WO2013147268A1 - 伝送線路及び配線基板、並びに、これらを用いた高周波装置 - Google Patents

伝送線路及び配線基板、並びに、これらを用いた高周波装置 Download PDF

Info

Publication number
WO2013147268A1
WO2013147268A1 PCT/JP2013/059755 JP2013059755W WO2013147268A1 WO 2013147268 A1 WO2013147268 A1 WO 2013147268A1 JP 2013059755 W JP2013059755 W JP 2013059755W WO 2013147268 A1 WO2013147268 A1 WO 2013147268A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transmission line
magnetic
permeability
cross
Prior art date
Application number
PCT/JP2013/059755
Other languages
English (en)
French (fr)
Inventor
英俊 中山
敏郎 佐藤
誠 曽根原
拓実 吉原
Original Assignee
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人国立高等専門学校機構 filed Critical 独立行政法人国立高等専門学校機構
Priority to JP2014508238A priority Critical patent/JP6080020B2/ja
Publication of WO2013147268A1 publication Critical patent/WO2013147268A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/18Waveguides; Transmission lines of the waveguide type built-up from several layers to increase operating surface, i.e. alternately conductive and dielectric layers

Definitions

  • the present invention relates to a transmission line, a wiring board, and a high-frequency device using these.
  • a waveguide that is a metal steel tube, a strip line or a surface wave line provided on a wiring board that is a dielectric, and the like have been developed (for example, see Patent Document 1). ).
  • These transmission lines are used for transceivers such as communication and broadcasting (for example, airway surveillance radar), and are generally formed of only a conductor.
  • Patent Document 2 In order to suppress an increase in resistance of the transmission line due to such a decrease in skin depth, a transmission line structure using a negative magnetic permeability material has been proposed (see, for example, Patent Document 2 and Non-Patent Document 1).
  • JP 2001-53509 A JP 2010-21703
  • the skin depth ⁇ ( ⁇ ⁇ (1 / ⁇ f ⁇ ), f: frequency, ⁇ : permeability, ⁇ : conductivity)
  • the magnetic permeability (relative magnetic permeability) ⁇ of is determined by the frequency f and the conductivity ⁇ , and becomes smaller as the frequency f becomes higher. Therefore, the higher the frequency f, the higher the electrical resistance and the greater the insertion loss. For example, even when copper, which is a conductor having high conductivity, is used, since the frequency is 10 GHz and the skin depth is 0.65 ⁇ m, current does not flow through most portions of the conductor.
  • Non-Patent Document 1 a structure in which a positive magnetic permeability material and a negative magnetic permeability material are laminated has been proposed for the purpose of suppressing insertion loss due to the skin depth (see Non-Patent Document 1).
  • each of the positive magnetic permeability material and the negative magnetic permeability material is designed in accordance with the magnitude of the respective permeability, and the product of the magnitude of the permeability and the thickness of the layer is designed.
  • the above means can increase the effect of suppressing insertion loss by increasing the number of layers and making the thin film multilayer, but the effect is low when the number of layers is small.
  • the stack thickness is designed only depending on the magnetic permeability, and it is designed without considering the magnetic field distribution and magnetic flux density distribution in the transmission line. This is because the magnetic flux cannot be canceled out.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a transmission line and a wiring board that can effectively suppress insertion loss due to skin depth, and a high-frequency device using them. It is to be.
  • the transmission line, the wiring board, and the high-frequency device according to the present invention solve the problem with the following transmission line structure configuration in order to achieve the above object.
  • a first feature according to an embodiment of the present invention is that a transmission line includes a layer having a positive magnetic permeability and a layer having a negative magnetic permeability, and the transmission line has the positive magnetic permeability. And a magnetic flux generated in the layer having negative permeability and a magnetic flux generated in the layer having negative permeability cancel each other.
  • the thickness t P (the area a P), the size mu P of the magnetic permeability, the integral value of the magnetic flux due to the strength H P of the magnetic field and [Phi P, and the negative magnetic permeability material thickness t N (area a N)
  • the product of the absolute value of the magnetic permeability and the thickness of the layer arranged on the inner side (or the center side) is arranged on the adjacent outer side (or outer peripheral side).
  • the layer is configured to be larger than the product of the absolute value of the magnetic permeability and the thickness of the layer.
  • the transmission line of the present invention includes a first layer (P) having a positive magnetic permeability ( ⁇ P ) in a specific frequency band and a first thickness (t P ), and the specific frequency.
  • ) and the thickness (t P or t N ) in ( P or N ) is the other layer (N or It is characterized by being larger than the product of the magnetic permeability (
  • the present invention it is preferable to have a laminated structure of the first layer (P) and the second layer (N). By laminating both layers, the effect of reducing magnetic flux is enhanced and the manufacture is facilitated.
  • the first layer (P) and the second layer (N) are thicker as the layer is closer to the center and thinner as the layer is closer to the outside. It is preferable to be configured as described above.
  • the inner layer is always thicker and the outer layer is thinner between the first layer (P) and the second layer (N). Further, if the difference between the absolute values of the magnetic permeability of the two layers is small to some extent, all the layers are configured to become thinner from the inside toward the outside as a whole.
  • the higher conductivity layer of the first layer (P) and the second layer (N) is disposed at the center of the line cross section. Since the layer disposed in the center can be configured to be the thickest, the above configuration can reduce the electrical resistance of the transmission line.
  • the thicknesses (t P , t N ) of the first layer (P) and the second layer (N) adjacent to each other are determined by the magnetic flux generated in the first layer (P) and the thickness of the first layer (P). It is preferable that the magnetic fluxes generated in the second layer (N) cancel each other. According to this, as described above, the effect of suppressing the skin effect can be greatly enhanced according to the distribution of the strength of the magnetic field.
  • the line cross section is preferably circular or elliptical.
  • the first layer (P) and the second layer (N) have a circular or elliptical cross-sectional shape in the line cross section, and the cross-sectional shapes are formed concentrically with each other. Is more desirable.
  • the line cross section is preferably square or rectangular.
  • the first layer (P) and the second layer (N) have a square or rectangular cross-sectional shape in the line cross section, and the center of these cross-sectional shapes coincides with the center of the line cross section. More desirable.
  • the wiring board according to the present invention is characterized in that the transmission line described above is formed on the board.
  • the high-frequency device of the present invention is characterized by including any of the transmission lines described above.
  • the transmission line operates in the specific frequency band.
  • the present invention is effective when the strength of the magnetic field differs depending on the position inside the transmission line.
  • the present invention applies to all shapes such as a circle, an ellipse, a square, a rectangle, and other polygons in the case of a structure having a laminated structure in a two-dimensional direction from the center in the transmission line cross section. Further, it is effective not only in a two-dimensional lamination but also in a cross-sectional structure in which only a one-dimensional direction is laminated.
  • a second feature according to another embodiment of the present invention is that the transmission line having the above feature has a filter effect. Further, the band of this filter characteristic can be changed as tunable. Accompanying this, it also functions as a magnetic field sensor, a stress sensor, and other various sensors.
  • the magnetic permeability ⁇ of the material used in the present invention varies depending on the material, and there are isotropic materials and anisotropic materials. Generally, it is represented by a tensor matrix in three directions of the x-axis, y-axis, and z-axis. Furthermore, there is also a characteristic that the magnetic permeability changes depending on the frequency.
  • the magnetic permeability is generally expressed as a complex number, the real part is a so-called effective magnetic permeability, and the imaginary part is a component corresponding to loss. The value of the magnetic permeability varies depending on the frequency used.
  • the specific magnetic permeability indicated by the uniaxial magnetic permeability of the high-frequency magnetic material is a magnetic permeability having a frequency characteristic, and most of the magnetic permeability follows an LLG (Landau-Lifshitz-Gilbert) equation.
  • FIG. 11 shows an example of the frequency characteristic of permeability calculated by the LLG equation.
  • the magnetic permeability of the high-frequency magnetic material increases slightly as the real part approaches the ferromagnetic resonance (magnetic resonance) frequency, becomes zero at the ferromagnetic resonance frequency, and has a negative permeability at higher frequencies (the above specific frequency band).
  • the magnetic permeability indicates a minimum value, and the relative permeability gradually approaches +1 (that is, the vacuum permeability) at higher frequencies.
  • the frequency band having a negative magnetic permeability is the specific frequency band as described above.
  • the imaginary part of the magnetic permeability of the high-frequency magnetic material shows a maximum peak value at the ferromagnetic resonance frequency, and the value becomes smaller at a lower frequency and a higher frequency (the specific frequency band). As described above, this imaginary part represents a loss.
  • the ferromagnetic resonance frequency changes and the permeability also changes depending on the magnitude of the applied magnetic field.
  • the origin of the uniaxial anisotropy of the high-frequency magnetic material is due to the anisotropic magnetic field inside the material.
  • an external magnetic field When an external magnetic field is applied in the same direction as this anisotropic magnetic field, it acts in the direction in which the anisotropic magnetic field is strengthened, and as the external magnetic field increases, the ferromagnetic resonance frequency increases and the permeability decreases.
  • an external magnetic field is applied in a direction different from the anisotropic magnetic field (for example, the vertical direction)
  • the higher the external magnetic field the lower the ferromagnetic resonance frequency and the smaller the magnetic permeability.
  • the magnetic permeability can be changed by applying an external magnetic field.
  • the anisotropic magnetic field of high-frequency magnetic material is also caused by internal stress, and the reverse relationship depends on whether the material is positive magnetostrictive material or negative magnetostrictive material.
  • the ferromagnetic resonance frequency changes, and the magnetic permeability can be changed.
  • the transmission line of the present invention has filter characteristics. Because permeability varies with frequency, if you determine the thickness (volume) of positive and negative permeability materials at one frequency so that the magnetic flux is diminished (cancelled), at other frequencies, Since the permeability changes, the magnetic flux is not reduced (cancelled). Therefore, the skin effect is suppressed at a certain frequency, resulting in a transmission line with a low resistance, but at other frequencies, the skin effect occurs, resulting in a transmission line with a large resistance, and the resistance varies depending on the frequency. It can be said that it is a transmission line.
  • this is inserted in series in the circuit, it becomes a band-pass filter through which a certain specific frequency band easily passes, and if it is inserted in parallel, it becomes a band stop filter in which a certain specific frequency band is blocked.
  • the external magnetic field to be applied can be applied by arranging a permanent magnet in the vicinity, or by applying a magnetic field by placing a wiring coil in the vicinity and passing a current.
  • the transmission line of the present invention also functions as a magnetic field sensor if the property that the magnetic permeability changes due to the application of an external magnetic field is reversed. Or it functions as various sensors applicable to various phenomena which produce a magnetic field change indirectly.
  • the pass band or the element band can be changed similarly to the application of the external magnetic field. It is thought to be a tunable filter due to external stress.
  • the applied stress is possible if stress is generated in the magnetic thin film by MEMS technology or the like.
  • the transmission line of the present invention also functions as a stress (strain) sensor. Or it functions as various sensors applicable to various phenomena which produce a stress change indirectly.
  • a third feature according to still another embodiment of the present invention is that the transmission line of the present invention can be realized with one kind of magnetic material.
  • the magnetic permeability of the high frequency magnetic material varies depending on the frequency.
  • the frequency characteristics are determined by the internal anisotropic magnetic field. Therefore, even if there is only one kind of magnetic material, it can be manufactured so that the anisotropic magnetic field is different in the manufacturing process. Then, since the magnetic permeability can be changed, it becomes both a positive magnetic permeability material and a negative magnetic permeability material, and the transmission line of the present invention can be realized with one kind of magnetic material. As a result, it is possible to obtain added values such as cost reduction, simplification of the manufacturing process, and the elimination of waste materials.
  • a fourth feature according to another embodiment of the present invention is that a normal high-frequency magnetic thin film has a negative permeability only in one axial direction, so that only a transmission line along the one axial direction can be used. While the effect cannot be obtained, the effect of the present invention can be obtained with respect to the biaxial transmission line.
  • the high-frequency magnetic thin film has a specific permeability characteristic (which can be expressed by an LLG equation or the like) in one axis direction, but has a relative permeability of +1 (equivalent to a vacuum permeability) in the other axis direction. Yes, negative permeability cannot be realized.
  • one high frequency magnetic material is used as the first material so as to exhibit a negative magnetic permeability in one axial direction (for example, the X axis), and the other high frequency magnetic material (which may be the same material) is used. It is used as the second material so as to exhibit a negative magnetic permeability in the axial direction (for example, the Y axis).
  • the first material becomes a negative magnetic permeability material
  • the second material becomes a positive magnetic permeability material.
  • the first material is a positive magnetic permeability material
  • the second material is a negative magnetic permeability material.
  • the negative permeability value is a relative permeability -1.
  • the positive magnetic permeability uses an axis where the relative magnetic permeability of the high-frequency magnetic material is +1. Since the same material configuration is used for both the X axis and Y axis of the transmission line manufactured by a single manufacturing process, this design is highly effective in terms of ease of manufacturing and cost reduction.
  • the second aspect of the present invention is to prevent the transmission line insertion loss due to the skin depth and to prevent the skin depth from being reduced.
  • the reduction in the skin depth occurs inside the transmission line.
  • the induced electromotive force e is generated according to Faraday's law of electromagnetic induction by the alternating magnetic flux ⁇ .
  • the magnitude of the induced electromotive force e generated along an arbitrary closed curve is expressed by the temporal change d ⁇ / dt of the magnetic flux inside the closed curve, and its direction is determined by Lenz's law. , Which occurs in a direction that prevents the magnetic flux from changing.
  • e ⁇ d ⁇ / dt.
  • FIG. 14 shows the relationship among current density J, magnetic flux density B, and electromotive force e in the cross section of the transmission line.
  • a magnetic field H is generated around the current I.
  • the magnetic flux densities B of adjacent layers are opposite to each other.
  • Magnetic fluxes cancel each other.
  • the induced electromotive force at the position of the radius r can be obtained as a combined electric field of the integration path LOOP1 and the integration path LOOP2 in FIG.
  • the generated induced electromotive force e is concentrated on the insulating space in the path, so that an electric field is generated in the conductor. There is no need to consider it.
  • the magnetic flux ⁇ inside the closed curve of each integration path is the magnetic flux density B and its passing cross-sectional area (transmission line length l ⁇ micro section dr, which is dr when calculated per unit length for convenience of calculation).
  • ⁇ Bdr
  • the induced electromotive force e generated by the integration path LOOP1 is generated in a direction (opposite phase) opposite to the current I at the position of the radius r when canceling the temporal change of the magnetic flux therein.
  • the induced electromotive force e generated by the integration path LOOP2 is also generated in the same direction.
  • the respective lamination thicknesses are designed according to the magnitude of the respective magnetic permeability.
  • the permeability ⁇ P ⁇ 0 ⁇ ⁇ rP of the positive permeability material
  • the thickness of the layer is t P
  • the permeability ⁇ N ⁇ 0 ⁇ ⁇ rN of the negative permeability material is the thickness of the layer
  • t P
  • be t N is described.
  • mu 0 is the vacuum magnetic permeability
  • mu rP and mu rN are the relative permeability of each material.
  • the above means is designed by considering the lamination thickness only depending on the magnetic permeability, without considering the resistivity ⁇ and conductivity ⁇ of the material, the magnetic field distribution and the magnetic flux density distribution in the transmission line. Therefore, the magnetic flux that causes an increase in insertion loss cannot be canceled out sufficiently.
  • the current density J, current I, magnetic field H, magnetic flux density B, magnetic flux ⁇ , and induced electromotive force e inside the transmission line are derived, and the thickness of the laminate is designed to make the induced electromotive force e as small as possible. This is a feature of the present invention.
  • the innermost central material may be a layer (P) of a positive magnetic permeability material or a layer (N) of a negative magnetic permeability material. Based on the theory of the present invention where the inner layer is thicker, it is preferable to have a low resistivity material on the inside.
  • the positive permeability material has a smaller resistivity ( ⁇ P ⁇ N , ⁇ NP > 1) than the negative permeability material.
  • the innermost center material (first layer) is used, and the outer material (second layer) is a negative permeability material. Thereafter, the transmission line is configured by alternately laminating.
  • the thickness t and the radius r of the outer diameter are determined.
  • a current I for obtaining the magnetic field H is obtained.
  • the magnetic field H is constant on the circumference of the radius r, and the current flowing inside the circle of the radius r is calculated from Ampere's law.
  • a current I inside a circle having a radius r is calculated from the current density J and its cross-sectional area A.
  • the kth positive magnetic permeability material layer (P) from the inside The current I (r Pk ) inside the radius rPk of the outer diameter and the current I (r Nk ) inside the radius r Nk of the outer diameter r Nk of the kth negative permeability material layer (N) from the inside are It is calculated by the formula.
  • the magnetic field H is obtained by Ampere's law.
  • the magnetic field H is expressed as a function of r, and the current I uses the value obtained above.
  • the magnetic field H is determined with the outer diameter radius of each layer being r P1 , r N1 , r P2 , r N2 ,...
  • the magnetic field H (r Nk) of radius r Nk of the layers (N) of the k-th negative magnetic permeability material from inside is obtained by the following expression.
  • the magnetic flux density B is obtained from the magnetic field H.
  • Magnetic flux density B ⁇ H. Therefore, the magnetic flux density B is obtained by multiplying the magnetic field H by the magnetic permeability ⁇ of the material.
  • the magnetic flux density B is a function of r. The direction of the magnetic flux density is + or-depending on whether the layer (P) of the positive magnetic permeability material or the layer (N) of the negative magnetic permeability material.
  • the magnetic flux ⁇ and the induced electromotive force e are obtained.
  • the induced electromotive force at the position of the radius r is twice the value of the induced electromotive force obtained in the integration path LOOP2, and is obtained by applying the following equation.
  • an index D is set that can indicate the degree of influence of the induced electromotive force e or the degree of skin depth reduction for the entire transmission line.
  • the index D is generally a value obtained by integrating the induced electromotive force e over the entire line cross section Cs of the transmission line.
  • the transmission line has a circular cross-sectional structure (concentric circular cross-sectional structure) as described above. When it has, it can obtain
  • the index D is, as described above, the permeability ⁇ P , resistivity ⁇ P or conductivity ⁇ P , thickness t Pk (or outer diameter r Pk ) of the layer (P) of positive permeability material, negative It can be calculated based on the permeability ⁇ N , resistivity ⁇ N or conductivity ⁇ N and thickness t Nk (or outer diameter r Nk ) of the layer (N) of the magnetic permeability material. Then, this index D is compared with the index Ds of the transmission path of the above prior art.
  • ⁇ T P
  • D ⁇ Ds it turns out that the influence of the induced electromotive force e is smaller than the corresponding transmission line of the said prior art, and the reduction
  • the layer (P) of the positive magnetic permeability material is arranged on the inner side (center side).
  • the layer (N) of the negative magnetic permeability material is arranged on the inner side (center side).
  • the induced electromotive force e and the indices D and Ds can be calculated in the same manner as described above by considering the order.
  • at least one of the positive magnetic permeability material layer (P) and the negative magnetic permeability material layer (N) is composed of any one of two or more materials composed of different materials, and the total
  • the above calculation may be performed by setting the magnetic permeability of each of the three or more layers to the magnetic permeability of the corresponding material.
  • the magnetic flux ⁇ P of the layer of the positive magnetic permeability material (P) and the magnetic flux ⁇ N of the layer of the negative magnetic permeability material (N) cancel each other as much as possible and become 0 It is important to make the magnetic fluxes of adjacent layers equal.
  • .
  • r P2 , r N2 ,... are optimally designed sequentially from the inner layer.
  • the current density J, current I, magnetic field H, magnetic flux density B, magnetic flux ⁇ , and induced electromotive force e inside the transmission line obtained by the above equations are sequentially derived,
  • the thickness of the stack is designed to minimize the magnitude of the electric power e.
  • it is assumed that the same material has a uniform current density. However, by considering the current density distribution obtained by feeding back the obtained induced electromotive force e, it is possible to further optimize the current density. Can be close to the design.
  • a right range is a design in which the magnitude of the induced electromotive force e is at least smaller than the magnitude of the induced electromotive force e by the above-described design of the prior art.
  • the transmission line of the second invention has a positive permeability ( ⁇ P ) and a predetermined resistivity ( ⁇ P ) or conductivity ( ⁇ P ) in a specific frequency band, and has a first thickness.
  • a second layer (N) having a second thickness (t N ), and the first layer (P) and the second layer (N) are directed outward from the inside of the line cross section.
  • FIG. 15 shows the magnitude of the back electromotive force due to the induced electromotive force e with respect to the position r from the center.
  • a conventional transmission line using only a conductor that does not use a negative magnetic permeability material is indicated as Line A
  • the maximum value of the induced electromotive force e is normalized to 1
  • the transmission line structure according to the prior art Non-Patent Document 1
  • the transmission line structure of the present invention is Line C.
  • the 15 compares the induced electromotive forces of the single-layer transmission line Line A, the two-layer transmission line Line B2, and the two-layer transmission line Line C2, and the lower diagram (b) of FIG.
  • the induced electromotive force e of the single-layer transmission line LineA, the four-layer transmission line LineB4, and the four-layer transmission line LineC4 is compared.
  • the induced electromotive force e (counterelectromotive force) is small on the inner side (center side) of the transmission line, and becomes larger toward the outer side (outer peripheral side), and the rate of decrease thereof. Also increases.
  • the magnitude of the permeability of the positive permeability material is equal to the magnitude of the permeability of the negative permeability material (
  • ), and the magnitudes of the resistivity and the conductivity are also equal ( ⁇ P ⁇ N ).
  • the magnitude of the induced electromotive force e can be reduced according to the number of stacked layers in a two-layer structure or a four-layer structure. The effect is insufficient.
  • the negative electromotive force material is used to design the optimum laminated thickness, thereby greatly reducing the induced electromotive force e and partially reducing the induced electromotive force e to 0. Can also be realized.
  • the integrated value D of the induced electromotive force e over the entire line cross section Cs corresponds to the area surrounded by the line, the vertical axis, and the horizontal axis of each graph in FIG. Then, for example, when comparing the same number of stacked layers L, it can be seen that the integrated value D of the transmission line LineC of the present invention is significantly smaller than the integrated value Ds of the conventional transmission line LineB.
  • the transmission line LineC of the present invention has a substantial increase in resistivity due to the skin effect compared to the conventional transmission line LineB. Can be greatly suppressed.
  • the advantageous effects of the present invention can be obtained without being limited to the number of stacked layers L, but the effect is particularly remarkable when the number of stacked layers is small as shown in FIG.
  • FIG. 15 shows a special case where the absolute value of the magnetic permeability, the resistivity, and the conductivity are equal between the positive magnetic permeability material (P) and the negative magnetic permeability material (N) as described above.
  • the transmission line of the present invention has the following characteristics.
  • the amount of magnetic flux generated in the layer having the positive magnetic permeability and the amount of magnetic flux generated in the layer having the negative magnetic permeability are related to the prior art. Therefore, the increase in insertion loss can be suppressed.
  • the transmission line of the present invention can obtain a magnetic flux canceling effect higher than that of the prior art for electromagnetic fields generated by adjacent transmission lines and the like. it can.
  • the reduction of the proximity effect is very effective when the adjacent transmission lines are arranged close to each other or when a coil-shaped transmission line and an inductor are configured. It is effective in improving the performance of
  • the feature of the present invention is that the insertion loss can be more effectively suppressed with respect to the conventional technique that does not consider the magnetic field distribution and magnetic flux density distribution in the transmission line, particularly when the number of stacked layers is small. That is, when the number of stacked layers is small, the magnetic flux in each layer of the line cross section cannot be sufficiently reduced, but in the present invention, the thickness of each layer is set by considering the magnetic field distribution in the line cross section. Since the effect of reducing the magnetic flux can be increased even with the number of stacked layers, both the manufacturing cost and the performance can be improved.
  • the transmission line of the present invention can be used as a filter because the insertion loss is small at a specific frequency and the insertion loss is large at other frequencies.
  • the filter in this case becomes a band-pass filter when the transmission line of the present invention is used in series with a circuit, and becomes a band-stop filter when used in parallel with a circuit.
  • a material having a negative permeability generally changes the frequency characteristics of the permeability when a magnetic field is applied. Specifically, when the magnetic field applied from the outside is strengthened with respect to the internal magnetic field held inside the material, the frequency characteristic of the magnetic permeability shifts to the high frequency side, and the absolute value of the magnetic permeability decreases. . On the contrary, when the magnetic field applied from the outside weakens the internal magnetic field held in the material, the frequency characteristic of the magnetic permeability shifts to the low frequency side, and the absolute value of the magnetic permeability increases.
  • the insertion loss can be reduced by applying a magnetic field from the outside. Can be adjusted to an optimum state in which.
  • the magnetic field sensor and the stress sensor can be configured by utilizing the property that the frequency characteristic of the permeability changes depending on the application of the magnetic field and the stress. Further, it can be applied to detection of all physical phenomena accompanied by generation of magnetic field and stress.
  • FIG. 1 is a cross-sectional structure diagram showing a cross-sectional configuration of a transmission line according to Embodiment 1 of the present invention. It is a cross-section figure which shows the cross-sectional structure of the transmission line which concerns on Embodiment 2 of this invention. It is a cross-section figure which shows the cross-sectional structure of the transmission line which concerns on Embodiment 3 of this invention. It is a cross-section figure which shows the cross-sectional structure of the transmission line which concerns on Embodiment 4 of this invention. It is a cross-section figure which shows the cross-sectional structure of the transmission line which concerns on Embodiment 5 of this invention.
  • FIG. 1 is a cross-sectional structure diagram showing a cross-sectional structure of a transmission line according to the first embodiment of the present invention.
  • a material having a positive magnetic permeability is A
  • a material having a negative magnetic permeability is B
  • A1 and A2 are set in order from the layer closest to the center
  • B1 and B2 are set in order from the layer close to the center.
  • the transmission line has at least one layer A and at least one layer B.
  • FIG. 1 shows a structure in which the material A has two layers and the material B has two layers. In order to enhance the effect of the invention, it is conceivable to further stack a plurality of layers A and B.
  • the cross-sectional structure is circular, the basic concept is the same for an ellipse.
  • the innermost layer is the layer A having a positive magnetic permeability in FIG. 1, it may be a layer B having a negative magnetic permeability.
  • the effect is high in that a low electrical resistance can be obtained by using a material having a high conductivity as a central material. This is because, in the present embodiment, the material constituting the central portion has a larger occupied sectional area in the line section.
  • FIG. 1 shows a cross-sectional structure in a case where the magnetic permeability
  • the ratio of the thicknesses of the respective layers is an example, and it is not necessary to completely cancel the magnetic fluxes of the adjacent layers as in this example, and the magnetic fluxes are reduced compared to the case of the prior art described below.
  • the degree should be high.
  • the outer diameter D B1 of the second layer B1 may be smaller than D A1 (or r A1) greater than 2D A1 (or 2r A1)
  • the outer diameter D A2 of the third layer A2 (
  • the radius r A2 ) should be larger than D B1 and smaller than 2D B1 -D A1 (or 2r B1 -r A1 )
  • the outer diameter D B2 (or the radius r B2 ) of the fourth layer B2 should be larger than D A2. It may be smaller than 2D A2 -D B1 (or 2r A2 -r B1 ).
  • the present invention has an advantage over the prior art if the thickness (outer diameter) of the entire transmission line is the same, and in particular, the smaller the number of layers, the higher the advantage of the present invention.
  • the present invention is highly effective in suppressing the skin effect even if the number of layers is small. Therefore, the effect can be obtained even if the number of layers is reduced compared to the prior art, and the structure can be simplified and manufactured. This is advantageous from an industrial point of view because it can be simplified, productivity can be improved, and manufacturing costs can be reduced.
  • a method for producing a cylindrical lead wire by extrusion molding or the like for the center conductor can be considered.
  • a method of producing a concentric layer by surface coating, plating treatment or the like can be considered.
  • the magnetic permeability characteristics of the material can be controlled by coating and plating conditions, application of tension, application of a magnetic field, and the like.
  • the innermost layer is the layer A having a positive magnetic permeability to implement this structure. it can.
  • the center layer can be made thin, so that the layers A and B can be alternately arranged in the thickness direction in the transmission line, so that the skin effect can be easily suppressed.
  • electric resistance and loss in the high frequency region can be reduced.
  • the transmission line according to the first embodiment has a circular cross-sectional shape, the magnetic flux generation path and the cross-sectional structure coincide with each other.
  • the effect of suppressing the skin effect is higher than that of a quadrangular section such as a transmission line of the form.
  • each layer is comprised concentrically (the center point of each layer is mutually agree
  • coinciding since the suppression effect of a skin effect is obtained isotropic, it is easy to raise an effect.
  • FIG. 2 is a cross-sectional structure diagram showing a cross-sectional structure of a transmission line according to the second embodiment of the present invention.
  • a material having a positive magnetic permeability is A
  • a material having a negative magnetic permeability is B
  • A1 and A2 are set in order from the layer closest to the center
  • B1 and B2 are set in order from the layer close to the center.
  • the transmission line has at least one layer A and at least one layer B.
  • FIG. 2 shows a structure in which the material A has two layers and the material B has two layers. In order to enhance the effect of the invention, it is conceivable to further stack a plurality of layers A and B.
  • the cross-sectional structure is circular, the basic concept is the same for an ellipse.
  • the innermost layer is the layer A having a positive magnetic permeability in FIG. 2, it may be a layer B having a negative magnetic permeability.
  • the conductivity of the material A and the material B it is more effective in the same manner as described above to use a material having a high conductivity as a central material.
  • FIG. 2 shows a cross-sectional structure in the case where
  • of the layer A is three times larger than the magnetic permeability
  • 3
  • ⁇ A cross-sectional structure is shown.
  • the thicknesses of the adjacent layers A and B are configured such that the magnetic flux ⁇ is canceled out, and compared with the case of
  • the ratio of the thickness of the layer B to the thickness is arranged so as to be relatively thin.
  • FIG. 2 shows that, in this case, when the thicknesses of the layers A1 and A2 of the same material or the thicknesses of the layers B1 and B2 are compared, the thickness of the center layer of the transmission line is increased. It is a feature of the present invention to make it thinner.
  • FIG. 2 shows an example where the magnetic permeability of the layer A is three times the magnetic permeability of the layer B, that is, when
  • 3
  • the radius r A1 ) is 1, the outer diameter D B1 (its radius r B1 ) of the second layer B1 is 2, so that the magnetic flux of the layer A1 and the magnetic flux of the layer B1 are offset.
  • the outer diameter D A2 (its radius r A2 ) of the third layer A2 to ⁇ 5
  • the magnetic flux of the layer B1 and the magnetic flux of the layer A2 are offset.
  • the outer diameter D B2 (its radius r B2 ) of the fourth layer B2 is ⁇ 8, the magnetic flux of the layer A2 and the magnetic flux of the layer B2 are offset.
  • the outer diameter D A1 (its radius r A1 ) of the center layer A1 is 1
  • the outer diameter D B1 (its radius r B1 ) of the second layer B1 is 4, and the outer diameter D A2 of the third layer A2 (its) The radius r A2 ) is 5, and the outer diameter D B2 (its radius r B2 ) of the fourth layer B2 is 8.
  • the present invention has an advantage over the prior art if the thickness (outer diameter) of the entire transmission line is the same, and in particular, the smaller the number of layers, the higher the advantage of the present invention.
  • the present invention is highly effective in suppressing the skin effect even if the number of layers is small. Therefore, the effect can be obtained even if the number of layers is reduced compared to the prior art, and the structure can be simplified and manufactured. This is advantageous from an industrial point of view because it can be simplified, productivity can be improved, and manufacturing costs can be reduced.
  • the outer diameter of the central layer A1 When the magnetic permeability
  • n
  • D A1 (its radius r A1 ) 1
  • the outer diameter D B1 (its radius r B1 ) of the second layer B1 is ⁇ (n + 1), so that the magnetic flux of the layer A1 and the magnetic flux of the layer B1 cancel each other. Is done.
  • the outer diameter D A2 (its radius r A2 ) of the third layer A2 to ⁇ (n + 2), the magnetic flux of the layer B1 and the magnetic flux of the layer A2 are offset.
  • the outer diameter D B2 (its radius r B2 ) of the fourth layer B2 to ⁇ (2 (n + 1)
  • the magnetic flux of the layer A2 and the magnetic flux of the layer B2 are canceled.
  • Equation (3) for obtaining r A2 from r A1 is obtained under the equal condition.
  • r B2 ⁇ 2 (
  • n
  • , r A2 ⁇ ⁇ 2 (n + 1) ⁇ ⁇ r A1 is obtained from the above equation (3).
  • the maximum distance (radius) r A1 of the center layer A1 the maximum distance (radius) r B1 of the second layer, the maximum distance (radius) r A2 of the third layer, and the maximum distance of the fourth layer ( (Radius) r B2 can be obtained by the above formulas (1), (2), and (3), and when there are five or more layers, these can be obtained by the same method.
  • This technique is not limited to this embodiment, and can be applied to other embodiments described later.
  • the above method merely shows an example of the configuration of the present invention set to a condition in which the magnetic fluxes of adjacent layers cancel each other.
  • of the magnetic permeability of the layer on the center side (inner side) and the thickness t is larger than the product of the magnetic permeability and thickness of the layer adjacent to the outer peripheral side (outer side).
  • the effect can be obtained.
  • the following equation (4) may be satisfied.
  • the method for producing the transmission line according to the second embodiment in FIG. 2 is a method in which the central conductor is produced by extrusion molding or the like. Conceivable. At this time, it is also possible to control the magnetic permeability characteristics of the material depending on the conditions of extrusion and the application of a magnetic field. For each layer produced around the central conductor, a method of producing a concentric layer by surface coating, plating treatment or the like can be considered. At this time, the magnetic permeability characteristics of the material can be controlled by coating and plating conditions, application of tension, application of a magnetic field, and the like.
  • the innermost layer is the layer A having a positive magnetic permeability to implement this structure. it can.
  • the transmission line according to the second embodiment has a circular cross-sectional shape.
  • the effect of suppressing the skin effect is higher than that of a rectangular cross section such as an elliptical shape or a transmission line of third to eighth embodiments described later.
  • the effect of suppressing the skin effect can be obtained isotropically, so that the effect can be easily improved.
  • FIG. 3 is a cross-sectional structure diagram showing a cross-sectional structure of a transmission line according to the third embodiment of the present invention.
  • a material having a positive magnetic permeability is A
  • a material having a negative magnetic permeability is B
  • A1 and A2 are set in order from the layer closest to the center
  • B1 and B2 are set in order from the layer close to the center.
  • the transmission line has at least one layer A and at least one layer B.
  • FIG. 3 shows a structure in which the material A has two layers and the material B has two layers. In order to enhance the effect of the invention, it is conceivable to further stack a plurality of layers A and B.
  • the cross-sectional structure is a square, the basic concept is the same for a rectangle.
  • the innermost layer (center material) is the layer A having a positive magnetic permeability in FIG. 3, it may be a layer B having a negative magnetic permeability.
  • the conductivity of the material A and the material B it is more effective in the same manner as described above to use a material having a high conductivity as a central material.
  • the innermost layer (central material) is a layer A having a positive magnetic permeability.
  • FIG. 3 shows a cross-sectional structure in the case where the magnetic permeability
  • the present invention has an advantage over the prior art if the thickness of the entire transmission line (the length of one side) is the same.
  • the smaller the number of layers the higher the advantage of the present invention.
  • the present invention is highly effective in suppressing the skin effect even if the number of layers is small. Therefore, the effect can be obtained even if the number of layers is reduced compared to the prior art, and the structure can be simplified and manufactured. This is advantageous from an industrial point of view because it can be simplified, productivity can be improved, and manufacturing costs can be reduced.
  • the same can be considered if the diameter is changed to the length in the formulas (1) to (3) described in the second embodiment.
  • of the magnetic permeability and the thickness t may be large in the adjacent central layer and small in the outer peripheral layer.
  • the transmission line according to the third embodiment has a square cross-sectional shape, it is difficult to manufacture compared to the transmission line according to the first embodiment and the transmission line according to the second embodiment. It is done. In addition, it is difficult to cancel the magnetic flux compared to a circular shape.
  • it can be produced by laminating films by changing the structure to be laminated in a one-dimensional direction, like a transmission line according to a fifth embodiment to be described later, such as printed circuit boards, integrated circuits, laminated chip components, etc. High compatibility in industrial applications. Also in this embodiment, since the center points of the respective layers coincide with each other, the effect of suppressing the skin effect can be obtained isotropically, so that there is an advantage that the effect can be easily improved.
  • FIG. 4 is a cross-sectional structure diagram showing a cross-sectional structure of a transmission line according to the fourth embodiment of the present invention.
  • the cross-sectional configuration of the transmission line according to the fourth embodiment in FIG. 4 is an example in which the square cross section of the cross-sectional configuration of the transmission line according to the third embodiment in FIG.
  • the concept is the same as that of the transmission line according to the third embodiment in FIG.
  • a material having a positive magnetic permeability is A
  • a material having a negative magnetic permeability is B
  • A1 and A2 are set in order from the layer closest to the center
  • B1 and B2 are set in order from the layer close to the center.
  • the transmission line has at least one layer A and at least one layer B.
  • FIG. 4 shows a structure in which the material A has two layers and the material B has two layers. In order to enhance the effect of the invention, it is conceivable to further stack a plurality of layers A and B.
  • the cross-sectional structure is a horizontally long rectangle, but the basic concept is the same for a vertically long rectangle.
  • the innermost layer (center material) is the layer A having a positive magnetic permeability in FIG. 3, it may be a layer B having a negative magnetic permeability.
  • the conductivity of the material A and the material B it is more effective in the same manner as described above to use a material having a high conductivity as a central material.
  • the innermost layer (central material) is a layer A having a positive magnetic permeability.
  • FIG. 3 shows a cross-sectional structure in the case where the magnetic permeability
  • the thicknesses of the layer A and the layer B are equal, and therefore the length L A1 of the long side (or short side) of the center layer A1 is set to 1.
  • the long side (or short side) length L B1 of the second layer B1 is 2, the long side (or short side) length L A2 of the third layer A2 is 3, and the long side (or short side) of the fourth layer B2 (or The length L B2 of the short side is 4.
  • the present invention has an advantage over the prior art if the thickness of the entire transmission line (long side (or short side)) is the same.
  • the smaller the number of layers the more the present invention is.
  • the superiority of the effect is high.
  • the present invention is highly effective in suppressing the skin effect even if the number of layers is small. Therefore, the effect can be obtained even if the number of layers is reduced compared to the prior art, and the structure can be simplified and manufactured. This is advantageous from an industrial point of view because it can be simplified, productivity can be improved, and manufacturing costs can be reduced.
  • the length L B2 of the long sides (or short side) of the fourth layer B2 is by a ⁇ (2 (n + 1)), the magnetic flux of the magnetic flux and the layer B2 of the layer A2 is canceled.
  • the same can be considered if the diameter is changed to the length in the formulas (1) to (3) described in the second embodiment.
  • of the magnetic permeability and the thickness t may be large in the adjacent central layer and small in the outer peripheral layer.
  • the transmission line according to the fourth embodiment has a rectangular cross-sectional shape
  • the transmission line according to the first embodiment and the second embodiment are similar to the transmission line according to the third embodiment.
  • it is thought that manufacture is difficult.
  • it is difficult to cancel the magnetic flux compared to a circular shape.
  • it can be produced by laminating films by changing the structure to be laminated in a one-dimensional direction, like a transmission line according to a fifth embodiment to be described later, such as printed circuit boards, integrated circuits, laminated chip components, etc. High compatibility in industrial applications.
  • the center points of the respective layers coincide with each other, the effect of suppressing the skin effect can be obtained isotropically, so that there is an advantage that the effect can be easily improved.
  • FIG. 5 is a cross-sectional structure diagram showing a cross-sectional structure of a transmission line according to the fifth embodiment of the present invention.
  • a material having a positive magnetic permeability is A
  • a material having a negative magnetic permeability is B
  • A1 and A2 are set in order from the layer closest to the center
  • B1 and B2 are set in order from the layer close to the center.
  • Each layer is symmetrically arranged in both the upper and lower directions with respect to the center. In this case, in the illustrated example, a horizontal plane (not shown) at the center in the vertical direction is a symmetrical plane.
  • the transmission line has at least one layer A and at least one layer B.
  • FIG. 5 shows a laminated structure in which the center is a plane of symmetry and the material A has two layers and the material B has two layers on one side.
  • the cross-sectional structure is a square, the basic concept is the same for a rectangle.
  • the innermost layer (center material) is the layer A having a positive magnetic permeability in FIG. 5, it may be a layer B having a negative magnetic permeability.
  • the conductivity of the material A and the material B it is more effective as described above to use a material having a high conductivity as a central material.
  • the thickness of the central material is the largest, if any of the materials is difficult to increase in thickness, the material can be easily manufactured by using a material that is likely to increase in thickness as the central material. On the other hand, if any of the materials is difficult to reduce in thickness, the material that is difficult to reduce in thickness is used as a central material, which facilitates production.
  • FIG. 5 shows a cross-sectional structure in the case where the magnetic permeability
  • the center side inside of the transmission line) ) Is thicker and the outer layer is thinner.
  • the present invention has an advantage over the prior art if the thickness of the entire transmission line is the same, and in particular, the smaller the number of layers, the higher the advantage of the present invention.
  • the present invention is highly effective in suppressing the skin effect even if the number of layers is small. Therefore, the effect can be obtained even if the number of layers is reduced compared to the prior art, and the structure can be simplified and manufactured. This is advantageous from an industrial point of view because it can be simplified, productivity can be improved, and manufacturing costs can be reduced.
  • the magnetic flux of the layer A2 and the magnetic flux of the layer B2 are offset. Also in this embodiment, the same can be considered if the radius is changed to the distance from the symmetry plane in the equations (1) to (3) described in the second embodiment, and the present invention is not limited to this condition. As shown in the above equation (4), the product of the absolute value
  • the transmission line according to the fifth embodiment has a laminated structure in cross section, it has very high suitability for industrial applications such as printed circuit boards, integrated circuits, and laminated chip parts. Compared to the transmission line according to the above embodiment, it can be manufactured by stacking films, and thus it is considered that the manufacturing is easy. However, it is difficult to cancel the magnetic flux as compared with circular, oval, square, and rectangular cross-sectional structures. Although the skin effect in the stacking direction can be suppressed, the skin effect in the direction perpendicular to the stacking direction cannot be suppressed. Also in this embodiment, since each layer is arranged vertically symmetrically with respect to the central plane on the cross section of the track, the effect of suppressing the skin effect can also be obtained vertically symmetrical, so there is an advantage that the effect can be easily enhanced. .
  • a method of manufacturing each layer by sputtering, vapor deposition, plating, photolithography, screen printing, etching, or the like can be considered.
  • the magnetic permeability characteristics of the material can be controlled by applying a magnetic field, applying a stress, or the like during or after film formation.
  • FIG. 6 is a cross-sectional structure diagram showing a cross-sectional configuration of a transmission line and a substrate according to a sixth embodiment of the present invention.
  • the cross-sectional configuration of the transmission line according to the sixth embodiment in FIG. 6 is such that the substrate S is disposed under the transmission line according to the fifth embodiment in FIG. It is configured by stacking sequentially.
  • the basic concept is the same as that of the transmission line according to the fifth embodiment.
  • An example adapted for industrial application such as a printed circuit board, an integrated circuit, and a laminated chip component described in the explanation of the transmission line according to the fifth embodiment is shown.
  • the contents described in the fifth embodiment can be applied to all other points except for the presence or absence of the substrate S.
  • FIG. 7 is a cross-sectional structure diagram showing a cross-sectional structure of a transmission line according to the seventh embodiment of the present invention.
  • a material having a positive magnetic permeability is A
  • a material having a negative magnetic permeability is B
  • the transmission line has at least one or more A and at least one or more B.
  • A1 and A2 are set in order from the layer closest to the center
  • B1 and B2 are set in order from the layer close to the center.
  • Each layer is disposed symmetrically in both the left and right directions with respect to the center.
  • the contents described in the fifth embodiment can be applied to all other points except for the difference in the stacking direction.
  • the present embodiment may be formed on the substrate S as in the sixth embodiment.
  • the surface of the substrate S may be a surface along the stacking direction of the present embodiment, or may be a surface orthogonal to the stacking direction.
  • FIG. 8 is a cross-sectional structure diagram showing a cross-sectional structure of a transmission line according to the eighth embodiment of the present invention.
  • a material having a positive magnetic permeability is A
  • a material having a negative magnetic permeability is B.
  • the basic concept is a structure in which the magnetic fluxes of adjacent layers are canceled out in accordance with the transmission line according to the third embodiment, the center layer of the transmission line is thicker and the outer layer is thinner. This is a feature of the present invention.
  • the cross-sectional structure is a checkered pattern. Although it is difficult to manufacture because the structure is complex, it is considered that the effect of canceling magnetic flux is higher than that of the transmission lines according to the third to seventh embodiments.
  • the transmission line of FIG. 8 can be formed on the substrate S as in the sixth embodiment.
  • a method for manufacturing a transmission line according to the eighth embodiment in FIG. 8 a method similar to a method for manufacturing a hologram or the like and using a three-dimensional patterning technique can be considered.
  • the magnetic permeability characteristics of the material can be controlled depending on manufacturing conditions and the like.
  • each layer may be formed using a two-dimensional patterning technique.
  • the above structure may be formed on the substrate S as in the sixth embodiment. Also in the present embodiment, the contents described in the fifth embodiment and the sixth embodiment can be similarly applied.
  • FIG. 9 is a plan structural view of a transmission line according to the ninth embodiment of the present invention when the substrate plane is viewed from above.
  • FIG. 10 is a cross-sectional structure diagram showing a cross section of a substrate at a hole portion formed on the substrate in a transmission line according to the ninth embodiment of the present invention.
  • the present embodiment relates to a transmission line in which a through hole (or via) hole H is formed in the substrate S and the inside thereof is connected.
  • a material having a positive magnetic permeability is A
  • a material having a negative magnetic permeability is B.
  • A1 and A2 are set in order from the layer closest to the center
  • B1 and B2 are set in order from the layer close to the center.
  • the transmission line has at least one layer A and at least one layer B.
  • FIG. 9 shows a structure in which the material A has two layers and the material B has two layers. In order to enhance the effect of the invention, it is conceivable to further stack a plurality of layers A and B.
  • the cross-sectional structure is circular, the basic concept is the same for an ellipse.
  • the center of the transmission line of FIG. 9 and FIG. 10 becomes the part of the hole H and is a cylindrical transmission line, it may be filled until the hole H is filled. In this case, the first and second embodiments are used. It becomes the same as the transmission line concerning.
  • the innermost layer is the layer A having a positive magnetic permeability, it may be a layer B having a negative magnetic permeability.
  • comparing the conductivity of the material A and the material B it is more effective in the same manner as described above to use a material having a high conductivity as a central material.
  • Each layer is arranged concentrically. It is a feature of the present invention that the center layer of the transmission line is thicker and the outer layer is thinner.
  • the thickness of the layer A is If
  • the present invention has an advantage over the prior art if the thickness of the entire cylindrical transmission line is the same.
  • the smaller the number of layers the higher the advantage of the present invention.
  • the present invention is highly effective in suppressing the skin effect even if the number of layers is small. Therefore, the effect can be obtained even if the number of layers is reduced compared to the prior art, and the structure can be simplified and manufactured. This is advantageous from an industrial point of view because it can be simplified, productivity can be improved, and manufacturing costs can be reduced.
  • the respective layers are sequentially stacked from the outside facing the hole H by a film forming method such as plating, vapor deposition, or sputtering.
  • a film may be formed by coating.
  • the magnetic permeability characteristics of the material can be controlled by the film forming conditions and the magnetic field application. Control is also possible by conditions such as application of a magnetic field during heat treatment after film formation.
  • the transmission line according to the ninth embodiment like the transmission lines according to the first and second embodiments, has a circular cross-sectional shape, so that the magnetic flux generation path matches the cross-sectional structure. Structurally, the effect of suppressing the skin effect is higher than that of an elliptical shape or a rectangular cross section like the transmission lines of the third to eighth embodiments. For other points, the contents described in the first embodiment and the second embodiment can be applied.
  • the cross-sectional structure of the transmission line is cited, but the cross-sectional structure is an example and is not limited. Although only the cross-sectional structure is described, a wiring board using a transmission line having the cross-sectional structure of the present invention, and a high-frequency device (inductor, capacitor, resistor, amplifier, filter, matching device, All high-frequency devices such as couplers or high-frequency circuits) are targeted.
  • FIG. 11 shows the frequency characteristics of the complex relative permeability of a magnetic material having uniaxial anisotropy.
  • the horizontal axis is the frequency f, and its unit is GHz.
  • the vertical axis represents the real part ⁇ r ′ and the imaginary part ⁇ r ′′ of the complex relative permeability ⁇ r , and their units are dimensionless.
  • the solid line of the graph shows the real part ⁇ r ′ of the complex relative permeability,
  • the broken line indicates the imaginary part ⁇ r ′′ of the complex relative permeability.
  • a magnetic material having uniaxial anisotropy is generally used as a high-frequency material, and an anisotropy magnetic field H k included therein determines the frequency characteristics of the complex relative permeability of the magnetic material. It has become.
  • the frequency characteristic of the complex relative permeability is expressed by the LLG equation.
  • the ferromagnetic resonance frequency fr is said to be larger as the anisotropic magnetic field Hk is larger, and the magnetic permeability (static relative permeability) is smaller as the anisotropic magnetic field is larger.
  • the materials A and B differ only in the anisotropic magnetic field Hk and H kA ⁇ H kB , ⁇ rA > ⁇ rB and f rA ⁇ f rB .
  • the frequency characteristics of the permeability can be controlled by the anisotropy field H k.
  • a material constituting the layer A having a positive magnetic permeability a material having high conductivity such as Cu, Al, Ag or an alloy thereof is preferably used, and a nonmagnetic material can be used. It may be.
  • a magnetic material such as NiFe, CoFeAlO, CoFeSiO 2 , CoPdSiO, or CoZrNb can be used as a material constituting the layer B having a negative magnetic permeability.
  • anisotropy field H k of the external magnetic field H of the material It is also possible to control by ext .
  • the magnetic permeability changes depending on the frequency, it is necessary to select a necessary magnetic material according to the frequency to be used (the specific frequency band).
  • various magnetic permeability can be selected by selecting various materials at the frequency to be used.
  • H k Even for the same magnetic material, by controlling the anisotropic magnetic field H k, it is possible to select various permeability.
  • a single magnetic material can be used as a positive magnetic permeability material or a negative magnetic permeability material by changing the strength of the anisotropic magnetic field. Having only one material is advantageous for simplifying the manufacturing process and reducing the manufacturing cost.
  • the anisotropic magnetic field can be controlled by setting contents of conditions such as ion irradiation and magnetic field application during film formation, and magnetic field application during heat treatment after film formation.
  • the direction of the anisotropic magnetic field is referred to as an easy magnetization axis
  • the direction perpendicular thereto is referred to as a hard magnetization axis.
  • the magnetization process in the easy axis direction is domain wall motion magnetization, and the magnetic susceptibility in the easy axis direction is zero at high frequencies. That is, the magnetic permeability in the easy axis direction is equal to the vacuum magnetic permeability, and the relative magnetic permeability is 1.
  • the magnetization in the direction perpendicular to the film surface has a relative permeability of approximately 1 because the demagnetizing field is large.
  • the magnetic thin film used at a high frequency shows the frequency characteristic of the complex relative permeability shown in FIG. 11 only in one axis direction which is the hard axis of magnetization, and the other axes (magnetization easy axis and film surface vertical axis) are The relative magnetic permeability is 1.
  • the transmission line of the present invention can be configured with both the x-axis and the y-axis.
  • the following manufacturing method can be used. First, a substrate is placed on a susceptor in a sputtering apparatus used for manufacturing a normal magnetic thin film, a magnet is placed around the film, and a film is applied in a state where a magnetic field is applied in a specific direction, or a subsequent heat treatment is performed. As a result, in the formed magnetic thin film, the easy magnetization axis and the hard magnetization axis are set to predetermined directions.
  • the easy axis and the hard axis of both layers can be changed by 90 degrees.
  • materials exhibiting negative permeability characteristics are currently limited to use in a frequency region (the specific frequency band) higher than the ferromagnetic resonance frequency of the magnetic material having the uniaxial anisotropy described above. Since the complex relative permeability of the magnetic material has frequency characteristics, designing the thickness of the negative permeability material and the positive permeability material layer based on the design method of the present invention has a specific frequency. Although it is possible only at the other frequencies, the magnetic permeability of the material changes at other frequencies, so the effect of the present invention cannot be obtained.
  • the transmission line of the present invention is a transmission line having a small resistance at a specific frequency and a large resistance at other frequencies.
  • a band-pass filter is obtained. Conversely, if the transmission line of the present invention is inserted in parallel in the circuit, a band stop filter is obtained. From FIG. 11, various material characteristics can be obtained by controlling the magnitude of the anisotropic magnetic field as described above from the frequency characteristics of the complex relative permeability of the magnetic material, and therefore the filter band can be arbitrarily set. Is possible.
  • the specific frequency at which the effect of the present invention can be obtained can be varied by the external magnetic field H ext . That is, it becomes a tunable filter by the external magnetic field H ext .
  • the anisotropic magnetic field H k of the magnetic thin film is changed. If this is utilized, the specific frequency with which the effects of the present invention can be obtained can be variably configured depending on the stress, and a tunable filter based on the stress can be obtained.
  • the transmission line of the present invention also functions as a magnetic field sensor and a stress sensor. To do. By applying this, it is also possible to detect all physical phenomena that generate magnetic fields and stresses.
  • FIG. 12 is a photograph showing a circuit pattern in the high-frequency device of this embodiment
  • FIG. 13 is a circuit diagram of this embodiment.
  • the white wiring shown in FIG. 12 is a transmission line and a high-frequency component, and a spiral inductor, a thin film capacitor, or the like is formed by the above-described transmission line.
  • FIG. 13 shows the function of each wiring pattern of FIG.
  • the transmission line formed in the circuit pattern is configured to function in a specific frequency band in which the positive magnetic permeability of the layer A and the negative magnetic permeability of the layer B are realized. That is, when the high-frequency device operates, a signal in the specific frequency band is passed through the transmission line.
  • the filter when the transmission line is used as a filter, the filter operates in a frequency region including the specific frequency band. Furthermore, when the transmission line is used as a sensor, a circuit portion for detecting a change in the specific frequency band or magnetic permeability is provided.
  • the transmission path and wiring board of the present invention, and the high-frequency device using them are not limited to the above illustrated examples, and various modifications can be made without departing from the scope of the present invention.
  • the description has been given on the assumption that the layer A having a positive magnetic permeability and the layer B having a negative magnetic permeability are each composed of a single material (single substance or compound).
  • Each layer A and B may be composed of a mixture or a sintered product obtained by dispersing or mixing two or more materials, or by changing the composition ratio of the additive material to the common base material. Alternatively, it may be composed of sintered or combined materials.
  • FIG. 16 is a cross-sectional structure diagram showing a cross-sectional structure of a transmission line according to the tenth embodiment of the present invention, which is based on the transmission line according to the first embodiment.
  • a material having a positive magnetic permeability is A and a material having a negative magnetic permeability is B, as in the transmission line according to the first embodiment.
  • A1 and A2 are set in order from the layer closest to the center
  • B1 and B2 are set in order from the layer close to the center.
  • the transmission line has at least one layer A and at least one layer B.
  • FIG. 16 shows a structure in which the material A has two layers and the material B has two layers. In order to enhance the effect of the invention, it is conceivable to further stack a plurality of layers A and B.
  • FIG. 16 shows the characteristics based on the transmission line according to the tenth embodiment, but the basic concept is the same for the transmission lines according to the first to ninth embodiments.
  • FIG. 16 shows a case where the magnetic permeability
  • the feature of the present invention is to increase the thickness of the layer B.
  • the outer diameter D B2 (its radius r B2 ) of the fourth layer B2 is 2.56, the magnetic flux of the layer A2 and the magnetic flux of the layer B2 are offset.
  • the ratio of the thicknesses of the respective layers is an example, and it is not necessary to completely cancel the magnetic fluxes of the adjacent layers as in this example, and the magnetic fluxes are reduced compared to the case of the prior art described below. The degree should be high.
  • the thickness of each layer is set so that the outer diameter 4 of the fourth outermost layer B2 matches the outer diameter 2.56 of the present embodiment.
  • the integrated value Ds of the induced electromotive force e of the prior art over the entire line cross section is larger than the index D of this embodiment (0 ⁇ D ⁇ Ds).
  • the index D of the present embodiment has a certain value because the number of stacks L is 4, but since it is an optimal design, it approaches 0 when the number of stacks L is increased.
  • the transmission line according to the tenth embodiment takes into account the difference in conductivity with respect to the transmission line according to the first embodiment, but the same applies to the transmission lines according to the second to ninth embodiments.
  • the effect of suppressing the skin effect can be enhanced.
  • the contents described in the first to ninth embodiments can be applied to other points.
  • the eleventh embodiment is based on the tenth embodiment shown in FIG. 16, and in particular, Cu is assumed for the material A having a positive magnetic permeability, and CoZrNb is assumed for the material B having a negative magnetic permeability. This assumes a magnetic material.
  • CoZrNb is a magnetic thin film having a zero magnetostriction composition, has uniaxial magnetic anisotropy, and is known as a material having negative permeability in a high frequency region.
  • Cu is used as a positive permeability material
  • the resistivity ⁇ P is 1.72 ⁇ 10 ⁇ 8 ⁇ m
  • rP 1.
  • CoZrNb is used as a negative permeability material
  • the resistivity ⁇ N is 100 ⁇ 10 ⁇ 8 ⁇ m
  • the permeability ⁇ N is given by the LLG (Landau-Lifschitz-Gilbert) equation.
  • the outer diameter D A1 (its radius r A1 ) of the center layer A1 is 1
  • the outer diameter D B1 (its radius r B1 ) of the second layer B1 is By setting 1.0054, the magnetic flux of the layer A1 and the magnetic flux of the layer B1 are offset.
  • the outer diameter D A2 (its radius rA2) of the third layer A2 is 1.4207
  • the magnetic flux of the layer B1 and the magnetic flux of the layer A2 are offset.
  • the outer diameter D B2 (its radius rB2) of the fourth layer B2 is 1.4245, the magnetic flux of the layer A2 and the magnetic flux of the layer B2 are offset.
  • the fifth layer is 1.7430
  • the sixth layer is 1.7461
  • the seventh layer is 2.0145
  • the eighth layer is 2.0172.
  • the effect when applied to a coaxial transmission line was calculated by electromagnetic field simulation using a three-dimensional finite element method, and the size of the insertion loss was evaluated.
  • the inner conductor has a diameter of 10 ⁇ m, and the inner diameter of the outer conductor is 23 ⁇ m in order to set the characteristic impedance of the coaxial line to 50 ⁇ .
  • the loss rate was evaluated from the relationship of the magnitude of output power with respect to input power, with the line length of the transmission line being 100 ⁇ m.
  • FIG. 17 shows the frequency characteristics of the loss rate of the transmission line according to Embodiment 11 of the present invention.
  • Line A is a result of a transmission line having only a Cu conductor
  • Line C 4 is a result of applying the transmission line structure of the present invention to a four-layer laminated structure
  • Line C 8 is a result of applying the transmission line structure of the present invention.
  • the result is an eight-layer structure.
  • FIG. 17 shows that the transmission line LineA having only the Cu conductor has a small loss at a low frequency, but the loss tends to increase due to the skin effect as the frequency becomes high.
  • the transmission lines of Line C4 and Line C8 of the present invention show the minimum loss near the design frequency of 3 GHz because the CoZrNb permeability changes depending on the frequency, and it can be seen that the effect of the present invention is obtained. Since the magnetic permeability is different at other frequencies, the dimensions of each designed layer are incompatible.
  • the transmission line of LineC8 when paying attention to the characteristic of the transmission line of LineC8, it turns out that the loss is lower than the transmission line of only the Cu conductor in the vicinity of the frequency of 3 GHz.
  • the transmission line structure of the same diameter is configured using CoZrNb having a higher resistivity than Cu, the transmission line of Line A is affected by the skin effect even though the DC resistance value is very large.
  • the line C8 transmission line has the skin effect at 3 GHz at the minimum, but the superiority of the transmission line of the present invention can be obtained in the overall evaluated loss size.
  • the frequency characteristics of the loss rates of the transmission lines of LineC4 and LineC8 are optimally designed at a frequency of 3 GHz, but it can be seen that the actual minimum peak of loss is slightly higher than 3 GHz. .
  • the CoZrNb magnetic material having negative permeability has a complex relative permeability based on the LLG equation and has an imaginary component (corresponding to loss) of the permeability.
  • the imaginary component tends to decrease with respect to the frequency. Therefore, the loss due to the imaginary component of the magnetic material increases as the frequency decreases and decreases as the frequency increases.
  • the minimum peak of the loss is higher than the optimum design frequency of the skin effect. Therefore, when designing an optimum loss, it can be said that a high effect can be obtained by adopting a magnetic material parameter having a frequency slightly lower than the frequency that optimally suppresses the skin depth.
  • the second invention is not limited to the tenth embodiment and the eleventh embodiment, and various modifications can be made without departing from the scope of the second invention.
  • various modifications can be configured in the same manner as in the first to ninth embodiments, starting with the matters described in the column of the other embodiments.
  • various cross-sectional structures of the transmission line shown in the first to ninth embodiments can be applied, but the cross-sectional structure in this case is also an example and is not limited.
  • the second invention also includes a wiring board using a transmission line having the cross-sectional structure, and a high-frequency device (inductor, capacitor, resistor) using the same. , Amplifiers, filters, matching devices, high-frequency devices such as couplers, or high-frequency circuits).

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

【課題】表皮深さに起因する挿入損失を抑止することができる伝送線路を提供する。また、この性質を利用した付加価値のある伝送線路を提供する。 【解決手段】伝送線路は、正の透磁率を有する導体層Aと、負の透磁率を有する導体層Bとにより構成されている。層Aと層Bの厚さは、隣り合う層の磁束が減殺(相殺)されるように厚さを設定される。磁束密度は中心位置からの距離により分布があり、中心ほど小さく、外側ほど大きいため、層の厚さを中心ほど厚く、外側ほど薄くすることにより、磁束の相殺効果を高めることができる。配線基板は、基板と基板の表面上に設けられた伝送線路とを備え、当該伝送線路は上述の伝送線路により構成される。高周波装置は、伝送線路を備え、当該伝送線路は上述の伝送線路により構成される。

Description

伝送線路及び配線基板、並びに、これらを用いた高周波装置
 本発明は、伝送線路及び配線基板、並びに、これらを用いた高周波装置に関するものである。
 電磁波を伝送する伝送線路としては、金属の鋼管である導波管、あるいは、誘電体である配線基板上に設けられたストリップ線路や表面波線路等が開発されている(例えば、特許文献1参照)。これらの伝送線路は、通信や放送などの送受信機(例えば、航空路監視レーダ)等に用いられており、一般的に導体のみで形成されている。
 このような伝送線路では、電磁波の周波数が高くなればなるほど、電流は導体表面に集中し、その電流が流れる表皮深さδ(δ=√(1/πfμσ)、f:周波数、μ:透磁率、σ:導電率)は小さくなる。これは、高周波において実質的に伝送線路の抵抗が増加すること、さらに、伝送線路を太くすることによる抵抗の低減が直流や低周波の場合のように効果的でなくなることを意味する。
 このような表皮深さの減少による伝送線路の抵抗の増加を抑制するため、負の透磁率材料を用いた伝送線路構造が提案されている(例えば、特許文献2および非特許文献1参照)。
特開2001-53509号公報 特開2010-21703号公報
山口正洋、島田寛、稲垣孝嘉、Behzad REJAEI:負透磁率強磁性体と導体との多層膜によるRFデバイスの表皮効果抑制法、MWE 2008 Microwave Workshop Digest、WS8-3、pp.207-210 (2008)
 前述のように導体のみで形成された伝送線路を用いた場合には、表皮深さδ(δ=√(1/πfμσ)、f:周波数、μ:透磁率、σ:導電率)は、導体の透磁率(比透磁率)μが1であるため、周波数f及び導電率σにより決定され、周波数fが高くなるほど小さくなる。したがって、周波数fが高くなるほど、電気抵抗が高くなり、挿入損失が大きくなってしまう。例えば、高い導電率を有する導体である銅を用いた場合でも、周波数が10GHzで表皮深さは0.65μmとなるため、導体のほとんどの部分に電流が流れない。
 上記に対して、表皮深さに起因する挿入損失を抑止することを目的として、正の透磁率材料と負の透磁率材料とを積層する構造が提案されている(非特許文献1参照)。
 上記従来技術では、正の透磁率材料と負の透磁率材料とを、それぞれの透磁率の大きさに応じて、それぞれの積層厚さを設計し、透磁率の大きさと層の厚さの積を等しくする手段により、表皮深さに起因する挿入損失が抑制される。
 ただし、上記の手段は、積層数を増やし、薄膜を多層化することにより挿入損失抑制の効果が高められるが、積層数が少ない場合にその効果が低い。
 その原因は、積層厚さを透磁率のみに依存して設計しているためであり、伝送線路内の磁界分布及び磁束密度分布を考慮せずに設計しているため、挿入損失の増大の原因となる磁束を打ち消すことができないためである。
 本発明は上記に鑑みてなされたものであり、その目的は、表皮深さに起因する挿入損失を効果的に抑止することができる伝送線路及び配線基板、並びに、これらを用いた高周波装置を提供することである。
 本発明に係る伝送線路及び配線基板並びに高周波装置は、上記の目的を達成するために、以下の伝送線路構造の構成により、課題を解決する。
 本発明の一つの実施の形態に係る第1の特徴は、伝送線路において、正の透磁率を有する層と、負の透磁率を有する層とを備え、前記伝送線路は、前記正の透磁率を有する層に発生する磁束と、前記負の透磁率を有する層に発生する磁束とが互いに打ち消し合う層の厚さで構成される。発生する磁束Φは、磁束密度Bとその面積ベクトルAとの内積B・Aで求めることができる。磁束とその面の法線ベクトルのなす角θとすると、磁束Φ=BAcosθとなる。磁束密度Bが位置により値が変化する場合には、積分によりΦ=∫B・dAにより求められる。また、磁束密度Bは、磁界の強さHとその空間(材料)の透磁率μの積μHで求められる。
 以上のことから、ある断面を通過する磁束は、Φ=∫μH・dAで求めることができ、その断面において磁束が打ち消し合うようにするためには、正の透磁率材料の厚さt(面積A)と、その透磁率の大きさμと、その磁界の強さHによる磁束の積分値をΦとし、負の透磁率材料の厚さt(面積A)と、その透磁率の大きさμと、その磁界の強さHによる磁束の積分値Φとすると、|Φ|=|Φ|とすることが望ましい。これにより、磁束が相殺されるため、電磁誘導による誘導起電力が発生せず、表皮効果が発生しない。
 |Φ|=|Φ|となる適切な材料厚さを選択するためには、その材料の透磁率と、その位置の磁界の強さを考慮した設計が必要である。従来技術では、磁界の強さの分布を考慮せず、μの絶対値とtの積と、μの絶対値とtの積が等しくなることのみを考慮していた。すなわち、|μ|・tp=|μ|・tとなるように設定していた。しかし、この設定では、磁界の強さが位置により変化すること、より具体的には、線路断面の中心側から外周側に向かうほど磁界が強くなることを考慮していないため、磁束の打ち消し作用を十分に得ることができなかった。
 上記実施の形態では、磁界の強さが位置により分布することを考慮し、Φ=∫μ・dAと、Φ=∫μ・dAとが等しくなるように、材料の厚さt、tを決定する。具体的には、一般的に磁界の強さHは、伝送線路の内部において、中心に近いほど小さく、外側に近いほど大きくなる。このため、設定する材料の厚さは、中心に近いほど厚く、外側に近いほど薄くし、どの位置でも磁束の相殺が成り立つように、設定すべきである。
 上記第1の特徴を考慮して、本発明では、内側(又は中心側)に配置される層における透磁率の絶対値と厚さの積が、隣の外側(又は外周側)に配置された層における透磁率の絶対値と厚さの積よりも大きくなるように構成している。これにより、上記従来技術において|μ|・tp=|μ|・tに設定した場合よりも磁束の打ち消し効果が高められる。すなわち、本発明の伝送線路は、特定の周波数帯域において正の透磁率(μ)を有し第1の厚さ(t)を備えた第1の層(P)と、前記特定の周波数帯域において負の透磁率(μ)を有し第2の厚さ(t)を備えた第2の層(N)とを具備し、前記第1の層(P)と前記第2の層(N)が線路断面の内側より外側に向けて交互に配置され、隣り合う前記第1の層(P)と前記第2の層(N)のうち、前記内側に配置された一方の層(P又はN)における前記透磁率の絶対値(|μ|又は|μ|)と厚さ(t又はt)との積が、前記外側に配置された他方の層(N又はP)における前記透磁率(|μ|又は|μ|)と厚さ(t又はt)との積より大きいことを特徴とする。
 本発明において、前記第1の層(P)と前記第2の層(N)の積層構造を有することが好ましい。両層が積層されることで磁束の減殺作用が高められるとともに製造も容易になる。
 本発明において、前記第1の層(P)と、前記第2の層(N)のどちらか少なくとも一方の層、或いは両方の層が、中心に近い層ほど厚く、外側に近い層ほど薄くなるように構成されることが好ましい。本発明では、第1の層(P)と第2の層(N)のそれぞれの層間では必ず内側の層が厚くなり外側の層が薄くなる。また、両層の透磁率の絶対値の差が或る程度小さければ、全ての層について、全体として内側から外側へ向けて薄くなるように構成される。
 本発明において、前記第1の層(P)と前記第2の層(N)のうちの導電率の高い方の層が前記線路断面の中心部に配置されることが好ましい。中心部に配置される層は最も厚く構成できるため、上記構成によって伝送線路の電気抵抗を低減できる。
 本発明において、前記第1の層(P)と前記第2の層(N)のうちの前記特定の周波数帯域における前記透磁率の絶対値(|μ|と|μ|)の大きい方の層が前記線路断面の中心部に配置されることが好ましい。これにより表皮効果の抑制作用を高めることができ、高周波領域の電気抵抗や損失を低減できる。
 本発明において、隣り合う前記第1の層(P)と前記第2の層(N)の前記厚さ(t、t)は、前記第1の層(P)に発生する磁束と前記第2の層(N)に発生する磁束とが相互に打ち消し合う値とされることが好ましい。これによれば、前述のように、磁界の強さの分布に応じて表皮効果の抑止作用を大きく高めることができる。
 本発明において、前記線路断面が円形又は楕円形であることが好ましい。この場合に、前記線路断面において前記第1の層(P)および前記第2の層(N)が円形又は楕円形の断面形状を有するとともにこれらの断面形状が相互に同心状に形成されることがさらに望ましい。
 本発明において、前記線路断面が正方形又は長方形であることが好ましい。この場合に、前記線路断面において前記第1の層(P)および前記第2の層(N)が正方形又は長方形の断面形状を有するとともにこれらの断面形状の中心が前記線路断面の中心と一致することがさらに望ましい。
 次に、本発明の配線基板は、上記のいずれかに記載の伝送線路が基板上に形成されることを特徴とする。
 また、本発明の高周波装置は、上記のいずれかに記載の伝送線路が含まれることを特徴とする。この場合において、上記伝送線路は上記特定の周波数帯域で動作する。
 材料の透磁率と厚さの関係のみを考慮した従来技術に対して、本発明は伝送線路内部の位置により磁界の強さが異なる場合に有効である。なお、本発明は、伝送線路断面において、中心から2次元方向に積層構造を有する構造の場合は、円形、楕円形、正方形、長方形、その他の多角形などすべての形状に対して該当する。また、2次元方向の積層だけでなく、1次元方向のみ積層した断面構造にも有効である。さらに、2種類およびそれ以上の材料を積層する構造だけでなく、その原理から、1材料の中にもう1種類の材料を分散させ、その密度により透磁率を変化させる構造にも有効であり、その場合も位置による磁界の強さの分布に応じて、磁束が減殺(好ましくは相殺)されるように、透磁率と材料の体積・厚さを決定することが有効である。
 本発明の別の実施の形態に係る第2の特徴は、上記の特徴を有する伝送線路が、フィルタ効果を有することである。また、このフィルタ特性の帯域をチューナブルとして変化させることもできる。これに付随して、磁界センサ、応力センサ、および、その他各種センサとしての機能も有する。
 本発明で使用する材料の透磁率μは材料により異なり、等方性材料もあれば、異方性材料もある。一般的には、x軸、y軸、z軸の3方向のテンソル行列で表される。さらに、周波数によって透磁率が変化する特性もある。また、この透磁率は、一般に複素数で表現され、その実部はいわゆる有効な透磁率であり、その虚部は損失に相当する成分となる。透磁率は、使用する周波数によってその値が異なる。特に、高周波磁性材料の中には、一軸異方性あるいは一方向異方性を有する材料が知られており、これらの透磁率テンソル行列は、その対角成分(すなわち各方向の透磁率)のうち、ある一軸方向の透磁率のみ特定の透磁率を有し、それ以外の方向の透磁率は真空と同等で比透磁率1として振る舞う。
 上記高周波磁性材料のある一軸方向の透磁率が示す特定の透磁率とは、周波数特性を有する透磁率であり、その多くはLLG(ランダウ・リフシッツ・ギルバート)方程式に従うとされている。例として、図11にLLG方程式により算出される透磁率の周波数特性の例を示す。
 高周波磁性材料の透磁率は、その実部は、強磁性共鳴(磁気共鳴)周波数に近づくと、若干大きくなり、強磁性共鳴周波数で0となり、それより高周波(上記特定の周波数帯域)では負の透磁率を示し、極小値を示し、さらに高い周波数になると比透磁率が+1(すなわち真空の透磁率)に漸近していく。当該材料を上記第2の層(N)として用いる場合は、上述のように負の透磁率を有する周波数帯域が上記特定の周波数帯域となる。
 一方、高周波磁性材料の透磁率の虚部は、強磁性共鳴周波数で極大ピーク値を示し、それより低い周波数、および、それより高い周波数(上記特定の周波数帯域)では、値が小さくなる。この虚部は、前述の通り、損失を表すものである。
 さらには、この高周波磁性材料に外部から磁界を印加すると、その印加磁界の大きさによって、強磁性共鳴周波数が変化するとともに、透磁率の大きさも変化する。
 高周波磁性材料の一軸異方性の起源となっているのは、材料内部の異方性磁界によるものである。この異方性磁界と同じ方向に外部磁界を印加した場合、異方性磁界が強められる方向に作用し、外部磁界が大きくなるほど、強磁性共鳴周波数は高くなり、透磁率の大きさは小さくなる。逆に、異方性磁界と異なる方向(例えば垂直方向)に外部磁界を印加した場合、外部磁界が大きくなるほど、強磁性共鳴周波数は低くなり、透磁率の大きさは小さくなる。いずれにおいても、外部磁界の印加により、透磁率を変化させることが可能である。
 また、高周波磁性材料の異方性磁界は、内部応力にも起因しており、正磁歪材料か負磁歪材料かにより逆の関係であるが、外部から応力を印加することにより、異方性磁界が変化し、その結果、強磁性共鳴周波数が変化し、透磁率を変化させることが可能である。
 以上の性質により、本発明の伝送線路がフィルタ特性を有することを次のように説明できる。透磁率が周波数によって変化するため、ある周波数で正の透磁率材料と負の透磁率材料の厚さ(体積)を、磁束が減殺(相殺)されるように決定した場合、その他の周波数では、透磁率が変わるため磁束が減殺(相殺)されなくなる。したがって、ある周波数では、表皮効果が抑制され、抵抗が小さい伝送線路となるが、それ以外の周波数では、表皮効果が発生し、その影響により抵抗が大きい伝送線路となるため、周波数によって抵抗が異なる伝送線路であると言える。
 これを回路に直列に挿入すれば、ある特定周波数帯が通過しやすいバンドバスフィルタとなり、並列に挿入すれば、ある特定周波数帯が阻止されるバンドストップフィルタとなる。
 また、外部磁界の印加により透磁率が変化する性質を利用すれば、この通過帯域または阻止帯域を変化させることができる。したがって、外部磁界によるチューナブルフィルタになると考えられる。印加する外部磁界は、近傍に永久磁石を配置するか、または、近傍に配線コイルを置き電流を流すことによる磁界印加を行えば可能である。
 逆に、ある特定周波数における磁束の減殺(相殺)の設計が、製作プロセス等により設計通りに実現できなかった場合、表皮効果抑制が不十分となるが、外部磁界により設計の不具合を製作後に補正することもできる。
 さらには、外部磁界の印加により透磁率が変化する性質を逆手に取れば、本発明の伝送線路は、磁界センサとしても機能する。あるいは、間接的に磁界変化を生じる様々な現象に適用可能な各種センサとして機能する。
 また、外部応力の印加により透磁率が変化する性質を利用すれば、外部磁界の印加と同様に、通過帯域または素子帯域を変化させることができる。外部応力によるチューナブルフィルタになると考えられる。印加する応力は、MEMS技術等により、磁性薄膜に応力を発生させれば可能である。
 逆に、ある特定周波数における磁束の減殺(相殺)の設計が、製作プロセス等により設計通りに実現できなかった場合にも、外部磁界の印加と同様に、外部応力により設計の不具合を製作後に補正することもできる。
 さらには、外部応力の印加により透磁率が変化する性質を逆手に取れば、本発明の伝送線路は、応力(歪)センサとしても機能する。あるいは、間接的に応力変化を生じる様々な現象に適用可能な各種センサとして機能する。
 本発明のさらに別の実施の形態に係る第3の特徴は、1種類の磁性材料でも本発明の伝送線路を実現可能なことである。上述のように、高周波磁性材料は、透磁率が周波数によって変化する。また、その周波数特性(強磁性共鳴周波数および透磁率の大きさ)は、内部の異方性磁界により決定される。このことから、磁性材料が1種類であっても、製造プロセスにおいて、異方性磁界が異なるように製造することができる。そうすれば、透磁率を変えることができるため、正の透磁率材料にも負の透磁率材料にもなり、1種類の磁性材料で本発明の伝送線路を実現できる。これにより、コストの低減、製造プロセスの簡易化、無駄な材料を排出しないなどの付加価値が得られる。
 本発明の他の実施の形態に係る第4の特徴は、通常の高周波磁性薄膜は負の透磁率を有するのは1軸方向のみであるため、1軸方向に沿った伝送線路しか本発明の効果が得られないのに対し、2軸方向の伝送線路に対して双方で本発明の効果が得られるものである。上述のように高周波磁性薄膜は、1軸方向では特定の(LLG方程式等で表現できる)透磁率特性を有するが、他の軸方向では、比透磁率が+1(真空の透磁率と同等)であり、負の透磁率を実現できない。
 本発明では、1つの高周波磁性材料を1軸方向(例えばX軸)に負の透磁率を示すように第1の材料として使用し、もう1つの高周波磁性材料(同じ材料でも構わない)を他の軸方向(例えばY軸)に負の透磁率を示すように第2の材料として使用する。これにより、X軸方向では、第1の材料が負の透磁率材料となり、第2の材料が正の透磁率材料となる。Y軸方向では、第1の材料が正の透磁率材料となり、第2の材料が負の透磁率材料となる。それぞれの軸方向に対して、磁束が減殺(相殺)されるように設計すれば、2軸方向の伝送線路の両方で本発明の効果が得られる。
 このための設計としては、負の透磁率の値が、比透磁率-1となるものを選択することが好ましい。なぜなら、正の透磁率は、上記高周波磁性材料の比透磁率が+1となる軸を利用するためである。1度の製造プロセスで作製される伝送線路のX軸、Y軸の両方において、同じ材料構成となるため、本設計は製造容易性やコスト低減の観点等で高い効果を奏する。
 次に、正の透磁率材料の抵抗率ρ若しくは導電率σと、負の透磁率材料の抵抗率ρ若しくは導電率σとを考慮した第2の発明について説明する。
 この第2の発明は、表皮深さに起因する伝送線路の挿入損失を抑止するため、表皮深さの減少を防ぐことが目的であり、表皮深さの減少は、伝送線路内部に発生している交流磁束Φにより、ファラデーの電磁誘導の法則に応じて、誘導起電力eが発生することが原因である。ファラデーの電磁誘導の法則によれば、任意の閉曲線に沿って発生する誘導起電力eの大きさは、閉曲線内部の磁束の時間的変化dΦ/dtで表され、その方向は、レンツの法則により、磁束の変化を妨げる方向に発生する。
 したがって、一般的にe=-dΦ/dtと表現される。任意の閉曲線内部の磁束を0、または、できるだけ小さくすることにより、誘導起電力eの発生を抑制でき、表皮深さの減少を防ぐことができる。
伝送線路内部の任意の位置での誘導起電力eの大きさは、次のように導出される。
 図14に、伝送線路の断面における、電流密度J、磁束密度B、起電力eの関係を示す。導体内部に電流Iが電流密度Jで流れるとき、その電流Iにより周囲に磁界Hが生じる。磁界Hは、アンペールの周回路の法則により、伝送線路中心から半径rの距離の円周上には、右ねじ方向に、その円周の内部電流Iを円周の長さ2πrで除した大きさの磁界H=I/2πrで発生する。つまり、磁界Hは半径rの関数となる。特に、アンペールの右ねじの法則およびその対称性により、磁界Hは奇関数となるため、H(r)=-H(-r)となる。なお、内部電流Iは、電流密度Jが一様であればJπrとなり、一様でない場合は電流密度Jとその通過断面積Aの積分により、I=∫JdAで求めることができる。磁界Hが得られると、磁束密度B=μHであるから、磁界Hにその位置の材料の透磁率μを乗じることにより、求めることができる。
 本発明においては、正の透磁率材料の層(P)と負の透磁率材料の層(N)とを積層させた伝送線路を用いるため、隣り合う層の磁束密度Bは、互いに逆方向となり、磁束が打ち消しあう。磁束密度Bは、磁界Hと同様に対称性を有し、奇関数となるため、B(r)=-B(-r)となる。
 上記により、半径rの位置での誘導起電力は、図14において、積分経路LOOP1と積分経路LOOP2の合成電界として得ることができる。積分経路LOOP1は半径rの位置から負方向に導体表面r=-rlineまでの経路で積分し、積分経路LOOP2は半径rの位置から正方向に導体表面r=+rlineまでの経路で積分する。なお、導体表面より外側の経路については、外側が絶縁性の空間であることから、発生した誘導起電力eは、その経路において絶縁性の空間部分に集中するため、導体部分には電界を生じないので、考慮しなくて良い。
 それぞれの積分経路の閉曲線内部の磁束Φは、磁束密度Bとその通過断面積(伝送線路長さl×微小区間drであり、計算の都合上、単位長さ当たりで求めるとdrとなる)の積分により、Φ=∫Bdrにより求めることができる。
 積分経路LOOP1により発生する誘導起電力eは、その内部の磁束の時間的変化を打ち消す場合に、半径rの位置において電流Iと逆向きになる方向(逆位相)に発生する。積分経路LOOP2により発生する誘導起電力eもまた、同様の方向に発生する。
 なお、積分経路LOOP1の閉曲線内部の磁束Φは、磁束密度Bが奇関数であるため、B(r)=-B(-r)により、位置-rから+rの区間で相殺されるので、-rから負方向に-rlineまでのみを考慮すれば良い。すると、積分経路LOOP1により発生する誘導起電力eは、積分経路LOOP2により発生する誘導起電力eと等しい大きさとなるため、積分経路LOOP2で求められる誘導起電力の2倍の値となる。つまり、誘導起電力を求める位置rに対して、その位置よりも外側の導体表面までの積分経路の磁束の時間的変化による誘導起電力を求め、2倍すれば良い。
Figure JPOXMLDOC01-appb-M000001
 上式より、この積分区間の磁束をより小さくすることが、表皮深さの減少を防ぐことができ、本発明の効果の指標として見做すことができる。
 従来技術では、正の透磁率材料の層(P)と負の透磁率材料の層(N)について、それぞれの透磁率の大きさに応じて、それぞれの積層厚さを設計し、透磁率の大きさと層の厚さの積を等しくする手段により、表皮深さに起因する挿入損失が抑制される。
 つまり、正の透磁率材料の透磁率μ=μ・μrP、その層の厚さをtとし、負の透磁率材料の透磁率μ=μ・μrN、その層の厚さをtとした場合、|μ|t=|μ|tとすることが述べられている。なお、μは真空透磁率、μrPおよびμrNは、各材料の比透磁率である。
 ただし、上記手段は、積層厚さを透磁率のみに依存して設計しており、材料の抵抗率ρ及び導電率σと、伝送線路内の磁界分布及び磁束密度分布を考慮せずに設計しているため、挿入損失の増大の原因となる磁束を十分に打ち消すことができない。
 ここで、正の透磁率材料の抵抗率ρ、導電率σとし、負の透磁率材料の抵抗率ρ、導電率σとし、説明の都合上、2つの材料の抵抗率の比ρNP=ρ/ρ=σ/σ、同透磁率の大きさの比|μNP|=|μ|/|μ|=|μrN|/|μrP|とする。これらのパラメータを用いて、伝送線路の内部の電流密度J、電流I、磁界H、磁束密度B、磁束Φ、誘導起電力eを導出し、誘導起電力eをできるだけ小さくする積層厚さを設計することが本発明の特徴である。
 以下に、円形断面構造(同心円構造)を有する積層伝送線路を例として、積層厚さの最適化の手順を記述する。まず、積層構造は、最も内側の中心材料(第1層)は、正の透磁率材料の層(P)であっても負の透磁率材料の層(N)であっても構わないが、内側の層ほど厚くなる本発明の理論に基づき、抵抗率の低い材料を内側にすることが好ましい。
 一般的には、正の透磁率材料の方が負の透磁率材料よりも抵抗率が小さいこと(ρ<ρ、ρNP>1)が多いため、ここでは、正の透磁率材料を最も内側の中心材料(第1層)とし、その外側の材料(第2層)を負の透磁率材料とする。以降、交互に積層することで伝送線路を構成する。
 第1層の正の透磁率材料の層(P)の厚さをtP1とし、外径の半径をrP1=tP1とする。第2層の負の透磁率材料の層(N)の厚さをtN1とし、外径の半径をrN1=rP1+tN1とする。第3層の正の透磁率材料の層(P)の厚さをtP2とし、外径の半径をrP2=rN1+tP2とする。第4層の負の透磁率材料の層(N)の厚さをtN2とし、外径の半径をrN2=rP2+tN2とする。以降、同様に各層の厚さtおよび外径の半径rを定めるものとする。
 まず、伝送線路内部の電流密度Jを求める。伝送線路に印加される電界Eは、最終的に生じる誘導起電力eを除けば一定であるはずなので、J=E/ρ=σEにより、各材料を流れる電流密度Jを求める。したがって、電流密度は、各材料の抵抗率ρ及び導電率σによって決定し、同一材料内は均一な電流密度となると仮定する。ただし、最終的な誘導起電力eを考慮してフィードバックし、印加電界Eと誘導起電力eを合成した電界により電流密度を求めることが、最終的な最適解に結びつくと考えられる。
 次に、磁界Hを求めるための電流Iを求める。同心円導体の場合、磁界Hは半径rの円周上で一定となるため、アンペールの法則より、半径rの円の内側を流れる電流を算出する。半径rの円形の内部の電流Iを、上記電流密度Jとその断面積Aから計算する。第n層目の電流Iは、i番目の材料の電流密度Jおよびその断面積A=πr -πri-1 の積について、i=1からnまでの総和により求まる。
Figure JPOXMLDOC01-appb-M000002
 なお、正の透磁率材料の電流密度J=E/ρ=1と仮定すると、負の透磁率材料の電流密度がJ=E/ρ=E/(ρNP・ρ)=1/ρNPとなることを用いると、次のように各半径rでの電流I(r)が求まる。
Figure JPOXMLDOC01-appb-M000003
 以上のことから、各層の外径の半径をrP1、rN1、rP2、rN2、・・・として、電流Iを求めると、内側からk番目の正の透磁率材料の層(P)の外径の半径rPkより内側の電流I(rPk)、内側からk番目の負の透磁率材料の層(N)の外径の半径rNkより内側の電流I(rNk)は次の式で求められる。
Figure JPOXMLDOC01-appb-M000004
 上記電流Iに基づき、アンペールの法則により、磁界Hを求める。半径rの円周上の磁界Hは、磁界Hと円周長さ2πrの積が、その内部の電流Iと等しい関係から、H=I/2πrにより求まる。このとき、磁界Hはrの関数として表され、電流Iは上記で得られる値を用いる。
Figure JPOXMLDOC01-appb-M000005
 以上のことから、各層の外径の半径をrP1、rN1、rP2、rN2、・・・として、磁界Hを求めると、内側からk番目の正の透磁率材料の層(P)層の半径rPkの磁界H(rPk)、内側からk番目の負の透磁率材料の層(N)の半径rNkの磁界H(rNk)は次の式で求められる。
Figure JPOXMLDOC01-appb-M000006
 次に、上記磁界Hより、磁束密度Bを求める。磁束密度B=μHである。従って、上記の磁界Hにその材料の透磁率μを乗じることにより、磁束密度Bが求まる。磁束密度Bも磁界Hと同様にrの関数となる。正の透磁率材料の層(P)か負の透磁率材料の層(N)かによって、磁束密度の方向が+か-か決まる。
 最後に、磁束Φおよび誘導起電力eを求める。半径rの位置での誘導起電力は、上記のように、積分経路LOOP2で求められる誘導起電力の2倍の値となることから、次式を適用して求まる。
Figure JPOXMLDOC01-appb-M000007
 つまり、誘導起電力を求める半径rの位置よりも外側における磁束の積分値の大きさを小さくすることが、誘導起電力の大きさを小さくし、表皮深さの減少を防ぐことがわかる。なお、半径rの外周側の全磁束に対して行われる時間微分は、電界Eの周波数fによって定まる2πfの係数をもたらす。
 次に、上記誘導起電力eの大きさを伝送線路全体について評価するために、誘導起電力eの影響の程度或いは表皮深さの減少の程度を伝送線路全体について示すことができる指標Dを設定する。この指標Dは、一般的には伝送線路の全線路断面Csにわたって上記の誘導起電力eを積分した値であり、例えば、上記の説明のように伝送線路が円形断面構造(同心円断面構造)を有する場合には、以下の式によって求めることができる。
Figure JPOXMLDOC01-appb-M000008
 上記指標Dは、上述のように、正の透磁率材料の層(P)の透磁率μ、抵抗率ρ又は導電率σ、厚みtPk(或いは、外径rPk)、負の透磁率材料の層(N)の透磁率μ、抵抗率ρ又は導電率σ、厚みtNk(或いは、外径rNk)に基づいて算出することができる。そして、この指標Dを、上記従来技術の伝送経路の指標Dsと比較する。すなわち、この比較対象となる指標Dsは、伝送線路が正の透磁率材料の層(P)と負の透磁率材料の層(N)が交互に積層されてなる場合の全積層数L(=2n又は2n-1)と、当該伝送線路の外径rlineとを同じに設定するとともに、上述のように全ての層の透磁率の絶対値と厚みの積が一定である条件(|μ|・t=|μ|・t)下における値である。そして、D<Dsであれば、上記従来技術の対応する伝送線路よりも誘導起電力eの影響が小さく、表皮深さの減少も抑制できることが判る。なお、上述の説明では正の透磁率材料の層(P)を内側(中心側)に配置しているが、逆に負の透磁率材料の層(N)を内側(中心側)に配置する場合には、順番の前後を考慮することにより上記と同様に誘導起電力eや指標D、Dsを計算することができる。また、正の透磁率材料の層(P)と負の透磁率材料の層(N)のうちの少なくとも一方の層が異なる材料で構成された二種類以上の材料のいずれかで構成され、合計で三種類以上の層からなる積層構造を有する場合には、当該三種類以上の各層の透磁率をそれぞれ該当する材料の透磁率に設定して上述の計算をすればよい。
 次に、伝送線路の最適設計の手法について説明する。伝送線路を最適に設計するためには、正の透磁率材料(P)の層の磁束Φと負の透磁率材料(N)の層の磁束Φが、できるだけ相殺して合わせて0になるように、隣接する層の磁束を等しくすることが重要である。理想的には、各層の磁束について、|ΦP1|=|ΦN1|=|ΦP2|=|ΦN2|=・・・となるように、各層の外径の半径rP1、rN1、rP2、rN2、・・・を内側の層から順次最適に設計することになる。
 具体的には、次のように求める。まず、ΦP1については、rP1=1と仮定した場合、以下のようにΦP1=μ/4が最適解の基準となる。
Figure JPOXMLDOC01-appb-M000009
 また、以下のように、ΦN1については、ΦN1=ΦP1となるrN1が最適解である。
Figure JPOXMLDOC01-appb-M000010
 さらに、以下のように、ΦP2については、ΦP2=ΦP1となるrP2が最適解である。
Figure JPOXMLDOC01-appb-M000011
 また、以下のように、ΦN2については、ΦN2=ΦP1となるrN2が最適解である。
Figure JPOXMLDOC01-appb-M000012
 以上のことから、本発明による各層の厚さの設計方法は、正の透磁率材料の層(P)の透磁率μ=μ・μrP、抵抗率ρ、導電率σ、負の透磁率材料の層(N)の透磁率μ=μ・μrN、抵抗率ρ、導電率σをパラメータとし、それぞれの層の厚さtP1、tN1、tP2、tN2、・・・とした場合に、上記の各式により求められる伝送線路の内部の電流密度J、電流I、磁界H、磁束密度B、磁束Φ、誘導起電力eを順次導出し、誘導起電力eの大きさをできるだけ小さくする積層厚さを設計するものである。さらに言えば、上記の説明の前提として、同一材料内は均一な電流密度となると仮定したことに対して、得られた誘導起電力eをフィードバックした電流密度分布を考慮することにより、さらに最適な設計に近づけることができる。
 なお、これらの計算により誘導起電力eが最小となる最適な各層の厚さを設計するには、複雑な計算を要し、単純な式では表記できないため、電子計算機(コンピュータ)などを用いて、数値計算プログラムにより近似解を導出することが必要となる。
 材料の抵抗率ρ及び導電率σと、伝送線路内の磁界分布及び磁束密度分布を考慮していない従来技術は、|μ|・t=|μ|・tとなる設計を適用すると、材料の抵抗率ρ及び導電率σの値によって、指標となる誘導起電力eの大きさが変わることになる。本発明では、少なくとも従来技術の上記設計による誘導起電力eの大きさよりも、誘導起電力eの大きさが小さくなる設計を、権利範囲とする。
 具体的には、第2の発明の伝送線路は、特定の周波数帯域において正の透磁率(μ)と所定の抵抗率(ρ)又は導電率(σ)を有し第1の厚さ(t)を備えた第1の層(P)と、前記特定の周波数帯域において負の透磁率(μ)と所定の抵抗率(ρ)又は導電率(σ)を有し第2の厚さ(t)を備えた第2の層(N)とを具備し、前記第1の層(P)と前記第2の層(N)が線路断面の内側より外側に向けて交互に配置されて所定の積層数(L)と線路外径(rline)を備えた積層構造を有し、前記特定の周波数帯域内の周波数(f)の電界(E)が存在する場合における伝送線路内で生ずる誘導起電力(e)の全線路断面(Cs)にわたる積分値(D)は、前記積層数(L)と前記線路外径(rline)を備えるとともに各層の透磁率の絶対値と厚さの積が一定である場合の前記周波数(f)における前記誘導起電力(e)の全線路断面(Cs)にわたる積分値(Ds)よりも小さいことを特徴とする。
 この第2の発明について、その一例を示す図15を参照して説明する。図15は、誘導起電力eによる逆起電力の大きさを中心からの位置rに対して求めたものである。ここで、負の透磁率材料を用いない従来の導体のみの伝送線路をLineAとして示し、その誘導起電力eの最大値を正規化して1とし、従来技術(非特許文献1)による伝送線路構造をLineBとし、本発明の伝送線路構造をLineCとして示す。図15の上図(a)は、単層の伝送線路LineAと2層の伝送線路LineB2と2層の伝送線路LineC2の誘導起電力を比較したものであり、図15の下図(b)は、単層の伝送線路LineAと4層の伝送線路LineB4と4層の伝送線路LineC4の誘導起電力eを比較したものである。単層の伝送線路LineAでは、太い実線で示すように、誘導起電力e(逆起電力)は伝送線路の内側(中心側)で小さく、外側(外周側)に向かうほど大きくなり、その減少率も増大する。
 ここでは、正の透磁率材料の透磁率の大きさと負の透磁率材料の透磁率の大きさが等しく(|μ|=|μ|)、抵抗率及び導電率の大きさも等しい(ρ=ρ)場合について、示している。従来技術の伝送線路LineBでは、負の透磁率材料を用いることにより、2層構造や4層構造で、積層数に応じて誘導起電力eの大きさを低減することができているが、その効果は不十分である。
 一方で、本発明の伝送線路LineCでは、負の透磁率材料を用いて、最適な積層厚さに設計することにより、誘導起電力eを大幅に低減し、部分的に誘導起電力eを0にすることも実現できている。そして、誘導起電力eの全線路断面Csにわたる積分値Dは、図15の各グラフの線と縦軸及び横軸によって囲まれた面積に相当する。そして、例えば、同じ積層数L同士で比較すると、本発明の伝送線路LineCの上記積分値Dは、従来の伝送線路LineBの上記積分値Dsより大幅に小さくなることが判る。当該積分値D、Dsは、伝送線路内の逆起電力による表皮効果の大きさを表すため、本願発明の伝送線路LineCでは従来の伝送線路LineBに比べて表皮効果による実質的な抵抗率の増大を大幅に抑制できる。本願発明の有利な効果は積層数Lの如何に限らず得られるものであるが、図15に示すように、特に、少ない積層数Lの場合に効果が顕著である。なお、図15は上述のように正の透磁率材料(P)と負の透磁率材料(N)で透磁率の絶対値と抵抗率及び導電率が等しい特殊な場合について示すものであるが、両層の透磁率の絶対値や抵抗率及び導電率が異なる場合でも上記の傾向は同じになる。このように、誘導起電力eの大きさを線路断面Cs全体として低減できれば、表皮深さの減少を防ぐことができ、挿入損失を抑止することができると考えられる。
 本発明の伝送線路は、次の特徴を有する。
 伝送線路内の磁界分布及び磁束密度分布を考慮することにより、前記正の透磁率を有する層に発生する磁束の量と、前記負の透磁率を有する層に発生する磁束の量とを従来技術よりも大きく減殺し合う層の厚さで構成されるため、挿入損失の増大を抑制することができる。
 また、本発明の伝送線路は隣接する伝送線路等が発生する電磁界に対しても同様に、従来技術よりも高い磁束の打ち消し効果が得られるため、近接効果による電流の偏りを抑止することもできる。
 近接効果の軽減は、隣接する伝送線路同士が近接する配置の場合や、コイル形状の伝送線路及びインダクタを構成する場合に、非常に有効であり、近接効果による伝送線路の挿入損失の抑止及びインダクタの性能の向上に有効である。
 本発明の特徴は、特に積層数が少ない場合に、伝送線路内の磁界分布及び磁束密度分布を考慮しない従来技術に対して、挿入損失をより効果的に抑止することができる。すなわち、積層数が少ない場合には線路断面の各層内の磁束を十分に減殺することができないが、本発明では線路断面内の磁界分布を考慮して各層の厚さを設定することで、少ない積層数でも磁束の減殺作用を高めることができるため、製造コストと性能の向上とを両立させることができる。
 また、負の透磁率を有する材料は、一般的に、周波数に対して透磁率の値が変化するものが多いため、磁束の打ち消し効果が高くなるように設計された特定の周波数では挿入損失が小さいが、それ以外の周波数で挿入損失が大きくなることがある。この場合、本発明の伝送線路は、特定の周波数では挿入損失が小さく、それ以外の周波数で挿入損失が大きいことから、フィルタとして利用することができる。この場合のフィルタとは、本発明の伝送線路を、回路に直列に使用した場合にバンドパスフィルタとなり、回路に並列に使用した場合にバンドストップフィルタとなる。
 一方、負の透磁率を有する材料は、一般的に、磁界を印加することにより、透磁率の周波数特性が変化する。具体的には、材料内部に保有する内部磁界に対して、外部から印加する磁界が強めあう場合には、透磁率の周波数特性が高周波側にシフトし、又、透磁率の絶対値が小さくなる。逆に、材料内部に保有する内部磁界に対して、外部から印加する磁界が弱め合う場合には、透磁率の周波数特性が低周波側にシフトし、又、透磁率の絶対値が大きくなる。
 この磁界の印加による透磁率の周波数特性が変化する性質を利用して、伝送線路の層の厚さが目的とする周波数において最適な厚さでない場合、外部から磁界を印加することにより、挿入損失が小さくなる最適な状態に調整することができる。
 この磁界の印加により挿入損失低減の最適周波数が変化する性質を利用して、前記フィルタの通過或いは阻止帯域を可変に構成することができる。
 磁性薄膜の透磁率は、磁界の印加以外にも、応力の印可によって変化することが知られている。応力の印可による透磁率の周波数特性が変化する性質を利用して、磁界の印可と同様の効果が得られる。
 磁界および応力の印可によって、透磁率の周波数特性が変化する性質を逆に利用して、磁界センサおよび応力センサを構成することができる。また、磁界や応力の発生を伴う物理現象全ての検出に応用することができる。
この発明の実施の形態1に係る伝送線路の断面構成を示す断面構造図である。 この発明の実施の形態2に係る伝送線路の断面構成を示す断面構造図である。 この発明の実施の形態3に係る伝送線路の断面構成を示す断面構造図である。 この発明の実施の形態4に係る伝送線路の断面構成を示す断面構造図である。 この発明の実施の形態5に係る伝送線路の断面構成を示す断面構造図である。 この発明の実施の形態6に係る伝送線路および基板の断面構成を示す断面構造図である。 この発明の実施の形態7に係る伝送線路の断面構成を示す断面構造図である。 この発明の実施の形態8に係る伝送線路の断面構成を示す断面構造図である。 この発明の実施の形態9に係る伝送線路の構成のうち、基板平面を上から見た平面構造図である。 この発明の実施の形態9に係る伝送線路の構成のうち、基板上に開けられた穴の部分の基板断面を示す断面構造図である。 この発明に係る磁性薄膜材料の複素比透磁率の周波数特性を示すグラフである。 この発明に係る伝送線路が適用される高周波回路の一例として、モノリシックマイクロ波集積回路の配線パターンを示す写真である。 この発明に係る伝送線路が適用される高周波回路の一例として、図12に示したモノリシックマイクロ波集積回路の構成を示す回路図である。 この発明の全ての実施の形態に係る伝送線路の断面における電流、磁束密度、位置rの誘導起電力を求めるための積分経路の関係を示す模式図である。 この発明の実施の形態1に係る伝送線路の中心からの位置rに対する誘導起電力eの大きさの関係を示す計算結果を示すグラフ(a)及び(b)である。 この発明の実施の形態10に係る伝送線路の断面構成を示す断面構造図である。 この発明の実施の形態11に係る伝送線路の挿入損失の周波数特性を示した計算結果である。
 次に、添付図面を参照して本発明に係る実施の形態について詳細に説明する。
 (第1の実施の形態)
 最初に、本発明の第1の実施の形態について図1を参照して説明する。図1は、この発明の第1の実施の形態に係る伝送線路の断面構成を示す断面構造図である。
 正の透磁率を有する材料をAとし、負の透磁率を有する材料をBとする。正の透磁率を有する材料Aのうち、中心に近い層から順にA1、A2とし、負の透磁率を有する材料Bのうち、中心に近い層から順にB1、B2とする。伝送線路は、少なくとも1つ以上の層Aおよび少なくとも1つ以上の層Bを有する。図1では、材料Aが2層、材料Bが2層の構造を示す。発明の効果を高めるためには、層Aおよび層Bをさらに複数積層することも考えられる。また、断面構造を円形としているが、楕円形でも基本的概念は同様である。また、最も内側の層(中心材料)が、図1では正の透磁率を有する層Aとしているが、負の透磁率を有する層Bとしても良い。また、材料Aと材料Bの導電率を比較して、導電率の高い材料を中心材料とした方が低い電気抵抗を得ることができる点で効果が高い。これは、本実施形態においては、中心部を構成する材料の方が、線路断面における占有断面積が大きくなるからである。
 各層は同心円状に配置される。図1は、層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|が等しい場合の断面構造を示しており、この場合、伝送線路の中心の層ほど厚く、外側の層ほど薄くすることが、本発明の特徴である。
 |μ|=|μ|の場合、中心層A1の外径DA1(その半径rA1)を1とした場合、第2層B1の外径DB1(その半径rB1)は√2とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、第3層A2の外径DA2(その半径rA2)は√3とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、第4層B2の外径DB2(その半径rB2)は2とすることにより、層A2の磁束と層B2の磁束が相殺される。なお、このような各層の厚さの比は一例であり、この例のように隣接する層の磁束同士が完全に相殺される必要はなく、下記に示す従来技術の場合よりも磁束同士の減殺度合が高くなればよい。例えば、第2層B1の外径DB1(又はその半径rB1)はDA1(又はrA1)より大きく2DA1(又は2rA1)より小さければよく、第3層A2の外径DA2(又はその半径rA2)はDB1より大きく2DB1-DA1(又は2rB1-rA1)より小さければよく、第4層B2の外径DB2(又はその半径rB2)はDA2より大きく2DA2-DB1(又は2rA2-rB1)より小さければよい。
 従来技術では、|μ|=|μ|の場合、層Aと層Bの厚さは等しくなるため、中心層A1の外径DA1(その半径rA1)を1とした場合、第2層B1の外径DB1(その半径rB1)は2、第3層A2の外径DA2(その半径rA2)は3、第4層B2の外径DB2(その半径rB2)は4となる。
 本発明は従来技術に対して、伝送線路全体の厚さ(外径)が同じならば本発明の方が優位であり、特に、層数が少ないほど本発明の効果の優位性が高い。つまり、本発明は、層数が少なくても表皮効果の抑制に高い効果があるため、従来技術に対して、層数を少なくしても効果を得ることができ、構造の簡略化、作製の容易化、生産性の向上、作製コストの低コスト化が図れるため、産業的な観点からも優位である。
 図1の第1の実施の形態に係る伝送線路の作製方法として、中心導体は押し出し成型などにより円柱状の導線を作製する方法が考えられる。この際、押し出しの条件や磁界の印可などにより、その材料の透磁率特性を制御することも可能である。中心導体の周囲に作製される各層は、表面コーティングやめっき処理などにより同心円状の層を作製する方法が考えられる。この際、コーティングやめっきの条件や張力の印可、磁界の印可などにより、その材料の透磁率特性を制御することも可能である。
 なお、負の透磁率材料などが作製プロセスの問題で中心材料として用いることができない場合は、最も内側の層(中心材料)を正の透磁率を有する層Aとすることで、本構造を実施できる。
 層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|を比較した場合、|μ|>|μ|ならば、層Aの厚さが層Bの厚さよりも相対的に薄くなるため、層Aを中心に配置し、その周囲に層Bを配置すると表皮効果の抑制作用が高まる。同様に、|μ|<|μ|ならば、層Bを中心に配置し、その周囲に層Aを配置すると表皮効果の抑制作用が高まる。すなわち、中心部に透磁率の絶対値の大きな材料を配置すると中心層を薄く構成できるため、伝送線路において厚さ方向に層Aと層Bを細かく交互に配置できるから、表皮効果を抑制しやすくなり、高周波領域での電気抵抗と損失を低減できる。
 なお、空気などとの反応による酸化・腐食やその防止のためのコーティング材料との界面における反応を防ぐため、反応しにくい材料を最も外側の層に選択すると良い。
 第1の実施の形態に係る伝送線路は、断面形状が円形構造であるため、磁束の発生経路と断面構造が一致することにより、構造的に楕円形形状や後述する第3から第8の実施の形態の伝送線路のような四角形の断面よりも表皮効果の抑制効果が高い。また、この実施の形態では、各層が同心状に構成される(各層の中心点が相互に一致している)ため、表皮効果の抑制作用も等方的に得られるから、効果を高めやすいという利点がある。
 (第2の実施の形態)
 次に、本発明の第2の実施の形態について図2を参照して説明する。図2は、この発明の第2の実施の形態に係る伝送線路の断面構成を示す断面構造図である。
 正の透磁率を有する材料をAとし、負の透磁率を有する材料をBとする。正の透磁率を有する材料Aのうち、中心に近い層から順にA1、A2とし、負の透磁率を有する材料Bのうち、中心に近い層から順にB1、B2とする。伝送線路は、少なくとも1つ以上の層Aおよび少なくとも1つ以上の層Bを有する。図2では、材料Aが2層、材料Bが2層の構造を示す。発明の効果を高めるためには、層Aおよび層Bをさらに複数積層することも考えられる。また、断面構造を円形としているが、楕円形でも基本的概念は同様である。また、最も内側の層(中心材料)が、図2では正の透磁率を有する層Aとしているが、負の透磁率を有する層Bとしても良い。また、材料Aと材料Bの導電率を比較して、導電率の高い材料を中心材料とした方が上記と同様に効果が高い。
 各層は同心円状に配置される。図2は、層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|を比較して、|μ|>|μ|となる場合の断面構造を示しており、例として、層Aの透磁率の大きさ|μ|が層Bの透磁率の大きさ|μ|が3倍大きい(|μ|=3|μ|)場合の断面構造を示している。この場合、隣り合う層Aと層Bの厚さは、磁束Φが相殺されるように構成され、図1の|μ|=|μ|の場合と比較して、隣り合う層Aの厚さに対する層Bの厚さの比率は、相対的に薄くなる比率で配置される。図2は、この場合、同一材料の層A1と層A2の厚さ、あるいは、層B1と層B2の厚さを比較すると、伝送線路の中心の層ほど厚くすることが、また、外側の層ほど薄くすることが、本発明の特徴である。
 図2は、層Aの透磁率が層Bの透磁率の3倍である場合、つまり|μ|=3|μ|となる場合の例であり、中心層A1の外径DA1(その半径rA1)を1とした場合、第2層B1の外径DB1(その半径rB1)は2とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、第3層A2の外径DA2(その半径rA2)は√5とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、第4層B2の外径DB2(その半径rB2)は√8とすることにより、層A2の磁束と層B2の磁束が相殺される。
 |μ|=3|μ|の場合、中心層A1の外径DA1(その半径rA1)を1とした場合、第2層B1の外径DB1(その半径rB1)は2とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、第3層A2の外径DA2(その半径rA2)は√5とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、第4層B2の外径DB2(その半径rB2)は√8とすることにより層A2の磁束と層B2の磁束が相殺される。
 従来技術では、|μ|=3|μ|の場合、層Aの厚さtと層Bの厚さtは、3t=tとなるように構成されるだけであったため、中心層A1の外径DA1(その半径rA1)を1とした場合、第2層B1の外径DB1(その半径rB1)は4、第3層A2の外径DA2(その半径rA2)は5、第4層B2の外径DB2(その半径rB2)は8となる。
 本発明は従来技術に対して、伝送線路全体の厚さ(外径)が同じならば本発明の方が優位であり、特に、層数が少ないほど本発明の効果の優位性が高い。つまり、本発明は、層数が少なくても表皮効果の抑制に高い効果があるため、従来技術に対して、層数を少なくしても効果を得ることができ、構造の簡略化、作製の容易化、生産性の向上、作製コストの低コスト化が図れるため、産業的な観点からも優位である。
 層Aの透磁率の大きさ|μ|が層Bの透磁率の大きさ|μ|のn倍である(|μ|=n|μ|)場合、中心層A1の外径DA1(その半径rA1)を1とした場合、第2層B1の外径DB1(その半径rB1)は√(n+1)とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、第3層A2の外径DA2(その半径rA2)は√(n+2)とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、第4層B2の外径DB2(その半径rB2)は√(2(n+1))とすることにより、層A2の磁束と層B2の磁束が相殺される。
 上記の例は、磁界の強さHが中心からの距離(半径)rに比例し、H=a・r(aは定数)で示される場合を想定して求めたものである。すなわち、隣接する層AとBについて、層Aにより生ずる磁束密度と層Bにより生ずる磁束密度が互いに逆向きで同じ絶対値をもつ条件から、層Aと層Bについて、それぞれの磁束密度の絶対値の距離rに関する積分値(磁束に相当する。)が相互に等しいとして、層Aの外面の中心からの距離rと、層Aの外側に隣接する層Bの外面の中心からの距離rの関係を求めた結果から得たものである。この場合、磁束密度はΦ=2π∫μHdr=2πa∫μrdrとなるので、層Aについて∫|μ|rdrを層Aの最小距離rAiから最大距離rAoまで積分した値と、層Bについて∫|μ|rdrを層Bの最小距離rBiから最大距離rBoまで積分した値とが等しくなる条件(ただし、層AとBが境を接していればrAo=rBiとなる。)で計算を行い、各層の厚さを求めることができる。例えば、中心層A1と第2層B1については、∫|μ|rdrを中心層Aの距離範囲である0から最大距離rA1まで積分した値と、∫|μ|rdrを第2層A1の最小距離rA1から最大距離rB1まで積分した値とが等しいとすると、以下のrA1からrB1を求める式、
 rB1={(|μ|+|μ|)/|μ|}1/2・rA1…(1)
が成立する。ここで、上述のように|μ|=n|μ|のときには上記式(1)からrB1=√(n+1)・rA1が得られる。
 また、次の第3層A2についても、∫|μ|rdrを最小距離rB1から最大距離rA2まで積分した値が上述の中心層A1又は第2層B1について積分した値と等しくなる条件で、rA1からrA2を求める式(2)が得られる。
 rA2={(|μ|+2|μ|)/|μ|}1/2・rA1…(2)
 ここで、上述のように|μ|=n|μ|のときには上記式(2)からrA2=√(n+2)・rA1が得られる。
 さらに、第4層B2についても、∫|μ|rdrを最小距離rA2から最大距離rB2まで積分した値が上述の中心層A1、第2層B1又は第3層A2について積分した値と等しくなる条件で、rA1からrA2を求める式(3)が得られる。
 rB2={2(|μ|+|μ|)/|μ|}1/2・rA1…(3)
 ここで、上述のように|μ|=n|μ|のときには上記式(3)からrA2=√{2(n+1)}・rA1が得られる。
 以上のようにして、中心層A1の最大距離(半径)rA1から、第2層の最大距離(半径)rB1、第3層の最大距離(半径)rA2、第4層の最大距離(半径)rB2を、上記式(1)、(2)、(3)により求めることができ、第5層以上の層がある場合はこれらについても同様の手法で求めることができる。この手法は、本実施形態に限らず、後述する他の実施形態についても適用できる。
 ただし、第1の実施の形態と同様に、上記手法は隣接する層の磁束が打ち消し合う条件に設定された本発明の構成の一例を示すに過ぎない。例えば、中心側(内側)にある層の透磁率の絶対値|μ|と厚さtの積が外周側(外側)に隣接する層の透磁率と厚さの積より大きくなれば本発明の効果を得ることができ、例えば、中心層A1と第2層B1の関係で言えば、以下の式(4)が成立すればよい。
 |μ|・t>|μ|・t…(4)
 この条件は、中心から離れる方向に増大する磁界分布による影響を低減できるという点で、従来方法の|μ|・t=|μ|・tに比べて有利な効果をもたらす。この条件は、本実施形態に限らず、後述する他の実施形態についても適用できる。
 図2の第2の実施の形態に係る伝送線路の作製方法は、第1の実施の形態に係る伝送線路の場合と同様に、中心導体は押し出し成型などにより円柱状の導線を作製する方法が考えられる。この際、押し出しの条件や磁界の印可などにより、その材料の透磁率特性を制御することも可能である。中心導体の周囲に作製される各層は、表面コーティングやめっき処理などにより同心円状の層を作製する方法が考えられる。この際、コーティングやめっきの条件や張力の印可、磁界の印可などにより、その材料の透磁率特性を制御することも可能である。
 なお、負の透磁率材料などが作製プロセスの問題で中心材料として用いることができない場合は、最も内側の層(中心材料)を正の透磁率を有する層Aとすることで、本構造を実施できる。
 層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|を比較した場合、|μ|>|μ|ならば、層Aの厚さが層Bの厚さよりも相対的に薄くなるため、層Aを中心に配置し、その周囲に層Bを配置すると上記と同様に効果が高まる。同様に、|μ|<|μ|ならば、層Bを中心に配置し、その周囲に層Aを配置すると上記と同様に効果が高まる。
 なお、空気などとの反応による酸化・腐食やその防止のためのコーティング材料との界面における反応を防ぐため、反応しにくい材料を最も外側の層に選択すると良い。 
 第2の実施の形態に係る伝送線路は、第1の実施の形態に係る伝送線路と同様に、断面形状が円形構造であるため、磁束の発生経路と断面構造が一致することにより、構造的に楕円形形状や後述する第3から第8の実施の形態の伝送線路のような四角形の断面よりも表皮効果の抑制効果が高い。また、この実施の形態でも、各層が同心状に構成される(各層の中心点が相互に一致している)ため、表皮効果の抑制作用も等方的に得られるから、効果を高めやすいという利点がある。
 (第3の実施の形態)
 次に、本発明の第3の実施の形態について図3を参照して説明する。図3は、この発明の第3の実施の形態に係る伝送線路の断面構成を示す断面構造図である。
 正の透磁率を有する材料をAとし、負の透磁率を有する材料をBとする。正の透磁率を有する材料Aのうち、中心に近い層から順にA1、A2とし、負の透磁率を有する材料Bのうち、中心に近い層から順にB1、B2とする。伝送線路は、少なくとも1つ以上の層Aおよび少なくとも1つ以上の層Bを有する。図3では、材料Aが2層、材料Bが2層の構造を示す。発明の効果を高めるためには、層Aおよび層Bをさらに複数積層することも考えられる。また、断面構造を正方形としているが、長方形でも基本的概念は同様である。また、最も内側の層(中心材料)が、図3では正の透磁率を有する層Aとしているが、負の透磁率を有する層Bとしても良い。また、材料Aと材料Bの導電率を比較して、導電率の高い材料を中心材料とした方が上記と同様に効果が高い。負の透磁率材料の作製が表面コーティングやめっき処理などである場合、作製プロセスの問題で中心材料として用いることができない場合は、最も内側の層(中心材料)を正の透磁率を有する層Aとすることで、本構造を実施できる。 
 各層は中心を同じくする正方形を重ねる断面構造で配置される。図3は、層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|が等しい場合の断面構造を示しており、この場合、伝送線路の中心の層ほど厚く、外側の層ほど薄くすることが、本発明の特徴である。
 |μ|=|μ|の場合、中心層A1の一辺の長さLA1を1としたときには、第2層B1の一辺の長さLB1は√2とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、第3層A2の一辺の長さLA2は√3とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、第4層B2の一辺の長さLB2は2とすることにより、層A2の磁束と層B2の磁束が相殺される。
 従来技術では、|μ|=|μ|の場合、層Aと層Bの厚さは等しくなるため、中心層A1の一辺の長さLA1を1とした場合、第2層B1の一辺の長さLB1は2、第3層A2の一辺の長さLA2は3、第4層B2の一辺の長さLB2は4となる。
 本発明は従来技術に対して、伝送線路全体の厚さ(一辺の長さ)が同じならば本発明の方が優位であり、特に、層数が少ないほど本発明の効果の優位性が高い。つまり、本発明は、層数が少なくても表皮効果の抑制に高い効果があるため、従来技術に対して、層数を少なくしても効果を得ることができ、構造の簡略化、作製の容易化、生産性の向上、作製コストの低コスト化が図れるため、産業的な観点からも優位である。
 層Aの透磁率が層Bの透磁率のn倍である場合、つまり|μ|=n|μ|となる場合は、図3の|μ|=|μ|の場合とは異なる比率で配置される。ただし、層Aのみあるいは層Bのみを比較した場合、伝送線路の中心の層ほど厚く、外側の層ほど薄くすることが、本発明の特徴である。
 |μ|=n|μ|の場合、中心層A1の一辺の長さLA1を1とした場合、第2層B1の一辺の長さLB1は√(n+1)とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、第3層A2の一辺の長さLA2は√(n+2)とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、第4層B2の一辺の長さLB2は√(2(n+1))とすることにより、層A2の磁束と層B2の磁束が相殺される。なお、この実施の形態においても、第2の実施の形態で説明した式(1)~(3)で径を長さに変えれば同様に考えることができ、また、この条件に限らず、上記式(4)で示したように透磁率の絶対値|μ|と厚さtの積が隣り合う中心側の層で大きく外周側の層で小さく構成されていればよい。
 層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|を比較した場合、|μ|>|μ|ならば、層Aの厚さが層Bの厚さよりも相対的に薄くなるため、層Aを中心に配置し、その周囲に層Bを配置すると上記と同様に効果が高まる。同様に、|μ|<|μ|ならば、層Bを中心に配置し、その周囲に層Aを配置すると上記と同様に効果が高まる。
 なお、空気などとの反応による酸化・腐食やその防止のためのコーティング材料との界面における反応を防ぐため、反応しにくい材料を最も外側の層に選択すると良い。
 第3の実施の形態に係る伝送線路は、断面形状が正方形であるため、第1の実施の形態に係る伝送線路および第2の実施の形態に係る伝送線路に比べて、作製が難しいと考えられる。また、円形と比べて磁束の相殺ができにくい。ただし、後述する第5の実施の形態に係る伝送線路のように、一次元方向に積層する構造に変更することより、膜の積層によって作製できるため、プリント基板や集積回路、積層チップ部品などの産業応用面で適合性が高い。また、この実施の形態でも、各層の中心点が相互に一致しているため、表皮効果の抑制作用も等方的に得られるから、効果を高めやすいという利点がある。
 (第4の実施の形態)
 次に、本発明の第4の実施の形態について図4を参照して説明する。図4は、この発明の第4の実施の形態に係る伝送線路の断面構成を示す断面構造図である。
 図4の第4の実施の形態に係る伝送線路の断面構成は、図3の第3の実施の形態に係る伝送線路の断面構成の正方形断面を長方形断面に変更した例であり、基本的な概念は、図3の第3の実施の形態に係る伝送線路と同様である。
 正の透磁率を有する材料をAとし、負の透磁率を有する材料をBとする。正の透磁率を有する材料Aのうち、中心に近い層から順にA1、A2とし、負の透磁率を有する材料Bのうち、中心に近い層から順にB1、B2とする。伝送線路は、少なくとも1つ以上の層Aおよび少なくとも1つ以上の層Bを有する。図4では、材料Aが2層、材料Bが2層の構造を示す。発明の効果を高めるためには、層Aおよび層Bをさらに複数積層することも考えられる。また、断面構造を横長の長方形としているが、縦長の長方形でも基本的概念は同様である。また、最も内側の層(中心材料)が、図3では正の透磁率を有する層Aとしているが、負の透磁率を有する層Bとしても良い。また、材料Aと材料Bの導電率を比較して、導電率の高い材料を中心材料とした方が上記と同様に効果が高い。負の透磁率材料の作製が表面コーティングやめっき処理などである場合、作製プロセスの問題で中心材料として用いることができない場合は、最も内側の層(中心材料)を正の透磁率を有する層Aとすることで、本構造を実施できる。
 各層は中心を同じくする長方形を重ねる断面構造で配置される。図3は、層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|が等しい場合の断面構造を示しており、この場合、伝送線路の中心の層ほど厚く、外側の層ほど薄くすることが、本発明の特徴である。
 |μ|=|μ|の場合、中心層A1の長辺(あるいは短辺)の長さLA1を1とした場合、第2層B1の長辺(あるいは短辺)の長さLB1は√2とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、第3層A2の長辺(あるいは短辺)の長さLA2は√3とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、第4層B2の長辺(あるいは短辺)の長さLB2は2とすることにより、層A2の磁束と層B2の磁束が相殺される。
 従来技術では、|μ|=|μ|の場合、層Aと層Bの厚さは等しくなるため、中心層A1の長辺(あるいは短辺)の長さLA1を1とした場合、第2層B1の長辺(あるいは短辺)の長さLB1は2、第3層A2の長辺(あるいは短辺)の長さLA2は3、第4層B2の長辺(あるいは短辺)の長さLB2は4となる。
 本発明は従来技術に対して、伝送線路全体の厚さ(長辺(あるいは短辺)の長さ)が同じならば本発明の方が優位であり、特に、層数が少ないほど本発明の効果の優位性が高い。つまり、本発明は、層数が少なくても表皮効果の抑制に高い効果があるため、従来技術に対して、層数を少なくしても効果を得ることができ、構造の簡略化、作製の容易化、生産性の向上、作製コストの低コスト化が図れるため、産業的な観点からも優位である。
 層Aの透磁率が層Bの透磁率のn倍である場合、つまり|μ|=n|μ|となる場合は、図4の|μ|=|μ|の場合とは異なる比率で配置される。ただし、層Aのみあるいは層Bのみを比較した場合、伝送線路の中心の層ほど厚く、外側の層ほど薄くすることが、本発明の特徴である。
 |μ|=n|μ|の場合、中心層A1の長辺(あるいは短辺)の長さLA1を1とした場合、第2層B1の長辺(あるいは短辺)の長さLB1は√(n+1)とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、第3層A2の長辺(あるいは短辺)の長さLA2は√(n+2)とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、第4層B2の長辺(あるいは短辺)の長さLB2は√(2(n+1))とすることにより、層A2の磁束と層B2の磁束が相殺される。なお、この実施の形態においても、第2の実施の形態で説明した式(1)~(3)で径を長さに変えれば同様に考えることができ、また、この条件に限らず、上記式(4)で示したように透磁率の絶対値|μ|と厚さtの積が隣り合う中心側の層で大きく外周側の層で小さく構成されていればよい。
 層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|を比較した場合、|μ|>|μ|ならば、層Aの厚さが層Bの厚さよりも相対的に薄くなるため、層Aを中心に配置し、その周囲に層Bを配置すると上記と同様に効果が高まる。同様に、|μ|<|μ|ならば、層Bを中心に配置し、その周囲に層Aを配置すると上記と同様に効果が高まる。
 なお、空気などとの反応による酸化・腐食やその防止のためのコーティング材料との界面における反応を防ぐため、反応しにくい材料を最も外側の層に選択すると良い。
 第4の実施の形態に係る伝送線路は、断面形状が長方形であるため、第3の実施の形態に係る伝送線路と同様に、第1の実施の形態に係る伝送線路および第2の実施の形態に係る伝送線路に比べて、作製が難しいと考えられる。また、円形と比べて磁束の相殺ができにくい。ただし、後述する第5の実施の形態に係る伝送線路のように、一次元方向に積層する構造に変更することより、膜の積層によって作製できるため、プリント基板や集積回路、積層チップ部品などの産業応用面で適合性が高い。また、この実施の形態でも、各層の中心点が相互に一致しているため、表皮効果の抑制作用も等方的に得られるから、効果を高めやすいという利点がある。
 (第5の実施の形態)
 次に、本発明の第5の実施の形態について図5を参照して説明する。図5は、この発明の第5の実施の形態に係る伝送線路の断面構成を示す断面構造図である。
 正の透磁率を有する材料をAとし、負の透磁率を有する材料をBとする。正の透磁率を有する材料Aのうち、中心に近い層から順にA1、A2とし、負の透磁率を有する材料Bのうち、中心に近い層から順にB1、B2とする。各層は、中心に対して上下両方向に対称に配置される。この場合、図示例では上下方向中央の図示しない水平な平面が対称面となる。伝送線路は、少なくとも1つ以上の層Aおよび少なくとも1つ以上の層Bを有する。図5では、中心を対称面として、その片側に材料Aが2層、材料Bが2層の積層構造を示す。発明の効果を高めるためには、層Aおよび層Bをさらに複数積層することも考えられる。また、断面構造を正方形としているが、長方形でも基本的概念は同様である。また、最も内側の層(中心材料)が、図5では正の透磁率を有する層Aとしているが、負の透磁率を有する層Bとしても良い。また、材料Aと材料Bの導電率を比較して、導電率の高い材料を中心材料とした方が上記と同様に効果が高い。中心材料の厚さが最も厚くなるため、いずれかの材料が厚膜化困難な場合、厚膜化しやすい材料を中心材料とすることにより、作製が容易となる。逆に、いずれかの材料が薄膜化困難な場合、薄膜化困難な材料を中心材料とすることにより、作製が容易となる。
 各層は真ん中を中心に上下対称に積層された断面構造で配置される。図5では、層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|が等しい場合の断面構造を示しており、この場合、伝送線路の中心側(内側)の層ほど厚く、外側の層ほど薄くすることが、本発明の特徴である。
 |μ|=|μ|の場合、中心層A1の厚さtA1を1とした場合、第2層B1の対称面からの最大距離が√2/2、上下にある第2層B1のそれぞれの厚さtB1は(√2-1)/2とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、第3層A2の上記最大距離が√3/2、上下にある第3層A2のそれぞれの厚さtA2は(√3-1)/2とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、第4層B2の上記最大距離が2/2、上下にある第4層B2のそれぞれの厚さtB2は(2-√3)/2とすることにより、層A2の磁束と層B2の磁束が相殺される。
 従来技術では、|μ|=|μ|の場合、層Aと層Bの厚さは等しくなるため、中心層A1の厚さtA1を1とした場合、第2層B1の厚さtB1、第3層A2の厚さtA2、第4層B2の厚さtB2は全て1となる。
 本発明は従来技術に対して、伝送線路全体の厚さが同じならば本発明の方が優位であり、特に、層数が少ないほど本発明の効果の優位性が高い。つまり、本発明は、層数が少なくても表皮効果の抑制に高い効果があるため、従来技術に対して、層数を少なくしても効果を得ることができ、構造の簡略化、作製の容易化、生産性の向上、作製コストの低コスト化が図れるため、産業的な観点からも優位である。
 層Aの透磁率が層Bの透磁率のn倍である場合、つまり|μ|=n|μ|となる場合は、図5の|μ|=|μ|の場合とは異なる比率で配置される。ただし、層Aのみあるいは層Bのみを比較した場合、伝送線路の中心の層ほど厚く、外側の層ほど薄くすることが、本発明の特徴である。
 |μ|=n|μ|の場合、中心層A1の厚さtA1を1とした場合、対称面の上下にあるそれぞれの第2層B1の厚さtB1は(√(n+1)-1)/2とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、上下それぞれの第3層A2の厚さtA2は(√(n+2)-√(n+1))/2とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、上下それぞれの第4層B2の厚さtB2は(√(2(n+1)-√(n+2))/2とすることにより、層A2の磁束と層B2の磁束が相殺される。なお、この実施の形態においても、第2の実施の形態で説明した式(1)~(3)で半径を対称面からの距離に変えれば同様に考えることができ、また、この条件に限らず、上記式(4)で示したように透磁率の絶対値|μ|と厚さtの積が隣り合う中心側の層で大きく外周側の層で小さく構成されていればよい。
 層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|を比較した場合、|μ|>|μ|ならば、層Aの厚さが層Bの厚さよりも相対的に薄くなるため、層Aを中心に配置し、その周囲に層Bを配置すると上記と同様に効果が高まる。同様に、|μ|<|μ|ならば、層Bを中心に配置し、その周囲に層Aを配置すると上記と同様に効果が高まる。
 第5の実施の形態に係る伝送線路は、断面形状が積層構造であるため、プリント基板や集積回路、積層チップ部品などの産業応用面で適合性が非常に高く、上述した第1から第4の実施の形態に係る伝送線路に比べて、膜の積層によって作製できるため、作製が容易であると考えられる。ただし、円形、楕円形、正方形、長方形の断面構造と比べて磁束の相殺ができにくい。積層方向の表皮効果を抑制することは可能であるが、積層方向に垂直な方向の表皮効果の抑制はできない。また、この実施の形態でも、線路断面上の中央の平面に対して各層が上下対称に配置されているため、表皮効果の抑制作用も上下対称に得られるから、効果を高めやすいという利点がある。
 図5の第5の実施の形態に係る伝送線路の作製方法として、各層は、スパッタ、蒸着、めっき、フォトリソグラフィ、スクリーン印刷、エッチングなどにより作製する方法が考えられる。この際、成膜中あるいは成膜後に、磁界印可、応力印加などにより、その材料の透磁率特性を制御することも可能である。
 なお、空気などとの反応による酸化・腐食やその防止のためのコーティング材料との界面における反応を防ぐため、反応しにくい材料を最も外側の層に選択すると良い。
 (第6の実施の形態)
 次に、本発明の第6の実施の形態について図6を参照して説明する。図6は、この発明の第6の実施の形態に係る伝送線路および基板の断面構成を示す断面構造図である。
 図6の第6の実施の形態に係る伝送線路の断面構成は、図5の第5の実施の形態に係る伝送線路の下に基板Sが配置されたものであり、基板S上に各層を順次に積層することによって構成される。基本的な概念は、第5の実施の形態に係る伝送線路と同様である。第5の実施の形態に係る伝送線路の説明で述べた、プリント基板や集積回路、積層チップ部品などの産業応用に適合させた例を示したものである。本実施の形態では、基板Sの有無を除き、他の点については全て第5の実施の形態に記載した内容を適用できる。
 (第7の実施の形態)
 次に、本発明の第7の実施の形態について図7を参照して説明する。図7は、この発明の第7の実施の形態に係る伝送線路の断面構成を示す断面構造図である。
 正の透磁率を有する材料をAとし、負の透磁率を有する材料をBとする。伝送線路は、少なくとも1つ以上のAおよび少なくとも1つ以上のBを有する。正の透磁率を有する材料Aのうち、中心に近い層から順にA1、A2とし、負の透磁率を有する材料Bのうち、中心に近い層から順にB1、B2とする。各層は、中心に対して左右両方向に対称に配置される。第5の実施の形態に係る伝送線路に対して、層の積層方向が上下か左右かの違いのみであり、原理的に第5の実施の形態に係る伝送線路と同様である。したがって、本実施の形態においては、積層方向の相違を除き、他の点については全て第5の実施の形態に記載した内容を適用できる。また、第6の実施の形態と同様に本実施の形態を基板S上に形成してもよい。この場合、基板Sの表面を本実施の形態の積層方向に沿った面としてもよく、また、積層方向と直交する面としてもよい。
 (第8の実施の形態)
 次に、本発明の第8の実施の形態について図8を参照して説明する。図8は、この発明の第8の実施の形態に係る伝送線路の断面構成を示す断面構造図である。
 正の透磁率を有する材料をAとし、負の透磁率を有する材料をBとする。基本的な概念は、第3の実施の形態に係る伝送線路に準じ、隣り合う層の磁束が相殺される構造であり、伝送線路の中心の層ほど厚く、外側の層ほど薄くすることが、本発明の特徴である。ただし、中心から外側に一様に積層する構造と異なり、市松模様のような断面構造としている。構造が複雑であるため作製が困難であるが、磁束の相殺効果は、第3から第7の実施の形態に係る伝送線路に比べて、効果が高いと考えられる。図8の伝送線路は、上記第6の実施の形態と同様に、基板S上に積層されたものとして形成できる。
 図8の第8の実施の形態に係る伝送線路の作製方法として、ホログラムなどの作製方法に類似し、三次元パターニング技術などを利用して作製する方法が考えられる。この際、作製条件などにより、その材料の透磁率特性を制御することも可能である。もちろん、二次元のパターニング技術を用いて各層ごとに形成していってもよい。また、上記構造を第6の実施の形態のように基板S上に形成してもよい。本実施の形態においても、上記第5の実施の形態や第6の実施の形態に記載した内容は同様に適用できる。
 (第9の実施の形態)
 次に、本発明の第9の実施の形態について図9および図10を参照して説明する。図9は、この発明の第9の実施の形態に係る伝送線路について、基板平面を上から見た平面構造図である。図10は、この発明の第9の実施の形態に係る伝送線路について、基板上に開けられた穴の部分の基板断面を示す断面構造図である。
 本実施の形態は、基板Sにスルーホール(またはビア)穴Hを開け、その内部を接続する伝送線路に関するものである。正の透磁率を有する材料をAとし、負の透磁率を有する材料をBとする。正の透磁率を有する材料Aのうち、中心に近い層から順にA1、A2とし、負の透磁率を有する材料Bのうち、中心に近い層から順にB1、B2とする。伝送線路は、少なくとも1つ以上の層Aおよび少なくとも1つ以上の層Bを有する。図9では、材料Aが2層、材料Bが2層の構造を示す。発明の効果を高めるためには、層Aおよび層Bをさらに複数積層することも考えられる。また、断面構造を円形としているが、楕円形でも基本的概念は同様である。また、図9および図10の伝送線路の中心は穴Hの部分となり、円筒状伝送線路であるが、穴Hが埋まるまで満たしても構わず、この場合は第1および第2の実施の形態に係る伝送線路と同様となる。また、最も内側の層が、正の透磁率を有する層Aとしているが、負の透磁率を有する層Bとしても良い。また、材料Aと材料Bの導電率を比較して、導電率の高い材料を中心材料とした方が上記と同様に効果が高い。
 各層は同心円状に配置される。伝送線路の中心の層ほど厚く、外側の層ほど薄くすることが、本発明の特徴である。
 従来技術では、|μ|=|μ|の場合、層Aと層Bの厚さは等しくなるため、最も内側の層A1の厚さtA1を1とした場合、第2層B1の厚さtB1も1、第3層A2の厚さtA2も1、第4層B2の厚さtB2も1となる。本発明の場合は、その原理により、隣り合う層の磁束が相殺されるように、中心に近い層ほど厚く、外側の層ほど薄くする。
 層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μB|を比較した場合、|μ|>|μ|ならば、層Aの厚さが層Bの厚さよりも相対的に薄くなり、逆に、|μ|<|μ|ならば、層Bの厚さが層Aの厚さよりも相対的に薄くなる。
 層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|を比較した場合、|μ|>|μ|ならば、層Aの厚さが層Bの厚さよりも相対的に薄くなるため、層Aを中心に配置し、その周囲に層Bを配置すると上記と同様に効果が高まる。同様に、|μ|<|μ|ならば、層Bを中心に配置し、その周囲に層Aを配置すると上記と同様に効果が高まる。
 本発明は従来技術に対して、円筒状伝送線路全体の厚さが同じならば本発明の方が優位であり、特に、層数が少ないほど本発明の効果の優位性が高い。つまり、本発明は、層数が少なくても表皮効果の抑制に高い効果があるため、従来技術に対して、層数を少なくしても効果を得ることができ、構造の簡略化、作製の容易化、生産性の向上、作製コストの低コスト化が図れるため、産業的な観点からも優位である。
 第9の実施の形態に係る伝送線路の作製方法として、各層は穴Hに面した外側から順次、めっきや蒸着、スパッタなどの成膜方法により積層して作製することが考えられる。コーティングによって成膜してもよい。この際、成膜条件や磁界印可などにより、その材料の透磁率特性を制御することも可能である。成膜後の熱処理時の磁界印加などの条件によっても制御可能である。
 なお、空気などとの反応による酸化・腐食やその防止のためのコーティング材料との界面における反応を防ぐため、反応しにくい材料を最も内側の層に選択すると良い。
 第9の実施の形態に係る伝送線路は、第1および第2の実施の形態に係る伝送線路と同様に、断面形状が円形構造であるため、磁束の発生経路と断面構造が一致するため、構造的に楕円形形状や第3から第8の実施の形態の伝送線路のような四角形の断面よりも表皮効果の抑制効果が高い。なお、他の点については第1の実施の形態や第2の実施の形態に記載した内容を適用することができる。
 (他の実施の形態)
 なお、本発明は、前述の実施の形態に限るものではなく、その要旨を逸脱しない範囲において種々変更可能である。
 例えば、前述の実施の形態においては、伝送線路の断面構造を挙げているが、それらの断面構造は例示であり、限定されるものではない。また、断面構造のみを記述しているが、本発明の断面構造を有する伝送線路を用いた配線基板、並びに、これらを用いた高周波装置(インダクタ、キャパシタ、抵抗器、増幅器、フィルタ、整合器、結合器などの高周波デバイス、或いは、高周波回路等)全般が対象となる。
 次に、本発明の実施の形態すべてに係る、磁性材料の特性について記述する。図11に、一軸異方性を有する磁性材料の複素比透磁率の周波数特性を示す。横軸は周波数fで、その単位はGHzである。縦軸は複素比透磁率μの実部μ′および虚部μ″であり、その単位は無次元である。グラフの実線が複素比透磁率の実部μ′を示し、グラフの破線が複素比透磁率の虚部μ″を示す。一軸異方性を有する磁性材料は、高周波材料として一般的に利用されるものであり、内部に有している異方性磁界Hが磁性材料の複素比透磁率の周波数特性を決定する要因となっている。複素比透磁率の周波数特性はLLG方程式により表現される。
 図11において、Aと示される曲線は、異方性磁界HkA=8kA/mとした材料Aの複素比透磁率の周波数特性を示し、Bと示される曲線は、異方性磁界HkB=28kA/mとした材料Bの複素比透磁率の周波数特性を示したものである。なお、両材料の飽和磁化Msは1.76TとしてLLG方程式で計算している。材料Aの静的比透磁率をμrA、材料Bの静的比透磁率をμrBとし、材料Aの強磁性共鳴周波数をfrA、材料Bの強磁性共鳴周波数をfrBとして示した。材料Aおよび材料Bは、その異方性磁界Hのみが異なり、その飽和磁化Msは互いに等しいものとした場合、HkA<HkBならば、μrA>μrB、frA<frBとなる。つまり、材料の異方性磁界Hを大きくすると、静的比透磁率μrsは小さくなり、強磁性共鳴周波数fは大きくなる。
 磁性材料の複素比透磁率の周波数特性は、強磁性共鳴周波数fを境に、正の透磁率から負の透磁率に変化する。また、強磁性共鳴周波数fでは、複素比透磁率の虚部が極大ピークを示し、複素比透磁率の虚部は損失を示す量である。強磁性共鳴周波数frは異方性磁界Hが大きいほど大きいとされており、また、透磁率(静的比透磁率)の大きさは異方性磁界が大きいほど小さいとされる。材料Aおよび材料Bは、その異方性磁界Hkのみが異なりHkA<HkBであるため、μrA>μrB、frA<frBとなる。言い換えれば、透磁率の周波数特性は、異方性磁界Hによって制御することができる。
 正の透磁率を備えた層Aを構成する材料としては、Cu、Al、Agやこれらの合金などの導電率の高い材料を用いることが好ましく、非磁性材料を用いることができるが、磁性材料であってもよい。一方、負の透磁率を備えた層Bを構成する材料としては、NiFe、CoFeAlO、CoFeSiO、CoPdSiO、CoZrNbなどの磁性材料を用いることができる。
 なお、外部からの磁界Hextを印加すると、磁性材料に作用する磁界は異方性磁界Hと外部磁界Hextの合成磁界として与えられるため、材料の異方性磁界Hを外部磁界Hextにより制御することも可能である。
 図11に示されるように、透磁率は周波数によって変化するため、使用する周波数(上記特定の周波数帯域)に応じて必要な磁性材料を選択する必要がある。逆に、使用する周波数において、材料を種々選択することにより、様々な透磁率を選択することができる。同一の磁性材料であっても、異方性磁界Hを制御することにより、様々な透磁率を選択することができる。さらに言えば、1つの磁性材料であっても、異方性磁界の強さを変えることにより、正の透磁率材料としても負の透磁率材料としても利用可能である。1つの材料で済むことは、製造プロセスの簡略化、製造コストの低コスト化に有利である。ここで、異方性磁界は、成膜時のイオン照射や磁界印加、成膜後の熱処理時の磁界印加などの条件の設定内容によって制御できる。
 一方、一軸異方性を有する磁性材料は、その異方性磁界の方向が磁化容易軸と呼ばれ、それに垂直な方向が磁化困難軸と呼ばれる。磁化容易軸方向の磁化過程は磁壁移動磁化であることが一般的に知られており、磁化容易軸方向の磁化率は高周波ではゼロとなる。すなわち、磁化容易軸方向の透磁率は真空の透磁率と等しく、比透磁率が1である。また、薄膜材料の場合、膜面に垂直な方向の磁化は、反磁界が大きいために比透磁率がほぼ1であることが知られている。つまり、高周波で使用される磁性薄膜は、磁化困難軸となる一軸方向のみ図11に示される複素比透磁率の周波数特性を示し、その他の軸(磁化容易軸および膜面垂直方向軸)は、比透磁率が1となる。
 上述のことを考慮すると、1つの磁性材料でも、磁化困難軸方向の透磁率を負の透磁率になるように設定すれば、磁化容易軸方向では正の透磁率(比透磁率=1)となるため、材料を1層ずつ積層して伝送線路を構成する際に、交互に磁化困難軸と磁化容易軸が順次積層するように積層すると、x軸方向では、第1の層が磁化困難軸(負の透磁率)、第2の層が磁化容易軸(正の透磁率)となるのに対し、y軸方向では、第1の層が磁化容易軸(正の透磁率)、第2の層が磁化困難軸(負の透磁率)となるため、x軸およびy軸の双方で本発明の伝送線路を構成できる。
 上記のように磁化容易軸と磁化困難軸の方位を変えて交互に積層する場合には、例えば、以下のような製造方法を用いることができる。まず、通常の磁性薄膜の製造に用いるスパッタリング装置内のサセプタ上に基板を配置し、周囲に磁石を配置して特定方位に向けて磁場を印加した状態で成膜、或いは、その後の熱処理を行うことで、形成された磁性薄膜において磁化容易軸と磁化困難軸が所定方位に設定される。この場合、第1層と第2層の成膜工程又は熱処理工程間で基板を90度回転させるか、或いは、磁石の配置を90度変更することで、両層の磁化容易軸および磁化困難軸の方位を90度変えることができる。
 一方、負の透磁率特性を示す材料は、現状において、上述の一軸異方性を有する磁性材料の強磁性共鳴周波数よりも高い周波数領域(上記特定の周波数帯域)での利用に限られる。磁性材料の複素比透磁率は周波数特性を有することから、本発明の設計方法に基づいて、負の透磁率材料と正の透磁率材料の層の厚さを設計することは、特定の周波数に限って可能であるが、それ以外の周波数においては、材料の透磁率が変化するため、本発明の効果が得られない。
 特定の周波数のみで得られる本発明の効果を利用し、フィルタを構成することが可能である。特定の周波数では、本発明の効果により表皮効果が抑制されるため、抵抗の小さな伝送線路が構成される。一方、特定以外の周波数では、本発明の効果が得られなくなるため、表皮効果が発生し、抵抗の大きな伝送線路が構成される。すなわち、本発明の伝送線路は、特定周波数で抵抗が小さく、それ以外の周波数で抵抗が大きくなる伝送線路である。
 本発明の伝送線路を回路に直列に挿入すれば、バンドパスフィルタとなる。逆に、本発明の伝送線路を回路に並列に挿入すれば、バンドストップフィルタとなる。図11より、磁性材料の複素比透磁率の周波数特性より、上述のように異方性磁界の大きさを制御すれば様々な材料特性が得られるため、フィルタの帯域を任意に設定することが可能である。
 磁性材料の複素比透磁率の周波数特性は、外部磁界Hextにより、異方性磁界Hを見かけ上制御することが可能であるため、本発明の効果が得られる特定周波数を可変することができる。このことは、伝送線路の作製工程において、何らかの原因で設計がずれた場合に、外部磁界による調整で本発明の効果を最適にコントロールできることを意味する。
 また、外部磁界Hextにより、本発明の効果が得られる特定周波数を可変することができる。すなわち、外部磁界Hextによるチューナブルフィルタとなる。
 一方、磁性薄膜に応力を加えることにより、磁性薄膜の異方性磁界Hが変化することも知られている。これを利用すれば、応力により、本発明の効果が得られる特定周波数を可変に構成することもでき、応力によるチューナブルフィルタにもなる。
 外部磁界および応力により、磁性薄膜の透磁率の周波数特性を制御でき、本発明の効果を調整できることは、逆に、本発明の伝送線路が、磁界センサおよび応力センサとしても機能を果たすことを意味する。これを応用すれば、磁界および応力を発生させる物理現象全てを検出することも可能である。
 最後に、図12及び図13を参照して、上記伝送線路や配線基板を含む高周波装置(高周波デバイス)の実施例について説明する。図12は本実施例の高周波装置内の回路パターンを示す写真、図13は本実施例の回路図である。図12に示す白色の配線が伝送線路および高周波部品であり、上述の伝送線路によりスパイラルインダクタや薄膜キャパシタなどが形成されている。図13は図12の各配線パターンの機能を回路として表記したものである(相川政義,大平孝,徳満恒雄,広田哲夫,村口正弘:モノリシックマイクロ波集積回路(MMIC),電子情報通信学会編,(1997).)。この高周波装置において、回路パターン内に形成される伝送線路は、上記層Aの正の透磁率と上記層Bの負の透磁率が実現される特定の周波数帯域で機能するように構成される。すなわち、この高周波装置が動作するとき、上記伝送線路には上記特定の周波数帯域の信号が流される。
 また、上記伝送線路がフィルタとして用いられる場合には、当該フィルタは上記特定の周波数帯域を含む周波数領域で動作する。さらに、上記伝送線路がセンサとして用いられる場合には、上記特定の周波数帯域又は透磁率の変化を検出する回路部分が設けられる。
 尚、本発明の伝送経路及び配線基板、並びに、これらを用いた高周波装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上述の各実施の形態では、正の透磁率を有する層Aと負の透磁率を有する層Bとをそれぞれ単一の材料(単体や化合物)で構成した場合を前提として説明してきたが、各層A、Bはそれぞれ二以上の材料を分散して混合し若しくは焼結した混合物や焼結物で構成されてもよく、また、共通の基材に対する添加材料の組成比を変えて混合し若しくは焼結した、或いは、化合させた物で構成されていてもよい。さらに、混合率、添加量、組成比、分散密度などを内側(中心側)から外側(外周側)へ向かう方向に沿って変化させることによって結果的に正の透磁率を有する部分と負の透磁率を有する部分とが交互に配置された構造としてもよい。
 (第10の実施の形態)
 次に、第2の発明の実施形態について説明する。まず、第2の発明に係る第10の実施の形態について図16を参照して説明する。図16は、この発明の第10の実施の形態に係る伝送線路の断面構成を示す断面構造図であり、第1の実施の形態に係る伝送線路に準じるものである。
 本実施の形態は、第1の実施の形態に係る伝送線路と同様に、正の透磁率を有する材料をAとし、負の透磁率を有する材料をBとする。正の透磁率を有する材料Aのうち、中心に近い層から順にA1、A2とし、負の透磁率を有する材料Bのうち、中心に近い層から順にB1、B2とする。伝送線路は、少なくとも1つ以上の層Aおよび少なくとも1つ以上の層Bを有する。図16では、材料Aが2層、材料Bが2層の構造を示す。発明の効果を高めるためには、層Aおよび層Bをさらに複数積層することも考えられる。また、断面構造を円形としているが、楕円形でも基本的概念は同様である。また、最も内側の層が、正の透磁率を有する層Aとしているが、負の透磁率を有する層Bとしても良い。また、材料Aと材料Bの導電率を比較して、導電率の高い材料を中心材料とした方が上記と同様に効果が高い。なお、図16は第10の実施の形態に係る伝送線路を基本とした特徴を示すが、第1から第9までの実施の形態に係る伝送線路に対しても基本的概念は同様である。
 各層は同心円状に配置される。図16は、層Aの透磁率の大きさ|μ|と層Bの透磁率の大きさ|μ|が等しい場合で、層Aの導電率σおよび層Bの導電率σが異なり(σ≠σ)、層Aの導電率が層Bの導電率に対して2倍大きい(σ=2σ)場合の断面構造を示している。σ=σとする第1の実施の形態(図1)と比較して、層Bの厚さを厚くすることが本発明の特徴である。
 ρ=ρの場合、表皮効果がなければ電流密度は伝送線路断面に対して一様となる。一方、ρA≠ρBの場合、表皮効果がない場合でも導電率の違いにより電流密度は異なり、電流密度は材料の導電率に比例して流れようとする。伝送線路内部の電流密度が異なれば、電流によって生じる磁界分布がρ=ρの場合とρ≠ρの場合とで異なるため、磁束密度分布が異なり、その結果、各層の外径寸法も異なる。
 導電率が異なることを考慮すると、ρ=2ρ、|μ|=|μ|の場合、中心層A1の外径DA1(その半径rA1)を1とした場合、第2層B1の外径DB1(その半径rB1)は1.65とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、第3層A2の外径DA2(その半径rA2)は2.15とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、第4層B2の外径DB2(その半径rB2)は2.56とすることにより、層A2の磁束と層B2の磁束が相殺される。
なお、このような各層の厚さの比は一例であり、この例のように隣接する層の磁束同士が完全に相殺される必要はなく、下記に示す従来技術の場合よりも磁束同士の減殺度合が高くなればよい。
 前記第1の実施の形態の実施例(ρ=ρ、|μ|=|μ|)では、DA1を1とすると、DB1は√2すなわち1.41、DA2は√3すなわち1.73、DB2は√4すなわち2であることに対して、DB1およびその外側の層が大きくなる。また、従来技術では、透磁率の絶対値と厚みの積が一定であるため、第1層A1から第4層B2の厚みはいずれも同じ(上記の第1層の厚みを1とする仮定では全て1)になる。すなわち、従来技術の第1層A1の外径をDA1=1とすると、従来技術の場合の外径は、DB1=2、DA2=3、DB2=4となる。なお、線路外径rlineを実施例と同じにして比較する場合には、各層の厚みを、最外層の第4層B2の外径4を本実施例の外径2.56と一致するように比率で修正すればよい。すなわち、本実施例の第1層A1の厚み(外径)を1とすると、指標Dsを求める際の従来技術の各層の外径は、DA1=0.64、DB1=1.28、DA2=1.92、DB2=2.56となる。
 つまり、材料の導電率が異なる場合は、導電率による電流密度・磁界分布・磁束密度分布が異なることを考慮し、その上で、隣接する層の磁束同士の相殺を図ることが特徴である。導電率を考慮することにより、従来技術に対して、表皮効果の抑制に関してより高い効果を得ることができる。実際に、従来技術の誘導起電力eの全線路断面にわたる積分値Dsは、本実施例の指標Dに比べて大きい(0<D<Ds)。なお、本実施形態の指標Dは、積層数Lが4であるために或る程度の値をもつが、最適設計であるために、積層数Lを大きくしていけば0に近づく。
 第10の実施の形態に係る伝送線路は、第1の実施の形態に係る伝送線路に対する導電率の違いを考慮したものであるが、第2から第9の実施の形態の伝送線路にも同様に適用することにより、表皮効果の抑制効果を高めることができる。なお、他の点については第1から第9の実施の形態に記載した内容を適用することができる。
 (第11の実施の形態)
 次に、第2の発明の第11の実施の形態について説明する。第11の実施の形態は、図16に示される第10の実施の形態に準じており、特に、正の透磁率を有する材料AにCuを想定し、負の透磁率を有する材料BにCoZrNb磁性材料を想定したものである。CoZrNbは零磁歪組成の磁性薄膜で一軸磁気異方性を有し、高周波領域で負の透磁率を有する材料として知られている。Cuは正の透磁率材料として用い、抵抗率ρは1.72×10-8Ωmとし、透磁率μは真空透磁率と同じμ=4π×10-7、つまり、比透磁率μrP=1とする。CoZrNbは負の透磁率材料として用い、抵抗率ρは100×10-8Ωmとし、透磁率μはLLG(ランダウ・リフシッツ・ギルバート)方程式により与えられる。LLG方程式において、異方性磁界Hk=900A/m、飽和磁化Msは1Tとして算出すると、周波数3GHzにおける複素比透磁率の実部μrN=-93.1となる。したがって、正の透磁率材料に対して、透磁率の大きさが93.1倍(周波数3GHz)、抵抗率の大きさが約58倍の材料を適用した場合について、説明する。
 本発明の設計手法により、各層の寸法を設計すると、中心層A1の外径DA1(その半径rA1)を1とした場合、第2層B1の外径DB1(その半径rB1)は1.0054とすることにより、層A1の磁束と層B1の磁束が相殺される。同様に、第3層A2の外径DA2(その半径rA2)は1.4207とすることにより、層B1の磁束と層A2の磁束が相殺される。同様に、第4層B2の外径DB2(その半径rB2)は1.4245とすることにより、層A2の磁束と層B2の磁束が相殺される。以降、第5層は1.7430、第6層は1.7461、第7層は2.0145、第8層は2.0172となる。
 一方、従来技術の構成では、第1層A1の外径をDA1=1とすると、DB1=1.0107、DA2=2.0107、DB2=2.0215、DA3=3.0215、DB3=3.0322、DA4=4.0322、DB4=4.0430となる。したがって、本実施例の第1層A1の外径を1とした場合、比較対象となる従来技術の各層の外径は、DA1=0.4989、DB1=0.5043、DA2=1.0032、DB2=1.0086、DA3=1.5075、DB3=1.5129、DA4=2.0118、DB4=2.0172となる。この従来技術の場合の指標Dsも本実施例の指標Dより大きくなる(0<D<Ds)。
 このような各層の厚さの比に基づき、同軸伝送線路に適用した場合の効果について、三次元有限要素法を用いた電磁界シミュレーションにより計算し、挿入損失の大きさを評価した。同軸線路は、内部導体の直径を10μmとし、同軸線路の特性インピーダンスを50Ωとするために、外部導体の内径を23μmとした。内部導体と外部導体の間の空間は真空を想定し、外部導体は完全導体(σ=0S/m)でGND接地し、内部導体のみに本発明の伝送線路構造を適用した。伝送線路の線路長を100μmとして、入力電力に対する出力電力の大きさの関係から、損失率を評価した。
 図17に、この発明の実施の形態11に係る伝送線路の損失率の周波数特性を示す。図17のグラフのうち、LineAはCu導体のみの伝送線路の結果、LineC4は本発明の伝送線路構造を適用して4層積層構造とした結果、LineC8は本発明の伝送線路構造を適用して8層積層構造とした結果である。
 図17より、Cu導体のみの伝送線路LineAは、低周波では損失が小さいが、高周波になるほど表皮効果によって損失が増加する傾向が見られる。一方、本発明のLineC4及びLineC8の伝送線路は、周波数によってCoZrNbの透磁率が変化するため、設計周波数である3GHz付近で最小の損失を示し、本発明の効果が得られていることがわかる。それ以外の周波数では透磁率が異なるため、設計した各層の寸法が不適合となる。
 なお、LineC8の伝送線路の特性に着目すると、周波数3GHz付近でCu導体のみの伝送線路よりも低損失になっていることがわかる。つまり、Cuよりも抵抗率の高いCoZrNbを用いて同じ直径の伝送線路構造を構成しているため、直流抵抗値はとても大きくなっているにも関わらず、LineAの伝送線路は表皮効果の影響で抵抗が増大するが、一方、LineC8の伝送線路は3GHzで表皮効果が最小となるため、総合的に評価した損失の大きさにおいて、本発明の伝送線路の優位性を得ることができた。
 図17において、LineC4及びLineC8の伝送線路の損失率の周波数特性は、周波数3GHzで最適設計しているにも関わらず、実際の損失の最小ピークは3GHzよりもやや高周波側に在ることが判る。これは、負の透磁率を有するCoZrNb磁性材料が、LLG方程式に基づいて複素比透磁率を有し、透磁率の虚数成分(損失相当)を持つことが原因である。一般的に負の透磁率を有する周波数領域では、前記虚数成分は周波数に対して減少傾向にあるため、磁性材料の虚数成分による損失は低周波ほど大きく、高周波ほど小さくなる。この磁性材料による損失と、表皮効果による損失とを、総合的に考慮すると、損失の最小ピークは表皮効果の最適設計周波数よりも高周波となる。したがって、損失の最適設計をする場合には、表皮深さを最適に抑止する周波数よりもやや低い周波数の磁性材料パラメータを採用することにより、高い効果が得られると言える。
 上記は一例であり、使用材料および使用周波数に応じて、本発明の設計手法を適用することにより、従来の導体のみの伝送線路よりも損失を低減できる可能性があり、また、従来技術(非特許文献1)の設計手法による伝送線路よりもその効果を高めることができる。
 なお、第2の発明としては、上記第10の実施の形態及び上記第11の実施の形態に限らず、第2の発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記の他の実施の形態の欄に記載した事項を始めとして、上記第1の実施の形態から上記第9の実施の形態と同様に、種々の変形例を構成することができる。特に、上記第1の実施の形態から上記第9の実施の形態に示す伝送線路の種々の断面構造を適用することができるが、この場合の断面構造も例示であり、限定されるものではない。また、上記の他の実施の形態に記載したように、第2の発明についても、その断面構造を有する伝送線路を用いた配線基板、並びに、これらを用いた高周波装置(インダクタ、キャパシタ、抵抗器、増幅器、フィルタ、整合器、結合器などの高周波デバイス、或いは、高周波回路等)全般が対象となる。
P,A,A1,A2…正の透磁率を有する層、N,B,B1,B2…負の透磁率を有する層、S…基板、H…穴、μ…透磁率、H…磁界、Φ…磁束、B…磁束密度、t…厚さ、Cs…線路断面、D、Ds…指標(誘導起電力の全線路断面にわたる積分値)、e…誘導起電力

Claims (15)

  1.  特定の周波数帯域において正の透磁率(μ)を有し第1の厚さ(t)を備えた第1の層(P)と、前記特定の周波数帯域において負の透磁率(μ)を有し第2の厚さ(t)を備えた第2の層(N)とを具備し、
     前記第1の層(P)と前記第2の層(N)が線路断面の内側より外側に向けて交互に配置され、
     隣り合う前記第1の層(P)と前記第2の層(N)のうち、前記内側に配置された一方の層(P又はN)における前記透磁率の絶対値(|μ|又は|μ|)と厚さ(t又はt)との積が、前記外側に配置された他方の層(N又はP)における前記透磁率(|μ|又は|μ|)と厚さ(t又はt)との積より大きい
    ことを特徴とする伝送線路。
  2.  前記第1の層(P)と前記第2の層(N)の積層構造を有することを特徴とする請求項1に記載の伝送線路。
  3.  前記第1の層(P)と、前記第2の層(N)とのどちらか少なくとも一方の層、或いは両方の層が、中心に近い層ほど厚く、外周に近い層ほど薄くなるように構成されることを特徴とする請求項1又は2に記載の伝送線路。
  4.  前記第1の層(P)と前記第2の層(N)のうちの導電率の高い方の層が前記線路断面の中心部に配置されることを特徴とする請求項1乃至3のいずれか一項に記載の伝送線路。
  5.  前記第1の層(P)と前記第2の層(N)のうちの前記特定の周波数帯域における前記透磁率の絶対値(|μ|と|μ|)の大きい方の層が前記線路断面の中心部に配置されることを特徴とする請求項1乃至4のいずれか一項に記載の伝送線路。
  6.  隣り合う前記第1の層(P)と前記第2の層(N)の前記厚さ(t、t)は、前記第1の層(P)に発生する磁束と前記第2の層(N)に発生する磁束とが相互に打ち消し合う値とされることを特徴とする請求項1乃至5のいずれか一項に記載の伝送線路。
  7.  前記線路断面が円形又は楕円形であることを特徴とする請求項1乃至6のいずれか一項に記載の伝送線路。
  8.  前記線路断面において前記第1の層(P)および前記第2の層(N)が円形又は楕円形の断面形状を有するとともにこれらの断面形状が相互に同心状に形成されることを特徴とする請求項7に記載の伝送線路。
  9.  前記線路断面が正方形又は長方形であることを特徴とする請求項1乃至6のいずれか一項に記載の伝送線路。
  10.  前記線路断面において前記第1の層(P)および前記第2の層(N)が正方形又は長方形の断面形状を有するとともにこれらの断面形状の中心が前記線路断面の中心と一致することを特徴とする請求項9に記載の伝送線路。
  11.  請求項1乃至10のいずれか一項に記載の伝送線路が基板上に形成されることを特徴とする配線基板。
  12.  請求項1乃至10のいずれか一項に記載の伝送線路が含まれることを特徴とする高周波装置。
  13.  特定の周波数帯域において正の透磁率(μ)と所定の抵抗率(ρ)又は導電率(σ)を有し第1の厚さ(t)を備えた第1の層(P)と、前記特定の周波数帯域において負の透磁率(μ)と所定の抵抗率(ρ)又は導電率(σ)を有し第2の厚さ(t)を備えた第2の層(N)とを具備し、
     前記第1の層(P)と前記第2の層(N)が線路断面の内側より外側に向けて交互に配置されて所定の積層数(L)と線路外径(rline)を備えた積層構造を有し、
     前記特定の周波数帯域内の周波数(f)の電界(E)が存在する場合における伝送線路内で生ずる誘導起電力eの全線路断面(Cs)にわたる積分値(D)は、前記積層数(L)と前記線路外径(rline)を備えるとともに各層の透磁率の絶対値と厚さの積が一定である場合の前記周波数(f)における前記誘導起電力(e)の全線路断面(Cs)にわたる積分値(Ds)よりも小さい
    ことを特徴とする伝送線路。
  14.  請求項13に記載の伝送線路が基板上に形成されることを特徴とする配線基板。
  15.  請求項13に記載の伝送線路が含まれることを特徴とする高周波装置。
PCT/JP2013/059755 2012-03-31 2013-03-29 伝送線路及び配線基板、並びに、これらを用いた高周波装置 WO2013147268A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014508238A JP6080020B2 (ja) 2012-03-31 2013-03-29 伝送線路及び配線基板、並びに、これらを用いた高周波装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012083350 2012-03-31
JP2012-083350 2012-03-31

Publications (1)

Publication Number Publication Date
WO2013147268A1 true WO2013147268A1 (ja) 2013-10-03

Family

ID=49260506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059755 WO2013147268A1 (ja) 2012-03-31 2013-03-29 伝送線路及び配線基板、並びに、これらを用いた高周波装置

Country Status (2)

Country Link
JP (1) JP6080020B2 (ja)
WO (1) WO2013147268A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195394A (ja) * 2015-03-31 2016-11-17 独立行政法人国立高等専門学校機構 伝送線路、配線基板、及び、これらを用いた高周波装置、並びに、伝送線路の設計方法
CN113453523A (zh) * 2020-03-26 2021-09-28 芝浦机械电子株式会社 电磁波衰减体、电子装置、成膜装置及成膜方法
JP2022519982A (ja) * 2018-12-14 2022-03-28 カールスルーエ インスティトゥート フュア テクノロギー トルク伝達装置のトルクを決定するためのセンサデバイスおよび方法
WO2024018526A1 (ja) * 2022-07-19 2024-01-25 日本たばこ産業株式会社 非燃焼型香味吸引器の本体ユニット及び非燃焼型香味吸引器の加熱ユニット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304366B2 (ja) 2018-11-28 2023-07-06 ホシデン株式会社 高周波伝送装置及び高周波信号伝送方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006336A1 (fr) * 1993-08-27 1995-03-02 Murata Manufacturing Co., Ltd. Electrode multicouche a couches minces utilisee pour le couplage de champs electromagnetiques a hautes frequences

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006336A1 (fr) * 1993-08-27 1995-03-02 Murata Manufacturing Co., Ltd. Electrode multicouche a couches minces utilisee pour le couplage de champs electromagnetiques a hautes frequences

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAHIRO YAMAGUCHI ET AL.: "Skin effect suppression in multilayer thin-film spiral inductor taking advantage of negative permeability of magnetic film beyond FMR frequency", PROC. THE 40TH EUROPEAN MICROWAVE CONFERENCE, September 2010 (2010-09-01), pages 1182 - 1185, XP031785391 *
YAN ZHUANG ET AL.: "Magnetic-Multilayered Interconnects Featuring Skin Effect Suppression", IEEE ELECTRON DEVICE LETTERS, vol. 29, no. 4, April 2008 (2008-04-01), pages 319 - 321, XP011205798 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195394A (ja) * 2015-03-31 2016-11-17 独立行政法人国立高等専門学校機構 伝送線路、配線基板、及び、これらを用いた高周波装置、並びに、伝送線路の設計方法
JP2022519982A (ja) * 2018-12-14 2022-03-28 カールスルーエ インスティトゥート フュア テクノロギー トルク伝達装置のトルクを決定するためのセンサデバイスおよび方法
CN113453523A (zh) * 2020-03-26 2021-09-28 芝浦机械电子株式会社 电磁波衰减体、电子装置、成膜装置及成膜方法
CN113453523B (zh) * 2020-03-26 2024-04-02 芝浦机械电子株式会社 电磁波衰减体、电子装置、成膜装置及成膜方法
WO2024018526A1 (ja) * 2022-07-19 2024-01-25 日本たばこ産業株式会社 非燃焼型香味吸引器の本体ユニット及び非燃焼型香味吸引器の加熱ユニット

Also Published As

Publication number Publication date
JPWO2013147268A1 (ja) 2015-12-14
JP6080020B2 (ja) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6080020B2 (ja) 伝送線路及び配線基板、並びに、これらを用いた高周波装置
JP5073373B2 (ja) コモンモードチョークコイル
Gardner et al. Review of on-chip inductor structures with magnetic films
US20190355500A1 (en) Inductor and emi filter including the same
EP3584812A1 (en) Magnetic core, inductor and emi filter comprising same
JP6693655B2 (ja) 伝送線路、配線基板、及び、これらを用いた高周波装置、並びに、伝送線路の設計方法
JP2008072071A (ja) コモンモードチョークコイル
CN111566764B (zh) 磁芯、电感器和包括该电感器的emi滤波器
US9324495B2 (en) Planar inductors with closed magnetic loops
US20140266532A1 (en) Line, spiral inductor, meander inductor, and solenoid coil
CN103747627A (zh) 利用印刷电路板制作电感器件的方法
JP2014192185A (ja) 高周波回路基板
JP2003257739A (ja) 高周波デバイス
JP5622262B2 (ja) 磁性薄膜を用いた伝送線路デバイス
JP2013098539A (ja) インダクタ
Duhni et al. Bi-Layered Magnetic Electromagnetic Interference Shields with Thinner Metals
KR101642612B1 (ko) 인덕터 및 그 제조 방법
WO2018163878A1 (ja) フレキシブルプリント配線板
Shirakawa et al. Thin film inductor with multilayer magnetic core
US20220415560A1 (en) Coil component
JP7353149B2 (ja) 強磁性薄膜積層体
KR102159893B1 (ko) 자성 박막 적층 구조의 제조 방법, 자성 박막 적층 구조체 및 마이크로 인덕터 소자
JP2007073551A (ja) 磁性多層膜及びその製造方法
Min et al. RF inductors with sputtered nanomagnetic films on glass substrates
Amiri et al. Nonreciprocal spin waves in Co-Ta-Zr films and multilayers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767644

Country of ref document: EP

Kind code of ref document: A1