WO2004099407A1 - Method of testing sensitivity to anticancer drug - Google Patents

Method of testing sensitivity to anticancer drug Download PDF

Info

Publication number
WO2004099407A1
WO2004099407A1 PCT/JP2004/006511 JP2004006511W WO2004099407A1 WO 2004099407 A1 WO2004099407 A1 WO 2004099407A1 JP 2004006511 W JP2004006511 W JP 2004006511W WO 2004099407 A1 WO2004099407 A1 WO 2004099407A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
cancer
sat
expression level
cancer cells
Prior art date
Application number
PCT/JP2004/006511
Other languages
French (fr)
Japanese (ja)
Inventor
Jin-Ichi Inokuchi
Kazuya Kabayama
Yasuyuki Igarashi
Original Assignee
Chemical Biology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemical Biology Institute filed Critical Chemical Biology Institute
Priority to JP2005506046A priority Critical patent/JPWO2004099407A1/en
Publication of WO2004099407A1 publication Critical patent/WO2004099407A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to a method for testing the sensitivity of cancer cells to anticancer agents. More specifically, the present invention relates to a test for the sensitivity of cancer cells to anticancer drugs, using the expression level of the gangliosio GM3 synthase gene as an index.
  • anticancer drugs have been developed for various cancers.
  • the effects of anticancer drugs vary depending on the characteristics of the tumor of the patient and the individual, so they are currently used by trial and error while observing the therapeutic effects.
  • the administration of ineffective anticancer drugs results in unnecessary treatment, and in some cases, the pain of patients due to the side effects of the drugs. Being able to identify whether cancer cells are susceptible to the drug before starting chemotherapy would be very useful in developing a treatment strategy.
  • lung cancer deaths in Japan have overtaken stomach cancer and are the first place (lung cancer mortality rate by site cancer mortality rate in 1980: 17.9%). In the future, this lung cancer mortality rate is expected to continue increasing, and it is predicted that the number of deaths in 2000 will be about twice that in 2000. The challenge of reducing medical costs related to lung cancer is important.
  • Diagnosis of lung cancer is based on symptoms and medical examination, chest X-ray, CT, contrast-enhanced radiography, CT (computer tomography) MR I, endoscopy, bronchial fiberscope, biopsy tissue examination, cytology, customer sputum cytology And so on. With this, it is determined how much the lung cancer is, and if it is, how much progress is made.
  • the lung spreads tumors (T), Rinno. Nodal metastasis (N), distant metastasis
  • Scores are assigned to each of (N), and the stage from stage I to stage IV is determined based on the score a.
  • surgery is performed for stages I to part of stage III, but in later stages, chemotherapy using radiation and anticancer drugs is mainly used.
  • Anticancer drugs include cisplatin, vinorelbine, mitomycin, paclitax Cell, docetaxel, gemcitabine, etc. are used in some combinations.
  • Ganglioside is a generic name for the sialic acid-containing glycosphingolipid (GSL) family, and GM3, the first ganglioside molecule in its biosynthetic pathway, is widely expressed in various cells of mammals including humans. Therefore, its physiological functions and pathophysiological significance have been attracting attention.
  • GSL sialic acid-containing glycosphingolipid
  • the present inventors have found that the expression level of a specific gene changes depending on the degree of sensitivity of a cancer cell to an anticancer agent, and have reached the present invention.
  • This test method makes it easy to determine whether or not a patient's cells are sensitive to an anticancer drug, finds the possibility of selecting the type of anticancer drug to be administered to the patient, and reduces side effects by selecting an anticancer drug that is appropriate for the patient Therefore, we conducted intensive research.
  • the present inventors aimed at examining the relationship between ganglioside expression and malignancy of cancer from a new viewpoint, and the ganlioside GM3 synthase (SAT-I) gene (Ishii, A., Ohta) cloned in 1998.
  • SAT-I ganlioside GM3 synthase
  • the enzyme gene used in the present invention is the gene of the enzyme (SEQ ID NO: 2) that synthesizes ratatosylceramide (LacCer) into ganglioside GM3 (GM3 synthase (SAT-I) gene). Furthermore, the present inventors have found that the expression level of the GM3 synthase gene (SAT-I gene) shows a clear correlation with the sensitivity of cancer cells to anticancer drugs, and based on these findings! Thus, the present invention has been completed.
  • the present invention relates to SAT-ImRNA, which is expressed from a gandarioside GM3 synthase (SAT-I) gene having the nucleotide sequence of SEQ ID NO: 1 and is used as an anticancer drug sensitivity marker for cancer cells.
  • SAT-I gandarioside GM3 synthase
  • the present invention also relates to a gandarioside GM3 synthase (SAT-I) polypeptide having the amino acid sequence of SEQ ID NO: 2 used as a marker for cancer cell sensitivity to anticancer drugs.
  • SAT-I gandarioside GM3 synthase
  • the present invention also provides a method for testing the sensitivity of a cancer cell to an anticancer drug, comprising the steps of:
  • the present invention relates to a method comprising measuring the expression level of a gliocid GM3 synthase (SAT-I) gene. Since the sensitivity of cancer cells to anticancer drugs is correlated with the expression level of ganglioside GM3 synthase (SAT-I) gene in cancer cells, the sensitivity of cancer cells to anticancer drugs can be measured by measuring the expression level of SAT-I gene .
  • Cancer cells can be obtained from the Depositary Center for Biological Sciences or the Medical Cell Repository.
  • the present invention also provides
  • FIG. 1 shows an electrophoretogram (top) and a bar graph (bottom) showing a comparison of the SAT_I gene expression levels in five types of human non-small cell lung cancer.
  • FIG. 2 is a bar graph showing the test results of the survival rate of lung cancer cells by anticancer drug treatment.
  • FIG. 3 is a correlation diagram showing the correlation between the SAT-I gene expression level in human lung cancer and the survival rate of cancer cells by anticancer drug treatment.
  • the target cancer types are lung cancer (non-small cell lung cancer and small cell lung cancer), esophageal cancer, breast cancer, stomach cancer, liver cancer, head and neck cancer, colorectal cancer, knee cancer, prostate cancer, cervical cancer, ovarian cancer, encephaloma Tumors and testicular tumors.
  • biopsy When obtaining cancer cells from a patient, aspiration biopsy, pinch biopsy, biopsy biopsy, biopsy for cytology, endoscopic biopsy, fine needle aspiration biopsy, needle biopsy, transbronchial lung biopsy It can be obtained by biopsy (biopsy), from the sputum discharged by the patient, or during surgery.
  • the expression level of the SAT-I gene is expressed by the SAT-I mR This can be done by measuring NA or SAT-I protein.
  • the detection method is not particularly limited as long as it can detect mRNA or protein of SAT-I and can be sensitive to anticancer drugs.
  • the expression level of the ganglioside GM3 synthetic gene can be measured by measuring SAT-I mRNA, typically by Northern blotting.
  • RNA is extracted from cells, the RNA (mRNA) is electrophoresed, the pattern is transferred to a filter, and a specific labeled probe labeled with an isotope or the like is used for hybridization.
  • a probe for detection in hybridization double-stranded DNA, single-stranded DNA or RNA is used.
  • a single-stranded DNA or RNA having a sequence complementary to the mRNA itself is used as a probe.
  • the chain length of the probe used is relatively arbitrary, and a synthetic oligonucleotide ⁇ of about 20 to 40 bases, and a DNA or RNA probe having a length of several hundred to 1 kbp can be used.
  • the DNA sequence to be synthesized is a relatively short DNA probe, a specific sequence portion of the gene to be detected is used. Tools for checking gene homology
  • Probe labeling methods used for hybridization can be broadly classified into two types: radioactive labels and non-radioactive labels.
  • the production of radiolabeled oligonucleotides can be synthesized mainly by the PCR method based on 32 P-labeled nucleotides. However, this method is not convenient because of the problem of radioactive waste disposal.
  • Non-radioactive labeling uses a probe molecule with a special modifying group added to it, and detects the added modifying group by fluorescence, chemiluminescence, or coloring. Since there is no big difference between the detection sensitivity of the nucleic acid detection method using this non-radioactive labeling method and the sensitivity of the radioactive labeling method, it is relatively safe to use this method. Is desirable.
  • Examples of non-radioactive labels include digoxigenin (DIG) labeling and G) Biotin labeling using avidin and FITC (fluorescene
  • Isothiocyanate can also be applied to a method in which a molecule or the like is covalently bound to DNA and labeled.
  • a method of adding a labeled nucleotide to the 5 'end during PCR operation can also be used.
  • the labeling substance include biotin-digoxigenation.
  • Oligonucleotide probes have the advantage of producing relatively large quantities of homogenous ones, but have problems in terms of sensitivity.
  • RNA probe When detecting RNA molecules such as mRNA by the Northern blot method, the detection probe must be single-stranded.
  • the production of single-stranded DNA probes includes the use of oligonucleotides and random PCR, but the use of RNA probes as single-stranded probes is preferred because of high sensitivity.
  • An RNA probe synthesizes an antisense RNA using a DNA sequence cloned upstream of a promoter sequence of an RNA polymerase such as T7 or S6 as a type III. At this time, a labeled RNA probe can be prepared by using the labeled nucleotide as a substrate.
  • the culture medium (RPMI-1640 or DMEM, Sigma) for culturing cancer cells contains 10% calf serum and antibiotics such as penicillin and streptomycin. Cells normally cultured in 10 cm dishes at the 5 ° / 0 hundred 2 base Inkyu the presence Ta. The culture temperature is usually 37 ° C.
  • RNA is dissolved in 0-treated water 201. Store at 1 80 ° C.
  • RNA total RNA
  • mRNA total RNA
  • Denature at 55 ° C in a solution of formamide and formalin, and run on an agarose gel containing formalin. The gel is then transferred to a nitrocellulose or nylon filter with a high salt solution of 15-20 X SSC. After total RNA has been filtered, 8 for nitrocellulose
  • RNA is treated in a vacuum oven at 0 ° C for about 2 hours to immobilize total RNA.
  • a probe derived from SAT-I cDNA is prepared to identify the SAT-I mRNA on this filter.
  • a single-stranded probe and a filter are brought into contact under specific conditions, those with complementarity will bind.
  • the probe is labeled with a radioactive substance, only the bound SAT-ImRNA can be detected.
  • the conditions for hybridization are 5-6 X SSC and a temperature of 65 ° C (42 ° C in the presence of formamide).
  • RNA can also be measured by the RT_PCR method.
  • RT-PCR RNA is first reverse transcribed into cDNA using reverse transcriptase, and then PCR is performed using this cDNA as a starting material with a specific primer set and a thermostable DNA polymerase. This method detects and quantifies the presence of the target RNA in the form of amplification of its cDNA.
  • the expression level of the gandarioside GM3 synthetic gene can be measured by measuring the protein expressed from the gene, typically using a Western plot method.
  • Cells are cultured in a 6-well dish, and a protein extraction buffer (1 OmM Tris-HCl, 15 OmM sodium chloride, 5 mM sodium ethylenediamine tetraacetate (EDTA)) containing a surfactant (1% TritonX-100) ) And extract on ice Perform sonication for 0 minutes, and collect the supernatant by centrifugation at 15,00 rpm for 30 minutes.
  • a protein extraction buffer (1 OmM Tris-HCl, 15 OmM sodium chloride, 5 mM sodium ethylenediamine tetraacetate (EDTA)
  • EDTA sodium ethylenediamine tetraacetate
  • Western blotting is a method in which proteins are fractionated by SDS-containing polyacrylamide gel electrophoresis (SDS-PAGE), transferred to a nitrocellulose filter, and detected using an antibody.
  • the protein is transferred from the polyacrylamide gel to a suitable filter such as a nitrocellulose thin film.
  • the protein attached to the filter can be identified by using the SAT-I protein antibody as a probe.
  • SAT-I protein antibody For example, use a peroxidase-conjugated secondary antibody method Transfer from the gel to the filter is often performed by electroplating, that is, the gel in which the protein has been developed by electrophoresis is brought into close contact with the filter, and the filter is placed on the anode side.
  • a current is applied for a certain period of time, with the cathode as the cathode, which transfers the protein from the gel to the filter.After a few hours, the membrane is removed and the antibody that specifically binds to the SAT-I protein is reacted. Dye out the antibody.
  • the SAT-I protein or a fragment thereof is used to induce antibodies.
  • Animals such as Egrets, rats, and mice are immunized, for example, by intraperitoneal and Z or intradermal injection of an emulsion containing 100 ⁇ g of protein and Freund's adjuvant.
  • antibodies can be detected by ELISA assays using proteins adsorbed on solid surfaces. Several booster injections are required, eg, at intervals of about two weeks, to obtain high titers.
  • Antibodies addition monochrome one Nanore antibody polyclonal antibodies by the method described above (Harlow, E and Lane, D. (1988), Antibodies: A LABORATORY MANUAL, Cold Spring Harbor Laboratory) also used be ⁇ o this and force s.
  • a method for detecting a protein observation and image processing using a fluorescence microscope or a laser microscope, measurement using flow cytometry, and a detection method using evanescent light can be performed without disrupting cells.
  • a fluorescence-activated cell sorter (fluorescene-activated cell sorter, FACS) is a device that labels cells with antibodies and sorts cells based on the fluorescence intensity.
  • the experimental method using this device is called flow cytometry. .
  • anti-GM3 synthetic yeast Then, FITC (Fluorescein isothiocyanate) -labeled antibody which reacts with anti-GM3 synthase is reacted.
  • FACS Fluorescence-activated cell sorter
  • the anticancer drug is not limited at all.
  • new anticancer drugs including etoposide (etoposide), adriamycin (Adriamycin), cisplatin (Cis1 atin), vincristin, and paclitaxel have been developed. Then, it can be applied to the anticancer drug.
  • This diagnostic system is expected to provide a system for tailor-made cancer treatment strategies for individual cancer patients that can predict the maximum therapeutic effect while minimizing the side effects of anticancer drugs.
  • Example 1
  • GM3 synthase (SAT-I) gene in human non-small cell lung cancer, five types of human non-small cell lung cancer (LCSC # 1, LCSC # 2, Lu99B, LK1-2, A549 (Center for Medical Cell Resources, Institute of Aging Medicine, Tohoku University
  • Trizo 1 phenolic reagent for RNA extraction, manufactured by Gibgo
  • RNA per cell After 6 ⁇ g of RNA per cell is electrophoresed on formaldehyde-denatured agarose gel, it is transcribed to a membrane and hybridized with digoxigenin-labeled RNA probe of human SAT-I gene. was confirmed.
  • the probe was produced as follows. Extract RNA from human leukemia cell HL60, primers with the following sequence:
  • RNA probe SEQ ID NO: 5
  • Fig. 2 A549 (adenocarcinoma), which overexpresses the SAT-I gene, shows high resistance to the anticancer drugs etoposide, adriamycin, vininkristin, and cisbratin, and LCSC # 1 (adenocarcinoma), LCSC # 2 (adenocarcinoma) was moderately resistant, and Lu 99B (large cell carcinoma) and LK-2 (squamous cell carcinoma) were highly susceptible. There is a positive correlation between the expression level of the SAT-I gene and the resistance to the anticancer drugs etoposide, adriamycin, vincristine, and cisplatin.
  • Example 3 A549 (adenocarcinoma), which overexpresses the SAT-I gene, shows high resistance to the anticancer drugs etoposide, adriamycin, vininkristin, and cisbratin, and LCSC # 1 (adenocarcinom
  • the SAT-I gene expression levels of the following 16 human lung cancer cell lines were measured by the RT-PCR method.
  • the parentheses at the end of the cell name indicate the pathological a tissue classification: (A) Squamous cell carcinoma,
  • Single-stranded cDNA was synthesized using an RNA sample extracted from each cell, using a single-stranded cDNA synthesis kit Rev eSeRaAc e (registered trademark) (Toyobo).
  • Rev eSeRaAc e registered trademark
  • Toyobo a random primer or an oligo dT primer was used.
  • reaction solution Prepare a reaction solution according to the method attached to the kit. If a random primer is used, perform the reaction at 30 ° C for 10 minutes, 42 ° C for 50 minutes, and 95 ° C for 5 minutes. If the Oligo dT primer is used, Reactions were performed at 42 ° C for 50 minutes and at 95 ° C for 5 minutes using a thermal cycler (Gene Amp® PCR System 9700, manufactured by Applied Biosystems). After the reaction was completed, the reverse transcript was stored at -30 ° C.
  • the PCR reaction was carried out using 400 nM (final concentration) of SAT-I gene expression in both forward and reverse primers and ExTaq (Takara Shuzo) at a volume of 10 / i1.
  • the parameters of the thermal cycler are as follows: In all reactions, the cycle of 94 ° C for 5 minutes, denaturation at 94 ° C for 30 seconds, pairing at 55 ° C for 30 seconds, and elongation cycle at 72 ° C for 1 minute is 30- This was repeated 35 times, and the extension reaction was further continued at 72 ° C for 5 minutes, and then left at 4 ° C.
  • a part of the final reaction product of the PCR product was developed by 1.5% agarose gel electrophoresis and assayed by ethidium dipromide staining. Table 1 shows the results.
  • Example 3 The sensitivity of various human lung cancer cells used in Example 3 to the anticancer drug paclitaxel was measured.
  • Various human lung cancer cells were raised from a frozen state and cultured in a 10 cm dish, and passaged at least twice to stabilize the cell growth state. The cells were detached using 0.25 ° / o Tripsin-EDTA solution (Sigma), and the number of cells was measured by a hemocytometer. Adjust the concentration of the medium to 5 X 10 4 ce 11 s Zm 1 and inoculate 9 ⁇ ⁇ ⁇ each in 96 we 1 1 plate (5 X 10 3 cells per well) . One day later, the medium was replaced with a medium containing various anticancer agents at a concentration of 0, 0.1, 1, 10, 100 ⁇ , and incubated.
  • C el 1 countingkit - 8 (Dojin Kagaku) was 1 0 / x 1 / we 1 1 was added and reacted between 2:00 co 2 incubator. The absorbance at 450 nm was measured using a microplate reader.
  • Cell Counting Kit ⁇ 8 is a kit for measuring cell number in cell proliferation or cytotoxicity tests of chemicals. It is a novel tetrazolium salt WST-8 (2- (2-me Toxic 4-12-Trofeninole) 1-3- (4-12-Trofeninole) 15- (2,4-disulfophenol) 1H-tetrazolium 'monosodium salt) is used as a coloring substrate.
  • WST-8 is reduced by intracellular dehydrogenase to produce water-soluble formazan. Since the number of cells and the amount of formazan produced are linearly proportional, the number of viable cells can be measured by measuring the absorbance of this formazan at 450 nm. Table 1 shows the results. Cell name IC 50 ( ⁇ ⁇ ) SAT-I gene expression level *
  • Figure 3 shows the correlation between the SAT-I gene expression level in human lung cancer and the survival rate of cancer cells treated with the anticancer drug paclitaxel. There is a negative correlation between SAT-I gene expression and resistance to the anticancer drug paclitaxel.

Abstract

A marker for the sensitivity of cancerous cells to anticancer drugs; and a method of predicting the sensitivity of cancerous cells to anticancer drugs. mRNA or polypeptide expressed by ganglioside GM3 synthetase (SAT-1) gene of cancerous cells can be a marker for the sensitivity of cancerous cells to anticancer drugs. The sensitivity of cancerous cells to anticancer drugs can be determined by measuring expressed mRNA or polypeptide.

Description

明 細 書 抗癌剤感受性試験方法 技術分野  Description Anticancer drug susceptibility test method Technical field
本発明は、 癌細胞の抗癌剤に対する感受性試験方法に関するものである。 さら に詳しくはガングリオシォ GM 3合成酵素の遺伝子の発現レベルを指標にした、 抗癌剤に対する癌細胞の感受性試験に関するものである。 背景技術  The present invention relates to a method for testing the sensitivity of cancer cells to anticancer agents. More specifically, the present invention relates to a test for the sensitivity of cancer cells to anticancer drugs, using the expression level of the gangliosio GM3 synthase gene as an index. Background art
今 、 種々の癌に対して多数の抗癌剤が開発されている。 抗癌剤はその効果に 患者の腫瘍の特性や個人差があるため、 治療効果を見ながら試行錯誤的に使用さ れているのが現状である。 その結果、 効果のない抗癌剤の投与による無駄な治療 が行われる上、 薬剤の副作用による苦痛を患者に与えている場合もある。 化学療 法開始前に、 癌細胞が薬剤に対して感受性か否かの識別が可能となれば、 治療方 針を立てる上で非常に有益である。  Many anticancer drugs have been developed for various cancers. The effects of anticancer drugs vary depending on the characteristics of the tumor of the patient and the individual, so they are currently used by trial and error while observing the therapeutic effects. As a result, the administration of ineffective anticancer drugs results in unnecessary treatment, and in some cases, the pain of patients due to the side effects of the drugs. Being able to identify whether cancer cells are susceptible to the drug before starting chemotherapy would be very useful in developing a treatment strategy.
最近、 わが国の肺癌死が胃癌を追い越して第一位となっている (1 9 9 8年度 部位別癌死亡率では肺癌死亡率: 1 7 . 9 %) 。 今後もこの肺癌死亡率の増加傾 向が続き、 2 0 1 5年では 2 0 0 0年死亡数の約 2倍になると予測されている。 肺癌に関わる医療費の低減の課題は重要である。  Recently, lung cancer deaths in Japan have overtaken stomach cancer and are the first place (lung cancer mortality rate by site cancer mortality rate in 1980: 17.9%). In the future, this lung cancer mortality rate is expected to continue increasing, and it is predicted that the number of deaths in 2000 will be about twice that in 2000. The challenge of reducing medical costs related to lung cancer is important.
肺癌の診断は症状や検診で胸部 X腺写真、 C T、 造影レントゲン、 C T (コン ピューター断層写真) MR I、 内視鏡検査、 気管支ファイバースコープ、 生検組 織診、 細胞診、 客痰細胞診などが行われる。 これで肺癌であるかどう力、 肺癌で あるとするとどのくらい進行しているかが判定される。  Diagnosis of lung cancer is based on symptoms and medical examination, chest X-ray, CT, contrast-enhanced radiography, CT (computer tomography) MR I, endoscopy, bronchial fiberscope, biopsy tissue examination, cytology, customer sputum cytology And so on. With this, it is determined how much the lung cancer is, and if it is, how much progress is made.
具体的には肺の原努腫瘍の広がり (T) 、 リンノ、。節転移 (N) 、 遠隔転移 Specifically, the lung spreads tumors (T), Rinno. Nodal metastasis (N), distant metastasis
(N) のそれぞれについて点数をつけその aみ合せで I期から I V期のステージ が決められる。 一般的には I期から III期の一部までが手術の対象となるが、 そ れ以降の期のものは放射線と抗癌剤を使用する化学療法が主体と治療となる。 抗癌剤はとしてはシスプラチン、 ビノレルビン、 マイ トマイシン、 パクリタキ セル、 ドセタキセル、 ゲムシタビン等が幾つかの組み合わせで使用されている。 上述のように患者に副作用による苦痛のみを与え、 効果のない抗癌剤の投与を避 けるために癌細胞が薬剤に対して感受性力否かの識別が可能となれば、 治療方針 を立てる上で非常に有益である。 抗癌剤が癌細胞に対して有効であるかどうかを 判断するためには、 マーカーとなる物質があれば非常に便利である。 ' Scores are assigned to each of (N), and the stage from stage I to stage IV is determined based on the score a. Generally, surgery is performed for stages I to part of stage III, but in later stages, chemotherapy using radiation and anticancer drugs is mainly used. Anticancer drugs include cisplatin, vinorelbine, mitomycin, paclitax Cell, docetaxel, gemcitabine, etc. are used in some combinations. As mentioned above, if it is possible to discriminate whether or not cancer cells are susceptible to the drug in order to avoid the administration of ineffective anticancer drugs, only to give the patient pain due to side effects, it is very important to formulate a treatment policy It is beneficial. In order to determine whether an anticancer drug is effective against cancer cells, it is very useful to have a marker substance. '
ガングリオシドは、 シアル酸を含むスフィンゴ糖脂質 (G S L) ファミリーの 総称であり、 GM 3はその生合成経路における最初のガングリオシド分子である GM 3はヒトを含む哺乳動物の種々の細胞に広く発現していることから、 その生 理機能および病態生理学的意義が注目されてきた。  Ganglioside is a generic name for the sialic acid-containing glycosphingolipid (GSL) family, and GM3, the first ganglioside molecule in its biosynthetic pathway, is widely expressed in various cells of mammals including humans. Therefore, its physiological functions and pathophysiological significance have been attracting attention.
ガンダリオシドの発現と癌の悪性度や機能との関連については、 以前より多く の研究者の興味の対象であった。 癌の転移能に関して細胞膜が非常に重要な役割 をもっていることが示されたのは、 高転移性細胞の膜小胞を低転移性細胞の膜に 融合させると、 転移能の形質が転換されるというものであった (Poste, G. and Ni col son, GL.: Proc. Nat. Acad. Sci. USA, 77, 399—403, 1980) 。  The association of gandarioside expression with cancer malignancy and function has been the focus of more researchers than before. Cell membranes have been shown to play a very important role in the metastatic potential of cancer, because the fusion of membrane vesicles of highly metastatic cells to the membrane of low metastatic cells transforms the metastatic potential. (Poste, G. and Nicolson, GL .: Proc. Nat. Acad. Sci. USA, 77, 399-403, 1980).
ガンダリオシドと細胞の癌化や腫瘍形成能に関しても多数報告されている。 そ の中でも興味深いのは、 ウィルス感染による細胞の形質転換によってガンダリォ シドの発現パターンが変化することである (Hakomori, S. , Murakami, WT.: Proc. Nat. Acad. Sci. USA, 59, 254 - 261, 1968; Yogeeswaran, G. , Sheinin, R. , Wherrett, JR. and Murray, RK.: J. Biol. Chem., 247, 5146-5148, 1972) 。 腫瘍原性 D NAウィルスである S V 4 0やポリオ一マウィルスによる形 質転換で一般に GM 3などの糖鎖の短いガングリオシドが増加する。 これは糖転 移活性の変化による糖鎖不全あるレヽは単純化として理解されている。  Numerous reports have also been made regarding the canceration and tumorigenicity of gandariosides and cells. Of particular interest is the change in the expression pattern of gandhaloside by cell transformation due to viral infection (Hakomori, S., Murakami, WT .: Proc. Nat. Acad. Sci. USA, 59, 254). -261, 1968; Yogeeswaran, G., Sheinin, R., Wherrett, JR. And Murray, RK .: J. Biol. Chem., 247, 5146-5148, 1972). Transformation by the tumorigenic DNA virus SV40 or poliovirus generally increases short-chain gangliosides such as GM3. This is understood as a simplification in which a sugar chain is deficient due to a change in sugar transfer activity.
一方、 自然に形質転換した細胞、 あるいはへパトーマ細胞では糖鎖の単純ィ匕の 頃向 ίまみられてレヽなレヽ (Dnistrian, AM. , Skipski, VP. , Barclay, M. , Essner, ES. and Stock, CC.: Biochem. Biophys. Res. Comraun., 64, 367—375, 1975) 。 このようにガングリオシドと癌細胞の転移や浸潤、 癌化能に関して統一された見 解は見出されていない。 ガンダリオシドの発現と癌の悪性度や機能との関連につ いては、 以前より多くの研究者の興味の対象であるが、 ガングリオシドと癌細胞 の転移や浸潤、 癌化能に関して統一された見 は見出されていない。 発明の開示 On the other hand, in naturally transformed cells or hepatoma cells, the sugar chains are scattered and are rare (Dnistrian, AM., Skipski, VP., Barclay, M., Essner, ES. and Stock, CC .: Biochem. Biophys. Res. Comraun., 64, 367-375, 1975). Thus, no unified opinion has been found regarding the metastasis, invasion, and cancer potential of gangliosides and cancer cells. The relationship between the expression of gandariosides and the malignancy and function of cancer is of greater interest than ever before, but there is a unified view of metastasis, invasion, and cancer potential of gangliosides and cancer cells. Not found. Disclosure of the invention
以上のことから、 癌細胞の抗癌剤に対する感受性診断マーカーとして有効で、 且つ一般的に応用可能な遺伝子が求められており、 さらにはそのマーカーを用い た精度の高い抗癌剤感受性試験方法の開発が急がれている。  In view of the above, a gene that is effective and generally applicable as a diagnostic marker for the sensitivity of cancer cells to anticancer drugs is required, and the development of highly accurate anticancer drug sensitivity testing methods using such markers is urgently needed. Have been.
本発明者らは癌細胞の抗癌剤に対する感受性の程度により特定の遺伝子の発現 量が変化することを見 、だし、 本発明に至つた。 この試験方法で患者の細胞が抗 癌剤感受性かどうカゝ容易に判定でき、 患者に投与すべき抗癌剤種が選択できる可 能性を見出し患者に適した抗癌剤の選択することにより副作用を低減できると考 え鋭意研究を行った。  The present inventors have found that the expression level of a specific gene changes depending on the degree of sensitivity of a cancer cell to an anticancer agent, and have reached the present invention. This test method makes it easy to determine whether or not a patient's cells are sensitive to an anticancer drug, finds the possibility of selecting the type of anticancer drug to be administered to the patient, and reduces side effects by selecting an anticancer drug that is appropriate for the patient Therefore, we conducted intensive research.
本発明者らはガングリオシド発現と癌の悪性度の関連性を新たな視点から検討 することを目的として、 1998年にクローニングされたガンダリオシド GM3 合成酵素 (SAT— I) 遺伝子 (Ishii, A., Ohta, M., Watanabe, Y. , Matsuda, Κ., Ishiyaraa, K., Sakoe, K., Nakamura, M., Inokuchi, J., Sanai, Y. and Saito, M. : J. Biol. Chem. , 27, 31652-31655, 1998) (配列番号 1 ) の発現レ ベルを種々のヒト癌細胞について調べた。 その結果 SAT— I遺伝子の発現レべ ノレには個々の癌細胞で大きな差があることを発見した。 本宪明に用いる酵素遺伝 , 子は、 ラタトシルセラミド (La c Ce r) をガングリオシド GM 3に合成する 酵素 (配列番号 2) の遺伝子 (GM3合成酵素 (SAT— I) 遺伝子) である。 さらに本発明者は GM 3合成酵素遺伝子 ( SAT— I遺伝子) の発現レベルは 癌細胞の抗癌剤に対する感受性と明らかな相関性を示すことを発見し、 これらの 知見に基!/ヽて本発明を完成させた。  The present inventors aimed at examining the relationship between ganglioside expression and malignancy of cancer from a new viewpoint, and the ganlioside GM3 synthase (SAT-I) gene (Ishii, A., Ohta) cloned in 1998. , M., Watanabe, Y., Matsuda, Κ., Ishiyaraa, K., Sakoe, K., Nakamura, M., Inokuchi, J., Sanai, Y. and Saito, M .: J. Biol. Chem. , 27, 31652-31655, 1998) (SEQ ID NO: 1) was examined for various human cancer cells. As a result, they found that the level of expression of the SAT-I gene varied greatly between individual cancer cells. The enzyme gene used in the present invention is the gene of the enzyme (SEQ ID NO: 2) that synthesizes ratatosylceramide (LacCer) into ganglioside GM3 (GM3 synthase (SAT-I) gene). Furthermore, the present inventors have found that the expression level of the GM3 synthase gene (SAT-I gene) shows a clear correlation with the sensitivity of cancer cells to anticancer drugs, and based on these findings! Thus, the present invention has been completed.
即ち、 本発明は、 配列番号 1のヌクレオチド配列を有するガンダリオシド GM 3合成酵素 (SAT— I) 遺伝子から発現される、 癌細胞の抗癌剤感受性マーカ 一として使用する SAT— ImRNAに関する。  That is, the present invention relates to SAT-ImRNA, which is expressed from a gandarioside GM3 synthase (SAT-I) gene having the nucleotide sequence of SEQ ID NO: 1 and is used as an anticancer drug sensitivity marker for cancer cells.
本発明はまた、 癌細胞の抗癌剤感受性マーカーとして使用する配列番号 2のァ ミノ酸配列を有するガンダリオシド GM 3合成酵素 (SAT— I) ポリペプチド に関する。  The present invention also relates to a gandarioside GM3 synthase (SAT-I) polypeptide having the amino acid sequence of SEQ ID NO: 2 used as a marker for cancer cell sensitivity to anticancer drugs.
本発明はまた、 癌細胞の抗癌剤感受性を試験する方法であって、 癌細胞のガン グリオシド GM 3合成酵素 (S AT— I ) 遺伝子の発現量を測定することを含む 方法に関する。 癌細胞の抗癌剤感受性は癌細胞のガングリオシド GM 3合成酵素 ( S AT - I ) 遺伝子の発現量と相関関係があるので S A T— I遺伝子の発現量 を測定することにより癌細胞の抗癌剤感受性を測定できる。 癌細胞は生物寄託セ ンターや医用細胞保存機関より入手できる。 The present invention also provides a method for testing the sensitivity of a cancer cell to an anticancer drug, comprising the steps of: The present invention relates to a method comprising measuring the expression level of a gliocid GM3 synthase (SAT-I) gene. Since the sensitivity of cancer cells to anticancer drugs is correlated with the expression level of ganglioside GM3 synthase (SAT-I) gene in cancer cells, the sensitivity of cancer cells to anticancer drugs can be measured by measuring the expression level of SAT-I gene . Cancer cells can be obtained from the Depositary Center for Biological Sciences or the Medical Cell Repository.
本発明はまた、  The present invention also provides
( 1 ) 抗癌剤に対する癌細胞の感受性と、 癌細胞のガングリオシド GM 3合成酵 素 (S AT— I ) 遺伝子発現量との相関関係を求めておき、  (1) The correlation between the sensitivity of cancer cells to anticancer drugs and the ganglioside GM3 synthase (SAT-I) gene expression level in cancer cells was determined,
( 2 ) 患者の癌細胞の S A T— I遺伝子発現量をィンビトロで測定し、  (2) measuring the SAT-I gene expression level of the patient's cancer cells in vitro,
( 3 ) ( 1 ) の相関関係と (2 ) の発現量から抗癌剤に対する患者の癌細胞の感 受性を求める、  (3) determining the sensitivity of the patient's cancer cells to the anticancer drug from the correlation in (1) and the expression level in (2);
ことを含む抗癌剤の選定方法に関する。 図面の簡単な説明 And a method for selecting an anticancer agent. BRIEF DESCRIPTION OF THE FIGURES
図 1は 5種のヒト非小細胞肺癌における S A T _ I遺伝子発現量の比較を示す 電気泳動図 (上) および棒グラフ (下) である。  FIG. 1 shows an electrophoretogram (top) and a bar graph (bottom) showing a comparison of the SAT_I gene expression levels in five types of human non-small cell lung cancer.
図 2は抗癌剤処理による肺癌細胞の生存率の試験結果を示す棒グラフである。 図 3はヒト肺癌における S A T— I遺伝子発現量と抗癌剤処理による癌細胞生 存率の相関関係を示す相関図である。  FIG. 2 is a bar graph showing the test results of the survival rate of lung cancer cells by anticancer drug treatment. FIG. 3 is a correlation diagram showing the correlation between the SAT-I gene expression level in human lung cancer and the survival rate of cancer cells by anticancer drug treatment.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
対象となる癌種としては肺癌 (非小細胞肺癌、 および小細胞肺癌) 、 食道癌、 乳癌、 胃癌、 肝癌、 頭頸癌、 大腸癌、 膝癌、 前立腺癌、 子宮頸癌、 卵巣癌、 脳腫 瘍、 睾丸腫瘍があげられる。  The target cancer types are lung cancer (non-small cell lung cancer and small cell lung cancer), esophageal cancer, breast cancer, stomach cancer, liver cancer, head and neck cancer, colorectal cancer, knee cancer, prostate cancer, cervical cancer, ovarian cancer, encephaloma Tumors and testicular tumors.
患者から癌細胞を得る場合には、 吸引生検、 挟みとり生検、 察過生検、 細胞診 用生検、 内視鏡生検、 細針吸引生検、 針生検、 経気管支的肺生検等の生検 (バイ ォプシ一) により、 或いは、 患者の排出する喀痰から、 または外科手術の際に得 ることができる。  When obtaining cancer cells from a patient, aspiration biopsy, pinch biopsy, biopsy biopsy, biopsy for cytology, endoscopic biopsy, fine needle aspiration biopsy, needle biopsy, transbronchial lung biopsy It can be obtained by biopsy (biopsy), from the sputum discharged by the patient, or during surgery.
S A T— I遺伝子の発現量は癌細胞の該遺伝子から発現される S AT— I mR NAまたは SAT— Iタンパク質を測定することによっておこなうことができる。 検出方法は SAT— Iの mRNAあるいはタンパク質を検出、 およぴ抗癌剤感受 性 · ¾1生細胞間での発現量の比較が可能であれば特に限定されるものではない。 ガングリオシド GM 3合成遺伝子の発現量は、 SAT— I mRNAを、 典型的 にはノーザンプロット法によって測定することによって測定できる。 The expression level of the SAT-I gene is expressed by the SAT-I mR This can be done by measuring NA or SAT-I protein. The detection method is not particularly limited as long as it can detect mRNA or protein of SAT-I and can be sensitive to anticancer drugs. The expression level of the ganglioside GM3 synthetic gene can be measured by measuring SAT-I mRNA, typically by Northern blotting.
ノーザンプロット法は当業者に周知の技術である。 ノーザンプロット法では細 胞から RNA (mRNA) を抽出し、 RNA (mRNA) を電気泳動して、 その パターンをフィルターに移しとり、 アイソトープ等で標識した特異的な標識プロ ープとハイプリダイゼーシヨンをさせることで、 標本中の mRNAの存在と量を 解析する。  Northern plotting is a technique well known to those skilled in the art. In the Northern plot method, RNA (mRNA) is extracted from cells, the RNA (mRNA) is electrophoresed, the pattern is transferred to a filter, and a specific labeled probe labeled with an isotope or the like is used for hybridization. By analyzing the presence and amount of mRNA in the sample,
ハイプリダイゼ一ションにおける検出のためのプローブとしては、 二本鎖 DN A、 一本鎖の DNAまたは RNAが使用される。 ノーザンプロット法により、 m RNAを特異的に検出しようとする場合は、 その mRNA自体に相補的配列をも つ一本鎖の DNAまたは RNAをプロ一プとして使用する。 用いるプローブの鎖 長は比較的任意であり、 20〜 40塩基程度の合成ォリゴヌクレオチドゃ、 数百 から 1 k b ρの長さの DNAまたは RNAプローブが使用できる。 合成する DN A配列は比較的短い DN Aプローブの場合、 検出しようとする遺伝子の特異的な 配列部分を利用する。 遺伝子の相同性を確認するツール  As a probe for detection in hybridization, double-stranded DNA, single-stranded DNA or RNA is used. When the mRNA is to be specifically detected by the Northern blot method, a single-stranded DNA or RNA having a sequence complementary to the mRNA itself is used as a probe. The chain length of the probe used is relatively arbitrary, and a synthetic oligonucleotide ゃ of about 20 to 40 bases, and a DNA or RNA probe having a length of several hundred to 1 kbp can be used. When the DNA sequence to be synthesized is a relatively short DNA probe, a specific sequence portion of the gene to be detected is used. Tools for checking gene homology
(http://www. ncbi. nlm. nih. gov/Blast)を用いることで検出しようとする遺伝子 特有の配列を検索することが可能である。  (http://www.ncbi.nlm.nih.gov/Blast), it is possible to search for a sequence specific to the gene to be detected.
ハイブリダィゼーションに用いるプローブの標識方法には大きく分けて放射能 標識と非放射能標識の 2種がある。 放射能標識オリゴヌクレオチドの作製は、 お もに 32 P標識したヌクレオチドをもとに PC R法で合成することが出来る。 た だしこの方法は、 放射性廃棄物処理の問題があり、 簡便ではない。 非放射能標識 では、 プローブ分子内に特殊な修飾基を付加したものを利用し、 付カ卩した修飾基 を蛍光や化学発光、 発色によって検出する。 この非放射能標識方法を用いた核酸 の検出法の検出感度も放射能標識の方法の感度も大きな差は無くなってきている ので、 比較的安全であり、 この非放射能標識方法を使用することが望ましい。 非 放射能標識の例としてジゴキシゲニン (D I G) 標識やピオチンと (ストレプ ト) アビジンを使うビォチン標識や蛍光を発する F I TC (fluorescene Probe labeling methods used for hybridization can be broadly classified into two types: radioactive labels and non-radioactive labels. The production of radiolabeled oligonucleotides can be synthesized mainly by the PCR method based on 32 P-labeled nucleotides. However, this method is not convenient because of the problem of radioactive waste disposal. Non-radioactive labeling uses a probe molecule with a special modifying group added to it, and detects the added modifying group by fluorescence, chemiluminescence, or coloring. Since there is no big difference between the detection sensitivity of the nucleic acid detection method using this non-radioactive labeling method and the sensitivity of the radioactive labeling method, it is relatively safe to use this method. Is desirable. Examples of non-radioactive labels include digoxigenin (DIG) labeling and G) Biotin labeling using avidin and FITC (fluorescene
Isothiocyanate) 分子等を D N Aに共有結合させて標識させる方法も適用できる。 また、 非放射能標識プローブの簡便な作製法として、 PCR操作時に標識ヌク レオチドを 5' 末端に付加する方法も利用できる。 標識物質としては、 ピオチン ゃジゴキシゲニン化が挙げられる。 オリゴヌクレオチドプローブは、 均一なもの を比較的大量に作製できる利点があるが、 感度の点で問題が残されている。 プロ ープ末端以外の部分に標識を入れる場合、 エックトランスレーション法による標 識 D N Aの合成方法も利用可能である。 Isothiocyanate) can also be applied to a method in which a molecule or the like is covalently bound to DNA and labeled. In addition, as a simple method for preparing a non-radioactively labeled probe, a method of adding a labeled nucleotide to the 5 'end during PCR operation can also be used. Examples of the labeling substance include biotin-digoxigenation. Oligonucleotide probes have the advantage of producing relatively large quantities of homogenous ones, but have problems in terms of sensitivity. When a label is added to a portion other than the end of the prop, a method for synthesizing the labeled DNA by the ec translation method can be used.
mRNAなどの RNA分子をノーザンプロット法で検出する場合には、 その検 出用プローブは 1本鎖である必要がある。 1本鎖 DNAプローブの作製にはオリ ゴヌクレオチドの使用、 ランダム PC Rなどがあるが、 一本鎖プローブとしては、 RN Aプローブを利用する方法が感度が高く好ましい。 RNAプローブは T 7や S 6等の RNAポリメラーゼのプロモーター配列の上流にクロ一エングしてあ る DNA配列を鍀型として、 アンチセンス RN Aを合成する。 この時、 標識され たヌクレオチドを基質とすることで、 標識された RNAプローブを作製すること が出来る。  When detecting RNA molecules such as mRNA by the Northern blot method, the detection probe must be single-stranded. The production of single-stranded DNA probes includes the use of oligonucleotides and random PCR, but the use of RNA probes as single-stranded probes is preferred because of high sensitivity. An RNA probe synthesizes an antisense RNA using a DNA sequence cloned upstream of a promoter sequence of an RNA polymerase such as T7 or S6 as a type III. At this time, a labeled RNA probe can be prepared by using the labeled nucleotide as a substrate.
癌細胞を培養する培地 (RPMI- 1640または DMEM,シグマ社製) には 10%の子牛 血清とペニシリン、 ストレプトマイシン等の抗生物質が含まれている。 細胞は通 常、 5°/0〇〇2存在下のィンキュべーター内で10 cmディッシュに培養する。 培養温度は通常 37 °Cである。 The culture medium (RPMI-1640 or DMEM, Sigma) for culturing cancer cells contains 10% calf serum and antibiotics such as penicillin and streptomycin. Cells normally cultured in 10 cm dishes at the 5 ° / 0 hundred 2 base Inkyu the presence Ta. The culture temperature is usually 37 ° C.
10 cmディッシュに細胞をコンフルェントになるまで培養し、 PB S (リン 酸緩衝食塩水 (phosphate-buff ered saline)) で 3回洗浄する。 Tr i z o 1 Culture the cells in a 10 cm dish until confluent, and wash three times with PBS (phosphate-buffered saline). Tr i z o 1
(R N A抽出用フエノール性試薬、 ギゾゴ社製) を 1 m 1を加え、 室温で 2分間 静置した後、 スクレイプして 1. 5m 1のチューブに回収する。 ピペッティング により細胞を完全に溶解した後、 室温で 10分間ィンキュベートする。 クロロホ ルムを 200 μ 1加え 30秒間懸濁した後、 2分間静置し、 4 °C、 12, 000 r pmで、 15分間遠心し、 相分離を行う。 上層を新しい 1. 5mlチューブに 移し、 等量 (500 μ 1 ) の冷ィソプロパノールを加えて 10秒間懸濁した後、 10分間静置し、 4°C、 12, 000 r pmで、 10分間遠心して RNAを析出 させる。 上清をデカントして 70%エタノール一DE PC (ジェチルピロカーボ ネート) 処理水を lml加え、 軽く懸濁して洗浄し、 4°C、 12, 000 r pm で、 5分間遠心した後、 デカントして塩を取り除く。 このチューブをデシケータ で乾燥させ、 完全に水分を除去した後、 0£?じ処理水20 1で RNAを溶解 する。 保存は一 80 °Cで行う。 Add 1 ml of a phenolic reagent for RNA extraction (manufactured by Gizogo), leave at room temperature for 2 minutes, scrape, and collect in a 1.5 ml tube. After complete lysis of the cells by pipetting, incubate at room temperature for 10 minutes. Add 200 µl of chloroform, suspend for 30 seconds, allow to stand for 2 minutes, centrifuge at 12,000 rpm for 15 minutes at 4 ° C, and separate phases. Transfer the upper layer to a new 1.5 ml tube, add an equal volume (500 μl) of cold isopropanol, suspend for 10 seconds, then stand still for 10 minutes, and incubate at 4 ° C and 12,000 rpm. Centrifuge for 10 min to precipitate RNA Let it. Decant the supernatant, add 1 ml of 70% ethanol-DEPC (getyl pyrocarbonate) -treated water, lightly suspend and wash, centrifuge at 12,000 rpm for 5 minutes at 4 ° C, and decant. And remove the salt. After drying the tube with a desiccator to completely remove water, the RNA is dissolved in 0-treated water 201. Store at 1 80 ° C.
全 RNAは mRNAまで精製することが望ましいが全 RN Aのままでも分析す ることができる。 ホルムアミドとホルマリンの溶液にいれて 55 °Cで変性させて からホルマリン入りのァガ口ースゲルで電気泳動する。 その後ゲルを 15〜 20 X S SCという高塩溶液でニトロセルロースまたはナイロンフィルターにトラン スファーする。 全 RNAがフィルターについた後、 ニトロセルロースの場合は 8 It is desirable to purify total RNA to mRNA, but it is possible to analyze total RNA as it is. Denature at 55 ° C in a solution of formamide and formalin, and run on an agarose gel containing formalin. The gel is then transferred to a nitrocellulose or nylon filter with a high salt solution of 15-20 X SSC. After total RNA has been filtered, 8 for nitrocellulose
0°Cで 2時間くらい真空オーブンで処理し、 全 RNAを固定化する。 ナイロン膜 の場合には紫外線をしばらくあてて架橋を作るなどして固定する。 次にこのフィ ルター上の SAT— I mRNAを同定するために SAT— I c DNA由来のプロ ーブを作製する。 一本鎖にしたプローブとフィルターを特定の条件で接触させる と相補性のあるものは結合する。 ここでプローブに放射性物質でラベルしておけ ば結合した S A T— I mR N Aだけを検出できる。 ハイプリダイゼーションの条 件としては 5〜6 X S SC、 温度 65°C (ホルムアミド存在下では 42 °C) とす る。 Treat in a vacuum oven at 0 ° C for about 2 hours to immobilize total RNA. In the case of a nylon membrane, it is fixed by exposing it to ultraviolet light for a while to form a crosslink. Next, a probe derived from SAT-I cDNA is prepared to identify the SAT-I mRNA on this filter. When a single-stranded probe and a filter are brought into contact under specific conditions, those with complementarity will bind. Here, if the probe is labeled with a radioactive substance, only the bound SAT-ImRNA can be detected. The conditions for hybridization are 5-6 X SSC and a temperature of 65 ° C (42 ° C in the presence of formamide).
mRNAの測定は RT_ PC R法によっても行うことができる。 RT— PCR は、 まず RNAを逆転写酵素 (reverse transcriptase) を用いて c DNAに逆 転写し、 次にこの cDNAを出発材料として特定のプライマーセットと耐熱性 D NAポリメラーゼを用いて PC Rを行い、 目的の RNAの存在をその c DNAの 増幅という形で、 検出定量化する方法である。  mRNA can also be measured by the RT_PCR method. In RT-PCR, RNA is first reverse transcribed into cDNA using reverse transcriptase, and then PCR is performed using this cDNA as a starting material with a specific primer set and a thermostable DNA polymerase. This method detects and quantifies the presence of the target RNA in the form of amplification of its cDNA.
ガンダリオシド GM 3合成遺伝子の発現量を、 該遺伝子から発現されるタンパ ク質を、 典型的にはウェスタンプロット法を用いて測定することによって測定す ることができる。  The expression level of the gandarioside GM3 synthetic gene can be measured by measuring the protein expressed from the gene, typically using a Western plot method.
細胞を 6穴ディッシュに培養し、 界面活性剤 ( 1 %TritonX-100)を含んだタン パク質抽出バッファー (1 OmMトリス一塩酸、 15 OmM塩ィ匕ナトリウム、 5 mMエチレンジァミン 4酢酸ナトリウム (EDTA) ) にて抽出し、 氷上にて 1 0分間超音波粉砕を行い、 1 5 , 0 0 0 r p mで、 3 0分間遠心分離操作により 上清を回収する。 Cells are cultured in a 6-well dish, and a protein extraction buffer (1 OmM Tris-HCl, 15 OmM sodium chloride, 5 mM sodium ethylenediamine tetraacetate (EDTA)) containing a surfactant (1% TritonX-100) ) And extract on ice Perform sonication for 0 minutes, and collect the supernatant by centrifugation at 15,00 rpm for 30 minutes.
ウェスタンブロット法はタンパク質を S D Sを含むポリアクリルアミドゲル電 気泳動 (S D S— P AG E) で分画し、 ニトロセルロースフィルターに移し、 こ れを抗体を用いて検出する方法である。 タンパク質はポリアクリルアミドゲルか らニトロセルロースの薄膜のような適当なフィルタ · ~^ "トランスファーする。 フ ィルターへ付着したタンパク質は S A T— Iタンパク質の抗体をプローブとする ことによつて同定できる。 抗体検出には例えばペルォキシダーゼ結合二次抗体法 を用いる。 ゲルからフィルターへのトランスファ一は多くの場合エレクトロプロ ッティングによって行う。 すなわち、 電気泳動によりタンパク質を展開したゲル とフィルターを密着させフィルターを陽極側にゲル側を陰極にして一定時間電流 を流す。 こうするとタンパク質はゲルからフィルターに転写される。 数時間後こ の膜を取出し S AT— Iタンパク質に特異的に結合する抗体を反応させ更にその 後その抗体を染め出す。  Western blotting is a method in which proteins are fractionated by SDS-containing polyacrylamide gel electrophoresis (SDS-PAGE), transferred to a nitrocellulose filter, and detected using an antibody. The protein is transferred from the polyacrylamide gel to a suitable filter such as a nitrocellulose thin film. The protein attached to the filter can be identified by using the SAT-I protein antibody as a probe. For example, use a peroxidase-conjugated secondary antibody method Transfer from the gel to the filter is often performed by electroplating, that is, the gel in which the protein has been developed by electrophoresis is brought into close contact with the filter, and the filter is placed on the anode side. A current is applied for a certain period of time, with the cathode as the cathode, which transfers the protein from the gel to the filter.After a few hours, the membrane is removed and the antibody that specifically binds to the SAT-I protein is reacted. Dye out the antibody.
抗体を作製する方法はよく知られている。 S A T— Iタンパク質またはその断 片を使用して抗体を誘導する。 ゥサギ、 ラット、 およびマウスといったような動 物を、 例えば 1 0 0 μ gのタンパク質およびフロイントアジュバンドを含むエマ ルジョンの腹腔内注射およぴ Zまたは皮内注射により免疫する。 例えば固体表面 に吸着させたタンパク質を使用する E L I S A検定により抗体を検出することが できる。 高い力価を得るためにブースター注射が例えば約 2週間の間隔で数回必 要である。 抗体は上述の方法によるポリクローナル抗体のほかモノクロ一ナノレ抗 体 (Harlow, E and Lane, D. (1988) , Antibodies : A LABORATORY MANUAL, Cold Spring Harbor Laboratory ) も用い <oこと力 sでき 。 Methods for making antibodies are well known. The SAT-I protein or a fragment thereof is used to induce antibodies. Animals such as Egrets, rats, and mice are immunized, for example, by intraperitoneal and Z or intradermal injection of an emulsion containing 100 μg of protein and Freund's adjuvant. For example, antibodies can be detected by ELISA assays using proteins adsorbed on solid surfaces. Several booster injections are required, eg, at intervals of about two weeks, to obtain high titers. Antibodies addition monochrome one Nanore antibody polyclonal antibodies by the method described above (Harlow, E and Lane, D. (1988), Antibodies: A LABORATORY MANUAL, Cold Spring Harbor Laboratory) also used be <o this and force s.
また蛋白質の検出法として細胞を粉碎せずに蛍光顕微鏡、 レーザー顕微鏡によ る観察および画像処理、 フローサイトメトリーによる計測、 さらにエバネッセン ト光などを用いた検出方法が可能である。  In addition, as a method for detecting a protein, observation and image processing using a fluorescence microscope or a laser microscope, measurement using flow cytometry, and a detection method using evanescent light can be performed without disrupting cells.
蛍光標示式細胞分取器 (fluorescene-activated cell sorter, FACS) は細胞 を抗体で蛍光標識し、 その蛍光強度によって細胞を分取する装置であり、 本装置 を用いた実験方法はフローサイトメトリーという。 細胞に例えば抗 GM 3合成酵 素を作用させ次いで抗 GM 3合成酵素と反応する FIT C (Fluorescein isothiocyanate)標識した抗体を作用させる。 この細胞を F AC Sにかけ蛍光強 度の強さを測定することにより GM 3合成酵素が高発現しているカゝ否カゝ判定でき る。 A fluorescence-activated cell sorter (fluorescene-activated cell sorter, FACS) is a device that labels cells with antibodies and sorts cells based on the fluorescence intensity.The experimental method using this device is called flow cytometry. . For example, anti-GM3 synthetic yeast Then, FITC (Fluorescein isothiocyanate) -labeled antibody which reacts with anti-GM3 synthase is reacted. By subjecting these cells to FACS and measuring the intensity of fluorescence intensity, it is possible to determine whether or not GM3 synthase is highly expressed.
抗癌剤は、 なんら限定されるものではない。 肺癌の場合、 エトポシド (e t o p o s i d e) 、 ァドリアマイシン (Ad r i amy c i n) 、 シスプラチン (C i s 1 a t i n) 、 ヴインクリスチン (V i n c r i s t i n) 、 パクリ タキセル (Pa c l i t a x e l) を含むが新規な抗癌剤が開発されればその抗 癌剤に対しても適用可能である。  The anticancer drug is not limited at all. In the case of lung cancer, new anticancer drugs including etoposide (etoposide), adriamycin (Adriamycin), cisplatin (Cis1 atin), vincristin, and paclitaxel have been developed. Then, it can be applied to the anticancer drug.
本診断システムによると、 抗癌剤の副作用を最小限に最大の治療効果を予測す ることができる、 個々の癌患者のテーラーメ一ド癌治療戦略のシステムを提供で きることが期待される。  This diagnostic system is expected to provide a system for tailor-made cancer treatment strategies for individual cancer patients that can predict the maximum therapeutic effect while minimizing the side effects of anticancer drugs.
以下に、 実施例により本発明を具体的に説明するが、 本発明は、 これら実施例 によりなんら限定されるものでない。 実施例 1  Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. Example 1
肺癌細胞の S A T— I遺伝子発現量の測定 ( 1 ) Measurement of SAT-I gene expression in lung cancer cells (1)
ヒト非小細胞肺癌の GM 3合成酵素 (SAT— I) 遺伝子の発現量を比較する 目的で, 5種のヒト非小細胞肺癌 (LCSC# 1、 LCSC#2、 Lu 99B、 LK一 2、 A549 (東北大学加齢医学研究所医用細胞資源センター  In order to compare the expression levels of the GM3 synthase (SAT-I) gene in human non-small cell lung cancer, five types of human non-small cell lung cancer (LCSC # 1, LCSC # 2, Lu99B, LK1-2, A549 (Center for Medical Cell Resources, Institute of Aging Medicine, Tohoku University
(http://w w. idac. tohoku. ac. jp/dep/ccr/)より入手) ) 細胞を用いた。 細胞は 10%子牛血清を含む RPMI— 1640培養を用いて 5%C〇2存在下のイン キュベータ一内で 37°Cで培養した。 RNAの抽出は以下のように行った。 10 c mディッシュに細胞をコンフルェントになるまで培養し、 P B S (リン酸緩衝 食塩水(phosphate-buffered saline)) で 3回培養した。 Tr i z o 1 (RNA 抽出用フエノール性試薬、 ギブゴ社製) を lml加え、 室温で 2分間静置した後、 スクレイプして 1. 5m 1のチューブに回収した。 ピペッティングにより細胞を 完全に溶解した後、 室温で 10分間ィンキュベートした。 クロ口ホルムを 200 /X 1加え 30秒間懸濁した後、 2分間静置し、 4°C、 12, O O O r pinで、 1 5分間遠心し、 相分離を行った。 上層を新しい 1. 5mlチューブに移し、 等量 (500 /z 1) の冷ィソプロパノールを加えて 10秒間懸濁した後、 10分間静 置し、 4°C、 12, O OO r pmで、 10分間遠心して RNAを沈殿させた。 上 清をデカントして 70%エタノール一 DE PC (ジェチルピロカーボネート) 処 理水を lml加え、 軽く懸濁して洗浄し、 4°C、 12, O O O r pmで、 5分間 遠心した後、 デカントして塩を取り除いた。 このチューブをデシケータで乾燥さ せ、 完全に水分を除去した後、 0£?〇処理水20^ 1で RNAを溶解した。 こ の方法を用いて抽出した RNAについてノーザンブロット法により SAT— I遺 伝子発現量を確認した。 (obtained from http: //www.idac. tohoku. ac.jp/dep/ccr/))) Cells were used. Cells were cultured at 37 ° C in an incubator with 5% C 存在2 using RPMI-1640 culture containing 10% calf serum. RNA was extracted as follows. The cells were cultured in a 10 cm dish until confluent, and cultured three times in PBS (phosphate-buffered saline). Lml of Trizo 1 (phenolic reagent for RNA extraction, manufactured by Gibgo) was added, left at room temperature for 2 minutes, scraped, and collected in a 1.5 ml tube. After complete lysis of the cells by pipetting, they were incubated for 10 minutes at room temperature. Add 200 / X 1 of black-mouthed form, suspend for 30 seconds, and stand still for 2 minutes. After centrifugation for 5 minutes, phase separation was performed. Transfer the upper layer to a new 1.5 ml tube, add an equal volume (500 / z 1) of cold isopropanol, suspend for 10 seconds, then stand for 10 minutes, and at 4 ° C, 12, OO rpm. The RNA was precipitated by centrifugation for 10 minutes. Decant the supernatant, add 1 ml of 70% ethanol-DEPC (getyl pyrocarbonate) -treated water, lightly suspend and wash, centrifuge at 4 ° C, 12, OOO rpm for 5 minutes, and then decant. To remove the salt. The tube was dried in a desiccator to completely remove water, and then the RNA was dissolved in 20% of treated water. The expression level of the SAT-I gene was confirmed for the RNA extracted using this method by Northern blotting.
1細胞あたり 6 μ gの RNAをホルムアルデヒド変性ァガロースゲル中に泳動 後、 ナイ口ン膜に転写し、 ジゴキシゲニン標識したヒト S A T— I遺伝子の R N Aプローブをハイブリダィズさせることで各細胞の S A T— I遺伝子 m R N Aの 発現量を確認した。  After 6 μg of RNA per cell is electrophoresed on formaldehyde-denatured agarose gel, it is transcribed to a membrane and hybridized with digoxigenin-labeled RNA probe of human SAT-I gene. Was confirmed.
プローブは以下のようにして作製した。 ヒト白血病細胞 HL 60の RNAを抽 出し、 以下の配列のプライマー:  The probe was produced as follows. Extract RNA from human leukemia cell HL60, primers with the following sequence:
正方向 CAGGTATAGCGTGGACTTACTC (配列番号 3 ) Forward direction CAGGTATAGCGTGGACTTACTC (SEQ ID NO: 3)
逆方向 TTCACGATCMTGCCTCCACTG (配列番号 4) Reverse TTCACGATCMTGCCTCCACTG (SEQ ID NO: 4)
を用いて RT— PC Rを行い、 プローブ用 SAT— I遺伝子断片を増幅させた。 pGEM-T e a s y (P r ome g a社製) にライゲーシヨンして大腸菌 ズ XL— 1 b l u e) にトランスフォームし、 精製した。 このプローブ用 SA T- I遺伝子断片揷入プラスミドを制限酵素 E c οθ 109 Iを用いて切断し, T 7 RNA ポリメラーゼ (Ro c h e社製) と D I G標識されたモノヌクレオ チド混合液 (Ro c h e社製) を作用させ, RN Aプローブを作成した (配列番 号 5) 。 Was used to perform RT-PCR to amplify the SAT-I gene fragment for probe. It was ligated to pGEM-Teasy (produced by Promega), transformed into Escherichia coli XL-1 blue), and purified. The SAT-I gene fragment-inserted plasmid for the probe is digested with the restriction enzyme Ecoθ109I, and a mixed solution of T7 RNA polymerase (Roche) and DIG-labeled mononucleotide (Roche) is prepared. ) To produce an RNA probe (SEQ ID NO: 5).
その結果、 1種の SAT— I遺伝子高発現株 A 549、 2種の中発現株 LCS As a result, one SAT-I gene high-expressing strain A549 and two mid-expressing strains LCS
C# 1、 LCSC# 2、 2種の低発現株 Lu 99B、 LK一 2に分類された (図 1) 。 泳動した RNAの量は、 28 Sおよび 18 Sリボソーム RNAのメチレン ブルー染色により確認した。 SAT— I遺伝子発現量を相対的に比較した結果、 A549 (腺癌) が最も SAT— I遺伝子を高発現しており、 LCSC# 1 (腺 癌) 、 LCSC#2 (腺癌) の 2種は中程度の発現量であり、 Lu 99B (大細 胞癌) 、 LK一 2 (扁平上皮癌) の 2種は低発現であった。 C # 1, LCSC # 2, and two low-expressing strains Lu 99B and LK-12 (Fig. 1). The amount of the migrated RNA was confirmed by methylene blue staining of 28 S and 18 S ribosomal RNA. A549 (adenocarcinoma) showed the highest expression of SAT-I gene and LCSC # 1 (glandular carcinoma). Cancer) and LCSC # 2 (adenocarcinoma) had a moderate expression level, while Lu 99B (large cell carcinoma) and LK-12 (squamous cell carcinoma) had low expression levels.
実施例 2 Example 2
抗癌剤感受性試験 (1) Anticancer drug sensitivity test (1)
次にこれらの細胞について抗癌剤感受性 (抵抗性) の検討を行った。 トポイソ メラーゼ I I阻害剤であるエトポシド、 R N Aポリメラーゼ阻害剤であるァドリ ァマイシン、 微小管機能阻害剤であるヴィンクリスチンおよび DNA生合成阻害 物質であるシスブラチン存在下、 24時間後の各種肺癌細胞の生存率について細 胞毒性測定用試薬 Cell Counting Kit-8(同仁化学研究所製)を用いて測定したと ころ、 測定したすべての薬剤において SAT— I遺伝子発現量に依存した薬剤抵 抗性を示した (図 2に各薬剤処理による肺癌細胞の 50 %生存率 ( I C 5。値) を示した) 。 Next, these cells were examined for anticancer drug sensitivity (resistance). Survival rates of various lung cancer cells after 24 hours in the presence of etoposide, a topoisomerase II inhibitor, adriamicin, an RNA polymerase inhibitor, vincristine, a microtubule function inhibitor, and cisbratin, a DNA biosynthesis inhibitor When measured using Cell Counting Kit-8 (manufactured by Dojindo Laboratories), a cytotoxicity measurement reagent, all of the measured drugs exhibited drug resistance dependent on the SAT-I gene expression level (Fig. 50% survival rate of lung cancer cells by each drug treatment 2 showed (IC 5. value)).
5種のヒト非小細胞肺癌を 96穴プラスチックプレートに 1穴あたり 10, 0 00個ノ100 μ 1で播種し、 24時間培養後、 エトポシド (1, 10, 100, 500 / Μ) 、 アドリアマイシン (0. 1, 1, 10, 50, 100 /ζ Μ) 、 ヴ インクリスチン (1, 10, 100, 500, 1000 μΜ) 、 シスプラチン (1, 10, 100, 500, Ι Ο Ο ΟμΜ) を上記の濃度系列で投与した。 さ らに 24時間培養後、 細胞毒性測定用試薬 Cell Counting Kit- 8 (同仁化学研究所 製) 10 μ 1を各穴に添加し、 3時間後の培地の吸光度 (450 nm) を測定し た。 結果を図 2に示す、 SAT— I遺伝子を高発現している A549 (腺癌) が 抗癌剤エトポシド、 アドリアマイシン、 ヴインクリスチン、 シスブラチンに対し て高い抵抗性を示し、 LCSC# 1 (腺癌) 、 LCSC#2 (腺癌) の 2種は中 程度の抵抗性、 Lu 99B (大細胞癌) 、 LK— 2 (扁平上皮癌) の 2種は高感 受性を示した。 S A T— I遺伝子発現量と抗癌剤ェトポシド、 アドリアマイシン、 ヴィンクリスチン、 シスブラチンに対する抵抗性に正の相関関係が認められる。 実施例 3  Five types of human non-small cell lung cancer were seeded on a 96-well plastic plate at 10,000 cells per well at 100 μl and cultured for 24 hours. After culturing for 24 hours, etoposide (1, 10, 100, 500 / Μ), adriamycin ( 0.1, 1, 10, 50, 100 / ζ ζ), Vincristine (1, 10, 100, 500, 1000 μΜ) and Cisplatin (1, 10, 100, 500, Ι Ο ΟμΜ) The dose was administered in a concentration series. After further incubation for 24 hours, 10 μl of Cell Counting Kit-8 (manufactured by Dojindo Laboratories) was added to each well, and the absorbance (450 nm) of the medium was measured 3 hours later. . The results are shown in Fig. 2. A549 (adenocarcinoma), which overexpresses the SAT-I gene, shows high resistance to the anticancer drugs etoposide, adriamycin, vininkristin, and cisbratin, and LCSC # 1 (adenocarcinoma), LCSC # 2 (adenocarcinoma) was moderately resistant, and Lu 99B (large cell carcinoma) and LK-2 (squamous cell carcinoma) were highly susceptible. There is a positive correlation between the expression level of the SAT-I gene and the resistance to the anticancer drugs etoposide, adriamycin, vincristine, and cisplatin. Example 3
肺癌細胞の S A T— I遺伝子発現量の測定 ( 2 ) Measurement of SAT-I gene expression in lung cancer cells (2)
下記の 16種のヒト肺がん細胞株について SAT— I遺伝子発現量を RT— P CR法により測定した。 EBC—l (A) , LCSC# 1 (B) , LCSC# 2 (B) , Lu 65 (C) , Lu 99 B (C) , LK-2 (A) , A549 (B) , OBA-LK- 1 (C) , ABC- 1 (B) , Lu 99 (C) , QG90 (D) , PC 3 (B) , PC 6 (D) , NC I -H 226 (A) , L c 1 s q (A) , NC I—H23 (B) (細胞名の末尾括弧内は病理 a織分類を示す: (A) 扁平上皮がん、The SAT-I gene expression levels of the following 16 human lung cancer cell lines were measured by the RT-PCR method. EBC—l (A), LCSC # 1 (B), LCSC # 2 (B), Lu 65 (C), Lu 99 B (C), LK-2 (A), A549 (B), OBA-LK- 1 (C), ABC-1 (B), Lu 99 (C), QG90 (D), PC 3 (B), PC 6 (D), NC I-H 226 (A), L c 1 sq (A ), NC I-H23 (B) (The parentheses at the end of the cell name indicate the pathological a tissue classification: (A) Squamous cell carcinoma,
(B) 腺がん、 (C) 大細胞がん、 (D) 小細胞がん) 。 QG90、 PC 3、 P C 6株については北海道大学井上勝一助教授より供与を受け、 それ以外の株は東 北大学加齢医学研究所医用細胞資源センター (B) adenocarcinoma, (C) large cell carcinoma, (D) small cell carcinoma). QG90, PC3, and PC6 strains were provided by Associate Professor Katsuichi Inoue, Hokkaido University, and the other strains were the Medical Cell Resource Center, Institute of Aging Medicine, Tohoku University.
(http://ww . iaac. tohoku. ac. jp/dep/ccr/)より入牛し 7こ。 (http: // ww. iaac. tohoku. ac. jp / dep / ccr /)
—本鎖 c DNA合成キット Re v e r s eTr a Ac e (登録商標) (東洋 紡) を使い、 各細胞から抽出した RNAサンプルを用いて一本鎖 cDNAを合成 した。 一本鎖 c DN A合成に際しては、 ランダムプライマーあるいはオリゴ dT プライマ-を用いた。 キットに添付の方法に従い反応液を調製し、 ランダムブラ イマ一を用いた場合は、 30°C10分、 42°C50分、 95°C5分の反応を、 ォ リゴ dTプライマーを用いた場合は、 42°C50分、 95 °C 5分の反応をサ—マ ルサイクラ— (Ge n e Amp® PCR Sy s t em9700、 アプライドバ ィォシステムズ社製) により行った。 反応終了後、 逆転写産物は - 30°Cにて保 存した。  —Single-stranded cDNA was synthesized using an RNA sample extracted from each cell, using a single-stranded cDNA synthesis kit Rev eSeRaAc e (registered trademark) (Toyobo). For the synthesis of single-stranded cDNA, a random primer or an oligo dT primer was used. Prepare a reaction solution according to the method attached to the kit.If a random primer is used, perform the reaction at 30 ° C for 10 minutes, 42 ° C for 50 minutes, and 95 ° C for 5 minutes.If the Oligo dT primer is used, Reactions were performed at 42 ° C for 50 minutes and at 95 ° C for 5 minutes using a thermal cycler (Gene Amp® PCR System 9700, manufactured by Applied Biosystems). After the reaction was completed, the reverse transcript was stored at -30 ° C.
P C R反応は、 400 n M (終濃度) の S A T— I遺伝子発現確認用の順逆両 プライマー及び ExTa q (宝酒造) を用い、 容量 10 /i 1にて行った。 サーマ ルサイクラ一のパラメータ一は、 全ての反応において、 94°C5分間の後、 9 4 °C 30秒で変性、 55 °C 30秒で対合、 72 °C 1分で伸長のサイクルを 30〜 35回繰返し、 更に 72 °C 5分間伸長反応を続けた後、 4 °Cで静置した。 PCR 産物は、 最終反応物の一部を 1. 5%ァガロースゲル電気泳動にて展開し、 ェチ ジゥムプロマイド染色により、 検定した。 結果を表 1に示す。  The PCR reaction was carried out using 400 nM (final concentration) of SAT-I gene expression in both forward and reverse primers and ExTaq (Takara Shuzo) at a volume of 10 / i1. The parameters of the thermal cycler are as follows: In all reactions, the cycle of 94 ° C for 5 minutes, denaturation at 94 ° C for 30 seconds, pairing at 55 ° C for 30 seconds, and elongation cycle at 72 ° C for 1 minute is 30- This was repeated 35 times, and the extension reaction was further continued at 72 ° C for 5 minutes, and then left at 4 ° C. A part of the final reaction product of the PCR product was developed by 1.5% agarose gel electrophoresis and assayed by ethidium dipromide staining. Table 1 shows the results.
実施例 4 Example 4
抗癌剤感受性試験 (2) Anticancer drug sensitivity test (2)
実施例 3で用いた各種ヒト肺がん細胞の抗癌剤パクリタキセルに対する感受性 を測定した。 1 0 cm d i s hに各種ヒト肺がん細胞を凍結状態より起こして培養し、 最 低 2回以上継代して細胞の増殖状態を安定させた。 この細胞を 0. 2 5 °/o T r i p s i n— ED T A溶液 (シグマ) を用いて剥がし、 へモサイトメ一ターにより 細胞数を測定した。 5 X 1 04 c e 1 1 s Zm 1になるように培地で濃度調製を 行い、 9 6 w e 1 1 p l a t eに Ι Ο Ο μ Ιずつ播種した (1 w e l lあた り 5 X 1 03 c e l l s) 。 一日後、 0, 0. 1 , 1, 1 0, 1 00 μ Μの濃度 で各種抗がん剤を含む培地に交換し、 インキュベートした。 2 2時間後、 C e l 1 c o u n t i n g k i t - 8 (同仁化学) を 1 0 /x 1 /w e 1 1加え、 2時 間 co2インキュベーターで反応させた。 マイクロプレートリーダーを用いて、 45 0 nmの吸光度を測定した。 C e l l C o u n t i n g K i t ~8は細胞 増殖または化学物質の細胞毒性試験において、 細胞数を測定するキットであり、 高感度水溶性ホルマザンを生成する新規テトラゾリゥム塩 WST— 8 (2— (2 ーメ トキシー 4一二トロフエ二ノレ) 一 3— (4一二トロフエ二ノレ) 一5— (2, 4一ジスルホフエノエル) 一2H—テトラゾリゥム ' 1ナトリウム塩) を発色基 質として使用する。 WS T— 8は細胞内脱水素酵素により還元され、 水溶性のホ ルマザンを生成する。 細胞数と生成するホルマザン量は直線的な比例関係にある ため、 このホルマザンの 4 50 n mの吸光度を測定することで生細胞数を計測す ることができる。 結果を表 1に示す。 細胞名 IC50 (μ Μ) SAT-I遺伝子発現量 *The sensitivity of various human lung cancer cells used in Example 3 to the anticancer drug paclitaxel was measured. Various human lung cancer cells were raised from a frozen state and cultured in a 10 cm dish, and passaged at least twice to stabilize the cell growth state. The cells were detached using 0.25 ° / o Tripsin-EDTA solution (Sigma), and the number of cells was measured by a hemocytometer. Adjust the concentration of the medium to 5 X 10 4 ce 11 s Zm 1 and inoculate 9 Ο Ο μΙ each in 96 we 1 1 plate (5 X 10 3 cells per well) . One day later, the medium was replaced with a medium containing various anticancer agents at a concentration of 0, 0.1, 1, 10, 100 μΜ, and incubated. After 2 2 hours, C el 1 countingkit - 8 (Dojin Kagaku) was 1 0 / x 1 / we 1 1 was added and reacted between 2:00 co 2 incubator. The absorbance at 450 nm was measured using a microplate reader. Cell Counting Kit ~ 8 is a kit for measuring cell number in cell proliferation or cytotoxicity tests of chemicals. It is a novel tetrazolium salt WST-8 (2- (2-me Toxic 4-12-Trofeninole) 1-3- (4-12-Trofeninole) 15- (2,4-disulfophenol) 1H-tetrazolium 'monosodium salt) is used as a coloring substrate. WST-8 is reduced by intracellular dehydrogenase to produce water-soluble formazan. Since the number of cells and the amount of formazan produced are linearly proportional, the number of viable cells can be measured by measuring the absorbance of this formazan at 450 nm. Table 1 shows the results. Cell name IC 50 (μ Μ) SAT-I gene expression level *
PC 3 1 0 0以上 1 PC 3 1 0 0 or more 1
AB C— 1 1 0 0以上 0.01936596  AB C—1 1 0 0 or more 0.01936596
NC I -H2 3 1 0 0以上 0.04561019  NC I -H2 3 1 0 0 or more 0.04561019
PC— 6 1 00以上 0.06380957  PC-6 100 or more 0.06380957
A5 4 9 0. 1 1 3.08977118  A5 4 9 0.1 1 3.08977118
LC S C # 2 1 0 0以上 0.06127037  LC S C # 2 1 0 0 or more 0.06127037
L u 9 9 B 1 0 0以上 0.09848174  L u 9 9 B 1 0 0 or more 0.09848174
QG- 9 0 1 4. 2 0.49637419  QG- 9 0 1 4.2 2 0.49637419
EB C— 1 1 00以上 0  EB C—1 1 00 or more 0
NC I一 H2 2 6 3 1. 8 1.94239058  NC I H2 2 6 3 1.8 1.94239058
L c 1 s q 1 0 0以上 0.05484168  L c 1 s q 1 0 0 or more 0.05484168
L u 9 9 5 9. 3 0.16564023  Lu 9 9 5 9. 3 0.16564023
OB A— LK一 1 5 5. 0 0.53830659  OB A— LK 1 1 5.5.0 0.53830659
LC S C # 1 1 0 0以上 0.05859819 Lu 65 5. 42 0.050608466 LC SC # 1 1 0 0 or more 0.05859819 Lu 65 5.42 0.050608466
LK2 8. 33 0.06593591  LK2 8.33 0.06593591
*PC3発現量を 1としたときの相対比 図 3はヒト肺癌における SAT— I遺伝子発現量と抗癌剤パクリタキセル処理 による癌細胞生存率の相関関係を示す。 SAT— I遺伝子発現量と抗癌剤パクリ タキセルに対する抵抗性に負の相関関係が認められる。  * Relative ratio when PC3 expression level is set to 1 Figure 3 shows the correlation between the SAT-I gene expression level in human lung cancer and the survival rate of cancer cells treated with the anticancer drug paclitaxel. There is a negative correlation between SAT-I gene expression and resistance to the anticancer drug paclitaxel.
以上の結果は、 癌細胞における SAT— I遺伝子の発現量が抗癌剤抵抗性 (感 受性) と密接に関連していることを示すものであり、 SAT— I遺伝子の発現量 を測定することにより抗癌剤抵抗性 (感受性) を予測できることがわかった。 こ の発見が今後の癌診断および癌治療に大きく貢献することを期待される。  The above results indicate that the expression level of the SAT-I gene in cancer cells is closely related to anticancer drug resistance (sensitivity). It was found that anticancer drug resistance (sensitivity) can be predicted. This discovery is expected to make a significant contribution to cancer diagnosis and treatment in the future.

Claims

請 求 の 範 囲 The scope of the claims
1. 配列番号 1のヌクレオチド配列を有するガングリオシド GM3合成酵素 (SAT- I) 遺伝子から発現される、 癌細胞の抗癌剤感受性マーカーとして使 用する S AT— I mRNA。 1. SAT-I mRNA that is expressed from the ganglioside GM3 synthase (SAT-I) gene having the nucleotide sequence of SEQ ID NO: 1 and is used as an anticancer drug sensitivity marker for cancer cells.
2. 癌細胞の抗癌剤感受性マーカーとして使用する配列番号 2のァミノ酸配列 を有するガングリオシド GM 3合成酵素。  2. A ganglioside GM3 synthase having the amino acid sequence of SEQ ID NO: 2 to be used as an anticancer drug sensitivity marker for cancer cells.
3. 癌細胞の 癌剤に対する感受性を試験する方法であって、 癌細胞のガング リオシド GM 3合成酵素 (SAT- I) 遺伝子の発現量を測定することを含む方 法。  3. A method for testing the susceptibility of a cancer cell to a cancer agent, the method comprising measuring the expression level of the ganglioside GM3 synthase (SAT-I) gene in the cancer cell.
4. (1) 抗癌剤に対する癌細胞の感受性と、 癌細胞のガンダリオシド GM 3 合成酵素 (SAT— I) 遺伝子努現量との相関関係を求めておき、  4. (1) The correlation between the sensitivity of cancer cells to anticancer drugs and the amount of gandarioside GM3 synthase (SAT-I) gene in cancer cells was determined.
( 2 ) 患者の癌細胞の S A T— I発現量をィンビトロで測定し、  (2) measuring the SAT-I expression level of the patient's cancer cells in vitro,
(3) (1) の相関関係と (2) の発現量から抗癌剤に対する患者の癌細胞の感 受性を求める、  (3) From the correlation in (1) and the expression level in (2), the sensitivity of the patient's cancer cells to the anticancer drug is determined.
ことを含む抗癌剤の選定方法。 And a method for selecting an anticancer agent.
5 · 癌が肺癌である請求項 3または 4に記載の方法。  5. The method according to claim 3, wherein the cancer is lung cancer.
6. 肺癌が非小細胞肺癌である請求項 5に記載の方法。  6. The method according to claim 5, wherein the lung cancer is a non-small cell lung cancer.
7. ガンダリオシド GM 3合成酵素遺伝子の発現量を、 該遺伝子から発現され る m R N A量を測定することによつて測定する請求項 3または 4に記載の方法。 7. The method according to claim 3, wherein the expression level of the ganglioside GM3 synthase gene is measured by measuring the amount of mRNA expressed from the gene.
8. m R N A発現量をノ一ザンブロット法で測定する請求項 7に記載の方法。8. The method according to claim 7, wherein the mRNA expression level is measured by Northern blotting.
9. 請求項 7または 8に記載の mRN A発現量を測定するために用いる、 配列 番号 1のヌクレオチド配列を有する DN A若しくはその断片、 またはそれらに対 応する RNAよりなるプローブ。 9. A probe comprising a DNA having the nucleotide sequence of SEQ ID NO: 1 or a fragment thereof, or an RNA corresponding thereto, which is used for measuring the mRNA expression level according to claim 7 or 8.
10. ガンダリオシド GM 3合成酵素遺伝子の発現量を、 該遺伝子から発現さ れるタンパク質を測定することによつて測定する請求項 3または 4に記載の方法。 10. The method according to claim 3 or 4, wherein the expression level of the ganglioside GM3 synthase gene is measured by measuring a protein expressed from the gene.
1 1. 発現量をウェスタンプロット法で測定する請求項 10に記載の方法。1 1. The method according to claim 10, wherein the expression level is measured by Western blotting.
12. 請求項 10または 11に記載のタンパク質発現量を測定するために用い る、 配列番号 2のァミノ酸配列を有するタンパク質またはその断片に対する抗体。 12. An antibody against a protein having the amino acid sequence of SEQ ID NO: 2 or a fragment thereof, which is used for measuring the expression level of the protein according to claim 10 or 11.
13. 抗癌剤がエトポシド、 アドリアマイシン、 シスブラチン、 ヴインクリス チン、 パクリタキセルよりなる群から選択される請求項 3または 4に記載の方法。 13. The method according to claim 3, wherein the anticancer agent is selected from the group consisting of etoposide, adriamycin, cisplatin, vincristin, and paclitaxel.
PCT/JP2004/006511 2003-05-09 2004-05-07 Method of testing sensitivity to anticancer drug WO2004099407A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506046A JPWO2004099407A1 (en) 2003-05-09 2004-05-07 Anticancer drug sensitivity test method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-131802 2003-05-09
JP2003131802 2003-05-09

Publications (1)

Publication Number Publication Date
WO2004099407A1 true WO2004099407A1 (en) 2004-11-18

Family

ID=33432146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006511 WO2004099407A1 (en) 2003-05-09 2004-05-07 Method of testing sensitivity to anticancer drug

Country Status (2)

Country Link
JP (1) JPWO2004099407A1 (en)
WO (1) WO2004099407A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211994A (en) * 2005-02-07 2006-08-17 Seibutsu Yuki Kagaku Kenkyusho:Kk Method for determining anticancer characteristic of anticancer agent against non small cell lung cancer
JP2010533842A (en) * 2007-07-13 2010-10-28 プロメテウス ラボラトリーズ インコーポレイテッド Drug selection for the treatment of lung cancer using antibody arrays
CN109870433A (en) * 2017-12-01 2019-06-11 南京大学 A pair quantifies the buoyancy microsphere probe and preparation method thereof of screening for cell surface gangliosides

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BENCHEKROUN M.N. ET AL: "Alteration of ganglioside composition and metabolism in doxorubicin-resistant rat tumoral cells", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 963, 1988, pages 553 - 557, XP002981062 *
BIEDLER J.L. & SPENGLER B.A.: "Reverse transformation of multidrug-resistant cells", CANCER AND METASTASIS REVIEWS, vol. 13, 1994, pages 191 - 207, XP002981061 *
ISHII A. ET AL: "Expression Cloning and Functional Characterization of Human cDNA for Gangloside Gm3 Synthase", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, 1998, pages 31652 - 31655, XP002981060 *
KIURA K. ET AL: "An Alteration of Ganglioside Composition in Cisplatin-Resistant Lung Cancer Cell Line", ANTICANCER RESEARCH, vol. 18, 1998, pages 2957 - 2960, XP002981063 *
KONO K. ET AL: "Ganglioside Composition of Human Melanoma and Response to Antitumor Treatment", CANCER INVESTIGATION, vol. 8, 1990, pages 161 - 167, XP002981064 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211994A (en) * 2005-02-07 2006-08-17 Seibutsu Yuki Kagaku Kenkyusho:Kk Method for determining anticancer characteristic of anticancer agent against non small cell lung cancer
JP2010533842A (en) * 2007-07-13 2010-10-28 プロメテウス ラボラトリーズ インコーポレイテッド Drug selection for the treatment of lung cancer using antibody arrays
CN109870433A (en) * 2017-12-01 2019-06-11 南京大学 A pair quantifies the buoyancy microsphere probe and preparation method thereof of screening for cell surface gangliosides
CN109870433B (en) * 2017-12-01 2021-06-15 南京大学 Buoyancy microsphere probe for quantitative screening of ganglioside and preparation method thereof

Also Published As

Publication number Publication date
JPWO2004099407A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
CN101921830A (en) Rapid detection of EGFR (Epidermal Growth Factor Receptor) gene mutation
KR20080005193A (en) Breast cancer related gene znfn3a1
CN112410425A (en) Gene methylation digital PCR kit for early screening of liver cancer and application thereof
CN107190052B (en) The purposes of LOC101928926 gene
CN105256036A (en) Kit for detecting lncARSR in serum and application of kit in detection of kidney cancer sunitinib drug resistance
Seo et al. Isothermal amplification-mediated lateral flow biosensors for in vitro diagnosis of gastric cancer-related microRNAs
CN107190005A (en) Applications of the lncRNA as biomarker in adenocarcinoma of lung diagnosis and treatment
WO2004099407A1 (en) Method of testing sensitivity to anticancer drug
CN1721554B (en) Method of testing anticancer agent-sensitivity of tumor cells
CN110317878A (en) A kind of long-chain non-coding RNA and its application for bladder cancer diagnosis and treatment monitoring
CN111534587B (en) Molecular marker 5-tRF-His, breast cancer detection kit and application thereof
CN102443626A (en) Detection kit for lung cancer driving gene mutation
CN106520776B (en) A kind of breast cancer kit for screening
CN105343896B (en) The new diagnosis and treatment target spot of nasopharyngeal carcinoma and its application
EP2930248B1 (en) Method for predicting sensitivity of osteosarcoma patient to anticancer agent
WO2007034603A1 (en) Marker gene for malignant brain tumor and use thereof
KR101496745B1 (en) Gene involved in immortalization of human cancer cell and use thereof
CN101671728B (en) Method for detecting expression quantity of carcinoembryonic antigen mRNA and special kit thereof
CN112442537B (en) Long-chain non-coding RNA RP11-469H8.6 and application thereof
CN109371023A (en) A kind of circular rna hsa_circKIAA1199_006 and its specificity amplification primer and application
KR101683961B1 (en) Recurrence Marker for Diagnosis of Bladder Cancer
CN102121048A (en) POOL FQ-PCR (Fluorescence Quantitive Polymerase Chain Reaction) combined detection method of tumor drug resistance genes and kit thereof
CN113265468B (en) MiRNA related to cervical cancer diagnosis, treatment and prognosis
CN106702015A (en) Application of IPCEF1 (Interaction Protein For Cytohesin Exchange Factors 1) in diagnosing and treating osteosarcoma
JP2006211994A (en) Method for determining anticancer characteristic of anticancer agent against non small cell lung cancer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506046

Country of ref document: JP

122 Ep: pct application non-entry in european phase