JP2006211994A - Method for determining anticancer characteristic of anticancer agent against non small cell lung cancer - Google Patents

Method for determining anticancer characteristic of anticancer agent against non small cell lung cancer Download PDF

Info

Publication number
JP2006211994A
JP2006211994A JP2005030296A JP2005030296A JP2006211994A JP 2006211994 A JP2006211994 A JP 2006211994A JP 2005030296 A JP2005030296 A JP 2005030296A JP 2005030296 A JP2005030296 A JP 2005030296A JP 2006211994 A JP2006211994 A JP 2006211994A
Authority
JP
Japan
Prior art keywords
expression level
anticancer agent
anticancer
lung cancer
small cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005030296A
Other languages
Japanese (ja)
Inventor
Jinichi Inokuchi
仁一 井ノ口
Kazuya Kabayama
一哉 樺山
Tomoko Suzuki
智子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIBUTSU YUKI KAGAKU KENKYUSHO
SEIBUTSU YUKI KAGAKU KENKYUSHO KK
Original Assignee
SEIBUTSU YUKI KAGAKU KENKYUSHO
SEIBUTSU YUKI KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIBUTSU YUKI KAGAKU KENKYUSHO, SEIBUTSU YUKI KAGAKU KENKYUSHO KK filed Critical SEIBUTSU YUKI KAGAKU KENKYUSHO
Priority to JP2005030296A priority Critical patent/JP2006211994A/en
Publication of JP2006211994A publication Critical patent/JP2006211994A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a judging method by which an anticancer agent usable for therapy of non small cell lung cancer and taking effects on a patient. <P>SOLUTION: The method for determining the characteristics of the anticancer agent comprises getting the interrelation between an expression amount of a ganglioside GM3 synthetase gene (SAT-I) of a cell of the non small cell lung cancer and anticancer effects of the anticancer agent. When the characteristics of the anticancer agent is determined thus, it is expected that the useless administration of the anticancer agent is evaded, the side effects are reduced and the treatment takes effects by determining the amount of SAT-I mRNA in the cancer cell of the patient suffering from the non small cell lung cancer, and administering the anticancer agent with inhibition activities, having negative interrelation when the expression rate is high, or administering the anticancer agent having positive interrelation when the expression rate is low. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は非小細胞肺癌に対する抗癌剤の特性決定方法に関し、さらに詳しくは非小細胞肺癌細胞のガングリオシドGM3合成酵素遺伝子(SAT−I)の発現量と抗癌剤の抗癌効果との相関関係から抗癌剤の特性を決定する方法に関する。   The present invention relates to a method for determining the characteristics of an anticancer agent against non-small cell lung cancer, and more specifically, from the correlation between the expression level of ganglioside GM3 synthase gene (SAT-I) in non-small cell lung cancer cells and the anticancer effect of the anticancer agent. It relates to a method for determining characteristics.

肺がんは国内では男性の癌死亡原因の第一位、女性も胃がんに次いで第2位である。今後も、肺がん患者数は増加する見通しで2015年には1年間で新たに肺がんを発病する患者数は男性11万人、女性3万7000人になると予測されている。   Lung cancer is the number one cause of cancer death among men in Japan, and women rank second after stomach cancer. In the future, the number of lung cancer patients is expected to increase, and it is predicted that the number of patients who newly develop lung cancer in 2015 will be 110,000 men and 37,000 women in 2015.

肺がんは、組織的分類で、小細胞癌(small cell caricinoma)と非小細胞癌(non-small cell caricinoma)に大きく分けられ、非小細胞癌はわが国では肺癌全体の約80〜85%を占める腫瘍で、その中に腺癌(adenocarcinoma)、扁平上皮癌(squamous cell carcinoma),大細胞癌(large cell carcinoma)に分けられ、我が国では腺癌が最も発生頻度が高く、原発性肺癌の約半数を占め男性の肺がんの40%、女性の肺がんの70%以上を占めている。   Lung cancer is systematically classified into small cell caricinoma and non-small cell caricinoma, and non-small cell cancer accounts for about 80 to 85% of all lung cancer in Japan. It is divided into adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Adenocarcinoma is the most common in Japan and is about half of primary lung cancer. It accounts for 40% of male lung cancer and more than 70% of female lung cancer.

肺がんはCT(コンピュ−タ−断層撮影装置)検診などの普及で早期発見されるケ−スが増えている。しかし早く見つけて部分切除しても、再発・転移して死亡する確立が高い。5年生存率(術後5年間生存している割合)は肺がんの病期(進行度合い)I期の肺がんの大きさが3センチ以上のIB期では65%程度にとどまると云われている。   Lung cancer is increasingly being detected early due to the spread of CT (computer tomography) screening. However, there is a high probability that death will occur after recurrence and metastasis, even if it is found early and partly excised. The 5-year survival rate (the rate of survival for 5 years after surgery) is said to be about 65% in stage IB where the stage of lung cancer (stage of progression) stage I lung cancer is 3 cm or more.

肺がんの診断は症状や検診で胸部X線写真、CT、造影レントゲン、CTMRI、内視鏡検査、気管支ファイバ−スコ−プ、生検組織診、喀痰細胞診などが行われる。これの検診により肺がんの進行度が判定される。具体的には、肺の原発腫瘍の広がり(T)、リンパ節転移(N)、遠隔転移(M)のそれぞれについて判定し、それによりI期からIV期のステージが決められる。一般的にはI期からIII期の一部までが手術の対象となるが、それ以降の期のものは放射線療法と抗癌剤を使用する化学療法が主体の治療となる。   Diagnosis of lung cancer includes chest radiographs, CT, contrast radiographs, CTMRI, endoscopy, bronchial fiber scope, biopsy histology, sputum cytology, etc. by symptoms and examination. The degree of progression of lung cancer is determined by this screening. Specifically, each of the spread of the primary tumor of the lung (T), lymph node metastasis (N), and distant metastasis (M) is determined, thereby determining the stage from stage I to stage IV. In general, stage I to a part of stage III are the target of surgery, but those in subsequent stages are mainly treated with radiation therapy and chemotherapy using an anticancer agent.

肺がんの抗癌剤にはシスプラチン、ビノレルビン、ゲフィチニブ、ビンブラスチン、カルボプラチン、パクリタキセル等が使用されている。   Cisplatin, vinorelbine, gefitinib, vinblastine, carboplatin, paclitaxel and the like are used as anticancer agents for lung cancer.

この中で非小細胞肺がんの化学療法ではシスプラチンと他の抗癌剤イリノテカン、ビノレルビン、ゲムシタビン、パクリタキセル、ドセタキセルとの組合せ、及びカルプラチンとゲムシタビンもしくはパクリタキセルとの組み合わせの二剤併用療法は生存期間延長やQOLの向上が見られるという知見が多く得られており、2003年度版肺癌診療ガイドラインで最も推奨すべき治療法として挙げられている。このようにプラチナ製剤は非小細胞肺癌治療に投与される主要抗癌剤である。   Among these, chemotherapy for non-small cell lung cancer is a combination of cisplatin and other anticancer drugs irinotecan, vinorelbine, gemcitabine, paclitaxel, docetaxel, and a combination of calplatin and gemcitabine or paclitaxel. Many findings have been obtained, and it is listed as the most recommended treatment method in the 2003 Lung Cancer Clinical Practice Guidelines. Thus, platinum preparations are the main anticancer agents that are administered for the treatment of non-small cell lung cancer.

そのほか最近、がん細胞の上皮にある蛋白質の標的分子上皮細胞成長因子受容体(EGFR)に作用して、癌の増殖を抑える抗癌剤が開発され注目されている(Onn A. et al., Br J. Cancer, 2004 Aug, 91 Suppl 2:S11-7(非特許文献1); Tamura K. et al., Int. J. Clin. Oncol., 2003 Aug 8(4): 207-11(非特許文献2))。このような新しい抗癌剤は副作用と効果が見られる患者がはっきり分かれるだけに副作用と効果の投与全予測が望まれている。   Recently, anticancer agents that suppress the growth of cancer by acting on the target molecule epidermal growth factor receptor (EGFR), a protein in the epithelium of cancer cells, have been developed and attract attention (Onn A. et al., Br J. Cancer, 2004 Aug, 91 Suppl 2: S11-7 (Non-patent document 1); Tamura K. et al., Int. J. Clin. Oncol., 2003 Aug 8 (4): 207-11 (non-patent) Reference 2)). Such new anticancer drugs are expected to be fully predicted for the administration of side effects and effects, since patients with side effects and effects are clearly identified.

抗癌剤は通常正常細胞にも細胞毒性を有するため、致命的な副作用を生じることがある。したがって、個々の患者に適切な抗癌剤を選択し、使用することが効果の増強と副作用の軽減がますます重要となってきている。   Anti-cancer agents are usually cytotoxic to normal cells and may cause fatal side effects. Therefore, it is becoming increasingly important to select and use an appropriate anticancer drug for each patient in order to enhance the effect and reduce the side effects.

そのため、さまざまな抗癌剤制癌効果試験の方法が開発されてきている。具体的には内視鏡などを使って採取した患者のがん組織に酵素処理を施し、細胞に分散させる。この細胞と抗癌剤を用いてマイクロプレ−トの上で培養し、生存率を細胞のミトコンドリアの代謝で判定するMTT法やあるいはATP量を測定するATP法、また近年ではコラーゲン・ゲル内に単離した細胞を包埋して三次元培養し、癌細胞に対する影響のみを選択的に測定できるCD−DST(collagen gel droplet embedded culture-drug sensitivity test)法などがある(Kobayashi H., et al., Recent Results Cancer Res., 2003, 161: 48-61(非特許文献3))。しかしながら、細胞を培養するなど期間を要し、判定に時間がかかるなどの欠点がある。   Therefore, various anticancer drug anticancer efficacy test methods have been developed. Specifically, the cancer tissue of a patient collected using an endoscope or the like is subjected to enzyme treatment and dispersed into cells. This cell and an anti-cancer agent are cultured on a microplate, and the MTT method for determining the survival rate by the mitochondrial metabolism of the cell, or the ATP method for measuring the amount of ATP, and recently isolated in a collagen gel. CD-DST (collagen gel droplet embedded culture-drug sensitivity test) method that can selectively measure only the effect on cancer cells by embedding the cultured cells (Kobayashi H., et al., Recent Results Cancer Res., 2003, 161: 48-61 (Non-Patent Document 3)). However, there is a drawback that it takes a period of time such as culturing cells and takes a long time for determination.

また、抗癌剤耐性にかかわる遺伝子マ−カーを選定しRT-PCR方法やDNAチップで判定する方法の開発も活発に行われているが、未だ抗癌剤の制癌効果を調べる確定した遺伝子マ−カーが見出されていない(Suzuki T., et al., Lung Cancer, 2003 Oct., 42(1):35-41(非特許文献4))。また各種の抗癌剤についての制癌効果の判別についてのデ−タも報告されていない。   In addition, gene markers involved in anticancer drug resistance have been selected and RT-PCR methods and methods for determining with DNA chips are being actively developed, but there are still established genetic markers for examining the anticancer effects of anticancer drugs. It has not been found (Suzuki T., et al., Lung Cancer, 2003 Oct., 42 (1): 35-41 (Non-patent Document 4)). In addition, no data on discrimination of anticancer effects for various anticancer agents has been reported.

本発明者は癌細胞の抗癌剤に対する感受性診断マ−カ−として有効な遺伝子としてガングリオシドGM3合成遺伝子の発現量が有効な指標になることを見出し抗癌剤感受試験法として既に特許出願を行っている(WO 2004/099407、公開日:2004年11月18日(特許文献1))。   The present inventor has found that the expression level of the ganglioside GM3 synthetic gene is an effective index as a gene effective as a sensitivity diagnostic marker for cancer cells against anticancer agents, and has already filed a patent application as an anticancer agent sensitivity test method (WO 2004/099407, publication date: November 18, 2004 (Patent Document 1)).

ガングリオシドGM3と抗癌剤抵抗性については、チャイニ−ズハムスタ−やマウスおよびヒト由来のがん細胞を用いてアドリアマイシンなどの抗癌剤抵抗性とガングリオシドGM3の発現が比例していることの報告がある(June L., et al, Reverse transformation of multidrug-resistant cells. Cancer Metastasis Rev., 1994, Vol. 13, p. 191-207. (非特許文献5))。この報告では、GM3高発現がん細胞株では抗癌剤抵抗性が上昇しているが、これらのin vivoにおけるがんの悪性度は著しく低下していることから、発明者らのマウス肺がん細胞を用いた検討結果、すなわちGM3はがん悪性度および抗癌剤抵抗性を亢進させるという事実と大きく異なっている。   Regarding ganglioside GM3 and anticancer drug resistance, there is a report that the resistance of anticancer drug such as adriamycin and the expression of ganglioside GM3 is proportional to cancer hamster, mouse and human cancer cells (June L. , et al, Reverse transformation of multidrug-resistant cells. Cancer Metastasis Rev., 1994, Vol. 13, p. 191-207. In this report, anticancer drug resistance is increased in GM3 high-expressing cancer cell lines, but since the malignancy of these cancers in vivo is significantly reduced, the inventors' mouse lung cancer cells were used. The results of this study, that is, GM3, is greatly different from the fact that GM3 enhances cancer malignancy and anticancer drug resistance.

またGM3発現レベルはグリオブラスト−マのドキソルビシン耐性株で上昇するが、ヘパト−マのドキソルビシン耐性株では減少するという結果が得られたとの報告がある(Benchekroun.et al, Alteration of ganglioside composition in Cisplatin-resitant Lung cancer cell line. Anticancer Res. 1998, Vol. 18, p.2957-2960. (非特許文献6))。
これは各がん種においてGM3発現レベルと薬剤耐性との相関関係に差があることを示唆しており、各がん種について検討を行わなければならないと云える。この報告ではヒト非小細胞肺癌での検討は行われていない。
Furthermore, it has been reported that the expression level of GM3 is increased in the doxorubicin resistant strain of glioblastoma but decreased in the doxorubicin resistant strain of hepatoma (Benchekroun. Et al, Alteration of ganglioside composition in Cisplatin). -resitant Lung cancer cell line. Anticancer Res. 1998, Vol. 18, p.2957-2960.
This suggests that there is a difference in the correlation between the GM3 expression level and drug resistance in each cancer type, and it can be said that each cancer type must be examined. This report has not been studied in human non-small cell lung cancer.

また、これに関連してヒト小細胞肺がん細胞においてシスプラチン耐性株ではGM3発現量が上昇したがアドリアマイシン耐性株ではGM2発現量が上昇したとの報告がある(Kiura k. et al, Gnaglioside composition of Human Melanoma And Response To Antitumor Treatment, Cancer Invest, 1990, Vol. 8, p, 161- 167(非特許文献7))。この報告では非小細胞肺癌での検討はなされていない。
腺癌、扁平上皮癌、大細胞癌等の非小細胞肺がんは小細胞肺がんに比べ、化学療法や放射線療法に対する感受性が低く、治療法も大きく異なる。
In relation to this, it has been reported that GM3 expression level was increased in cisplatin-resistant strains in human small cell lung cancer cells but GM2 expression level was increased in adriamycin-resistant strains (Kiura k. Et al, Gnaglioside composition of Human Melanoma And Response To Antitumor Treatment, Cancer Invest, 1990, Vol. 8, p, 161-167 (Non-patent Document 7)). This report does not discuss non-small cell lung cancer.
Non-small cell lung cancers such as adenocarcinoma, squamous cell carcinoma, and large cell carcinoma are less sensitive to chemotherapy and radiation therapy and treatment methods are significantly different than small cell lung cancer.

またメラノ−マでの報告がある(Kono k. et al, ganglioside composition of human melanoma and response to antitumor treatment, Cancer Invest, 1990, Vol. 8, p.161-167(非特許文献8))。本報告はヒト非小細胞肺がんでの検討はなされていない。メラノ−マではGM3以外にも、GM2,GD3、GD2が発現しており、GD2の発現量と放射線治療や抗癌剤に対する感受性と正の相関が、GM3の発現量と放射線治療や抗癌剤に対する感受性と負の相関が得られている。従って、メラノ−マにおいてはGM3発現量とGD2発現量がともに放射線治療や抗癌剤に対する感受性に影響しており、GM3、GD2療法の発現量を調べることが重要であると云える。本発明者が非小細胞肺がん患者組織について検討を行ったところ非小細胞肺がんではGM3が主要なガングリオシドでありその他がわずかであること、およびGM3合成酵素遺伝子発現量がGM3発現の指標となり得ることを見出し本発明に至っている。
国際公開 WO 2004/099407 Onn A. et al., Br J. Cancer, 2004 Aug, 91 Suppl 2:S11-7 Tamura K. et al., Int. J. Clin. Oncol., 2003 Aug 8(4): 207-11 Kobayashi H., et al., Recent Results Cancer Res., 2003, 161: 48-61 Suzuki T., et al., Lung Cancer, 2003 Oct., 42(1):35-41 June L. et al., Cancer Metastasis Rev., 1994, Vol. 13, P. 191-207 Benchekroun. et al., Anticancer Res. 1998,Vol. 18,p.2957-2960. Kiura K. et al., Cancer Invest, 1990, Vol. 8, p, 161-167 Kono K. et al., Cancer Invest, 1990, Vol. 8, p.161-167
There is also a report on melanoma (Kono k. Et al, ganglioside composition of human melanoma and response to antitumor treatment, Cancer Invest, 1990, Vol. 8, p. 161-167 (Non-patent Document 8)). This report has not been studied for human non-small cell lung cancer. In melanoma, in addition to GM3, GM2, GD3, and GD2 are expressed, and there is a positive correlation between the expression level of GD2 and the sensitivity to radiotherapy and anticancer drugs, and the negative expression level of GM3 and the sensitivity to radiotherapy and anticancer drugs The correlation is obtained. Therefore, in melanoma, both GM3 expression level and GD2 expression level affect the sensitivity to radiation therapy and anticancer agents, and it can be said that it is important to examine the expression level of GM3 and GD2 therapy. When the present inventor examined non-small cell lung cancer patient tissue, in non-small cell lung cancer, GM3 is the main ganglioside and the others are small, and that GM3 synthase gene expression level can be an indicator of GM3 expression. To the present invention.
International publication WO 2004/099407 Onn A. et al., Br J. Cancer, 2004 Aug, 91 Suppl 2: S11-7 Tamura K. et al., Int. J. Clin. Oncol., 2003 Aug 8 (4): 207-11 Kobayashi H., et al., Recent Results Cancer Res., 2003, 161: 48-61 Suzuki T., et al., Lung Cancer, 2003 Oct., 42 (1): 35-41 June L. et al., Cancer Metastasis Rev., 1994, Vol. 13, P. 191-207 Benchekroun. Et al., Anticancer Res. 1998, Vol. 18, p. 2957-2960. Kiura K. et al., Cancer Invest, 1990, Vol. 8, p, 161-167 Kono K. et al., Cancer Invest, 1990, Vol. 8, p.161-167

本発明は、非小細胞肺がん治療に用いられる抗癌剤の制癌効果と遺伝子マ―カ−の関係を明らかにし、抗癌剤の特性を決定し、患者に奏功する抗癌剤を選択できる判別方法を提供すること目的とする。   The present invention provides a discriminating method capable of clarifying the relationship between an anticancer agent used in non-small cell lung cancer treatment and a gene marker, determining the characteristics of the anticancer agent, and selecting an anticancer agent that is effective for the patient. Objective.

本発明者らは詳細に非小細胞肺がん株のSAT−I遺伝子発現量と抗癌剤感受性の相関関係を検討した。その結果、ある種の抗癌剤ではでは各種非小細胞肺癌株に対するIC50とSAT−I mRNA発現量は正の相関を示し、他の種の抗癌剤では各種非小細胞肺がん株に対するIC50とSAT−I mRNA発現量は負の相関を示すことを見出した。すなわち、ある種の抗癌剤ではSAT−I mRNA発現量の高い細胞株でIC50が高く、抗癌剤が効き難く、他の種の抗癌剤ではSAT−I mRNA発現量の高い細胞株ではIC50が低く制癌効果が高いことを見出した。
すなわち本発明は、非小細胞肺癌細胞のガングリオシドGM3合成酵素遺伝子(SAT−I)の発現量と抗癌剤の抗癌効果との相関関係を求めることを含む抗癌剤の特性決定方法を要旨とする。
The present inventors examined in detail the correlation between the SAT-I gene expression level of the non-small cell lung cancer strain and the anticancer drug sensitivity. As a result, IC 50 and SAT-I mRNA expression levels for various non-small cell lung cancer strains were positively correlated with certain anticancer agents, while IC 50 and SAT- for various non-small cell lung cancer strains were positively correlated with other types of anticancer agents. I mRNA expression level was found to show a negative correlation. That is, certain types of anticancer drugs have high IC 50 in cell lines with high SAT-I mRNA expression levels, and anticancer drugs are difficult to work with, while other types of anticancer drugs have low IC 50 levels in cell lines with high SAT-I mRNA expression levels. It was found that the cancer effect was high.
That is, the gist of the present invention is a method for determining the characteristics of an anticancer agent, including determining the correlation between the expression level of the ganglioside GM3 synthase gene (SAT-I) in non-small cell lung cancer cells and the anticancer effect of the anticancer agent.

このようにして抗癌剤の特性を決定されれば、非少細胞肺癌患者の癌細胞中のSAT−I mRNA量を定量し、発現が高ければ負の相関関係を有する阻害をもつ抗癌剤を投与し、低ければ正の相関関係を有する抗癌剤を投与し、かくして最小量の抗癌剤で抗癌効果を得ることができ、無駄な抗癌剤の投与を回避でき副作用を軽減し治療が奏効することが期待できる。   If the characteristics of the anticancer agent are determined in this manner, the amount of SAT-I mRNA in cancer cells of patients with non-small cell lung cancer is quantified, and if the expression is high, an anticancer agent having a negative correlation is administered, If it is low, an anticancer agent having a positive correlation can be administered, and thus an anticancer effect can be obtained with a minimum amount of anticancer agent, and administration of useless anticancer agent can be avoided, and side effects can be reduced and treatment can be expected to be effective.

非少細胞癌としては腺癌(adenocarcinoma)、扁平上皮癌(squamous cell carcinoma)、および大細胞癌(large cell carcinoma)のいずれにも適用できる。
SAT−I遺伝子の発現量は癌細胞の該遺伝子から発現されるSAT−ImRNAまたはSAT−Iタンパク質を測定することによって行うことができる。検出方法はSAT−IのmRNAあるいはタンパク質を検出、および抗癌剤感受性・耐性細胞間での発現量の比較が可能であれば特に限定されるものではない。
Non-small cell cancer can be applied to any of adenocarcinoma, squamous cell carcinoma, and large cell carcinoma.
The expression level of the SAT-I gene can be determined by measuring SAT-I mRNA or SAT-I protein expressed from the gene of cancer cells. The detection method is not particularly limited as long as it can detect SAT-I mRNA or protein and can compare the expression level between anticancer drug sensitive and resistant cells.

ガングリオシドGM3合成遺伝子の発現量は、SAT−ImRNAを、典型的にはノーザンブロット法によって測定することによって測定できる。ノーザンブロット法は当業者に周知の技術である。ノーザンブロット法では細胞からRNA(mRNA)を抽出し、RNA(mRNA)を電気泳動して、そのパターンをフィルターに移しとり、アイソト−プ等で標識した特異的な標識プローブとハイブリダイゼーションをさせることで、標本中のmRNAの存在と量を解析する。   The expression level of the ganglioside GM3 synthetic gene can be measured by measuring SAT-I mRNA, typically by Northern blotting. Northern blotting is a technique well known to those skilled in the art. In Northern blotting, RNA (mRNA) is extracted from cells, the RNA (mRNA) is electrophoresed, the pattern is transferred to a filter, and hybridized with a specific labeled probe labeled with an isotope or the like. To analyze the presence and amount of mRNA in the specimen.

ハイブリダイゼ−ションにおける検出のためのプロ−ブとしては、二本鎖DNA、一本鎖のDNAまたはRNAが使用される。ノ−ザンブロット法により、mRNAを特異的に検出しようとする場合は、そのmRNA自体に相補的配列をもつ一本鎖のDNAまたはRNAをプロ−ブとして使用する。用いるプロ−ブの鎖長は比較的任意であり、20〜40塩基程度の合成オリゴヌクレオチドや、数百から1kbpの長さのDNAまたはRNAプロ−ブが使用できる。合成するDNA配列は比較的短いDNAプロ−ブの場合、検出しようとする遺伝子の特異的な配列部分を利用する。遺伝子の相同性を確認するツ−ル(http://www.ncbi.nlm.nih.gov/Blast)を用いることで検出しょうとする遺伝子特有の配列を検索することが可能である。   As a probe for detection in the hybridization, double-stranded DNA, single-stranded DNA or RNA is used. When mRNA is specifically detected by Northern blotting, single-stranded DNA or RNA having a complementary sequence to the mRNA itself is used as a probe. The chain length of the probe used is relatively arbitrary, and synthetic oligonucleotides of about 20 to 40 bases and DNA or RNA probes having a length of several hundred to 1 kbp can be used. When the DNA sequence to be synthesized is a relatively short DNA probe, a specific sequence portion of the gene to be detected is used. By using a tool for confirming gene homology (http://www.ncbi.nlm.nih.gov/Blast), it is possible to search for a sequence unique to the gene to be detected.

ハイブリダイゼ−ションに用いるプロ−ブの標識方法には大きく分けて放射能標識と非放射能標識の2種がある。放射能標識オリゴヌクレオチドの作製は、おもに32P標識したヌクレオチドをもとにPCR法で合成することが出来る。ただしこの方法は、放射性廃棄物処理の問題があり、簡便ではない。非放射能標識では、プロ−ブ分子内に特殊な修飾基を付加したものを利用し、付加した修飾基を蛍光や化学発光、発色によって検出する。この非放射能標識方法を用いた核酸の検出法の検出感度も放射能標識の方法の感度も大きな差は無くなってきているので、比較的安全であり、この非放射能標識方法を使用することが望ましい。非放射能標識の例としてジゴキシゲニン(DIG)標識やビオチンと(ストレプト)アビジンを使うビオチン標識や蛍光を発するFITC(fluorescene Isothiocyanate)分子等をDNAに共有結合させて標識させる方法も適用できる。   There are two types of probe labeling methods used for hybridization: radiolabeling and non-radiolabeling. Radiolabeled oligonucleotides can be prepared mainly by PCR based on 32P-labeled nucleotides. However, this method has a problem of radioactive waste disposal and is not simple. Non-radioactive labeling uses a probe molecule with a special modification group added, and the added modification group is detected by fluorescence, chemiluminescence, or color development. Since there is no significant difference in the detection sensitivity of the nucleic acid detection method using this non-radioactive labeling method and the sensitivity of the radiolabeling method, it is relatively safe, and this non-radioactive labeling method should be used. Is desirable. As examples of non-radioactive labels, digoxigenin (DIG) labeling, biotin labeling using biotin and (strept) avidin, FITC (fluorescene isothiocyanate) molecules that emit fluorescence, and the like can also be applied.

また、非放射能標識プロ−ブの簡便な作製法として、PCR操作時に標識ヌクレオチドを5’末端に付加する方法も利用できる。標識物質としては、ビオチンやジゴキシゲニン化が挙げられる。オリゴヌクレオチドプロ−ブは、均一なものを比較的大量に作製できる利点があるが、感度の点で問題が残されている。プロ−ブ末端以外の部分に標識を入れる場合、ニックトランスレ−ション法による標識DNAの合成方法も利用可能である。
mRNAなどのRNA分子をノ−ザンブロット法で検出する場合には、その検出用プロ−ブは1本鎖である必要がある。1本鎖DNAプロ−ブの作製にはオリゴヌクレオチドの使用、ランダムPCRなどがあるが、一本鎖プロ−ブとしては、RNAプロ−ブを利用する方法が感度が高く好ましい。RNAプロ−ブはT7やSp6等のRNAポリメラーゼのプロモ−タ−配列の上流にクロ−ニングしてあるDNA配列を鋳型として、アンチセンスRNAを合成する。この時、標識されたヌクレオチドを基質とすることで、標識されたRNAプロ−ブを作製することが出来る。
As a simple method for preparing a non-radioactive labeled probe, a method of adding a labeled nucleotide to the 5 ′ end during PCR operation can also be used. Examples of the labeling substance include biotin and digoxigenation. Oligonucleotide probes have the advantage of being able to produce a uniform mass in a relatively large amount, but problems remain in terms of sensitivity. When a label is added to a portion other than the probe end, a method for synthesizing a labeled DNA by the nick translation method can also be used.
When RNA molecules such as mRNA are detected by Northern blotting, the detection probe needs to be single-stranded. The preparation of a single-stranded DNA probe includes the use of oligonucleotides and random PCR. As the single-stranded probe, a method using an RNA probe is preferable because of its high sensitivity. An RNA probe synthesizes an antisense RNA using a DNA sequence cloned upstream of a promoter sequence of an RNA polymerase such as T7 or Sp6 as a template. At this time, a labeled RNA probe can be prepared by using a labeled nucleotide as a substrate.

癌細胞を培養する培地(RPMI-1640またはDMEM,シグマ社製)には10%の子牛血清とペニシリン、ストレプトマイシン等の抗生物質が含まれている。細胞は通常、5%CO存在下のインキュベーター内で10cmディッシュに培養する。培養温度は通常37℃である。
10cmディッシュに細胞をコンフルエントになるまで培養し、PBS(リン酸緩衝食塩水(phosphate-buffered saline))で3回洗浄する。Trizol(RNA抽出用フェノール性試薬、ギゾゴ社製)を1mlを加え、室温で2分間静置した後、スクレイプして1.5mlのチューブに回収する。ピペッティングにより細胞を完全に溶解した後、室温で10分間インキュベートする。クロロホルムを200μl加え30秒間懸濁した後、2分間静置し、4℃、12,000rpmで、15分間遠心し、相分離を行う。上層を新しい1.5mlチューブに移し、等量(500μl)の冷イソプロパノールを加えて10秒間懸濁した後、10分間静置し、4℃、12,000rpmで、10分間遠心してRNAを析出させる。上清をデカントして70%エタノール−DEPC(ジエチルピロカーボネート)処理水を1ml加え、軽く懸濁して洗浄し、4℃、12,000rpmで、5分間遠心した後、デカントして塩を取り除く。このチューブをデシケーターで乾燥させ、完全に水分を除去した後、DEPC処理水20μlでRNAを溶解する。保存は−80℃で行う。
A medium for culturing cancer cells (RPMI-1640 or DMEM, manufactured by Sigma) contains 10% of calf serum and antibiotics such as penicillin and streptomycin. Cells are usually cultured in 10 cm dishes in an incubator in the presence of 5% CO 2 . The culture temperature is usually 37 ° C.
Cells are cultured in a 10 cm dish until confluent and washed 3 times with PBS (phosphate-buffered saline). Add 1 ml of Trizol (phenolic reagent for RNA extraction, manufactured by Ghizogo Co., Ltd.), let stand at room temperature for 2 minutes, then scrape and collect in a 1.5 ml tube. The cells are completely lysed by pipetting and then incubated for 10 minutes at room temperature. After adding 200 μl of chloroform and suspending for 30 seconds, the mixture is allowed to stand for 2 minutes, and centrifuged at 4 ° C. and 12,000 rpm for 15 minutes to perform phase separation. Transfer the upper layer to a new 1.5 ml tube, add an equal volume (500 μl) of cold isopropanol, suspend for 10 seconds, let stand for 10 minutes, and centrifuge at 4 ° C., 12,000 rpm for 10 minutes to precipitate RNA. . The supernatant is decanted, 1 ml of 70% ethanol-DEPC (diethyl pyrocarbonate) -treated water is added, lightly suspended and washed, centrifuged at 12,000 rpm at 4 ° C. for 5 minutes, and then decanted to remove salts. The tube is dried with a desiccator to completely remove water, and then RNA is dissolved with 20 μl of DEPC-treated water. Storage is performed at -80 ° C.

全RNAはmRNAまで精製することが望ましいが、全RNAのままでも分析することができる。ホルムアミドとホルマリンの溶液にいれて55℃で変性させてからホルマリン入りのアガロースゲルで電気泳動する。その後ゲルを15〜20xSSCという高塩溶液でニトロセルロースまたはナイロンフィルターにトランスファーする。全RNAがフィルターについた後、ニトロセルロースの場合は80℃で2時間くらい真空オーブンで処理し、全RNAを固定化する。ナイロン膜の場合には紫外線をしばらくあてて架橋を作るなどして固定する。次にこのフィルター上のSAT−ImRNAを同定するためにSAT−IcDNA由来のプローブを作製する。一本鎖にしたプローブとフィルターを特定の条件で接触させると相補性のあるものは結合する。ここでプローブに放射性物質でラベルしておけば結合したSAT−ImRNAだけを検出できる。ハイブリダイゼーションの条件としては5〜6xSSC、温度65℃(ホルムアミド存在下では42℃)とする。   Although it is desirable to purify the total RNA to mRNA, it is possible to analyze the total RNA as it is. It is placed in a solution of formamide and formalin, denatured at 55 ° C., and then electrophoresed on an agarose gel containing formalin. The gel is then transferred to a nitrocellulose or nylon filter with a high salt solution of 15-20 × SSC. After the total RNA is attached to the filter, in the case of nitrocellulose, it is treated in a vacuum oven at 80 ° C. for about 2 hours to immobilize the total RNA. In the case of a nylon membrane, it is fixed by applying ultraviolet rays for a while to form a crosslink. Next, in order to identify SAT-I mRNA on this filter, a probe derived from SAT-I cDNA is prepared. When a single-stranded probe and a filter are brought into contact with each other under specific conditions, those complementary to each other bind. Here, if the probe is labeled with a radioactive substance, only the bound SAT-I mRNA can be detected. The hybridization conditions are 5-6 × SSC, temperature 65 ° C. (42 ° C. in the presence of formamide).

mRNAの測定はRT−PCR法によっても行うことができる。RT−PCRは、まずRNAを逆転写酵素(reverse transcriptase)を用いてcDNAに逆転写し、次にこのcDNAを出発材料として特定のプライマーセットと耐熱性DNAポリメラーゼを用いてPCRを行い、目的のRNAの存在をそのcDNAの増幅という形で、検出定量化する方法である。   mRNA can also be measured by the RT-PCR method. In RT-PCR, RNA is first reverse transcribed into cDNA using reverse transcriptase, then PCR is performed using this cDNA as a starting material and a specific primer set and a heat-resistant DNA polymerase, and the target RNA Is detected and quantified in the form of amplification of its cDNA.

ガングリオシドGM3合成遺伝子の発現量を、該遺伝子から発現されるタンパク質を、典型的にはウエスタンブロット法を用いて測定することによって測定することができる。細胞を6穴ディッシュに培養し、界面活性剤(1% TritonX-100)を含んだタンパク質抽出バッファー(10mMトリス−塩酸、150mM塩化ナトリウム、5mMエチレンジアミン4酢酸ナトリウム(EDTA))にて抽出し、氷上にて10分間超音波粉砕を行い、15,000rpmで、30分間遠心分離操作により上清を回収する。   The expression level of the ganglioside GM3 synthetic gene can be measured by measuring the protein expressed from the gene, typically using Western blotting. Cells are cultured in a 6-well dish, extracted with a protein extraction buffer (10 mM Tris-HCl, 150 mM sodium chloride, 5 mM ethylenediaminetetraacetate (EDTA)) containing a surfactant (1% TritonX-100), and on ice Centrifuge for 10 minutes at 15,000 rpm and collect the supernatant by centrifugation at 15,000 rpm for 30 minutes.

ウエスタンブロット法はタンパク質をSDSを含むポリアクリルアミドゲル電気泳動(SDS−PAGE)で分画し、ニトロセルロースフィルターに移し、これを抗体を用いて検出する方法である。タンパク質はポリアクリルアミドゲルからニトロセルロースの薄膜のような適当なフィルターへトランスファーする。フィルターへ付着したタンパク質はSAT−Iタンパク質の抗体をプローブとすることによって同定できる。抗体検出には例えばペルオキシダーゼ結合二次抗体法を用いる。ゲルからフィルターへのトランスファーは多くの場合エレクトロブロッティングによって行う。すなわち、電気泳動によりタンパク質を展開したゲルとフィルターを密着させフィルターを陽極側にゲル側を陰極にして一定時間電流を流す。こうするとタンパク質はゲルからフィルターに転写される。数時間後この膜を取出しSAT−Iタンパク質に特異的に結合する抗体を反応させ更にその後その抗体を染め出す。   Western blotting is a method in which a protein is fractionated by polyacrylamide gel electrophoresis (SDS-PAGE) containing SDS, transferred to a nitrocellulose filter, and this is detected using an antibody. The protein is transferred from the polyacrylamide gel to a suitable filter such as a nitrocellulose film. The protein attached to the filter can be identified by using a SAT-I protein antibody as a probe. For example, a peroxidase-conjugated secondary antibody method is used for antibody detection. Transfer from gel to filter is often done by electroblotting. That is, a gel on which a protein is developed by electrophoresis and a filter are brought into close contact with each other, and a current is passed for a certain period of time with the filter as the anode side and the gel side as the cathode. This will transfer the protein from the gel to the filter. Several hours later, this membrane is taken out, reacted with an antibody that specifically binds to the SAT-I protein, and then the antibody is stained.

抗体を作製する方法はよく知られている。SAT−Iタンパク質またはその断片を使用して抗体を誘導する。ウサギ、ラット、およびマウスといったような動物を、例えば100μgのタンパク質およびフロイントアジュバンドを含むエマルジョンの腹腔内注射および/または皮内注射により免疫する。例えば固体表面に吸着させたタンパク質を使用するELISA検定により抗体を検出することができる。高い力価を得るためにブースター注射が例えば約2週間の間隔で数回必要である。抗体は上述の方法によるポリクローナル抗体のほかモノクローナル抗体(Harlow, E and Lane, D. (1988), Antibodies: A LABORATORY MANUAL, Cold Spring Harbor Laboratory )も用いることができる。   Methods for producing antibodies are well known. The SAT-I protein or fragment thereof is used to induce antibodies. Animals such as rabbits, rats, and mice are immunized by intraperitoneal and / or intradermal injection of an emulsion containing, for example, 100 μg protein and Freund's adjuvant. For example, the antibody can be detected by an ELISA assay using a protein adsorbed on a solid surface. To obtain a high titer, booster injections are required several times, for example at intervals of about 2 weeks. As the antibody, a monoclonal antibody (Harlow, E and Lane, D. (1988), Antibodies: A LABORATORY MANUAL, Cold Spring Harbor Laboratory) can be used in addition to the polyclonal antibody obtained by the above-described method.

また蛋白質の検出法として細胞を粉砕せずに蛍光顕微鏡、レーザー顕微鏡による観察および画像処理、フローサイトメトリーによる計測、さらにエバネッセント光などを用いた検出方法が可能である。   As a protein detection method, a detection method using fluorescence microscope, observation with laser microscope and image processing, measurement by flow cytometry, evanescent light, etc. without pulverizing cells is possible.

蛍光標示式細胞分取器(fluorescene-activated cell sorter, FACS)は細胞を抗体で蛍光標識し、その蛍光強度によって細胞を分取する装置であり、本装置を用いた実験方法はフローサイトメトリーという。細胞に例えば抗GM3合成酵素を作用させ次いで抗GM3合成酵素と反応するFITC(Fluorescein isothiocyanate)標識した抗体を作用させる。この細胞をFACSにかけ蛍光強度の強さを測定することによりGM3合成酵素が高発現しているか否か判定できる。   Fluorescene-activated cell sorter (FACS) is a device that fluorescently labels cells with antibodies and sorts the cells according to the fluorescence intensity. The experimental method using this device is called flow cytometry. . For example, an anti-GM3 synthase is allowed to act on the cells, and then an FITC (Fluorescein isothiocyanate) labeled antibody that reacts with the anti-GM3 synthase is allowed to act on the cells. Whether or not GM3 synthase is highly expressed can be determined by subjecting the cells to FACS and measuring the intensity of fluorescence intensity.

抗癌剤は、なんら限定されるものではない。非小細胞肺癌細胞のガングリオシドGM3合成酵素遺伝子(SAT−I)の発現量と抗癌剤の抗癌効果との相関関係が正の相関関係である抗癌剤の例はシスプラチン、カルボプラチン等のプラチナ製剤、負の相関関係である抗癌剤の例はEGFR(上皮細胞成長因子受容体)チロシンキナ−ゼ阻害剤である。EGFR(上皮細胞成長因子受容体)チロシンキナ−ゼ阻害剤の例は、次の一般式

Figure 2006211994
(式中、
は、CH0,または
Figure 2006211994
を表し、
は水素、またはフルオロを表す)
で表される化合物である。
実施例 The anticancer agent is not limited at all. Examples of anticancer agents in which the correlation between the expression level of ganglioside GM3 synthase gene (SAT-I) in non-small cell lung cancer cells and the anticancer effect of the anticancer agent is positive are platinum preparations such as cisplatin and carboplatin, negative An example of a correlative anticancer agent is an EGFR (epidermal growth factor receptor) tyrosine kinase inhibitor. Examples of EGFR (epidermal growth factor receptor) tyrosine kinase inhibitors have the general formula
Figure 2006211994
(Where
R 1 is CH 3 0, or
Figure 2006211994
Represents
R 2 represents hydrogen or fluoro)
It is a compound represented by these.
Example

先ず、以下の実施例1〜3で用いた実験方法を説明する
・細胞培養
以下の各種非小胞癌細胞を用いた。
ヒト肺腺癌由来細胞株 (PC3、LCSC#1、LCSC#2、NCI-H23、ABC-1)
ヒト肺扁平上皮癌由来細胞株 (NCI-H226、LK-2、EBC-1)
ヒト肺大細胞癌由来細胞株 (OBA-LK1、Lu99、Lu99B、Lu65)
を10% ウシ胎児血清 (FBS)、
これら細胞を100 units/mLペニシリン、100ng/mLストレプトマイシンを含むRPMI1640培地中(以下培地は特に記載がないもの以外、この培地を指すこととする)で培養した。
PC3、NCI−H23、NCI−H226、ABC−1は北海道大学井上勝一助教授の御好意により供与を受け、その他は東北大学加齢医学研究所医用細胞資源センターより入手した。
First, the experimental methods used in the following Examples 1 to 3 will be described.
-Cell culture The following non-vesicular cancer cells were used.
Human lung adenocarcinoma cell lines (PC3, LCSC # 1, LCSC # 2, NCI-H23, ABC-1)
Human lung squamous cell carcinoma cell lines (NCI-H226, LK-2, EBC-1)
Human lung cell carcinoma cell lines (OBA-LK1, Lu99, Lu99B, Lu65)
A 10% fetal bovine serum (FBS),
These cells were cultured in an RPMI1640 medium containing 100 units / mL penicillin and 100 ng / mL streptomycin (hereinafter, the medium is referred to as this medium unless otherwise specified).
PC3, NCI-H23, NCI-H226, and ABC-1 were kindly provided by Associate Professor Katsuichi Inoue, Hokkaido University. Others were obtained from Tohoku University Institute of Aging Medicine, Medical Cell Resource Center.

・細胞株からの全 RNAの抽出・精製
10cmディッシュに各細胞をコンフルエントになるまで培養し、生理食塩水で洗浄後、Trizol(RNA抽出用フェノール試薬 Gibco社)を1mL加え、室温で2分間静置したのち、スクレイプして1.5mLチューブに回収した。ピペッティングにより細胞を完全に溶解した後、室温で10分間インキュベートした。クロロホルムを200μL加え30秒間懸濁した後、2分間静置し4℃ 12,000rpmで15分間遠心し、相分離をおこなった。上層を新しい1.5mLチューブに移し、500μLの冷イソプロパノールを加えて10秒間懸濁した後、10分間静置し、4℃ 12,000rpmで10分間遠心してRNAを沈殿させた。上清を捨て70%エタノール−DEPC(ジエチルピロカーボネート)処理水を1mL加え、軽く懸濁して洗浄し、4℃ 12,000rpmで5分間遠心した後、上清を除去し塩をとりのぞいた。このチューブをデシケーターで乾燥させ、完全にエタノールを除去した後、DEPC処理水20μLでRNAを溶解した。
-Extraction and purification of total RNA from cell line Each cell is cultured in a 10 cm dish until confluent, washed with physiological saline, 1 mL of Trizol (phenol reagent for RNA extraction, Gibco) is added, and the mixture is allowed to stand at room temperature for 2 minutes. After being placed, it was scraped and collected in a 1.5 mL tube. The cells were completely lysed by pipetting and then incubated at room temperature for 10 minutes. After adding 200 μL of chloroform and suspending for 30 seconds, the mixture was allowed to stand for 2 minutes and centrifuged at 12,000 rpm at 4 ° C. for 15 minutes to perform phase separation. The upper layer was transferred to a new 1.5 mL tube, 500 μL of cold isopropanol was added, suspended for 10 seconds, allowed to stand for 10 minutes, and centrifuged at 12,000 rpm at 4 ° C. for 10 minutes to precipitate RNA. The supernatant was discarded, 1 mL of 70% ethanol-DEPC (diethyl pyrocarbonate) -treated water was added, and the suspension was lightly suspended and washed. After centrifugation at 12,000 rpm for 5 minutes at 4 ° C., the supernatant was removed and the salt was removed. The tube was dried with a desiccator to completely remove ethanol, and then RNA was dissolved with 20 μL of DEPC-treated water.

・抽出したTotal RNAの逆転写
1st Strand cDNA Synthesis kit for RT-PCR(AMV)を使用した。
抽出・精製した全RNA 2.5μg分をRNaseを含まない水で希釈し23.2μlにした。これに10×反応緩衝液5μl、25mM MgCl 10μl、デオキシヌクレオチドMix5μl、ランダムプライマー5μlを加え、よく撹拌し、スピンダウンした後65℃で5分間インキュベートした。RNase阻害剤1μlとAMV逆転写酵素0.8μlを加え、室温で10分間、次に42℃で60分間、つづいて95℃で5分間インキュベートし、cDNAを合成した。リアルタイムPCR
合成したcDNAを鋳型として、SAT−Iならびに内在性コントロール(RPLP0;ribosomal protein Large P0)に対する特異的なプローブ・プライマーセットを用いてリアルタイムPCRを行った。検出、定量には7500 リアルタイム PCR システム (ABI PRISM)を使用した。内在性コントロールにより実験手技等によるぶれを補正し、SAT−IのmRNA発現量を定量した。
使用したプローブ・プライマーは以下の通りである。
ヒト SAT-I
hSAT-I プローブ 5’-FAM-gaaaccctgccattctgggtacgac-MGB-3’(FAMはフルオレセインカルボキシアミドを表し、MGBとはminor groove binder(Tm enhancer)を表す)
hSAT-I 前進プライマー 5’-gcgcaccactgtctgacctt-3’
hSAT-I 逆プライマー 5'-ttctgccacctgcttccaa-3'

ヒト RPLP0 とは Pre-Developed TaqMan(登録商標) Assay Reagents Human RPLP0 (Applied Biosystems)を表す。
・ Reverse transcription of extracted total RNA
1st Strand cDNA Synthesis kit for RT-PCR (AMV) was used.
Extracted and purified total RNA (2.5 μg) was diluted with RNase-free water to 23.2 μl. To this, 5 μl of 10 × reaction buffer, 10 μl of 25 mM MgCl 2 , 5 μl of deoxynucleotide Mix, and 5 μl of random primer were added, stirred well, spun down, and incubated at 65 ° C. for 5 minutes. 1 μl of RNase inhibitor and 0.8 μl of AMV reverse transcriptase were added, and incubated at room temperature for 10 minutes, then at 42 ° C. for 60 minutes, and then at 95 ° C. for 5 minutes to synthesize cDNA. Real-time PCR
Real-time PCR was performed using the synthesized cDNA as a template and a specific probe / primer set for SAT-I and endogenous control (RPLP0; ribosomal protein Large P0). A 7500 real-time PCR system (ABI PRISM) was used for detection and quantification. Shaking due to experimental techniques was corrected by endogenous control, and the amount of SAT-I mRNA expression was quantified.
The probes and primers used are as follows.
Human SAT-I
hSAT-I probe 5'-FAM-gaaaccctgccattctgggtacgac-MGB-3 '(FAM represents fluorescein carboxamide, and MGB represents minor groove binder (Tm enhancer))
hSAT-I forward primer 5'-gcgcaccactgtctgacctt-3 '
hSAT-I reverse primer 5'-ttctgccacctgcttccaa-3 '

Human RPLP0 represents Pre-Developed TaqMan (registered trademark) Assay Reagents Human RPLP0 (Applied Biosystems).

・抗がん剤感受性試験
96穴プレートに細胞を、増殖の非常に遅いPC3は1×10ずつ、その他の細胞は5×10ずつ播種し培地中で24時間予備培養した。薬液の調製は、シスプラチンはDMSO(ジメチルスルホキシド)で300mMに溶解、カルボプラチンは培地で3mMに溶解、AG1478はDMSOで10mMに溶解した。これらを原液とし、各溶媒で適宜希釈した。これらの薬液を培地に添加し、シスプラチンは終濃度1nM〜3mM、カルボプラチンは終濃度1nM〜3mM、AG1478では終濃度0.1nM〜100μMとなるよう薬液入り培地を調製した。この時予備培養した細胞の培地を、これらの薬液入り培地及び、薬品を希釈した溶媒のみを含む培地(薬物未接触)100μLで置き換え、70時間培養した。70時間後に細胞毒性測定用試薬 Cell Counting Kit-8を各穴10μLずつ加え、2時間後培地の450nMにおける吸光度を測定した。この吸光度の値から
阻害率 (%)=(1−薬物接触群/薬物未接触群)×100
上の式にしたがって阻害率 (%)を算出し、解析ソフトOriginを使用し、阻害率(%)をY軸に、濃度の対数をX軸にとり、濃度−阻害効果曲線を作成した。さらに以下の式 (シグモイド曲線)にフィッティングさせIC50を算出した。

Figure 2006211994
(式中、yは阻害率(%)を表し、Emaxは最大阻害率を表し、Eminは最小阻害率を表し、γは定数を表し、Xは濃度を表す) Anticancer agent sensitivity test Cells were seeded in 96-well plates, 1 × 10 4 for PC3, which was very slow in growth, and 5 × 10 3 for other cells, and precultured in a medium for 24 hours. In the preparation of the drug solution, cisplatin was dissolved in DMSO (dimethyl sulfoxide) at 300 mM, carboplatin was dissolved in 3 mM in the medium, and AG1478 was dissolved in DMSO at 10 mM. These were used as stock solutions and diluted appropriately with each solvent. These chemical solutions were added to the medium, and a medium containing a chemical solution was prepared so that cisplatin had a final concentration of 1 nM to 3 mM, carboplatin had a final concentration of 1 nM to 3 mM, and AG1478 had a final concentration of 0.1 nM to 100 μM. The cell culture medium preliminarily cultured at this time was replaced with 100 μL of the medium containing these chemical solutions and a medium containing only the solvent in which the drug was diluted (no drug contact), and cultured for 70 hours. After 70 hours, 10 μL of each cell counting reagent Cell Counting Kit-8 was added, and after 2 hours, the absorbance of the medium at 450 nM was measured. From this absorbance value, the inhibition rate (%) = (1−drug contact group / drug non-contact group) × 100
The inhibition rate (%) was calculated according to the above formula, and using the analysis software Origin, the inhibition rate (%) was taken on the Y-axis and the logarithm of concentration was taken on the X-axis to create a concentration-inhibition effect curve. Further, IC 50 was calculated by fitting to the following equation (sigmoid curve).
Figure 2006211994
(In the formula, y represents the inhibition rate (%), Emax represents the maximum inhibition rate, Emin represents the minimum inhibition rate, γ represents a constant, and X represents the concentration)

上記実験方法を用いて、シスプラチンの各種非小細胞肺癌に対するIC50とSAT−I mRNA発現量の関係を調べた(図1)。SAT−I mRNA発現量が高い細胞株ほどIC50値が高くなることが見られた。すなわちSAT−I mRNA発現量とIC50値は正の相関があり、シスプラチンの制癌効果がSAT−mRNA発現量が高いと低いことが判明した。つまり効き難いことが判明した。 Using the above experimental method, the relationship between cisplatin IC 50 and SAT-I mRNA expression level for various non-small cell lung cancers was examined (FIG. 1). It was observed that the IC 50 value was higher in the cell line with higher SAT-I mRNA expression level. That is, it was found that the SAT-I mRNA expression level was positively correlated with the IC 50 value, and that the anticancer effect of cisplatin was low when the SAT-mRNA expression level was high. In other words, it turned out to be ineffective.

上記実験方法を用いて、カルボプラチンの各種非小細胞肺癌に対するIC50とSAT−I mRNA発現量の関係を調べた(図2)。SAT−I mRNA発現量が高い細胞株ほどIC50値が高くなることが見られた。すなわちSAT−I mRNA発現量とIC50値は正の相関があり、カルボプラチンの制癌効果はSAT−mRNA発現量が高いと低いことが判明した。 Using the above experimental method, the relationship between IC 50 and SAT-I mRNA expression level of carboplatin for various non-small cell lung cancers was examined (FIG. 2). It was observed that the IC 50 value was higher in the cell line with higher SAT-I mRNA expression level. That is, it was found that the SAT-I mRNA expression level and the IC50 value had a positive correlation, and the anticancer effect of carboplatin was low when the SAT-mRNA expression level was high.

上記実験方法を用いて、(上皮細胞成長因子受容体)チロシンキナ−ゼ阻害剤であるAG1478(4−(3−クロロアニリノ)−6,7−ジメトキシキナゾリン)の各種非小細胞肺癌に対するIC50とSAT−I mRNA発現量を調べた(図3)。SAT−I mRNA発現量の高い細胞株ほどIC50値が小さくなることがみられた。即ちSAT−I mRNA発現量とIC50値は負の相関があり、SAT−I mRNA発現量の高い非小細胞がんはAG1478の制癌効果が高いことがわかった。 Using the above experimental method, the IC 50 and SAT of AG1478 (4- (3-chloroanilino) -6,7-dimethoxyquinazoline), an (epidermal growth factor receptor) tyrosine kinase inhibitor, against various non-small cell lung cancers. -I mRNA expression level was examined (FIG. 3). It was found that the IC 50 value decreased as the SAT-I mRNA expression level increased. That is, it was found that SAT-I mRNA expression level and IC 50 value had a negative correlation, and that non-small cell cancer with high SAT-I mRNA expression level had a high anticancer effect of AG1478.

実施例1〜3の結果によれば、非小細胞癌患者の癌細胞のSAT−I mRNA発現量を測定し、発現量が低い場合にはシスプラチン、カルボプラチンなどのDNA合成を阻害するプラチナ製剤に、パクリタキセル、ゲムシタビン等を組み合わせるという二剤併用療法を行い、発現量が高い場合にはEGFRをタ−ゲットする分子標的治療を行えばよいことが考えられる。   According to the results of Examples 1 to 3, the SAT-I mRNA expression level of cancer cells of patients with non-small cell cancer is measured, and when the expression level is low, a platinum preparation that inhibits DNA synthesis such as cisplatin and carboplatin is used. It is conceivable that a two-drug combination therapy of combining paclitaxel, gemcitabine, etc. may be performed, and if the expression level is high, molecular target therapy targeting EGFR may be performed.

本発明は抗癌剤の性質、使用方法についての知見を与える。
The present invention provides knowledge about the properties and usage of anticancer agents.

シスプラチンの各種非小細胞肺癌に対するIC50とSAT−I mRNA発現量との関係を示す。Shows the relationship between the IC 50 and the SAT-I mRNA expression level to various non-small cell lung cancer cisplatin. カルボプラチンの各種非小細胞肺癌に対するIC50とSAT−I mRNA発現量との関係を示す。Shows the relationship between the IC 50 and the SAT-I mRNA expression level to various non-small cell lung cancer carboplatin. AG1478(4−(3−クロロアニリノ)−6,7−ジメトキシキナゾリン)の各種非小細胞肺癌に対するIC50とSAT−I mRNA発現量との関係を示す。Shows the relationship between the IC 50 and the SAT-I mRNA expression level to various non-small cell lung cancer AG1478 (4- (3- chloroanilino) 6,7-dimethoxyquinazoline).

Claims (12)

非小細胞肺癌細胞のガングリオシドGM3合成酵素遺伝子(SAT−I)の発現量と抗癌剤の抗癌効果との相関関係を求めることを含む抗癌剤の特性決定方法。   A method for characterization of an anticancer agent, comprising determining a correlation between the expression level of a ganglioside GM3 synthase gene (SAT-I) in non-small cell lung cancer cells and the anticancer effect of the anticancer agent. 非小細胞癌が腺癌(adenocarcinoma)、扁平上皮癌(squamous cell carcinoma)、または大細胞癌(large cell carcinoma)である請求項1に記載の方法。   The method according to claim 1, wherein the non-small cell cancer is adenocarcinoma, squamous cell carcinoma, or large cell carcinoma. ガングリオシドGM3合成酵素遺伝子(SAT−I)の発現量を該遺伝子から発現されるmRNA量を測定する請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the expression level of the ganglioside GM3 synthase gene (SAT-I) is measured by the amount of mRNA expressed from the gene. mRNA発現量をノ−ザンブロット法で測定する請求項3に記載の方法。   The method according to claim 3, wherein the mRNA expression level is measured by Northern blotting. 請求項3または4に記載のmRNA発現量を測定するために用いる、配列番号1のヌクレオチド配列を有するDNA若しくはその断片、またはそれらに対応するDNAよりなるプロ−ブ。   A probe comprising a DNA having the nucleotide sequence of SEQ ID NO: 1 or a fragment thereof, or a DNA corresponding thereto, which is used for measuring the mRNA expression level according to claim 3 or 4. ガングリオシドGM3合成酵素遺伝子の発現量を、該遺伝子からなる発現されるタンパク質を測定する請求項1〜2のいずれかに記載の方法。   The method according to any one of claims 1 to 2, wherein the expression level of the ganglioside GM3 synthase gene is measured for an expressed protein comprising the gene. タンパク発現量をウエスタンブロット法で測定する請求項6に記載の方法。   The method according to claim 6, wherein the protein expression level is measured by Western blotting. 請求項6〜8に記載のタンパク質発現量を測定するために用いる、配列番号2のアミノ酸配列を有するタンパク質またはその断片に対する抗体。   The antibody with respect to the protein which has the amino acid sequence of sequence number 2, or its fragment used in order to measure the protein expression level of Claims 6-8. 抗癌剤がプラチナ製剤である請求項1〜7のいずれかに記載の方法。   The method according to any one of claims 1 to 7, wherein the anticancer agent is a platinum preparation. プラチナ製剤がシスプラチン(Cisplatin)またはカルボプラチン(Carboplatin)である請求項9に記載の方法。   The method according to claim 9, wherein the platinum preparation is cisplatin or carboplatin. 抗癌剤がEGFR(上皮細胞成長因子受容体)チロシンキナ−ゼ阻害剤である1〜7のいずれかに記載の方法。   8. The method according to any one of 1 to 7, wherein the anticancer agent is an EGFR (epidermal growth factor receptor) tyrosine kinase inhibitor. EGFR(上皮細胞成長因子受容体)チロシンキナ−ゼ阻害剤がAG1478(4−(3−クロロアニリノ)−6,7−ジメトキシキナゾリン)またはその誘導体である請求項11の記載の方法。   12. The method according to claim 11, wherein the EGFR (epidermal growth factor receptor) tyrosine kinase inhibitor is AG1478 (4- (3-chloroanilino) -6,7-dimethoxyquinazoline) or a derivative thereof.
JP2005030296A 2005-02-07 2005-02-07 Method for determining anticancer characteristic of anticancer agent against non small cell lung cancer Pending JP2006211994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005030296A JP2006211994A (en) 2005-02-07 2005-02-07 Method for determining anticancer characteristic of anticancer agent against non small cell lung cancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005030296A JP2006211994A (en) 2005-02-07 2005-02-07 Method for determining anticancer characteristic of anticancer agent against non small cell lung cancer

Publications (1)

Publication Number Publication Date
JP2006211994A true JP2006211994A (en) 2006-08-17

Family

ID=36975707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005030296A Pending JP2006211994A (en) 2005-02-07 2005-02-07 Method for determining anticancer characteristic of anticancer agent against non small cell lung cancer

Country Status (1)

Country Link
JP (1) JP2006211994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536001A (en) * 2013-09-09 2016-11-24 アルマック・ダイアグノスティクス・リミテッドAlmac Diagnostics Limited Molecular diagnostic test for lung cancer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099407A1 (en) * 2003-05-09 2004-11-18 Chemical Biology Institute Method of testing sensitivity to anticancer drug

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099407A1 (en) * 2003-05-09 2004-11-18 Chemical Biology Institute Method of testing sensitivity to anticancer drug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536001A (en) * 2013-09-09 2016-11-24 アルマック・ダイアグノスティクス・リミテッドAlmac Diagnostics Limited Molecular diagnostic test for lung cancer

Similar Documents

Publication Publication Date Title
CN111961725B (en) Kit or device for detecting pancreatic cancer and detection method
JP5951603B2 (en) Diagnosis and treatment of breast cancer
JP6216470B2 (en) MiRNA expression signatures in the classification of thyroid tumors
Nakamura et al. Krüppel‐like factor 12 plays a significant role in poorly differentiated gastric cancer progression
JP2019528081A (en) MicroRNA as a biomarker for endometriosis
CN107488726B (en) Kidney cancer prognosis evaluation biomarker and detection reagent and application thereof
CN111826444B (en) Serum/plasma tsRNA marker related to pancreatic cancer, probe and application thereof
JP7235508B2 (en) Method for Predicting Cancer Susceptibility to Treatment with PD-1 Immune Checkpoint Inhibitors
KR20120132592A (en) Method of providing information for diagnosis of cancer using quantitative realtime PCR and diagnostic kit comprising thereof
Rao et al. Identification of plasma exosomes long non-coding RNA HAGLR and circulating tumor cells as potential prognosis biomarkers in non-small cell lung cancer
JP2014020930A (en) Pancreatic cancer diagnosis and biomarker for treatment effect prediction determination
Meckawy et al. Natural killer NKG2A and NKG2D in patients with colorectal cancer
JPWO2015137406A1 (en) A method for differential evaluation of squamous cell lung cancer and lung adenocarcinoma
JP2007082433A (en) Malignant brain tumor marker gene and use of the same
CN111534587B (en) Molecular marker 5-tRF-His, breast cancer detection kit and application thereof
JP2006211994A (en) Method for determining anticancer characteristic of anticancer agent against non small cell lung cancer
EP2930248B1 (en) Method for predicting sensitivity of osteosarcoma patient to anticancer agent
US20220135979A1 (en) Diagnosis and treatment of medulloblastoma
CN101671728B (en) Method for detecting expression quantity of carcinoembryonic antigen mRNA and special kit thereof
CN109642257B (en) Method for predicting effect of drug therapy on cancer
JP5312024B2 (en) Genes involved in immortalization of human cancer cells and their use
JP2013085542A (en) Stomach cancer detection method, blood marker for stomach cancer, and use thereof
KR102216943B1 (en) Biomarker for diagnosing liver cancer
EP2389450B1 (en) Methods for determining a prognosis for survival for a patient with breast cancer
CN115125304B (en) CERNA regulation network for early diagnosis or detection of non-small cell lung cancer and application thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Effective date: 20080128

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090917

A131 Notification of reasons for refusal

Effective date: 20100330

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720