WO2013147040A1 - Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper - Google Patents

Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper Download PDF

Info

Publication number
WO2013147040A1
WO2013147040A1 PCT/JP2013/059303 JP2013059303W WO2013147040A1 WO 2013147040 A1 WO2013147040 A1 WO 2013147040A1 JP 2013059303 W JP2013059303 W JP 2013059303W WO 2013147040 A1 WO2013147040 A1 WO 2013147040A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
composite resin
particles
resin
mass
Prior art date
Application number
PCT/JP2013/059303
Other languages
French (fr)
Japanese (ja)
Inventor
正彦 小澤
浩司 森
丈晴 中野
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to DE112013001815.2T priority Critical patent/DE112013001815T5/en
Publication of WO2013147040A1 publication Critical patent/WO2013147040A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/034Post-expanding of foam beads or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene

Definitions

  • the present invention relates to composite resin particles, expandable composite resin particles, pre-expanded particles, foamed molded products, and bumper core materials. Specifically, the present invention relates to composite resin particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability, and expandable composite resin particles obtained from the composite resin particles, pre-expanded particles The present invention relates to a foam molded body and a bumper core material.
  • foamed molded products containing polystyrene resin as a resin component have excellent physical properties such as molding processability, heat insulation, impact resistance and buffering properties. Widely used as a member.
  • the patent document 1, 2 and 3 describe the foaming molding which contains a polystyrene-type resin and a polyolefin-type resin as a resin component.
  • an automotive foam molded body such as a bumper core material is required to have improved energy absorption characteristics, that is, higher impact resistance.
  • the foamed molded body is also required to have high dimensional stability under a high temperature environment, that is, excellent heating dimensional stability in order to prevent malfunction of the detection function.
  • the present invention has been made in view of the above problems, and is obtained from composite resin particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability, and obtained from the composite resin particles. It is an object of the present invention to provide expandable composite resin particles, pre-expanded particles, a foam molded article, and a bumper core material.
  • the present inventors have determined that, as a resin component, from a composite resin particle containing a polyolefin resin having a specific range of Vicat softening point and dispersity and a polystyrene resin, impact resistance and heat dimensional stability.
  • the present inventors have found that an excellent foam molded article can be provided, and have come to carry out the present invention.
  • the resin component includes 100 parts by mass of polyolefin resin and 100 to 400 parts by mass of polystyrene resin, and the polyolefin resin has a Vicat softening point of 110 to 125 ° C. and 1.5 to 4.8.
  • Composite resin particles having a degree of dispersion of 5 are provided.
  • foamable composite resin particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability.
  • pre-expanded particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability are provided.
  • a foamed molded article excellent in impact resistance and heat dimensional stability is provided.
  • a core material for a bumper excellent in impact resistance and heating dimensional stability is provided.
  • composite resin particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability it is possible to provide composite resin particles capable of obtaining a foamed molded article having excellent energy absorption characteristics and heat dimensional stability under a high temperature environment.
  • the composite resin particles when the composite resin particles contain 100 parts by mass of a polyolefin resin and 100 to 300 parts by mass of a polystyrene resin as resin components, a foamed molded article having superior impact resistance and heat dimensional stability can be obtained.
  • the composite resin particle which can be obtained can be provided.
  • the composite resin particles when the composite resin particles have a dispersity of 2.0 to 4.5, the composite resin particles capable of obtaining a foamed molded article superior in impact resistance and heat dimensional stability are obtained. Can be provided.
  • the polyolefin resin is a polyethylene resin or a polypropylene resin
  • the composite resin particles when the composite resin particles have a Vicat softening point of 110 to 130 ° C., it is possible to provide composite resin particles that can obtain a foamed molded article that is superior in impact resistance and heat dimensional stability.
  • the composite resin particles when the composite resin particles contain 0.5 to 3.0 parts by mass of carbon black with respect to 100 parts by mass of the resin component, the composite resin particles contain carbon black as a colorant in a suitable ratio.
  • composite resin particles capable of obtaining a foamed molded article having excellent impact resistance and heat dimensional stability and also excellent design properties can be provided.
  • foamable composite resin particles capable of obtaining a foamed molded article having excellent impact resistance and heat dimensional stability from the composite resin particles as described above.
  • the foamed molded product has a density of 0.020 to 0.10 g / cm 3 , it is possible to provide a foamed molded product that is superior in impact resistance and heat dimensional stability.
  • the present invention includes 100 parts by mass of a polyolefin resin and 100 to 400 parts by mass of a polystyrene resin as resin components, and the polyolefin resin has a Vicat softening point of 110 to 125 ° C. and a dispersity of 1.5 to 4.8. It relates to composite resin particles having
  • the composite resin particles of the present invention contain a polyolefin resin and a polystyrene resin in suitable proportions.
  • the composite resin particle has characteristics such as rigidity, heat insulation, light weight, water resistance and foaming moldability possessed by polystyrene resin and chemical resistance, heat resistance and impact resistance possessed by polyolefin resin (impact Absorptivity) and the like.
  • the polyolefin resin has a Vicat softening point of 110 to 125 ° C. and a dispersity of 1.5 to 4.8. For this reason, the impact resistance and heat dimensional stability of foamed moldings obtained from polyolefin resin and composite resin particles containing polyolefin resin are improved by suitably setting the polymer chain and structure in polyolefin resin. Can be made. As a result, the foam molded product obtained from such composite resin particles can be widely used as a component packing material, an automobile member, a cushioning material, or a bumper core material, particularly as a bumper core material.
  • the degree of dispersion (Mw / Mn) means a value indicating the degree of monodispersity of the chain length distribution obtained using the number average molecular weight (Mn) and the weight average molecular weight (Mw).
  • the present invention it is possible to provide composite resin particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability.
  • the composite resin particles of the present invention will be described more specifically.
  • the composite resin particle means a resin particle obtained by combining a plurality of resin components. Specific examples include resin particles obtained by modifying a polyolefin resin with a polystyrene resin derived from a styrene monomer. “Composite” means that a polyolefin resin and a polystyrene resin are present in the particle, and “modification” means impregnating and polymerizing a styrene monomer in the polyolefin resin. To do.
  • the composite resin particles of the present invention contain a polyolefin resin and a polystyrene resin in a suitable ratio. Specifically, the composite resin particles contain 100 to 400 parts by mass, preferably 100 to 300 parts by mass, and more preferably 150 to 230 parts by mass of a polystyrene resin with respect to 100 parts by mass of the polyolefin resin. When the composite resin particles contain 100 parts by mass of polyolefin resin, specific values of polystyrene resin content are 100, 130, 150, 180, 200, 230, 240, 250, 270, 300, 350, 400 parts by mass and the like can be mentioned.
  • the ratio of the polystyrene resin in the composite resin particles becomes low, and the composite resin particles may not be able to obtain sufficient characteristics derived from the polystyrene resin.
  • the amount of the polystyrene resin is more than 400 parts by mass, the ratio of the polyolefin resin in the composite resin particles becomes low, and the characteristics derived from the polyolefin resin may not be sufficiently obtained.
  • the composite resin particles preferably have a Vicat softening point of 110 to 130 ° C., more preferably 110 to 125 ° C.
  • the Vicat softening point is one of the indices representing the heat resistance of the resin, and the composite resin particles are measured according to the method described in JIS K7196: 1991 “Softening temperature test method by thermomechanical analysis of thermoplastic film and sheet”. What you did. Specific measurement methods are as in the following examples.
  • the Vicat softening point of the composite resin particle means the Vicat softening point of the composite resin particle itself containing the composite resin particle when the composite resin particle contains other components other than the resin component such as carbon black.
  • the Vicat softening point of the composite resin particle means the Vicat softening point of the resin component itself of the composite resin particle.
  • Specific numerical values of the Vicat softening point of the composite resin particles are 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130 ° C. and the like.
  • the composite resin particles When the Vicat softening point of the composite resin particles is lower than 110 ° C., the composite resin particles may not have sufficient heat resistance. On the other hand, when the Vicat softening point of the composite resin particles is higher than 130 ° C., the foamable composite resin particles may not have sufficient foamability.
  • the composite resin particles preferably have an average particle diameter of 0.71 to 2.5 mm, more preferably 0.85 to 1.6 mm.
  • the shape is preferably spherical to substantially spherical. Specific numerical values of the average particle diameter of the composite resin particles are 0.71, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5 mm, etc. It is done.
  • the polyolefin resin is not particularly limited, and means an olefin homopolymer or a copolymer of an olefin monomer as a main component and another monomer copolymerizable with the olefin monomer.
  • the main component of the olefin monomer means that the olefin monomer occupies 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more of the total monomers. .
  • Specific values of the proportion of the olefinic monomer when the total monomer is 100% by mass are 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100% by mass. Etc.
  • examples of the polyolefin resin include an ⁇ -olefin resin such as a polyethylene resin, a polypropylene resin, and a polybutylene resin. Moreover, since a desired physical property can be obtained more easily, a polyethylene resin, a polypropylene resin, and a combination thereof are preferable as the polyolefin resin.
  • the polyolefin resin of the present invention has a Vicat softening point of 110 to 125 ° C, preferably 112 to 125 ° C, more preferably 113 to 123 ° C.
  • the Vicat softening point is one of the indices representing the heat resistance of the resin.
  • the Vicat softening point is measured according to the method described in JIS K7206: 1999 “Plastics—Thermoplastics—Vicat softening temperature test method”. .
  • Specific values of the Vicat softening point of the polyolefin resin include 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125 ° C., and the like. .
  • the composite resin particles When the Vicat softening point of the polyolefin resin is lower than 110 ° C., the composite resin particles may not have sufficient heat resistance. On the other hand, when the Vicat softening point of the polyolefin resin is higher than 125 ° C., the expandable composite resin particles may not have sufficient expandability.
  • the polyethylene resin preferably has a weight average molecular weight (Mw) of 60 ⁇ 10 3 to 200 ⁇ 10 3 , more preferably 70 ⁇ 10 3 to 190 ⁇ 10 3 .
  • Mw weight average molecular weight
  • Specific numerical values of the weight average molecular weight of the polyethylene resin include 60 ⁇ 10 3 , 70 ⁇ 10 3 , 80 ⁇ 10 3 , 90 ⁇ 10 3 , 100 ⁇ 10 3 , 150 ⁇ 10 3 , 160 ⁇ 10 3 , 170 * 10 ⁇ 3 >, 180 * 10 ⁇ 3 >, 190 * 10 ⁇ 3 >, 200 * 10 ⁇ 3 > etc. are mentioned.
  • the composite resin particles When the weight average molecular weight is lower than 60 ⁇ 10 3 , the composite resin particles may not have sufficient heat resistance. On the other hand, when the weight average molecular weight is higher than 200 ⁇ 10 3 , the expandable composite resin particles may not have sufficient expandability.
  • the polyethylene resin preferably has a number average molecular weight (Mn) of 10 ⁇ 10 3 to 80 ⁇ 10 3 , more preferably 15 ⁇ 10 3 to 80 ⁇ 10 3 .
  • Mn number average molecular weight
  • Specific numerical values of the number average molecular weight of the polyethylene resin are 10 ⁇ 10 3 , 15 ⁇ 10 3 , 20 ⁇ 10 3 , 30 ⁇ 10 3 , 40 ⁇ 10 3 , 50 ⁇ 10 3 , 60 ⁇ 10 3 , 70 * 10 ⁇ 3 >, 80 * 10 ⁇ 3 > etc. are mentioned.
  • the composite resin particles may not have sufficient heat resistance.
  • the expandable composite resin particles may not have sufficient expandability.
  • the polypropylene resin preferably has a weight average molecular weight of 200 ⁇ 10 3 to 400 ⁇ 10 3 , more preferably 250 ⁇ 10 3 to 390 ⁇ 10 3 .
  • Specific numerical values of the weight average molecular weight of the polypropylene resin include 200 ⁇ 10 3 , 230 ⁇ 10 3 , 250 ⁇ 10 3 , 300 ⁇ 10 3 , 310 ⁇ 10 3 , 320 ⁇ 10 3 , 330 ⁇ 10 3 , 340 * 10 ⁇ 3 >, 350 * 10 ⁇ 3 >, 360 * 10 ⁇ 3 >, 370 * 10 ⁇ 3 >, 380 * 10 ⁇ 3 >, 390 * 10 ⁇ 3 >, 400 * 10 ⁇ 3 > etc. are mentioned.
  • the composite resin particles When the weight average molecular weight is lower than 200 ⁇ 10 3 , the composite resin particles may not have sufficient heat resistance. On the other hand, when the weight average molecular weight is higher than 400 ⁇ 10 3 , the expandable composite resin particles may not have sufficient expandability.
  • the polypropylene resin preferably has a number average molecular weight (Mn) of 70 ⁇ 10 3 to 160 ⁇ 10 3 , more preferably 80 ⁇ 10 3 to 150 ⁇ 10 3 .
  • Mn number average molecular weight
  • Specific numerical values of the number average molecular weight of the polypropylene resin include 70 ⁇ 10 3 , 75 ⁇ 10 3 , 80 ⁇ 10 3 , 90 ⁇ 10 3 , 100 ⁇ 10 3 , 110 ⁇ 10 3 , 120 ⁇ 10 3 , 130 ⁇ 10 3, 140 ⁇ 10 3, 150 ⁇ 10 3, 155 ⁇ 10 3, 160 ⁇ 10 3 , and the like.
  • the composite resin particles may not have sufficient heat resistance.
  • the expandable composite resin particles may not have sufficient expandability.
  • the polyolefin resin of the present invention has a dispersity (Mw / Mn) of 1.5 to 4.8, preferably 2.0 to 4.5.
  • Specific numerical values of the dispersibility of the polyolefin resin include 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 3.0, 3.5, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4. 8 etc. are mentioned.
  • the manufacturing cost may be a problem.
  • the degree of dispersion is higher than 4.8, the impact resistance of the foamed molded product may be lowered.
  • the polyethylene resin is preferably 0.927 to 0.950 kg / m 3 , more preferably 0.927 to 0.945 kg / m 3 , and still more preferably 0.930. It has a density of ⁇ 0.945 kg / m 3 .
  • specific numerical values of the density of the polyethylene resin are 0.927, 0.928, 0.929, 0.930, 0.931, 0.932, 0.933, 0.934, 0.935.
  • the composite resin particles may not have sufficient heating dimensional stability.
  • the density of the polyethylene resin is higher than 0.950 kg / m 3 , the resin component may not be sufficiently softened during the polymerization process, and the expandable composite resin particles may not have sufficient expandability.
  • the polyolefin resin is preferably 1.0-10.0 g / 10 min, more preferably 1.0-7.0 g / min. It has a melt flow rate of 10 minutes.
  • specific numerical values of the melt flow rate of the polyolefin resin are 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 6.5, 6.8, 7.0, 7.2, 7.4, 7.6, 7.8, 8. 0, 8.2, 8.4, 8.6, 8.8, 9.0, 9.2, 9.4, 9.6, 9.8, 10.0 g / 10 min.
  • the polyolefin resin is preferably 1.0 to 10.0 g / 10 min, more preferably 2.0 to 9. It has a melt flow rate of 0 g / 10 min.
  • specific numerical values of the melt flow rate of the polyolefin resin are 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 3.0, 4.0, 5.0, 6.0, 7. 0, 7.5, 8.0, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10.0 g / 10 min, etc. are mentioned.
  • melt flow rate of these polyolefin resins is lower than 1.0 g / 10 min, it may be impossible to obtain a foam having a predetermined multiple.
  • melt flow rate of the polyolefin-based resin is higher than 10.0 g / 10 minutes, it may be impossible to obtain a predetermined multiple of foam.
  • the polyolefin resin in the composite resin particles has such Vicat softening point, weight average molecular weight, number average molecular weight, dispersity, density and melt flow rate, expandable composite resin particles obtained from the composite resin particles, pre-expanded
  • the polyolefin resin in the particles, the molded foam and the bumper core material also has substantially the same Vicat softening point, weight average molecular weight, number average molecular weight, dispersity, density and melt flow rate, respectively.
  • Polyolefin resins such as polyethylene resins and polypropylene resins can be produced according to known methods. Furthermore, in the case of producing a polyethylene resin and a polypropylene resin having the above characteristics, a polymerization method using a metallocene compound as a catalyst is preferable because they can be produced more easily.
  • metallocene compound examples include known metallocene compounds.
  • a metallocene compound containing a tetravalent transition metal element can be preferably used.
  • the composite resin particle contains a polystyrene resin as a resin component.
  • the composite resin particles can have excellent properties such as rigidity, heat insulation, light weight, water resistance, and foam moldability of the polystyrene resin.
  • the polystyrene resin means a styrene homopolymer or a copolymer of a styrene monomer as a main component and another monomer component copolymerizable with the styrene monomer.
  • the styrene monomer as a main component means that the styrene monomer occupies 50 parts by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more in 100 parts by mass of all monomer components. Means. Specific values of the proportion of the styrenic monomer when the total monomer is 100% by mass are 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100% by mass. Etc.
  • the copolymer component contained in the polystyrene resin a known monomer can be used as long as it does not affect the desired physical properties. Specifically, cyclic olefin monomers, diene monomers, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, ethyl acrylate, butyl acrylate, methyl methacrylate, Mention may be made of vinylic monomers such as maleic anhydride and methylstyrene. Moreover, these can also be used by 1 type (s) or 2 or more types.
  • carbon black is preferably used in an amount of 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the resin component. More preferably, the content is 0.5 to 2.0 parts by mass. Specific numerical values of the carbon black content in the composite resin particles are 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1 with respect to 100 parts by mass of the resin component. 0.5, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0 parts by mass and the like.
  • the composite resin particles When the amount of carbon black is less than 0.5 parts by mass, the composite resin particles may not have sufficient colorability. On the other hand, when carbon black is contained more than 3.0 parts by mass, the composite resin particles may not have impact resistance.
  • Known carbon black can be used. Specific examples include carbon-based materials such as furnace black, channel black, thermal black, acetylene black, graphite, and carbon fiber.
  • a composition containing carbon black a so-called master batch may be added.
  • the master batch contains carbon black in a proportion of preferably 30 to 50 parts by mass, more preferably 35 to 45 parts by mass with respect to 100 parts by mass of the master batch.
  • the specific value of the carbon black content in the master batch is 30, 31, 32, 33, 34, 35, 37, 40, 43, 45, 46, 47 with respect to 100 parts by mass of the master batch. 48, 49, 50 parts by mass, and the like.
  • the base resin contained in the master batch is preferably an olefin resin.
  • composite resin particles and the following expandable composite resin particles, pre-expanded particles, and foamed molded article may contain other additives as appropriate.
  • specific examples include a bubble regulator, a coating agent, a light stabilizer, an ultraviolet absorber, a pigment, a dye, an antifoaming agent, a heat stabilizer, a lubricant, and an antistatic agent.
  • the mass and mass ratio of the raw material monomer, raw material resin, and other components, and the mass and mass of the composite resin particles, expandable composite resin particles, pre-expanded particles, resin components in the foamed molded product, and other components is substantially the same.
  • the qualitative and quantitative determination of the raw materials contained in the composite resin particles, expandable composite resin particles, pre-expanded particles and foamed molded products can be performed by nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), gel permeation. It can carry out according to a well-known method using chromatography (GPC) etc.
  • NMR nuclear magnetic resonance spectroscopy
  • IR infrared spectroscopy
  • GPC chromatography
  • the foamable composite resin particles of the present invention also use the composite resin particles as described above as a raw material, a foamed molded article excellent in impact resistance and heat dimensional stability can be obtained therefrom.
  • the expandable composite resin particle means a composite resin particle exhibiting heat foamability, which is obtained by impregnating a composite resin particle with a foaming agent.
  • the foaming agent content in the expandable composite resin particles is preferably 5 to 15 parts by mass, more preferably 8 to 10 parts by mass with respect to 100 parts by mass of the composite resin particles as the resin component. .
  • Specific numerical values of the foaming agent content in the expandable composite resin particles are 5, 6, 7, 8, 9, 10, 11, 12, 13, with respect to 100 parts by mass of the composite resin particles as the resin component. 14, 15 parts by mass and the like.
  • the foaming agent When the foaming agent is lower than 5 parts by mass, the amount of the foaming agent is insufficient, and the foamable composite resin particles may not have sufficient foamability. On the other hand, when the amount of the foaming agent is more than 15 parts by mass, the amount of the foaming agent is excessive, and in this case as well, the foamable composite resin particles may not have sufficient foamability.
  • foaming agent a known foaming agent having volatility can be used.
  • any of n-butane, i-butane, n-pentane and i-pentane which can introduce greater foaming performance into the foamable composite resin particles, is preferable.
  • a foaming agent may be used independently and may use 2 or more types.
  • the expandable composite resin particles preferably have an average particle diameter of 0.71 to 2.5 mm, more preferably 0.85 to 1.6 mm. Specific numerical values of the average particle diameter of the expandable composite resin particles are 0.71, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0, 1.1, 1. 2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5mm etc. are mentioned.
  • the shape is preferably spherical to substantially spherical.
  • pre-expanded particles of the present invention also use the composite resin particles as a raw material, a foamed molded article excellent in impact resistance and heat dimensional stability can be obtained therefrom.
  • the pre-expanded particles mean resin particles obtained by heating and foaming the expandable composite resin particles as described above to a predetermined bulk density.
  • the pre-expanded particles preferably have a bulk density of 0.020 to 0.10 g / cm 3 , more preferably 0.025 to 0.10 g / cm 3 .
  • a bulk density of the pre-expanded particles 0.020, 0.021, 0.022, 0.023, 0.024, 0.025, 0.026, 0.028, 0.030, 0 0.040, 0.050, 0.060, 0.070, 0.080, 0.090, 0.095, 0.098, 0.099, 0.10 g / cm 3 and the like.
  • the strength and heat resistance of the obtained foamed molded product may be lowered.
  • it is higher than 0.10 g / cm 3 the weight of the obtained foamed molded product may increase.
  • the pre-expanded particles preferably have an average particle diameter of 1.0 to 9.0 mm, more preferably 2.0 to 6.4 mm.
  • Specific numerical values of the average particle diameter of the pre-expanded particles are 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.2, 6.4, 6.6, 6.8, 7. 0, 7.2, 7.4, 7.6, 7.8, 8.0, 8.2, 8.4, 8.6, 8.8, 9.0 mm and the like.
  • the shape is preferably spherical to approximately spherical.
  • the foamed molded product means a resin molded product obtained by thermally fusing the pre-expanded particles as described above.
  • the foamed molded article can have more excellent heat resistance and impact resistance, it preferably has a density of 0.020 to 0.10 g / cm 3 , more preferably 0.025 to 0.10 g / cm 3 .
  • Specific numerical values of the density of the foam molded article are 0.020, 0.021, 0.022, 0.023, 0.024, 0.025, 0.026, 0.028, 0.030, 0.0. 040, 0.050, 0.060, 0.070, 0.080, 0.090, 0.095, 0.096, 0.097, 0.098, 0.099, 0.10 g / cm 3 etc. Can be mentioned.
  • the density is lower than 0.020 g / cm 3 , the strength and heat resistance of the obtained foamed molded product may be lowered.
  • it is higher than 0.10 g / cm 3 , the weight of the obtained foamed molded product may increase.
  • the foamed molded product of the present invention preferably exhibits an absorbed energy of 1.2 to 3.0 J, more preferably 1.3 to 3.0 J, in the impact test of ASTM D3763-92.
  • Specific numerical values of the absorbed energy exhibited by the foam molded article are 1.2, 1.3, 1.4, 1.5, 1.7, 2.0, 2.3, 2.5, 2.6, 2.7, 2.8, 2.9, and 3.0J.
  • the foamed molded article exhibits a heating dimensional change rate of preferably 1.0% or less, more preferably 0.8% or less, in a heating dimensional change test of JIS K6767: 1999.
  • a heating dimensional change rate preferably 1.0% or less, more preferably 0.8% or less, in a heating dimensional change test of JIS K6767: 1999.
  • specific numerical values of the heating dimensional change rate exhibited by the foam molded article 0.00%, 0.10%, 0.20%, 0.30%, 0.40%, 0.50%, 0.60% 0.65%, 0.66%, 0.67%, 0.68%, 0.69%, 0.70%, 0.71%, 0.72%, 0.73%, 0.74% 0.75% 0.76% 0.77% 0.78% 0.79% 0.80% 0.81% 0.82% 0.83% 0.84% 0.85%, 0.86%, 0.87%, 0.88%, 0.89%, 0.90%, 0.91%, 0.92%, 0.93%, 0.94% 0.95%, 0.96%, 0.97%,
  • the composite resin particles can be produced, for example, as follows. That is, 100 parts by mass of polyolefin resin particles, 100 to 400 parts by mass of a styrene monomer, and a polymerization initiator are dispersed in an aqueous suspension. In addition, you may mix and use a styrene-type monomer and a polymerization initiator previously.
  • the polyolefin resin particles can be obtained by a known method.
  • a polyolefin resin is melt-kneaded in an extruder together with an inorganic nucleating agent and additives as necessary to obtain a strand, and the obtained strand is cut in air, cut in water, The method of granulating by cutting while heating is mentioned.
  • the inorganic nucleating agent examples include talc, silicon dioxide, mica, clay, zeolite, calcium carbonate and the like.
  • the amount of the inorganic nucleating agent used is preferably 2 parts by mass or less, more preferably 0.2 to 1.5 parts by mass with respect to 100 parts by mass of the polyethylene resin. Specific values for the amount of the inorganic nucleating agent used are 0.2, 0.5, 1.0, 1.3, 1.5, 1.7, 1.8 with respect to 100 parts by mass of the polyethylene resin. 1.9, 2 mass parts, etc. are mentioned.
  • the aqueous medium constituting the aqueous suspension include water and a mixed medium of water and a water-soluble solvent (for example, lower alcohol).
  • polymerization initiator those generally used as an initiator for suspension polymerization of a styrene monomer can be used.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is preferably 0.1 to 0.9 parts by mass and more preferably 0.2 to 0.5 parts by mass with respect to 100 parts by mass of the styrene monomer. Specific values of the amount of the polymerization initiator used are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0 with respect to 100 parts by mass of the styrene monomer. 0.7, 0.8, 0.9 parts by mass and the like. If it is less than 0.1 part by mass, it may take too much time to polymerize the styrene monomer. If the polymerization initiator exceeds 0.9 parts by mass, the molecular weight of the styrene resin may be lowered.
  • a dispersant may be added to the aqueous suspension as necessary.
  • the dispersant is not particularly limited, and any known dispersant can be used. Specific examples include hardly soluble inorganic substances such as calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate, magnesium oxide. Further, a surfactant such as sodium dodecylbenzenesulfonate may be used.
  • the obtained dispersion is heated to a temperature at which the styrene monomer is not substantially polymerized to impregnate the polyolefin resin particles with the styrene monomer.
  • a suitable time for impregnating the polyolefin resin particles with the styrene monomer is 30 minutes to 2 hours. Specific values for the impregnation time of the styrene monomer include 30 minutes, 45 minutes, 1 hour, 1 hour 15 minutes, 1 hour 30 minutes, 1 hour 45 minutes, 2 hours, and the like. If the polymerization proceeds before being sufficiently impregnated, a polymer powder of a styrene resin may be produced.
  • the temperature at which the monomer is not substantially polymerized is advantageous in that the higher the temperature, the higher the impregnation rate. However, it is necessary to determine the temperature considering the decomposition temperature of the polymerization initiator.
  • styrene monomer is polymerized.
  • the polymerization is not particularly limited, but is preferably performed at 115 to 140 ° C. for 1.5 to 5 hours.
  • Specific values of the polymerization temperature include 115, 120, 125, 130, 135, 140 ° C., and the like.
  • Specific values for the polymerization time include 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 hours, and the like.
  • the polymerization is usually carried out in an airtight container that can be pressurized.
  • the impregnation and polymerization of the styrene monomer may be performed in a plurality of times. By dividing into multiple times, the generation of polystyrene polymer powder can be minimized.
  • the polymerization may be carried out while impregnating the styrene monomer with the polyolefin resin particles instead of impregnating the styrene monomer.
  • Composite resin particles can be obtained by the above process.
  • the expandable resin particles can be obtained by impregnating the composite resin particles during or after the polymerization with a foaming agent.
  • This impregnation can be performed by a method known per se.
  • the impregnation during the polymerization can be performed by performing the polymerization reaction in a sealed container and press-fitting a foaming agent into the container.
  • the impregnation after the completion of the polymerization is performed by press-fitting a foaming agent in a sealed container.
  • the pre-expanded particles can be obtained by pre-expanding the expandable resin particles to a predetermined bulk density by a known method.
  • the pre-expanded particle manufacturing method preferably uses heated steam of 0.05 to 0.15 MPa, more preferably 0.06 to 0.10 MPa.
  • a step of pre-foaming the expandable composite resin particles are 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13. 0.14, 0.15 MPa, and the like. In this case, it is possible to reduce manufacturing cost and manufacturing time by using higher-pressure heating steam.
  • the foamed molded product can be obtained by filling the pre-foamed particles in a mold of a foam molding machine and heat-sealing the foamed particles while foaming the pre-foamed particles by heating again.
  • Water vapor can be suitably used as the heating medium.
  • the foamed molded product of the present invention has excellent impact resistance and heat dimensional stability.
  • the foam molded article is suitably used in applications that require excellent impact resistance and heat dimensional stability, such as parts packaging materials, automobile members, cushioning materials, or bumper core materials, particularly bumper core materials. be able to.
  • the gel permeation chromatography (GPC) apparatus used for the measurement is HLC-8121GPC / HT manufactured by Tosoh Corporation, TSKgel GMHhr-H (20) HT manufactured by Tosoh Corporation is used as the column, and the column temperature is set to 140 ° C. Set and use 1,2,4-trichlorobenzene as eluent.
  • the measurement sample is adjusted to a concentration of 1.0 mg / mL, and the amount injected into the GPC device is 0.3 mL.
  • the calibration curve for each molecular weight is calibrated using a polyethylene sample or polypropylene sample with a known molecular weight.
  • Mn and Mw are determined as polystyrene equivalent values.
  • dispersity (Mw / Mn) is measured using the obtained Mn and Mw.
  • the density of the resin is measured by a density gradient tube method in accordance with JIS K6922-1: 1998.
  • MFR Polyethylene resin melt flow rate
  • Vicat softening point of polyolefin resin Vicat softening temperature
  • the temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles.
  • the monomer was impregnated.
  • the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
  • the obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.) and pre-foamed using steam at a pressure of 0.05 MPa to obtain a bulk density of 0.033 g / cm. Three pre-expanded particles were obtained.
  • a pre-foaming machine product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.
  • the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam having a pressure of 0.18 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape of 400 mm long ⁇ 300 mm wide ⁇ 30 mm high and having a density of 0.033 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
  • the temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles.
  • the monomer was impregnated.
  • the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
  • the temperature of the reaction system was lowered to 125 ° C., and a second styrene monomer obtained by dissolving 100.8 g of dicumyl peroxide as a polymerization initiator in 22 kg of styrene monomer was 4.6 kg per hour.
  • the second styrene monomer was impregnated into the polyethylene resin particles to cause polymerization (second polymerization).
  • the mixture was held at 125 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization to obtain composite resin particles.
  • the obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (manufactured by Kasahara Kogyo Co., Ltd., product name “PSX40”) and pre-foamed using steam at a pressure of 0.05 MPa to obtain a bulk density of 0.033 g / cm. Three pre-expanded particles were obtained.
  • the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam having a pressure of 0.18 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape of 400 mm long ⁇ 300 mm wide ⁇ 30 mm high and having a density of 0.033 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
  • Example 3 Polyethylene resin (Ube) instead of polyethylene resin (manufactured by Prime Polymer, product name “SP4020”, density: 0.937 g / cm 3 , Vicat softening point: 117 ° C., melt flow rate: 1.8 g / 10 min)
  • Polyethylene resin manufactured by Prime Polymer, product name “SP4020”, density: 0.937 g / cm 3 , Vicat softening point: 117 ° C., melt flow rate: 1.8 g / 10 min
  • the others were the same as in Example 1.
  • Example 4 Polyethylene resin (Ube) instead of polyethylene resin (manufactured by Prime Polymer, product name “SP4020”, density: 0.937 g / cm 3 , Vicat softening point: 117 ° C., melt flow rate: 1.8 g / 10 min) (Made by Maruzen Polyethylene Co., Ltd., product name “4040FC”, density: 0.938 g / cm 3 , Vicat softening point: 120 ° C., melt flow rate: 3.5 g / 10 min) The others were the same as in Example 1.
  • the temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles.
  • the monomer was impregnated.
  • the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
  • the temperature of the reaction system was lowered to 115 ° C., and a second styrene monomer obtained by dissolving 33.6 g of t-butyl peroxybenzoate as a polymerization initiator in 16 kg of styrene monomer was 4 per hour.
  • polymerization second polymerization
  • the mixture was held at 115 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
  • the obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.) and pre-foamed using steam at a pressure of 0.05 MPa to obtain a bulk density of 0.033 g / cm. Three pre-expanded particles were obtained.
  • a pre-foaming machine product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.
  • the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam with a pressure of 0.18 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape with a length of 400 mm ⁇ width of 300 mm ⁇ height of 30 mm and a density of 0.033 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
  • the temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles.
  • the monomer was impregnated.
  • the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
  • the obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.) and pre-foamed using steam at a pressure of 0.10 MPa to obtain a bulk density of 0.025 g / cm. Three pre-expanded particles were obtained.
  • a pre-foaming machine product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.
  • the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam having a pressure of 0.23 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape of length 400 mm ⁇ width 300 mm ⁇ height 30 mm and a density of 0.025 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
  • a polypropylene resin product name “RFG4VA” manufactured by Nippon Polypro Co., Ltd. (melting point: 135 ° C., density: 0.900 g / cm 3 , melt flow rate: 6.0 g / 10 min, Vicat softening point: 115 ° C.) 100 parts by mass is supplied to an extruder, melted and kneaded, and granulated by an underwater cut method to form an oval (egg-like) shape.
  • Polypropylene resin particles polyolefin resin particles
  • the average weight of the polypropylene resin particles at this time was 0.8 mg.
  • the temperature of the suspension containing the polypropylene system is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour, so that the first styrene monomer is contained in the polypropylene resin particles.
  • the body was impregnated.
  • the temperature of the reaction system was raised to 140 ° C., the same as the melting point of the polypropylene resin, and maintained for 2 hours, and the styrene monomer was polymerized (first polymerization) in the polypropylene resin particles.
  • the temperature of the reaction system was lowered to 125 ° C., and a second styrene monomer in which 72 g of dicumyl peroxide was dissolved in 16 kg of styrene monomer as a polymerization initiator was continuously added at a rate of 4 kg per hour.
  • the second resin was polymerized (second polymerization) while impregnating the polypropylene resin particles with the second styrene monomer.
  • the mixture was held at 120 ° C. for 1 hour, then heated to 143 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
  • the obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (manufactured by Kasahara Kogyo Co., Ltd., product name “PSX40”) and pre-foamed using steam at a pressure of 0.05 MPa to obtain a bulk density of 0.025 g / cm. Three pre-expanded particles were obtained.
  • the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam with a pressure of 0.18 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape of length 400 mm ⁇ width 300 mm ⁇ height 30 mm and a density of 0.025 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
  • the temperature of the suspension containing the polypropylene system is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour, so that the first styrene monomer is contained in the polypropylene resin particles.
  • the body was impregnated.
  • the temperature of the reaction system was raised to 140 ° C., the same as the melting point of the polypropylene resin, and maintained for 2 hours, and the styrene monomer was polymerized (first polymerization) in the polypropylene resin particles.
  • the temperature of the reaction system was lowered to 120 ° C., and a second styrene monomer in which 72 g of dicumyl peroxide was dissolved in 16 kg of styrene monomer as a polymerization initiator was continuously added at a rate of 4 kg per hour.
  • the second resin was polymerized (second polymerization) while impregnating the polypropylene resin particles with the second styrene monomer.
  • the mixture was held at 120 ° C. for 1 hour, then heated to 143 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
  • the obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.) and pre-foamed using steam at a pressure of 0.1 MPa to obtain a bulk density of 0.033 g / cm. Three pre-expanded particles were obtained.
  • a pre-foaming machine product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.
  • the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam with a pressure of 0.25 MPa was supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape with a length of 400 mm ⁇ width of 300 mm ⁇ height of 30 mm and a density of 0.033 g / cm 3 A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
  • the temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles.
  • the monomer was impregnated.
  • the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
  • the obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (manufactured by Kasahara Kogyo Co., Ltd., product name “PSX40”), pre-foamed using water vapor at a pressure of 0.03 MPa, and a bulk density of 0.025 g / cm. Three pre-expanded particles were obtained.
  • the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, water vapor at a pressure of 0.10 MPa was supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape of length 400 mm ⁇ width 300 mm ⁇ height 30 mm and a density of 0.025 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
  • the temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles.
  • the monomer was impregnated.
  • the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
  • the obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (manufactured by Kasahara Kogyo Co., Ltd., product name “PSX40”), pre-foamed using water vapor at a pressure of 0.03 MPa, and a bulk density of 0.025 g / cm. Three pre-expanded particles were obtained.
  • the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, water vapor with a pressure of 0.10 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and the density of the rectangular parallelepiped shape having a length of 400 mm ⁇ width of 300 mm ⁇ height of 30 mm is 0.025 g / cm 3. Bumper core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
  • PE represents a polyethylene resin
  • PS represents a polystyrene resin
  • PP represents a polypropylene resin.
  • Table 1 shows that the foamed molded product of the present invention is excellent in impact resistance and heat dimensional stability. Therefore, the foamed molded article of the present invention can be suitably used as a component packing material, an automobile member, a cushioning material, or a bumper core material, particularly as a bumper core material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Composite resin particles which comprise, as resin components, 100 parts by mass of a polyolefin resin and 100-400 parts by mass of a polystyrene resin, wherein the polyolefin resin has a Vicat softening point of 110-125ºC and a dispersity ratio of 1.5-4.8.

Description

複合樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子、発泡成形体及びバンパー用芯材Composite resin particles, expandable composite resin particles, pre-expanded particles, foamed moldings, and bumper core materials
 本発明は、複合樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子、発泡成形体及びバンパー用芯材に関する。具体的には、本発明は、耐衝撃性及び加熱寸法安定性に優れた発泡成形体を得ることが可能な複合樹脂粒子、並びに前記複合樹脂粒子から得られる発泡性複合樹脂粒子、予備発泡粒子、発泡成形体及びバンパー用芯材に関する。 The present invention relates to composite resin particles, expandable composite resin particles, pre-expanded particles, foamed molded products, and bumper core materials. Specifically, the present invention relates to composite resin particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability, and expandable composite resin particles obtained from the composite resin particles, pre-expanded particles The present invention relates to a foam molded body and a bumper core material.
 従来、樹脂成分としてポリスチレン系樹脂を含む発泡成形体が、成形加工性、断熱性、耐衝撃性及び緩衝性のような優れた物性のために、包装用緩衝材、自動車用構造部材、建築用部材等として幅広く使用されている。 Conventionally, foamed molded products containing polystyrene resin as a resin component have excellent physical properties such as molding processability, heat insulation, impact resistance and buffering properties. Widely used as a member.
 特に自動車構造部材の用途では、発泡成形体にはより高い耐衝撃性が特に求められるようになっている。また、このような特性を満たすものとして、特許文献1、2及び3には、樹脂成分としてポリスチレン系樹脂及びポリオレフィン系樹脂を含む発泡成形体が記載されている。 Especially in the application of automobile structural members, higher impact resistance is particularly required for foamed molded products. Moreover, as what satisfy | fills such a characteristic, the patent document 1, 2 and 3 describe the foaming molding which contains a polystyrene-type resin and a polyolefin-type resin as a resin component.
日本特開2010-024353号公報Japanese Unexamined Patent Publication No. 2010-024353 日本特開2011-208067号公報Japanese Unexamined Patent Publication No. 2011-208067 国際公開第2006/027944号International Publication No. 2006/027944
 現在、事故時の歩行者保護の観点から、バンパー用芯材のような自動車用の発泡成形体には、エネルギー吸収特性の向上、即ちより高い耐衝撃性が求められるようになっている。 Currently, from the viewpoint of protecting pedestrians in the event of an accident, an automotive foam molded body such as a bumper core material is required to have improved energy absorption characteristics, that is, higher impact resistance.
 他方、同様の観点から、歩行者検知機能が自動車へ搭載されるようにもなっている。このため発泡成形体には、前記のような特性に加えて、検知機能の誤作動防止等のために、高温環境下での高い寸法安定性、即ち優れた加熱寸法安定性も求められる。 On the other hand, from the same point of view, a pedestrian detection function is also installed in automobiles. For this reason, in addition to the above-described characteristics, the foamed molded body is also required to have high dimensional stability under a high temperature environment, that is, excellent heating dimensional stability in order to prevent malfunction of the detection function.
 しかしながら、特許文献1~3に記載の発泡成形体については一定の効果が認められるものの、このような観点からは必ずしも満足のいくものではなかった。本発明は、前記のような問題に鑑みてなされたものであり、耐衝撃性及び加熱寸法安定性に優れた発泡成形体を得ることが可能な複合樹脂粒子、並びに前記複合樹脂粒子から得られる発泡性複合樹脂粒子、予備発泡粒子、発泡成形体及びバンパー用芯材を提供することを課題とする。 However, the foamed molded products described in Patent Documents 1 to 3 have a certain effect, but are not always satisfactory from such a viewpoint. The present invention has been made in view of the above problems, and is obtained from composite resin particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability, and obtained from the composite resin particles. It is an object of the present invention to provide expandable composite resin particles, pre-expanded particles, a foam molded article, and a bumper core material.
 本発明者らは、鋭意検討の結果、樹脂成分として、特定の範囲のビカット軟化点及び分散度を有するポリオレフィン系樹脂と、ポリスチレン系樹脂とを含む複合樹脂粒子から耐衝撃性及び加熱寸法安定性に優れた発泡成形体を提供できることを見出し、本発明を行うに至った。 As a result of intensive studies, the present inventors have determined that, as a resin component, from a composite resin particle containing a polyolefin resin having a specific range of Vicat softening point and dispersity and a polystyrene resin, impact resistance and heat dimensional stability. The present inventors have found that an excellent foam molded article can be provided, and have come to carry out the present invention.
 かくして本発明によれば、樹脂成分として、ポリオレフィン系樹脂100質量部及びポリスチレン系樹脂100~400質量部を含み、前記ポリオレフィン系樹脂が110~125℃のビカット軟化点及び1.5~4.8の分散度を有する複合樹脂粒子が提供される。 Thus, according to the present invention, the resin component includes 100 parts by mass of polyolefin resin and 100 to 400 parts by mass of polystyrene resin, and the polyolefin resin has a Vicat softening point of 110 to 125 ° C. and 1.5 to 4.8. Composite resin particles having a degree of dispersion of 5 are provided.
 また本発明によれば、耐衝撃性及び加熱寸法安定性に優れた発泡成形体を得ることが可能な発泡性複合樹脂粒子が提供される。 Further, according to the present invention, there is provided foamable composite resin particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability.
 また本発明によれば、耐衝撃性及び加熱寸法安定性に優れた発泡成形体を得ることが可能な予備発泡粒子が提供される。 Further, according to the present invention, pre-expanded particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability are provided.
 また本発明によれば、耐衝撃性及び加熱寸法安定性に優れた発泡成形体が提供される。 Further, according to the present invention, a foamed molded article excellent in impact resistance and heat dimensional stability is provided.
 また本発明によれば、耐衝撃性及び加熱寸法安定性に優れたバンパー用芯材が提供される。 Further, according to the present invention, a core material for a bumper excellent in impact resistance and heating dimensional stability is provided.
 本発明によれば、耐衝撃性及び加熱寸法安定性に優れた発泡成形体を得ることが可能な複合樹脂粒子を提供できる。具体的には、エネルギー吸収特性及び高温環境下での加熱寸法安定性に優れた発泡成形体を得ることが可能な複合樹脂粒子を提供できる。 According to the present invention, it is possible to provide composite resin particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability. Specifically, it is possible to provide composite resin particles capable of obtaining a foamed molded article having excellent energy absorption characteristics and heat dimensional stability under a high temperature environment.
 また本発明によれば、複合樹脂粒子が、樹脂成分として、ポリオレフィン系樹脂100質量部及びポリスチレン系樹脂100~300質量部を含む場合、耐衝撃性及び加熱寸法安定性により優れた発泡成形体を得ることが可能な複合樹脂粒子を提供できる。 Further, according to the present invention, when the composite resin particles contain 100 parts by mass of a polyolefin resin and 100 to 300 parts by mass of a polystyrene resin as resin components, a foamed molded article having superior impact resistance and heat dimensional stability can be obtained. The composite resin particle which can be obtained can be provided.
 また本発明によれば、複合樹脂粒子が、2.0~4.5の分散度を有する場合、耐衝撃性及び加熱寸法安定性により優れた発泡成形体を得ることが可能な複合樹脂粒子を提供できる。 Further, according to the present invention, when the composite resin particles have a dispersity of 2.0 to 4.5, the composite resin particles capable of obtaining a foamed molded article superior in impact resistance and heat dimensional stability are obtained. Can be provided.
 また本発明によれば、ポリオレフィン系樹脂が、ポリエチレン系樹脂又はポリプロピレン系樹脂である場合、耐衝撃性及び加熱寸法安定性により優れた発泡成形体を得ることが可能な複合樹脂粒子を提供できる。 Further, according to the present invention, when the polyolefin resin is a polyethylene resin or a polypropylene resin, it is possible to provide composite resin particles capable of obtaining a foamed molded article superior in impact resistance and heat dimensional stability.
 また本発明によれば、複合樹脂粒子が110~130℃のビカット軟化点を有する場合、耐衝撃性及び加熱寸法安定性により優れた発泡成形体を得ることが可能な複合樹脂粒子を提供できる。 Further, according to the present invention, when the composite resin particles have a Vicat softening point of 110 to 130 ° C., it is possible to provide composite resin particles that can obtain a foamed molded article that is superior in impact resistance and heat dimensional stability.
 また本発明によれば、複合樹脂粒子が樹脂成分100質量部に対してカーボンブラックを0.5~3.0質量部含む場合、複合樹脂粒子が着色剤としてカーボンブラックを好適な割合で含むため、耐衝撃性及び加熱寸法安定性に優れ、さらに意匠性にも優れた発泡成形体を得ることが可能な複合樹脂粒子を提供できる。 Further, according to the present invention, when the composite resin particles contain 0.5 to 3.0 parts by mass of carbon black with respect to 100 parts by mass of the resin component, the composite resin particles contain carbon black as a colorant in a suitable ratio. In addition, composite resin particles capable of obtaining a foamed molded article having excellent impact resistance and heat dimensional stability and also excellent design properties can be provided.
 本発明によれば、前記のような複合樹脂粒子から耐衝撃性及び加熱寸法安定性に優れた発泡成形体を得ることが可能な発泡性複合樹脂粒子を提供できる。 According to the present invention, it is possible to provide foamable composite resin particles capable of obtaining a foamed molded article having excellent impact resistance and heat dimensional stability from the composite resin particles as described above.
 本発明によれば、前記のような発泡性複合樹脂粒子から耐衝撃性及び加熱寸法安定性に優れた発泡成形体を得ることが可能な予備発泡粒子を提供できる。 According to the present invention, it is possible to provide pre-expanded particles capable of obtaining a foamed molded article having excellent impact resistance and heat dimensional stability from the expandable composite resin particles as described above.
 本発明によれば、前記のような予備発泡粒子から耐衝撃性及び加熱寸法安定性に優れた発泡成形体を提供できる。 According to the present invention, it is possible to provide a foamed molded article excellent in impact resistance and heat dimensional stability from the above pre-expanded particles.
 また本発明によれば、発泡成形体が0.020~0.10g/cm3の密度を有する場合、耐衝撃性及び加熱寸法安定性により優れた発泡成形体を提供できる。 Further, according to the present invention, when the foamed molded product has a density of 0.020 to 0.10 g / cm 3 , it is possible to provide a foamed molded product that is superior in impact resistance and heat dimensional stability.
 また本発明によれば、ASTM D3763-92の衝撃試験において、1.2~3.0Jの吸収エネルギーを示すような、耐衝撃性及び加熱寸法安定性に優れた発泡成形体を提供できる。 Further, according to the present invention, it is possible to provide a foamed molded article excellent in impact resistance and heat dimensional stability, which shows an absorbed energy of 1.2 to 3.0 J in the impact test of ASTM D3763-92.
 また本発明によれば、JIS K6767:1999の加熱寸法変化試験において、1.0%以下の加熱寸法変化率を示すような、耐衝撃性及び加熱寸法安定性に優れた発泡成形体を提供できる。 Further, according to the present invention, it is possible to provide a foamed molded article excellent in impact resistance and heating dimensional stability, which exhibits a heating dimensional change rate of 1.0% or less in a heating dimensional change test of JIS K6767: 1999. .
 本発明によれば、前記のような発泡成形体から耐衝撃性及び加熱寸法安定性に優れたバンパー用芯材を提供できる。 According to the present invention, it is possible to provide a bumper core material excellent in impact resistance and heat dimensional stability from the foamed molded article as described above.
 本発明は、樹脂成分として、ポリオレフィン系樹脂100質量部及びポリスチレン系樹脂100~400質量部を含み、前記ポリオレフィン系樹脂が110~125℃のビカット軟化点及び1.5~4.8の分散度を有する複合樹脂粒子に関する。 The present invention includes 100 parts by mass of a polyolefin resin and 100 to 400 parts by mass of a polystyrene resin as resin components, and the polyolefin resin has a Vicat softening point of 110 to 125 ° C. and a dispersity of 1.5 to 4.8. It relates to composite resin particles having
 具体的には、本発明の複合樹脂粒子はポリオレフィン系樹脂及びポリスチレン系樹脂を好適な割合で含む。このため、複合樹脂粒子は、ポリスチレン系樹脂が有する剛性、断熱性、軽量性、耐水性及び発泡成形性のような特性と、ポリオレフィン系樹脂が有する耐薬品性、耐熱性及び耐衝撃性(衝撃吸収性)のような特性とを併せて有することができる。 Specifically, the composite resin particles of the present invention contain a polyolefin resin and a polystyrene resin in suitable proportions. For this reason, the composite resin particle has characteristics such as rigidity, heat insulation, light weight, water resistance and foaming moldability possessed by polystyrene resin and chemical resistance, heat resistance and impact resistance possessed by polyolefin resin (impact Absorptivity) and the like.
 また、ポリオレフィン系樹脂は110~125℃のビカット軟化点及び1.5~4.8の分散度を有する。このため、ポリオレフィン系樹脂中の高分子鎖や構造を好適に設定することで、ポリオレフィン系樹脂やポリオレフィン系樹脂を含む複合樹脂粒子から得られる発泡成形体の耐衝撃性及び加熱寸法安定性を向上させることができる。その結果、このような複合樹脂粒子から得られる発泡成形体は、部品梱包材、自動車部材、緩衝材又はバンパー用芯材、特にバンパー用芯材として幅広く使用することができる。なお、分散度(Mw/Mn)とは、数平均分子量(Mn)及び重量平均分子量(Mw)を使用して得られる鎖長分布の単分散性の度合いを示す値を意味する。 Also, the polyolefin resin has a Vicat softening point of 110 to 125 ° C. and a dispersity of 1.5 to 4.8. For this reason, the impact resistance and heat dimensional stability of foamed moldings obtained from polyolefin resin and composite resin particles containing polyolefin resin are improved by suitably setting the polymer chain and structure in polyolefin resin. Can be made. As a result, the foam molded product obtained from such composite resin particles can be widely used as a component packing material, an automobile member, a cushioning material, or a bumper core material, particularly as a bumper core material. The degree of dispersion (Mw / Mn) means a value indicating the degree of monodispersity of the chain length distribution obtained using the number average molecular weight (Mn) and the weight average molecular weight (Mw).
 従って、本発明によれば、耐衝撃性及び加熱寸法安定性に優れた発泡成形体を得ることが可能な複合樹脂粒子を提供できる。以下、本発明の複合樹脂粒子をより具体的に説明する。 Therefore, according to the present invention, it is possible to provide composite resin particles capable of obtaining a foamed molded article excellent in impact resistance and heat dimensional stability. Hereinafter, the composite resin particles of the present invention will be described more specifically.
<複合樹脂粒子>
 本発明において、複合樹脂粒子とは、複数の樹脂成分を複合させた樹脂粒子を意味する。具体的には、ポリオレフィン系樹脂をスチレン系単量体に由来するポリスチレン系樹脂で改質したような樹脂粒子が挙げられる。なお、「複合」とは、粒子中にポリオレフィン系樹脂とポリスチレン系樹脂とが存在することを意味し、「改質」とは、ポリオレフィン系樹脂にスチレン系単量体を含浸重合することを意味する。
<Composite resin particles>
In the present invention, the composite resin particle means a resin particle obtained by combining a plurality of resin components. Specific examples include resin particles obtained by modifying a polyolefin resin with a polystyrene resin derived from a styrene monomer. “Composite” means that a polyolefin resin and a polystyrene resin are present in the particle, and “modification” means impregnating and polymerizing a styrene monomer in the polyolefin resin. To do.
 本発明の複合樹脂粒子は、ポリオレフィン系樹脂とポリスチレン系樹脂とを好適な割合で含む。具体的には、複合樹脂粒子は、ポリオレフィン系樹脂100質量部に対して、100~400質量部、好ましくは100~300質量部、より好ましくは150~230質量部のポリスチレン系樹脂を含む。複合樹脂粒子が100質量部のポリオレフィン系樹脂を含む場合、ポリスチレン系樹脂含有量の具体的な数値としては、100、130、150、180、200、230、240、250、270、300、350、400質量部等が挙げられる。 The composite resin particles of the present invention contain a polyolefin resin and a polystyrene resin in a suitable ratio. Specifically, the composite resin particles contain 100 to 400 parts by mass, preferably 100 to 300 parts by mass, and more preferably 150 to 230 parts by mass of a polystyrene resin with respect to 100 parts by mass of the polyolefin resin. When the composite resin particles contain 100 parts by mass of polyolefin resin, specific values of polystyrene resin content are 100, 130, 150, 180, 200, 230, 240, 250, 270, 300, 350, 400 parts by mass and the like can be mentioned.
 ポリスチレン系樹脂が100質量部より少ない場合、複合樹脂粒子中のポリスチレン系樹脂の比率が低くなり、複合樹脂粒子がポリスチレン系樹脂に由来する特性を十分に得ることができないことがある。他方、ポリスチレン系樹脂が400質量部より多い場合、複合樹脂粒子中のポリオレフィン系樹脂の比率が低くなり、複合樹脂粒子がポリオレフィン系樹脂に由来する特性を十分に得ることができないことがある。 When the amount of the polystyrene resin is less than 100 parts by mass, the ratio of the polystyrene resin in the composite resin particles becomes low, and the composite resin particles may not be able to obtain sufficient characteristics derived from the polystyrene resin. On the other hand, when the amount of the polystyrene resin is more than 400 parts by mass, the ratio of the polyolefin resin in the composite resin particles becomes low, and the characteristics derived from the polyolefin resin may not be sufficiently obtained.
 また、複合樹脂粒子は、好ましくは110~130℃、より好ましくは110~125℃のビカット軟化点を有する。ビカット軟化点とは、樹脂の耐熱性を表す指標の一つであり、複合樹脂粒子についてはJIS K7196:1991「熱可塑性プラスチックフィルム及びシートの熱機械分析による軟化温度試験方法」記載の方法に従って測定したものをいう。具体的な測定方法は、下記の実施例のとおりである。複合樹脂粒子のビカット軟化点とは、複合樹脂粒子がカーボンブラック等の樹脂成分以外の他の成分を含む場合、それらを含む複合樹脂粒子自体のビカット軟化点を意味する。他方、複合樹脂粒子が他の成分を含まない場合、複合樹脂粒子のビカット軟化点とは、複合樹脂粒子の樹脂成分自体のビカット軟化点を意味する。複合樹脂粒子のビカット軟化点の具体的数値としては、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130℃等が挙げられる。 The composite resin particles preferably have a Vicat softening point of 110 to 130 ° C., more preferably 110 to 125 ° C. The Vicat softening point is one of the indices representing the heat resistance of the resin, and the composite resin particles are measured according to the method described in JIS K7196: 1991 “Softening temperature test method by thermomechanical analysis of thermoplastic film and sheet”. What you did. Specific measurement methods are as in the following examples. The Vicat softening point of the composite resin particle means the Vicat softening point of the composite resin particle itself containing the composite resin particle when the composite resin particle contains other components other than the resin component such as carbon black. On the other hand, when the composite resin particle does not contain other components, the Vicat softening point of the composite resin particle means the Vicat softening point of the resin component itself of the composite resin particle. Specific numerical values of the Vicat softening point of the composite resin particles are 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130 ° C. and the like.
 複合樹脂粒子のビカット軟化点が110℃より低い場合、複合樹脂粒子が十分な耐熱性を有さないことがある。他方、複合樹脂粒子のビカット軟化点が130℃より高い場合、発泡性複合樹脂粒子が十分な発泡性を有さないことがある。 When the Vicat softening point of the composite resin particles is lower than 110 ° C., the composite resin particles may not have sufficient heat resistance. On the other hand, when the Vicat softening point of the composite resin particles is higher than 130 ° C., the foamable composite resin particles may not have sufficient foamability.
 複合樹脂粒子は、好ましくは0.71~2.5mm、より好ましくは0.85~1.6mmの平均粒子径を有する。また、その形状は球状~略球状であることが好ましい。複合樹脂粒子の平均粒子径の具体的数値としては、0.71、0.75、0.80、0.85、0.90、0.95、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5mm等が挙げられる。 The composite resin particles preferably have an average particle diameter of 0.71 to 2.5 mm, more preferably 0.85 to 1.6 mm. The shape is preferably spherical to substantially spherical. Specific numerical values of the average particle diameter of the composite resin particles are 0.71, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5 mm, etc. It is done.
<ポリオレフィン系樹脂>
 ポリオレフィン系樹脂とは、特に限定されず、オレフィン単独重合体、又はオレフィン系単量体を主成分とし、オレフィン系単量体と共重合可能な他の単量体との共重合体を意味する。ここでオレフィン系単量体を主成分とするとは、オレフィン系単量体が全単量体の50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上を占めることを意味する。全単量体を100質量%としたときにオレフィン系単量体が占める割合の具体的数値としては、50、55、60、65、70、75、80、85、90、95、100質量%等が挙げられる。
<Polyolefin resin>
The polyolefin resin is not particularly limited, and means an olefin homopolymer or a copolymer of an olefin monomer as a main component and another monomer copolymerizable with the olefin monomer. . Here, the main component of the olefin monomer means that the olefin monomer occupies 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more of the total monomers. . Specific values of the proportion of the olefinic monomer when the total monomer is 100% by mass are 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100% by mass. Etc.
 具体的には、ポリオレフィン系樹脂として、ポリエチレン系樹脂、ポリプロピレン系樹脂及びポリブチレン系樹脂のようなα-オレフィン系樹脂を挙げることができる。また、所望の物性をより容易に得ることができるため、ポリオレフィン系樹脂として、ポリエチレン系樹脂、ポリプロピレン系樹脂及びそれらの組み合わせが好ましい。 Specifically, examples of the polyolefin resin include an α-olefin resin such as a polyethylene resin, a polypropylene resin, and a polybutylene resin. Moreover, since a desired physical property can be obtained more easily, a polyethylene resin, a polypropylene resin, and a combination thereof are preferable as the polyolefin resin.
 また、本発明のポリオレフィン系樹脂は、110~125℃、好ましくは112~125℃、より好ましくは113~123℃のビカット軟化点を有する。ビカット軟化点とは、樹脂の耐熱性を表す指標の一つであり、ポリオレフィン系樹脂についてはJIS K7206:1999「プラスチック-熱可塑性プラスチック-ビカット軟化温度試験方法」記載の方法に従って測定したものをいう。ポリオレフィン系樹脂のビカット軟化点の具体的数値としては、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125℃等が挙げられる。 The polyolefin resin of the present invention has a Vicat softening point of 110 to 125 ° C, preferably 112 to 125 ° C, more preferably 113 to 123 ° C. The Vicat softening point is one of the indices representing the heat resistance of the resin. For polyolefin resins, the Vicat softening point is measured according to the method described in JIS K7206: 1999 “Plastics—Thermoplastics—Vicat softening temperature test method”. . Specific values of the Vicat softening point of the polyolefin resin include 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125 ° C., and the like. .
 ポリオレフィン系樹脂のビカット軟化点が110℃より低い場合、複合樹脂粒子が十分な耐熱性を有さないことがある。他方、ポリオレフィン系樹脂のビカット軟化点が125℃より高い場合、発泡性複合樹脂粒子が十分な発泡性を有さないことがある。 When the Vicat softening point of the polyolefin resin is lower than 110 ° C., the composite resin particles may not have sufficient heat resistance. On the other hand, when the Vicat softening point of the polyolefin resin is higher than 125 ° C., the expandable composite resin particles may not have sufficient expandability.
 ポリエチレン系樹脂は、好ましくは60×103~200×103、より好ましくは70×103~190×103の重量平均分子量(Mw)を有する。ポリエチレン系樹脂が有する重量平均分子量の具体的数値としては、60×103、70×103、80×103、90×103、100×103、150×103、160×103、170×103、180×103、190×103、200×103等が挙げられる。 The polyethylene resin preferably has a weight average molecular weight (Mw) of 60 × 10 3 to 200 × 10 3 , more preferably 70 × 10 3 to 190 × 10 3 . Specific numerical values of the weight average molecular weight of the polyethylene resin include 60 × 10 3 , 70 × 10 3 , 80 × 10 3 , 90 × 10 3 , 100 × 10 3 , 150 × 10 3 , 160 × 10 3 , 170 * 10 < 3 >, 180 * 10 < 3 >, 190 * 10 < 3 >, 200 * 10 < 3 > etc. are mentioned.
 重量平均分子量が60×103より低い場合、複合樹脂粒子が十分な耐熱性を有さないことがある。他方、重量平均分子量が200×103より高い場合、発泡性複合樹脂粒子が十分な発泡性を有さないことがある。 When the weight average molecular weight is lower than 60 × 10 3 , the composite resin particles may not have sufficient heat resistance. On the other hand, when the weight average molecular weight is higher than 200 × 10 3 , the expandable composite resin particles may not have sufficient expandability.
 ポリエチレン系樹脂は、好ましくは10×103~80×103、より好ましくは15×103~80×103の数平均分子量(Mn)を有する。ポリエチレン系樹脂が有する数平均分子量の具体的数値としては、10×103、15×103、20×103、30×103、40×103、50×103、60×103、70×103、80×103等が挙げられる。 The polyethylene resin preferably has a number average molecular weight (Mn) of 10 × 10 3 to 80 × 10 3 , more preferably 15 × 10 3 to 80 × 10 3 . Specific numerical values of the number average molecular weight of the polyethylene resin are 10 × 10 3 , 15 × 10 3 , 20 × 10 3 , 30 × 10 3 , 40 × 10 3 , 50 × 10 3 , 60 × 10 3 , 70 * 10 < 3 >, 80 * 10 < 3 > etc. are mentioned.
 この場合も、数平均分子量が10×103より低い場合、複合樹脂粒子が十分な耐熱性を有さないことがある。他方、数平均分子量が80×103より高い場合、発泡性複合樹脂粒子が十分な発泡性を有さないことがある。 Also in this case, when the number average molecular weight is lower than 10 × 10 3 , the composite resin particles may not have sufficient heat resistance. On the other hand, when the number average molecular weight is higher than 80 × 10 3 , the expandable composite resin particles may not have sufficient expandability.
 ポリプロピレン系樹脂は、好ましくは200×103~400×103、より好ましくは250×103~390×103の重量平均分子量を有する。ポリプロピレン系樹脂が有する重量平均分子量の具体的数値としては、200×103、230×103、250×103、300×103、310×103、320×103、330×103、340×103、350×103、360×103、370×103、380×103、390×103、400×103等が挙げられる。 The polypropylene resin preferably has a weight average molecular weight of 200 × 10 3 to 400 × 10 3 , more preferably 250 × 10 3 to 390 × 10 3 . Specific numerical values of the weight average molecular weight of the polypropylene resin include 200 × 10 3 , 230 × 10 3 , 250 × 10 3 , 300 × 10 3 , 310 × 10 3 , 320 × 10 3 , 330 × 10 3 , 340 * 10 < 3 >, 350 * 10 < 3 >, 360 * 10 < 3 >, 370 * 10 < 3 >, 380 * 10 < 3 >, 390 * 10 < 3 >, 400 * 10 < 3 > etc. are mentioned.
 重量平均分子量が200×103より低い場合、複合樹脂粒子が十分な耐熱性を有さないことがある。他方、重量平均分子量が400×103より高い場合、発泡性複合樹脂粒子が十分な発泡性を有さないことがある。 When the weight average molecular weight is lower than 200 × 10 3 , the composite resin particles may not have sufficient heat resistance. On the other hand, when the weight average molecular weight is higher than 400 × 10 3 , the expandable composite resin particles may not have sufficient expandability.
 ポリプロピレン系樹脂は、好ましくは70×103~160×103、より好ましくは80×103~150×103の数平均分子量(Mn)を有する。ポリプロピレン系樹脂が有する数平均分子量の具体的数値としては、70×103、75×103、80×103、90×103、100×103、110×103、120×103、130×103、140×103、150×103、155×103、160×103等が挙げられる。 The polypropylene resin preferably has a number average molecular weight (Mn) of 70 × 10 3 to 160 × 10 3 , more preferably 80 × 10 3 to 150 × 10 3 . Specific numerical values of the number average molecular weight of the polypropylene resin include 70 × 10 3 , 75 × 10 3 , 80 × 10 3 , 90 × 10 3 , 100 × 10 3 , 110 × 10 3 , 120 × 10 3 , 130 × 10 3, 140 × 10 3, 150 × 10 3, 155 × 10 3, 160 × 10 3 , and the like.
 この場合も、数平均分子量が70×103より低い場合、複合樹脂粒子が十分な耐熱性を有さないことがある。他方、数平均分子量が160×103より高い場合、発泡性複合樹脂粒子が十分な発泡性を有さないことがある。 Also in this case, when the number average molecular weight is lower than 70 × 10 3 , the composite resin particles may not have sufficient heat resistance. On the other hand, when the number average molecular weight is higher than 160 × 10 3 , the expandable composite resin particles may not have sufficient expandability.
 本発明のポリオレフィン系樹脂は、1.5~4.8、好ましくは2.0~4.5の分散度(Mw/Mn)を有する。ポリオレフィン系樹脂が有する分散度の具体的数値としては、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、3.0、3.5、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8等が挙げられる。 The polyolefin resin of the present invention has a dispersity (Mw / Mn) of 1.5 to 4.8, preferably 2.0 to 4.5. Specific numerical values of the dispersibility of the polyolefin resin include 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 3.0, 3.5, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4. 8 etc. are mentioned.
 分散度が1.5より低い場合、製造コストが問題となることがある。他方、分散度が4.8より高い場合、発泡成形体の耐衝撃性が低下することがある。 If the dispersity is lower than 1.5, the manufacturing cost may be a problem. On the other hand, when the degree of dispersion is higher than 4.8, the impact resistance of the foamed molded product may be lowered.
 ポリオレフィン系樹脂としてポリエチレン系樹脂を使用する場合、ポリエチレン系樹脂は、好ましくは0.927~0.950kg/m3、より好ましくは0.927~0.945kg/m3、さらに好ましくは0.930~0.945kg/m3の密度を有する。この場合、ポリエチレン系樹脂の密度の具体的数値としては、0.927、0.928、0.929、0.930、0.931、0.932、0.933、0.934、0.935、0.936、0.937、0.938、0.939、0.940、0.941、0.942、0.943、0.944、0.945、0.946、0.947、0.948、0.949、0.950kg/m3等が挙げられる。 When a polyethylene resin is used as the polyolefin resin, the polyethylene resin is preferably 0.927 to 0.950 kg / m 3 , more preferably 0.927 to 0.945 kg / m 3 , and still more preferably 0.930. It has a density of ˜0.945 kg / m 3 . In this case, specific numerical values of the density of the polyethylene resin are 0.927, 0.928, 0.929, 0.930, 0.931, 0.932, 0.933, 0.934, 0.935. 0.936, 0.937, 0.938, 0.939, 0.940, 0.941, 0.942, 0.943, 0.944, 0.945, 0.946, 0.947, 0 948, 0.949, 0.950 kg / m 3 and the like.
 ポリエチレン系樹脂の密度が0.927kg/m3より低い場合、複合樹脂粒子が十分な加熱寸法安定性を有さないことがある。他方、ポリエチレン系樹脂の密度が0.950kg/m3より高い場合、重合工程時に樹脂成分が十分に軟化せず、発泡性複合樹脂粒子が十分な発泡性を有さないことがある。 When the density of the polyethylene resin is lower than 0.927 kg / m 3 , the composite resin particles may not have sufficient heating dimensional stability. On the other hand, when the density of the polyethylene resin is higher than 0.950 kg / m 3 , the resin component may not be sufficiently softened during the polymerization process, and the expandable composite resin particles may not have sufficient expandability.
 本発明のポリエチレン系樹脂を190℃、2.16kgの荷重下で測定した場合、ポリオレフィン系樹脂は、好ましくは1.0~10.0g/10分、より好ましくは1.0~7.0g/10分のメルトフローレートを有する。この場合、ポリオレフィン系樹脂が有するメルトフローレートの具体的数値としては、1.0、1.1、1.2、1.3、1.4、1.5、1.7、2.0、2.5、3.0、4.0、5.0、6.0、6.5、6.8、7.0、7.2、7.4、7.6、7.8、8.0、8.2、8.4、8.6、8.8、9.0、9.2、9.4、9.6、9.8、10.0g/10分等が挙げられる。 When the polyethylene resin of the present invention is measured at 190 ° C. under a load of 2.16 kg, the polyolefin resin is preferably 1.0-10.0 g / 10 min, more preferably 1.0-7.0 g / min. It has a melt flow rate of 10 minutes. In this case, specific numerical values of the melt flow rate of the polyolefin resin are 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 6.5, 6.8, 7.0, 7.2, 7.4, 7.6, 7.8, 8. 0, 8.2, 8.4, 8.6, 8.8, 9.0, 9.2, 9.4, 9.6, 9.8, 10.0 g / 10 min.
 また、本発明のポリプロピレン系樹脂を230℃、2.16kgの荷重下で測定した場合、ポリオレフィン系樹脂は、好ましくは1.0~10.0g/10分、より好ましくは2.0~9.0g/10分のメルトフローレートを有する。この場合、ポリオレフィン系樹脂が有するメルトフローレートの具体的数値としては、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、3.0、4.0、5.0、6.0、7.0、7.5、8.0、8.5、8.6、8.7、8.8、8.9、9.0、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9、10.0g/10分等が挙げられる。 When the polypropylene resin of the present invention is measured at 230 ° C. under a load of 2.16 kg, the polyolefin resin is preferably 1.0 to 10.0 g / 10 min, more preferably 2.0 to 9. It has a melt flow rate of 0 g / 10 min. In this case, specific numerical values of the melt flow rate of the polyolefin resin are 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 3.0, 4.0, 5.0, 6.0, 7. 0, 7.5, 8.0, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10.0 g / 10 min, etc. are mentioned.
 これらのポリオレフィン系樹脂のメルトフローレートが1.0g/10分より低い場合、所定の倍数の発泡体を得ることができない場合がある。他方、ポリオレフィン系樹脂のメルトフローレートが10.0g/10分より高い場合、この場合も、所定の倍数の発泡体を得ることができない場合がある。 If the melt flow rate of these polyolefin resins is lower than 1.0 g / 10 min, it may be impossible to obtain a foam having a predetermined multiple. On the other hand, when the melt flow rate of the polyolefin-based resin is higher than 10.0 g / 10 minutes, it may be impossible to obtain a predetermined multiple of foam.
 複合樹脂粒子中のポリオレフィン系樹脂がこのようなビカット軟化点、重量平均分子量、数平均分子量、分散度、密度及びメルトフローレートを有する場合、複合樹脂粒子から得られる発泡性複合樹脂粒子、予備発泡粒子、発泡成形体及びバンパー用芯材中のポリオレフィン系樹脂も、それぞれ、略同一のビカット軟化点、重量平均分子量、数平均分子量、分散度、密度及びメルトフローレートを有する。 When the polyolefin resin in the composite resin particles has such Vicat softening point, weight average molecular weight, number average molecular weight, dispersity, density and melt flow rate, expandable composite resin particles obtained from the composite resin particles, pre-expanded The polyolefin resin in the particles, the molded foam and the bumper core material also has substantially the same Vicat softening point, weight average molecular weight, number average molecular weight, dispersity, density and melt flow rate, respectively.
<ポリオレフィン系樹脂の製造方法>
 ポリエチレン系樹脂及びポリプロピレン系樹脂のようなポリオレフィン系樹脂は公知の方法に従って製造することができる。さらに、前記のような特性を有するポリエチレン系樹脂及びポリプロピレン系樹脂を製造する場合、それらをより容易に製造することができるため、メタロセン化合物を触媒として使用する重合方法が好ましい。
<Production method of polyolefin resin>
Polyolefin resins such as polyethylene resins and polypropylene resins can be produced according to known methods. Furthermore, in the case of producing a polyethylene resin and a polypropylene resin having the above characteristics, a polymerization method using a metallocene compound as a catalyst is preferable because they can be produced more easily.
 メタロセン化合物としては、公知のメタロセン化合物を挙げることができる。例えば、四価の遷移金属元素を含むメタロセン化合物を好適に使用することができる。 Examples of the metallocene compound include known metallocene compounds. For example, a metallocene compound containing a tetravalent transition metal element can be preferably used.
<ポリスチレン系樹脂>
 複合樹脂粒子は樹脂成分としてポリスチレン系樹脂を含む。このため、複合樹脂粒子は、ポリスチレン系樹脂が有する剛性、断熱性、軽量性、耐水性及び発泡成形性のような優れた特性を有することができる。
<Polystyrene resin>
The composite resin particle contains a polystyrene resin as a resin component. For this reason, the composite resin particles can have excellent properties such as rigidity, heat insulation, light weight, water resistance, and foam moldability of the polystyrene resin.
 また、ポリスチレン系樹脂とは、スチレン単独重合体、又はスチレン単量体を主成分とし、スチレン単量体と共重合可能な他の単量体成分との共重合体を意味する。さらに、スチレン単量体を主成分とするとは、スチレン単量体が全単量体成分100質量部中に50質量部以上、好ましくは60質量%以上、より好ましくは70質量%以上を占めることを意味する。全単量体を100質量%としたときにスチレン系単量体が占める割合の具体的数値としては、50、55、60、65、70、75、80、85、90、95、100質量%等が挙げられる。 The polystyrene resin means a styrene homopolymer or a copolymer of a styrene monomer as a main component and another monomer component copolymerizable with the styrene monomer. Furthermore, the styrene monomer as a main component means that the styrene monomer occupies 50 parts by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more in 100 parts by mass of all monomer components. Means. Specific values of the proportion of the styrenic monomer when the total monomer is 100% by mass are 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100% by mass. Etc.
 ポリスチレン系樹脂中に含まれる共重合体成分としては、所望の物性に影響を与えない限り、公知の単量体を使用することができる。具体的には、環状オレフィン系単量体、ジエン系単量体、塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸及びメチルスチレンのようなビニル系単量体を挙げることができる。また、これらは1種又は2種以上で使用することもできる。 As the copolymer component contained in the polystyrene resin, a known monomer can be used as long as it does not affect the desired physical properties. Specifically, cyclic olefin monomers, diene monomers, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, ethyl acrylate, butyl acrylate, methyl methacrylate, Mention may be made of vinylic monomers such as maleic anhydride and methylstyrene. Moreover, these can also be used by 1 type (s) or 2 or more types.
<その他の成分>
 本発明の複合樹脂粒子は、より黒色で意匠性に優れた発泡成形体を得ることができるため、樹脂成分100質量部に対してカーボンブラックを、好ましくは0.5~3.0質量部、より好ましくは0.5~2.0質量部含む。複合樹脂粒子中のカーボンブラック含有量の具体的数値としては、樹脂成分100質量部に対して、0.5、0.6、0.7、0.8、0.9、1.0、1.5、1.8、2.0、2.2、2.4、2.6、2.8、3.0質量部等が挙げられる。
<Other ingredients>
Since the composite resin particle of the present invention can obtain a foamed molded article having a black color and excellent design, carbon black is preferably used in an amount of 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the resin component. More preferably, the content is 0.5 to 2.0 parts by mass. Specific numerical values of the carbon black content in the composite resin particles are 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1 with respect to 100 parts by mass of the resin component. 0.5, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0 parts by mass and the like.
 カーボンブラックが0.5質量部より少なく含まれる場合、複合樹脂粒子は十分な着色性を得ることができないことがある。他方、カーボンブラックが3.0質量部より多く含まれる場合、複合樹脂粒子は耐衝撃性を有さないことがある。 When the amount of carbon black is less than 0.5 parts by mass, the composite resin particles may not have sufficient colorability. On the other hand, when carbon black is contained more than 3.0 parts by mass, the composite resin particles may not have impact resistance.
 カーボンブラックとしては公知のものを使用することができる。具体的には、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、黒鉛及び炭素繊維のような炭素系物質を挙げることができる。 Known carbon black can be used. Specific examples include carbon-based materials such as furnace black, channel black, thermal black, acetylene black, graphite, and carbon fiber.
 本発明においては、カーボンブラックを含む組成物、いわゆるマスターバッチを添加してもよい。マスターバッチは、マスターバッチ100質量部に対して好ましくは30~50質量部、より好ましくは35~45質量部の割合でカーボンブラックを含む。この場合、マスターバッチ中のカーボンブラック含有量の具体的数値としては、マスターバッチ100質量部に対して、30、31、32、33、34、35、37、40、43、45、46、47、48、49、50質量部等が挙げられる。マスターバッチに含まれる基材樹脂としては、オレフィン系樹脂が好ましい。 In the present invention, a composition containing carbon black, a so-called master batch may be added. The master batch contains carbon black in a proportion of preferably 30 to 50 parts by mass, more preferably 35 to 45 parts by mass with respect to 100 parts by mass of the master batch. In this case, the specific value of the carbon black content in the master batch is 30, 31, 32, 33, 34, 35, 37, 40, 43, 45, 46, 47 with respect to 100 parts by mass of the master batch. 48, 49, 50 parts by mass, and the like. The base resin contained in the master batch is preferably an olefin resin.
 所望の複合樹脂粒子、並びに以下の発泡性複合樹脂粒子、予備発泡粒子及び発泡成形体を得ることができる限り、これらは他の添加剤等を適宜含んでいてもよい。具体的には、気泡調整剤、被覆剤、光安定剤、紫外線吸収剤、顔料、染料、消泡剤、熱安定剤、滑剤及び帯電防止剤を挙げることができる。 As long as desired composite resin particles and the following expandable composite resin particles, pre-expanded particles, and foamed molded article can be obtained, these may contain other additives as appropriate. Specific examples include a bubble regulator, a coating agent, a light stabilizer, an ultraviolet absorber, a pigment, a dye, an antifoaming agent, a heat stabilizer, a lubricant, and an antistatic agent.
 なお、原料単量体、原料樹脂、その他の成分等の質量及び質量比と、複合樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子及び発泡成形体における樹脂成分、その他の成分等の質量及び質量比とは略同一である。 The mass and mass ratio of the raw material monomer, raw material resin, and other components, and the mass and mass of the composite resin particles, expandable composite resin particles, pre-expanded particles, resin components in the foamed molded product, and other components The ratio is substantially the same.
 また、複合樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子及び発泡成形体中に含まれる原材料の定性及び定量は、核磁気共鳴分光法(NMR)、赤外分光法(IR)、ゲルパーミエーションクロマトグラフィー(GPC)等を使用して、公知の方法に従って行うことができる。 In addition, the qualitative and quantitative determination of the raw materials contained in the composite resin particles, expandable composite resin particles, pre-expanded particles and foamed molded products can be performed by nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), gel permeation. It can carry out according to a well-known method using chromatography (GPC) etc.
<発泡性複合樹脂粒子>
 本発明の発泡性複合樹脂粒子も、その原料として前記のような複合樹脂粒子を使用するため、これから耐衝撃性及び加熱寸法安定性に優れた発泡成形体を得ることができる。また、発泡性複合樹脂粒子とは、複合樹脂粒子に発泡剤を含浸させた、加熱発泡性を示す複合樹脂粒子を意味する。
<Expandable composite resin particles>
Since the foamable composite resin particles of the present invention also use the composite resin particles as described above as a raw material, a foamed molded article excellent in impact resistance and heat dimensional stability can be obtained therefrom. The expandable composite resin particle means a composite resin particle exhibiting heat foamability, which is obtained by impregnating a composite resin particle with a foaming agent.
 具体的には、発泡性複合樹脂粒子中の発泡剤含有量は、樹脂成分としての複合樹脂粒子100質量部に対して、好ましくは5~15質量部、より好ましくは8~10質量部である。発泡性複合樹脂粒子中の発泡剤含有量の具体的数値としては、樹脂成分としての複合樹脂粒子100質量部に対して、5、6、7、8、9、10、11、12、13、14、15質量部等が挙げられる。 Specifically, the foaming agent content in the expandable composite resin particles is preferably 5 to 15 parts by mass, more preferably 8 to 10 parts by mass with respect to 100 parts by mass of the composite resin particles as the resin component. . Specific numerical values of the foaming agent content in the expandable composite resin particles are 5, 6, 7, 8, 9, 10, 11, 12, 13, with respect to 100 parts by mass of the composite resin particles as the resin component. 14, 15 parts by mass and the like.
 発泡剤が5質量部より低い場合、発泡剤量が不足し、発泡性複合樹脂粒子は十分な発泡性を有さないことがある。他方、発泡剤が15質量部より多い場合、発泡剤量が過剰となり、この場合も、発泡性複合樹脂粒子は十分な発泡性を有さないことがある。 When the foaming agent is lower than 5 parts by mass, the amount of the foaming agent is insufficient, and the foamable composite resin particles may not have sufficient foamability. On the other hand, when the amount of the foaming agent is more than 15 parts by mass, the amount of the foaming agent is excessive, and in this case as well, the foamable composite resin particles may not have sufficient foamability.
 発泡剤としては揮発性を有する公知の発泡剤を使用することができる。例えば、プロパン、n-ブタン(ノルマルブタン)、i-ブタン(イソブタン)、n-ペンタン(ノルマルペンタン)、i-イソペンタン(イソペンタン)、n-ヘキサン(ノルマルヘキサン)及びi-ヘキサン(イソヘキサン)の単独又はそれらの混合物を挙げることができる。これらの内、より大きな発泡性能を発泡性複合樹脂粒子に導入することができる、n-ブタン、i-ブタン、n-ペンタン、i-ペンタンのいずれかが好ましい。発泡剤は単独で用いてもよく2種以上を使用してもよい。 As the foaming agent, a known foaming agent having volatility can be used. For example, propane, n-butane (normal butane), i-butane (isobutane), n-pentane (normal pentane), i-isopentane (isopentane), n-hexane (normal hexane) and i-hexane (isohexane) alone Or a mixture thereof. Among these, any of n-butane, i-butane, n-pentane and i-pentane, which can introduce greater foaming performance into the foamable composite resin particles, is preferable. A foaming agent may be used independently and may use 2 or more types.
 発泡性複合樹脂粒子は、好ましくは0.71~2.5mm、より好ましくは0.85~1.6mmの平均粒子径を有する。発泡性複合樹脂粒子の平均粒子径の具体的数値としては、0.71、0.75、0.80、0.85、0.90、0.95、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5mm等が挙げられる。また、その形状は球状~略球状であることが好ましい。 The expandable composite resin particles preferably have an average particle diameter of 0.71 to 2.5 mm, more preferably 0.85 to 1.6 mm. Specific numerical values of the average particle diameter of the expandable composite resin particles are 0.71, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0, 1.1, 1. 2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5mm etc. are mentioned. The shape is preferably spherical to substantially spherical.
<予備発泡粒子>
 本発明の予備発泡粒子も、その原料として前記のような複合樹脂粒子を使用するため、これから耐衝撃性及び加熱寸法安定性に優れた発泡成形体を得ることができる。また、予備発泡粒子とは、前記のような発泡性複合樹脂粒子を所定の嵩密度まで加熱発泡させた樹脂粒子を意味する。
<Pre-expanded particles>
Since the pre-expanded particles of the present invention also use the composite resin particles as a raw material, a foamed molded article excellent in impact resistance and heat dimensional stability can be obtained therefrom. The pre-expanded particles mean resin particles obtained by heating and foaming the expandable composite resin particles as described above to a predetermined bulk density.
 予備発泡粒子は、好ましくは0.020~0.10g/cm3、より好ましくは0.025~0.10g/cm3の嵩密度を有する。予備発泡粒子の嵩密度の具体的数値としては、0.020、0.021、0.022、0.023、0.024、0.025、0.026、0.028、0.030、0.040、0.050、0.060、0.070、0.080、0.090、0.095、0.098、0.099、0.10g/cm3等が挙げられる。 The pre-expanded particles preferably have a bulk density of 0.020 to 0.10 g / cm 3 , more preferably 0.025 to 0.10 g / cm 3 . As specific numerical values of the bulk density of the pre-expanded particles, 0.020, 0.021, 0.022, 0.023, 0.024, 0.025, 0.026, 0.028, 0.030, 0 0.040, 0.050, 0.060, 0.070, 0.080, 0.090, 0.095, 0.098, 0.099, 0.10 g / cm 3 and the like.
 嵩密度が0.020g/cm3より低いと、得られる発泡成形体の強度及び耐熱性が低下することがある。一方、0.10g/cm3より高いと、得られる発泡成形体の重量が増加することがある。 When the bulk density is lower than 0.020 g / cm 3 , the strength and heat resistance of the obtained foamed molded product may be lowered. On the other hand, when it is higher than 0.10 g / cm 3 , the weight of the obtained foamed molded product may increase.
 予備発泡粒子は、好ましくは1.0~9.0mm、より好ましくは2.0~6.4mmの平均粒子径を有する。予備発泡粒子の平均粒子径の具体的数値としては、1.0、1.2、1.4、1.6、1.8、2.0、2.2、2.4、2.6、2.8、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.2、6.4、6.6、6.8、7.0、7.2、7.4、7.6、7.8、8.0、8.2、8.4、8.6、8.8、9.0mm等が挙げられる。同様に、その形状も球状~略球状であることが好ましい。 The pre-expanded particles preferably have an average particle diameter of 1.0 to 9.0 mm, more preferably 2.0 to 6.4 mm. Specific numerical values of the average particle diameter of the pre-expanded particles are 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.2, 6.4, 6.6, 6.8, 7. 0, 7.2, 7.4, 7.6, 7.8, 8.0, 8.2, 8.4, 8.6, 8.8, 9.0 mm and the like. Similarly, the shape is preferably spherical to approximately spherical.
<発泡成形体>
 本発明の発泡成形体も、その原料として前記のような複合樹脂粒子を使用するため、耐衝撃性及び加熱寸法安定性に優れる。また、発泡成形体とは、前記のような予備発泡粒子を熱融着させて得られる樹脂成形体を意味する。
<Foamed molded product>
Since the foamed molded article of the present invention also uses the composite resin particles as described above, it is excellent in impact resistance and heat dimensional stability. The foamed molded product means a resin molded product obtained by thermally fusing the pre-expanded particles as described above.
 発泡成形体は、より優れた耐熱性及び耐衝撃性を有することができるため、好ましくは0.020~0.10g/cm3、より好ましくは0.025~0.10g/cm3の密度を有する。発泡成形体の密度の具体的数値としては、0.020、0.021、0.022、0.023、0.024、0.025、0.026、0.028、0.030、0.040、0.050、0.060、0.070、0.080、0.090、0.095、0.096、0.097、0.098、0.099、0.10g/cm3等が挙げられる。 Since the foamed molded article can have more excellent heat resistance and impact resistance, it preferably has a density of 0.020 to 0.10 g / cm 3 , more preferably 0.025 to 0.10 g / cm 3 . Have. Specific numerical values of the density of the foam molded article are 0.020, 0.021, 0.022, 0.023, 0.024, 0.025, 0.026, 0.028, 0.030, 0.0. 040, 0.050, 0.060, 0.070, 0.080, 0.090, 0.095, 0.096, 0.097, 0.098, 0.099, 0.10 g / cm 3 etc. Can be mentioned.
 また、密度が0.020g/cm3より低いと、得られる発泡成形体の強度及び耐熱性が低下することがある。一方、0.10g/cm3より高いと、得られる発泡成形体の重量が増加することがある。 On the other hand, when the density is lower than 0.020 g / cm 3 , the strength and heat resistance of the obtained foamed molded product may be lowered. On the other hand, when it is higher than 0.10 g / cm 3 , the weight of the obtained foamed molded product may increase.
 本発明の発泡成形体は、ASTM D3763-92の衝撃試験において、好ましくは1.2~3.0J、より好ましくは1.3~3.0Jの吸収エネルギーを示す。発泡成形体が示す吸収エネルギーの具体的数値としては、1.2、1.3、1.4、1.5、1.7、2.0、2.3、2.5、2.6、2.7、2.8、2.9、3.0Jである。 The foamed molded product of the present invention preferably exhibits an absorbed energy of 1.2 to 3.0 J, more preferably 1.3 to 3.0 J, in the impact test of ASTM D3763-92. Specific numerical values of the absorbed energy exhibited by the foam molded article are 1.2, 1.3, 1.4, 1.5, 1.7, 2.0, 2.3, 2.5, 2.6, 2.7, 2.8, 2.9, and 3.0J.
 また、発泡成形体は、JIS K6767:1999の加熱寸法変化試験において、好ましくは1.0%以下、より好ましくは0.8%以下の加熱寸法変化率を示す。発泡成形体が示す加熱寸法変化率の具体的数値としては、0.00%、0.10%、0.20%、0.30%、0.40%、0.50%、0.60%、0.65%、0.66%、0.67%、0.68%、0.69%、0.70%、0.71%、0.72%、0.73%、0.74%、0.75%、0.76%、0.77%、0.78%、0.79%、0.80%、0.81%、0.82%、0.83%、0.84%、0.85%、0.86%、0.87%、0.88%、0.89%、0.90%、0.91%、0.92%、0.93%、0.94%、0.95%、0.96%、0.97%、0.98%、0.99%、1.00%等が挙げられる。ここで、加熱寸法変化率が1.0%以下の場合、加熱寸法変化率は-1.0%~+1.0%の範囲であることを意味する。 Further, the foamed molded article exhibits a heating dimensional change rate of preferably 1.0% or less, more preferably 0.8% or less, in a heating dimensional change test of JIS K6767: 1999. As specific numerical values of the heating dimensional change rate exhibited by the foam molded article, 0.00%, 0.10%, 0.20%, 0.30%, 0.40%, 0.50%, 0.60% 0.65%, 0.66%, 0.67%, 0.68%, 0.69%, 0.70%, 0.71%, 0.72%, 0.73%, 0.74% 0.75% 0.76% 0.77% 0.78% 0.79% 0.80% 0.81% 0.82% 0.83% 0.84% 0.85%, 0.86%, 0.87%, 0.88%, 0.89%, 0.90%, 0.91%, 0.92%, 0.93%, 0.94% 0.95%, 0.96%, 0.97%, 0.98%, 0.99%, 1.00%, and the like. Here, when the heating dimensional change rate is 1.0% or less, it means that the heating dimensional change rate is in the range of -1.0% to + 1.0%.
 これらの測定結果は、本発明の発泡成形体が従来のものと比べて優れた耐衝撃性及び加熱寸法安定性を有することを示す。 These measurement results indicate that the foamed molded product of the present invention has superior impact resistance and heat dimensional stability compared to conventional ones.
<複合樹脂粒子、発泡性樹脂粒子、予備発泡粒子及び発泡成形体の製造方法>
 まず、複合樹脂粒子は、例えば、以下のように製造できる。即ち、水性懸濁液中に、ポリオレフィン系樹脂の粒子100質量部と、スチレン系単量体100~400質量部と、重合開始剤とを分散させる。なお、スチレン系単量体と重合開始剤とを予め混合して用いてもよい。
<Production method of composite resin particles, expandable resin particles, pre-expanded particles, and foamed molded article>
First, the composite resin particles can be produced, for example, as follows. That is, 100 parts by mass of polyolefin resin particles, 100 to 400 parts by mass of a styrene monomer, and a polymerization initiator are dispersed in an aqueous suspension. In addition, you may mix and use a styrene-type monomer and a polymerization initiator previously.
 ポリオレフィン系樹脂の粒子は、公知の方法により得ることができる。例えば、ポリオレフィン系樹脂を、必要に応じて無機核剤と添加剤と共に、押出機中で溶融混練して押出すことでストランドを得、得られたストランドを、空気中でカット、水中でカット、加熱しつつカットすることで、造粒する方法が挙げられる。 The polyolefin resin particles can be obtained by a known method. For example, a polyolefin resin is melt-kneaded in an extruder together with an inorganic nucleating agent and additives as necessary to obtain a strand, and the obtained strand is cut in air, cut in water, The method of granulating by cutting while heating is mentioned.
 無機核剤としては、例えば、タルク、二酸化珪素、マイカ、クレー、ゼオライト、炭酸カルシウム等が挙げられる。無機核剤の使用量は、ポリエチレン系樹脂100質量部に対して、2質量部以下が好ましく、0.2~1.5質量部がより好ましい。無機核剤の使用量の具体的数値としては、ポリエチレン系樹脂100質量部に対して、0.2、0.5、1.0、1.3、1.5、1.7、1.8、1.9、2質量部等が挙げられる。水性懸濁液を構成する水性媒体としては、水、水と水溶性溶媒(例えば、低級アルコール)との混合媒体が挙げられる。 Examples of the inorganic nucleating agent include talc, silicon dioxide, mica, clay, zeolite, calcium carbonate and the like. The amount of the inorganic nucleating agent used is preferably 2 parts by mass or less, more preferably 0.2 to 1.5 parts by mass with respect to 100 parts by mass of the polyethylene resin. Specific values for the amount of the inorganic nucleating agent used are 0.2, 0.5, 1.0, 1.3, 1.5, 1.7, 1.8 with respect to 100 parts by mass of the polyethylene resin. 1.9, 2 mass parts, etc. are mentioned. Examples of the aqueous medium constituting the aqueous suspension include water and a mixed medium of water and a water-soluble solvent (for example, lower alcohol).
 重合開始剤としては、一般にスチレン系単量体の懸濁重合用の開始剤として用いられているものが使用できる。例えば、ベンゾイルパーオキサイド、ジt-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキサン、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチル-パーオキシ-2-エチルヘキシルカーボネート等の有機化過酸化物である。これらの重合開始剤は単独若しくは2種以上を併用してもよい。 As the polymerization initiator, those generally used as an initiator for suspension polymerization of a styrene monomer can be used. For example, benzoyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, t-butylperoxy- Organic peroxides such as 3,5,5-trimethylhexanoate and t-butyl-peroxy-2-ethylhexyl carbonate. These polymerization initiators may be used alone or in combination of two or more.
 重合開始剤の使用量は、スチレン系単量体100質量部に対して、0.1~0.9質量部が好ましく、0.2~0.5質量部がより好ましい。重合開始剤の使用量の具体的数値としては、スチレン系単量体100質量部に対して、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9質量部等が挙げられる。0.1質量部未満ではスチレン系単量体の重合に時間がかかり過ぎることがある。0.9質量部を超える重合開始剤の使用は、スチレン系樹脂の分子量が低くなることがある。 The amount of the polymerization initiator used is preferably 0.1 to 0.9 parts by mass and more preferably 0.2 to 0.5 parts by mass with respect to 100 parts by mass of the styrene monomer. Specific values of the amount of the polymerization initiator used are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0 with respect to 100 parts by mass of the styrene monomer. 0.7, 0.8, 0.9 parts by mass and the like. If it is less than 0.1 part by mass, it may take too much time to polymerize the styrene monomer. If the polymerization initiator exceeds 0.9 parts by mass, the molecular weight of the styrene resin may be lowered.
 水性懸濁液には、必要に応じて分散剤を添加してもよい。分散剤としては、特に限定されず、公知のものをいずれも使用することができる。具体的には、リン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸ナトリウム、酸化マグネシウム等の難溶性無機物が挙げられる。さらに、ドデシルベンゼンスルホン酸ソーダのような界面活性剤を使用してもよい。 A dispersant may be added to the aqueous suspension as necessary. The dispersant is not particularly limited, and any known dispersant can be used. Specific examples include hardly soluble inorganic substances such as calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate, magnesium oxide. Further, a surfactant such as sodium dodecylbenzenesulfonate may be used.
 次に、得られた分散液をスチレン系単量体が実質的に重合しない温度に加熱してスチレン系単量体をポリオレフィン系樹脂粒子に含浸させる。ポリオレフィン系樹脂粒子内部にスチレン系単量体を含浸させる時間は、30分~2時間が適当である。スチレン系単量体の含浸時間の具体的数値としては、30分、45分、1時間、1時間15分、1時間30分、1時間45分、2時間等が挙げられる。十分に含浸させる前に重合が進行するとスチレン系樹脂の重合体粉末を生成してしまうことがある。前記単量体が実質的に重合しない温度とは、高い方が含浸速度を速めるには有利であるが、重合開始剤の分解温度を考慮して決定する必要がある。 Next, the obtained dispersion is heated to a temperature at which the styrene monomer is not substantially polymerized to impregnate the polyolefin resin particles with the styrene monomer. A suitable time for impregnating the polyolefin resin particles with the styrene monomer is 30 minutes to 2 hours. Specific values for the impregnation time of the styrene monomer include 30 minutes, 45 minutes, 1 hour, 1 hour 15 minutes, 1 hour 30 minutes, 1 hour 45 minutes, 2 hours, and the like. If the polymerization proceeds before being sufficiently impregnated, a polymer powder of a styrene resin may be produced. The temperature at which the monomer is not substantially polymerized is advantageous in that the higher the temperature, the higher the impregnation rate. However, it is necessary to determine the temperature considering the decomposition temperature of the polymerization initiator.
 次いで、スチレン系単量体の重合を行う。重合は、特に限定されないが、115~140℃で、1.5~5時間行うことが好ましい。重合温度の具体的数値としては、115、120、125、130、135、140℃等が挙げられる。重合時間の具体的数値としては、1.5、2、2.5、3、3.5、4、4.5、5時間等が挙げられる。重合は、通常、加圧可能な密閉容器中で行われる。なお、スチレン系単量体の含浸と重合を複数回に分けて行ってもよい。複数回に分けることで、ポリスチレンの重合体粉末の発生を極力少なくできる。また、重合開始剤の分解温度を考慮して、スチレン系単量体をポリオレフィン系樹脂粒子に含浸させてからではなく、スチレン系単量体を含浸させながら重合を行ってもよい。前記工程により複合樹脂粒子を得ることができる。 Next, styrene monomer is polymerized. The polymerization is not particularly limited, but is preferably performed at 115 to 140 ° C. for 1.5 to 5 hours. Specific values of the polymerization temperature include 115, 120, 125, 130, 135, 140 ° C., and the like. Specific values for the polymerization time include 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 hours, and the like. The polymerization is usually carried out in an airtight container that can be pressurized. The impregnation and polymerization of the styrene monomer may be performed in a plurality of times. By dividing into multiple times, the generation of polystyrene polymer powder can be minimized. In consideration of the decomposition temperature of the polymerization initiator, the polymerization may be carried out while impregnating the styrene monomer with the polyolefin resin particles instead of impregnating the styrene monomer. Composite resin particles can be obtained by the above process.
 次に、発泡性樹脂粒子は、前記重合中若しくは重合終了後の複合樹脂粒子に発泡剤を含浸することで得ることができる。この含浸は、それ自体公知の方法により行うことができる。例えば、重合中での含浸は、重合反応を密閉式の容器中で行い、容器中に発泡剤を圧入することにより行うことができる。重合終了後の含浸は、密閉式の容器中で、発泡剤を圧入することにより行われる。 Next, the expandable resin particles can be obtained by impregnating the composite resin particles during or after the polymerization with a foaming agent. This impregnation can be performed by a method known per se. For example, the impregnation during the polymerization can be performed by performing the polymerization reaction in a sealed container and press-fitting a foaming agent into the container. The impregnation after the completion of the polymerization is performed by press-fitting a foaming agent in a sealed container.
 さらに、予備発泡粒子は、前記発泡性樹脂粒子を、公知の方法で所定の嵩密度に予備発泡させることで得ることができる。 Furthermore, the pre-expanded particles can be obtained by pre-expanding the expandable resin particles to a predetermined bulk density by a known method.
 本発明の発泡性複合樹脂粒子は耐熱性に優れるため、予備発泡粒子の製造方法は、好ましくは0.05~0.15MPa、より好ましくは0.06~0.10MPaの加熱蒸気を使用して前記発泡性複合樹脂粒子を予備発泡させる工程を含む。予備発泡時の加熱蒸気の圧力の具体的数値としては、0.05、0.06、0.07、0.08、0.09、0.10、0.11、0.12、0.13、0.14、0.15MPa等が挙げられる。この場合、より高圧の加熱蒸気を使用することで、製造コスト、製造時間の低減を図ることができる。 Since the expandable composite resin particles of the present invention are excellent in heat resistance, the pre-expanded particle manufacturing method preferably uses heated steam of 0.05 to 0.15 MPa, more preferably 0.06 to 0.10 MPa. A step of pre-foaming the expandable composite resin particles. Specific numerical values of the pressure of the heating steam at the time of preliminary foaming are 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13. 0.14, 0.15 MPa, and the like. In this case, it is possible to reduce manufacturing cost and manufacturing time by using higher-pressure heating steam.
 さらに、発泡成形体は、予備発泡粒子を発泡成形機の金型内に充填し、再度加熱して予備発泡粒子を発泡させながら、発泡粒同士を熱融着させることで得ることができる。加熱用の媒体は水蒸気が好適に使用できる。 Further, the foamed molded product can be obtained by filling the pre-foamed particles in a mold of a foam molding machine and heat-sealing the foamed particles while foaming the pre-foamed particles by heating again. Water vapor can be suitably used as the heating medium.
 各製造工程における工程温度、工程圧力及び工程時間のようなその他の製造条件は、使用する製造設備、原料等に従って適宜設定される。 Other manufacturing conditions such as process temperature, process pressure, and process time in each manufacturing process are appropriately set according to manufacturing equipment, raw materials, and the like to be used.
 本発明の発泡成形体は優れた耐衝撃性及び加熱寸法安定性を有する。このため、発泡成形体は、部品梱包材、自動車部材、緩衝材又はバンパー用芯材、特にバンパー用芯材のような優れた耐衝撃性及び加熱寸法安定性が求められる用途で好適に使用することができる。 The foamed molded product of the present invention has excellent impact resistance and heat dimensional stability. For this reason, the foam molded article is suitably used in applications that require excellent impact resistance and heat dimensional stability, such as parts packaging materials, automobile members, cushioning materials, or bumper core materials, particularly bumper core materials. be able to.
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
(数平均分子量(Mn)、重量平均分子量(Mw)及び分散度(Mw/Mn))
 測定に使用するゲルパーミエイションクロマトグラフィー(GPC)装置は、東ソー社製HLC-8121GPC/HTであり、カラムとして東ソー社製TSKgel GMHhr-H(20)HTを使用し、カラム温度を140℃に設定し、溶離液として1,2,4-トリクロロベンゼンを使用する。測定試料は、1.0mg/mLの濃度に調整し、GPC装置への注入量を0.3mLとする。各分子量の検量線は、分子量既知のポリエチレン試料もしくはポリプロピレン試料を使用して校正する。Mn及びMwは、ポリスチレン換算値として求める。また、得られたMn及びMwを使用して分散度(Mw/Mn)を測定する。
(Number average molecular weight (Mn), weight average molecular weight (Mw) and dispersity (Mw / Mn))
The gel permeation chromatography (GPC) apparatus used for the measurement is HLC-8121GPC / HT manufactured by Tosoh Corporation, TSKgel GMHhr-H (20) HT manufactured by Tosoh Corporation is used as the column, and the column temperature is set to 140 ° C. Set and use 1,2,4-trichlorobenzene as eluent. The measurement sample is adjusted to a concentration of 1.0 mg / mL, and the amount injected into the GPC device is 0.3 mL. The calibration curve for each molecular weight is calibrated using a polyethylene sample or polypropylene sample with a known molecular weight. Mn and Mw are determined as polystyrene equivalent values. Moreover, dispersity (Mw / Mn) is measured using the obtained Mn and Mw.
(樹脂の密度)
 樹脂の密度は、JIS K6922-1:1998に準拠して密度勾配管法で測定する。
(Resin density)
The density of the resin is measured by a density gradient tube method in accordance with JIS K6922-1: 1998.
(ポリエチレン系樹脂のメルトフローレート(MFR))
 MFRは、JIS K7210-1:1999に準拠して、190℃、2.16kgの荷重下で測定する。
(ポリプロピレン系樹脂のメルトフローレート(MFR))
 MFRは、JIS K7210-1:1999に準拠して、230℃、2.16kgの荷重下で測定する。
(Polyethylene resin melt flow rate (MFR))
MFR is measured according to JIS K7210-1: 1999 under a load of 190 ° C. and 2.16 kg.
(Melt flow rate (MFR) of polypropylene resin)
The MFR is measured under a load of 2.16 kg at 230 ° C. in accordance with JIS K7210-1: 1999.
(ポリオレフィン系樹脂のビカット軟化点(ビカット軟化温度))
JIS K7206:1999「プラスチック-熱可塑性プラスチック-ビカット軟化温度試験方法」記載の方法により測定する。
(Vicat softening point of polyolefin resin (Vicat softening temperature))
Measured by the method described in JIS K7206: 1999 "Plastics-Thermoplastics-Vicat softening temperature test method".
(複合樹脂粒子のビカット軟化点)
 JIS K7196:1991「熱可塑性プラスチックフィルム及びシートの熱機械分析による軟化温度試験方法」記載の方法により測定する。即ち、樹脂粒子を熱プレスして、厚み2mmに潰した後、縦10mm×横20mm×厚み2mmの平面長方形状のフィルム状試験片を作製し、熱・応力・歪み測定装置(セイコーインスツルメンツ社製、製品名「TMA/SS6200」)を用い、針入り試験モード(針の先端面積1mm2)、荷重50gとし、フィルム状試験片に針を当てて、昇温速度5℃/分で温度を上げていき、フィルム状試験片の歪みが発生した時の温度をこの樹脂粒子のビカット軟化点とする。
(Vicat softening point of composite resin particles)
Measured by the method described in JIS K7196: 1991 "Method for testing softening temperature by thermomechanical analysis of thermoplastic film and sheet". That is, after the resin particles are hot-pressed and crushed to a thickness of 2 mm, a flat rectangular film-shaped test piece having a length of 10 mm × width of 20 mm × thickness of 2 mm is produced, and a heat / stress / strain measuring device (manufactured by Seiko Instruments Inc.) , Product name “TMA / SS6200”), needle test mode (needle tip area 1 mm 2 ), load 50 g, the needle is applied to the film-like test piece, and the temperature is increased at a rate of temperature increase of 5 ° C./min. Then, the temperature at which the distortion of the film-like test piece occurs is defined as the Vicat softening point of the resin particles.
(予備発泡粒子の嵩密度)
 予備発泡粒子の嵩密度は、下記の要領で測定する。まず、予備発泡粒子をメスシリンダに500cm3の目盛りまで充填する。但し、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cm3の目盛りに達していれば、充填を終了する。次に、メスシリンダ内に充填した予備発泡粒子の重量を小数点以下2位の有効数字で秤量し、その重量をW(g)とする。次式により予備発泡粒子の嵩密度を算出する。
嵩密度(g/cm3)=W/500
(Bulk density of pre-expanded particles)
The bulk density of the pre-expanded particles is measured as follows. First, pre-expanded particles are filled in a measuring cylinder to a scale of 500 cm 3 . However, the graduated cylinder is visually observed from the horizontal direction, and if at least one pre-foamed particle reaches the scale of 500 cm 3 , the filling is finished. Next, the weight of the pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the weight is defined as W (g). The bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500
(発泡成形体の密度)
 発泡成形体(成形後、50℃で4時間以上乾燥させたもの)から切り出した試験片(例150×150×30mm)の重量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(g/cm3)を求める。
(Density of foam molding)
The weight (a) and volume (b) of a test piece (example 150 × 150 × 30 mm) cut out from a foamed molded product (after being molded and dried at 50 ° C. for 4 hours or more) each have three or more significant figures. Then, the density (g / cm 3 ) of the foamed molded product is obtained by the formula (a) / (b).
(発泡成形体の加熱寸法安定性)
 JIS K6767:1999「発泡プラスチック-ポリエチレン-試験方法」記載のB法により測定する。なお、試験片は、150mm×150mm×30mm(厚さ)としてその中央部に縦及び横方向にそれぞれ互いに平行に3本の直線を50mm間隔になるよう記入し、90℃の熱風循環式乾燥機の中に24時間置いた後に取り出し、標準状態の場所に1時間放置後、縦及び横線の寸法を下記式によって測定する。
S=(L1-L0)/L0×100
式中、Sは加熱寸法変化率(%)、L1は加熱後の平均寸法(mm)、L0は初めの平均寸法(mm)をそれぞれ表す。
(Heat dimensional stability of foamed molded products)
Measured by the method B described in JIS K6767: 1999 “Foamed Plastics—Polyethylene—Test Method”. The test piece is 150 mm × 150 mm × 30 mm (thickness), and three straight lines are written in the center in parallel to each other in the vertical and horizontal directions at intervals of 50 mm, and a hot air circulating dryer at 90 ° C. After 24 hours, the sample is taken out and left in a standard state for 1 hour, and then the vertical and horizontal line dimensions are measured by the following formula.
S = (L1-L0) / L0 × 100
In the formula, S represents a heating dimensional change rate (%), L1 represents an average dimension (mm) after heating, and L0 represents an initial average dimension (mm).
 加熱寸法安定性について、
(1)加熱寸法変化率が1%以下の場合:○
(2)加熱寸法変化率が1%より大きい場合:×
と判定する。
About heating dimensional stability
(1) When the heating dimensional change rate is 1% or less: ○
(2) When heating dimensional change rate is greater than 1%: ×
Is determined.
(発泡成形体の耐衝撃性(ダイナタップ衝撃試験(ASTM D3763-92)))
 発泡成形体の耐衝撃性をASTM D3763-92に従って測定する。
試験装置:ダイナタップ衝撃試験装置 GRC 8250(General Research Corp社製)
試験片:100×100×20T(mm)
スパン:丸穴内径76mm
試験速度:4.05m/分
試験温度:23℃
落下高さ:59cm
落錘距離:16cm
試験荷重3.17kg
試験数:5
(Impact resistance of foamed molded product (Dyna tap impact test (ASTM D3763-92)))
The impact resistance of the foamed molded product is measured according to ASTM D3763-92.
Test device: Dynatap impact test device GRC 8250 (manufactured by General Research Corp)
Test piece: 100 × 100 × 20 T (mm)
Span: round hole inner diameter 76mm
Test speed: 4.05 m / min Test temperature: 23 ° C.
Drop height: 59cm
Drop weight distance: 16cm
Test load 3.17kg
Number of tests: 5
 耐衝撃性について、
(1)吸収エネルギーが1.2~3.0Jの場合:○
(2)吸収エネルギーが1.2J未満の場合:×
と判定する。
About impact resistance
(1) When absorbed energy is 1.2 to 3.0 J: ○
(2) When absorbed energy is less than 1.2 J: ×
Is determined.
(実施例1)
ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=3/7(質量比)の複合樹脂粒子の製造
 ポリエチレン系樹脂(プライムポリマー社製、製品名「SP4020」、密度:0.937/cm3、ビカット軟化点:117℃、メルトフローレート:1.8g/10分)100質量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリエチレン系樹脂粒子を得た。ポリエチレン系樹脂粒子の平均重量は0.6mgであった。
Example 1
Production of composite resin particles of polyethylene resin (PE) / polystyrene resin (PS) = 3/7 (mass ratio) Polyethylene resin (manufactured by Prime Polymer, product name “SP4020”, density: 0.937 / cm 3 , Vicat softening point: 117 ° C., melt flow rate: 1.8 g / 10 minutes) 100 parts by mass is supplied to an extruder, melted and kneaded, granulated by an underwater cutting method, and an oval (egg-like) polyethylene system Resin particles were obtained. The average weight of the polyethylene resin particles was 0.6 mg.
 次に、攪拌機付100Lオートクレーブに、ピロリン酸マグネシウム128g及びドデシルベンゼンスルホン酸ソーダ32gを水40kgに分散させて分散用媒体を得た。分散用媒体に前記ポリエチレン系樹脂粒子12kgを分散させて懸濁液を得た。さらに、重合開始剤としてt-ブチルパーオキシベンゾエート11.4gをスチレン単量体6kgに溶解させて第1のスチレン単量体を作製した。ポリエチレン系樹脂粒子を含む懸濁液の温度を60℃に調節し、前記スチレン単量体を30分かけて定量で添加したのち、1時間攪拌することでポリエチレン系樹脂粒子中に第1のスチレン単量体を含浸させた。次に反応系の温度を135℃に昇温して3時間保持し、スチレン単量体をポリエチレン系樹脂粒子中で重合(第1の重合)させた。 Next, in a 100 L autoclave with a stirrer, 128 g of magnesium pyrophosphate and 32 g of sodium dodecylbenzenesulfonate were dispersed in 40 kg of water to obtain a dispersion medium. A suspension was obtained by dispersing 12 kg of the polyethylene resin particles in a dispersion medium. Further, 11.4 g of t-butyl peroxybenzoate as a polymerization initiator was dissolved in 6 kg of styrene monomer to prepare a first styrene monomer. The temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles. The monomer was impregnated. Next, the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
 次いで、反応系の温度を、115℃に低下させ、さらに重合開始剤としてt-ブチルパーオキシベンゾエート41.8gをスチレン単量体22kgに溶解させた第2のスチレン単量体を1時間あたり4.6kgの割合で連続的に滴下することで、第2のスチレン単量体をポリエチレン系樹脂粒子に含浸させながら重合(第2の重合)させた。この滴下終了後、115℃で1時間保持した後に140℃に昇温し、3時間保持して重合を完結させて複合樹脂粒子を得た。 Subsequently, the temperature of the reaction system was lowered to 115 ° C., and a second styrene monomer in which 41.8 g of t-butyl peroxybenzoate was dissolved in 22 kg of styrene monomer as a polymerization initiator was added 4 per hour. By continuously dropping at a rate of 0.6 kg, polymerization (second polymerization) was performed while impregnating the polyethylene resin particles with the second styrene monomer. After completion of the dropping, the mixture was held at 115 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
 続いて、複合樹脂粒子2kgと水2Lを攪拌機付5Lオートクレーブに投入し、発泡剤として常温でブタン(n-ブタン:i-ブタン=7:3(質量比))17質量部を注入した。注入後、70℃に昇温し、2時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。 Subsequently, 2 kg of composite resin particles and 2 L of water were put into a 5 L autoclave with a stirrer, and 17 parts by weight of butane (n-butane: i-butane = 7: 3 (mass ratio)) was injected as a blowing agent at room temperature. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 2 hours. Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried to obtain expandable composite resin particles.
 得られた発泡性複合樹脂粒子を直ちに予備発泡機(笠原工業社製、製品名「PSX40」)に供給し、0.05MPaの圧力の水蒸気を用いて予備発泡させて嵩密度0.033g/cm3の予備発泡粒子を得た。 The obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.) and pre-foamed using steam at a pressure of 0.05 MPa to obtain a bulk density of 0.033 g / cm. Three pre-expanded particles were obtained.
 次に、予備発泡粒子を室温で1日間放置した後、成形機の金型内に充填した。そして、金型内に0.18MPaの圧力の水蒸気を30秒供給して予備発泡粒子を発泡成形させて、縦400mm×横300mm×高さ30mmの直方体形状の密度0.033g/cm3のバンパー用芯材を製造した。得られたバンパー用芯材の融着率、外観共に良好であった。 Next, the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam having a pressure of 0.18 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape of 400 mm long × 300 mm wide × 30 mm high and having a density of 0.033 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
(実施例2)
ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=3/7の複合樹脂粒子の製造
 ポリエチレン系樹脂(プライムポリマー社製、製品名「SP4020」、密度:0.937g/cm3、ビカット軟化点:117℃、メルトフローレート:1.8g/10分)100質量部、40質量%含有カーボンブラックマスターバッチ(DOW社製28E-40、基材樹脂LDPE(低密度ポリエチレン系樹脂))7.7質量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリエチレン系樹脂粒子を得た。ポリエチレン系樹脂粒子の平均重量は0.6mgであった。
(Example 2)
Production of composite resin particles of polyethylene resin (PE) / polystyrene resin (PS) = 3/7 Polyethylene resin (manufactured by Prime Polymer, product name “SP4020”, density: 0.937 g / cm 3 , Vicat softening point 117 ° C., melt flow rate: 1.8 g / 10 min) 100 parts by mass, 40% by mass carbon black masterbatch (28E-40 manufactured by DOW, base resin LDPE (low density polyethylene resin)) 7.7 Mass parts were supplied to an extruder, melted and kneaded, and granulated by an underwater cutting method to obtain elliptical (egg-like) polyethylene resin particles. The average weight of the polyethylene resin particles was 0.6 mg.
 次に、攪拌機付100Lオートクレーブに、ピロリン酸マグネシウム128g及びドデシルベンゼンスルホン酸ソーダ32gを水40kgに分散させて分散用媒体を得た。分散用媒体に前記カーボン含有のポリエチレン系樹脂粒子12kgを分散させて懸濁液を得た。さらに、重合開始剤としてジクミルパーオキサイド12.0gをスチレン単量体6kgに溶解させて第1のスチレン単量体を作製した。ポリエチレン系樹脂粒子を含む懸濁液の温度を60℃に調節し、前記スチレン単量体を30分かけて定量で添加したのち、1時間攪拌することでポリエチレン系樹脂粒子中に第1のスチレン単量体を含浸させた。次に反応系の温度を135℃に昇温して3時間保持し、スチレン単量体をポリエチレン系樹脂粒子中で重合(第1の重合)させた。 Next, in a 100 L autoclave with a stirrer, 128 g of magnesium pyrophosphate and 32 g of sodium dodecylbenzenesulfonate were dispersed in 40 kg of water to obtain a dispersion medium. A suspension was obtained by dispersing 12 kg of the carbon-containing polyethylene resin particles in a dispersion medium. Further, 12.0 g of dicumyl peroxide as a polymerization initiator was dissolved in 6 kg of styrene monomer to prepare a first styrene monomer. The temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles. The monomer was impregnated. Next, the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
 次いで、反応系の温度を、125℃に低下させ、さらに重合開始剤としてジクミルパーオキサイド100.8gをスチレン単量体22kgに溶解させた第2のスチレン単量体を1時間あたり4.6kgの割合で連続的に滴下することで、第2のスチレン単量体をポリエチレン系樹脂粒子に含浸させながら重合(第2の重合)させた。この滴下終了後、125℃で1時間保持した後に140℃に昇温し、3時間保持して重合を完結させて複合樹脂粒子を得た。 Next, the temperature of the reaction system was lowered to 125 ° C., and a second styrene monomer obtained by dissolving 100.8 g of dicumyl peroxide as a polymerization initiator in 22 kg of styrene monomer was 4.6 kg per hour. The second styrene monomer was impregnated into the polyethylene resin particles to cause polymerization (second polymerization). After the completion of the dropping, the mixture was held at 125 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization to obtain composite resin particles.
 続いて、複合樹脂粒子2kgと水2Lを攪拌機付5Lオートクレーブに投入し、発泡剤として常温でブタン(n-ブタン:i-ブタン=7:3(質量比))17質量部を注入した。注入後、70℃に昇温し、2時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。 Subsequently, 2 kg of composite resin particles and 2 L of water were put into a 5 L autoclave with a stirrer, and 17 parts by weight of butane (n-butane: i-butane = 7: 3 (mass ratio)) was injected as a blowing agent at room temperature. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 2 hours. Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried to obtain expandable composite resin particles.
 得られた発泡性複合樹脂粒子を直ちに予備発泡機(笠原工業社製、製品名「PSX40」)に供給し、0.05MPaの圧力の水蒸気を用いて予備発泡させて嵩密度0.033g/cm3の予備発泡粒子を得た。 The obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (manufactured by Kasahara Kogyo Co., Ltd., product name “PSX40”) and pre-foamed using steam at a pressure of 0.05 MPa to obtain a bulk density of 0.033 g / cm. Three pre-expanded particles were obtained.
 次に、予備発泡粒子を室温で1日間放置した後、成形機の金型内に充填した。そして、金型内に0.18MPaの圧力の水蒸気を30秒供給して予備発泡粒子を発泡成形させて、縦400mm×横300mm×高さ30mmの直方体形状の密度0.033g/cm3のバンパー用芯材を製造した。得られたバンパー用芯材の融着率、外観共に良好であった。 Next, the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam having a pressure of 0.18 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape of 400 mm long × 300 mm wide × 30 mm high and having a density of 0.033 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
(実施例3)
 ポリエチレン系樹脂(プライムポリマー社製、製品名「SP4020」、密度:0.937g/cm3、ビカット軟化点:117℃、メルトフローレート:1.8g/10分)の代わりにポリエチレン系樹脂(宇部丸善ポリエチレン社製、製品名「3540FC」、密度:0.931g/cm3、ビカット軟化点:114℃、メルトフローレート:3.6g/10分)それ以外は、実施例1と同様にした。
(Example 3)
Polyethylene resin (Ube) instead of polyethylene resin (manufactured by Prime Polymer, product name “SP4020”, density: 0.937 g / cm 3 , Vicat softening point: 117 ° C., melt flow rate: 1.8 g / 10 min) Manufactured by Maruzen Polyethylene Co., Ltd., product name “3540FC”, density: 0.931 g / cm 3 , Vicat softening point: 114 ° C., melt flow rate: 3.6 g / 10 min) The others were the same as in Example 1.
(実施例4)
 ポリエチレン系樹脂(プライムポリマー社製、製品名「SP4020」、密度:0.937g/cm3、ビカット軟化点:117℃、メルトフローレート:1.8g/10分)の代わりにポリエチレン系樹脂(宇部丸善ポリエチレン社製、製品名「4040FC」、密度:0.938g/cm3、ビカット軟化点:120℃、メルトフローレート:3.5g/10分)それ以外は、実施例1と同様にした。
(Example 4)
Polyethylene resin (Ube) instead of polyethylene resin (manufactured by Prime Polymer, product name “SP4020”, density: 0.937 g / cm 3 , Vicat softening point: 117 ° C., melt flow rate: 1.8 g / 10 min) (Made by Maruzen Polyethylene Co., Ltd., product name “4040FC”, density: 0.938 g / cm 3 , Vicat softening point: 120 ° C., melt flow rate: 3.5 g / 10 min) The others were the same as in Example 1.
(実施例5)
ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=4/6の複合樹脂粒子の製造
 ポリエチレン系樹脂(プライムポリマー社製、製品名「SP4020」、密度:0.937g/cm3、ビカット軟化点:117℃、メルトフローレート:1.8g/10分)100質量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリエチレン系樹脂粒子を得た。ポリエチレン系樹脂粒子の平均重量は0.6mgであった。
(Example 5)
Production of composite resin particles of polyethylene resin (PE) / polystyrene resin (PS) = 4/6 Polyethylene resin (manufactured by Prime Polymer, product name “SP4020”, density: 0.937 g / cm 3 , Vicat softening point : 117 ° C., melt flow rate: 1.8 g / 10 min) 100 parts by mass is supplied to an extruder, melted and kneaded, and granulated by an underwater cutting method to obtain oval (egg-like) polyethylene resin particles. It was. The average weight of the polyethylene resin particles was 0.6 mg.
 次に、攪拌機付100Lオートクレーブに、ピロリン酸マグネシウム128g及びドデシルベンゼンスルホン酸ソーダ32gを水40kgに分散させて分散用媒体を得た。分散用媒体に前記ポリエチレン系樹脂粒子16kgを分散させて懸濁液を得た。さらに、重合開始剤としてt-ブチルパーオキシベンゾエート15.2gをスチレン単量体8kgに溶解させて第1のスチレン単量体を作製した。ポリエチレン系樹脂粒子を含む懸濁液の温度を60℃に調節し、前記スチレン単量体を30分かけて定量で添加したのち、1時間攪拌することでポリエチレン系樹脂粒子中に第1のスチレン単量体を含浸させた。次に反応系の温度を135℃に昇温して3時間保持し、スチレン単量体をポリエチレン系樹脂粒子中で重合(第1の重合)させた。 Next, in a 100 L autoclave with a stirrer, 128 g of magnesium pyrophosphate and 32 g of sodium dodecylbenzenesulfonate were dispersed in 40 kg of water to obtain a dispersion medium. A suspension was obtained by dispersing 16 kg of the polyethylene resin particles in a dispersion medium. Further, 15.2 g of t-butyl peroxybenzoate as a polymerization initiator was dissolved in 8 kg of styrene monomer to prepare a first styrene monomer. The temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles. The monomer was impregnated. Next, the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
 次いで、反応系の温度を、115℃に低下させ、さらに重合開始剤としてt-ブチルパーオキシベンゾエート33.6gをスチレン単量体16kgに溶解させた第2のスチレン単量体を1時間あたり4.6kgの割合で連続的に滴下することで、第2のスチレン単量体をポリエチレン系樹脂粒子に含浸させながら重合(第2の重合)させた。この滴下終了後、115℃で1時間保持した後に140℃に昇温し、3時間保持して重合を完結させて複合樹脂粒子を得た。 Next, the temperature of the reaction system was lowered to 115 ° C., and a second styrene monomer obtained by dissolving 33.6 g of t-butyl peroxybenzoate as a polymerization initiator in 16 kg of styrene monomer was 4 per hour. By continuously dropping at a rate of 0.6 kg, polymerization (second polymerization) was performed while impregnating the polyethylene resin particles with the second styrene monomer. After completion of the dropping, the mixture was held at 115 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
 続いて、複合樹脂粒子2kgと水2Lを攪拌機付5Lオートクレーブに投入し、発泡剤として常温でブタン(n-ブタン:i-ブタン=7:3(質量比))17質量部を注入した。注入後、70℃に昇温し、2時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。 Subsequently, 2 kg of composite resin particles and 2 L of water were put into a 5 L autoclave with a stirrer, and 17 parts by weight of butane (n-butane: i-butane = 7: 3 (mass ratio)) was injected as a blowing agent at room temperature. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 2 hours. Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried to obtain expandable composite resin particles.
 得られた発泡性複合樹脂粒子を直ちに予備発泡機(笠原工業社製、製品名「PSX40」)に供給し、0.05MPaの圧力の水蒸気を用いて予備発泡させて嵩密度0.033g/cm3の予備発泡粒子を得た。 The obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.) and pre-foamed using steam at a pressure of 0.05 MPa to obtain a bulk density of 0.033 g / cm. Three pre-expanded particles were obtained.
 次に、予備発泡粒子を室温で1日間放置した後、成形機の金型内に充填した。そして、金型内に0.18MPaの圧力の水蒸気を30秒供給して予備発泡粒子を発泡成形させて、縦400mm×横300mm×高さ30mmの直方体形状の密度0.033g/cm3のバンパー用芯材を製造した。得られたバンパー用芯材の融着率、外観共に良好であった。 Next, the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam with a pressure of 0.18 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape with a length of 400 mm × width of 300 mm × height of 30 mm and a density of 0.033 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
(実施例6)
ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=3/7の複合樹脂粒子の製造
 ポリエチレン系樹脂(宇部丸善ポリエチレン社製、製品名「4540F」、密度:0.944g/cm3、ビカット軟化点:123℃、メルトフローレート:4.0g/10分)100質量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリエチレン系樹脂粒子を得た。ポリエチレン系樹脂粒子の平均重量は0.6mgであった。
(Example 6)
Production of composite resin particles of polyethylene resin (PE) / polystyrene resin (PS) = 3/7 Polyethylene resin (manufactured by Ube Maruzen Polyethylene Co., Ltd., product name “4540F”, density: 0.944 g / cm 3 , Vicat softening (Point: 123 ° C., Melt flow rate: 4.0 g / 10 min) 100 parts by mass are supplied to an extruder, melt-kneaded, granulated by an underwater cutting method to obtain oval (egg-like) polyethylene resin particles. Obtained. The average weight of the polyethylene resin particles was 0.6 mg.
 次に、攪拌機付100Lオートクレーブに、ピロリン酸マグネシウム128g及びドデシルベンゼンスルホン酸ソーダ32gを水40kgに分散させて分散用媒体を得た。分散用媒体に前記ポリエチレン系樹脂粒子12kgを分散させて懸濁液を得た。さらに、重合開始剤としてt-ブチルパーオキシベンゾエート11.4gをスチレン単量体6kgに溶解させて第1のスチレン単量体を作製した。ポリエチレン系樹脂粒子を含む懸濁液の温度を60℃に調節し、前記スチレン単量体を30分かけて定量で添加したのち、1時間攪拌することでポリエチレン系樹脂粒子中に第1のスチレン単量体を含浸させた。次に反応系の温度を135℃に昇温して3時間保持し、スチレン単量体をポリエチレン系樹脂粒子中で重合(第1の重合)させた。 Next, in a 100 L autoclave with a stirrer, 128 g of magnesium pyrophosphate and 32 g of sodium dodecylbenzenesulfonate were dispersed in 40 kg of water to obtain a dispersion medium. A suspension was obtained by dispersing 12 kg of the polyethylene resin particles in a dispersion medium. Further, 11.4 g of t-butyl peroxybenzoate as a polymerization initiator was dissolved in 6 kg of styrene monomer to prepare a first styrene monomer. The temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles. The monomer was impregnated. Next, the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
 次いで、反応系の温度を、115℃に低下させ、さらに重合開始剤としてt-ブチルパーオキシベンゾエート41.8gをスチレン単量体22kgに溶解させた第2のスチレン単量体を1時間あたり4.6kgの割合で連続的に滴下することで、第2のスチレン単量体をポリエチレン系樹脂粒子に含浸させながら重合(第2の重合)させた。この滴下終了後、115℃で1時間保持した後に140℃に昇温し、3時間保持して重合を完結させて複合樹脂粒子を得た。 Subsequently, the temperature of the reaction system was lowered to 115 ° C., and a second styrene monomer in which 41.8 g of t-butyl peroxybenzoate was dissolved in 22 kg of styrene monomer as a polymerization initiator was added 4 per hour. By continuously dropping at a rate of 0.6 kg, polymerization (second polymerization) was performed while impregnating the polyethylene resin particles with the second styrene monomer. After completion of the dropping, the mixture was held at 115 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
 続いて、複合樹脂粒子2kgと水2Lを攪拌機付5Lオートクレーブに投入し、発泡剤として常温でブタン(n-ブタン:i-ブタン=7:3(質量比))17質量部を注入した。注入後、70℃に昇温し、2時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。 Subsequently, 2 kg of composite resin particles and 2 L of water were put into a 5 L autoclave with a stirrer, and 17 parts by weight of butane (n-butane: i-butane = 7: 3 (mass ratio)) was injected as a blowing agent at room temperature. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 2 hours. Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried to obtain expandable composite resin particles.
 得られた発泡性複合樹脂粒子を直ちに予備発泡機(笠原工業社製、製品名「PSX40」)に供給し、0.10MPaの圧力の水蒸気を用いて予備発泡させて嵩密度0.025g/cm3の予備発泡粒子を得た。 The obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.) and pre-foamed using steam at a pressure of 0.10 MPa to obtain a bulk density of 0.025 g / cm. Three pre-expanded particles were obtained.
 次に、予備発泡粒子を室温で1日間放置した後、成形機の金型内に充填した。そして、金型内に0.23MPaの圧力の水蒸気を30秒供給して予備発泡粒子を発泡成形させて、縦400mm×横300mm×高さ30mmの直方体形状の密度0.025g/cm3のバンパー用芯材を製造した。得られたバンパー用芯材の融着率、外観共に良好であった。 Next, the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam having a pressure of 0.23 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape of length 400 mm × width 300 mm × height 30 mm and a density of 0.025 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
(実施例7)
ポリプロピレン系樹脂(PP)/ポリスチレン系樹脂(PS)=4/6の複合樹脂粒子の製造
 ポリプロピレン系樹脂として、日本ポリプロ社製、製品名「RFG4VA」(融点:135℃、密度:0.900g/cm3、メルトフローレート:6.0g/10分、ビカット軟化点:115℃)100質量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリプロピレン系樹脂粒子(ポリオレフィン系樹脂粒子)を得た。このときのポリプロピレン系樹脂粒子の平均重量は0.8mgであった。
(Example 7)
Production of Composite Resin Particles of Polypropylene Resin (PP) / Polystyrene Resin (PS) = 4/6 As a polypropylene resin, product name “RFG4VA” manufactured by Nippon Polypro Co., Ltd. (melting point: 135 ° C., density: 0.900 g / cm 3 , melt flow rate: 6.0 g / 10 min, Vicat softening point: 115 ° C.) 100 parts by mass is supplied to an extruder, melted and kneaded, and granulated by an underwater cut method to form an oval (egg-like) shape. Polypropylene resin particles (polyolefin resin particles) were obtained. The average weight of the polypropylene resin particles at this time was 0.8 mg.
 次に、攪拌機付100Lオートクレーブに、ピロリン酸マグネシウム400g、及びドデシルベンゼンスルホン酸ソーダ10gを水40kgに分散させて分散用媒体を得た。分散用媒体に前記ポリプロピレン系樹脂粒子16kgを分散させて懸濁液を得た。さらに、重合開始剤としてジクミルパーオキサイド16gをスチレン単量体8.0kgに溶解させて第1のスチレン単量体を作製した。ポリプロピレン系を含む懸濁液の温度を60℃に調節し、前記スチレン単量体を30分かけて定量で添加したのち、1時間攪拌することでポリプロピレン系樹脂粒子中に第1のスチレン単量体を含浸させた。次に反応系の温度をポリプロピレン系樹脂の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させた。 Next, 400 g of magnesium pyrophosphate and 10 g of sodium dodecylbenzenesulfonate were dispersed in 40 kg of water in a 100 L autoclave equipped with a stirrer to obtain a dispersion medium. A suspension was obtained by dispersing 16 kg of the polypropylene resin particles in a dispersion medium. Further, 16 g of dicumyl peroxide as a polymerization initiator was dissolved in 8.0 kg of a styrene monomer to prepare a first styrene monomer. The temperature of the suspension containing the polypropylene system is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour, so that the first styrene monomer is contained in the polypropylene resin particles. The body was impregnated. Next, the temperature of the reaction system was raised to 140 ° C., the same as the melting point of the polypropylene resin, and maintained for 2 hours, and the styrene monomer was polymerized (first polymerization) in the polypropylene resin particles.
 次いで、反応系の温度を、125℃に低下させ、さらに重合開始剤としてジクミルパーオキサイド72gをスチレン単量体16kgに溶解させた第2のスチレン単量体を1時間あたり4kgの割合で連続的に滴下することで、第2のスチレン単量体をポリプロピレン系樹脂粒子に含浸させながら重合(第2の重合)させた。この滴下終了後、120℃で1時間保持した後に143℃に昇温し、3時間保持して重合を完結させて複合樹脂粒子を得た。 Next, the temperature of the reaction system was lowered to 125 ° C., and a second styrene monomer in which 72 g of dicumyl peroxide was dissolved in 16 kg of styrene monomer as a polymerization initiator was continuously added at a rate of 4 kg per hour. Then, the second resin was polymerized (second polymerization) while impregnating the polypropylene resin particles with the second styrene monomer. After completion of the dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 143 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
 続いて、複合樹脂粒子2kgと水2Lを攪拌機付5Lオートクレーブに投入し、発泡剤として常温でブタン(n-ブタン:i-ブタン=7:3(質量比))17質量部を注入した。注入後、70℃に昇温し、2時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。 Subsequently, 2 kg of composite resin particles and 2 L of water were put into a 5 L autoclave with a stirrer, and 17 parts by weight of butane (n-butane: i-butane = 7: 3 (mass ratio)) was injected as a blowing agent at room temperature. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 2 hours. Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried to obtain expandable composite resin particles.
 得られた発泡性複合樹脂粒子を直ちに予備発泡機(笠原工業社製、製品名「PSX40」)に供給し、0.05MPaの圧力の水蒸気を用いて予備発泡させて嵩密度0.025g/cm3の予備発泡粒子を得た。 The obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (manufactured by Kasahara Kogyo Co., Ltd., product name “PSX40”) and pre-foamed using steam at a pressure of 0.05 MPa to obtain a bulk density of 0.025 g / cm. Three pre-expanded particles were obtained.
 次に、予備発泡粒子を室温で1日間放置した後、成形機の金型内に充填した。そして、金型内に0.18MPaの圧力の水蒸気を30秒供給して予備発泡粒子を発泡成形させて、縦400mm×横300mm×高さ30mmの直方体形状の密度0.025g/cm3のバンパー用芯材を製造した。得られたバンパー用芯材の融着率、外観共に良好であった。 Next, the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam with a pressure of 0.18 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape of length 400 mm × width 300 mm × height 30 mm and a density of 0.025 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
(比較例1)
 ポリプロピレン系樹脂(PP)/ポリスチレン系樹脂(PS)=4/6の複合樹脂粒子の製造
 ポリプロピレン系樹脂として、プライムポリマー社製、製品名「F-744NP」(融点:140℃、密度:0.900g/cm3、メルトフローレート:7.0g/10分、ビカット軟化点:117℃)100質量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリプロピレン系樹脂粒子(ポリオレフィン系樹脂粒子)を得た。このときのポリプロピレン系樹脂粒子の平均重量は0.8mgであった。
(Comparative Example 1)
Manufacture of Composite Resin Particles of Polypropylene Resin (PP) / Polystyrene Resin (PS) = 4/6 As a polypropylene resin, product name “F-744NP” (melting point: 140 ° C., density: 0. 900 g / cm 3 , melt flow rate: 7.0 g / 10 min, Vicat softening point: 117 ° C. 100 parts by mass are supplied to an extruder, melt-kneaded, granulated by an underwater cut method, and oval (egg-like) ) Polypropylene resin particles (polyolefin resin particles). The average weight of the polypropylene resin particles at this time was 0.8 mg.
 次に、攪拌機付100Lオートクレーブに、ピロリン酸マグネシウム400g、及びドデシルベンゼンスルホン酸ソーダ10gを水40kgに分散させて分散用媒体を得た。分散用媒体に前記ポリプロピレン系樹脂粒子16kgを分散させて懸濁液を得た。さらに、重合開始剤としてジクミルパーオキサイド16gをスチレン単量体8.0kgに溶解させて第1のスチレン単量体を作製した。ポリプロピレン系を含む懸濁液の温度を60℃に調節し、前記スチレン単量体を30分かけて定量で添加したのち、1時間攪拌することでポリプロピレン系樹脂粒子中に第1のスチレン単量体を含浸させた。次に反応系の温度をポリプロピレン系樹脂の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させた。 Next, 400 g of magnesium pyrophosphate and 10 g of sodium dodecylbenzenesulfonate were dispersed in 40 kg of water in a 100 L autoclave equipped with a stirrer to obtain a dispersion medium. A suspension was obtained by dispersing 16 kg of the polypropylene resin particles in a dispersion medium. Further, 16 g of dicumyl peroxide as a polymerization initiator was dissolved in 8.0 kg of a styrene monomer to prepare a first styrene monomer. The temperature of the suspension containing the polypropylene system is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour, so that the first styrene monomer is contained in the polypropylene resin particles. The body was impregnated. Next, the temperature of the reaction system was raised to 140 ° C., the same as the melting point of the polypropylene resin, and maintained for 2 hours, and the styrene monomer was polymerized (first polymerization) in the polypropylene resin particles.
 次いで、反応系の温度を、120℃に低下させ、さらに重合開始剤としてジクミルパーオキサイド72gをスチレン単量体16kgに溶解させた第2のスチレン単量体を1時間あたり4kgの割合で連続的に滴下することで、第2のスチレン単量体をポリプロピレン系樹脂粒子に含浸させながら重合(第2の重合)させた。この滴下終了後、120℃で1時間保持した後に143℃に昇温し、3時間保持して重合を完結させて複合樹脂粒子を得た。 Subsequently, the temperature of the reaction system was lowered to 120 ° C., and a second styrene monomer in which 72 g of dicumyl peroxide was dissolved in 16 kg of styrene monomer as a polymerization initiator was continuously added at a rate of 4 kg per hour. Then, the second resin was polymerized (second polymerization) while impregnating the polypropylene resin particles with the second styrene monomer. After completion of the dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 143 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
 続いて、複合樹脂粒子2kgと水2Lを攪拌機付5Lオートクレーブに投入し、発泡剤として常温でブタン(n-ブタン:i-ブタン=7:3(質量比))16質量部を注入した。注入後、70℃に昇温し、2時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。 Subsequently, 2 kg of composite resin particles and 2 L of water were charged into a 5 L autoclave with a stirrer, and 16 parts by weight of butane (n-butane: i-butane = 7: 3 (mass ratio)) was injected as a blowing agent at room temperature. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 2 hours. Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried to obtain expandable composite resin particles.
 得られた発泡性複合樹脂粒子を直ちに予備発泡機(笠原工業社製、製品名「PSX40」)に供給し、0.1MPaの圧力の水蒸気を用いて予備発泡させて嵩密度0.033g/cm3の予備発泡粒子を得た。 The obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (product name “PSX40” manufactured by Kasahara Kogyo Co., Ltd.) and pre-foamed using steam at a pressure of 0.1 MPa to obtain a bulk density of 0.033 g / cm. Three pre-expanded particles were obtained.
 次に、予備発泡粒子を室温で1日間放置した後、成形機の金型内に充填した。そして、金型内に0.25MPaの圧力の水蒸気を30秒供給して予備発泡粒子を発泡成形させて、縦400mm×横300mm×高さ30mmの直方体形状の密度0.033g/cm3のバンパー用芯材を製造した。得られたバンパー用芯材の融着率、外観共に良好であった。 Next, the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, steam with a pressure of 0.25 MPa was supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape with a length of 400 mm × width of 300 mm × height of 30 mm and a density of 0.033 g / cm 3 A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
(比較例2)
 ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=3/7の複合樹脂粒子の製造
 ポリエチレン系樹脂(日本ポリエチレン社製、製品名「NF464A」、密度:0.918g/cm3、ビカット軟化点:98℃、メルトフローレート:2.0g/10分)100質量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリエチレン系樹脂粒子を得た。ポリエチレン系樹脂粒子の平均重量は0.6mgであった。
(Comparative Example 2)
Production of composite resin particles of polyethylene resin (PE) / polystyrene resin (PS) = 3/7 Polyethylene resin (manufactured by Nippon Polyethylene Co., Ltd., product name “NF464A”, density: 0.918 g / cm 3 , Vicat softening point : 98 ° C., melt flow rate: 2.0 g / 10 min) 100 parts by mass is supplied to an extruder, melted and kneaded, and granulated by an underwater cutting method to obtain oval (egg-like) polyethylene resin particles. It was. The average weight of the polyethylene resin particles was 0.6 mg.
 次に、攪拌機付100Lオートクレーブに、ピロリン酸マグネシウム128g及びドデシルベンゼンスルホン酸ソーダ32gを水40kgに分散させて分散用媒体を得た。分散用媒体に前記ポリエチレン系樹脂粒子12kgを分散させて懸濁液を得た。さらに、重合開始剤としてt-ブチルパーオキシベンゾエート11.4gをスチレン単量体6kgに溶解させて第1のスチレン単量体を作製した。ポリエチレン系樹脂粒子を含む懸濁液の温度を60℃に調節し、前記スチレン単量体を30分かけて定量で添加したのち、1時間攪拌することでポリエチレン系樹脂粒子中に第1のスチレン単量体を含浸させた。次に反応系の温度を135℃に昇温して3時間保持し、スチレン単量体をポリエチレン系樹脂粒子中で重合(第1の重合)させた。 Next, in a 100 L autoclave with a stirrer, 128 g of magnesium pyrophosphate and 32 g of sodium dodecylbenzenesulfonate were dispersed in 40 kg of water to obtain a dispersion medium. A suspension was obtained by dispersing 12 kg of the polyethylene resin particles in a dispersion medium. Further, 11.4 g of t-butyl peroxybenzoate as a polymerization initiator was dissolved in 6 kg of styrene monomer to prepare a first styrene monomer. The temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles. The monomer was impregnated. Next, the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
 次いで、反応系の温度を、115℃に低下させ、さらに重合開始剤としてt-ブチルパーオキシベンゾエート41.8gをスチレン単量体22kgに溶解させた第2のスチレン単量体を1時間あたり4.6kgの割合で連続的に滴下することで、第2のスチレン単量体をポリエチレン系樹脂粒子に含浸させながら重合(第2の重合)させた。
 この滴下終了後、115℃で1時間保持した後に140℃に昇温し、3時間保持して重合を完結させて複合樹脂粒子を得た。
Subsequently, the temperature of the reaction system was lowered to 115 ° C., and a second styrene monomer in which 41.8 g of t-butyl peroxybenzoate was dissolved in 22 kg of styrene monomer as a polymerization initiator was added 4 per hour. By continuously dropping at a rate of 0.6 kg, polymerization (second polymerization) was performed while impregnating the polyethylene resin particles with the second styrene monomer.
After completion of the dropping, the mixture was held at 115 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
 続いて、複合樹脂粒子2kgと水2Lを攪拌機付5Lオートクレーブに投入し、発泡剤として常温でブタン(n-ブタン:i-ブタン=7:3(質量比))17質量部を注入した。注入後、70℃に昇温し、2時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。 Subsequently, 2 kg of composite resin particles and 2 L of water were put into a 5 L autoclave with a stirrer, and 17 parts by weight of butane (n-butane: i-butane = 7: 3 (mass ratio)) was injected as a blowing agent at room temperature. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 2 hours. Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried to obtain expandable composite resin particles.
 得られた発泡性複合樹脂粒子を直ちに予備発泡機(笠原工業社製、製品名「PSX40」)に供給し、0.03MPaの圧力の水蒸気を用いて予備発泡させて嵩密度0.025g/cm3の予備発泡粒子を得た。 The obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (manufactured by Kasahara Kogyo Co., Ltd., product name “PSX40”), pre-foamed using water vapor at a pressure of 0.03 MPa, and a bulk density of 0.025 g / cm. Three pre-expanded particles were obtained.
 次に、予備発泡粒子を室温で1日間放置した後、成形機の金型内に充填した。そして、金型内に0.10MPaの圧力の水蒸気を30秒供給して予備発泡粒子を発泡成形させて、縦400mm×横300mm×高さ30mmの直方体形状の密度0.025g/cm3のバンパー用芯材を製造した。得られたバンパー用芯材の融着率、外観共に良好であった。 Next, the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, water vapor at a pressure of 0.10 MPa was supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and a bumper having a rectangular parallelepiped shape of length 400 mm × width 300 mm × height 30 mm and a density of 0.025 g / cm 3 . A core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
(比較例3)
 ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=3/7の複合樹脂粒子の製造
 ポリエチレン系樹脂(東ソー社製、製品名「09S53B」、密度:0.936g/cm3、ビカット軟化点:117℃、メルトフローレート:2.0g/10分)100質量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリエチレン系樹脂粒子を得た。ポリエチレン系樹脂粒子の平均重量は0.6mgであった。
(Comparative Example 3)
Production of composite resin particles of polyethylene resin (PE) / polystyrene resin (PS) = 3/7 Polyethylene resin (manufactured by Tosoh Corporation, product name “09S53B”, density: 0.936 g / cm 3 , Vicat softening point: 117 ° C., melt flow rate: 2.0 g / 10 min) 100 parts by mass were supplied to an extruder, melted and kneaded, and granulated by an underwater cutting method to obtain oval (egg-like) polyethylene resin particles. . The average weight of the polyethylene resin particles was 0.6 mg.
 次に、攪拌機付100Lオートクレーブに、ピロリン酸マグネシウム128g及びドデシルベンゼンスルホン酸ソーダ32gを水40kgに分散させて分散用媒体を得た。分散用媒体に前記ポリエチレン系樹脂粒子12kgを分散させて懸濁液を得た。さらに、重合開始剤としてt-ブチルパーオキシベンゾエート11.4gをスチレン単量体6kgに溶解させて第1のスチレン単量体を作製した。ポリエチレン系樹脂粒子を含む懸濁液の温度を60℃に調節し、前記スチレン単量体を30分かけて定量で添加したのち、1時間攪拌することでポリエチレン系樹脂粒子中に第1のスチレン単量体を含浸させた。次に反応系の温度を135℃に昇温して3時間保持し、スチレン単量体をポリエチレン系樹脂粒子中で重合(第1の重合)させた。 Next, in a 100 L autoclave with a stirrer, 128 g of magnesium pyrophosphate and 32 g of sodium dodecylbenzenesulfonate were dispersed in 40 kg of water to obtain a dispersion medium. A suspension was obtained by dispersing 12 kg of the polyethylene resin particles in a dispersion medium. Further, 11.4 g of t-butyl peroxybenzoate as a polymerization initiator was dissolved in 6 kg of styrene monomer to prepare a first styrene monomer. The temperature of the suspension containing the polyethylene resin particles is adjusted to 60 ° C., and the styrene monomer is added in a fixed amount over 30 minutes, and then stirred for 1 hour so that the first styrene is contained in the polyethylene resin particles. The monomer was impregnated. Next, the temperature of the reaction system was raised to 135 ° C. and held for 3 hours, and the styrene monomer was polymerized (first polymerization) in the polyethylene resin particles.
 次いで、反応系の温度を、115℃に低下させ、さらに重合開始剤としてt-ブチルパーオキシベンゾエート41.8gをスチレン単量体22kgに溶解させた第2のスチレン単量体を1時間あたり4.6kgの割合で連続的に滴下することで、第2のスチレン単量体をポリエチレン系樹脂粒子に含浸させながら重合(第2の重合)させた。
 この滴下終了後、115℃で1時間保持した後に140℃に昇温し、3時間保持して重合を完結させて複合樹脂粒子を得た。
Subsequently, the temperature of the reaction system was lowered to 115 ° C., and a second styrene monomer in which 41.8 g of t-butyl peroxybenzoate was dissolved in 22 kg of styrene monomer as a polymerization initiator was added 4 per hour. By continuously dropping at a rate of 0.6 kg, polymerization (second polymerization) was performed while impregnating the polyethylene resin particles with the second styrene monomer.
After completion of the dropping, the mixture was held at 115 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
 続いて、複合樹脂粒子2kgと水2Lを攪拌機付5Lオートクレーブに投入し、発泡剤として常温でブタン(n-ブタン:i-ブタン=7:3(質量比))17質量部を注入した。注入後、70℃に昇温し、2時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。 Subsequently, 2 kg of composite resin particles and 2 L of water were put into a 5 L autoclave with a stirrer, and 17 parts by weight of butane (n-butane: i-butane = 7: 3 (mass ratio)) was injected as a blowing agent at room temperature. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 2 hours. Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried to obtain expandable composite resin particles.
 得られた発泡性複合樹脂粒子を直ちに予備発泡機(笠原工業社製、製品名「PSX40」)に供給し、0.03MPaの圧力の水蒸気を用いて予備発泡させて嵩密度0.025g/cm3の予備発泡粒子を得た。 The obtained expandable composite resin particles were immediately supplied to a pre-foaming machine (manufactured by Kasahara Kogyo Co., Ltd., product name “PSX40”), pre-foamed using water vapor at a pressure of 0.03 MPa, and a bulk density of 0.025 g / cm. Three pre-expanded particles were obtained.
 次に、予備発泡粒子を室温で1日間放置した後、成形機の金型内に充填した。そして、金型内に0.10MPaの圧力の水蒸気を30秒供給して予備発泡粒子を発泡成形させて、縦400mm×横300mm×高さ30mmの直方体形状の密度0.025g/cm3
のバンパー用芯材を製造した。得られたバンパー用芯材の融着率、外観共に良好であった。
Next, the pre-expanded particles were allowed to stand at room temperature for 1 day and then filled into a mold of a molding machine. Then, water vapor with a pressure of 0.10 MPa is supplied into the mold for 30 seconds to foam-mold the pre-expanded particles, and the density of the rectangular parallelepiped shape having a length of 400 mm × width of 300 mm × height of 30 mm is 0.025 g / cm 3.
Bumper core material was manufactured. Both the fusion rate and appearance of the obtained bumper core material were good.
 表1において、実施例及び比較例の原料種、評価結果を詳説する。
 表1中、PEはポリエチレン系樹脂を、PSはポリスチレン系樹脂を、そしてPPはポリプロピレン系樹脂を表す。
Figure JPOXMLDOC01-appb-T000001
In Table 1, the raw material seed | species and evaluation result of an Example and a comparative example are explained in full detail.
In Table 1, PE represents a polyethylene resin, PS represents a polystyrene resin, and PP represents a polypropylene resin.
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の発泡成形体は耐衝撃性及び加熱寸法安定性が優れることが分かる。従って、本発明の発泡成形体は、部品梱包材、自動車部材、緩衝材又はバンパー用芯材、特にバンパー用芯材として好適に使用することができる。 Table 1 shows that the foamed molded product of the present invention is excellent in impact resistance and heat dimensional stability. Therefore, the foamed molded article of the present invention can be suitably used as a component packing material, an automobile member, a cushioning material, or a bumper core material, particularly as a bumper core material.

Claims (13)

  1.  樹脂成分として、ポリオレフィン系樹脂100質量部及びポリスチレン系樹脂100~400質量部を含み、前記ポリオレフィン系樹脂が110~125℃のビカット軟化点及び1.5~4.8の分散度を有する複合樹脂粒子。 As a resin component, 100 parts by mass of a polyolefin resin and 100 to 400 parts by mass of a polystyrene resin, and the polyolefin resin has a Vicat softening point of 110 to 125 ° C. and a dispersity of 1.5 to 4.8 particle.
  2.  前記複合樹脂粒子が、樹脂成分として、ポリオレフィン系樹脂100質量部及びポリスチレン系樹脂100~300質量部を含む請求項1に記載の複合樹脂粒子。 The composite resin particles according to claim 1, wherein the composite resin particles include 100 parts by mass of a polyolefin resin and 100 to 300 parts by mass of a polystyrene resin as resin components.
  3.  前記複合樹脂粒子が、2.0~4.5の分散度を有する請求項1に記載の複合樹脂粒子。 The composite resin particles according to claim 1, wherein the composite resin particles have a dispersity of 2.0 to 4.5.
  4.  前記ポリオレフィン系樹脂が、ポリエチレン系樹脂又はポリプロピレン系樹脂である請求項1に記載の複合樹脂粒子。 The composite resin particle according to claim 1, wherein the polyolefin resin is a polyethylene resin or a polypropylene resin.
  5.  前記複合樹脂粒子が、110~130℃のビカット軟化点を有する請求項1に記載の複合樹脂粒子。 The composite resin particle according to claim 1, wherein the composite resin particle has a Vicat softening point of 110 to 130 ° C.
  6.  前記複合樹脂粒子が、前記樹脂成分100質量部に対してカーボンブラックを0.5~3.0質量部含む請求項1に記載の複合樹脂粒子。 The composite resin particle according to claim 1, wherein the composite resin particle contains 0.5 to 3.0 parts by mass of carbon black with respect to 100 parts by mass of the resin component.
  7.  請求項1に記載の複合樹脂粒子から得られる発泡性複合樹脂粒子。 Expandable composite resin particles obtained from the composite resin particles according to claim 1.
  8.  請求項7に記載の発泡性複合樹脂粒子から得られる予備発泡粒子。 Pre-expanded particles obtained from the expandable composite resin particles according to claim 7.
  9.  請求項8に記載の予備発泡粒子から得られる発泡成形体。 A foam-molded article obtained from the pre-expanded particles according to claim 8.
  10.  前記発泡成形体が、0.020~0.10g/cm3の密度を有する請求項9に記載の発泡成形体。 The foam molded article according to claim 9, wherein the foam molded article has a density of 0.020 to 0.10 g / cm 3 .
  11.  前記発泡成形体が、ASTM D3763-92の衝撃試験において、1.2~3.0Jの吸収エネルギーを示す請求項9に記載の発泡成形体。 The foamed molded product according to claim 9, wherein the foamed molded product exhibits an absorbed energy of 1.2 to 3.0 J in an impact test of ASTM D3763-92.
  12.  前記発泡成形体が、JIS K6767:1999の加熱寸法変化試験において、1.0%以下の加熱寸法変化率を示す請求項9に記載の発泡成形体。 The foamed molded product according to claim 9, wherein the foamed molded product exhibits a heating dimensional change rate of 1.0% or less in a heating dimensional change test of JIS K6767: 1999.
  13.  請求項9に記載の発泡成形体から得られるバンパー用芯材。 A bumper core material obtained from the foamed molded article according to claim 9.
PCT/JP2013/059303 2012-03-30 2013-03-28 Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper WO2013147040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013001815.2T DE112013001815T5 (en) 2012-03-30 2013-03-28 Composite resin particles, foamable composite resin particles, pre-expanded particles, molded foam parts and core material for bumpers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-081343 2012-03-30
JP2012081343 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147040A1 true WO2013147040A1 (en) 2013-10-03

Family

ID=49260285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059303 WO2013147040A1 (en) 2012-03-30 2013-03-28 Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper

Country Status (3)

Country Link
DE (1) DE112013001815T5 (en)
TW (1) TW201343759A (en)
WO (1) WO2013147040A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047526A1 (en) * 2014-09-26 2016-03-31 積水化成品工業株式会社 Expandable styrene-compounded polyolefin resin particles, method for producing same, pre-expanded particles, and expansion molded article
JP2018053029A (en) * 2016-09-27 2018-04-05 積水化成品工業株式会社 Composite resin particle, manufacturing method therefor, foamable particle, foam particle, foam molded body and exterior material for automobile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399702B2 (en) * 2014-03-26 2018-10-03 株式会社ジェイエスピー Shock absorber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230036A (en) * 1983-06-13 1984-12-24 Kanegafuchi Chem Ind Co Ltd Foamed polyolefin resin and its production
WO2006027944A1 (en) * 2004-09-06 2006-03-16 Sekisui Plastics Co., Ltd. Styrene-modified particle of linear low-density polyethylene resin, expandable styrene-modified particle of linear low-density polyethylene resin, processes for producing these, pre-expanded particle, and molded foam
JP2007270116A (en) * 2006-03-10 2007-10-18 Sekisui Plastics Co Ltd Styrene-modified polyolefin resin particle, expandable resin particle, pre-expansion particle and foamed molding
JP2008508111A (en) * 2004-09-22 2008-03-21 積水化成品工業株式会社 Foam molded body having voids
JP2010024353A (en) * 2008-07-18 2010-02-04 Sekisui Plastics Co Ltd Styrene-modified polyolefin resin particle, expandable resin particle, pre-expansion particle and foamed molding
JP2012025347A (en) * 2010-07-27 2012-02-09 Sekisui Plastics Co Ltd Exterior material for automobile
JP2012025908A (en) * 2010-07-27 2012-02-09 Sekisui Plastics Co Ltd Automotive interior material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230036A (en) * 1983-06-13 1984-12-24 Kanegafuchi Chem Ind Co Ltd Foamed polyolefin resin and its production
WO2006027944A1 (en) * 2004-09-06 2006-03-16 Sekisui Plastics Co., Ltd. Styrene-modified particle of linear low-density polyethylene resin, expandable styrene-modified particle of linear low-density polyethylene resin, processes for producing these, pre-expanded particle, and molded foam
JP2008508111A (en) * 2004-09-22 2008-03-21 積水化成品工業株式会社 Foam molded body having voids
JP2007270116A (en) * 2006-03-10 2007-10-18 Sekisui Plastics Co Ltd Styrene-modified polyolefin resin particle, expandable resin particle, pre-expansion particle and foamed molding
JP2010024353A (en) * 2008-07-18 2010-02-04 Sekisui Plastics Co Ltd Styrene-modified polyolefin resin particle, expandable resin particle, pre-expansion particle and foamed molding
JP2012025347A (en) * 2010-07-27 2012-02-09 Sekisui Plastics Co Ltd Exterior material for automobile
JP2012025908A (en) * 2010-07-27 2012-02-09 Sekisui Plastics Co Ltd Automotive interior material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047526A1 (en) * 2014-09-26 2016-03-31 積水化成品工業株式会社 Expandable styrene-compounded polyolefin resin particles, method for producing same, pre-expanded particles, and expansion molded article
JPWO2016047526A1 (en) * 2014-09-26 2017-06-29 積水化成品工業株式会社 Expandable styrene composite polyolefin resin particles and process for producing the same, pre-expanded particles, and expanded molded body
JP2018053029A (en) * 2016-09-27 2018-04-05 積水化成品工業株式会社 Composite resin particle, manufacturing method therefor, foamable particle, foam particle, foam molded body and exterior material for automobile

Also Published As

Publication number Publication date
DE112013001815T5 (en) 2015-02-05
TW201343759A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
JP4718597B2 (en) Styrene-modified polypropylene resin particles, expandable styrene-modified polypropylene resin particles, styrene-modified polypropylene resin foam particles, styrene-modified polypropylene resin foam moldings
JP5138254B2 (en) Modified polystyrene resin particles containing self-extinguishing carbon, Modified polystyrene resin particles containing foam, self-extinguishing carbon, Modified polystyrene resin foam particles containing self-extinguishing carbon, Modified polystyrene resin foam containing self-extinguishing carbon Molded body and method for producing the same
JP5352233B2 (en) Expandable polyethylene resin particles and method for producing the same
JP5345329B2 (en) Carbon-containing modified polystyrene resin particles, expandable carbon-containing modified polystyrene resin particles, carbon-containing modified polystyrene resin foam particles, carbon-containing modified polystyrene resin foam moldings and methods for producing them
JP2012214691A (en) Polyethylene-based resin particle for seed polymerization, composite resin particle, method for producing these, foamable composite resin particle, and preliminary foaming particle, and foamed article
JP5699018B2 (en) Method for producing polypropylene resin particles for seed polymerization and method for producing composite resin particles
JP2015189911A (en) Linear low density polyethylene resin particle, compound resin particle, foam particle, and foam molded body
WO2013147040A1 (en) Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper
JP5503123B2 (en) Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles
JP6944914B2 (en) Composite resin particles, foamable particles, foamed particles and foamed molded products
JP5722564B2 (en) Automotive exterior materials
JP5731428B2 (en) Styrene-modified polyethylene resin particles, expandable composite resin particles, pre-expanded particles, foam-molded article and method for producing pre-expanded particles
JP5690632B2 (en) Polypropylene resin particles for seed polymerization, process for producing the same, composite resin particles, expandable composite resin particles, pre-expanded particles, and expanded molded body
JP6802677B2 (en) Composite resin particles, their manufacturing methods, foamable particles, foamed particles, foamed molded products and exterior materials for automobiles
JP2011068776A (en) Foam-molded article
WO2014157538A1 (en) Molded body of composite resin foam
JP2011202108A (en) Flame retardant-containing composite resin particle, preliminary foaming particle, foamed molded product, and method for manufacturing them
JP6404164B2 (en) Seed polymerization seed particles, composite resin particles, expandable particles, expanded particles, and composite resin foam moldings
JP2013117037A (en) Foam molding body
JP5337442B2 (en) Foam molded body and method for producing the same
JP5732299B2 (en) Composite resin particles, expandable composite resin particles, pre-expanded particles and foamed molded body
JP2019183121A (en) Composite resin particle, foamable particle, foam particle, foam molded body, and buffer material
JP2012025908A (en) Automotive interior material
JP5809902B2 (en) MODIFIED POLYPROPYLENE RESIN PARTICLE, ITS PREFOAMED PARTICLE, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING FOAM MOLD
JP2017179243A (en) Carbon black-containing composite resin particle, foamable particle, foam particle and foam molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770210

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130018152

Country of ref document: DE

Ref document number: 112013001815

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP