WO2013149439A1 - Power allocation method and communication node - Google Patents

Power allocation method and communication node Download PDF

Info

Publication number
WO2013149439A1
WO2013149439A1 PCT/CN2012/077873 CN2012077873W WO2013149439A1 WO 2013149439 A1 WO2013149439 A1 WO 2013149439A1 CN 2012077873 W CN2012077873 W CN 2012077873W WO 2013149439 A1 WO2013149439 A1 WO 2013149439A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
data stream
antenna
communication node
antennas
Prior art date
Application number
PCT/CN2012/077873
Other languages
French (fr)
Chinese (zh)
Inventor
朱登魁
宁迪浩
肖华华
李子荣
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013149439A1 publication Critical patent/WO2013149439A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Abstract

A power allocation method and a communication node. The method comprises: a communication node configuring N antennas, and each antenna simultaneously transmitting K data streams; the communication node allocating a power Pnk to the kth data stream on the nth antenna according to the following conditions: the sum of the allocated powers of the K data streams on the nth antenna is not more than the maximum transmitting power Qn of the antenna; the sum of the allocated power of the kth data stream on the N antennas is not more than the power Gk of the kth data stream, where Gk is the power allocated in advance by the communication node to the kth data stream on a current resource block. The method can be applied to optimally allocate the power of each data stream when the antenna power is limited, thereby increasing the system performance.

Description

一种功率分配方法和通信节点  Power distribution method and communication node
技术领域 Technical field
本发明涉及无线通信领域, 具体的, 涉及一种控制节点同时传输多个数 据流式的功率分配方法及通信节点。  The present invention relates to the field of wireless communications, and in particular to a power distribution method and a communication node in which a control node simultaneously transmits a plurality of data streams.
背景技术 Background technique
MIMO ( multiple input multiple output, 多输入多输出)技术是无线移动通 信领域中智能天线技术的重大突破。 该技术能在不增加带宽的情况下成倍地 提高通信系统的容量和频谱利用率; 可以利用多径来减轻多径衰落; 并能有 效地消除共道干扰, 提高信道的可靠性, 降低误码率, 是新一代移动通信系 统必须釆用的关键技术。  MIMO (multiple input multiple output) technology is a major breakthrough in smart antenna technology in the field of wireless mobile communications. The technology can multiply the capacity and spectrum utilization of the communication system without increasing the bandwidth; multipath can be used to mitigate multipath fading; and the common channel interference can be effectively eliminated, the channel reliability can be improved, and the error can be reduced. Bit rate is a key technology that must be used in a new generation of mobile communication systems.
多天线技术已经从传统的点对点通信中 (单用户多输入多输出 (Single User MIMO,简称 SU-MIMO ) )发展到点对多点通信(多用户 MIMO( Multiple User MIMO, 简称 MU-MIMO ) ) , 无论是点对点还是点对多点通信中, 都 存在一种控制节点同时传输多个数据流给一个终端或者是多个终端。 在这种 通信中, 控制节点首先将通过预编码操作 (其中控制节点通过数据流对应的 信道系数以及相应的最优化准则, 计算获得每个数据流的预编码矩阵) , 将 每个数据流对应的数据形成用于在每个天线上发送的数据, 从而在每个天线 上发送的数据是这多个数据流形成的数据的叠加, 这就需要控制节点将每个 天线上有限的功率在这几个数据流之间进行分配,在传统的功率分配分析中 , 都假定了控制节点总功率受限, 而不是每个天线功率单独受限, 所以其功率 分配往往就是按照预编码向量中每个元素的绝对值的平方的比例进行分配, 而事实上, 由于成本的原因, 在控制节点往往是每个天线对应一个功放, 即 每个天线的发射功率是单独受限, 这就给功率分配带来了一定的复杂度, 尤 其是在多数据流的时候, 既要满足预编码向量系数之间的幅度比例, 又要考 虑每个天线上的功率约束, 同时还要考虑数据流之间的功率分配问题, 对于 这类问题, 一种通用的方法就是釆用优化算法进行全局优化, 但是这会带来 两个麻烦: 第一, 该问题不一定存在最优解, 第二, 即使存在最优解, 但是 需要迭代去求解, 实现复杂, 尤其是当天线数数据流数目较多的时候。 发明内容 Multi-antenna technology has evolved from traditional point-to-point communication (Single User MIMO (SU-MIMO)) to point-to-multipoint communication (Multi-User MIMO (MU-MIMO)) Whether in point-to-point or point-to-multipoint communication, there is a control node that simultaneously transmits multiple data streams to one terminal or multiple terminals. In this communication, the control node first calculates a precoding matrix for each data stream by a precoding operation (where the control node calculates the channel coefficients corresponding to the data stream and corresponding optimization criteria), and corresponds each data stream. The data is formed for the data transmitted on each antenna, so that the data transmitted on each antenna is a superposition of the data formed by the multiple data streams, which requires the control node to have a limited power on each antenna. Several data streams are allocated. In the traditional power allocation analysis, it is assumed that the total power of the control node is limited, instead of each antenna power being separately limited, so its power allocation is often in accordance with each of the precoding vectors. The ratio of the square of the absolute value of the element is allocated. In fact, due to the cost, the control node is often one power amplifier per antenna, that is, the transmission power of each antenna is individually limited, which gives the power distribution band. A certain complexity is coming, especially in the case of multiple data streams, which must satisfy the amplitude ratio between the precoding vector coefficients. Consider the power constraints on each antenna, and also consider the power allocation problem between data streams. For this type of problem, a common method is to use the optimization algorithm for global optimization, but this will bring two Trouble: First, the problem does not necessarily have an optimal solution, second, even if there is an optimal solution, Iterative solution is needed to solve the complexity, especially when the number of antenna data streams is large. Summary of the invention
本发明实施例要解决的技术问题是提供一种功率分配方法及通信节点, 以将每个数据流的功率在天线功率受限时进行最优的分配, 从而提高系统性 The technical problem to be solved by the embodiments of the present invention is to provide a power allocation method and a communication node, so that the power of each data stream is optimally allocated when the antenna power is limited, thereby improving systemicity.
•6匕 •6匕
匕。  dagger.
为了解决上述技术问题, 本发明实施例提供了一种功率分配方法, 包括: 通信节点配置 N个天线, 且每个天线上同时传输 f个数据流;  In order to solve the above technical problem, an embodiment of the present invention provides a power allocation method, including: configuring a N antenna by a communication node, and transmitting f data streams simultaneously on each antenna;
所述通信节点根据以下条件在第/ ί个天线上给第 A个数据流分配功率 Pnk The communication node allocates power Pnk to the A data stream on the /th antenna according to the following conditions :
个数据流在第《个天线上被分配的功率之和不超过该天线的最大发射 功率 a;  The sum of the powers allocated by the data streams on the "antenna" does not exceed the maximum transmit power of the antenna a;
第 k个数据流在 N个天线上被分配的功率之和不超过第 k个数据流的功 率 ;  The sum of the powers allocated by the kth data stream on the N antennas does not exceed the power of the kth data stream;
其中, 为所述通信节点预先分配给第 A个数据流在当前资源块上的功 率; N、 f均为自然数,且 N大于等于 2 , f小于等于 N ; n = \,- -,N ; k = \ ,K。  Wherein, the communication node is pre-assigned to the power of the A data stream on the current resource block; N, f are all natural numbers, and N is greater than or equal to 2, f is less than or equal to N; n = \, - -, N; k = \ , K.
上述方法还具有下面特点: 所述资源块包括以下的一种或多种: 正交频分复用技术系统中的一个子载波;  The foregoing method further has the following features: the resource block includes one or more of the following: one subcarrier in an Orthogonal Frequency Division Multiplexing (OFDM) technology system;
正交频分多址系统中的一个子载波;  One subcarrier in an orthogonal frequency division multiple access system;
同一个正交频分复用技术符号上的多个子载波;  Multiple subcarriers on the same OFDM signal symbol;
时域多个正交频分复用技术符号在频域的多个子载波构成的资源块。 上述方法还具有下面特点: 所述通信节点分配功率/^包括:  Time domain multiple orthogonal frequency division multiplexing (OFDM) technology symbol blocks formed by multiple subcarriers in the frequency domain. The above method also has the following features: The communication node allocates power /^ including:
所述通信节点根据每个数据流的信道状态信息, 自适应的分配功率 Pnk。 上述方法还具有下面特点: 所述通信节点自适应的分配功率 包括: 根据每个数据流的功率 和每个天线的发射功率 ¾构造以下方程组, 以 获得到所有可能的功率分配方案: k=\ ,The communication node adaptively allocates power Pnk according to channel state information of each data stream. The above method also has the following features: The adaptive allocation of power by the communication node comprises: constructing the following system of equations according to the power of each data stream and the transmission power of each antenna to obtain all possible power allocation schemes: k=\ ,
Figure imgf000005_0001
根据所述方程组中选择任意 N + -l个方程构造矩阵方程:
Figure imgf000005_0001
Construct a matrix equation by selecting any N + -1 equations from the system of equations:
[A b] 0, 其中, [A b] 0, where
Figure imgf000005_0002
Figure imgf000005_0002
A为系数矩阵,  A is a coefficient matrix,
b = [Gi ■■■ GK-l Ov],b = [ G i ■■■ G Kl Ov],
Figure imgf000005_0003
Figure imgf000005_0003
计算系数矩阵 A = [A b] ,  Calculate the coefficient matrix A = [A b]
计算每个天线上的功率比例因子
Figure imgf000005_0004
Calculate the power scale factor on each antenna
Figure imgf000005_0004
其中, f = [r r — ΐ]Γ, r = [ru … rm ru … rN2 … rXK … rNK , Where f = [ r r — ΐ] Γ , r = [r u ... r m r u ... r N2 ... r XK ... r NK ,
P = [Pn ■■■ Pm Pn … PN2 … Ρικ … PN ^ 包含 N*f个元素; rnk 为第 n个天线上第 k个数据流对应的预编码向量; 其中, n = \,---,N,k = \,--;K;P = [Pn ■■■ Pm Pn ... PN2 ... Ρικ ... PN ^ contains N*f elements; r nk is the precoding vector corresponding to the kth data stream on the nth antenna; where n = \,-- -,N,k = \,--;K;
Figure imgf000005_0005
Figure imgf000005_0005
分配功率 。  Allocate power.
为了解决上述问题, 本发明实施例还提供了一种通信节点, 包括: 配置模块, 其设置为配置 N个天线, 且每个天线上同时传输 f个数据流; 以及  In order to solve the above problem, an embodiment of the present invention further provides a communication node, including: a configuration module, configured to configure N antennas, and simultaneously transmit f data streams on each antenna;
分配模块, 其设置为在第《个天线上给第 A个数据流分配功率 其中, 满足下面的约束条件:  An allocation module configured to allocate power to the A data stream on the "antennas", wherein the following constraints are met:
个数据流在第《个天线上被分配的功率之和不超过该天线的最大发射 功率 a;  The sum of the powers allocated by the data streams on the "antenna" does not exceed the maximum transmit power of the antenna a;
第 k个数据流在 N个天线上被分配的功率之和不超过第 k个数据流的功 率 ; The sum of the powers of the kth data stream allocated on the N antennas does not exceed the work of the kth data stream. Rate
其中, 为所述通信节点预先分配给第 k个数据流在当前资源块上的功 率; N、 f均为自然数,且 N大于等于 2, f小于等于 N; n = \,--,N; k = \ ,K。  Wherein, the communication node is pre-allocated to the power of the kth data stream on the current resource block; N, f are all natural numbers, and N is greater than or equal to 2, f is less than or equal to N; n = \, --, N; k = \ , K.
上述通信节点还具有下面特点: 所述资源块包括以下的一种或多种: 正交频分复用技术系统中的一个子载波;  The foregoing communication node further has the following features: the resource block includes one or more of the following: one subcarrier in an Orthogonal Frequency Division Multiplexing (OFDM) technology system;
正交频分多址系统中的一个子载波;  One subcarrier in an orthogonal frequency division multiple access system;
同一个正交频分复用技术符号上的多个子载波;  Multiple subcarriers on the same OFDM signal symbol;
时域多个正交频分复用技术符号在频域的多个子载波构成的资源块。 上述通信节点还具有下面特点:  Time domain multiple orthogonal frequency division multiplexing (OFDM) technology symbol blocks formed by multiple subcarriers in the frequency domain. The above communication node also has the following features:
所述配置模块是设置为根据每个数据流的信道状态信息, 自适应的分配 功率 的。  The configuration module is configured to adaptively allocate power according to channel state information of each data stream.
上述通信节点还具有下面特点:  The above communication node also has the following features:
所述配置模块包括:  The configuration module includes:
第一单元, 其设置为根据每个数据流的功年 Gk和每个天线的发射功率 构造 获得到所有可能的功率分配方案: A first unit disposed in the stream of power G k and transmission power of each antenna configuration is obtained based on each data to all possible power allocation scheme:
、κκ
Figure imgf000006_0001
Figure imgf000006_0001
二单元,其设置为根据所述方程组中选择任意 N+ -l个方程构造矩阵  a two unit configured to select an arbitrary N + -l equation construction matrix according to the system of equations
0, 其中,0, where,
Figure imgf000006_0002
Figure imgf000006_0002
A为系数矩阵, A is a coefficient matrix,
b = [Gi ·" Ov],b = [ G i ·" Ov],
Figure imgf000006_0003
第三单元, 其设置为计算系数矩阵 =^ b], 计算每保证天线上的功率 比例因子 β和 : Ρ = Ι - ΑΓ (ΑΑΓ )_1 )f , 其中, f = [rr - 1]Γ , r = [r … rm ru … rN2 … rXK … rNK ,
Figure imgf000006_0003
The third unit, which is set to calculate the coefficient matrix =^ b], calculates the power scale factor β and the sum of the guaranteed antennas: Ρ = Ι - Α Γ (ΑΑ Γ ) _1 ) f , where f = [r r - 1] Γ , r = [r ... r m r u ... r N2 ... r XK ... r NK ,
P = [Pn ■■■ Pm Pn … PN2 … Ρικ … PN ^ 包含 N* 个元素; rnk = , 为第 η个天线上第 k个数据流对应的预编码向量; Pnk = ∑Qn,n = \,-,N,k = \,-,K - 以及 P = [Pn ■■■ Pm Pn ... PN2 ... Ρικ ... PN ^ contains N* elements; r nk = , is the precoding vector corresponding to the kth data stream on the nth antenna; P nk = ∑Q n , n = \,-,N,k = \,-,K - and
∑∑Pnl ∑∑P nl
n=\ l=\  n=\ l=\
第四单元, 其设置为分配功率 。  The fourth unit, which is set to distribute power.
综上, 本发明实施例提供的功率分配方法及通信节点, 可以将每个数据 流的功率在天线功率受限时进行最优的分配, 从而提高系统性能。 附图概述  In summary, the power allocation method and the communication node provided by the embodiments of the present invention can optimally allocate the power of each data stream when the antenna power is limited, thereby improving system performance. BRIEF abstract
图 1为本发明实施例的功率分配方法的流程图;  1 is a flowchart of a power allocation method according to an embodiment of the present invention;
图 2为本发明实施例的通信节点的示意图;  2 is a schematic diagram of a communication node according to an embodiment of the present invention;
图 3为本发明实施例的配置模块的示意图。 本发明的较佳实施方式  FIG. 3 is a schematic diagram of a configuration module according to an embodiment of the present invention. Preferred embodiment of the invention
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。  Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments in the present application may be arbitrarily combined with each other.
图 1为本发明实施例的功率分配方法的流程图, 如图 1所示, 本实施例 的方法包括下面步骤:  FIG. 1 is a flowchart of a power allocation method according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment includes the following steps:
S10、 通信节点配置 N个天线, 且每个天线上同时传输 f个数据流; S10. The communication node is configured with N antennas, and f data streams are simultaneously transmitted on each antenna;
S20、 所述通信节点在第"个天线上给第 A个数据流分配功率 Pnk。 在无线通信系统链路中, 控制节点根据下面的条件将每个天线上的功率 分配给在给定资源上同时传输的多个数据流: S20. The communication node allocates power Pnk to the A data stream on the “first antenna.” In the wireless communication system link, the control node allocates power on each antenna to a given resource according to the following conditions. Multiple data streams transmitted simultaneously:
通信节点配置有 N (其中, N为自然数, 且大于等于 2 )个发送天线, 每个天线同时传输 f个数据流, 控制节点在第《 ( η = \,· ··,Ν )个天线上给第 A ( Α = 1,···, , 小于等于 N)个数据流分配的功率为 Pnk = \,''',K,n = \,-,N )„ 其中 pnk满足下述的约束条件: The communication node is configured with N (where N is a natural number and greater than or equal to 2) transmit antennas, and each antenna simultaneously transmits f data streams, and the control node is on the antenna (( η = \,····Ν) Give the first A ( Α = 1,···, , less than or equal to N) The power allocated by the data stream is P nk = \,''',K, n = \,-,N )„ where p nk satisfies the following constraints :
为大于 0的实数,且^:个数据流在第 "( w = ..,N )个天线上被分配的 功率之和不超过该天线的最大发射功率 a, )
Figure imgf000008_0001
Is a real number greater than 0, and ^: in the first data stream "(w = .., N) antennas are allocated power does not exceed the maximum transmit power of the antenna A,)
Figure imgf000008_0001
个数据流在 N个天线上被分配的功率之和不超过第 A个数据流的功率 ,即The sum of the powers allocated by the data streams on the N antennas does not exceed the power of the A-th data stream, ie
N N
T,Pnk GkT, Pnk G k ;
n=\  n=\
其中, ¾表示通信节点预先分配给第 ( k = l,-,K )个数据在当前资源 块上的功率。  Wherein, 3⁄4 indicates the power that the communication node pre-allocates to the (k = l, -, K) data on the current resource block.
其中, 所述的当前资源块可以是一个 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用技术) /OFDMA ( Orthogonal Frequency Division Multiple Access, 正交频分多址) 系统中的一个子载波, 或者是同一 个 OFDM符号上的多个子载波, 又或者是时域多个 OFDM符号在频域的多 个子载波构成的资源块。 当然也可以是其他无线系统中一个资源单位(频域 子载波或者时域符号) 。  The current resource block may be a subcarrier in an OFDM (Orthogonal Frequency Division Multiplexing) system or an OFDMA (Orthogonal Frequency Division Multiple Access) system, or It is a plurality of subcarriers on the same OFDM symbol, or a resource block composed of a plurality of subcarriers in the frequency domain of a plurality of OFDM symbols in the time domain. Of course, it can also be a resource unit (frequency domain subcarrier or time domain symbol) in other wireless systems.
较佳的, 通信节点根据每个数据流的信道状态信息, 自适应的分配功率  Preferably, the communication node adaptively allocates power according to channel state information of each data stream.
其中, 所述自适应分配功率包括: 通信节点利用每个数据流的功率约束 和每个天线的发射功率约束得到所有可能功率分配方案, 这些所有可能的功 率分配方案形成一个子空间, 然后再将每个数据流在每个天线上期望的功率 分配向量投影到所述的子空间中, 从而找到最终的功率分配方案; Wherein the adaptively allocated power comprises: the communication node uses the power constraint of each data stream and the transmit power constraint of each antenna to obtain all possible power allocation schemes, all possible power allocation schemes form a subspace, and then A desired power allocation vector for each data stream on each antenna is projected into said subspace to find a final power allocation scheme;
功率分配方案的计算方法为:  The calculation method of the power allocation scheme is:
Figure imgf000008_0002
Figure imgf000008_0002
方程组的所有解形成的子空间记为所有可能的功率分配方案;  The subspace formed by all the solutions of the system of equations is recorded as all possible power allocation schemes;
选择上述所有方程中的任意 + -1个方程, 将除去 pnk以外的所有系数 写成系数矩阵 A, 其方法如下: Selecting any + -1 equations from all the above equations will remove all coefficients except p nk Write the coefficient matrix A as follows:
将每一个方程除去未知数之外的系数写成矩阵中的一行, 总共形成 Write each coefficient except the unknown number into a row in the matrix, which is formed in total.
N + 行, 每一行包含服 + 1个元素, 上述矩阵的第 行第 _/·列位置的元素 A( )属于集合 {Ο,Ι,-Ι, ,···, ^,-^…-^,^…, ; 或者 将每一个方程中除去未知数之外的系数写成矩阵中的一列, 总共形成N + rows, each row containing a service + 1 element, the element A ( ) at the _/· column position of the first row of the above matrix belongs to the set {Ο,Ι,-Ι, ,···, ^,-^...- ^,^..., ; or write the coefficients of each equation except the unknowns into a column in the matrix, which is formed in total.
N + 列, 每一列包含服 + 1个元素, 上述矩阵的第 行第 ·列位置的元素
Figure imgf000009_0001
-( ··,-(¾ ; 将期望功率向量投影到该方程的解子空间的操作为:
N + column, each column contains a service + 1 element, the element of the first row of the above matrix
Figure imgf000009_0001
-( ··, -(3⁄4 ; The operation of projecting the expected power vector into the solution subspace of the equation is:
ρ = (ΐ-ΑΓ(ΑΑΓ)_1 Α)? , β是每个天线上的功率比例因子; ρ = (ΐ-Α Γ (ΑΑ Γ ) _1 Α)? , β is the power scale factor on each antenna;
其中, f = [rT aj a是任意的实数; Where f = [r T aj a is an arbitrary real number;
Γ ~ [^11 … RN\ R\2 … RN2 … R\K … RNK ] r为所有数据流在所有天线上的期望功率分配向量,其具体数值由控制节 点根据数据流对应信道系数获得, 比如, 通过数据流对应预编码向量系数的 幅度的平方, 即
Figure imgf000009_0002
rnk是第 个数据流在第 "个天线上的期望功率分配向量。
Γ ~ [^11 ... R N\ R \2 ... R N2 ... R \K ... R NK ] r is the expected power allocation vector of all data streams on all antennas, the specific value of which is determined by the control node according to the corresponding channel coefficients of the data stream Obtaining, for example, the square of the magnitude of the coefficient of the precoding vector corresponding to the data stream, ie
Figure imgf000009_0002
Rnk is the expected power allocation vector of the first data stream on the "one antenna".
Ρ = [Αι … Pm Pn ■■■ PN2 ■■■ Ρικ … ΡΝΚΪ ^ β包含 N*f个元素;  Ρ = [Αι ... Pm Pn ■■■ PN2 ■■■ Ρικ ... ΡΝΚΪ ^ β contains N*f elements;
为第 η个天线上第 k个数据流对应的预编码向量;
Figure imgf000009_0003
a precoding vector corresponding to the kth data stream on the nth antenna;
Figure imgf000009_0003
其中, ρ 表示第"个数据流在第 Α个天线上分配的功率;  Where ρ represents the power allocated by the first "data stream" on the first antenna;
通信节点分配功率 。 通过本发明实施例的功率分配方案, 一方面最大化的利用了控制节点的 功率, 在每天线功率受限条件下的几乎最优分配, 提高了功率在有用方向上 的利用率, 最终提高了系统的频谱效率, 同时该方法计算非常简单, 且容易 实现。 The communication node allocates power. Through the power allocation scheme of the embodiment of the present invention, on the one hand, the power of the control node is maximized, and the almost optimal allocation under the condition of limited line power per day improves the power in the useful direction. The utilization rate ultimately improves the spectral efficiency of the system, and the calculation is very simple and easy to implement.
实施例 1 Example 1
在本实施例中, 设定通信节点具有 4根发送天线, 且每个天线的最大发 射功率都为 ρ ,即 Q = ρ2 = ¾ = ρ4 = ρ ,设每根天线同时传输两个不同的数据流, 且通过预先分配方法给每个数据流分配的功率相等, 即 同时两个 数据流对应的预编码向量分别为: In this embodiment, the communication node is set to have four transmit antennas, and the maximum transmit power of each antenna is ρ, that is, Q = ρ 2 = 3⁄4 = ρ 4 = ρ, so that each antenna transmits two different simultaneously. The data stream, and the power allocated to each data stream by the pre-allocation method is equal, that is, the pre-coding vectors corresponding to the two data streams are:
则利用本方案的功率分配方案分配功率如下: 显然每个数据流在每个天线上的功率分配可以由下述的方程中 k=\ Then use the power allocation scheme of the scheme to allocate power as follows: Obviously, the power allocation of each data stream on each antenna can be obtained by the following equation k=\
Pnk =G,k = l,-,2 Pnk =G,k = l,-,2
n=\ 任意选择其中 5 个方程, 构造约束矩阵方程 [A b] =0, 其中, 各个 矩阵分别为:  n=\ arbitrarily select 5 of them, construct the constraint matrix equation [A b] =0, where each matrix is:
Figure imgf000010_0001
Figure imgf000010_0001
b = [G Q Q Q  b = [G Q Q Q
计算系数矩阵: 1 1 1 1 0 0 0 0 G Calculate the coefficient matrix: 1 1 1 1 0 0 0 0 G
1 0 0 0 1 0 0 0 Q  1 0 0 0 1 0 0 0 Q
A = [A b]: 0 1 0 0 0 1 0 0 Q  A = [A b]: 0 1 0 0 0 1 0 0 Q
0 0 1 0 0 0 1 0 Q  0 0 1 0 0 0 1 0 Q
0 0 0 1 0 0 0 1 Q  0 0 0 1 0 0 0 1 Q
到功率约束方程解的子空间, 其方法如下
Figure imgf000011_0001
To the subspace of the solution of the power constraint equation, the method is as follows
Figure imgf000011_0001
其中, i = [rr - 1]Γ , r = [rn r2X r3l r4X rn r22 r32 r42f , Where i = [r r - 1] Γ , r = [r n r 2X r 3l r 4X r n r 22 r 32 r 42 f ,
3- rnk
Figure imgf000011_0002
= ---,2,即为预编码向量的每个元素的绝对 值的平方。
3- r nk
Figure imgf000011_0002
= ---, 2, which is the square of the absolute value of each element of the precoding vector.
然后, 将该功率分配向量进行缩放, 使得所有分配功率之和等于控制节 点所有天线功率之和:  The power allocation vector is then scaled such that the sum of all allocated powers equals the sum of all antenna powers of the control nodes:
Ρ*= Qn,n = l,-,N,k = l,.:,K;Ρ*= Q n ,n = l,-,N,k = l,.:,K;
Figure imgf000011_0003
其中, 表示第"个数据流在第 A个天线上分配的功率。
Figure imgf000011_0003
Wherein, represents the power allocated by the "data stream" on the A-th antenna.
Ρ = [Α,···,Α], 该向量中第/ ( / = 1,···,8 )个元素表示第 Α个 = /mod2 ) 数据流在第 M个( n = l— 4k )天线上的被分配的功率。  Ρ = [Α,···,Α], the / ( / = 1,···,8 ) elements in the vector represent the third = / mod2 ) The data stream is at the Mth ( n = l - 4k The allocated power on the antenna.
实施例 2  Example 2
在本实施例中, 设定通信节点具有 4根发送天线, 且每个天线的最大发 射功率都为 β ,即 β = β2 = β3 = β4 = β ,设每个天线同时传输两个不同的数据流, 且通过预先分配方法给每个数据流分配的功率相等, 即 同时两个 数据流对应的预编码向量分别为: In this embodiment, the communication node is set to have four transmit antennas, and the maximum transmit power of each antenna is β, that is, β = β 2 = β 3 = β 4 = β, so that each antenna transmits two simultaneously. Different data streams, and the power allocated to each data stream by the pre-allocation method is equal, that is, the pre-coding vectors corresponding to the two data streams are:
w, = , w2l w31 w41f和 w2=[w12 w22 w2 wj , 则利用本方案的功率分配方案分配功率如下: 显然每个数据流在每个天线上的功率分配应当由下述的方程 ∑Pnk =Q,n = l,-,4 w, = , w 2l w 31 w 41 f and w 2 = [w 12 w 22 w 2 wj , then the power allocation scheme using the scheme of the scheme is as follows: Obviously the power allocation of each data stream on each antenna should be By the equation below ∑ Pnk = Q, n = l, -, 4
k=\  k=\
4  4
任意选择其中 5个方程, 构造约束矩阵方程 [x: 0, 其中各个矩
Figure imgf000012_0001
Arbitrarily select five of them, construct a constraint matrix equation [x : 0, where each moment
Figure imgf000012_0001
阵分别为: The arrays are:
0 0 0 0 1 1 1  0 0 0 0 1 1 1
0 0 0 1 0 0 0  0 0 0 1 0 0 0
A = 0 0 1 0 0 0 1  A = 0 0 1 0 0 0 1
0 1 0 0 0 1 0 b = [G Q Q Q  0 1 0 0 0 1 0 b = [G Q Q Q
计算系数矩阵: Calculate the coefficient matrix:
Figure imgf000012_0002
Figure imgf000012_0002
则将期望功率分配投影到功率约束方程解的子空间, 其方法如下  Then project the desired power distribution into the subspace of the power constraint equation solution, as follows
p = (I-A(AJA) Ar f 其中, 1] , Γ = [^41 r3 r2 ru rA2 ¾ ¾ ¾ ] 且有 r nk = W p = (IA(A J A) A r f where 1] , Γ = [^41 r 3 r 2 r u r A2 3⁄4 3⁄4 3⁄4 ] and r nk = W
nk n = \,---,4,k = \,---,2, 即为预编码向量的每个元素的绝 对值的平方。  Nk n = \,---,4,k = \,---,2, which is the square of the absolute value of each element of the precoding vector.
然后, 将该功率分配向量进行缩放, 使得所有分配功率之和等于控制节 点所有天线功率之和: Pnk= N ∑Qn,n = U,k = ,K The power allocation vector is then scaled such that the sum of all allocated powers is equal to the sum of all antenna powers of the control node: P nk = N ∑Q n , n = U,k = , K
∑∑pnl ∑∑p nl
n=\ l=\  n=\ l=\
其中, ρ 表示第"个数据流在第 A个天线上分配的功率。 实施例 3  Where ρ represents the power allocated by the "data stream" on the A-th antenna. Embodiment 3
在本实施例中, 设定通信节点具有 N根发送天线, 且每个天线的最大发 射功率分别为
Figure imgf000013_0001
设每个天线同时传输^:个不同的数据流, 且通过 预先分配方法给每个数据流分配的功率分别为(¾,Α = 1,···, , 同时 f个数据流 对应的预编码向量分别为:
In this embodiment, the setting communication node has N transmitting antennas, and the maximum transmitting power of each antenna is respectively
Figure imgf000013_0001
Let each antenna transmit ^: different data streams at the same time, and the power allocated to each data stream by pre-allocation method is (3⁄4, Α = 1,···, and pre-coding corresponding to f data streams) The vectors are:
wm] , k = \,---,K ,  Wm] , k = \,---,K ,
则利用本方案的功率分配方案分配功率如下: 个数据流在每个天线上的功率分配应当由下述的方程  Then use the power allocation scheme of the scheme to allocate power as follows: The power allocation of each data stream on each antenna should be determined by the following equation
Figure imgf000013_0002
Figure imgf000013_0002
选择其中前 N + -l个方程, 构造约束矩阵方程 [A b] =0, 其中各个 矩阵分别为  Select the former N + -l equations and construct the constraint matrix equation [A b] =0, where each matrix is
Figure imgf000013_0003
Figure imgf000013_0003
b = [^ QN]
Figure imgf000013_0004
计算系数矩阵 A = [A b] , 则将期望功率分配投影到功率约束方程解的子 空间, 其方法如下 Ρ = Ι-ΑΓ(ΑΑΓ)_1 )f 其中, f = [rr - 1]Γ, r = [r … rm ru … rN2 … rXK … rNK , 且有^=| ^|2,"=1,—, ^=1,一 ,即为预编码向量的每个元素的绝对 值的平方。
b = [^ Q N ]
Figure imgf000013_0004
Calculating the coefficient matrix A = [A b] , then projecting the desired power distribution into the subspace of the power constraint equation solution, as follows Ρ = Ι-Α Γ (ΑΑ Γ ) _1 )f where f = [r r - 1] Γ , r = [r ... r m r u ... r N2 ... r XK ... r NK , and ^=| ^ 2 , "=1, -, ^=1, one, is the square of the absolute value of each element of the precoding vector.
然后将该功率分配向量进行缩放, 使得所有分配功率之和等于控制节点 所有天线功率之和:  The power allocation vector is then scaled such that the sum of all allocated powers is equal to the sum of all antenna powers of the control node:
Ρ*= Ν κ ∑Qn,n = l,-,N,k = l,.:,K; Ρ*= Ν κ ∑Q n ,n = l,-,N,k = l,.:,K;
∑∑Pnl 其中, ρ 表示第"个数据流在第 A个天线上分配的功率。 图 2为本发明实施例的通信节点的示意图, 如图 2所示, 本实施例的通 信节点包括: ρP nl, where ρ represents the power allocated by the first data stream on the A antenna. FIG. 2 is a schematic diagram of a communication node according to an embodiment of the present invention. As shown in FIG. 2, the communication node of this embodiment includes:
配置模块, 其设置为配置 N个天线, 且每个天线上同时传输 f个数据流; 分配模块, 其设置为在第《个天线上给第 A个数据流分配功率 其中, 满足下面的约束条件: 个数据流在第《个天线上被分配的功率之和不超过该天线的最大发射 功率 ¾; 第 k个数据流在 N个天线上被分配的功率之和不超过第 k个数据流的功 率 ;  a configuration module, configured to configure N antennas, and transmit f data streams simultaneously on each antenna; an allocation module configured to allocate power to the A data stream on the “antennas”, wherein the following constraints are met : the sum of the powers allocated by the data streams on the "antennas" does not exceed the maximum transmit power of the antennas; the sum of the powers of the kth data streams allocated on the N antennas does not exceed the kth data stream Power
其中, 为所述通信节点预先分配给第 k个数据流在当前资源块上的功 率; N为自然数, 且大于等于 2; ^:小于等于 N; n = l,-,N; k = \ ,K。 其中, 所述资源块包括以下的一种或多种:  Wherein, the communication node is pre-allocated to the power of the kth data stream on the current resource block; N is a natural number, and is greater than or equal to 2; ^: less than or equal to N; n = l, -, N; k = \, K. The resource block includes one or more of the following:
正交频分复用技术系统中的一个子载波;  One subcarrier in the Orthogonal Frequency Division Multiplexing (OFDM) technology system;
正交频分多址系统中的一个子载波;  One subcarrier in an orthogonal frequency division multiple access system;
同一个正交频分复用技术符号上的多个子载波;  Multiple subcarriers on the same OFDM signal symbol;
时域多个正交频分复用技术符号在频域的多个子载波构成的资源块。 其中, 所述配置模块是根据每个数据流的信道状态信息, 自适应的分配 功率 的。 Time domain multiple orthogonal frequency division multiplexing (OFDM) technology symbol blocks formed by multiple subcarriers in the frequency domain. The configuration module is adaptively allocated according to channel state information of each data stream. Powerful.
其中, 如图 3所示, 所述配置模块可以包括:  As shown in FIG. 3, the configuration module may include:
第一单元, 其设置为根据每个数据流的功年 Gk和每个天线的发射功率 构造 程组, 以获得到所有可能的功率分配方案: A first unit, which is configured to construct a set of metrics according to the power year G k of each data stream and the transmit power of each antenna to obtain all possible power allocation schemes:
Figure imgf000015_0001
Figure imgf000015_0001
二单元,其设置为根据所述方程组中选择任意 N + -l个方程构造矩阵  a two unit configured to select an arbitrary N + -l equation construction matrix according to the system of equations
0, 其中,0, where,
Figure imgf000015_0002
Figure imgf000015_0002
A为系数矩阵, A is a coefficient matrix,
 ,
Figure imgf000015_0003
第三单元, 其设置为计算系数矩阵 =^ b], 计算每保证天线上的功率 比例因子 β和 :
Figure imgf000015_0003
The third unit, which is set to calculate the coefficient matrix =^ b], calculates the power scale factor β and the sum of the guaranteed antennas:
p= I-Ar(AAr) Alf :
Figure imgf000015_0004
p= IA r (AA r ) Alf :
Figure imgf000015_0004
其中, ρ 表示第"个数据流在第 A个天线上分配的功率 ( Where ρ represents the power allocated by the "data stream" on the A-th antenna (
第四单元, 其设置为分配功率 。  The fourth unit, which is set to distribute power.
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 One of ordinary skill in the art can understand that all or part of the above steps can be completed by a program to instruct related hardware, and the program can be stored in a computer readable storage medium, such as read only. Memory, disk or disc, etc. Alternatively, all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits. Correspondingly, each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may be implemented in the form of a software function module. The invention is not limited to any specific form of combination of hardware and software.
以上仅为本发明的优选实施例, 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域的技术人员当可根据本 发明作出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明 所附的权利要求的保护范围。  The above is only a preferred embodiment of the present invention, and of course, the present invention may be embodied in various other embodiments without departing from the spirit and scope of the invention. Corresponding changes and modifications are intended to be included within the scope of the appended claims.
工业实用性 本发明实施例的功率分配方法及通信节点, 可以将每个数据流的功率在 天线功率受限时进行最优的分配, 从而提高系统性能。 Industrial Applicability The power allocation method and communication node of the embodiments of the present invention can optimally allocate the power of each data stream when the antenna power is limited, thereby improving system performance.

Claims

权 利 要 求 书 Claim
1、 一种功率分配方法, 包括:  1. A power distribution method, comprising:
通信节点配置 N个天线, 且每个天线上同时传输 f个数据流; 以及 所述通信节点根据以下条件在第/ ί个天线上给第 A个数据流分配功率  The communication node configures N antennas, and f data streams are simultaneously transmitted on each antenna; and the communication node allocates power to the Ath data stream on the /th antenna according to the following conditions;
所述 f个数据流在所述第《个天线上被分配的功率之和不超过所述第 n 个天线的最大发射功率 ρ„; 所述第 Α个数据流在所述 N个天线上被分配的功率之和不超过所述第 A 个数据流的功率 ; The sum of the powers allocated by the f data streams on the "ant antennas" does not exceed the maximum transmit power of the nth antennas; the second data stream is on the N antennas The sum of the allocated powers does not exceed the power of the Ath data stream;
其中, 为所述通信节点预先分配给所述第 A个数据流在当前资源块上 的功率; N、 f均为自然数, 且 N大于等于 2, f小于等于 N ; n = \,- -,N ; k = \,- --,K。  Wherein, the communication node is pre-allocated to the power of the A-th data stream on the current resource block; N, f are all natural numbers, and N is greater than or equal to 2, f is less than or equal to N; n = \, - -, N ; k = \,- --, K.
2、如权利要求 1所述的方法,其中: 所述资源块包括以下的一种或多种: 正交频分复用技术系统中的一个子载波;  2. The method of claim 1, wherein: the resource block comprises one or more of the following: one subcarrier in an Orthogonal Frequency Division Multiplexing (OFDM) technology system;
正交频分多址系统中的一个子载波;  One subcarrier in an orthogonal frequency division multiple access system;
同一个正交频分复用技术符号上的多个子载波;  Multiple subcarriers on the same OFDM signal symbol;
时域多个正交频分复用技术符号在频域的多个子载波构成的资源块。 Time domain multiple orthogonal frequency division multiplexing (OFDM) technology symbol blocks formed by multiple subcarriers in the frequency domain.
3、 如权利要求 1或 2所述的方法, 其中: 所述通信节点分配功率 的 步骤包括: 3. The method according to claim 1 or 2, wherein: the step of allocating power by the communication node comprises:
所述通信节点根据每个数据流的信道状态信息, 自适应的分配功率 。 The communication node adaptively allocates power according to channel state information of each data stream.
4、如权利要求 3所述的方法,其中: 所述通信节点自适应的分配功率 的步骤包括: 4. The method of claim 3 wherein: the step of adaptively allocating power by the communication node comprises:
根据每个数据流的功率 和每个天线的发射功率 ρ„构造以下方程组, 以 获得到所有可能的功率分配方案: k=\ ,
Figure imgf000018_0001
根据所述方程组中选择任意 N + -l个方程构造矩阵方程:
The following equations are constructed based on the power of each data stream and the transmit power of each antenna to obtain all possible power allocation schemes: k=\ ,
Figure imgf000018_0001
Construct a matrix equation by selecting any N + -1 equations from the system of equations:
[A b] 0, 其中,[A b] 0, where
Figure imgf000018_0002
Figure imgf000018_0002
A为系数矩阵, A is a coefficient matrix,
b = [Gi ■■■ GK-l Ov],b = [ G i ■■■ G Kl Ov],
Figure imgf000018_0003
Figure imgf000018_0003
计算系数矩阵 A = [A b] ,  Calculate the coefficient matrix A = [A b]
计算每个天线上的功率比例因子
Figure imgf000018_0004
Calculate the power scale factor on each antenna
Figure imgf000018_0004
其中, f = [r r — ΐ]Γ, r = [ru … rm ru … rN2 … rXK … rNK , Where f = [ r r — ΐ] Γ , r = [r u ... r m r u ... r N2 ... r XK ... r NK ,
P = [Pn ■■■ Pm Pn … PN2 … Ρικ … ΡΝΚΪ ^ β包含 N* 个元素; rnk w n„k为第 n个天线上第 k个数据流对应的预编码向量; P = [Pn ■■■ Pm Pn ... PN2 ... Ρικ ... ΡΝΚΪ ^ β contains N* elements; r nk wn„k is the precoding vector corresponding to the kth data stream on the nth antenna;
N  N
nk  Nk
p, N K ,其中, n = \,'",N,k = \,'",K  p, N K , where n = \,'",N,k = \,'",K
7 n=\  7 n=\
∑∑Pn ∑∑P n
n=\ l=\  n=\ l=\
分配功率 。  Allocate power.
5、 一种通信节点, 包括:  5. A communication node, comprising:
配置模块, 其设置为: 配置 N个天线, 且每个天线上同时传输 f个数据 流; 以及  a configuration module, configured to: configure N antennas, and transmit f data streams simultaneously on each antenna;
分配模块, 其设置为: 在第《个天线上给第 A个数据流分配功率 其 中, ρ 满足下面的约束条件: 所述 f个数据流在所述第《个天线上被分配的功率之和不超过所述第 n 个天线的最大发射功率 ρ„; 所述第 Α个数据流在所述 N个天线上被分配的功率之和不超过所述第 A 个数据流的功率 ; An allocation module, configured to: allocate power to the A data stream on the "antennas", wherein ρ satisfies the following constraints: sum of powers of the f data streams allocated on the "ant antennas" Not exceeding a maximum transmission power ρ of the nth antenna; a sum of powers allocated by the second data stream on the N antennas does not exceed the first A The power of the data stream;
其中, 为所述通信节点预先分配给所述第 k个数据流在当前资源块上 的功率; N、 f均为自然数, 且 N大于等于 2, f小于等于 N; n = \,--,N; k = \,---,K。  Wherein, the communication node is pre-allocated to the power of the kth data stream on the current resource block; N, f are all natural numbers, and N is greater than or equal to 2, f is less than or equal to N; n = \, --, N; k = \, ---, K.
6、 如权利要求 5所示的通信节点, 其中, 所述资源块包括以下的一种或 多种:  6. The communication node according to claim 5, wherein the resource block comprises one or more of the following:
正交频分复用技术系统中的一个子载波;  One subcarrier in the Orthogonal Frequency Division Multiplexing (OFDM) technology system;
正交频分多址系统中的一个子载波;  One subcarrier in an orthogonal frequency division multiple access system;
同一个正交频分复用技术符号上的多个子载波;  Multiple subcarriers on the same OFDM signal symbol;
时域多个正交频分复用技术符号在频域的多个子载波构成的资源块。 Time domain multiple orthogonal frequency division multiplexing (OFDM) technology symbol blocks formed by multiple subcarriers in the frequency domain.
7、 如权利要求 5或 6所示的通信节点, 其中, 7. The communication node according to claim 5 or 6, wherein
所述配置模块是设置为根据每个数据流的信道状态信息, 自适应的分配 功率 的。  The configuration module is configured to adaptively allocate power according to channel state information of each data stream.
8、 如权利要求 7所示的通信节点, 其中, 所述配置模块包括: 第一单元, 其设置为: 根据每个数据流的功率 和每个天线的发射功率 到所有可能的功率分配方案: 第二单元, 其设置为根据所述方程组中选择任意
Figure imgf000019_0001
8. The communication node according to claim 7, wherein the configuration module comprises: a first unit configured to: according to the power of each data stream and the transmit power of each antenna to all possible power allocation schemes: a second unit, which is arranged to select any one of the groups of equations
Figure imgf000019_0001
N + -l个方程构造矩阵方程:  N + -l equations to construct a matrix equation:
[A b] 0, 其中,[A b] 0, where
Figure imgf000019_0002
Figure imgf000019_0002
A为系数矩阵, A is a coefficient matrix,
b = [^ … GK_, Q … QN], b = [^ ... G K _, Q ... Q N ],
x = n … Pm Pu … PNI … Ρικ … Γ; x = n ... Pm Pu ... PNI ... Ρικ ... Γ ;
第三单元, 其设置为计算系数矩阵 = ^ b], 计算每保证天线上的功率 比例因子 β和 : Ρ = Ι-ΑΓ(ΑΑΓ)_1 )f , 其中, f = [rr - 1]Γ, r = [ru … rm ru … rN2 … rXK … rNK ,The third unit, which is set to calculate the coefficient matrix = ^ b], calculates the power scale factor β and the sum of the guaranteed antennas: Ρ = Ι - Α Γ (ΑΑ Γ ) _1 ) f , where f = [r r - 1] Γ , r = [r u ... r m r u ... r N2 ... r XK ... r NK ,
P = [Pn ■■■ Pm Pn … PN2 … Ρικ … ΡΝΚΪ ^ β包含 N* 个元素;
Figure imgf000020_0001
, 为第 η个天线上第 k个数据流对应的预编码向量;
P = [Pn ■■■ Pm Pn ... PN2 ... Ρικ ... ΡΝΚΪ ^ β contains N* elements;
Figure imgf000020_0001
, a precoding vector corresponding to the kth data stream on the nth antenna;
Pnk= ∑Qn,n = \,-,N,k = \,-,K- 以及 P nk = ∑Q n , n = \,-,N,k = \,-,K- and
∑∑Pnl 第四单元, 其设置为分配功率 。 第四P nl fourth unit, which is set to distribute power.
PCT/CN2012/077873 2012-04-06 2012-06-29 Power allocation method and communication node WO2013149439A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210100928.8A CN103369657B (en) 2012-04-06 2012-04-06 Power allocation method and communication node
CN201210100928.8 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013149439A1 true WO2013149439A1 (en) 2013-10-10

Family

ID=49299950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077873 WO2013149439A1 (en) 2012-04-06 2012-06-29 Power allocation method and communication node

Country Status (2)

Country Link
CN (1) CN103369657B (en)
WO (1) WO2013149439A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104954051A (en) * 2014-03-31 2015-09-30 富士通株式会社 Pulse shaping filter optimization device, transmitter and method
US10757658B2 (en) * 2015-06-28 2020-08-25 RF DSP Inc. Power allocation and precoding matrix computation method in a wireless communication system
CN105744631B (en) * 2016-04-25 2017-03-01 陕西师范大学 The distribution method of multiple access system uplink downlink power and device
CN108235417B (en) 2016-12-22 2021-03-30 华为技术有限公司 Downlink transmission method, base station and terminal equipment
SG11201911473SA (en) 2017-08-16 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Signal transmission method and terminal device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862985A (en) * 2005-05-11 2006-11-15 中兴通讯股份有限公司 Power distributing method of known channel information in multi-channel multi-antenna system
CN101123461A (en) * 2002-02-19 2008-02-13 高通股份有限公司 Power control for partial channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
CN101615932A (en) * 2008-06-25 2009-12-30 鼎桥通信技术有限公司 A kind of power distribution method of multi-input multi-output hybrid automatic retransmission Request System
CN101695193A (en) * 2009-09-27 2010-04-14 上海华为技术有限公司 Method for sending and receiving downstream data and device thereof
US20110026630A1 (en) * 2009-07-31 2011-02-03 Cisco Technology, Inc. Power Allocation of Spatial Streams in MIMO Wireless Communication System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123461A (en) * 2002-02-19 2008-02-13 高通股份有限公司 Power control for partial channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
CN1862985A (en) * 2005-05-11 2006-11-15 中兴通讯股份有限公司 Power distributing method of known channel information in multi-channel multi-antenna system
CN101615932A (en) * 2008-06-25 2009-12-30 鼎桥通信技术有限公司 A kind of power distribution method of multi-input multi-output hybrid automatic retransmission Request System
US20110026630A1 (en) * 2009-07-31 2011-02-03 Cisco Technology, Inc. Power Allocation of Spatial Streams in MIMO Wireless Communication System
CN101695193A (en) * 2009-09-27 2010-04-14 上海华为技术有限公司 Method for sending and receiving downstream data and device thereof

Also Published As

Publication number Publication date
CN103369657B (en) 2017-05-24
CN103369657A (en) 2013-10-23

Similar Documents

Publication Publication Date Title
CN111034063B (en) Communication method, communication device and system
CN106465365B (en) Multi-user, multi-address access system, method and equipment
WO2017107707A1 (en) Method and apparatus for determining multi-user transmission mode
WO2017020680A1 (en) Uplink data sending method, receiving method and device
CN107508661B (en) Data processing method, network equipment and terminal
CN105723623A (en) Methods for interference cancellation/suppression with network assistance
CN110679125B (en) NR uplink codebook configuration method and related equipment
CN111212480B (en) Downlink control information sending method, terminal equipment and network equipment
WO2013149439A1 (en) Power allocation method and communication node
JP6302069B2 (en) System and method for increasing low density signature space
EP3800945B1 (en) Power allocation method and related device
TWI822722B (en) Method of constructing polar code, communication method and communication device
CN112204905A (en) Signature domain multiplexing for non-orthogonal multiple access
JP6797824B2 (en) Data transmission method, reception method and equipment
Qureshi et al. Successive bandwidth division NOMA systems: Uplink power allocation with proportional fairness
JP2017532853A (en) User pairing processing method, apparatus and base station
CN104901732B (en) A kind of pilot multiplex method in Dense nodes configuration system
JP2009177616A (en) Multiple channel space multiplex transmission method and communication apparatus
WO2013149440A1 (en) Multi-antenna power allocation method and device
KR20180133175A (en) Signal processing method, apparatus and base station using combined non-orthogonal multiple access and generalized space shift keying
CN106850123B (en) Method and apparatus for layer mapping and de-layer mapping in a wireless communication system
CN108933621A (en) Data transmission method and relevant device
Elliott et al. Low complexity greedy, genetic and hybrid user scheduling algorithms for multiuser MIMO systems with successive zero‐forcing
CN109981152A (en) A kind of power distribution method and equipment
CN106575985A (en) Data processing apparatus and data processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873749

Country of ref document: EP

Kind code of ref document: A1