • the treatment resistance of the PI3K inhibitor can be determined from the expression of the IGF1R protein in the obtained cancer derived from the subject. In addition, the treatment resistance of the PI3K inhibitor may be determined by comparing with the expression of control cells.
  • the kit used for quantifying the expression level of IGF1R mRNA or cDNA using the diagnostic marker of the present invention comprises a primer for amplifying cDNA of IGF1R gene and a heat-resistant DNA polymerase (such as Taq polymerase), and a detection Therefore, it comprises a probe to be paired with the amplification product.
  • a primer for amplifying cDNA of IGF1R gene and a heat-resistant DNA polymerase (such as Taq polymerase), and a detection Therefore, it comprises a probe to be paired with the amplification product.
  • a heat-resistant DNA polymerase such as Taq polymerase
  • the kit used for quantifying the expression level of the IGF1R protein using the diagnostic marker of the present invention includes, for example, a primary antibody specific for the IGF1R protein, a specific antibody specific to the primary antibody, and an appropriate amount. It consists of a secondary antibody labeled with an enzyme or chemical substance. Examples of other consumable reagents that may be included in this kit include enzymes, buffers, reaction reagents, and the like necessary for quantifying proteins.
  • Example 1 prepared PI3K inhibitor (ZSTK474) resistant cancer cells was investigated the relationship between the development of tolerance and IGF1R gene for PI3K inhibitors in cancer cells that have acquired PI3K inhibitor-resistant.
  • ZSTK474 PI3K inhibitor
  • ZSTK474 resistant cancer cell lines are referred to as SF295R, SNB-75R, SNB-78R, and OVCAR3R, respectively.
  • these cells are seeded into a 96-well plate, and the next day, 5 types of ZSTK474 of 10 -8 M, 10 -7 M, 10 -6 M, 10 -5 M and 10 -4 M are added thereto. After further incubation for 48 hours, the cells were fixed with trichloroacetic acid. Cell proliferation was measured by the sulfurhodamine B (SRB) assay (J Natl Cancer Inst. 1990 Jul 4; 82 (13): 1107-12.) And GI50 (drug concentration required to inhibit cell proliferation by 50%) Calculated. The results are shown in the table below.
  • Cancer cells that acquired resistance to PI3K inhibitors were each 12-120 times more resistant than the parent strain (drug-untreated).
  • RNeasy mini kit manufactured by Qiagen
  • the expression level of 18S ribosomal RNA was simultaneously measured, and the expression level of IGF1R in each sample was normalized with the expression level of 18S ribosomal RNA. Furthermore, a value obtained by normalizing the expression level of IGF1R in each resistant strain sample with the expression level of IGF1R in the SF295 parent strain obtained here was defined as the IGF1R expression level (relative value).
  • Probe for IGF1R 5'-FAM- CCATCTTCGTGCCCAGACCTGAAAG-TAMRA-3 ' (* FAM represents 6-carboxyfluorescein, and TAMRA represents carboxytetramethylrhodamine. The base sequence of this probe corresponds to positions 2236 to 2260 of SEQ ID NO: 1.) Reaction conditions: 95 ° C 10 minutes 1 cycle 95 ° C 15 seconds 60 ° C 1 minute 40 cycles
  • Lysis buffer (10 mmol / L Tris-HCl (PH 7.4), 50 mmol / L NaCl, 0.5% w / v NP40, 0.1% w / v SDS, 50 mmol / L Sodium fluoride, 30 mmol / L sodium pyrophosphate, 50 mmol / L sodium orthavanadate, 5 mmol / L EDTA, 0.1 trypsin inhibitor unit / ml aprotinin, 1 mmol / L phenylmethylsulfonyl fluoride) and suspend the ice using Diagenode Bioruptor. Cells were disrupted by medium sonication.
  • the protein concentration of the cell extract was quantified using a protein assay kit manufactured by Pierce, and the cell extract corresponding to 10 ⁇ g protein was developed by SDS polyacrylamide gel electrophoresis (SDS-PAGE).
  • SDS-PAGE SDS polyacrylamide gel electrophoresis
  • the resistance to PI3K inhibitor (acquired resistance) is related to the expression level of IGF1R, and a significant relationship was found that the higher the expression level of the IGF1R gene, the more resistant the PI3K inhibitor is. .
  • Example 2 the relationship between ZSTK474 resistance (natural resistance) and IGF1R gene expression in cancer cells not treated with a PI3K inhibitor was examined.
  • 39 types of human cancer cell lines were prepared as non-treated PI3K inhibitor cancer cells, cell extracts were prepared from each cancer cell line in the same manner as in Example 1, and GI50 was measured.
  • the expression level of IGF1R in each cell extract a primary antibody (SantaCruz's IGF1R ⁇ (C20) (sc-713)), using a secondary antibody labeled with Alexa488 fluorescent dye, a Licor's Odyssey Measured and quantified.
  • Odyssey supplied excitation light to the fluorescently labeled sample and detected the fluorescence emitted from the fluorescent dye.
  • the fluorescence intensity of the IGF1R band in each detected sample was quantified from an image obtained by scanning the membrane labeled with Alexa488 fluorescent dye with IGF1R expression by Western blotting using Odyssey.
  • the final quantification of the expression level of IGF1R in each sample is the intermediate value of the quantification values obtained by three independent experiments. Value (relative value).
  • the results are shown in the table below and FIG. In the table, * indicates a reference cell line. This table also shows that the PI3K inhibitor may or may not work depending on the cancer cells of each patient, not the type of cancer cells.
  • X (%) (expression level of IGF1R gene in specimen ⁇ expression level of IGF1R gene in PC-3 cell) / (expression level of IGF1R gene in NCI-H23 cell ⁇ PC-3 cell) Expression level of IGF1R gene) ⁇ 100.
  • PI3K inhibitors NVP-BEZ235 and LY294002 instead of the PI3K inhibitor ZSTK474.
  • GI50 resistance to PI3K inhibitors
  • FIGS The relationship between their resistance to PI3K inhibitors (GI50) and the expression level of the IGF1R gene is shown in FIGS. From these figures, it can be seen that the higher the expression of the IGF1R gene, the less effective the PI3K inhibitor is (that is, the resistance to the PI3K inhibitor).
  • cell lines with an IGF1R expression level of X of 20% or less, particularly 10% or less have a low GI50 and a low resistance to PI3K inhibitors.
  • Example 3 the expression of IGF1R protein in an in vivo tumor sample was detected using an immunohistochemical method (IHC method), and the relationship with ZSTK474 resistance (antitumor effect) in vivo was examined.
  • IHC method immunohistochemical method
  • ZSTK474 resistance antigen-effect in vivo was examined.
  • Such an in vivo test can be said to be a condition closer to a clinical sample than an analysis result (Example 2) using human cancer cells cultured in a test tube.
  • TMA tissue microarray
  • the results are shown in the following table and FIG. In the table, * indicates a reference cell line.
  • the cell line having an IGF1R expression level of X of 20% or less, particularly 10% or less has a low T / C and a particularly low resistance to a PI3K inhibitor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Oncology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

[Problem] To provide a diagnostic marker and a diagnostic method for determining whether or not cancer in a cancer patient is resistant to a PI3K inhibitor when the cancer patient is to be treated with the PI3K inhibitor. [Solution] It is elucidated that there is such a relationship that the expression amount of IGF1R gene is higher in a cancer cell having resistance to a PI3K inhibitor and is lower in a cancer cell that does not have resistant to the PI3K inhibitor (wherein the term "resistance" includes both acquired resistance and natural resistance within the scope thereof). The diagnostic marker comprises mRNA or cDNA for IGF1R or an IGF1R protein. The expression amount of IGF1R gene in a cancer cell or tissue collected from a cancer patient is employed as a measure. When the expression amount is low, it is determined that cancer in the patient does not have resistance to a PI3K inhibitor. From the result of this diagnosis, it is found that the administration of a PI3K inhibitor is effective for a patient in which the expression amount of IGF1R gene is low.

Description

PI3K阻害剤耐性がん細胞用診断マーカー及び診断方法PI3K inhibitor-resistant cancer cell diagnostic marker and diagnostic method
 この発明は、がん細胞がPI3K阻害剤に対して耐性か否かを判定するための診断マーカー及び診断方法に関する。 The present invention relates to a diagnostic marker and a diagnostic method for determining whether or not a cancer cell is resistant to a PI3K inhibitor.
 ホスファチジルイノシトール3-キナーゼ(PI3K)は、生体膜に局在するイノシトールリン脂質の3位をリン酸化する酵素であり、発がんやがんの生存、増殖、転移などがんにとって重要な役割を果たすことからがん治療の有力な標的とされている。がん細胞ではPI3K経路が活性化しており、PI3Kを阻害することにより、がんの増殖を抑制することができる(非特許文献1、2など)。更に、このようなPI3K阻害剤からなる抗腫瘍剤が開発されている(特許文献1など)。
 一方、インスリン様成長因子1受容体(IGF1R)遺伝子は、PI3遺伝子の上流に位置する遺伝子であり、PI3K活性は、IGF1Rの活性化と正に相関し、PI3K経路の活性化は、IGF1Rの活性化を評価することにより測定され、IGF1Rの活性化はPI3K経路の活性化を示すと報告されている(特許文献2)。更に、IGF1Rの阻害剤は抗腫瘍剤であることが知られている(非特許文献3)。
Phosphatidylinositol 3-kinase (PI3K) are enzymes that phosphorylate the 3-position of the inositol phospholipids to localize in biological membranes, survival of carcinogenesis and cancer growth, play an important role for cancer, such as metastatic Therefore, it is considered as a powerful target for cancer treatment. In cancer cells, the PI3K pathway is activated, and inhibition of PI3K can suppress cancer growth (Non-patent Documents 1 and 2, etc.). Furthermore, an antitumor agent comprising such a PI3K inhibitor has been developed (Patent Document 1, etc.).
On the other hand, insulin-like growth factor 1 receptor (IGF1R) gene is a gene located upstream of PI3 gene, PI3K activity was correlated with the activation and positive IGF1R, activation of the PI3K pathway activity of IGF1R It is reported that activation of IGF1R indicates activation of the PI3K pathway (Patent Document 2). Furthermore, it is known that an inhibitor of IGF1R is an antitumor agent (Non-patent Document 3).
国際公開WO2002/088112International Publication WO2002 / 088112 特表2010-538680Special table 2010-538680
 一般に、がんは多様性に富む疾患であるため、一つの抗がん剤がすべてのがんに効くことはありえず、がん患者によって効く場合と効かない場合がある。しかも多くの場合、薬を処方する時点、すなわち投薬前に当該薬の効果を予測することはできず、効果のほどは当該薬を使ってみるまでわからないという厳しい現実がある。効いた人はよいが、効かない人は副作用だけを被るという悲劇もありうる。
 一方、PI3K阻害剤などの分子標的抗がん剤は、がんで異常のある標的分子を狙い撃ちするため、従来の抗がん剤とは異なり、その標的分子を発現するがんで著効を示すと考えられている。しかし、実際にはPI3K経路の正常がんでも異常がんでもPI3K阻害剤による治療の効果に有意な違いは認められず、PI3Kなどの遺伝子異常はPI3K阻害剤の治療適合性の診断マーカーとはならない。そのため、PI3K阻害剤の治療適合性を予測する診断マーカーを開発することが急務である。
 そのため、本願は、がん細胞がPI3K阻害剤に対して耐性(治療抵抗性)か否かを判定するための診断マーカー及び診断方法を提供することを目的とする。このような診断マーカー及び診断方法により、患者にPI3K阻害剤からなる抗腫瘍剤を処方する前に、その薬が効くかどうかを事前に予測したり、PI3K阻害剤からなる抗腫瘍剤を投与した患者のがんが薬剤耐性を獲得したかどうかを判断することができる。
In general, because cancer is a diverse disease, one anticancer drug may not work for all cancers, and may or may not work depending on the cancer patient. Moreover, in many cases, there is a severe reality that the effect of the drug cannot be predicted at the time of prescribing the drug, that is, before the drug is administered, and the effect is not known until the drug is used. There can be a tragedy that people who work are good, but those who don't work suffer only side effects.
On the other hand, molecular target anticancer drugs such as PI3K inhibitors target target molecules with cancer abnormalities. It is considered. However, there is actually no significant difference in the effect of treatment with PI3K inhibitors in normal and abnormal cancers of the PI3K pathway, and genetic abnormalities such as PI3K are diagnostic markers for treatment suitability of PI3K inhibitors Don't be. Therefore, there is an urgent need to develop diagnostic markers that predict the therapeutic suitability of PI3K inhibitors.
Therefore, an object of the present application is to provide a diagnostic marker and a diagnostic method for determining whether a cancer cell is resistant (treatment resistance) to a PI3K inhibitor. Before prescribing an antitumor agent comprising a PI3K inhibitor to a patient by such a diagnostic marker and method, it is predicted in advance whether the drug will work, or an antitumor agent comprising a PI3K inhibitor is administered. It can be determined whether the patient's cancer has acquired drug resistance.
 本発明者らは、PI3K阻害剤(ZSTK474)からなる抗がん剤の薬剤耐性細胞を作製し、耐性株と親株の遺伝子発現をGeneChipで比較して、耐性株で過剰発現している遺伝子を薬剤耐性マーカー候補として同定した。そして、この遺伝子についてsiRNAによる機能スクリーニングを行い、PI3K阻害剤の耐性に機能的に関与している遺伝子(IGF1R遺伝子)を同定した(データは省略する。)。このIGF1R遺伝子は、4種の獲得耐性株で共通して発現が上昇しており(後記の実施例1)、IGF1R遺伝子の発現の高いがん細胞には、PI3K阻害剤が効きにくいことが分かった。
 更に、PI3K阻害剤未治療のがん細胞株のPI3K阻害剤に対する感受性とIGF1R発現量の関連を調べたところ、IGF1R遺伝子の発現量が高い細胞ほどPI3K阻害剤が効きにくい(自然耐性)という有意な関連が認められた(後記の実施例2)。
 即ち、このような本発明者らの研究により、PI3K阻害剤に対して耐性(獲得耐性及び自然耐性の両方)のがん細胞においてはIGF1R遺伝子の発現量が高く、PI3K阻害剤に耐性でないがん細胞においてはIGF1R遺伝子の発現量が低いという関係があることが解明された。
The present inventors produced anti-cancer drug-resistant cells comprising PI3K inhibitor (ZSTK474), compared gene expression of the resistant strain and the parent strain with GeneChip, and found the gene overexpressed in the resistant strain. Identified as drug resistance marker candidates. The gene was screened with siRNA to identify a gene (IGF1R gene) that is functionally involved in PI3K inhibitor resistance (data not shown). The expression of this IGF1R gene is commonly increased among the four acquired resistant strains (Example 1 described later), and it is found that PI3K inhibitors are not effective for cancer cells with high expression of the IGF1R gene. It was.
Furthermore, it was examined related sensitivity and IGF1R expression level for PI3K inhibitors of PI3K inhibitor untreated cancer cell lines, significant that higher cell expression of IGF1R gene PI3K inhibitor is unlikely effectiveness (natural resistance) Was found (Example 2 below).
That is, according to such studies by the present inventors, the expression level of the IGF1R gene is high in cancer cells resistant to both PI3K inhibitors (both acquired resistance and natural resistance), but not resistant to PI3K inhibitors. It was elucidated that there is a relationship that the expression level of the IGF1R gene is low in cancer cells.
 即ち、本発明は、がん患者のがんがPI3K阻害剤に対して耐性か否かを判定するための診断マーカーであって、該診断マーカーがIGF1RのmRNA若しくはcDNA又はタンパク質から成り、がん患者から採取したがん細胞又はがん組織におけるIGF1R遺伝子の発現量により判定する診断マーカーである。
 更に、本発明は、PI3K阻害剤によりがん患者を治療する際に、該がん患者のがんがPI3K阻害剤に対して耐性か否かを判定するための診断方法であって、がん患者から採取したがん細胞又はがん組織におけるIGF1R遺伝子の発現量により判定する診断方法である。
 この診断方法は、下記工程から成ってもよい。
 (i) がん患者から腫瘍サンプルを採取し、ホルマリン固定・パラフィン包埋後、組織切片を作成する工程、但し、細胞サンプルを入手したものについては、ヌードマウス皮下に移植して、取り出した腫瘍片(ゼノグラフト)を、ホルマリン固定・パラフィン包埋後、組織切片を作成する工程、
 (ii) コントロールとする腫瘍サンプルを(i)と同様に処理してコントロールの組織切片を作成する工程、
 (iii) (i)及び(ii)で作成した組織切片を脱パラフィン後、IGF1Rタンパク質に特異的な一次抗体で処理した後、二次抗体で染色し、染色強度を定量化する工程、及び
 (iv) がん患者の腫瘍サンプルから得た染色強度を、コントロールとした腫瘍サンプルから得た染色強度と比較することにより、該がん患者のがんがPI3K阻害剤に対して耐性か否かを判定する工程
That is, the present invention relates to a diagnostic marker for determining whether a cancer patient's cancer is resistant to a PI3K inhibitor, the diagnostic marker comprising IGF1R mRNA, cDNA or protein, It is a diagnostic marker determined by the expression level of the IGF1R gene in cancer cells or cancer tissues collected from patients.
Furthermore, the present invention is a diagnostic method for determining whether or not a cancer of a cancer patient is resistant to a PI3K inhibitor when treating the cancer patient with a PI3K inhibitor, This is a diagnostic method for determination based on the expression level of the IGF1R gene in cancer cells or cancer tissues collected from patients.
This diagnostic method may consist of the following steps.
(i) A step of collecting a tumor sample from a cancer patient and preparing a tissue section after formalin fixation and paraffin embedding. However, in the case of obtaining a cell sample, the tumor was transplanted subcutaneously into a nude mouse and removed. A step of creating a tissue section after fixing a piece (xenograft) with formalin and embedding in paraffin,
(ii) a process of preparing a control tissue section by treating a tumor sample as a control in the same manner as in (i),
(iii) a step of deparaffinizing the tissue section prepared in (i) and (ii), treating with a primary antibody specific for the IGF1R protein, staining with a secondary antibody, and quantifying the staining intensity; iv) By comparing the staining intensity obtained from the tumor sample of the cancer patient with the staining intensity obtained from the control tumor sample, it is determined whether or not the cancer of the cancer patient is resistant to the PI3K inhibitor. Judgment process
PI3K阻害剤に対して耐性のがん細胞におけるIGF1Rタンパク質の発現を示すウェスタンブロットである(実施例1)。上段は、ヒト脳腫瘍由来細胞株SF295、下段は、ヒト脳腫瘍由来細胞株SNB-75、SNB-78及びヒト卵巣がん細胞株OVCAR3を示す。It is a Western blot which shows the expression of IGF1R protein in the cancer cell resistant to a PI3K inhibitor (Example 1). The upper row shows human brain tumor-derived cell line SF295, and the lower row shows human brain tumor-derived cell lines SNB-75, SNB-78 and human ovarian cancer cell line OVCAR3. PI3K阻害剤未治療の39種類のがん細胞におけるIGF1Rタンパク質の発現を示すウェスタンブロットである(実施例2)。It is a western blot which shows the expression of IGF1R protein in 39 types of cancer cells untreated with PI3K inhibitor (Example 2). PI3K阻害剤未治療の39種類のがん細胞のPI3K阻害剤(ZSTK474)に対する耐性とIGF1Rタンパク質の発現量との関係を示すグラフである。縦軸は、GI50(がん細胞の増殖を50%抑制するのに必要な薬剤濃度(M))を示し、横軸は、IGF1R遺伝子の発現量(相対値、実施例2、図2)を示す。○印を付けた細胞株は基準とした細胞株を示す。It is a graph which shows the relationship between the tolerance with respect to PI3K inhibitor (ZSTK474) of 39 types of cancer cells untreated with PI3K inhibitor and the expression level of IGF1R protein. The vertical axis represents GI50 (drug concentration (M) required to suppress the growth of cancer cells by 50%), and the horizontal axis represents the expression level of the IGF1R gene (relative value, Example 2, FIG. 2). Show. The cell line marked with ○ indicates the reference cell line. PI3K阻害剤未治療の39種類のがん細胞のPI3K阻害剤(NVP-BEZ235)に対する耐性とIGF1Rタンパク質の発現量との関係を示すグラフである。縦軸は、GI50(M)を示し、横軸は、IGF1R遺伝子の発現量(相対値、実施例2、図2)を示す。○印を付けた細胞株は基準とした細胞株を示す。It is a graph which shows the relationship between the tolerance with respect to PI3K inhibitor (NVP-BEZ235) of 39 types of cancer cells untreated with PI3K inhibitor and the expression level of IGF1R protein. The vertical axis represents GI50 (M), and the horizontal axis represents the expression level of the IGF1R gene (relative value, Example 2, FIG. 2). The cell line marked with ○ indicates the reference cell line. PI3K阻害剤未治療の39種類のがん細胞のPI3K阻害剤(LY294002)に対する耐性とIGF1Rタンパク質の発現量との関係を示すグラフである。縦軸は、GI50(M)を示し、横軸は、IGF1R遺伝子の発現量(相対値、実施例2、図2)を示す。○印を付けた細胞株は基準とした細胞株を示す。It is a graph which shows the relationship between the tolerance with respect to PI3K inhibitor (LY294002) of 39 types of cancer cells untreated with PI3K inhibitor and the expression level of IGF1R protein. The vertical axis represents GI50 (M), and the horizontal axis represents the expression level of the IGF1R gene (relative value, Example 2, FIG. 2). The cell line marked with ○ indicates the reference cell line. PI3K阻害剤未治療の21種類のヒトがん細胞ゼノグラフト(異種移植腫瘍片=ヒト由来のがん細胞をヌードマウス皮下に移植してできた腫瘍片)のPI3K阻害剤(ZSTK474)に対するin vivo(生きたヌードマウス内)におけるがん細胞の治療抵抗性とIGF1Rタンパク質の発現量との関係を示すグラフである。縦軸は、T/C(薬剤処理群(Treated)の腫瘍のサイズ/薬剤未処理群(Control)の腫瘍のサイズ)(%)を示し、横軸は、移植腫瘍片内におけるIGF1Rタンパク質の発現量を示す。○印を付けた細胞株は基準とした細胞株を示す。In vivo against PI3K inhibitor (ZSTK474) of 21 types of human cancer cell xenografts that have not been treated with PI3K inhibitor (xenograft tumor pieces = tumor pieces obtained by transplanting human-derived cancer cells subcutaneously into nude mice) It is a graph which shows the relationship between the treatment resistance of the cancer cell and the expression level of IGF1R protein in the living nude mouse). The vertical axis represents T / C (size of tumor in the drug-treated group (Treated) / size of tumor in the non-drug-treated group (Control)) (%), and the horizontal axis represents the expression of IGF1R protein in the transplanted tumor piece. Indicates the amount. The cell line marked with ○ indicates the reference cell line.
 がんでは、主たるPI3KアイソフォームであるPI3Kαタンパク質をコードするPIK3CA遺伝子の機能獲得型変異やPI3Kと逆反応をするホスファターゼであるPTEN遺伝子の異常が高頻度に起こっている。実際、PI3K阻害剤はさまざまながんの増殖を抑制することができるが(非特許文献1など)、PIK3CAやPTENの異常がんでも正常がんでもPI3K阻害剤に対する治療反応性に有意な違いは認められず(非特許文献2)、PIK3CAやPTENの遺伝子異常がPI3K阻害剤の治療反応性の診断マーカーとはならない。また、がん細胞によってPI3K阻害剤が効く場合と効かない場合があり、更に、PI3K阻害剤が効くがん細胞であっても、投与とともに薬剤耐性を獲得する場合がある。
 本願発明の診断マーカー及び診断方法は、このようながん細胞がPI3K阻害剤に対して耐性(獲得耐性及び自然耐性の両方)か否かを判定するものである。そのため、PI3K阻害剤によるがん治療において、本願発明の診断マーカー及び診断方法を使用してがん患者のIGF1R遺伝子の発現量を測ることにより、IGF1R遺伝子の発現量の低い患者に対してPI3K阻害剤を投与することが有効である。
In cancer, gain-of-function mutations in the PIK3CA gene encoding the PI3Kα protein, which is the main PI3K isoform, and abnormalities in the PTEN gene, a phosphatase that reversely reacts with PI3K, occur frequently. In fact, PI3K inhibitors can suppress the growth of various cancers (Non-patent Document 1, etc.), but there is a significant difference in treatment responsiveness to PI3K inhibitors in both PIK3CA and PTEN abnormal and normal cancers. (Non-patent Document 2), PIK3CA and PTEN gene abnormalities do not serve as diagnostic markers for treatment responsiveness of PI3K inhibitors. Moreover, depending on the cancer cell, the PI3K inhibitor may or may not be effective, and even a cancer cell to which the PI3K inhibitor is effective may acquire drug resistance upon administration.
The diagnostic marker and diagnostic method of the present invention determine whether or not such cancer cells are resistant (both acquired resistance and natural resistance) to a PI3K inhibitor. Therefore, in cancer treatment with PI3K inhibitors, PI3K inhibition is achieved for patients with low IGF1R gene expression by measuring the expression level of IGF1R gene in cancer patients using the diagnostic marker and diagnosis method of the present invention. It is effective to administer the agent.
 PI3K阻害剤としては、下記のような化合物が挙げられる。これらの化合物は、PI3Kを阻害することが確認されており、一方、PI3Kを阻害することによりがん細胞の増殖が抑制されることも確認されている(非特許文献1など)。
Figure JPOXMLDOC01-appb-I000001
Examples of the PI3K inhibitor include the following compounds. These compounds have been confirmed to inhibit PI3K, while it has also been confirmed that inhibition of PI3K suppresses the growth of cancer cells (Non-patent Document 1, etc.).
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本願発明の診断マーカー及び診断方法が適用されるがんとしては、上記のように、特に制限はないが、例えば、肺がん、大腸がん、胃がん、乳がん、卵巣がん、脳腫瘍、腎がん、前立腺がん、肝がん、膵臓がん、食道がん、中皮腫、メラノーマなどが挙げられる。
 本願発明の診断マーカー及び診断方法を適用するためには、被験者(がん患者)からがん細胞又は組織(検体)を採取する。被験者の標的部位の組織細胞(がん細胞)をバイオプシー等により採取してもよいし、必要に応じて、レーザーマイクロダイセクションによりがん細胞だけを正確に分取してもよい。更に、免疫組織化学法で検出する場合は、被験者の腫瘍組織を採取し、パラフィン包埋してもよい。
As described above, the cancer to which the diagnostic marker and the diagnostic method of the present invention are applied is not particularly limited. For example, lung cancer, colon cancer, stomach cancer, breast cancer, ovarian cancer, brain tumor, kidney cancer, Examples include prostate cancer, liver cancer, pancreatic cancer, esophageal cancer, mesothelioma, and melanoma.
In order to apply the diagnostic marker and diagnostic method of the present invention, cancer cells or tissues (specimens) are collected from a subject (cancer patient). Tissue cells (cancer cells) at the target site of the subject may be collected by biopsy or the like, or if necessary, only cancer cells may be accurately collected by laser microdissection. Furthermore, when detecting by immunohistochemical method, the test subject's tumor tissue may be extract | collected and paraffin-embedded.
 本発明においては、がんがPI3K阻害剤に対して耐性(獲得耐性及び自然耐性の両方)であるか否かを判定するために、がん細胞におけるIGF1R遺伝子の発現量を指標とする。
 ヒトIGF1R遺伝子は、配列番号1の塩基配列(GenBank Accession NM_000875, NM_015883、そのコード領域は51~4154番目の塩基配列である。)、又は、下記ヒトIGF1Rタンパク質のアミノ酸配列をコードする塩基配列から成る。
 ヒトIGF1Rタンパク質は配列番号2のアミノ酸配列(GenBank Accession AAI43722)から成る。
In the present invention, the expression level of the IGF1R gene in cancer cells is used as an index in order to determine whether the cancer is resistant (both acquired resistance and natural resistance) to the PI3K inhibitor.
Human IGF1R gene, the base sequence of SEQ ID NO: 1 (GenBank Accession NM_000875, NM_015883, its coding region is from 51 to 4154 th of the base sequence.), Or, a base sequence encoding the amino acid sequence of the following human IGF1R protein .
Human IGF1R protein consists of the amino acid sequence of SEQ ID NO: 2 (GenBank Accession AAI43722).
 本願発明の診断において、IGF1R遺伝子の発現量が高い場合には、がん患者のがんがPI3K阻害剤に対して耐性と診断し、この発現量が低い場合には、がん患者のがんがPI3K阻害剤に対して耐性ではないと判定する。診断の結果、IGF1R遺伝子の発現量の低い患者に対してPI3K阻害剤を投与することが有効である。しかし、がんのIGF1R遺伝子の発現量がどの程度以下なら、PI3K阻害剤による治療が適しているか、という点については、特定の閾値はない。IGF1Rの発現がまったく認められないがんについては、PI3K阻害剤が適していると考えられるが、その他のIGF1Rの発現がある程度認められる患者については、適当な閾値を設け、患者の状況等により適宜判断すべきものといえる。 In the diagnosis of the present invention, if the expression level of the IGF1R gene is high, the cancer of the cancer patient is diagnosed as resistant to the PI3K inhibitor, and if the expression level is low, the cancer of the cancer patient Is not resistant to PI3K inhibitors. As a result of the diagnosis, it is effective to administer a PI3K inhibitor to a patient with a low expression level of the IGF1R gene. However, there is no specific threshold regarding the extent to which the expression level of the IGF1R gene in cancer is appropriate for treatment with a PI3K inhibitor. PI3K inhibitors are considered appropriate for cancers that do not show any expression of IGF1R, but for patients with other IGF1R expression to some extent, an appropriate threshold is set, depending on the patient's circumstances, etc. It can be said that it should be judged.
 本発明の診断マーカーを用いてがんがPI3K阻害剤に対して耐性であるか否か(即ち、PI3K阻害剤に対する治療適合性が有るか否か)を判定する際には、このIGF1R遺伝子の発現量を、1細胞あたりの絶対量として測定してもよく、相対量として測定してもよい。この相対量は、基準とする遺伝子の発現量、または18SリボゾーマルRNAを用いて求めてもよい。内部基準の遺伝子として、例えば、βアクチン(GenBank Ac No. X00351)、GAPDH(NM_002046)等のPI3K阻害剤に対して耐性及び非耐性のがん細胞で同程度に発現することが期待される遺伝子を用いてもよい。
 一方、高いIGF1R遺伝子の発現量を示す基準細胞サンプル、及び低いIGF1R遺伝子の発現量を示す基準細胞サンプルを用い、がん患者から採取したがん細胞又はがん組織におけるIGF1R遺伝子の発現量を、これら基準細胞サンプルのIGF1R遺伝子の発現量と比較して該患者のがんのPI3K阻害剤に対する耐性を判定してもよい。また、このIGF1R遺伝子の発現量が、予め定めた一定値以下の場合には、該患者のがんがPI3K阻害剤に対して耐性ではないと判定し、それ以外の場合又は予め定めた一定値より大きい場合には、該患者のがんがPI3K阻害剤に対して耐性と判定してもよい。
 このような基準細胞サンプルを、実施例2でIGF1R遺伝子を調べた39種類のヒトがん細胞株(表3)の中から選択してもよい。例えば、高いIGF1R遺伝子の発現量を示す基準として、表3のIGF1R発現量が1.5以上のもの、低いIGF1R遺伝子の発現量を示す基準として、表3のIGF1R発現量が0.5以下のものを選択してもよい。これらの中で、American Type Culture Collection(ATCC)から入手可能であって、各方法で比較的安定的に、高いIGF1R遺伝子の発現量を示す基準細胞サンプルとして、NCI-H23細胞(ATCC No. CRL-5800)、及び低いIGF1R遺伝子の発現量を示す基準細胞サンプルとして、PC-3細胞(ATCC No. CRL-1435)を用いることが好ましい。
When using the diagnostic marker of the present invention to determine whether a cancer is resistant to a PI3K inhibitor (ie, whether it is therapeutically compatible with a PI3K inhibitor), this IGF1R gene The expression level may be measured as an absolute amount per cell or as a relative amount. This relative amount may be determined using the expression level of the reference gene or 18S ribosomal RNA. As an internal standard gene, for example, a gene that is expected to be expressed to the same extent in cancer cells resistant and non-resistant to PI3K inhibitors such as β-actin (GenBank Ac No. X00351) and GAPDH (NM_002046) May be used.
On the other hand, using a reference cell sample showing a high expression level of IGF1R gene and a reference cell sample showing a low expression level of IGF1R gene, the expression level of IGF1R gene in cancer cells or cancer tissues collected from cancer patients, Compared with the expression level of the IGF1R gene in these reference cell samples, the resistance of the patient to the PI3K inhibitor may be determined. In addition, when the expression level of the IGF1R gene is not more than a predetermined constant value, it is determined that the patient's cancer is not resistant to the PI3K inhibitor, and in other cases or a predetermined constant value If larger, the patient's cancer may be determined to be resistant to the PI3K inhibitor.
Such a reference cell sample may be selected from 39 types of human cancer cell lines (Table 3) examined for the IGF1R gene in Example 2. For example, as a reference indicating a high IGF1R gene expression level, the IGF1R expression level in Table 3 is 1.5 or higher, and as a reference indicating a low IGF1R gene expression level, the IGF1R expression level in Table 3 is 0.5 or lower. May be. Among these, NCI-H23 cells (ATCC No. CRL), which are available from the American Type Culture Collection (ATCC) and are relatively stable by each method and exhibit a high expression level of the IGF1R gene. PC-3 cells (ATCC No. CRL-1435) are preferably used as a reference cell sample exhibiting a low expression level of IGF1R gene.
 これら基準と検体のIGF1R遺伝子の発現量を同時に測定し、又は予め基準がん細胞のデータを取っておき、同じ条件で検体のIGF1R遺伝子の発現量測定することにより、これら基準がん細胞のIGF1R遺伝子の発現量に対する相対値として、検体のIGF1R遺伝子の発現量を評価してもよい。
 この診断は、例えば、下記の比率X(%)を算出することにより行うことができる。
   X=(A-C)/(B-C)x100
(式中、Aは検体のIGF1R遺伝子の発現量、Bは高いIGF1R遺伝子の発現量を示す基準細胞サンプルのIGF1R遺伝子の発現量、Cは低いIGF1R遺伝子の発現量を示す基準細胞サンプルのIGF1R遺伝子の発現量を表す。)
 そして、Xが、例えば、20%以下、又は10%以下であれば、検体のがんがPI3K阻害剤に対して耐性ではない(PI3K阻害剤に対する治療適合性がある)と判定し、また、Xが、それ以外の場合、又は50%より高い、若しくは80%より高い場合には、検体のがんがPI3K阻害剤に対して耐性である(PI3K阻害剤に対する治療適合性がない、治療抵抗性である)と判断してもよい。
 また、本発明の診断マーカーを用いた診断の経験を積めば、検査ごとにこのような基準を測定しなくとも、検体のIGF1R遺伝子の発現量を測定しただけで、PI3K阻害剤に対して耐性であるか否か(治療適合性の有無)をある程度判断することも可能である。
By measuring the expression level of the IGF1R gene in the reference and the sample at the same time, or by collecting the reference cancer cell data in advance and measuring the expression level of the IGF1R gene in the sample under the same conditions, The expression level of the IGF1R gene in the specimen may be evaluated as a relative value to the expression level.
This diagnosis can be performed, for example, by calculating the following ratio X (%).
X = (AC) / (BC) × 100
(In the formula, A is the expression level of the IGF1R gene in the specimen, B is the expression level of the IGF1R gene of the reference cell sample showing a high expression level of the IGF1R gene, and C is the IGF1R gene of the reference cell sample showing a low expression level of the IGF1R gene. Represents the expression level of.
If X is, for example, 20% or less, or 10% or less, it is determined that the cancer of the sample is not resistant to the PI3K inhibitor (therapeutic compatibility with the PI3K inhibitor), and If X is otherwise, or higher than 50% or higher than 80%, the specimen's cancer is resistant to a PI3K inhibitor (therapeutic resistance that is not therapeutically compatible with a PI3K inhibitor, May be determined).
In addition, with experience in diagnosis using the diagnostic marker of the present invention, resistance to PI3K inhibitors can be obtained only by measuring the expression level of the IGF1R gene in a specimen without measuring such a standard for each test. It is also possible to determine to a certain extent whether or not (the presence or absence of therapeutic suitability).
 IGF1R遺伝子発現の定量は、IGF1RのmRNA若しくはcDNAの発現量又はIGF1Rのタンパク質の発現量を測定することにより行うことができる。
(1) IGF1RのmRNA又はcDNAの発現量を測定は、例えば、以下のようにして行う:
 mRNAの発現量を定量する方法としては、例えば、IGF1RのmRNA若しくはそのcDNAの塩基配列又はそれらの相補塩基配列の一部からなるオリゴヌクレオチドであって、IGF1RのmRNA又はcDNAに部位特異的に結合するオリゴヌクレオチドを含むプライマーやプローブを用いた方法が挙げられる。このプライマーやプローブは、上記オリゴヌクレオチドがIGF1RのmRNA又はそのcDNAと部位特異的塩基対を形成するものであれば、このmRNAを検出・定量するための様々な修飾がされたものでもよい。
 標的部位の組織細胞(がん細胞)からのtotal RNAやmRNAの抽出は、公知の方法に基づいて実施することができる。total RNAを抽出する試薬キットはさまざまなメーカーから市販されており、例えば、RNeasy mini kit(Qiagen社)や、TRIzol(Invitrogen社)などを用いることができる。
 IGF1RmRNAの発現量の検出は、例えば、RT-PCR法、Northern blot法、DNAチップ(アフィメトリクス社製等)など、任意の遺伝子発現定量法を用いることができる。
Quantification of IGF1R gene expression can be performed by measuring the expression level of IGF1R mRNA or cDNA or the expression level of IGF1R protein.
(1) The expression level of IGF1R mRNA or cDNA is measured, for example, as follows:
Methods for quantifying mRNA expression include, for example, oligonucleotides consisting of IGF1R mRNA or its cDNA base sequence or a part of their complementary base sequences, which bind site-specifically to IGF1R mRNA or cDNA. And a method using a primer or probe containing an oligonucleotide to be used. The primer and probe may be variously modified for detecting and quantifying mRNA as long as the oligonucleotide forms a site-specific base pair with IGF1R mRNA or its cDNA.
Extraction of total RNA and mRNA from tissue cells (cancer cells) at the target site can be performed based on known methods. Reagent kits for extracting total RNA are commercially available from various manufacturers. For example, RNeasy mini kit (Qiagen) or TRIzol (Invitrogen) can be used.
For the detection of the expression level of IGF1R mRNA, any gene expression quantification method such as RT-PCR method, Northern blot method, DNA chip (manufactured by Affymetrix, etc.) can be used.
 RT-PCR法の1つであるリアルタイム定量PCR法は微量なDNAを高感度かつ定量的に検出できるという点で好ましい。RT-PCRでは、IGF1R遺伝子のmRNAを逆転写してfirst strand cDNAを作成し、これを鋳型に当該遺伝子に特異的なプライマーによりPCR増幅する。逆転写反応は、例えば、High-Capacity cDNA Reverse Transcription Kit(Applied Biosystems社)などを用いることができる。リアルタイム定量PCR法は、例えば、Applied Biosystems社が提供するTaqMan(登録商標) Gene Expression Assaysを利用することができる。増幅産物は、電気泳動等により分離し、定量することもできるが、Applied Biosystems社ABI PRISM 7000 Sequence Detection Systemなどのリアルタイム定量PCR機器を利用して定量することが正確かつ簡便で好ましい。
 リアルタイム定量PCR以外に、様々な測定法(DNAアレイ、ノーザンブロット、ATAC-PCR法など)を用いて、IGF1R mRNAを定量することができる。
 PCR用プライマーとしては、通常、配列番号1の塩基配列から成るポリヌクレオチドの少なくとも50塩基、好ましくは100~1,000塩基のポリヌクレオチド部分を挟む約10~30個程度の塩基配列からなる断片が用いられる。
 プロ―ブとしては、通常、配列番号1の塩基配列から成るポリヌクレオチドの連続した少なくとも15個の塩基配列からなる断片が用いられる。プロ―ブの塩基配列は通常15~30塩基、好ましくは20~25塩基である。
 IGF1RのmRNA若しくはcDNAの発現量を測定するために、DNAアレイやノーザンブロットを用いる場合には、上記プローブ、ATAC-PCR法などを用いる場合には、上記プライマー、リアルタイム定量PCR法を用いる場合には、上記プライマーと上記プローブが用いられている。
A real-time quantitative PCR method, which is one of RT-PCR methods, is preferable in that a very small amount of DNA can be detected with high sensitivity. In RT-PCR, mRNA of the IGF1R gene is reverse transcribed to produce first strand cDNA, which is used as a template for PCR amplification with primers specific to the gene. For the reverse transcription reaction, for example, High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) can be used. For the real-time quantitative PCR method, for example, TaqMan (registered trademark) Gene Expression Assays provided by Applied Biosystems can be used. Amplified products can be separated and quantified by electrophoresis or the like, but it is preferable that the quantification is performed accurately and conveniently using a real-time quantitative PCR instrument such as Applied Biosystems ABI PRISM 7000 Sequence Detection System.
In addition to real-time quantitative PCR, IGF1R mRNA can be quantified using various measurement methods (DNA array, Northern blot, ATAC-PCR method, etc.).
As a primer for PCR, a fragment consisting of about 10 to 30 base sequences sandwiching at least 50 bases, preferably 100 to 1,000 bases of a polynucleotide consisting of the base sequence of SEQ ID NO: 1 is usually used. .
As the probe, a fragment consisting of at least 15 consecutive nucleotide sequences of a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1 is usually used. The probe base sequence is usually 15-30 bases, preferably 20-25 bases.
To measure the expression level of IGF1R mRNA or cDNA, when using a DNA array or Northern blot, when using the above probe, ATAC-PCR method, etc., when using the above primer or real-time quantitative PCR method Uses the above primer and the above probe.
(2) IGF1Rタンパク質の発現量の測定は、例えば、以下のようにして行う:
 IGF1Rタンパク質を定量する方法としては、例えば、IGF1Rタンパク質に特異的な抗体を用いた方法があげられ、具体的には、ウエスタンブロット法、ドットブロット法、スロットブロット法、ELISA法、及びRIA法によって検出することができる。また、免疫組織化学法を行い、その発現量を定量化することもできる。
 ELISA/RIA用試料は、例えば、回収した細胞抽出液又は血清をそのまま使用するか、緩衝液で適宜希釈したものを用いる。ウエスタンブロット用(電気泳動用)試料は、例えば、細胞抽出液をそのまま使用するか、緩衝液で適宜希釈して、SDS-ポリアクリルアミドゲル電気泳動用の2-メルカプトエタノールを含むサンプル緩衝液(シグマ社製等)と混合したものを用いる。ドット/スロットブロット用試料は、例えば、回収した細胞抽出液又は血清そのもの、又は緩衝液で適宜希釈したものを、ブロッティング装置を使用するなどして、直接メンブレンへ吸着させたものを用いる。
 IGF1Rタンパク質と反応する抗体として、例えば、Cell Signaling Technology社のIGF-I Receptor β (111A9) Rabbit mAbやSantaCruz社のIGF1Rβ(C20)(sc-713)等の市販の抗体を用いてもよいし、また適当な抗体を自作して用いてもよい。
 抗体は、それを直接標識するか、又は該抗体を一次抗体とし、該一次抗体を特異的に認識する(抗体を作製した動物由来の抗体を認識する)標識二次抗体と協同で検出に用いられる。
 この標識として、好ましくは、酵素(アルカリホスファターゼ又は西洋ワサビペルオキシダーゼ等)、蛍光色素(Alexa680、IRDye800等)、又はビオチン(ただし二次抗体のビオチンにさらに酵素標識ストレプトアビジンを結合させる操作が加わる)等が挙げられる。標識二次抗体(又は標識ストレプトアビジン)として、予め標識された抗体(又はストレプトアビジン)が、各種市販されている。なお、RIAの場合は125I等の放射性同位元素で標識された抗体を用い、測定は液体シンチレーションカウンター等を用いて行う。
 これら標識された酵素の活性、又は、レーザー光で励起した標識蛍光色素の蛍光強度等を測定することにより、抗原の発現量が定量される。
(2) The expression level of IGF1R protein is measured, for example, as follows:
Examples of the method for quantifying IGF1R protein include a method using an antibody specific for IGF1R protein, and specifically, Western blotting, dot blotting, slot blotting, ELISA, and RIA. Can be detected. Moreover, the expression level can also be quantified by performing an immunohistochemical method.
As the ELISA / RIA sample, for example, the collected cell extract or serum is used as it is, or an appropriately diluted buffer is used. For the sample for Western blotting (electrophoresis), for example, the cell extract is used as it is or diluted appropriately with a buffer, and a sample buffer (Sigma) containing 2-mercaptoethanol for SDS-polyacrylamide gel electrophoresis. Used in combination with other products. As the sample for dot / slot blotting, for example, a collected cell extract or serum itself, or a solution diluted appropriately with a buffer solution, which is directly adsorbed on a membrane using a blotting apparatus or the like is used.
As antibodies reactive with IGF1R protein, e.g., Cell Signaling Technology, Inc. IGF-I Receptor β (111A9) Rabbit mAb and SantaCruz's IGF1Rβ (C20) may be a commercially available antibody of (sc-713) or the like, Moreover, you may use and make an appropriate antibody.
The antibody is directly labeled, or the antibody is used as a primary antibody for detection in cooperation with a labeled secondary antibody that specifically recognizes the primary antibody (recognizes an antibody derived from the animal from which the antibody was produced). It is done.
This label is preferably an enzyme (alkaline phosphatase or horseradish peroxidase, etc.), a fluorescent dye (Alexa680, IRDye800, etc.), or biotin (however, an operation for further binding an enzyme-labeled streptavidin to the biotin of the secondary antibody) Is mentioned. Various pre-labeled antibodies (or streptavidin) are commercially available as labeled secondary antibodies (or labeled streptavidin). In the case of RIA, an antibody labeled with a radioisotope such as 125 I is used, and the measurement is performed using a liquid scintillation counter or the like.
The expression level of the antigen is quantified by measuring the activity of these labeled enzymes or the fluorescence intensity of the labeled fluorescent dye excited by laser light.
 なお、本願発明の診断マーカー及び診断方法を臨床で使用する場合には、以下に示すような免疫組織化学法(IHC法)による測定法が有効である。
 IHC法においては、被験者の腫瘍サンプルを採取し、ホルマリン固定・パラフィン包埋後、組織切片を作成する。細胞サンプルを入手したものについては、ヌードマウス皮下に移植して、腫瘍片(ゼノグラフト)を取り出して用いる。
 この腫瘍切片を脱パラフィン後、IGF1Rタンパク質に特異的な適当な一次抗体で処理し、適当な二次抗体で染色し、染色強度を定量化する。IGF1Rタンパク質と反応する抗体としては上記の抗体を使用することができる。また、染色した切片(スライド)をAperio Technologies社のScanscope XTスライドスキャナ等を用いてデジタル画像化し、同社のSpectrumソフトウェア等を用いて染色強度を定量化してもよい。多種の腫瘍片を組織マイクロアレーとして作成し、1枚のスライドで同時に多サンプルの測定を行ってもよいし、別々のスライドで測定してもよい。その際は、比較すべきコントロールサンプルと同じ条件で染色工程を行う必要がある。得られた被験者由来のがんにおけるIGF1Rタンパク質の発現から、PI3K阻害剤の治療抵抗性を判定することができる。また、コントロール細胞の発現と比較することで、PI3K阻害剤の治療抵抗性を判定してもよい。
When the diagnostic marker and diagnostic method of the present invention are used clinically, the following immunohistochemical method (IHC method) is effective.
In the IHC method, a tumor sample of a subject is collected, and after formalin fixation and paraffin embedding, a tissue section is prepared. For those obtained cell samples, they are transplanted subcutaneously into nude mice, and tumor pieces (xenografts) are taken out and used.
This tumor section is deparaffinized, then treated with an appropriate primary antibody specific for IGF1R protein, stained with an appropriate secondary antibody, and the staining intensity is quantified. As the antibody that reacts with the IGF1R protein, the above-mentioned antibodies can be used. Alternatively, the stained section (slide) may be converted into a digital image using an Aperio Technologies Scanscope XT slide scanner or the like, and the staining intensity may be quantified using the company's Spectrum software or the like. Various tumor pieces may be prepared as a tissue microarray, and multiple samples may be measured simultaneously on one slide, or may be measured on separate slides. In that case, it is necessary to perform the staining step under the same conditions as the control sample to be compared. The treatment resistance of the PI3K inhibitor can be determined from the expression of the IGF1R protein in the obtained cancer derived from the subject. In addition, the treatment resistance of the PI3K inhibitor may be determined by comparing with the expression of control cells.
 本発明の診断マーカーを用いてIGF1RのmRNA若しくはcDNAの発現量を定量するために使用するキットは、IGF1R遺伝子のcDNAを増幅するためのプライマー及び熱耐性DNAポリメラーゼ(Taqポリメラーゼなど)と、検出のため前記増幅産物に対合させるプローブとから成る。このキットに含まれてもよいその他の消耗試薬としては、例えば、デオキシリボヌクレオチド三リン酸(dATP, dCTP, dGTP, dTTP)、バッファー等が挙げられる。
 また、本発明の診断マーカーを用いてIGF1Rのタンパク質の発現量を定量するために使用するキットは、例えば、IGF1Rタンパク質に特異的な一次抗体と、この一次抗体に特異的であって、適当な酵素又は化学物質で標識化された二次抗体とから成る。このキットに含まれてもよいその他の消耗試薬としては、例えば、タンパク質を定量するために必要な酵素、バッファー、反応試薬等が挙げられる。
The kit used for quantifying the expression level of IGF1R mRNA or cDNA using the diagnostic marker of the present invention comprises a primer for amplifying cDNA of IGF1R gene and a heat-resistant DNA polymerase (such as Taq polymerase), and a detection Therefore, it comprises a probe to be paired with the amplification product. Examples of other consumable reagents that may be included in this kit include deoxyribonucleotide triphosphates (dATP, dCTP, dGTP, dTTP), buffers, and the like.
The kit used for quantifying the expression level of the IGF1R protein using the diagnostic marker of the present invention includes, for example, a primary antibody specific for the IGF1R protein, a specific antibody specific to the primary antibody, and an appropriate amount. It consists of a secondary antibody labeled with an enzyme or chemical substance. Examples of other consumable reagents that may be included in this kit include enzymes, buffers, reaction reagents, and the like necessary for quantifying proteins.
 以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
実施例1
 本実施例では、PI3K阻害剤(ZSTK474)耐性がん細胞を作製し、PI3K阻害剤耐性を獲得したがん細胞におけるPI3K阻害剤に対する耐性とIGF1R遺伝子の発現との関係を調べた。
 ヒト脳腫瘍由来細胞株SF295、SNB-75、SNB-78及びヒト卵巣がん細胞株OVCAR3(以上、米国立がんセンターDevelopmental Therapeutics Programから入手)を1~10μMのZSTK474(全薬工業株式会社)存在下で1年以上培養し、10μMのZSTK474存在下で増殖する細胞を得た。通常のがん細胞はZSTK474(PI3K阻害剤)存在下では増殖不可能であるので、これらの細胞はZSTK474に対する耐性を獲得したといえる。これらのZSTK474耐性がん細胞株を、それぞれSF295R、SNB-75R、SNB-78R、OVCAR3Rと呼ぶ。
 次に、これら細胞を96ウェルプレートに撒き込み、翌日、これに10-8M、10-7M、10-6M、10-5M及び10-4Mの5種類の濃度のZSTK474を加え、さらに48時間培養後、細胞をトリクロロ酢酸で固定した。細胞増殖をsulforhodamine B (SRB)アッセイ(J Natl Cancer Inst. 1990 Jul 4;82(13):1107-12.)により測定し、GI50(細胞増殖を50%抑制するのに必要な薬剤濃度)を算出した。結果を下表に示す。
The following examples illustrate the invention but are not intended to limit the invention.
Example 1
In this embodiment, prepared PI3K inhibitor (ZSTK474) resistant cancer cells was investigated the relationship between the development of tolerance and IGF1R gene for PI3K inhibitors in cancer cells that have acquired PI3K inhibitor-resistant.
Human brain tumor-derived cell lines SF295, SNB-75, SNB-78 and human ovarian cancer cell lines OVCAR3 (or more, the National Cancer Center Developmental Therapeutics available from the Program) of the 1 ~ 10μM ZSTK474 (Zenyaku Co., Ltd.) in the presence Under this condition, the cells were cultured for 1 year or longer to obtain cells that grew in the presence of 10 μM ZSTK474. Since normal cancer cells cannot grow in the presence of ZSTK474 (PI3K inhibitor), it can be said that these cells have acquired resistance to ZSTK474. These ZSTK474 resistant cancer cell lines are referred to as SF295R, SNB-75R, SNB-78R, and OVCAR3R, respectively.
Next, these cells are seeded into a 96-well plate, and the next day, 5 types of ZSTK474 of 10 -8 M, 10 -7 M, 10 -6 M, 10 -5 M and 10 -4 M are added thereto. After further incubation for 48 hours, the cells were fixed with trichloroacetic acid. Cell proliferation was measured by the sulfurhodamine B (SRB) assay (J Natl Cancer Inst. 1990 Jul 4; 82 (13): 1107-12.) And GI50 (drug concentration required to inhibit cell proliferation by 50%) Calculated. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000004
 PI3K阻害剤耐性を獲得したがん細胞では、それぞれ親株(薬剤未処理)に比べて12~120倍程度の耐性化が認められた。
Figure JPOXMLDOC01-appb-T000004
Cancer cells that acquired resistance to PI3K inhibitors were each 12-120 times more resistant than the parent strain (drug-untreated).
 更に、ZSTK474長期暴露により獲得された薬剤耐性が可逆的であるかどうかを検討するために、SF295R細胞(ZSTK474耐性細胞)をZSTK474非存在下で3日間(DF_day3)、14日間(DF_day14)、3ヶ月培養した際(DF∞)の耐性度の変化を測定した。その結果、元々親株の38倍程度だった耐性度が、経時とともに耐性度の低下が認められ、DF∞ではほぼ元の感受性に戻る(即ち、可逆的な耐性である)ことがわかった。結果を表2に示す。 Furthermore, in order to investigate whether the drug resistance acquired by long-term exposure to ZSTK474 is reversible, SF295R cells (ZSTK474 resistant cells) were removed in the absence of ZSTK474 for 3 days (DF_day3), 14 days (DF_day14), 3 The change in the degree of resistance after culturing for months (DF∞) was measured. As a result, it was found that the resistance level, which was originally about 38 times that of the parent strain, decreased with time, and DF∞ almost returned to the original sensitivity (that is, reversible resistance). The results are shown in Table 2.
 次に、上記各種がん細胞を培養皿よりスクレーパーを用いて回収し、RNeasy mini kit(Qiagen社製)を用いて、キット添付のユーザーマニュアルに則り細胞からトータルRNAを抽出した。High Capacity cDNA Reverse Transcription Kit (Applied Biosystems社製)を用いて、このトータルRNA1μg分を20μlの逆転写反応溶液内で逆転写し、ファーストストランドcDNAを調製した。
 得られたファーストストランドcDNAを1μl使用し、TaqMan(登録商標:Applied Biosystems社) Gene Expression Assays(Assay ID:Hs00609566_m1)及びApplied Biosystems社ABI PRISM 7000を用いて、IGF1R cDNA増幅のリアルタイムモニタリングを行った。PCR反応は、下記の反応条件で行い、PCR増幅反応に用いたプライマー(各々18塩基)の配列は非開示であるが、プローブ配列を含むアンプリコンを増幅するものである。プローブとして下記のIGF1Rプローブを用いられている。コントロールとして18SリボゾーマルRNAの発現量を同時に測定し、各サンプルでIGF1Rの発現量を18SリボゾーマルRNAの発現量でノーマライズした。さらに、ここで得られたSF295親株におけるIGF1Rの発現量で各耐性株サンプルのIGF1Rの発現量をノーマライズした値をIGF1R発現量(相対値)とした。
IGF1R用プローブ:
5'-FAM- CCATCTTCGTGCCCAGACCTGAAAG-TAMRA-3'
(*FAMは、6-carboxyfluorescein、TAMRAは、carboxytetramethylrhodamineを示す。なお、このプローブの塩基配列は配列番号1の2236~2260番目に相当する。)
反応条件:
 95℃ 10分          1 サイクル
 95℃ 15秒 60℃ 1分  40 サイクル
Next, the various cancer cells were collected from the culture dish using a scraper, and total RNA was extracted from the cells using an RNeasy mini kit (manufactured by Qiagen) according to the user manual attached to the kit. Using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems), 1 μg of this total RNA was reverse transcribed in 20 μl of a reverse transcription reaction solution to prepare first strand cDNA.
Using 1 μl of the obtained first strand cDNA, real-time monitoring of IGF1R cDNA amplification was performed using TaqMan (registered trademark: Applied Biosystems) Gene Expression Assays (Assay ID: Hs00609566_m1) and Applied Biosystems ABI PRISM 7000. The PCR reaction is performed under the following reaction conditions, and the sequence of the primers (18 bases each) used in the PCR amplification reaction is not disclosed, but amplicons containing probe sequences are amplified. The following IGF1R probe is used as a probe. As a control, the expression level of 18S ribosomal RNA was simultaneously measured, and the expression level of IGF1R in each sample was normalized with the expression level of 18S ribosomal RNA. Furthermore, a value obtained by normalizing the expression level of IGF1R in each resistant strain sample with the expression level of IGF1R in the SF295 parent strain obtained here was defined as the IGF1R expression level (relative value).
Probe for IGF1R:
5'-FAM- CCATCTTCGTGCCCAGACCTGAAAG-TAMRA-3 '
(* FAM represents 6-carboxyfluorescein, and TAMRA represents carboxytetramethylrhodamine. The base sequence of this probe corresponds to positions 2236 to 2260 of SEQ ID NO: 1.)
Reaction conditions:
95 ° C 10 minutes 1 cycle 95 ° C 15 seconds 60 ° C 1 minute 40 cycles
 結果を下表に示す。SF295R細胞をZSTK474非存在下で培養することにより、耐性度の低下に伴い、IGF1R mRNAの発現も低下していくことが分かる。
Figure JPOXMLDOC01-appb-T000005
The results are shown in the table below. It can be seen that by culturing SF295R cells in the absence of ZSTK474, the expression of IGF1R mRNA also decreases as the degree of resistance decreases.
Figure JPOXMLDOC01-appb-T000005
 また、上記各種がん細胞を回収し、Lysis buffer(10 mmol/L Tris-HCl (PH 7.4), 50 mmol/L NaCl, 0.5% w/v NP40, 0.1% w/v SDS, 50 mmol/L sodium fluoride, 30 mmol/L sodium pyrophosphate, 50mmol/L sodium orthavanadate, 5 mmol/L EDTA, 0.1 trypsin inhibitor unit/ml aprotinin, 1 mmol/L phenylmethylsulfonyl fluoride)にサスペンドし、Diagenode社のBioruptorを用いて、氷中超音波処理をして細胞を破砕した。
 細胞抽出液のタンパク質濃度を、Pierce社のprotein assay kitを用いて定量し、10μgタンパク質相当の細胞抽出液をSDSポリアクリルアミドゲル電気泳動(SDS-PAGE)により展開した。結果を図1に示す。
 即ち、4種類のがん細胞から作成したすべての耐性細胞株(Resistance)で、親株(Parent)に比べてIGF1Rタンパク質の過剰発現が認められた。また、SF295R細胞をZSTK474非存在下で培養することにより、耐性度の低下に伴い、IGF1Rタンパク質の発現も低下した。
 以上の結果から、PI3K阻害剤に対する耐性(獲得耐性)はIGF1R発現量と関連しており、IGF1R遺伝子の発現量が高い細胞ほどPI3K阻害剤に対して耐性であるという有意な関連が認められた。
In addition, the above cancer cells were collected and Lysis buffer (10 mmol / L Tris-HCl (PH 7.4), 50 mmol / L NaCl, 0.5% w / v NP40, 0.1% w / v SDS, 50 mmol / L Sodium fluoride, 30 mmol / L sodium pyrophosphate, 50 mmol / L sodium orthavanadate, 5 mmol / L EDTA, 0.1 trypsin inhibitor unit / ml aprotinin, 1 mmol / L phenylmethylsulfonyl fluoride) and suspend the ice using Diagenode Bioruptor. Cells were disrupted by medium sonication.
The protein concentration of the cell extract was quantified using a protein assay kit manufactured by Pierce, and the cell extract corresponding to 10 μg protein was developed by SDS polyacrylamide gel electrophoresis (SDS-PAGE). The results are shown in FIG.
That is, overexpression of IGF1R protein was observed in all resistant cell lines (Resistance) prepared from four types of cancer cells compared to the parent line (Parent). In addition, when SF295R cells were cultured in the absence of ZSTK474, the expression of IGF1R protein also decreased with a decrease in resistance.
From the above results, the resistance to PI3K inhibitor (acquired resistance) is related to the expression level of IGF1R, and a significant relationship was found that the higher the expression level of the IGF1R gene, the more resistant the PI3K inhibitor is. .
実施例2
 本実施例では、PI3K阻害剤未治療のがん細胞におけるZSTK474耐性(自然耐性)とIGF1R遺伝子の発現との関係を調べた。
 PI3K阻害剤未治療のがんとして、39種類のヒトがん細胞株を準備し、それぞれのがん細胞株から、実施例1と同様の方法で細胞抽出液を作成し、GI50を測定した。
 また、各細胞抽出液におけるIGF1Rの発現量を、一次抗体(SantaCruz社のIGF1Rβ(C20)(sc-713))と、Alexa488蛍光色素で標識された二次抗体を使用し、Licor社のOdysseyを用いて測定し、定量した。Odysseyは蛍光標識されたサンプルに励起光を供給し、蛍光色素から発せられた蛍光を検出した。ウェスタンブロット法によりIGF1Rの発現をAlexa488蛍光色素で標識したメンブレンをOdysseyによってスキャンした画像から、検出された各サンプルにおけるIGF1Rのバンドの蛍光強度を定量した。がん細胞株から得られたサンプルを同比で混合したものを基準サンプルとして、3回の独立して行った実験によって得られた定量値の中間値を各サンプルにおけるIGF1R発現量の最終的な定量値(相対値)とした。結果を下表と図2に示す。表中*印は基準とした細胞株を示す。
 なお、この表は、がん細胞の種類ではなく、患者ごとのがん細胞によってPI3K阻害剤が効く場合と効かない場合があることも示している。
 また、これらの発現量から、X(%)=(検体のIGF1R遺伝子の発現量-PC-3細胞のIGF1R遺伝子の発現量)/(NCI-H23細胞のIGF1R遺伝子の発現量-PC-3細胞のIGF1R遺伝子の発現量)x100を算出した。
Example 2
In this example, the relationship between ZSTK474 resistance (natural resistance) and IGF1R gene expression in cancer cells not treated with a PI3K inhibitor was examined.
39 types of human cancer cell lines were prepared as non-treated PI3K inhibitor cancer cells, cell extracts were prepared from each cancer cell line in the same manner as in Example 1, and GI50 was measured.
Further, the expression level of IGF1R in each cell extract, a primary antibody (SantaCruz's IGF1Rβ (C20) (sc-713)), using a secondary antibody labeled with Alexa488 fluorescent dye, a Licor's Odyssey Measured and quantified. Odyssey supplied excitation light to the fluorescently labeled sample and detected the fluorescence emitted from the fluorescent dye. The fluorescence intensity of the IGF1R band in each detected sample was quantified from an image obtained by scanning the membrane labeled with Alexa488 fluorescent dye with IGF1R expression by Western blotting using Odyssey. Using a mixture of samples obtained from cancer cell lines at the same ratio as a reference sample, the final quantification of the expression level of IGF1R in each sample is the intermediate value of the quantification values obtained by three independent experiments. Value (relative value). The results are shown in the table below and FIG. In the table, * indicates a reference cell line.
This table also shows that the PI3K inhibitor may or may not work depending on the cancer cells of each patient, not the type of cancer cells.
From these expression levels, X (%) = (expression level of IGF1R gene in specimen−expression level of IGF1R gene in PC-3 cell) / (expression level of IGF1R gene in NCI-H23 cell−PC-3 cell) Expression level of IGF1R gene) × 100.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 PI3K阻害剤ZSTK474の代わりに、他のPI3K阻害剤NVP-BEZ235及びLY294002を用いて同様の測定を行った。それらのPI3K阻害剤に対する耐性(GI50)とIGF1R遺伝子の発現量の関連を図3~5に示す。これらの図から、IGF1R遺伝子の発現が高いほどPI3K阻害剤が効きにくい(即ち、PI3K阻害剤に対して耐性)という関連があることが分かる。また、Xが20%以下、特に10%以下のIGF1R発現量の細胞株については、GI50が低く、PI3K阻害剤に対する耐性が低いといえる。 The same measurement was performed using other PI3K inhibitors NVP-BEZ235 and LY294002 instead of the PI3K inhibitor ZSTK474. The relationship between their resistance to PI3K inhibitors (GI50) and the expression level of the IGF1R gene is shown in FIGS. From these figures, it can be seen that the higher the expression of the IGF1R gene, the less effective the PI3K inhibitor is (that is, the resistance to the PI3K inhibitor). In addition, cell lines with an IGF1R expression level of X of 20% or less, particularly 10% or less, have a low GI50 and a low resistance to PI3K inhibitors.
実施例3
 本実施例では、免疫組織化学法(IHC法)を用いて、in vivoの腫瘍サンプルのIGF1Rタンパク質の発現を検出し、in vivoにおけるZSTK474に対する耐性(抗腫瘍効果)との関連を検討した。このようなin vivoの試験は、試験管内で培養しているヒトがん細胞を用いた解析結果(実施例2)に比べ、より臨床サンプルに近い条件といえる。
 実施例2のヒトがん細胞株39種のうち表4に示す21の細胞株をヌードマウスの皮下に移植して腫瘍(ゼノグラフト)を形成させ、ZSTK474(200mg/kg)をヌードマウスに毎日(月曜~土曜)経口投与し、2週間投与後の腫瘍の縦(L)×横(W)を測定し、腫瘍のサイズ(TV)を以下の計算式により得た。
  TV=L×W/2
 抗腫瘍効果は、T/C(薬剤処理群(Treated)の腫瘍のサイズ/薬剤未処理群(Control)の腫瘍のサイズ)(%)で示し、T/Cが小さいほど薬剤処理によって腫瘍が退縮した(即ち、抗腫瘍効果が高い)ことを示す。
 一方、ZSTK474を投与前の腫瘍サンプルを摘出してホルマリンで固定し、パラフィン包埋させた。これらを組織マイクロアレー(TMA)として作成した。TMAは、1枚の切片(スライド)で同時に多サンプルの測定を可能にする技術である。TMAから腫瘍切片(4μM厚)を作成し、脱パラフィン後に一次抗体(SantaCruz社のIGF1Rβ(C20)(sc-713))で処理し、Dako社のEnvision+キットを用いて染色させた。切片(スライド)はAperio Technologies社のScanscope XTスライドスキャナでデジタル画像化し、同社のソフトウェア(Color Deconvolution Algorithm)を用いて染色強度(IGF1Rの発現量に相当する)を定量化した。
 また、これらの染色強度から、X(%)=(検体のIGF1R遺伝子の発現量-PC-3細胞のIGF1R遺伝子の発現量)/(NCI-H23細胞のIGF1R遺伝子の発現量-PC-3細胞のIGF1R遺伝子の発現量)x100を算出した。
 結果を下表と図6に示す。表中*印は基準とした細胞株を示す。
Example 3
In this example, the expression of IGF1R protein in an in vivo tumor sample was detected using an immunohistochemical method (IHC method), and the relationship with ZSTK474 resistance (antitumor effect) in vivo was examined. Such an in vivo test can be said to be a condition closer to a clinical sample than an analysis result (Example 2) using human cancer cells cultured in a test tube.
Of the 39 human cancer cell lines of Example 2, 21 cell lines shown in Table 4 were transplanted subcutaneously into nude mice to form tumors (xenografts), and ZSTK474 (200 mg / kg) was given daily to nude mice ( (Monday to Saturday) Orally administered, and measured for the length (L) x width (W) of the tumor after 2 weeks of administration, and the tumor size (TV) was obtained by the following formula.
TV = L × W 2/2
Antitumor effect is expressed as T / C (Treated tumor size / Treated tumor size in control group) (%). The smaller T / C, the smaller the tumor regression due to drug treatment (That is, the antitumor effect is high).
On the other hand, a tumor sample before administration of ZSTK474 was extracted, fixed with formalin, and embedded in paraffin. These were prepared as a tissue microarray (TMA). TMA is a technique that allows multiple samples to be measured simultaneously on a single section (slide). Create a tumor sections (4 [mu] M thick) from TMA, after deparaffinization treatment with primary antibody (SantaCruz's IGF1Rβ (C20) (sc-713)), were stained with Dako Corporation Envision + kit. The sections (slides) were digitally imaged with a Scanscope XT slide scanner manufactured by Aperio Technologies, and the staining intensity (corresponding to the expression level of IGF1R) was quantified using the company's software (Color Deconvolution Algorithm).
Also, from these staining intensities, X (%) = (expression amount of IGF1R gene in specimen−expression amount of IGF1R gene in PC-3 cell) / (expression amount of IGF1R gene in NCI-H23 cell−PC-3 cell) Expression level of IGF1R gene) × 100.
The results are shown in the following table and FIG. In the table, * indicates a reference cell line.
Figure JPOXMLDOC01-appb-T000007
 その結果、IGF1R遺伝子の発現が高いほど、T/Cが高く、抗腫瘍効果が低い(即ち、ZSTK474に対する耐性が高い)ことを示している。また、Xが20%以下、特に10%以下のIGF1R発現量の細胞株については、T/Cが低く、PI3K阻害剤に対する耐性が特に低いといえる。
Figure JPOXMLDOC01-appb-T000007
As a result, the higher the expression of the IGF1R gene, the higher the T / C and the lower the antitumor effect (that is, the higher the resistance to ZSTK474). Moreover, it can be said that the cell line having an IGF1R expression level of X of 20% or less, particularly 10% or less, has a low T / C and a particularly low resistance to a PI3K inhibitor.

Claims (15)

  1. がん患者のがんがPI3K阻害剤に対して耐性か否かを判定するための診断マーカーであって、該診断マーカーがIGF1RのmRNA若しくはcDNA又はタンパク質から成り、がん患者から採取したがん細胞又はがん組織におけるIGF1R遺伝子の発現量により判定する診断マーカー。 A diagnostic marker for determining whether or not a cancer of a cancer patient is resistant to a PI3K inhibitor, the diagnostic marker comprising IGF1R mRNA, cDNA or protein, and cancer collected from the cancer patient A diagnostic marker that is determined by the expression level of the IGF1R gene in cells or cancer tissues.
  2. 高いIGF1R遺伝子の発現量を示す基準細胞サンプル、及び低いIGF1R遺伝子の発現量を示す基準細胞サンプルを用い、がん患者から採取したがん細胞又はがん組織におけるIGF1R遺伝子の発現量を、これら基準細胞サンプルのIGF1R遺伝子の発現量と比較して該患者のがんのPI3K阻害剤に対する耐性を判定する請求項1に記載の診断マーカー。 Using a reference cell sample showing a high expression level of IGF1R gene and a reference cell sample showing a low expression level of IGF1R gene, the expression level of IGF1R gene in cancer cells or cancer tissues collected from cancer patients is used as a reference. The diagnostic marker of Claim 1 which determines the tolerance with respect to the PI3K inhibitor of the said patient's cancer compared with the expression level of the IGF1R gene of a cell sample.
  3. がん患者のがんがPI3K阻害剤に対して耐性か否かの判定を下式の比率X(%)で行い、
     X=(A-C)/(B-C)x100
    (式中、Aは検体のIGF1R遺伝子の発現量、Bは高いIGF1R遺伝子の発現量を示す基準細胞サンプルのIGF1R遺伝子の発現量、Cは低いIGF1R遺伝子の発現量を示す基準細胞サンプルのIGF1R遺伝子の発現量を表す。)
     Xが20%以下であれば、がんがPI3K阻害剤に対して耐性ではないと判定する、請求項2に記載の診断マーカー。
    The determination of whether a cancer patient's cancer is resistant to a PI3K inhibitor is performed at the ratio X (%) of the following formula,
    X = (AC) / (BC) × 100
    (Where A is the expression level of the IGF1R gene in the specimen, B is the expression level of the IGF1R gene of the reference cell sample showing a high expression level of the IGF1R gene, and C is the IGF1R gene of the reference cell sample showing a low expression level of the IGF1R gene) Represents the expression level of.
    The diagnostic marker according to claim 2, wherein if X is 20% or less, it is determined that the cancer is not resistant to the PI3K inhibitor.
  4. 高いIGF1R遺伝子の発現量を示す基準細胞サンプルとして、NCI-H23細胞(ATCC No. CRL-5800)、及び低いIGF1R遺伝子の発現量を示す基準細胞サンプルとして、PC-3細胞(ATCC No. CRL-1435)を用いる請求項2又は3に記載の診断マーカー。 As a reference cell sample showing a high expression level of IGF1R gene, NCI-H23 cell (ATCC No. CRL-5800) and as a reference cell sample showing a low expression level of IGF1R gene, PC-3 cell (ATCC No. CRL- The diagnostic marker according to claim 2 or 3, wherein 1435) is used.
  5. IGF1RのmRNA若しくはcDNAから成る請求項1に記載の診断マーカーであって、(i)配列番号1の塩基配列から成るポリヌクレオチドの少なくとも50塩基のポリヌクレオチド部分を挟む10~30個の塩基配列からなる一対のプライマー、及び/又は(ii)配列番号1の51~4154番目の塩基配列から成るポリヌクレオチドの連続した少なくとも15個の塩基配列からなるプローブを用いる診断マーカー。 The diagnostic marker according to claim 1, comprising IGF1R mRNA or cDNA, comprising: (i) from 10 to 30 nucleotide sequences sandwiching a polynucleotide portion of at least 50 nucleotides of the polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1 A diagnostic marker using a pair of primers and / or (ii) a probe comprising at least 15 consecutive nucleotide sequences of a polynucleotide comprising the 51st to 4154th nucleotide sequence of SEQ ID NO: 1.
  6. IGF1Rのタンパク質から成る請求項1に記載の診断マーカーであって、IGF1Rタンパク質に特異的な抗体を用いる診断マーカー。 The diagnostic marker according to claim 1, comprising an IGF1R protein, wherein the diagnostic marker uses an antibody specific for the IGF1R protein.
  7. がん患者のがんがPI3K阻害剤に対して耐性か否かを判定するための診断方法であって、がん患者から採取したがん細胞又はがん組織におけるIGF1R遺伝子の発現量により判定する診断方法。 A diagnostic method for determining whether or not a cancer of a cancer patient is resistant to a PI3K inhibitor, wherein the determination is based on the expression level of an IGF1R gene in cancer cells or cancer tissue collected from the cancer patient Diagnosis method.
  8. 高いIGF1R遺伝子の発現量を示す基準細胞サンプル、及び低いIGF1R遺伝子の発現量を示す基準細胞サンプルを用い、がん患者から採取したがん細胞又はがん組織におけるIGF1R遺伝子の発現量を、これら基準細胞サンプルのIGF1R遺伝子の発現量と比較して該患者のがんのPI3K阻害剤に対する耐性を判定する請求項7に記載の診断方法。 Using a reference cell sample showing a high expression level of IGF1R gene and a reference cell sample showing a low expression level of IGF1R gene, the expression level of IGF1R gene in cancer cells or cancer tissues collected from cancer patients is used as a reference. The diagnostic method according to claim 7, wherein the resistance of the patient to the PI3K inhibitor is determined by comparing with the expression level of the IGF1R gene in the cell sample.
  9. がん患者のがんがPI3K阻害剤に対して耐性か否かの判定を下式の比率X(%)で行い、
     X=(A-C)/(B-C)x100
    (式中、Aは検体のIGF1R遺伝子の発現量、Bは高いIGF1R遺伝子の発現量を示す基準細胞サンプルのIGF1R遺伝子の発現量、Cは低いIGF1R遺伝子の発現量を示す基準細胞サンプルのIGF1R遺伝子の発現量を表す。)
     Xが20%以下であれば、がんがPI3K阻害剤に対して耐性ではないと判定する、請求項8に記載の診断方法。
    The determination of whether a cancer patient's cancer is resistant to a PI3K inhibitor is performed at the ratio X (%) of the following formula,
    X = (AC) / (BC) × 100
    (Where A is the expression level of the IGF1R gene in the specimen, B is the expression level of the IGF1R gene of the reference cell sample showing a high expression level of the IGF1R gene, and C is the IGF1R gene of the reference cell sample showing a low expression level of the IGF1R gene) Represents the expression level of.
    The diagnostic method according to claim 8, wherein if X is 20% or less, it is determined that the cancer is not resistant to the PI3K inhibitor.
  10. 高いIGF1R遺伝子の発現量を示す基準として、NCI-H23細胞(ATCC No. CRL-5800)、及び低いIGF1R遺伝子の発現量を示す基準として、PC-3細胞(ATCC No. CRL-1435)を用いる請求項8又は9に記載の診断方法。 NCI-H23 cells (ATCC No. CRL-5800) are used as a reference indicating high expression level of IGF1R gene, and PC-3 cells (ATCC No. CRL-1435) are used as reference indicating low expression level of IGF1R gene. The diagnostic method according to claim 8 or 9.
  11. IGF1R遺伝子の発現量を示す指標としてIGF1RのmRNA若しくはcDNAの発現量を用いる請求項7に記載の診断方法であって、(i)配列番号1の塩基配列から成るポリヌクレオチドの少なくとも50bのポリヌクレオチド部分を挟む10~30個の塩基配列からなる一対のプライマー、及び/又は(ii)配列番号1の51~4154番目の塩基配列から成るポリヌクレオチドの連続した少なくとも15個の塩基配列からなるプローブを用いる診断方法。 The diagnostic method according to claim 7, wherein the expression level of IGF1R mRNA or cDNA is used as an index indicating the expression level of the IGF1R gene, and (i) a polynucleotide of at least 50b of the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 A pair of primers consisting of 10 to 30 base sequences sandwiching the portion, and / or (ii) a probe consisting of at least 15 consecutive base sequences of a polynucleotide consisting of the 51st to 4154th base sequences of SEQ ID NO: 1 Diagnostic method used.
  12. IGF1R遺伝子の発現量を示す指標としてIGF1Rのタンパク質の発現量を用いる請求項7に記載の診断方法であって、該タンパク質をIGF1Rタンパク質に特異的な抗体を用いて検出する診断方法。 8. The diagnostic method according to claim 7, wherein the expression level of the IGF1R protein is used as an index indicating the expression level of the IGF1R gene, and the protein is detected using an antibody specific for the IGF1R protein.
  13. 請求項7に記載の診断方法であって、下記工程から成る方法。
     (i) がん患者から腫瘍サンプルを採取し、ホルマリン固定・パラフィン包埋後、組織切片を作成する工程、但し、細胞サンプルを入手したものについては、ヌードマウス皮下に移植して、取り出した腫瘍片(ゼノグラフト)を、ホルマリン固定・パラフィン包埋後、組織切片を作成する工程、
     (ii) コントロールとする腫瘍サンプルを(i)と同様に処理してコントロールの組織切片を作成する工程、
     (iii) (i)及び(ii)で作成した組織切片を脱パラフィン後、IGF1Rタンパク質に特異的な一次抗体で処理した後、二次抗体で染色し、染色強度を定量化する工程、及び
     (iv) がん患者の腫瘍サンプルから得た染色強度を、コントロールとした腫瘍サンプルから得た染色強度と比較することにより、該がん患者のがんがPI3K阻害剤に対して耐性か否かを判定する工程
    8. The diagnostic method according to claim 7, comprising the following steps.
    (i) A step of collecting a tumor sample from a cancer patient and preparing a tissue section after formalin fixation and paraffin embedding. However, in the case of obtaining a cell sample, the tumor was transplanted subcutaneously into a nude mouse and removed. A step of creating a tissue section after fixing a piece (xenograft) with formalin and embedding in paraffin,
    (ii) a process of preparing a control tissue section by treating a tumor sample as a control in the same manner as in (i),
    (iii) a step of deparaffinizing the tissue section prepared in (i) and (ii), treating with a primary antibody specific for the IGF1R protein, staining with a secondary antibody, and quantifying the staining intensity; iv) By comparing the staining intensity obtained from the tumor sample of the cancer patient with the staining intensity obtained from the control tumor sample, it is determined whether or not the cancer of the cancer patient is resistant to the PI3K inhibitor. Judgment process
  14. がん患者のがんがPI3K阻害剤に対して耐性か否かを判定するため診断マーカー用キットであって、IGF1R遺伝子のcDNAを増幅するためのプライマー及び熱耐性DNAポリメラーゼ、及び/又は該cDNA又はその増幅産物に対合させるプローブから成るキット。 A diagnostic marker kit for determining whether a cancer of a cancer patient is resistant to a PI3K inhibitor, a primer for amplifying cDNA of an IGF1R gene and a heat resistant DNA polymerase, and / or the cDNA Alternatively, a kit comprising a probe to be paired with the amplification product.
  15. がん患者のがんがPI3K阻害剤に対して耐性か否かを判定するため診断マーカー用キットであって、IGF1Rタンパク質に特異的な一次抗体と、この一次抗体に特異的であって、標識化された二次抗体とから成るキット。 A diagnostic marker kit for determining whether a cancer of a cancer patient is resistant to a PI3K inhibitor, a primary antibody specific for the IGF1R protein, a specific antibody for the primary antibody, and a label A kit comprising a secondary antibody.
PCT/JP2013/060027 2012-04-04 2013-04-02 Diagnostic marker and diagnostic method for cancer cell resistant to pi3k inhibitor WO2013151026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-085456 2012-04-04
JP2012085456 2012-04-04

Publications (1)

Publication Number Publication Date
WO2013151026A1 true WO2013151026A1 (en) 2013-10-10

Family

ID=49300507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060027 WO2013151026A1 (en) 2012-04-04 2013-04-02 Diagnostic marker and diagnostic method for cancer cell resistant to pi3k inhibitor

Country Status (2)

Country Link
JP (1) JPWO2013151026A1 (en)
WO (1) WO2013151026A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHAKRABARTY, A. ET AL.: "Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors", P.N.A.S., vol. 109, no. 8, 21 February 2012 (2012-02-21), pages 2718 - 2723 *
DAN, S. ET AL.: "Identification of IGF1R as a Predictive Biomarker for Intrinsic Resistance to PI3K Inhibitors and a Therapeutic Target for Improving the Drug Efficacy", EUROPEAN JOURNAL OF CANCER, vol. 8, no. SUPPL., November 2012 (2012-11-01), pages 113, 370 *
ISOYAMA, S. ET AL.: "Establishment of phosphatidylinositol 3-kinase inhibitor- resistant cancer cell lines and therapeutic strategies for overcoming the resistance", CANCER SCIENCE, vol. 103, no. 11, 22 October 2012 (2012-10-22), pages 1955 - 1960 *
MURANEN, T. ET AL.: "Inhibition of PI3K/mTOR Leads to Adaptive Resistance in Matrix-Attached Cancer Cells", CANCER CELL, vol. 21, no. 2, 14 February 2012 (2012-02-14), pages 227 - 239 *

Also Published As

Publication number Publication date
JPWO2013151026A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP7256840B2 (en) Splice variants associated with neomorphic SF3B1 mutants
KR102252332B1 (en) Method for the prognosis and treatment of cancer metastasis
KR102226219B1 (en) Method for the diagnosis, prognosis and treatment of lung cancer metastasis
Pflueger et al. N-myc downstream regulated gene 1 (NDRG1) is fused to ERG in prostate cancer
EP2890815B1 (en) Methods for diagnosis and treatment of cancer
KR20150122731A (en) Method for the prognosis and treatment of cancer metastasis
US20080305493A1 (en) Determining Cancer-Linked Genes and Therapeutic Targets Using Molecular Cytogenetic Methods
AU2013281355B2 (en) Targeted RNA-seq methods and materials for the diagnosis of prostate cancer
EP2681330B1 (en) Use of the olfactomedin-4 protein (olfm4) in colorectal cancer diagnosis
KR20160061424A (en) Method for the prognosis and treatment of metastasizing cancer of the bone originating from breast cancer
JP5769952B2 (en) Highly sensitive detection method for EML4-ALK fusion gene
KR20150105297A (en) Method for the diagnosis, prognosis and treatment of prostate cancer metastasis using c-maf
JP2006523456A (en) Identification of cancer-linked genes and therapeutic targets using molecular cytogenetic methods
WO2011107819A1 (en) Methods for predicting outcome of breast cancer, and/or risk of relapse, response or survival of a patient suffering therefrom
JP6387001B2 (en) Biomarkers associated with CDK inhibitors
US8124331B2 (en) In vitro method to detect bladder transitional cell carcinoma
WO2020054782A1 (en) Method for estimating breast cancer cell abundance
US20060134622A1 (en) Amplified cancer target genes useful in diagnosis and thereapeutic screening
WO2013151026A1 (en) Diagnostic marker and diagnostic method for cancer cell resistant to pi3k inhibitor
Lu et al. Detection of TMPRSS2-ERG fusion gene expression in prostate cancer specimens by a novel assay using branched DNA
KR20170106084A (en) DIAGNOSIS FOR THYROID CANCER USING CYCLIN D1 b
WO2010054045A1 (en) Method for optimizing the treatment of chronic myeloid leukemia with abl tyrosine kinase inhibitors
EP2330218A1 (en) EGFR and PTEN gene alterations predicts survival in patients with brain tumors
KR101755792B1 (en) Biomarker for diagnosing or prognosing cancer and uses thereof
JP2006211994A (en) Method for determining anticancer characteristic of anticancer agent against non small cell lung cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13773156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13773156

Country of ref document: EP

Kind code of ref document: A1