WO2013146825A1 - Ethylene-based polymer for producing abrasion-resistant resin molding, ethylene-based resin composition for producing abrasion-resistant resin molding, abrasion-resistant resin molding, and method for producing same - Google Patents

Ethylene-based polymer for producing abrasion-resistant resin molding, ethylene-based resin composition for producing abrasion-resistant resin molding, abrasion-resistant resin molding, and method for producing same Download PDF

Info

Publication number
WO2013146825A1
WO2013146825A1 PCT/JP2013/058873 JP2013058873W WO2013146825A1 WO 2013146825 A1 WO2013146825 A1 WO 2013146825A1 JP 2013058873 W JP2013058873 W JP 2013058873W WO 2013146825 A1 WO2013146825 A1 WO 2013146825A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
ethylene
resistant resin
polymer
sand
Prior art date
Application number
PCT/JP2013/058873
Other languages
French (fr)
Japanese (ja)
Inventor
丹那 晃央
清水 史彦
佐藤 直正
書佳 山田
Original Assignee
日本ポリエチレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリエチレン株式会社 filed Critical 日本ポリエチレン株式会社
Publication of WO2013146825A1 publication Critical patent/WO2013146825A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to an ethylene-based polymer for producing a wear-resistant resin molded product and an abrasion-resistant product capable of producing a wear-resistant resin molded product having a sand / rubber wheel wear performance of 0.035 cm 3 or more and 0.24 cm 3 or less.
  • the present invention relates to an ethylene-based resin composition for producing an adhesive resin molded article, an abrasion-resistant resin molded article obtained by molding the composition, and a method for producing the same.
  • Ultra high molecular weight polyethylene is a polyethylene resin having a very high molecular weight with a viscosity average molecular weight exceeding 1 million. Ultra high molecular weight polyethylene is known as a resin having excellent wear resistance and a low friction coefficient, and is used in industrial fields where high wear resistance is required by utilizing this property (for example, non-patented). Reference 1). The high wear resistance of ultra high molecular weight polyethylene has been attributed to its very high molecular weight. On the other hand, ultra-high molecular weight polyethylene has a very high molecular weight, so even when heated above the melting point of polyethylene, the melt viscosity is very high and the relaxation time is extremely long, so the time scale of molding conditions used industrially Is known not to melt and flow.
  • the melt viscosity of ultra high molecular weight polyethylene is higher than 10 6 Pa ⁇ sec at 180 ° C. For this reason, even if it is more than the melting
  • ultra high molecular weight polyethylene has not yet been widely applied to general uses requiring wear resistance, despite having excellent wear resistance. It is.
  • wear-resistant polyethylene that can be melt-molded has been proposed.
  • the weight average molecular weight Mw is in the range of 150,000 to 1,000,000, the number average molecular weight Mn is at least 25000, Mw / Mn is in the range of 1.3 to 10, and the wear coefficient is 3
  • Polyethylene has been proposed that satisfies the requirement of less than 2 ⁇ 10 ⁇ 4 mm 3 / mN.
  • Patent Document 3 proposes an ethylene polymer having excellent wear characteristics and a composition thereof.
  • polyethylene having a viscosity average molecular weight Mv of 100,000 or more and a melting point peak of 135 ° C. or more is proposed.
  • Non-Patent Document 2 (Hereinafter referred to as “Hutchings method”, specifically, see Non-Patent Document 2) is used as a method for evaluating wear resistance of a molded body.
  • Patent Document 3 a sand slurry wear test is used as a method for evaluating wear resistance.
  • Typical test methods used to evaluate the wear resistance of ultra-high molecular weight polyethylene molded products include “sand slurry wear test (American Testing Materials Association Standard ASTM D4020)” and “sand / rubber wheel wear test (US Test Material Association Standard ASTM G65) ”. Any of these test methods or the evaluation method employed in Patent Document 2 is a method for measuring the amount of resin lost due to wear due to contact with sand or inorganic particles. The wear resistance will be evaluated as high.
  • the test method developed for the ultra-high molecular weight polyethylene molded body was applied to the molded body of low molecular weight polyethylene as it was without sufficiently confirming this.
  • the evaluation result is that it has wear resistance comparable to that of ultra-high molecular weight polyethylene.
  • Patent Document 2 discloses a copolymer of ethylene and 1-hexene as a preferable resin having abrasion resistance. However, this copolymer has not actually been used in a field where high wear resistance is required, and it can be considered that the copolymer actually lacks wear resistance.
  • Patent Document 3 describes a low molecular weight resin having a viscosity average molecular weight Mv of 100,000 or more. However, in fact, this polymer has not been used in a field where high wear resistance is required, and it may be considered that the wear resistance is actually insufficient.
  • the reason why the resin moldings described in Patent Documents 2 and 3 cannot withstand practical use is considered to be due to the heat resistance of the resin. That is, in an environment where the wear-resistant resin molded body is actually used, the temperature of the material rises due to collision and friction of sand, gravel, various particles, various objects, and the like. In particular, when sand or the like collides with the molded body, the temperature may locally rise to the vicinity of the melting point of polyethylene. Moreover, it is often used not only in collision and friction but also in an environment that comes into contact with a high-temperature fluid such as high-temperature waste water or exhaust gas. Therefore, in the development of a wear-resistant resin molded product suitable for actual use, it is considered that the property required for the material must have heat resistance in addition to wear resistance.
  • the resin described as having the abrasion resistance described in Patent Document 2 has a melting point (the peak temperature of the endothermic peak of the differential scanning calorimeter DSC) of about 127 ° C. from its physical property values. This is considered to be inferior in heat resistance, so that it cannot be applied to actual wear resistance.
  • the resin described in Patent Document 3 that has abrasion resistance has a low viscosity average molecular weight, it contains a relatively large amount of a lower molecular weight wax-like component, and this acts as a plasticizer. It is thought that heat resistance is impaired, and it cannot be applied to actual wear-resistant applications.
  • the sand / rubber wheel wear test is a test method that can appropriately evaluate the wear resistance performance of a material regardless of the molecular weight range.
  • the sand / rubber wheel abrasion test is an evaluation method that appropriately shows the wear resistance performance of materials in both the molecular weight region used for ultra-high molecular weight polyethylene and lower molecular weight polyethylene. It was confirmed that the evaluation method was consistent with the correlation with wear. This is presumed to be because the sand / rubber wheel abrasion test also takes heat to some extent on the resin to be evaluated, and therefore the evaluation also incorporates heat resistance.
  • the problem to be solved by the present invention is to produce a wear-resistant resin molded article having excellent wear resistance as measured by a sand / rubber wheel wear test and having a good balance between moldability and heat resistance.
  • An object of the present invention is to provide an ethylene polymer, an ethylene resin composition for producing an abrasion-resistant resin molded article, an abrasion-resistant resin molded article, and a method for producing the same.
  • the inventors of the present invention manufactured an ethylene polymer using a single site catalyst, and controlled the molecular weight and melting point of the ethylene polymer to a specific range. As a result, the present inventors have found that the above problems can be solved, and have reached the present invention.
  • the gist of the present invention is as follows.
  • An ethylene-based polymer for producing an abrasion-resistant resin molded article that satisfies the following (1) to (5)
  • An ethylene homopolymer or a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms (2) Polymerized using a single site catalyst (3) Weight average molecular weight Mw (4) Melting point Tm is 130 ° C. or higher and lower than 135 ° C.
  • An ethylene resin composition for producing an abrasion-resistant resin molded article which contains an ethylene polymer satisfying the following (1) to (4) and satisfies the following (6).
  • An ethylene homopolymer or a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms (2) Polymerized using a single site catalyst (3) Weight average molecular weight Mw (4) Melting point Tm is 130 ° C. or higher and lower than 135 ° C.
  • Sand / rubber wheel wear performance measured on a test piece for wheel wear test is 0.035 cm 3 or more and 0.24 cm 3 or less.
  • a wear-resistant resin member comprising the wear-resistant resin molded article according to [4].
  • the wear-resistant resin member is a gear, cam, slider, lever, arm, clutch, pulley, roller, roller, key stem, key top, shutter, reel, washer, piston, cylinder, guide rail, ball bearing,
  • the wear-resistant resin member according to [5] which is a mechanical component represented by a nut, a bolt, a screw, a shaft, a bearing, and the like.
  • the wear-resistant resin member is a member for an artificial graft tissue represented by an artificial hip joint, an artificial shoulder joint, an artificial spine, an artificial knee joint, an artificial elbow joint, an artificial ankle joint, an artificial finger joint, and the like.
  • the wear-resistant resin member is a liquid or gas continuity represented by tubes, hoses, pipes, valves, joints, seals, gaskets, O-rings, columns, tanks, containers, bags, bottles, etc.
  • the wear-resistant resin member according to [5] which is a route member.
  • an ethylene-based resin molded body having excellent abrasion resistance By using at least one of the ethylene-based polymer for producing an abrasion-resistant resin molded body of the present invention and the ethylene-based resin composition for producing an abrasion-resistant resin molded body, an ethylene-based resin molded body having excellent abrasion resistance. Can be obtained by a general resin molding method such as a melt molding method.
  • the wear-resistant resin molded article provided by the present invention can be applied to an application field in which ultrahigh molecular weight polyethylene has been used, and this wear-resistant resin molded article is highly productive by a melt molding method. Therefore, it is extremely useful industrially. Further, the wear-resistant resin molded article of the present invention has relatively high crystallinity and can be used in fields or environments where heat resistance is required. From this viewpoint, it is extremely useful industrially.
  • polymerization is a collective term for homopolymerization by one type of monomer and copolymerization by a plurality of types of monomers, and it is not particularly necessary to distinguish between the two. Collectively, it is simply described as “polymerization”.
  • the results of the wear test are highly dependent on the test method, and when evaluating the wear resistance of a material from a practical point of view, the material is actually used in any environment and exposed to any wear. Therefore, it is necessary to select an optimal wear test method.
  • the present inventors have examined each wear test, and as a result, the sand slurry wear test cannot be used in a field that actually requires wear resistance.
  • polyethylene having a relatively low molecular weight specifically, a molecular weight of less than 1 million, particularly 300,000 or less, and ultra-high molecular weight polyethylene, the low molecular weight polyethylene tends to be overestimated. I found it.
  • the sand / slurry wear test is not suitable as a method for evaluating wear resistance.
  • the sand / rubber wheel abrasion test can clearly distinguish between the abrasion resistance of the relatively low molecular weight polyethylene and the abrasion resistance of the ultra high molecular weight polyethylene as described above. It was judged that it was suitable for evaluation of a molded article having properties.
  • the sand / rubber wheel abrasion test is a test method defined by ASTM G65, and a sand / rubber wheel abrasion tester that satisfies the standard is used. Specifically, a test piece of 0.25 inch ⁇ 1.00 inch ⁇ 3.00 inch is prepared using a band saw, and the mass (g) of the test piece is measured. The test sand (22.7 kg) is then placed in the hopper of a sand / rubber foil wear tester. The test piece is fixed to a fixing jig of a sand / rubber wheel abrasion tester, and the rubber wheel is rotated at 200 rpm while flowing the test sand at 300 g / min.
  • the test piece is applied to the rubber wheel at a load of 30 pounds. Press. The test is terminated when the rubber wheel rotates 3200 times. Remove the specimen from the fixture and wipe off the sand adhering to the specimen surface. Next, the mass (g) of the test piece is measured. The mass reduction amount (g) of the test piece due to wear is calculated, and the loss volume (cm 3 ) due to wear is determined by dividing the mass reduction amount (g) by the density (g / cm 3 ) of the test piece. In this specification, the loss volume (cm 3 ) obtained by this method is referred to as sand / rubber wheel wear performance (SWA, Sand Wheel Ablation).
  • SWA Sand Wheel Ablation
  • the sand used in the test 50-70 test sand manufactured by American Foundry Sand is used. This sand is prepared by a sieve so that the particle size is approximately in the range of 50 mesh (300 ⁇ m) to 70 mesh (212 ⁇ m). More precisely, the particle size distribution satisfies the following specifications. Specifications: 95% by weight or more of sand having a particle size of 212 ⁇ m or more and less than 300 ⁇ m, and 5% by weight or less of sand having a particle size of 300 ⁇ m or more and less than 425 ⁇ m
  • ⁇ Sand slurry wear test> The sand slurry test is performed as follows based on ASTM D4020. Specifically, a test piece of 0.250 inch ⁇ 1.000 inch ⁇ 2.750 inch is prepared by cutting from a pressed piece of material used for the test. A 11/32 inch hole is drilled in the center of the resulting specimen, and another 9/64 inch hole is drilled about 1/8 inch away from the hole. The weight (g) of the test piece is measured, and the test piece is fixed to the apparatus with a bolt through a 11/32 inch hole drilled in the center with the cut surface of the test piece facing up. Next, the pin protruding from the shaft is passed through a 9/64 inch hole to determine the mounting angle of the test piece.
  • the mass (g) of the test piece is measured, and the mass reduction amount (g) of the test piece due to wear is calculated. Finally, the mass loss (g) is divided by the density (g / cm 3 ) of the test piece to determine the loss volume (cm 3 ) due to wear.
  • the loss volume (cm 3 ) obtained by this method is referred to as sand slurry abrasion performance (Sand Slurry Ablation).
  • the ethylene-based polymer for producing an abrasion-resistant resin molded body of the present invention (hereinafter sometimes referred to as “the ethylene-based polymer of the present invention”) satisfies the following (1) to (5): To do. (1) An ethylene homopolymer or a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms. (2) Polymerized using a single site catalyst. (3) The weight average molecular weight Mw is 300,000 or more and less than 1 million. (4) Melting
  • fusing point Tm is 130 degreeC or more and less than 135 degreeC. (5) Sand / rubber wheel wear performance measured on a test piece for sand / rubber wheel wear test prepared from a press piece obtained by press-molding the ethylene-based polymer is 0.035 cm 3 or more and 0.24 cm. 3 or less.
  • Ethylene polymer The ethylene polymer in the present invention is a homopolymer of ethylene or a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms.
  • ⁇ -olefin that can be used as a copolymerization component with ethylene in the ethylene polymer of the present invention is specifically represented by the general formula CH 2 ⁇ CH—R.
  • R is a hydrocarbon group having 1 to 18 carbon atoms, and may have at least one of a branch, a ring, and an unsaturated bond. If the carbon number of R is greater than 18, sufficient polymerization activity may not be exhibited.
  • Preferred ⁇ -olefins are ⁇ -olefins in which R has 10 or less carbon atoms, that is, ⁇ -olefins having 3 to 12 carbon atoms.
  • ⁇ -olefins include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene, vinylcyclohexene. And styrene.
  • One kind of these ⁇ -olefins may be used, or two or more kinds of ⁇ -olefins may be used in combination.
  • the ethylene polymer of the present invention is an ethylene homopolymer or a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms. That is, the ethylene polymer of the present invention may be either a homopolymer or a copolymer as long as the characteristics of the present invention are satisfied, and is not particularly limited.
  • the ethylene homopolymer here refers to a polymer obtained by polymerizing only ethylene as a raw material monomer.
  • the ethylene-based polymer of the present invention is a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms
  • the content of the ⁇ -olefin as a copolymerization component is not particularly limited, but a smaller one is preferable. .
  • the amount of the copolymer component contained in the ethylene polymer is not particularly limited, but is usually 5% by weight or less, preferably 2% by weight or less, based on the total weight of the ethylene polymer. More preferably, it is 1% by weight or less, particularly preferably 0.5% by weight or less. If the content of the copolymer component in the ethylene polymer exceeds the above upper limit, the crystallinity of the ethylene polymer is lowered, the wear resistance is lowered, or practical physical properties such as rigidity and heat resistance are impaired. There is a case.
  • the lower limit of the content of the copolymer component is not particularly limited, and is preferably as small as possible, and more preferably contains a trace amount that does not deteriorate the practical physical properties of the present invention.
  • the ethylene polymer is most preferably an ethylene homopolymer because of its high crystallinity, easy physical property adjustment, and high productivity.
  • the ethylene polymer of the present invention may be a single ethylene polymer or a mixture of two or more ethylene polymers.
  • two or more types of ethylene polymers are used, two or more types of ethylene polymers polymerized by changing the monomer and polymerization conditions using the same catalyst may be used, or polymerization is performed using different catalysts.
  • Two or more types of ethylene polymers may be used.
  • a different catalyst means here that the kind and ratio of arbitrary components, such as a polymerization active seed
  • the two or more types of ethylene-based polymers may have different types and contents of copolymerization components, and may have different molecular weights and melting points.
  • the weight average molecular weight Mw of the ethylene polymer of the present invention is 300,000 or more and less than 1 million.
  • the weight average molecular weight Mw of the ethylene polymer exceeds the above upper limit, the melt viscosity becomes high, and even when heated to the melting point or higher, it behaves like a rubber-like solid and fluidity at the time of melting cannot be obtained.
  • the weight average molecular weight Mw is less than the above lower limit, the sand / rubber wheel wear performance of the obtained molded article is deteriorated and the wear resistance is lowered.
  • the weight average molecular weight Mw of the ethylene polymer satisfies the object of the present invention, the lower one is preferable in terms of improving the fluidity at the time of melting. It is. Moreover, the higher lower limit of the weight average molecular weight Mw is preferable from the viewpoint of improving the wear resistance, specifically preferably 350,000 or more, more preferably 400,000 or more.
  • the molecular weight distribution (Mw / Mn) of the ethylene-based polymer of the present invention is not particularly limited, but is preferably smaller, specifically 5.0 or less, particularly 4.5 or less. preferable.
  • the number average molecular weight Mn of the ethylene polymer of the present invention is not particularly limited, but is usually 80,000 or more, preferably 100,000 or more, more preferably 150,000 or more, and usually 500,000 or less, preferably It is 400,000 or less, more preferably 350,000 or less. If the number average molecular weight Mn of the ethylene-based polymer is less than the lower limit, the molecular weight distribution (Mw / Mn) increases, the number of structural defects tends to increase, and the wear resistance tends to decrease. In general, the higher the number average molecular weight Mn, the less carbon-carbon bonds in the polyethylene chain, and the fewer structural defects based on it, so the higher the number average molecular weight, the better the wear resistance. I think that.
  • the weight average molecular weight Mw and the number average molecular weight Mn of the ethylene polymer are measured by the methods described in the Examples section below.
  • the weight average molecular weight Mw and number average molecular weight Mn of the ethylene polymer are relative to the mixture of these two or more ethylene polymers. Measured. Therefore, the weight average molecular weight Mw and the number average molecular weight Mn of the mixture of the ethylene polymers may be in the above ranges, and the weight average molecular weight Mw and the number average molecular weight Mn of each ethylene polymer are not necessarily in the above ranges. May be.
  • the ethylene polymer of the present invention preferably has higher heat resistance. That is, as a physical property, a higher melting point is preferable. And since the melting point of polyolefin generally represents the crystallinity of the polyolefin, the higher the crystallinity is preferable.
  • the melting point Tm of the ethylene polymer is measured by the method described in the Examples section below.
  • the melting point Tm of the ethylene polymer is measured with respect to a mixture of these two or more ethylene polymers. Therefore, the melting point Tm of the mixture of ethylene polymers only needs to be in the above range, and the melting point Tm of each ethylene polymer does not necessarily have to be in the above range.
  • the ethylene polymer of the present invention is not particularly limited with respect to branching in the structure, but it is preferable that the number of short chain branches is small. This is because the smaller the number of short chain branches, the lowering of the melting point Tm can be suppressed, and the wear resistance can be improved.
  • the method for controlling the number of short chain branches is not particularly limited, (1) A method of controlling the number of short-chain branches by controlling the amount of ⁇ -olefin used as a copolymerization component, (2) A method of controlling short chain branching by selecting a catalyst used for polymerization, (3) A method of controlling the number of short chain branches by controlling the polymerization temperature and the polymerization pressure can be mentioned.
  • the ethylene polymer of the present invention may have a carbon-carbon unsaturated bond in the main chain of the polymer.
  • Specific examples of the carbon-carbon unsaturated bond include a vinylene group, a vinylidene group, a vinyl group, and the like, and a vinylene group is preferable. Due to the presence of such a carbon-carbon unsaturated bond, the crosslinking proceeds efficiently when the ethylene polymer is crosslinked using an organic peroxide or radiation.
  • a catalyst that releases hydrogen molecules from the growth terminal during the polymerization reaction may be used. If it is a single site catalyst, as an example, Organometallics 1999, 18, 3781. There are some examples.
  • the mechanical strength of the ethylene polymer of the present invention higher impact resistance is preferred. This is particularly important for resisting wear that is subject to strong external forces in a short time.
  • the Izod impact test JIS K7110 which is the most representative measurement method, although not particularly limited, it is usually preferably 60 kJ / m 2 or more. In particular, it is preferably 80 kJ / m 2 .
  • the test piece of this Izod impact test was produced by compression molding.
  • the ethylene polymer of the present invention comprises two or more ethylene polymers
  • the Izod impact test of the ethylene polymer is measured on a mixture of these two or more ethylene polymers.
  • the Izod impact test of the ethylene polymer mixture may be within the above range, and the Izod impact test of each ethylene polymer may not necessarily be within the above range.
  • the ethylene polymer of the present invention usually has melt fluidity. Having melt fluidity means having fluidity to the extent that it can be applied to normal resin melt processing, etc. by heating, specifically, among the evaluation conditions for resin fluidity described below, A state in which at least one of a melt flow rate (MFR) and a flow ratio melt flow rate (HLMFR) can be measured.
  • MFR melt flow rate
  • HLMFR flow ratio melt flow rate
  • the ethylene-based polymer of the present invention exhibits a wear resistance of 0.035 cm 3 or more and 0.24 cm 3 or less in a sand / rubber hole wear test (ASTM G65).
  • the lower limit of the sand / rubber wheel wear performance is preferably 0.04 cm 3 and the upper limit is preferably 0.20 cm 3 . If the sand / rubber wheel wear performance exceeds the above upper limit, it does not have sufficient wear resistance for practical use in an application field where ultra-high molecular weight polyethylene is actually used. May be difficult to manufacture.
  • the sand / rubber wheel wear performance of the ethylene-based polymer is specifically measured by the method described in the Examples section below.
  • the sand / rubber wheel wear performance of the ethylene polymer is also a value measured for the mixture of ethylene polymers. It is only necessary that the mixture of the base polymer satisfies the above sand / rubber wheel wear performance range.
  • ethylene and, if necessary, an ⁇ -olefin having 3 to 20 carbon atoms are used as a raw material monomer.
  • the composition ratio, purity, and the like of each raw material are not particularly limited as long as the performance of the obtained polyethylene polymer satisfies the object of the present invention, and is appropriately selected for producing a desired ethylene polymer. Can be adjusted.
  • the reaction agents such as a solvent, or polymerization reaction conditions, the desired polyethylene-type polymer can be manufactured combining suitably the conditions mentioned later.
  • the single site catalyst means a catalyst having a transition metal complex as a polymerization active species.
  • the single-site catalyst is a transition metal complex as the polymerization active species, so the active site is highly uniform, and the polymer (polymer) obtained by polymerization using the single-site catalyst is, for example, a Ziegler-Natta catalyst.
  • the molecular weight distribution and composition distribution of the polymer described above are narrow, and in particular, there is an advantage that the amount of low molecular weight components produced is small. When the amount of low molecular weight components in the polymer increases, sand / rubber wheel wear performance deteriorates and mechanical properties such as impact resistance deteriorate, which is not preferable.
  • the ethylene-based polymer of the present invention is produced by polymerization using a single site catalyst, the amount of low molecular weight components that cause such adverse effects is small, and the sand / rubber wheel wear performance and mechanical properties are improved. Is advantageous.
  • any one can be used without departing from the object of the present invention.
  • Typical examples include metallocene catalysts and nonmetallocene catalysts.
  • the metallocene catalyst means an olefin polymerization catalyst using as a catalyst component a complex in which one or more optionally substituted cyclopentadienyl groups are coordinated to a metal ion.
  • non-metallocene single-site catalysts also called post-metallocene catalysts, generally do not have a cyclopentadienyl group and are coordinated to metal ions by heteroatoms such as nitrogen, oxygen, and phosphorus. It means a catalyst for olefin polymerization using a complex having a child as a catalyst component.
  • Cp, Ind, Azu, BenzInd, H4Ind, H4Azu, Flu, and H8Flu are respectively cyclopentadienyl group, indenyl group, azulenyl group, benzoindenyl group, 4, 5, 6, 7 -Represents a tetrahydroindenyl group, a 5,6,7,8-tetrahydroazurenyl group, a fluorenyl group, a 1,2,3,4,5,6,7,8-octahydrofluorenyl group.
  • Me, Et, nPr, iPr, nBu, iBu, tBu, Ph, and Cy are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, respectively.
  • Si, Ge, C, O, N, P, Ti, Zr, Hf, and Al are silicon atom, germanium atom, carbon atom, oxygen atom, nitrogen atom, phosphorus atom, titanium atom, zirconium atom, and hafnium atom, respectively.
  • the metallocene catalyst used in the present invention includes a metallocene complex represented by any one of the following general formulas (1) to (3) and a cocatalyst (also referred to as an activator described later). And a catalyst comprising a combination thereof.
  • M represents a metal ion belonging to Group 4 of the periodic table, preferably a metal ion selected from titanium, zirconium and hafnium, more preferably a zirconium ion or a hafnium ion. .
  • Mw the weight average molecular weight Mw to a relatively high value of 300,000 or more.
  • the metal is preferable for controlling to a high molecular weight.
  • the valence of the metal is not particularly limited and is usually tetravalent, but rarely trivalent, and rarely divalent.
  • X represents a ligand coordinated to the metal ion M.
  • the plurality of Xs may be the same as or different from each other.
  • a halogen atom, a hydrocarbon group and an alkylamide group are preferably used.
  • Y represents a bridging group in the metallocene complex.
  • it represents a crosslinking group that bridges two (R 1 ) n Cp.
  • it is a bridging group that crosslinks (R 1 ) n Cp and Z.
  • m represents an integer of 0-2.
  • Preferred bridging groups Y include (R 2 ) 2 Si, (R 2 ) 2 Ge, and (R 2 ) 2 C.
  • R 2 is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms which may contain a silicon atom or a germanium atom, and adjacent R 2 may form a ring with each other.
  • Two R 2 may be the same or different from each other.
  • the bridging group Y include the following. That is, an alkylene group such as a methylene group, an ethylene group, an ethylidene group, a propylidene group, an isopropylidene group, a phenylmethylidene group, an alkylidene group such as a diphenylmethylidene group, a dimethylsilylene group, a diethylsilylene group, a dipropylsilylene group
  • a silicon atom-containing cross-linking group such as a diphenylsilylene group, a methylethylsilylene group, a methylphenylsilylene group, a methyl-t-butylsilylene group, a disilylene group or a tetramethyldisylylene group, a dimethylgermylene group, a diethylgermylene group, Examples thereof include a germanium atom-containing crosslinking group such as a dipheny
  • Z is a group that binds to Y and can coordinate to the metal ion M.
  • Z is a heteroatom selected from an oxygen atom, a nitrogen atom, and a phosphorus atom, or a group containing these heteroatoms.
  • Z is O, R′N, R′P (the meaning of R ′ is the same as R 1 described later).
  • R 1 represents a substituted or unsubstituted cyclopentadienyl group.
  • R 1 is a hydrogen atom or a hydrocarbon group, and the hydrocarbon group may be substituted with an oxygen atom, a nitrogen atom, a phosphorus atom, a silicon atom, or a germanium atom, and adjacent R 1 forms a ring with each other May be.
  • R 1 is a hydrocarbon group
  • R 1 preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and most preferably 1 to 15 carbon atoms.
  • R 1 is preferably a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, phenyl group, cyclohexyl group or the like.
  • the n R 1 s may be the same as or different from each other.
  • n represents an integer of 0 to 4, preferably 0 or 1.
  • R 1 n Cp include the following (i) to (iv). (I) having one R 1 (R 1) Cp (Ii) having two R 1 (R 1) 2 Cp And (iii) a two adjacent having R 1 (R 1) 2 Cp, two R 1 has those that form a ring (iv) 4 pieces of R 1 (R 1) 4 Cp, in which two R 1's are adjacent to form a ring, and the remaining two R 1's are adjacent to form a ring
  • (i) examples include MeCp, EtCp, nPrCp, iPrCp, nBuCp, iBuCp, tBuCp, PhCp, CyCp and the like.
  • R 1 is more preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, or n-butyl.
  • R 1 is more preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, or n-butyl.
  • 1,2-Me 2 Cp, 1,3-Me 2 Cp, 1-Me-2-EtCp, 1- Me-2-nPrCp, 1-Me-2-nBuCp, 1-Me-3-EtCp, 1-Me-3-nPrCp, 1-Me-3-nBuCp, 1,2-Et 2 Cp, 1,3- Et 2 Cp, 1-Me-3-iPrCp, 1-Me-3-tBuCp and the like can be mentioned.
  • (iii) include those in which (R 1 ) 2 Cp is an indenyl group, an azulenyl group, a benzoindenyl group, a tetrahydroindenyl group, or a tetrahydroazurenyl group. These may further have a substituent.
  • (iv) include those in which (R 1 ) 4 Cp is a fluorenyl group or an octahydrofluorenyl group. These may further have a substituent.
  • the molecular weight and melting point of the obtained ethylene polymer can be easily controlled within an appropriate range
  • a metallocene catalyst containing the metallocene complex represented by the general formula (1) is preferable from the viewpoint that a simple ethylene polymer can be obtained.
  • said metallocene complex may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • Non-metallocene catalyst in the present invention, a non-metallocene catalyst, that is, an organic ligand that does not have a cyclopentadienyl group and coordinates to a metal ion with a heteroatom such as nitrogen, oxygen, or phosphorus.
  • a single site catalyst having the complex as a catalyst component can also be used.
  • metal complex used for such a nonmetallocene catalyst include the following (i) to (x).
  • a hafnium complex having pyridylamide as a ligand (viii) A ligand described in US Patent Application Publication No. 2007/0049712, that is, a nickel or palladium complex having phosphinosulfonic acid as a ligand ( ix) nickel or palladium complex having a ligand chelating with phosphorus and oxygen described in US Pat. No. 4,698,403 (x) chelating with phosphorus and oxygen described in Japanese Patent No. 45524335 Or palladium complexes with ligands located
  • the complexes of (iv), (v), (vi), (vii), (viii), and (x) have relatively little short-chain branching represented by methyl branching, This is preferable because a highly crystalline ethylene polymer is easily obtained.
  • said metal complex may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the metallocene complex or nonmetallocene complex that can be used in the production of the ethylene polymer of the present invention may or may not have a polymerization catalyst function.
  • a cocatalyst (sometimes referred to as an activator) for expressing the polymerization catalyst function can be used.
  • the cocatalyst is a catalyst that imparts a polymerization catalyst function for ethylene or ⁇ -olefin to the metallocene complex or nonmetallocene complex used in the production of the ethylene polymer of the present invention, that is, activates the complex.
  • a catalyst that imparts a polymerization catalyst function for ethylene or ⁇ -olefin to the metallocene complex or nonmetallocene complex used in the production of the ethylene polymer of the present invention, that is, activates the complex.
  • A Organoaluminum oxy compound
  • B An ionic compound capable of reacting with the complex to exchange the component with a cation
  • C Lewis acid
  • D Ion exchange layered compound or inorganic except silicate Silicates Any of the above-mentioned cocatalysts (A) to (D) may be used alone, or two or more may be used in any combination and in any ratio. Two or more cocatalysts of (A) to (D) may be used in combination.
  • an organoaluminum oxy compound in the present invention, can be used as a cocatalyst of a metallocene complex or a nonmetallocene complex.
  • the organoaluminum oxy compound has Al—O—Al bonds in the molecule, and the number of bonds is usually in the range of 1 to 100, preferably 1 to 50.
  • organoaluminum oxy compound examples include compounds represented by the following general formulas (4), (5), and (6).
  • R 22 represents a hydrogen atom or a hydrocarbon group, preferably a hydrocarbon group having 1 to 10 carbon atoms, particularly preferably a hydrocarbon group having 1 to 6 carbon atoms.
  • the plurality of R 22 may be the same or different.
  • P represents an integer of 0 to 40, preferably 2 to 30.
  • the compounds represented by the general formulas (4) and (5) are also called aluminoxanes, and are obtained by reaction of one type of trialkylaluminum or two or more types of trialkylaluminum with water.
  • (A-1) methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane, obtained from one kind of trialkylaluminum and water
  • methylaluminoxane and methylisobutylaluminoxane are preferred.
  • a plurality of the above aluminoxanes can be used in combination.
  • said aluminoxane can be prepared on various conditions as well-known.
  • the compound represented by the general formula (6) is 10: 1 to 1: 1 (one type of trialkylaluminum or two or more types of trialkylaluminum and an alkylboronic acid represented by the following general formula (7). (Molar ratio) reaction.
  • R 23 represents a hydrocarbon group or halogenated hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms.
  • reaction product that is, (B-1) 2: 1 reaction product of trimethylaluminum and methylboronic acid, (B-2) 2: 1 reaction product of triisobutylaluminum and methylboronic acid, (B-3) a 1: 1: 1 reaction product of trimethylaluminum, triisobutylaluminum and methylboronic acid, (B-4) 2: 1 reaction product of trimethylaluminum and ethylboronic acid, (B-5) 2: 1 reaction product of triethylaluminum and butylboronic acid, And so on.
  • Such an organoaluminum oxy compound is usually obtained by reacting an organoaluminum compound with water.
  • an organoaluminum compound used for the preparation of the organoaluminum oxy compound any of the compounds represented by the following general formula (8) can be used, but trialkylaluminum is preferably used.
  • R 24 represents a hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 12 carbon atoms, such as an alkyl group, an alkenyl group, an aryl group, or an aralkyl group.
  • Q represents a hydrogen atom or a halogen atom, and q represents an integer of 1 to 3.
  • R 24 examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, cyclohexyl group, n-octyl group, Examples thereof include an n-decyl group and an n-dodecyl group, and a methyl group or an isobutyl group is preferable, and a methyl group is particularly preferable.
  • the reaction ratio of water and the organoaluminum compound is not particularly limited, but is usually 0.25 / 1 or more, preferably 0.5 / 1 or more, and usually 1.2 / 1. Hereinafter, it is preferably selected within a range of 1/1 or less.
  • the reaction temperature is not particularly limited, but is usually ⁇ 70 ° C. or higher, preferably ⁇ 20 ° C. or higher, and is usually selected within a range of 100 ° C. or lower, preferably 20 ° C. or lower.
  • reaction time is not specifically limited, Usually, 5 minutes or more, Preferably it is 10 minutes or more, and is 24 hours or less normally, Preferably it is chosen in 5 hours or less.
  • water required for the reaction not only mere water but also crystal water contained in copper sulfate hydrate, aluminum sulfate hydrate and the like, and components capable of generating water in the reaction system can be used.
  • An organoaluminum oxy compound obtained by reacting an alkylaluminum with water is usually called an alumoxane or an aluminoxane, and methylalumoxane (methylaluminoxane) is particularly suitable as the organoaluminum oxy compound.
  • modified alumoxane in which a part of the methyl group of methylalumoxane is replaced with a different alkyl group such as isobutyl group, and modified alumoxane produced by reacting a modifying agent such as alcohol or phenol with methylalumoxane are also preferably used. Can do.
  • alumoxane generally contains alkylaluminum used as a raw material as an impurity
  • alumoxane from which such alkylaluminum has been removed under reduced pressure can also be suitably used.
  • organoaluminum oxy compounds can be used in combination, and a solution in which the organoaluminum oxy compound is dissolved in the aforementioned inert hydrocarbon solvent or a dispersed dispersion is used. It can also be used. Furthermore, an organoaluminum compound can be brought into contact with or supported on a carrier usually used for an olefin polymerization catalyst such as silica, clay, or polymer carrier.
  • [CA] e + is a cation component, and examples thereof include a carbonium cation, a tropylium cation, an ammonium cation, an oxonium cation, a sulfonium cation, and a phosphonium cation.
  • metal cations that are easily reduced by themselves, organic metal cations, and the like are also included.
  • the cation include triphenylcarbonium, diphenylcarbonium, cycloheptatrienium, indenium, triethylammonium, tripropylammonium, tributylammonium, N, N-dimethylanilinium, dipropylammonium, dicyclohexylammonium, Triphenylphosphonium, trimethylphosphonium, tris (dimethylphenyl) phosphonium, tris (dimethylphenyl) phosphonium, tris (methylphenyl) phosphonium, triphenylsulfonium, triphenylsulfonium, triphenyloxonium, triethyloxonium, pyrylium, silver ion, Gold ion, platinum ion, copper ion, palladium ion, mercury ion, ferrocenium ion, etc. That.
  • [AN] e ⁇ is an anion component, which is a component (generally a non-coordinating component) that becomes a counter anion with respect to the cation species into which the transition metal compound is converted.
  • the anion include an organic boron compound anion, an organic aluminum compound anion, an organic gallium compound anion, an organic arsenic compound anion, and an organic antimony compound anion.
  • ionic compound capable of reacting with the complex and converting the component into a cation include the following compounds.
  • Lewis acid examples include various organic boron compounds, metal halogen compounds, solid acids, and the like, and specific examples thereof include the following compounds.
  • Organoboron compounds such as triphenylboron, tris (3,5-difluorophenyl) boron, tris (pentafluorophenyl) boron
  • Metal halides such as magnesium bromide, magnesium chloroiodide, magnesium bromoiodide, magnesium chloride hydride, magnesium chloride hydroxide, magnesium bromide hydroxide, magnesium chloride alkoxide, magnesium bromide alkoxide such as alumina, silica / alumina, etc. Solid acid etc.
  • Ion exchange layered compound excluding silicate or inorganic silicate Ion exchange layered compound excluding silicate has a crystal structure in which planes formed by ionic bonds and the like are stacked in parallel with weak bonding force Is a compound that can exchange ions contained therein.
  • Examples of the ion-exchangeable layered compound excluding silicate include ion-crystalline compounds having a layered crystal structure such as hexagonal close-packed type, antimony type, CdCl 2 type, CdI 2 type, and the like. Specifically, ⁇ -Zr (HAsO 4 ) ⁇ H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Zr (KPO 4 ) ⁇ 3H 2 O, ⁇ -Ti (HPO 4 ) 2 , ⁇ -Ti (HAsO 4 ) 2 .H 2 O, ⁇ -Sn (HPO 4 ) 2 .H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Ti (HPO 4 ) 2 , ⁇ -Ti (NH 4 PO 4 ) Examples thereof include crystalline acidic salts of polyvalent metals such as 2 ⁇ H 2 O.
  • examples of the inorganic silicate include clay, clay mineral, zeolite, and diatomaceous earth.
  • a synthetic product may be used for these, and the mineral produced naturally may be used.
  • Specific examples of clays and clay minerals include allophanes such as allophane, kaolins such as dickite, nacrite, kaolinite and anorcite, halloysites such as metahalloysite and halloysite, and serpentine such as chrysotile, lizardite and antigolite.
  • Stone group Montmorillonite, Sauconite, Krullite, Nontronite, Saponite, Hectorite, etc.
  • Examples include clay, gyrome clay, hysingelite, pyrophyllite, and ryokdeite group. These may form a mixed layer.
  • Examples of the artificial compound include synthetic mica, synthetic hectorite, synthetic saponite, and synthetic teniolite.
  • kaolins such as dickite, nacrite, kaolinite, anorcite, halosites such as metahalosite, halosite, chrysotile, lizardite, serpentine such as antigolite, montmorillonite, Smectites such as soconite, beidellite, nontronite, saponite, hectorite, vermiculite minerals such as vermiculite, mica minerals such as illite, sericite, sea chlorophyll, synthetic mica, synthetic hectorite, synthetic saponite, synthetic teniolite
  • montmorillonite sauconite, beidellite, nontronite, saponite, smectite such as hectorite, vermiculite mineral such as vermiculite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic teniolite
  • ion-exchange layered compounds excluding silicates or inorganic silicates may be used as they are, but acid treatment with hydrochloric acid, nitric acid, sulfuric acid, etc., and LiCl, NaCl, KCl, CaCl 2 , MgCl 2 , Li 2 SO 4 , MgSO 4 , ZnSO 4 , Ti (SO 4 ) 2 , Zr (SO 4 ) 2 , Al 2 (SO 4 ) 3, etc. are preferably used after performing at least one treatment. .
  • the corresponding acid and base may be mixed to produce a salt in the reaction system.
  • shape control such as pulverization and granulation may be performed, and granulation is preferable in order to obtain a solid catalyst component having excellent particle fluidity.
  • the above components are usually used after being dehydrated and dried.
  • Fine particle carrier may coexist as an optional component of the single site catalyst.
  • the fine particle carrier is composed of an inorganic or organic compound, and its size is not particularly limited, but is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and a fine particle carrier having a particle size of usually 5 mm or less, preferably 2 mm or less. It is.
  • inorganic carriers include metal oxides such as SiO 2 , Al 2 O 3 , MgO, ZrO, TiO 2 , B 2 O 3 , ZnO, SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —.
  • metal oxides such as SiO 2 , Al 2 O 3 , MgO, ZrO, TiO 2 , B 2 O 3 , ZnO, SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —.
  • composite metal oxides such as TiO 2 , SiO 2 —Cr 2 O 3 , SiO 2 —Al 2 O 3 —MgO.
  • the specific surface area of these carriers is not particularly limited, but is usually 20 m 3 / g or more, preferably 50 m 3 / g or more, and usually 1,000 m 3 / g or less, preferably 700 m 3 / g or less.
  • the pore volume of the carrier is not particularly limited, but is usually 0.1 cm 2 / g or more, preferably 0.3 cm 2 / g or more, more preferably 0.8 cm 2 / g or more.
  • organic carrier examples include polymers of ⁇ -olefins having 2 to 14 carbon atoms such as ethylene, propylene, 1-butene, 4-methyl-1-pentene (including polymers and copolymers), styrene, divinyl
  • organic carrier examples include porous polymer fine particle carriers made of polymers such as benzene and other aromatic unsaturated hydrocarbons (including polymers and copolymers).
  • an organoaluminum compound may also be present as a co-catalyst for the single site catalyst.
  • the co-catalyst organoaluminum compound is AlR 25 r Z 3-r (wherein R 25 represents a hydrocarbon group having 1 to 20 carbon atoms, Z represents a hydrogen atom, a halogen atom, an alkoxy group or an aryloxy group) , R is an integer of 1 ⁇ r ⁇ 3).
  • trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, halogen aluminum or alkoxy group-containing alkylaluminum such as diethylaluminum monochloride, diethylaluminum ethoxide, diethylaluminum hydride, diisobutylaluminum
  • alkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, halogen aluminum or alkoxy group-containing alkylaluminum such as diethylaluminum monochloride, diethylaluminum ethoxide, diethylaluminum hydride, diisobutylaluminum
  • hydrogen atom-containing organoaluminum compounds such as hydride.
  • aluminoxane such as methylaluminoxane can
  • the single site catalyst used in the production of the ethylene polymer in the present invention comprises a transition metal compound constituting the single site catalyst, and optional components such as a cocatalyst and / or a cocatalyst as necessary. Although it is obtained by contacting, there is no particular limitation on the contact method. This contact may be performed not only during the catalyst preparation but also during the prepolymerization or polymerization of the monomer.
  • the fine particle carrier may be allowed to coexist or contact when the catalyst components are in contact with each other or after the contact.
  • the above contact may be carried out in an inert gas such as nitrogen or in an inert hydrocarbon solvent such as pentane, hexane, heptane, toluene, xylene. These solvents are preferably used after an operation for removing poisoning substances such as water and sulfur compounds.
  • the contact temperature is usually ⁇ 20 ° C. or higher and not higher than the boiling point of the solvent to be used, and it is particularly preferably performed between room temperature (about 20 ° C.) and the boiling point of the solvent to be used.
  • the transition metal compound is usually 0.0001 mmol or more, preferably 0.001 mmol or more, usually 10 mmol or less, preferably 5 mmol or less per 1 g of the cocatalyst component or fine particle support.
  • the transition metal compound is usually 0 mmol or more, preferably 0.01 mmol or more, usually 10, per gram of these components. By setting it to be 000 mmol or less, preferably 100 mmol or less, a favorable result can be obtained in terms of polymerization activity.
  • the atomic ratio of the transition metal in the transition metal compound and the aluminum in the organoaluminum compound as an optional component or the organoaluminum oxy compound as a cocatalyst is usually 1: 0 or more, preferably 1: 0. .1 or more, usually 1: 1,000,000 or less, preferably 1: 100,000 or less, similarly from the viewpoint of polymerization activity and the like.
  • the catalyst thus obtained may be used after washing with an inert hydrocarbon solvent such as n-pentane, n-hexane, n-heptane, toluene, xylene, or may be used without washing. Good.
  • an inert hydrocarbon solvent such as n-pentane, n-hexane, n-heptane, toluene, xylene, or may be used without washing. Good.
  • an inert hydrocarbon solvent such as n-pentane, n-hexane, n-heptane, toluene, xylene
  • an inert hydrocarbon solvent such as n-pentane, n-hexane, n-heptane, toluene, xylene
  • a new combination of the above-described organoaluminum compound or organoaluminum oxy compound may be used as necessary.
  • the polymerization reaction for producing the ethylene polymer of the present invention includes hydrocarbons such as propane, n-butane, isobutane, n-hexane, n-heptane, toluene, xylene, cyclohexane and methylcyclohexane.
  • Liquid such as solvent or liquefied ⁇ -olefin, or polar solvent such as diethyl ether, ethylene glycol dimethyl ether, tetrahydrofuran, dioxane, ethyl acetate, methyl benzoate, acetone, methyl ethyl ketone, formamide, acetonitrile, methanol, isopropyl alcohol, ethylene glycol Performed in the presence or absence. Moreover, you may use the mixture of the liquid compound described here as a solvent. In order to obtain an ethylene polymer having a high polymerization activity and a high molecular weight, it is preferable to use the above hydrocarbon solvent.
  • the amount of the single-site catalyst used in the production of the ethylene polymer of the present invention is not particularly limited as long as the desired polymerization reaction proceeds smoothly.
  • the catalyst-derived metal content is preferably 10,000 to 0.1 ppm by weight, particularly 1,000 to 0.1 ppm by weight, based on the polymer weight.
  • Polymerization format there is no particular limitation on the polymerization format when producing the ethylene-based polymer of the present invention, and slurry polymerization in which at least a part of the produced polymer in the medium becomes a slurry, and the liquefied monomer itself is used as the medium.
  • Bulk polymerization, gas phase polymerization performed in a vaporized monomer, or high pressure ion polymerization in which at least a part of the produced polymer is dissolved in a monomer liquefied at high temperature and high pressure are preferably used.
  • any of batch polymerization, semi-batch polymerization, and continuous polymerization may be used.
  • living polymerization may be sufficient and superposition
  • the unreacted monomer and medium may be separated from the produced polymer and recycled. In recycling, these monomers and media may be purified and reused, or may be reused without purification.
  • a conventionally known method can be used for separating the produced polymer from the unreacted monomer and the medium. For example, methods such as filtration, centrifugation, solvent extraction, and reprecipitation using a poor solvent can be used.
  • the polymerization temperature is not particularly limited, but is usually ⁇ 20 ° C. or higher, preferably 0 ° C. or higher, usually 290 ° C. or lower, preferably 250 ° C. or lower.
  • the polymerization pressure is not particularly limited, but is usually 0.1 MPa or more, preferably 0.3 MPa or more, usually 100 MPa or less, preferably 90 MPa or less.
  • the polymerization time is not particularly limited, but is usually 0.1 minutes or more, preferably 0.5 minutes or more, more preferably 1 minute or more, usually 10 hours or less, preferably 7 hours or less, more preferably 6 hours or less. You can choose.
  • the polymerization is usually carried out in an inert gas atmosphere.
  • the inert gas for example, nitrogen, argon, carbon dioxide atmosphere can be used, and nitrogen atmosphere is preferably used. Note that a small amount of oxygen or air may be mixed in the atmosphere.
  • a method of controlling by supplying a plurality of monomers to the reactor and changing the supply ratio can be generally used.
  • there are a method of controlling the copolymer composition using the difference in the monomer reactivity ratio due to the difference in the structure of the catalyst and a method of controlling the copolymer composition using the polymerization temperature dependence of the monomer reactivity ratio. .
  • Molecular Weight Adjustment Method Conventionally known methods can be used to control the molecular weight of the resulting ethylene polymer. That is, a method for controlling the molecular weight by controlling the polymerization temperature, a method for controlling the molecular weight by controlling the monomer concentration, a method for controlling the molecular weight by using a chain transfer agent, and a ligand structure in a transition metal complex of a single site catalyst. And a method of controlling the molecular weight by controlling.
  • a chain transfer agent a conventionally known chain transfer agent can be used. For example, hydrogen, metal alkyl, etc. can be used.
  • cross-linking reactions are known as methods for increasing the molecular weight of the polymer in the molding process. For example, it is known that when a peroxide is used or various types of radiation are applied, a crosslinking reaction by a radical mechanism proceeds and the molecular weight of the resulting polymer increases.
  • the sand / rubber wheel wear performance of the resulting ethylene polymer is closely related to the weight average molecular weight, molecular weight distribution, melting point, and crystallinity of the ethylene polymer. Yes.
  • the weight average molecular weight is high, the molecular weight distribution is desirably narrow, the melting point is desirably high, and the crystallinity is preferably high.
  • the weight average molecular weight, molecular weight distribution, and melting point of the ethylene polymer are mainly determined in the polymerization process, and the control method thereof is as described above. Crystallinity is determined in the molding process. Generally, it is possible to increase the crystallinity by slowing the heat removal rate after thermoforming. Similarly, a technique for increasing the crystallinity by performing an annealing treatment after molding is also known.
  • the ethylene-based resin composition for producing wear-resistant resin molded article (hereinafter sometimes referred to as “the ethylene-based resin composition of the present invention”) is one kind of the above-described ethylene-based polymer of the present invention. Or it manufactures by mix
  • an antistatic agent, an antioxidant, and an antioxidant according to the use of the molded body, within a range that does not impair the object of the present invention to achieve both the melt fluidity and the sand / rubber wheel wear performance.
  • Known additives such as neutralizers, lubricants, anti-blocking agents, anti-fogging agents, organic or inorganic pigments, fillers, inorganic fillers, UV degradation inhibitors, dispersants, weathering agents, crosslinking agents, foaming agents, flame retardants, etc.
  • An agent can be blended.
  • a nucleating agent, glass fiber, aramid fiber, carbon fiber, cellulose fiber, carbon black, rubber, other resin other than the ethylene polymer of the present invention may be blended.
  • the ethylene resin composition of the present invention contains a long-chain fatty acid metal salt such as calcium stearate, magnesium stearate, zinc stearate, barium stearate, calcium laurate, barium laurate, zinc laurate, calcium ricinoleate, etc. It is preferable to blend as a lubricant or a release agent.
  • a lubricant or a release agent One of these lubricants or mold release agents may be used alone, or two or more thereof may be used in any combination and ratio.
  • the ethylene resin composition of the present invention contains a lubricant or mold release agent such as calcium stearate
  • the content thereof is 10 to 0.01 parts by weight, particularly 5 parts per 100 parts by weight of the ethylene polymer of the present invention.
  • the amount is preferably 0.01 parts by weight. If the amount used is too small, the above-mentioned effect due to the use of a lubricant or mold release agent cannot be obtained sufficiently, and if it is too large, the mechanical properties of the resin may be impaired.
  • the ethylene-based resin composition of the present invention may contain an organic peroxide.
  • the organic peroxide that can be contained in the ethylene-based resin composition of the present invention is not particularly limited, and examples thereof include di-t-butyl peroxide, t-butyl cumyl peroxide, dicumyl peroxide, 2,5 -Dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3,1,3-bis (t-butylperoxy) Isopropyl) benzene, dialkyl peroxides such as 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, t-butylperoxybenzoate, t-butylperoxyisopropyl carbonate, 2,5 -Dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2,5-di (benzoyl
  • Peroxyesters acetyl peroxide, lauroyl peroxide, benzoyl peroxide, p-chlorobenzoyl peroxide, diacyl peroxides such as 2,4-dichlorobenzoyl peroxide, hydroperoxides such as diisopropylbenzene hydroperoxide Etc.
  • those having a one-minute half-life temperature of 140 ° C. or more are preferred, for example, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2 , 5-di (t-butylperoxy) hexyne-3 and the like are preferable.
  • These organic peroxides may be used alone or in combination of two or more in any combination and ratio.
  • crosslinking aid may be used together with the organic peroxide as necessary.
  • examples of the crosslinking aid that can be used in combination with the organic peroxide include sulfur, p-quinonedioxime, and p-dinitrosobenzene.
  • Peroxide crosslinking aids such as 1,3-diphenylguanidine and m-phenylenebismaleimide, polyfunctional vinyl compounds such as divinylbenzene, triallyl cyanurate, triallyl isocyanurate and diallyl phthalate, ethylene glycol di (meth) Examples thereof include polyfunctional (meth) acrylate compounds such as acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and allyl (meth) acrylate. These crosslinking aids may be used alone or in combination of two or more in any combination and ratio.
  • an antioxidant may be present.
  • the antioxidant include 2,4-dimethyl-6-tert-butylphenol, 2,6-di- t-butylphenol, 2,6-di-t-butyl-p-cresol, 2,6-di-t-butyl-4-ethylphenol, 2,4,6-tri-t-butylphenol, 2,5-di -T-butylhydroquinone, butylated hydroxyanisole, n-octadecyl-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate, stearyl- ⁇ - (3,5-di-t Monophenols such as -butyl-4-hydroxyphenyl) propionate, 4,4'-dihydroxydiphenyl, 2,2'-methylenebis (4-methyl-6-t-butylphenone) ), 2,2′-methylenebis (4-ethyl-6-ter
  • the organic peroxide is preferably used in an amount of 0.1 to 10 parts by weight, particularly 0.1 to 2 parts by weight, based on 100 parts by weight of the ethylene polymer of the present invention. If the amount of the organic peroxide used is too small, it will not be possible to sufficiently obtain a high molecular weight due to the use of the organic peroxide. The appearance of the molded product may be adversely affected.
  • the crosslinking aid is preferably used in an amount of 1 to 200 parts by weight, particularly 10 to 100 parts by weight, per 100 parts by weight of the organic peroxide. If the amount of the crosslinking aid used is too small, the effect of promoting the crosslinking reaction due to the use of the crosslinking aid cannot be sufficiently obtained, and if too much, resin molding such as coloring or odor due to the remaining unreacted crosslinking aid. Body quality defects may be unacceptable.
  • the antioxidant when used, is preferably used in an amount of 10 to 0.01 parts by weight, particularly 5 to 0.01 parts by weight, based on 100 parts by weight of the ethylene polymer of the present invention. If the amount of antioxidant used is too small, the effect of preventing oxidative deterioration due to the use of antioxidant cannot be obtained sufficiently, and if too much, bleeding out causes deterioration of the appearance of processing molding machines and resin moldings. Connected.
  • one type of the ethylene polymer of the present invention may be used, or two or more types of the ethylene polymer of the present invention may be mixed and used.
  • two or more types of ethylene polymers are used, two or more types of ethylene polymers polymerized by changing the monomer and polymerization conditions using the same catalyst may be used, or polymerization is performed using different catalysts.
  • Two or more types of ethylene polymers may be used.
  • Two or more ethylene polymers having different molecular weights, melting points, presence / absence of copolymerization components, and copolymerization compositions may be used.
  • the physical properties of the ethylene polymer in the ethylene resin composition of the present invention are those two or more kinds.
  • the ethylene polymer in the ethylene resin composition contains an ethylene polymer that does not satisfy the physical properties of the ethylene polymer of the present invention.
  • the ethylene polymer as a mixture may satisfy the physical properties of the ethylene polymer of the present invention.
  • the blending of the additive is extremely easy as compared with the conventional ultrahigh molecular weight polyethylene, and it was obtained by blending the additive.
  • One of the advantages of the present invention is that a desired function can be easily imparted to the ethylene-based resin composition.
  • the ethylene resin composition of the present invention may be a powder maintaining the powder shape of the original ethylene polymer, or may be a pulverized powder, or using an extruder. Pellets produced using a granulation step may be used.
  • the ethylene-based resin composition of the present invention exhibits a wear resistance of 0.035 cm 3 or more and 0.24 cm 3 or less in a sand / rubber hole wear test.
  • the lower limit of the sand / rubber wheel wear performance of the ethylene-based resin composition of the present invention is preferably 0.04 cm 3 and the upper limit is preferably 0.20 cm 3 .
  • the sand / rubber wheel wear performance of the ethylene resin composition of the present invention is described in the Examples section below from a press piece obtained by press molding using the ethylene resin composition of the present invention.
  • the test piece for the sand / rubber wheel wear test is prepared by the following method, and the test is performed by performing a sand / rubber wheel wear test on the test piece by the method described in the example section below. it can.
  • the other physical properties of the ethylene resin composition of the present invention usually have physical properties similar to the physical properties of the ethylene polymer of the present invention, but can be appropriately adjusted depending on the components added depending on the purpose of use and the like.
  • a conventionally known molding method used for thermoplastic polymers is used. It can be used to produce a molded body. In these molding methods, the ethylene polymer or ethylene resin composition is heated to a temperature equal to or higher than the melting point of the ethylene polymer, and after the ethylene polymer or ethylene resin composition is in a molten state, a desired state is obtained. Mold to shape. As for the molding method, an optimal molding method is selected from the viewpoint of the purpose of using the molded body and the productivity.
  • Specific molding methods include injection molding, transfer molding, blow molding, injection blow molding, extrusion blow molding, melt compression molding, melt extrusion molding, melt spinning molding, melt coating, melt bonding, melt rotation molding, foam molding, and the like. Is mentioned.
  • the presence of an organic peroxide increases the molecular weight of the ethylene polymer to further increase the sand / rubber wheel.
  • a molded article having excellent wear performance can be obtained, which is preferable.
  • a feature of the present invention is that a molded body having excellent sand / rubber wheel wear performance is obtained by a conventionally known melt molding method, and thus is excellent in productivity.
  • a molding method for polyethylene may be applied. Specifically, ram extrusion, compression molding, sintering, machining, skiving, high hydrostatic pressure processing, solution method, gel method and the like may be used.
  • the molded body obtained by such a molding method may be subjected to secondary processing by a molding method such as vacuum molding, uniaxial stretching, biaxial stretching, polishing, and cutting. Furthermore, treatments such as annealing, heat treatment, rapid cooling, and chemical treatment may be added.
  • the sand / rubber measured by the sand / rubber wheel abrasion test described in the section of Examples below. wheel wear performance 0.035Cm 3 or 0.24 cm 3 or less, preferably to obtain a wear-resistant resin molded article of the present invention which is a 0.040 cm 3 or more 0.16 cm 3 or less.
  • the wear-resistant resin molded article of the present invention obtained from the ethylene polymer of the present invention or the ethylene resin composition of the present invention can be applied to applications where commercially available ultra-high molecular weight polyethylene is used, Specifically, wires, cables, printed circuit boards, semiconductors, automotive parts, outdoor products, food industry products, biomedical intermediates or products such as artificial hip joints, artificial shoulder joints, artificial spines, artificial knee joints, artificial elbows Artificial graft tissue members such as joints, artificial ankle joints, artificial finger joints, artificial graft tissue pieces, orthopedic graft tissue pieces, composite materials, monofilament fibers, multifilament fibers, oriented or non-oriented fibers, hollow, woven or non-woven fabrics, Filter, membrane, film, sheet, plate, block, rod, round bar, multilayer film, multi-component film, barrier film, primary or secondary Battery separator films for ponds (eg lithium ion batteries), containers, bags, bottles, containers, tubes, hoses, pipes, valves
  • ponds eg lithium
  • Examples of applications for various other intermediates and wear-resistant products for end users include gas house filtration bags, doctor blades, profiles, ski soles, snowboard soles, snowmobile runners, particulate additives for coating, Hose lining, hopper lining, chute lining, steel pipe coating, protective coating, electrostatic coating, wire coating, optical fiber coating, container lining and internal components, tanks, columns, pipes, fittings, pumps, pump housings, Valves, valve seats, beverage dispenser tubes and fittings, fittings, seals, containers, bags, bottles, hoses, tubes, industrial parts, gears, cams, sliders, levers, arms, clutches, pulleys, rollers, rollers, key stems ,Key , Shutters, reels, washers, pistons, cylinders, guide rails, shafts, bearings, ball bearings, screws, nails, nuts, bolts, heat exchangers, tape guides, sliding parts (mechanical parts) in printing equipment, home appliances Examples include sliding parts in products, sliding parts in automobile steering devices and steel cable guides, sliding parts in
  • the polymer concentration was adjusted to 0.1% by weight.
  • the polymer was dissolved by heating to 135 ° C. in the pretreatment apparatus, and then filtered using a glass filter to prepare a sample.
  • the melting point Tm was determined by the following DSC measurement. -Measuring device: PYRIS Diamond DSC differential scanning calorimeter (manufactured by PerkinElmer) ⁇ Measurement condition: About 5 mg of sample was melted at 210 ° C. for 5 minutes, cooled to ⁇ 20 ° C. at a cooling rate of 10 ° C./minute, held at ⁇ 20 ° C. for 5 minutes, and then heated to 210 ° C. at a heating rate of 10 ° C./minute. To obtain a melting curve. The peak top temperature of the main endothermic peak in the final temperature increase stage performed to obtain the melting curve was defined as the melting point Tm.
  • the mass of the ethylene polymer to be evaluated was 100 parts, 0.05 part of calcium stearate was added as an additive, and a resin composition was prepared by dry blending.
  • a press piece was prepared by press molding using the obtained resin composition. During pressing, after heating at 165.5 ° C. for 45 minutes, it was cooled for 35 minutes. The press pressure was 3.24 MPa. Using the obtained press pieces, the following test pieces for sand / rubber wheel wear test and, if necessary, test pieces for sand slurry wear test were prepared, and the wear test was performed.
  • the sand / rubber wheel abrasion test was performed in accordance with ASTM (American Society For Testing and Materials) standard, ASTM G65. That is, the sand / rubber wheel wear test is a test method defined by ASTM G65, and a sand / rubber wheel wear tester that satisfies the standard is used.
  • sand 95% by weight or more of sand having a particle size of 212 ⁇ m or more and less than 300 ⁇ m, and 5% by weight or less of sand having a particle size of 300 ⁇ m or more and less than 425 ⁇ m.
  • Measurement sample A test piece of 0.25 inch ⁇ 1.00 inch ⁇ 3.00 inch was prepared from the above-mentioned press piece using a band saw.
  • Measuring method Test sand (22.7 kg) was placed in the hopper of a sand / rubber wheel abrasion tester.
  • the test piece After measuring the mass (g) of the test piece, the test piece was fixed to a fixing jig of a sand / rubber wheel abrasion tester, and the rubber wheel was rotated at 200 rpm while flowing the test sand at 300 g / min. Was pressed against the rubber wheel with a load of 30 pounds. The test was terminated when the rubber wheel rotated 3200 times. The test piece was removed from the fixing jig, and the sand adhering to the test piece surface was wiped off. Subsequently, the mass (g) of the test piece was measured.
  • the mass reduction amount (g) of the test piece due to wear was calculated, and the loss volume (cm 3 ) due to wear was obtained by dividing the mass reduction amount (g) by the density (g / cm 3 ) of the test piece.
  • the loss volume (cm 3 ) obtained by this method is referred to as sand / rubber wheel wear performance (SWA, Sand Wheel Ablation).
  • test piece of 0.250 inch ⁇ 1.000 inch ⁇ 2.750 inch was prepared by cutting from the above-mentioned press piece. Drill a 11/32 inch hole in the center of the resulting specimen and drill another 9/64 inch hole about 1/8 inch away from the hole. did.
  • ⁇ Measuring method The mass (g) of the test piece was measured, the cut surface of the test piece was turned up, and the test piece was fixed to the apparatus with a bolt through a 11/32 inch hole opened in the center. Next, the pin protruding from the shaft was passed through a 9/64 inch hole to determine the mounting angle of the test piece. Test alumina (450 g) was weighed and poured into a cup.
  • the mass loss (g) was divided by the density (g / cm 3 ) of the test piece to determine the loss volume (cm 3 ) due to wear.
  • the loss volume (cm 3 ) obtained by this method is referred to as sand slurry abrasion resistance (Sand Slurry Ablation).
  • Catalyst synthesis, ethylene polymer production In the following catalyst synthesis and ethylene polymer production, unless otherwise specified, the operation was performed in a purified nitrogen atmosphere, and the solvent and polymerization monomer were dehydrated and deoxygenated. Further, ethylene polymerization or ethylene / 1-hexene copolymerization was performed according to the following procedure. An autoclave with an induction stirring blade having an internal volume of 2 L was charged with n-hexane as a solvent and an organoaluminum compound as a scavenger. When copolymerizing with 1-hexene, a predetermined amount of 1-hexene was charged into the autoclave at this point.
  • the catalyst was charged into the catalyst feeder attached to the autoclave.
  • the gas phase part of the autoclave was replaced with ethylene three times, and the temperature was raised to a predetermined polymerization temperature.
  • the catalyst was supplied into the autoclave, and ethylene was continuously supplied up to the predetermined pressure.
  • the time when the internal pressure reached the predetermined pressure was set as the polymerization start time, and polymerization was carried out for a predetermined time under the constant temperature and pressure conditions. In some cases, hydrogen was fed to the autoclave for molecular weight control.
  • a predetermined amount of hydrogen was supplied to the autoclave before supplying the catalyst so that a predetermined hydrogen concentration was maintained during the polymerization, and further, ethylene containing a predetermined concentration of hydrogen was supplied during the polymerization.
  • the unreacted monomer was purged to terminate the polymerization.
  • the ethylene polymer slurry was collected, the organic solvent was filtered off, and the resulting ethylene polymer powder was dried. Details are shown in each synthesis example.
  • ⁇ Synthesis Example 1> In a 500 mL three-necked flask, silica gel (2 g) having an average particle size of 50 microns as a carrier, toluene (10 mL) as a solvent, and dichlorobis (n-butylcyclopentadienyl) hafnium (hereinafter abbreviated as BCH) as a metallocene complex ( 0.05 mmol, manufactured by Aldrich) and methylaluminoxane (hereinafter abbreviated as MAO) (PMAO manufactured by Tosoh Finechem) (10 mmol) were sequentially added as a cocatalyst and stirred at 60 ° C. for 1 hour. All the solvents were removed under reduced pressure to obtain silica gel-supported metallocene catalyst A.
  • BCH dichlorobis (n-butylcyclopentadienyl) hafnium
  • MAO methylaluminoxane
  • PMAO manufactured by To
  • a catalyst B was obtained in the same manner as in Synthesis Example 1 except that the metallocene complex was changed from BCH to dichlorobis (n-butylcyclopentadienyl) zirconium (hereinafter abbreviated as BCZ) (manufactured by Aldrich).
  • BCZ dichlorobis (n-butylcyclopentadienyl) zirconium
  • ⁇ Synthesis Example 3> A montmorillonite clay carrier treated with sulfuric acid (hereinafter abbreviated as Clay) (100 mg) as a carrier was washed with triethylaluminum, and dichlorobis (cyclopentadienyl) zirconium (hereinafter abbreviated as CZ) (0.003 mmol) as a metallocene complex. Then, it was brought into contact with a toluene solution of triethylaluminum (0.006 mmol) to obtain a toluene slurry of catalyst C (concentration: 0.1 g / mL).
  • Clay sulfuric acid
  • CZ dichlorobis (cyclopentadienyl) zirconium
  • BCH Dichlorobis (n-butylcyclopentadienyl) hafnium
  • BCZ Dichlorobis (n-butylcyclopentadienyl) zirconium
  • CZ Dichlorobis (cyclopentadienyl) zirconium
  • BL [N- (2,6-diisopropylphenyl)- 2- (2,6-Diisopropylphenylimino) propaneamidato- ⁇ 2N, O ( ⁇ 1-benzyl)] nickel (2,6-lutidine)
  • BP [N- (2,6-diisopropylphenyl) -2- (2,6-diisopropylphenylimino) propaneamidato- ⁇ 2N, O ( ⁇ 1-benzyl)] nickel (trimethylphosphine)
  • SiO 2 Silica support Clay: Montmorillonite support MAO: Methylaluminoxan
  • Example 1 An autoclave with an induction stirring blade having an internal volume of 2 L was charged with n-hexane (1000 mL) as a solvent and triethylaluminum (0.5 mmol) as a scavenger. Next, catalyst A (150 mg) was charged into a catalyst feeder attached to the autoclave. After replacing the gas phase part of the autoclave with ethylene three times, heating was started, and when the temperature reached 80 ° C., the catalyst A was supplied into the autoclave, and then ethylene was supplied up to 2.5 MPa.
  • n-hexane 1000 mL
  • triethylaluminum 0.5 mmol
  • Example 2 Instead of catalyst A, the catalyst B (150 mg) was used, the polymerization temperature was changed to 45 ° C., and the ethylene polymerization was carried out in the same manner as in Example 1 except that the ethylene pressure was changed to 3.0 MPa. As a result, 222 g of the polymer 2 was obtained.
  • the evaluation results of Polymer 2 are shown in Table 2.
  • Example 3 Polymerization of ethylene was carried out in the same manner as in Example 1 except that the catalyst C (150 mg) was used in place of the catalyst A and the polymerization time was 90 minutes, to obtain 309 g of a polymer 3 which was an ethylene homopolymer.
  • the evaluation results of the polymer 3 are shown in Table 2.
  • Example 4 Except that catalyst D (150 mg) was used instead of catalyst A, the organoaluminum added to the reactor was changed to triisobutylaluminum (0.5 mmol), and the polymerization time was 90 minutes, ethylene was the same as in Example 1. Then, 363 g of polymer 4 which is an ethylene homopolymer was obtained. The evaluation results of the polymer 4 are shown in Table 3.
  • Example 5 Ethylene was polymerized in the same manner as in Example 4 except that the polymerization temperature was 60 ° C., to obtain 403 g of polymer 5 which was an ethylene homopolymer.
  • the evaluation results of the polymer 5 are shown in Table 3.
  • Example 1 except that catalyst G (450 mg) was used instead of catalyst A, triethylaluminum was not used during the polymerization, the polymerization temperature was 25 ° C., the ethylene pressure was 0.7 MPa, and the polymerization time was 50 minutes. Similarly, ethylene was polymerized to obtain 127 g of polymer 12 which is an ethylene homopolymer.
  • the evaluation results of the polymer 12 are shown in Table 3.
  • Example 6 An autoclave with an induction stirring blade having an internal volume of 24 L was charged with n-hexane (10 L) as a solvent and triethylaluminum (5 mmol) as a scavenger. Next, catalyst H (330 mg) was charged into a catalyst feeder attached to the autoclave. After replacing the gas phase part of the autoclave with ethylene three times, heating was started, and when the temperature reached 85 ° C., the catalyst H was supplied into the autoclave, and then ethylene was supplied up to 2.0 MPa.
  • the time when the internal pressure reached a predetermined pressure (2.0 MPa) was set as the polymerization start time, and after performing the polymerization for 180 minutes under the constant temperature and pressure conditions, the unreacted monomer was purged to terminate the polymerization.
  • the polyethylene slurry was recovered, n-hexane was filtered off, and the resulting polymer powder was dried to obtain 1250 g of polymer 13 which was an ethylene homopolymer.
  • the evaluation results of the polymer 13 are shown in Table 3.
  • Example 7 Polymerization of ethylene was carried out in the same manner as in Example 6 except that the catalyst H (1 g) was used, the polymerization temperature was 80 ° C., and the reaction time was 240 minutes, to obtain 4000 g of polymer 14 as an ethylene homopolymer. .
  • the evaluation results of the polymer 14 are shown in Table 3.
  • Example 3 A wear test was conducted in the same manner as in Example 1 using polyethylene (Lupolen 5261Z manufactured by Basell) manufactured using a commercially available Ziegler-Natta catalyst. In addition, the physical property value etc. of this polyethylene are described in the product database of Basell. The results are shown in Table 2.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Tm melting point
  • HLMFR melt flow rate
  • SWA sand / rubber wheel wear performance
  • Sand Slurry sand slurry wear performance
  • Example 8 Each powder of polymer 1 (300 g) and polymer 2 (700 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
  • Example 9 Each powder of polymer 1 (550 g) and polymer 2 (450 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
  • Example 10 Each powder of polymer 1 (550 g) and polymer 3 (450 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
  • Example 11 Each powder of polymer 1 (300 g) and polymer 12 (700 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
  • Example 12 Each powder of polymer 1 (550 g) and polymer 6 (450 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
  • Example 13 Each powder of polymer 2 (550 g) and polymer 5 (450 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
  • the sand slurry wear test is not an appropriate evaluation method for relatively low molecular weight polyethylene, which is not ultra-high molecular weight.
  • the sand / rubber wheel wear test clearly shows the wear resistance performance of the material over a wide molecular weight range. For example, when the wear amount of the ultrahigh molecular weight polyethylene used in Comparative Examples 1 and 2 is determined by a sand / rubber wheel abrasion test, both are about 0.04 (cm 3 ) (Comparative Examples 1 and 2).
  • the sand / rubber wheel wear test is not just a wear resistance assessment for ultra high molecular weight polyethylene, but is also an appropriate method for assessing the wear resistance of materials over a wide molecular weight range including low molecular weight polyethylene. It is shown that. As a result, the subsequent evaluation of wear resistance was performed mainly using the evaluation by the “sand / rubber wheel friction test”.
  • the ethylene-based polymer is produced by a single site catalyst, and the Mw is controlled in the range of 300,000 to less than 1 million. For this reason, a test piece obtained by molding a resin composition formed by adding an additive to the polymer exhibits good wear resistance of less than 0.13 cm 3 as sand / rubber wheel wear performance.
  • Examples 1 to 7 show that a metallocene catalyst alone or a blend of ethylene polymers using a plurality of metallocene catalysts may be used as the single site catalyst. It can also be seen that a silica carrier or a montmorillonite carrier may be used as the carrier. Furthermore, it turns out that an ethylene-type polymer may be formed using a nonmetallocene catalyst.
  • the wear-resistant resin molded body of the present invention can be applied to application fields where ultrahigh molecular weight polyethylene has been used, and the molded body can be manufactured with high productivity by a melt molding method. Is extremely useful.
  • the wear-resistant resin molded article of the present invention has a relatively high crystallinity and can be used in fields and environments where heat resistance is required, and is extremely useful industrially.

Abstract

An ethylene-based polymer for producing an abrasion-resistant resin molding, the polymer satisfying (1) to (5). (1) Is either an ethylene homopolymer or a copolymer of ethylene and a C3-20 α-olefin. (2) Is polymerized using a single-site catalyst. (3) Has a weight-average molecular weight Mw that is 300,000 to less than 1,000,000. (4) Has a melting point Tm 130°C to less than 135°C. (5) Has a sand/rubber wheel abrasion test performance of 0.035-0.24 cm3 as measured for a sample fabricated from the ethylene-based polymer.

Description

耐摩耗性樹脂成形体製造用エチレン系重合体、耐摩耗性樹脂成形体製造用エチレン系樹脂組成物、耐摩耗性樹脂成形体およびその製造方法Ethylene polymer for production of wear-resistant resin molded body, ethylene-based resin composition for production of wear-resistant resin molded body, wear-resistant resin molded body and method for producing the same
 本発明は、砂/ラバーホイール摩耗性能が0.035cm以上0.24cm以下である耐摩耗性樹脂成形体を製造することができる耐摩耗性樹脂成形体製造用エチレン系重合体および耐摩耗性樹脂成形体製造用エチレン系樹脂組成物と、これを成形してなる耐摩耗性樹脂成形体およびその製造方法に関する。 The present invention relates to an ethylene-based polymer for producing a wear-resistant resin molded product and an abrasion-resistant product capable of producing a wear-resistant resin molded product having a sand / rubber wheel wear performance of 0.035 cm 3 or more and 0.24 cm 3 or less. The present invention relates to an ethylene-based resin composition for producing an adhesive resin molded article, an abrasion-resistant resin molded article obtained by molding the composition, and a method for producing the same.
 超高分子量ポリエチレンは、粘度平均分子量が100万を超える非常に高い分子量を有するポリエチレン樹脂である。超高分子量ポリエチレンは、優れた耐摩耗性と低摩擦係数を有する樹脂として知られており、この性質を利用して、高い耐摩耗性が要求される工業分野において使用されている(たとえば非特許文献1)。
 超高分子量ポリエチレンの高い耐摩耗性は、その非常に高い分子量に起因するものと、考えられてきた。
 一方で超高分子量ポリエチレンは、分子量が非常に高いため、ポリエチレンの融点以上に加熱しても、溶融粘度が非常に高く、かつ緩和時間が極めて長いため、工業的に用いられる成形条件のタイムスケールでは溶融流動しないことが知られている。たとえば、超高分子量ポリエチレンの溶融粘度は、180℃で10Pa・secよりも高い。このため、超高分子量ポリエチレンは、その融点以上であっても溶融した液体ではなく、ゴム状の固体のような挙動を示す(例えば特許文献1)。そのため、超高分子量ポリエチレンは、通常のポリエチレンの成形に広く使用される溶融加工法、たとえば、射出成形、押出成形、ブロー成形等を用いて成形することは極めて困難であるという問題があった。
Ultra high molecular weight polyethylene is a polyethylene resin having a very high molecular weight with a viscosity average molecular weight exceeding 1 million. Ultra high molecular weight polyethylene is known as a resin having excellent wear resistance and a low friction coefficient, and is used in industrial fields where high wear resistance is required by utilizing this property (for example, non-patented). Reference 1).
The high wear resistance of ultra high molecular weight polyethylene has been attributed to its very high molecular weight.
On the other hand, ultra-high molecular weight polyethylene has a very high molecular weight, so even when heated above the melting point of polyethylene, the melt viscosity is very high and the relaxation time is extremely long, so the time scale of molding conditions used industrially Is known not to melt and flow. For example, the melt viscosity of ultra high molecular weight polyethylene is higher than 10 6 Pa · sec at 180 ° C. For this reason, even if it is more than the melting | fusing point, ultra high molecular weight polyethylene shows the behavior like a rubber-like solid instead of the melted liquid (for example, patent document 1). Therefore, ultra high molecular weight polyethylene has a problem that it is extremely difficult to mold using a melt processing method widely used for molding ordinary polyethylene, for example, injection molding, extrusion molding, blow molding and the like.
 このようなことから、従来、超高分子量ポリエチレンの成形には、前記の溶融加工法とは異なる成形方法、たとえば、ラム押出、圧縮成形、焼結、機械加工、スカイビング、高静水圧加工、溶液法、ゲル法等の複雑な成形方法が用いられている。しかし、これらの成形方法は、先に述べた溶融加工法に比べるとはるかに生産性が低い。このため、この生産性の改善が、超高分子量ポリエチレンの工業的実用化における大きな課題であった。 Therefore, conventionally, in the molding of ultra-high molecular weight polyethylene, a molding method different from the melt processing method, for example, ram extrusion, compression molding, sintering, machining, skiving, high hydrostatic pressure processing, Complex molding methods such as a solution method and a gel method are used. However, these molding methods are much less productive than the melt processing methods described above. For this reason, this improvement in productivity has been a major issue in the industrial practical application of ultrahigh molecular weight polyethylene.
 また、溶融加工法とは異なる成形方法で得られた超高分子ポリエチレンの成形体には、成形後も原料パウダーの粒界(溶融欠陥)が観察されることが報告されている(特許文献2、非特許文献1)。こうした粒界は、超高分子量ポリエチレンが成形中に溶融流動しないために発生すると考えられ、また発生した粒界が成形体の機械物性、とりわけ破壊特性に悪影響を与えることから、その改善が求められていた。 In addition, it has been reported that grain boundaries (melting defects) of raw material powder are observed even after molding in a molded body of ultra-high molecular weight polyethylene obtained by a molding method different from the melt processing method (Patent Document 2). Non-Patent Document 1). Such grain boundaries are thought to be generated because ultra high molecular weight polyethylene does not melt and flow during molding, and the grain boundaries that are generated adversely affect the mechanical properties of the molded product, in particular the fracture characteristics. It was.
 このような状況において、従来、超高分子量ポリエチレンの成形性を改善する試みもなされている。具体的には、超高分子量ポリエチレンに、溶媒、可塑剤、加工助剤、低分子量ポリエチレン等を添加することによって、超高分子量ポリエチレンの成形性を改良する技術が提案されている。しかしながら、こうした手法は成形性の改善が十分ではないうえに、これらの手法を用いた場合、最終的に得られる成形体の耐摩耗性が大きく損なわれるという問題点があった。 Under such circumstances, attempts have been made to improve the moldability of ultra-high molecular weight polyethylene. Specifically, a technique for improving the moldability of ultrahigh molecular weight polyethylene by adding a solvent, a plasticizer, a processing aid, low molecular weight polyethylene or the like to ultrahigh molecular weight polyethylene has been proposed. However, these methods have problems in that the moldability is not sufficiently improved, and when these methods are used, the wear resistance of the finally obtained molded body is greatly impaired.
 このようなことから、超高分子量ポリエチレンは、優れた耐摩耗性を有するものであるにもかかわらず、耐摩耗性の要求される一般的な用途に広く適用されるには至っていないのが実状である。 For this reason, ultra high molecular weight polyethylene has not yet been widely applied to general uses requiring wear resistance, despite having excellent wear resistance. It is.
 これに対して、溶融成形可能な耐摩耗性ポリエチレンが提案されている。特許文献2では、重量平均分子量Mwが15万から100万の範囲であり、数平均分子量Mnが少なくとも25000であり、Mw/Mnが1.3から10の範囲であり、かつ、摩耗係数が3.2×10-4mm/mN未満という要件を満足するポリエチレンが提案されている。
 また、特許文献3では、摩耗特性に優れたエチレン重合体およびその組成物が提案されている。ここでは、粘度平均分子量Mvが10万以上であり、かつ、融点ピークが135℃以上であるポリエチレンが提案されている。
 特許文献2では、成形体の耐摩耗性評価方法として、Hutchingsらが提案する特殊な評価方法(以下、「Hutchingsの方法」という。具体的には非特許文献2参照)が用いられている。また、特許文献3では、耐摩耗性の評価方法として、砂スラリー摩耗試験が用いられている。
In contrast, wear-resistant polyethylene that can be melt-molded has been proposed. In Patent Document 2, the weight average molecular weight Mw is in the range of 150,000 to 1,000,000, the number average molecular weight Mn is at least 25000, Mw / Mn is in the range of 1.3 to 10, and the wear coefficient is 3 Polyethylene has been proposed that satisfies the requirement of less than 2 × 10 −4 mm 3 / mN.
Patent Document 3 proposes an ethylene polymer having excellent wear characteristics and a composition thereof. Here, polyethylene having a viscosity average molecular weight Mv of 100,000 or more and a melting point peak of 135 ° C. or more is proposed.
In Patent Document 2, a special evaluation method proposed by Hutchings et al. (Hereinafter referred to as “Hutchings method”, specifically, see Non-Patent Document 2) is used as a method for evaluating wear resistance of a molded body. In Patent Document 3, a sand slurry wear test is used as a method for evaluating wear resistance.
 材料の耐摩耗性の評価方法は、その評価する材料によって様々である。そして一般に、材料の耐摩耗性の判断基準となる摩耗試験の結果は、試験法に強く依存し、実用的な観点から材料の耐摩耗性を評価するにあたっては、材料が実際にどのような環境で用いられ、どのような摩耗にさらされるかを考慮して、最適な摩耗試験法を選択する必要がある。
 すなわち、ある材料に対して、仮に不適切な試験法を用いた場合には、その材料の耐摩耗性を正確に評価できない場合がある。
There are various methods for evaluating the wear resistance of a material depending on the material to be evaluated. In general, the results of wear tests, which are the criteria for determining wear resistance of materials, are highly dependent on the test method, and in evaluating the wear resistance of materials from a practical point of view, It is necessary to select an optimum wear test method in consideration of the type of wear that is used.
That is, if an inappropriate test method is used for a certain material, the wear resistance of the material may not be accurately evaluated.
 超高分子量ポリエチレン成形体の耐摩耗性評価に用いられる代表的な試験法としては、「砂スラリー摩耗試験(米国試験材料協会規格 ASTM D4020)」の他に、「砂/ラバーホイール摩耗試験(米国試験材料協会規格 ASTM G65)」などが挙げられる。
 これらいずれの試験方法、または特許文献2で採用されている評価方法も、砂や無機粒子との接触による摩耗によって失われた樹脂の量を測定する方法であり、摩耗量が少ないほど成形体の耐摩耗性は高いと評価されることになる。
Typical test methods used to evaluate the wear resistance of ultra-high molecular weight polyethylene molded products include “sand slurry wear test (American Testing Materials Association Standard ASTM D4020)” and “sand / rubber wheel wear test (US Test Material Association Standard ASTM G65) ”.
Any of these test methods or the evaluation method employed in Patent Document 2 is a method for measuring the amount of resin lost due to wear due to contact with sand or inorganic particles. The wear resistance will be evaluated as high.
米国特許第4,281,070号明細書U.S. Pat. No. 4,281,070 日本国特表2004-515591号公報Japanese National Table 2004-515591 日本国特開平11-106417号公報Japanese Unexamined Patent Publication No. 11-106417
 しかし、これらの摩耗試験方法は、超高分子量ポリエチレンの成形体の耐摩耗性評価を目的として開発されてきた手法である。これらの試験方法を、超高分子量ではない、すなわち比較的低分子量のポリエチレンの成形体に適用するにあたっては、その試験方法が低分子量ポリエチレンの成形体に対して適切な評価方法であることを確認することが必要である。 However, these wear test methods have been developed for the purpose of evaluating the wear resistance of ultra-high molecular weight polyethylene moldings. When applying these test methods to molded products of non-ultra high molecular weight polyethylene, that is, relatively low molecular weight polyethylene, it is confirmed that the test method is an appropriate evaluation method for molded products of low molecular weight polyethylene. It is necessary to.
 しかしながら、従来技術においては、この確認が十分行われないまま、超高分子量ポリエチレン成形体用に開発された試験方法がそのまま低分子量ポリエチレンの成形体に適用されていた。
 その結果、超高分子ポリエチレン用の試験方法を用いて、超高分子ポリエチレンよりも低分子量のポリエチレン成形体を評価した場合に、超高分子量ポリエチレンに匹敵する耐摩耗性を有するとの評価結果が得られることがあるが、実際には実用に耐えうる耐摩耗性を有しておらず、耐摩耗性が要求される用途には使用できない場合があるという問題が生じていた。特に、前記の超高分子ポリエチレン用の試験方法のうち、特許文献2に記載の試験方法や、砂スラリー摩耗試験については、実際に耐摩耗性が必要な用途への適性が不十分な樹脂であるにも関わらず、過大な評価結果が出ることがあった。
However, in the prior art, the test method developed for the ultra-high molecular weight polyethylene molded body was applied to the molded body of low molecular weight polyethylene as it was without sufficiently confirming this.
As a result, when evaluating a polyethylene molded article having a molecular weight lower than that of ultra-high molecular weight polyethylene using a test method for ultra-high molecular weight polyethylene, the evaluation result is that it has wear resistance comparable to that of ultra-high molecular weight polyethylene. Although it may be obtained, there is a problem in that it does not actually have wear resistance that can withstand practical use and may not be used in applications that require wear resistance. In particular, among the test methods for ultra-high molecular weight polyethylene, the test method described in Patent Document 2 and the sand slurry wear test are resins that are insufficiently suitable for applications that actually require wear resistance. In spite of the fact, there was an excessive evaluation result.
 具体的には、特許文献2において、耐摩耗性を有する好ましい樹脂として、エチレンと1-ヘキセンの共重合体が示されている。しかし、実際にこの共重合体は、高い耐摩耗性が要求される分野で使用された実績はなく、現実的には耐摩耗性が不足しているものと考えて良い。また、特許文献3では、粘度平均分子量Mvで10万以上という低分子量の樹脂が記載されている。しかし、実際にこの重合体も、高い耐摩耗性が要求される分野で使用された実績はなく、現実的には耐摩耗性が不足しているものと考えて良い。 Specifically, Patent Document 2 discloses a copolymer of ethylene and 1-hexene as a preferable resin having abrasion resistance. However, this copolymer has not actually been used in a field where high wear resistance is required, and it can be considered that the copolymer actually lacks wear resistance. Patent Document 3 describes a low molecular weight resin having a viscosity average molecular weight Mv of 100,000 or more. However, in fact, this polymer has not been used in a field where high wear resistance is required, and it may be considered that the wear resistance is actually insufficient.
 特許文献2および3に記載の樹脂成形体が実用に耐えられない理由として、樹脂の耐熱性に原因があると考えられる。すなわち、実際に耐摩耗性樹脂成形体が使用される環境においては、砂、砂利、各種粒子、各種物体などの衝突や摩擦によって材料の温度が上昇する。特に砂等が成形体に衝突した際、局所的には、ポリエチレンの融点近傍まで温度が上昇する場合がある。また、衝突や摩擦だけでなく、高温の流体、たとえば高温の廃水や排ガスなどと接触する環境で使用されることも多い。したがって、現実の用途に即した耐摩耗性樹脂成形体の開発においては、材料に求められる性質として、耐摩耗性に加え、耐熱性も兼ね備えている必要があると考えられる。 The reason why the resin moldings described in Patent Documents 2 and 3 cannot withstand practical use is considered to be due to the heat resistance of the resin. That is, in an environment where the wear-resistant resin molded body is actually used, the temperature of the material rises due to collision and friction of sand, gravel, various particles, various objects, and the like. In particular, when sand or the like collides with the molded body, the temperature may locally rise to the vicinity of the melting point of polyethylene. Moreover, it is often used not only in collision and friction but also in an environment that comes into contact with a high-temperature fluid such as high-temperature waste water or exhaust gas. Therefore, in the development of a wear-resistant resin molded product suitable for actual use, it is considered that the property required for the material must have heat resistance in addition to wear resistance.
 耐熱性について検討すると、特許文献2に記載された耐摩耗性を有するとされる樹脂は、その物性値から、融点(示差走査型熱量計DSCの吸熱ピークのピーク温度)は、約127℃と考えられ、耐熱性が劣るため、実際の耐摩耗用途への適用ができないものと考えられる。
 また、特許文献3に記載された耐摩耗性を有するとされる樹脂は、粘度平均分子量が低いため、より低分子量のワックス状成分を相対的に多く含んでおり、これが可塑剤として働くことで耐熱性を損なっていると考えられ、実際の耐摩耗用途への適用ができないものと考えられる。
Examining the heat resistance, the resin described as having the abrasion resistance described in Patent Document 2 has a melting point (the peak temperature of the endothermic peak of the differential scanning calorimeter DSC) of about 127 ° C. from its physical property values. This is considered to be inferior in heat resistance, so that it cannot be applied to actual wear resistance.
In addition, since the resin described in Patent Document 3 that has abrasion resistance has a low viscosity average molecular weight, it contains a relatively large amount of a lower molecular weight wax-like component, and this acts as a plasticizer. It is thought that heat resistance is impaired, and it cannot be applied to actual wear-resistant applications.
 このように、従来においては、超高分子量ポリエチレンに匹敵する耐摩耗性を有する、比較的低分子量のポリエチレンを設計するに際し、いかなる試験方法に基づいて材料の耐摩耗性を評価すべきか、適切な摩耗試験方法が明らかにされていなかった。
 そして、特許文献2、3に記載の耐摩耗性を有するとされる樹脂が、実際に耐摩耗性が必要な用途に適用できない理由として、上記のように、分子量が比較的小さいポリエチレンの耐摩耗性を評価するための摩耗試験方法が適切ではないために、適正な樹脂の耐摩耗性の評価がなされていないことが示唆される。すなわち、耐摩耗性評価のための試験方法が適切とは言えない上、溶融成形性と耐摩耗性に加えて耐熱性も兼ね備えた材料や成形体については、何ら考慮されていなかったことが挙げられる。
Thus, conventionally, when designing a relatively low molecular weight polyethylene having wear resistance comparable to that of ultra-high molecular weight polyethylene, it is appropriate to determine what test method should be used to evaluate the wear resistance of the material. The wear test method was not clarified.
And, as described above, the reason why the resin described in Patent Documents 2 and 3 cannot be applied to applications that actually require wear resistance is that of polyethylene having a relatively low molecular weight as described above. Since the wear test method for evaluating the property is not appropriate, it is suggested that the wear resistance of the appropriate resin has not been evaluated. In other words, it cannot be said that a test method for evaluating wear resistance is appropriate, and that no consideration has been given to materials and molded bodies that have heat resistance in addition to melt moldability and wear resistance. It is done.
 このようなことから、従来においては、超高分子量ポリエチレンに匹敵する実用に耐えうる耐摩耗性を有しながら、溶融成形が可能であるようなポリエチレンの提供が求められているにもかかわらず、この要求を十分に満たすものは実現されていなかった。 For this reason, in the past, despite the need to provide polyethylene that can be melt-molded while having wear resistance that can withstand practical use comparable to ultra-high molecular weight polyethylene, Nothing that fully satisfies this requirement has been realized.
 なお、本発明者らによる検討で、砂/ラバーホイール摩耗試験は、分子量範囲に関わらず材料の耐摩耗性能を適正に評価できる試験方法であることが確認された。すなわち、砂/ラバーホイール摩耗試験は、超高分子量ポリエチレンに用いる分子量領域でも、より低分子量のポリエチレンでも、材料の耐摩耗性能を適正に示す評価方法であり、従来より推定されていた分子量と耐摩耗性との相関関係とも一致する評価方法であることが確認された。これは砂/ラバーホイール摩耗試験が、評価する樹脂に対してある程度の熱もかかるため、耐熱性も織り込んだ評価になっているためであると推定される。 It should be noted that the investigation by the present inventors confirmed that the sand / rubber wheel wear test is a test method that can appropriately evaluate the wear resistance performance of a material regardless of the molecular weight range. In other words, the sand / rubber wheel abrasion test is an evaluation method that appropriately shows the wear resistance performance of materials in both the molecular weight region used for ultra-high molecular weight polyethylene and lower molecular weight polyethylene. It was confirmed that the evaluation method was consistent with the correlation with wear. This is presumed to be because the sand / rubber wheel abrasion test also takes heat to some extent on the resin to be evaluated, and therefore the evaluation also incorporates heat resistance.
 かかる状況において、本発明が解決しようとする課題は、砂/ラバーホイール摩耗試験で測定される耐摩耗性に優れ、さらに、成形性ならびに耐熱性のバランスに優れた耐摩耗性樹脂成形体製造用エチレン系重合体、耐摩耗性樹脂成形体製造用エチレン系樹脂組成物、耐摩耗性樹脂成形体ならびにその製造方法を提供することにある。 In such a situation, the problem to be solved by the present invention is to produce a wear-resistant resin molded article having excellent wear resistance as measured by a sand / rubber wheel wear test and having a good balance between moldability and heat resistance. An object of the present invention is to provide an ethylene polymer, an ethylene resin composition for producing an abrasion-resistant resin molded article, an abrasion-resistant resin molded article, and a method for producing the same.
 本発明者らは、上記課題の解決のために鋭意検討を行った結果、シングルサイト触媒を使用してエチレン系重合体を製造し、該エチレン系重合体の分子量と融点を特定の範囲に制御することによって、上記課題が解決されることを見出し、本発明に到達した。 As a result of diligent studies to solve the above problems, the inventors of the present invention manufactured an ethylene polymer using a single site catalyst, and controlled the molecular weight and melting point of the ethylene polymer to a specific range. As a result, the present inventors have found that the above problems can be solved, and have reached the present invention.
 すなわち、本発明の要旨は、以下に存する。 That is, the gist of the present invention is as follows.
[1] 下記(1)~(5)を満たす耐摩耗性樹脂成形体製造用エチレン系重合体。
(1)エチレン単独重合体、またはエチレンと炭素数3以上20以下のα-オレフィンとの共重合体である
(2)シングルサイト触媒を用いて重合されたものである
(3)重量平均分子量Mwが、30万以上100万未満である
(4)融点Tmが、130℃以上135℃未満である
(5)該エチレン系重合体をプレス成形して得られたプレス片より作製した砂/ラバーホイール摩耗試験用の試験片について測定した砂/ラバーホイール摩耗性能が、0.035cm以上0.24cm以下である
[1] An ethylene-based polymer for producing an abrasion-resistant resin molded article that satisfies the following (1) to (5)
(1) An ethylene homopolymer or a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms (2) Polymerized using a single site catalyst (3) Weight average molecular weight Mw (4) Melting point Tm is 130 ° C. or higher and lower than 135 ° C. (5) Sand / rubber wheel produced from a press piece obtained by press molding the ethylene-based polymer The sand / rubber wheel wear performance measured for the test specimen for wear test is 0.035 cm 3 or more and 0.24 cm 3 or less.
[2] 下記(1)~(4)を満たすエチレン系重合体を含み、下記(6)を満たす、耐摩耗性樹脂成形体製造用エチレン系樹脂組成物。
(1)エチレン単独重合体、またはエチレンと炭素数3以上20以下のα-オレフィンとの共重合体である
(2)シングルサイト触媒を用いて重合されたものである
(3)重量平均分子量Mwが、30万以上100万未満である
(4)融点Tmが、130℃以上135℃未満である
(6)該エチレン系樹脂組成物をプレス成形して得られたプレス片より作製した砂/ラバーホイール摩耗試験用の試験片について測定した砂/ラバーホイール摩耗性能が、0.035cm以上0.24cm以下である
[2] An ethylene resin composition for producing an abrasion-resistant resin molded article, which contains an ethylene polymer satisfying the following (1) to (4) and satisfies the following (6).
(1) An ethylene homopolymer or a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms (2) Polymerized using a single site catalyst (3) Weight average molecular weight Mw (4) Melting point Tm is 130 ° C. or higher and lower than 135 ° C. (6) Sand / rubber made from a press piece obtained by press-molding the ethylene-based resin composition Sand / rubber wheel wear performance measured on a test piece for wheel wear test is 0.035 cm 3 or more and 0.24 cm 3 or less.
[3] 砂/ラバーホイール摩耗性能が0.035cm以上0.24cm以下である耐摩耗性樹脂成形体を製造する方法であって、[1]に記載の耐摩耗性樹脂成形体製造用エチレン系重合体、または[2]に記載の耐摩耗性樹脂成形体製造用エチレン系樹脂組成物を、溶融流動可能な状態にして成形する、耐摩耗性樹脂成形体の製造方法。 [3] A method for producing a wear-resistant resin molded product having a sand / rubber wheel wear performance of 0.035 cm 3 or more and 0.24 cm 3 or less, wherein the wear-resistant resin molded product according to [1] is produced. A method for producing an abrasion-resistant resin molded article, wherein the ethylene-based polymer or the ethylene-based resin composition for producing an abrasion-resistant resin molded article according to [2] is molded in a melt-flowable state.
[4] [3]に記載の耐摩耗性樹脂成形体の製造方法により得られる耐摩耗性樹脂成形体。
[5] [4]に記載の耐摩耗性樹脂成形体よりなる耐摩耗性樹脂部材。
[6] 前記耐摩耗性樹脂部材が、ギア、カム、スライダー、レバー、アーム、クラッチ、プーリー、ローラー、コロ、キーステム、キートップ、シャッター、リール、ワッシャー、ピストン、シリンダー、ガイドレール、ボールベアリング、ナット、ボルト、スクリュー、軸、及び軸受け、等に代表される機構部品である[5]に記載の耐摩耗性樹脂部材。
[7] 前記耐摩耗性樹脂部材が、ライニング材、鋼管被覆材、コーティング材、スキーのソール、およびスノーボードのソール、等に代表される被覆材である[5]に記載の耐摩耗性樹脂部材。
[8] 前記耐摩耗性樹脂部材が、人工股関節、人工肩関節、人工脊椎、人工膝関節、人工肘関節、人工足関節、及び人工指関節、等に代表される人工移植組織用部材である[5]に記載の耐摩耗性樹脂部材。
[9] 前記耐摩耗性樹脂部材が、チューブ、ホース、パイプ、弁、継ぎ手、シール、ガスケット、O-リング、カラム、タンク、コンテナー、バッグ、及びボトル、等に代表される液体または気体の導通経路用部材である[5]に記載の耐摩耗性樹脂部材。
[10] 前記耐摩耗性樹脂部材が、シート、プレート、ロッド、ブロック、及び丸棒、等に代表される耐摩耗性樹脂部材用中間加工品である[5]に記載の耐摩耗性樹脂部材。
[4] A wear-resistant resin molded product obtained by the method for producing a wear-resistant resin molded product according to [3].
[5] A wear-resistant resin member comprising the wear-resistant resin molded article according to [4].
[6] The wear-resistant resin member is a gear, cam, slider, lever, arm, clutch, pulley, roller, roller, key stem, key top, shutter, reel, washer, piston, cylinder, guide rail, ball bearing, The wear-resistant resin member according to [5], which is a mechanical component represented by a nut, a bolt, a screw, a shaft, a bearing, and the like.
[7] The wear-resistant resin member according to [5], wherein the wear-resistant resin member is a coating material represented by a lining material, a steel pipe coating material, a coating material, a ski sole, a snowboard sole, and the like. .
[8] The wear-resistant resin member is a member for an artificial graft tissue represented by an artificial hip joint, an artificial shoulder joint, an artificial spine, an artificial knee joint, an artificial elbow joint, an artificial ankle joint, an artificial finger joint, and the like. The wear-resistant resin member according to [5].
[9] The wear-resistant resin member is a liquid or gas continuity represented by tubes, hoses, pipes, valves, joints, seals, gaskets, O-rings, columns, tanks, containers, bags, bottles, etc. The wear-resistant resin member according to [5], which is a route member.
[10] The wear-resistant resin member according to [5], wherein the wear-resistant resin member is an intermediate processed product for a wear-resistant resin member represented by a sheet, a plate, a rod, a block, a round bar, and the like. .
 本発明の耐摩耗性樹脂成形体製造用エチレン系重合体、及び耐摩耗性樹脂成形体製造用エチレン系樹脂組成物のうち少なくとも一方を用いることにより、耐摩耗性に優れたエチレン系樹脂成形体を、溶融成形法等の一般的な樹脂成形方法で得ることが可能となる。
 本発明によって提供される耐摩耗性樹脂成形体は、従来、超高分子量ポリエチレンが使用されてきた応用分野に適用可能であり、しかもこの耐摩耗性樹脂成形体は、溶融成形法によって高い生産性で製造可能であるため、工業的にきわめて有用である。
 また、本発明の耐摩耗性樹脂成形体は結晶性が比較的高く、耐熱性が求められる分野ないしは環境下での使用が可能であり、この観点からも工業的にきわめて有用である。
By using at least one of the ethylene-based polymer for producing an abrasion-resistant resin molded body of the present invention and the ethylene-based resin composition for producing an abrasion-resistant resin molded body, an ethylene-based resin molded body having excellent abrasion resistance. Can be obtained by a general resin molding method such as a melt molding method.
The wear-resistant resin molded article provided by the present invention can be applied to an application field in which ultrahigh molecular weight polyethylene has been used, and this wear-resistant resin molded article is highly productive by a melt molding method. Therefore, it is extremely useful industrially.
Further, the wear-resistant resin molded article of the present invention has relatively high crystallinity and can be used in fields or environments where heat resistance is required. From this viewpoint, it is extremely useful industrially.
 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はこれらの内容に特定はされるものではない。 DESCRIPTION OF EMBODIMENTS Embodiments of the present invention will be described in detail below. However, the description of constituent elements described below is an example (representative example) of embodiments of the present invention, and the present invention is specified by these contents. It is not a thing.
 なお、以下の説明において、「重合」という用語は、1種類のモノマーによる単独重合と、複数種のモノマーによる共重合とを総称するものであり、特に両者を区別する必要がない場合には、総称して単に「重合」と記載する。 In the following description, the term “polymerization” is a collective term for homopolymerization by one type of monomer and copolymerization by a plurality of types of monomers, and it is not particularly necessary to distinguish between the two. Collectively, it is simply described as “polymerization”.
[耐摩耗性評価]
 ポリマーを成形して得られる成形体の耐摩耗性の評価には、いくつかの方法がある。本発明のように、超高分子量ポリエチレンが使用されるような高い耐摩耗性が要求される分野では、一般に、以下の砂/ラバーホイール摩耗試験(Sand Wheel Abrasion Test)と砂スラリー摩耗試験(Sand Slurry Abrasion Test)のふたつが広く用いられている。
 また、Hutchingsらは、以下に示すような方法で、材料の耐摩耗性を評価している(非特許文献2参照)。
[Abrasion resistance evaluation]
There are several methods for evaluating the wear resistance of a molded product obtained by molding a polymer. As in the present invention, in the field where high wear resistance is required such that ultra high molecular weight polyethylene is used, the following sand / rubber wheel abrasion test (Sand Wheel Absorption Test) and sand slurry abrasion test (Sand) Two of the Slurry Abrasion Tests are widely used.
In addition, Hutchings et al. Evaluate the wear resistance of a material by the following method (see Non-Patent Document 2).
 しかしながら、摩耗試験の結果は試験法に強く依存しており、実用的な観点から材料の耐摩耗性を評価するにあたっては、材料が実際にどのような環境で用いられ、どのような摩耗にさらされるかを考慮して、最適な摩耗試験法を選択する必要がある。
 本発明者らは、後述の実施例の項で明らかにされるように、各摩耗試験について検討の結果、砂スラリー摩耗試験は、実際には耐摩耗性が必要な分野には使用不能な、比較的低分子量、具体的には分子量100万未満、特に30万以下のポリエチレンと、超高分子量ポリエチレンとについてほぼ同等の評価結果を導くため、低分子量のポリエチレンを過大評価する傾向にあることを見出した。すなわち、砂/スラリー摩耗試験は、耐摩耗性の評価方法として不適であることを見出した。
 一方、砂/ラバーホイール摩耗試験は、上記のような比較的低分子量のポリエチレンの耐摩耗性と、超高分子量ポリエチレンの耐摩耗性とを明確に区別できることから、本発明の目的である耐摩耗性を有する成形体の評価に適していると判断された。
However, the results of the wear test are highly dependent on the test method, and when evaluating the wear resistance of a material from a practical point of view, the material is actually used in any environment and exposed to any wear. Therefore, it is necessary to select an optimal wear test method.
As will be clarified in the section of Examples below, the present inventors have examined each wear test, and as a result, the sand slurry wear test cannot be used in a field that actually requires wear resistance. In order to lead to almost the same evaluation results for polyethylene having a relatively low molecular weight, specifically, a molecular weight of less than 1 million, particularly 300,000 or less, and ultra-high molecular weight polyethylene, the low molecular weight polyethylene tends to be overestimated. I found it. That is, it was found that the sand / slurry wear test is not suitable as a method for evaluating wear resistance.
On the other hand, the sand / rubber wheel abrasion test can clearly distinguish between the abrasion resistance of the relatively low molecular weight polyethylene and the abrasion resistance of the ultra high molecular weight polyethylene as described above. It was judged that it was suitable for evaluation of a molded article having properties.
<砂/ラバーホイール摩耗試験>
 砂/ラバーホイール摩耗試験は、ASTM G65によって規定されている試験法であり、該規格を満足する砂/ラバーホイール摩耗試験機を使用する。
 具体的には、帯鋸を用いて、0.25インチ×1.00インチ×3.00インチの試験片を作成し、試験片の質量(g)を測定する。次に、砂/ラバーホイル摩耗試験機のホッパーに試験用砂(22.7kg)を入れる。試験片を砂/ラバーホイール摩耗試験機の固定治具に固定し、試験用砂を300g/minで流しながらラバーホイールを200rpmで回転させ、室温で、試験片を該ラバーホイールに荷重30ポンドで押し当てる。ラバーホイールが3200回転したところで試験を終了する。試験片を固定治具から取り外し、試験片表面に付着した砂をふき取る。次いで試験片の質量(g)を測定する。摩耗による試験片の質量減少量(g)を計算し、該質量減少量(g)を試験片の密度(g/cm)で割って摩耗による損失体積(cm)を求める。本明細書においては、本手法で得られた損失体積(cm)を砂/ラバーホイール摩耗性能(SWA,Sand Wheel Abrasion)と称する。
<Sand / rubber wheel wear test>
The sand / rubber wheel abrasion test is a test method defined by ASTM G65, and a sand / rubber wheel abrasion tester that satisfies the standard is used.
Specifically, a test piece of 0.25 inch × 1.00 inch × 3.00 inch is prepared using a band saw, and the mass (g) of the test piece is measured. The test sand (22.7 kg) is then placed in the hopper of a sand / rubber foil wear tester. The test piece is fixed to a fixing jig of a sand / rubber wheel abrasion tester, and the rubber wheel is rotated at 200 rpm while flowing the test sand at 300 g / min. At room temperature, the test piece is applied to the rubber wheel at a load of 30 pounds. Press. The test is terminated when the rubber wheel rotates 3200 times. Remove the specimen from the fixture and wipe off the sand adhering to the specimen surface. Next, the mass (g) of the test piece is measured. The mass reduction amount (g) of the test piece due to wear is calculated, and the loss volume (cm 3 ) due to wear is determined by dividing the mass reduction amount (g) by the density (g / cm 3 ) of the test piece. In this specification, the loss volume (cm 3 ) obtained by this method is referred to as sand / rubber wheel wear performance (SWA, Sand Wheel Ablation).
 なお、試験に用いる砂としては、American Foundry Sand社製の50-70試験用砂を使用する。この砂は、篩により、粒径がおおむね50メッシュ(300μm)から70メッシュ(212μm)の範囲におさまるように調製されている。より正確には、以下の仕様を満足する粒径分布に調製されている。
 仕様:粒径が212μm以上300μm未満の砂が全体の95重量%以上で、300μm以上425μm未満の砂が5重量%以下
As the sand used in the test, 50-70 test sand manufactured by American Foundry Sand is used. This sand is prepared by a sieve so that the particle size is approximately in the range of 50 mesh (300 μm) to 70 mesh (212 μm). More precisely, the particle size distribution satisfies the following specifications.
Specifications: 95% by weight or more of sand having a particle size of 212 μm or more and less than 300 μm, and 5% by weight or less of sand having a particle size of 300 μm or more and less than 425 μm
<砂スラリー摩耗試験>
 砂スラリー試験は、ASTM D4020に基づいて、以下のようにして行われる。
 具体的には、試験に用いる材料のプレス片から、0.250インチ×1.000インチ×2.750インチの試験片を切削加工にて作成する。得られた試験片の中心に、ドリルを用いて11/32インチの穴を開け、この穴から約1/8インチ離れた場所に、9/64インチのもう一つの穴を開ける。
 試験片の質量(g)を測定し、試験片の切削加工面を上にし、中心に開けた11/32インチの穴を通してボルトで試験片を装置に固定する。次に、シャフトから出ているピンを9/64インチの穴に通し、試験片の装着角度を決める。
 American Foundry Sand社製の50-70試験用アルミナ(450g)を測り取り、カップに注ぐ。該アルミナの粒径分布は、American Foundry Sand社製の50-70試験用砂と同様に調製されている。次いで、300gの水を測り取り、カップに加える。水/アルミナスラリーの入ったカップを装置に固定し、試験片を該スラリーに完全に浸す。
 チラーユニットを作動させて温度を23℃±2℃に保持しながら、シャフトならびに試験片を1750rpmで120分間回転させる。終了後、試験片を装置から取り外し、試験片表面に残った水およびアルミナを拭き取った後、乾燥させる。水が完全に乾燥したことを確認した後、試験片の質量(g)を測定し、摩耗による試験片の質量減少量(g)を計算する。最後に、該質量減少量(g)を試験片の密度(g/cm)で割って摩耗による損失体積(cm)を求める。本明細書では、本手法で得られた損失体積(cm)を砂スラリー摩耗性能(Sand Slurry Abrasion)と称する。
<Sand slurry wear test>
The sand slurry test is performed as follows based on ASTM D4020.
Specifically, a test piece of 0.250 inch × 1.000 inch × 2.750 inch is prepared by cutting from a pressed piece of material used for the test. A 11/32 inch hole is drilled in the center of the resulting specimen, and another 9/64 inch hole is drilled about 1/8 inch away from the hole.
The weight (g) of the test piece is measured, and the test piece is fixed to the apparatus with a bolt through a 11/32 inch hole drilled in the center with the cut surface of the test piece facing up. Next, the pin protruding from the shaft is passed through a 9/64 inch hole to determine the mounting angle of the test piece.
Weigh 50-70 test alumina (450 g) from American Foundry Sand and pour into a cup. The particle size distribution of the alumina is prepared in the same manner as the 50-70 test sand made by American Foundry Sand. Then 300 g of water is weighed and added to the cup. The cup containing the water / alumina slurry is fixed to the apparatus, and the specimen is completely immersed in the slurry.
The shaft and the test piece are rotated at 1750 rpm for 120 minutes while the chiller unit is operated and the temperature is maintained at 23 ° C. ± 2 ° C. After completion, the test piece is removed from the apparatus, and water and alumina remaining on the surface of the test piece are wiped off and dried. After confirming that the water has completely dried, the mass (g) of the test piece is measured, and the mass reduction amount (g) of the test piece due to wear is calculated. Finally, the mass loss (g) is divided by the density (g / cm 3 ) of the test piece to determine the loss volume (cm 3 ) due to wear. In the present specification, the loss volume (cm 3 ) obtained by this method is referred to as sand slurry abrasion performance (Sand Slurry Ablation).
<Hutchingsの方法>
 2本の同軸駆動シャフトの間に締め付けた1インチのタングステンカーバイド球(Atlas Ball&Bearing Co.Ltd.社製、表面粗度:400nm)を150rpmで定速回転させ、試験片を球に対して0.27Nの垂直力Fで押し当て、シリコンカーバイドの水スラリー(平均粒径:4~5μm,濃度:0.75g/cm)を、5cm/minの供給速度で球に滴下する。試験開始から終了まで、球の回転数は9000回転とする。これは、球が試験片の上を滑った滑り距離Sとして、718mに相当する。試験終了後、試験片が研磨されることによって生成する摩耗クレーターを光学顕微鏡を用いて測定し、摩耗容積V(mm)を測定する。材料の耐摩耗性能は、V=kSFで定義される摩耗係数k(mm/Nm)で評価され、kが小さいほど材料の耐摩耗性が良いことを示す。
<Method of Hutchings>
A 1-inch tungsten carbide sphere (made by Atlas Ball & Bearing Co. Ltd., surface roughness: 400 nm) clamped between two coaxial drive shafts was rotated at a constant speed of 150 rpm, and the test piece was adjusted to a diameter of 0. Pressing with a normal force F of 27 N, an aqueous slurry of silicon carbide (average particle size: 4 to 5 μm, concentration: 0.75 g / cm 3 ) is dropped onto the sphere at a supply rate of 5 cm 3 / min. From the start to the end of the test, the rotation speed of the sphere is 9000 rotations. This corresponds to 718 m as the sliding distance S over which the sphere slipped on the test piece. After the test, the wear crater generated by polishing the test piece is measured using an optical microscope, and the wear volume V (mm 3 ) is measured. The wear resistance performance of the material is evaluated by a wear coefficient k (mm 3 / Nm) defined by V = kSF, and the smaller k is, the better the wear resistance of the material is.
[耐摩耗性樹脂成形体製造用エチレン系重合体]
 本発明の耐摩耗性樹脂成形体製造用エチレン系重合体(以下、「本発明のエチレン系重合体」と称す場合がある。)は、下記(1)~(5)を満たすことを特徴とするものである。
(1)エチレン単独重合体、またはエチレンと炭素数3以上20以下のα-オレフィンとの共重合体である。
(2)シングルサイト触媒を用いて重合されたものである。
(3)重量平均分子量Mwが、30万以上100万未満である。
(4)融点Tmが、130℃以上135℃未満である。
(5)該エチレン系重合体をプレス成形して得られたプレス片より作製した砂/ラバーホイール摩耗試験用の試験片について測定した砂/ラバーホイール摩耗性能が、0.035cm以上0.24cm以下である。
[Ethylene polymer for production of wear-resistant resin moldings]
The ethylene-based polymer for producing an abrasion-resistant resin molded body of the present invention (hereinafter sometimes referred to as “the ethylene-based polymer of the present invention”) satisfies the following (1) to (5): To do.
(1) An ethylene homopolymer or a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms.
(2) Polymerized using a single site catalyst.
(3) The weight average molecular weight Mw is 300,000 or more and less than 1 million.
(4) Melting | fusing point Tm is 130 degreeC or more and less than 135 degreeC.
(5) Sand / rubber wheel wear performance measured on a test piece for sand / rubber wheel wear test prepared from a press piece obtained by press-molding the ethylene-based polymer is 0.035 cm 3 or more and 0.24 cm. 3 or less.
1.エチレン系重合体
 本発明におけるエチレン系重合体とは、エチレンの単独重合体、またはエチレンと炭素数3以上20以下とのα-オレフィンとの共重合体である。
1. Ethylene polymer The ethylene polymer in the present invention is a homopolymer of ethylene or a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms.
1.1 モノマー
1.1.1 エチレン
 本発明のエチレン系重合体の原料モノマーであるエチレンは、式CH=CHで表され、本発明のエチレン系重合体における主要な原料モノマーである。
1.1 Monomer 1.1.1 Ethylene Ethylene, which is a raw material monomer of the ethylene polymer of the present invention, is represented by the formula CH 2 = CH 2 and is the main raw material monomer in the ethylene polymer of the present invention.
1.1.2 α-オレフィン
 本発明のエチレン系重合体において、エチレンとの共重合成分として用いることができるα-オレフィンは、具体的に表すと一般式CH=CH-Rで表されるモノマーである。ここで、Rは炭素数1~18の炭化水素基であり、分岐、環、および不飽和結合の少なくともいずれかを有していてもよい。
 Rの炭素数が18より大きいと十分な重合活性が発現しない場合がある。好ましいα-オレフィンは、Rの炭素数が10以下であるα-オレフィン、すなわち炭素数3~12のα-オレフィンである。
1.1.2 α-Olefin An α-olefin that can be used as a copolymerization component with ethylene in the ethylene polymer of the present invention is specifically represented by the general formula CH 2 ═CH—R. Monomer. Here, R is a hydrocarbon group having 1 to 18 carbon atoms, and may have at least one of a branch, a ring, and an unsaturated bond.
If the carbon number of R is greater than 18, sufficient polymerization activity may not be exhibited. Preferred α-olefins are α-olefins in which R has 10 or less carbon atoms, that is, α-olefins having 3 to 12 carbon atoms.
 具体的に好ましいα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、ビニルシクロヘキセン、スチレン等が挙げられる。これらのα-オレフィンは1種類使用してもよいし、2種類以上のα-オレフィンを併用してもよい。 Specific preferred α-olefins include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene, vinylcyclohexene. And styrene. One kind of these α-olefins may be used, or two or more kinds of α-olefins may be used in combination.
1.2 組成
 本発明のエチレン系重合体は、エチレン単独重合体、またはエチレンと炭素数3以上20以下のα-オレフィンとの共重合体である。即ち、本発明のエチレン系重合体は、本発明の特性を満たす限りにおいて、単独重合体、共重合体のいずれでもよく、特に限定されるものではない。なお、ここでいうエチレン単独重合体とは、原料モノマーとしてエチレンのみを重合したものをいう。
 本発明のエチレン系重合体がエチレンと炭素数3以上20以下のα-オレフィンとの共重合体である場合、共重合成分であるα-オレフィンの含有量は特に限定されないが、少ない方が好ましい。
1.2 Composition The ethylene polymer of the present invention is an ethylene homopolymer or a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms. That is, the ethylene polymer of the present invention may be either a homopolymer or a copolymer as long as the characteristics of the present invention are satisfied, and is not particularly limited. The ethylene homopolymer here refers to a polymer obtained by polymerizing only ethylene as a raw material monomer.
When the ethylene-based polymer of the present invention is a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms, the content of the α-olefin as a copolymerization component is not particularly limited, but a smaller one is preferable. .
 具体的には、エチレン系重合体中に含まれる共重合成分の量は、特に限定されるものではないが、通常エチレン系重合体の全重量中の5重量%以下、好ましくは2重量%以下、さらに好ましくは1重量%以下、特に好ましくは0.5重量%以下である。
 エチレン系重合体中の共重合成分の含有量が上記上限を超えると、エチレン系重合体の結晶性が低下する、耐摩耗性が低下する、または剛性や耐熱性といった実用的な物性が損なわれる場合がある。共重合成分の含有量の下限は特に限定されるものではなく、少ないほうが好ましく、本発明の実用的な物性を低下させない程度の微量が含まれていることがより好ましい。
 エチレン系重合体は、結晶性が高く、物性の調整も容易で生産性も高いことから、エチレン単独重合体であることが最も好ましい。
Specifically, the amount of the copolymer component contained in the ethylene polymer is not particularly limited, but is usually 5% by weight or less, preferably 2% by weight or less, based on the total weight of the ethylene polymer. More preferably, it is 1% by weight or less, particularly preferably 0.5% by weight or less.
If the content of the copolymer component in the ethylene polymer exceeds the above upper limit, the crystallinity of the ethylene polymer is lowered, the wear resistance is lowered, or practical physical properties such as rigidity and heat resistance are impaired. There is a case. The lower limit of the content of the copolymer component is not particularly limited, and is preferably as small as possible, and more preferably contains a trace amount that does not deteriorate the practical physical properties of the present invention.
The ethylene polymer is most preferably an ethylene homopolymer because of its high crystallinity, easy physical property adjustment, and high productivity.
 本発明のエチレン系重合体は、1種類のエチレン系重合体のみでもよいし、2種類以上のエチレン系重合体を混合して用いてもよい。2種類以上のエチレン系重合体を用いる場合、同一の触媒を用いて、モノマーや重合条件を変えて重合した2種類以上のエチレン系重合体を用いてもよいし、異なる触媒を用いて重合した2種類以上のエチレン系重合体を用いてもよい。なお、ここで異なる触媒とは、後述のシングルサイト触媒における重合活性種や担体、共触媒、助触媒等の任意成分の種類や割合が異なるものを言う。また、2種類以上のエチレン系重合体は、共重合成分の種類や含量が異なるものであってもよく、分子量、融点が異なるものであってもよい。 The ethylene polymer of the present invention may be a single ethylene polymer or a mixture of two or more ethylene polymers. When two or more types of ethylene polymers are used, two or more types of ethylene polymers polymerized by changing the monomer and polymerization conditions using the same catalyst may be used, or polymerization is performed using different catalysts. Two or more types of ethylene polymers may be used. In addition, a different catalyst means here that the kind and ratio of arbitrary components, such as a polymerization active seed | species in a below-mentioned single site catalyst, a support | carrier, a cocatalyst, and a promoter, differ. In addition, the two or more types of ethylene-based polymers may have different types and contents of copolymerization components, and may have different molecular weights and melting points.
1.3 分子量
 本発明のエチレン系重合体の重量平均分子量Mwは、30万以上、100万未満である。エチレン系重合体の重量平均分子量Mwが上記上限を超えると、溶融粘度が高くなり、融点以上に加熱してもゴム状の固体のような挙動を示し、溶融時の流動性が得られない。一方、重量平均分子量Mwが上記下限未満では、得られる成形体の砂/ラバーホイール摩耗性能が悪化し、耐摩耗性が低下する。
 エチレン系重合体の重量平均分子量Mwは、本発明の目的を満たす限りにおいて、低い方が溶融時の流動性が向上する点で好ましく、具体的に好ましくは90万以下、より好ましくは85万以下である。また、重量平均分子量Mwの下限は高い方が耐摩耗性が向上する点で好ましく、具体的に好ましくは35万以上、より好ましくは40万以上である。
1.3 Molecular Weight The weight average molecular weight Mw of the ethylene polymer of the present invention is 300,000 or more and less than 1 million. When the weight average molecular weight Mw of the ethylene polymer exceeds the above upper limit, the melt viscosity becomes high, and even when heated to the melting point or higher, it behaves like a rubber-like solid and fluidity at the time of melting cannot be obtained. On the other hand, when the weight average molecular weight Mw is less than the above lower limit, the sand / rubber wheel wear performance of the obtained molded article is deteriorated and the wear resistance is lowered.
As long as the weight average molecular weight Mw of the ethylene polymer satisfies the object of the present invention, the lower one is preferable in terms of improving the fluidity at the time of melting. It is. Moreover, the higher lower limit of the weight average molecular weight Mw is preferable from the viewpoint of improving the wear resistance, specifically preferably 350,000 or more, more preferably 400,000 or more.
 また、本発明のエチレン系重合体の分子量分布(Mw/Mn)は、特に限定されるものではないが、小さい方が好ましく、具体的には5.0以下が好ましく、4.5以下が特に好ましい。 Further, the molecular weight distribution (Mw / Mn) of the ethylene-based polymer of the present invention is not particularly limited, but is preferably smaller, specifically 5.0 or less, particularly 4.5 or less. preferable.
 本発明のエチレン系重合体の数平均分子量Mnは特に限定されるものではないが、通常8万以上、好ましくは10万以上、より好ましくは15万以上であり、また通常50万以下、好ましくは40万以下、より好ましくは35万以下である。
 エチレン系重合体の数平均分子量Mnが上記下限値未満では、分子量分布(Mw/Mn)が大きくなり、構造上の欠陥が多くなり、耐摩耗性が低下する傾向がある。一般的に数平均分子量Mnが大きいほど、ポリエチレン鎖において、炭素-炭素結合の欠如が少ないことを表し、それに基づく構造上の欠陥が減少することから、数平均分子量が大きいほど耐摩耗性が向上すると考えられる。
The number average molecular weight Mn of the ethylene polymer of the present invention is not particularly limited, but is usually 80,000 or more, preferably 100,000 or more, more preferably 150,000 or more, and usually 500,000 or less, preferably It is 400,000 or less, more preferably 350,000 or less.
If the number average molecular weight Mn of the ethylene-based polymer is less than the lower limit, the molecular weight distribution (Mw / Mn) increases, the number of structural defects tends to increase, and the wear resistance tends to decrease. In general, the higher the number average molecular weight Mn, the less carbon-carbon bonds in the polyethylene chain, and the fewer structural defects based on it, so the higher the number average molecular weight, the better the wear resistance. I think that.
 なお、エチレン系重合体の重量平均分子量Mw、数平均分子量Mnは、後掲の実施例の項に記載される方法で測定される。
 本発明のエチレン系重合体が2種以上のエチレン系重合体よりなる場合、エチレン系重合体の重量平均分子量Mw、数平均分子量Mnは、これら2種以上のエチレン系重合体の混合物に対して測定される。従って、エチレン系重合体の混合物の重量平均分子量Mw、数平均分子量Mnが上記範囲にあればよく、個々のエチレン系重合体の重量平均分子量Mw、数平均分子量Mnは、必ずしも上記範囲内でなくてもよい。
The weight average molecular weight Mw and the number average molecular weight Mn of the ethylene polymer are measured by the methods described in the Examples section below.
When the ethylene polymer of the present invention is composed of two or more ethylene polymers, the weight average molecular weight Mw and number average molecular weight Mn of the ethylene polymer are relative to the mixture of these two or more ethylene polymers. Measured. Therefore, the weight average molecular weight Mw and the number average molecular weight Mn of the mixture of the ethylene polymers may be in the above ranges, and the weight average molecular weight Mw and the number average molecular weight Mn of each ethylene polymer are not necessarily in the above ranges. May be.
1.4 融点
 本発明のエチレン系重合体の融点Tmは、130℃以上135℃未満である。エチレン系重合体の融点Tmが上記下限未満では、本発明で目的とする砂/ラバーホイール摩耗性能が得られない。融点Tmが上記上限超過では、可塑化速度が低下し、生産性が低下する、耐衝撃性が悪化するといった不具合が起こる場合がある。
 前記した理由により、本発明のエチレン系重合体は、耐熱性が高い方が好ましい。すなわち、物性としては融点が高い方が好ましいことを表す。そして一般的にポリオレフィンの融点は、そのポリオレフィンの結晶性を表すことから、結晶性が高い方が好ましい。
1.4 Melting | fusing point Melting | fusing point Tm of the ethylene-type polymer of this invention is 130 degreeC or more and less than 135 degreeC. When the melting point Tm of the ethylene polymer is less than the above lower limit, the sand / rubber wheel wear performance intended in the present invention cannot be obtained. When the melting point Tm exceeds the above upper limit, there may be a problem that the plasticization rate decreases, the productivity decreases, and the impact resistance deteriorates.
For the reasons described above, the ethylene polymer of the present invention preferably has higher heat resistance. That is, as a physical property, a higher melting point is preferable. And since the melting point of polyolefin generally represents the crystallinity of the polyolefin, the higher the crystallinity is preferable.
 なお、エチレン系重合体の融点Tmは、後掲の実施例の項に記載される方法で測定される。
 本発明のエチレン系重合体が2種以上のエチレン系重合体よりなる場合、エチレン系重合体の融点Tmは、これら2種以上のエチレン系重合体の混合物に対して測定される。従って、エチレン系重合体の混合物の融点Tmが上記範囲にあればよく、個々のエチレン系重合体の融点Tmは、必ずしも上記範囲内でなくてもよい。
The melting point Tm of the ethylene polymer is measured by the method described in the Examples section below.
When the ethylene polymer of the present invention comprises two or more ethylene polymers, the melting point Tm of the ethylene polymer is measured with respect to a mixture of these two or more ethylene polymers. Therefore, the melting point Tm of the mixture of ethylene polymers only needs to be in the above range, and the melting point Tm of each ethylene polymer does not necessarily have to be in the above range.
1.5 その他構造上の特徴
 本発明のエチレン系重合体は、構造中の分岐については特に限定されるものではないが、短鎖分岐の数が少ないことが好ましい。これは、短鎖分岐の数が少ない方が、融点Tmの低下を抑制でき、耐摩耗性を向上させることができることによる。
 なお、短鎖分岐数を制御する手法としては、特に限定されないが、
 (1) 共重合成分のα-オレフィンの使用量を制御して、短鎖分岐数を制御する手法、
 (2) 重合に使用する触媒の選択により短鎖分岐を制御する手法、
 (3) 重合温度、重合圧力の制御により短鎖分岐数を制御する手法
などが挙げられる。
1.5 Other Structural Features The ethylene polymer of the present invention is not particularly limited with respect to branching in the structure, but it is preferable that the number of short chain branches is small. This is because the smaller the number of short chain branches, the lowering of the melting point Tm can be suppressed, and the wear resistance can be improved.
The method for controlling the number of short chain branches is not particularly limited,
(1) A method of controlling the number of short-chain branches by controlling the amount of α-olefin used as a copolymerization component,
(2) A method of controlling short chain branching by selecting a catalyst used for polymerization,
(3) A method of controlling the number of short chain branches by controlling the polymerization temperature and the polymerization pressure can be mentioned.
 本発明のエチレン系重合体は、その重合体の主鎖に炭素-炭素不飽和結合を有していてもよい。炭素-炭素不飽和結合としては、具体的にはビニレン基、ビニリデン基、ビニル基などが挙げられ、好ましくはビニレン基である。こうした炭素-炭素不飽和結合が存在することにより、エチレン系重合体に有機過酸化物や放射線を用いて架橋を施す際に、架橋化が効率的に進行するようになる。
 エチレン系重合体の主鎖に、このような炭素-炭素不飽和結合を導入するためには、重合反応中に成長末端から水素分子を放出するような触媒を用いればよい。シングルサイト触媒であれば、一例として、Organometallics 1999,18,3781.のようなものが挙げられる。
The ethylene polymer of the present invention may have a carbon-carbon unsaturated bond in the main chain of the polymer. Specific examples of the carbon-carbon unsaturated bond include a vinylene group, a vinylidene group, a vinyl group, and the like, and a vinylene group is preferable. Due to the presence of such a carbon-carbon unsaturated bond, the crosslinking proceeds efficiently when the ethylene polymer is crosslinked using an organic peroxide or radiation.
In order to introduce such a carbon-carbon unsaturated bond into the main chain of the ethylene-based polymer, a catalyst that releases hydrogen molecules from the growth terminal during the polymerization reaction may be used. If it is a single site catalyst, as an example, Organometallics 1999, 18, 3781. There are some examples.
1.6 物性
 本発明のエチレン系重合体の機械強度のうち、耐衝撃性は高い方が好ましい。これは短時間で強い外力を受けるような摩耗に抗するために特に重要である。耐衝撃性を評価する手法は複数あるが、最も代表的な測定法であるアイゾッド(Izod)衝撃試験(JIS K7110)において、特に限定はされないが、通常60kJ/m以上であることが好ましく、特に80kJ/mであることが好ましい。なお、このアイゾット衝撃試験の試験片は圧縮成形により作製されたものである。
 本発明のエチレン系重合体が2種以上のエチレン系重合体よりなる場合、エチレン系重合体のアイゾッド(Izod)衝撃試験は、これら2種以上のエチレン系重合体の混合物に対して測定される。従って、エチレン系重合体の混合物のアイゾッド(Izod)衝撃試験が上記範囲にあればよく、個々のエチレン系重合体のアイゾッド(Izod)衝撃試験は、必ずしも上記範囲内でなくてもよい。
 本発明のエチレン系重合体は、通常、溶融流動性を有する。溶融流動性を有するとは、加熱することによって通常の樹脂の溶融加工等に適用可能な程度に流動性を有することをいい、具体的には、後述する樹脂の流動性の評価条件のうち、メルトフローレート(MFR)とフローレシオメルトフローレート(HLMFR)の少なくとも一方を測定することが可能な状態をいう。
1.6 Physical Properties Of the mechanical strength of the ethylene polymer of the present invention, higher impact resistance is preferred. This is particularly important for resisting wear that is subject to strong external forces in a short time. Although there are a plurality of methods for evaluating impact resistance, in the Izod impact test (JIS K7110) which is the most representative measurement method, although not particularly limited, it is usually preferably 60 kJ / m 2 or more. In particular, it is preferably 80 kJ / m 2 . In addition, the test piece of this Izod impact test was produced by compression molding.
When the ethylene polymer of the present invention comprises two or more ethylene polymers, the Izod impact test of the ethylene polymer is measured on a mixture of these two or more ethylene polymers. . Accordingly, the Izod impact test of the ethylene polymer mixture may be within the above range, and the Izod impact test of each ethylene polymer may not necessarily be within the above range.
The ethylene polymer of the present invention usually has melt fluidity. Having melt fluidity means having fluidity to the extent that it can be applied to normal resin melt processing, etc. by heating, specifically, among the evaluation conditions for resin fluidity described below, A state in which at least one of a melt flow rate (MFR) and a flow ratio melt flow rate (HLMFR) can be measured.
 本発明のエチレン系重合体は、砂/ラバーホール摩耗試験(ASTM G65)において、0.035cm以上、0.24cm以下の耐摩耗性能を示す。この砂/ラバーホイール摩耗性能の下限値として好ましくは0.04cm、上限値として好ましくは0.20cmである。この砂/ラバーホイール摩耗性能が、上記上限超過では、超高分子量ポリエチレンが実際に使用されているような用途分野での実用に十分な耐摩耗性を有さず、上記下限未満では、加工性が下がり、製造が困難な場合がある。
 なお、エチレン系重合体の砂/ラバーホイール摩耗性能は、具体的には、後掲の実施例の項に記載される方法で測定される。
 本発明のエチレン系重合体が2種以上のエチレン系重合体よりなる場合、エチレン系重合体の砂/ラバーホイール摩耗性能についても、このエチレン系重合体の混合物について測定した値であり、このエチレン系重合体の混合物が上記砂/ラバーホイール摩耗性能の範囲を満たせばよい。
The ethylene-based polymer of the present invention exhibits a wear resistance of 0.035 cm 3 or more and 0.24 cm 3 or less in a sand / rubber hole wear test (ASTM G65). The lower limit of the sand / rubber wheel wear performance is preferably 0.04 cm 3 and the upper limit is preferably 0.20 cm 3 . If the sand / rubber wheel wear performance exceeds the above upper limit, it does not have sufficient wear resistance for practical use in an application field where ultra-high molecular weight polyethylene is actually used. May be difficult to manufacture.
In addition, the sand / rubber wheel wear performance of the ethylene-based polymer is specifically measured by the method described in the Examples section below.
When the ethylene polymer of the present invention is composed of two or more ethylene polymers, the sand / rubber wheel wear performance of the ethylene polymer is also a value measured for the mixture of ethylene polymers. It is only necessary that the mixture of the base polymer satisfies the above sand / rubber wheel wear performance range.
2.エチレン系重合体の製造方法
 本発明のエチレン系重合体の製造においては、本発明の目的を逸脱しない限り、各種公知の重合反応、製造方法を用いることができる。
2. Production Method of Ethylene Polymer In the production of the ethylene polymer of the present invention, various known polymerization reactions and production methods can be used without departing from the object of the present invention.
2.1 原料等
 本発明のエチレン系重合体の製造においては、原料モノマーとしてエチレン、および必要に応じて炭素数3以上20以下のα-オレフィンが用いられる。これら各原料の組成比、純度等は、得られるポリエチレン系重合体の性能が本発明の目的を満たすものであれば特に制限されるものではなく、所望のエチレン系重合体を製造するために適宜調整することができる。
 また、溶媒等の反応剤、あるいは重合反応条件については、後述する条件を適宜組み合わせて所望のポリエチレン系重合体を製造することができる。
2.1 Raw Material, etc. In the production of the ethylene polymer of the present invention, ethylene and, if necessary, an α-olefin having 3 to 20 carbon atoms are used as a raw material monomer. The composition ratio, purity, and the like of each raw material are not particularly limited as long as the performance of the obtained polyethylene polymer satisfies the object of the present invention, and is appropriately selected for producing a desired ethylene polymer. Can be adjusted.
Moreover, about the reaction agents, such as a solvent, or polymerization reaction conditions, the desired polyethylene-type polymer can be manufactured combining suitably the conditions mentioned later.
2.2 シングルサイト触媒
 本発明のエチレン系重合体の製造においては、シングルサイト触媒を使用する。ここで、シングルサイト触媒とは、遷移金属錯体を重合活性種とする触媒を意味する。シングルサイト触媒は、重合活性種が遷移金属錯体であるため、活性点の均一性が高く、シングルサイト触媒を用いて重合して得られる重合体(ポリマー)は、例えばチーグラー・ナッタ触媒等を用いて重合して得られる重合体と比較して、前記した重合体の分子量分布や組成分布が狭く、特に、低分子量成分の生成量が少ないという利点がある。重合体中の低分子量成分の生成量が増えると砂/ラバーホイール摩耗性能が悪化すると同時に、耐衝撃性などの機械物性も悪化するので好ましくない。
2.2 Single-site catalyst A single-site catalyst is used in the production of the ethylene-based polymer of the present invention. Here, the single site catalyst means a catalyst having a transition metal complex as a polymerization active species. The single-site catalyst is a transition metal complex as the polymerization active species, so the active site is highly uniform, and the polymer (polymer) obtained by polymerization using the single-site catalyst is, for example, a Ziegler-Natta catalyst. Compared with a polymer obtained by polymerization, the molecular weight distribution and composition distribution of the polymer described above are narrow, and in particular, there is an advantage that the amount of low molecular weight components produced is small. When the amount of low molecular weight components in the polymer increases, sand / rubber wheel wear performance deteriorates and mechanical properties such as impact resistance deteriorate, which is not preferable.
 本発明のエチレン系重合体は、シングルサイト触媒を用いて重合することにより製造されるため、こうした悪影響をおよぼす低分子量成分の生成量が少なく、砂/ラバーホイール摩耗性能と機械物性の向上の点で有利である。 Since the ethylene-based polymer of the present invention is produced by polymerization using a single site catalyst, the amount of low molecular weight components that cause such adverse effects is small, and the sand / rubber wheel wear performance and mechanical properties are improved. Is advantageous.
 本発明のエチレン系重合体の製造に使用されるシングルサイト触媒としては、本発明の目的を逸脱しない限り、任意のものを使用することができる。典型的な例として、メタロセン触媒や非メタロセン触媒が挙げられる。 As the single site catalyst used for the production of the ethylene polymer of the present invention, any one can be used without departing from the object of the present invention. Typical examples include metallocene catalysts and nonmetallocene catalysts.
 メタロセン触媒とは、1個以上の置換されていてもよいシクロペンタジエニル基が金属イオンに配位した錯体を触媒成分とするオレフィン重合用の触媒を意味する。これに対して、非メタロセンのシングルサイト触媒は、ポストメタロセン触媒とも呼ばれ、一般にシクロペンタジエニル基を持たず、窒素、酸素、リンのようなヘテロ原子で金属イオンに配位する有機配位子を有する錯体を触媒成分とするオレフィン重合用触媒を意味する。 The metallocene catalyst means an olefin polymerization catalyst using as a catalyst component a complex in which one or more optionally substituted cyclopentadienyl groups are coordinated to a metal ion. In contrast, non-metallocene single-site catalysts, also called post-metallocene catalysts, generally do not have a cyclopentadienyl group and are coordinated to metal ions by heteroatoms such as nitrogen, oxygen, and phosphorus. It means a catalyst for olefin polymerization using a complex having a child as a catalyst component.
 以下、本明細書において、Cp、Ind、Azu、BenzInd、H4Ind、H4Azu、Flu、H8Fluは、それぞれ、シクロペンタジエニル基、インデニル基、アズレニル基、ベンゾインデニル基、4,5,6,7-テトラヒドロインデニル基、5,6,7,8-テトラヒドロアズレニル基、フルオレニル基、1,2,3,4,5,6,7,8-オクタヒドロフルオレニル基を表す。また、Me、Et、nPr、iPr、nBu、iBu、tBu、Ph、Cyは、それぞれ、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、フェニル基、シクロヘキシル基を表す。また、Si、Ge、C、O、N、P、Ti、Zr、Hf、Alは、それぞれケイ素原子、ゲルマニウム原子、炭素原子、酸素原子、窒素原子、リン原子、チタン原子、ジルコニウム原子、ハフニウム原子、アルミニウム原子を表す。 Hereinafter, in the present specification, Cp, Ind, Azu, BenzInd, H4Ind, H4Azu, Flu, and H8Flu are respectively cyclopentadienyl group, indenyl group, azulenyl group, benzoindenyl group, 4, 5, 6, 7 -Represents a tetrahydroindenyl group, a 5,6,7,8-tetrahydroazurenyl group, a fluorenyl group, a 1,2,3,4,5,6,7,8-octahydrofluorenyl group. In addition, Me, Et, nPr, iPr, nBu, iBu, tBu, Ph, and Cy are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, respectively. Represents a phenyl group and a cyclohexyl group. Si, Ge, C, O, N, P, Ti, Zr, Hf, and Al are silicon atom, germanium atom, carbon atom, oxygen atom, nitrogen atom, phosphorus atom, titanium atom, zirconium atom, and hafnium atom, respectively. Represents an aluminum atom.
2.2.1 メタロセン触媒
 本発明に使用されるメタロセン触媒は、下記一般式(1)~(3)のいずれかで表されるメタロセン錯体と、後述の共触媒(活性化剤と呼ぶ場合もある)との組合せで構成される触媒である。
2.2.1 Metallocene Catalyst The metallocene catalyst used in the present invention includes a metallocene complex represented by any one of the following general formulas (1) to (3) and a cocatalyst (also referred to as an activator described later). And a catalyst comprising a combination thereof.
    (Y)((RCp)MX   (1)
    Y((RCp)(Z)MX   (2)
    ((RCp)MX       (3)
(Y) m ((R 1 ) n Cp) 2 MX 2 (1)
Y ((R 1 ) n Cp) (Z) MX 2 (2)
((R 1 ) n Cp) 3 MX (3)
 一般式(1)~(3)において、Mは周期表第4族の金属イオンを表し、好ましくはチタン、ジルコニウム、ハフニウムから選ばれる金属のイオンであり、より好ましくはジルコニウムイオンまたはハフニウムイオンである。
 本発明のエチレン系重合体の製造においては、重量平均分子量Mwを30万以上と、比較的高い値に制御する必要がある。前記金属は、高い分子量に制御する上で好ましい。なお、前記金属の価数は特に限定されず、通常4価を取るが、まれに3価、さらにまれには2価を取ることがある。
In the general formulas (1) to (3), M represents a metal ion belonging to Group 4 of the periodic table, preferably a metal ion selected from titanium, zirconium and hafnium, more preferably a zirconium ion or a hafnium ion. .
In the production of the ethylene polymer of the present invention, it is necessary to control the weight average molecular weight Mw to a relatively high value of 300,000 or more. The metal is preferable for controlling to a high molecular weight. The valence of the metal is not particularly limited and is usually tetravalent, but rarely trivalent, and rarely divalent.
 Xは、金属イオンMに配位した配位子を表す。具体的には、水素原子、ハロゲン原子、炭素数1~20、好ましくは1~10の炭化水素基、炭素数1~20、好ましくは1~10のアルコキシ基、炭素数1~20、好ましくは1~10のアルキルアミド基、炭素数1~20、好ましくは1~12のリン原子含有炭化水素基、または、炭素数1~20、好ましくは1~12のケイ素原子含有炭化水素基等である。Xを複数含む場合、複数のXは互いに同じでも異なっていてもよい。前記Xのうち、ハロゲン原子、炭化水素基およびアルキルアミド基が好ましく用いられる。 X represents a ligand coordinated to the metal ion M. Specifically, a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, 1 to 20 carbon atoms, preferably An alkylamide group having 1 to 10 carbon atoms, a phosphorus atom-containing hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, or a silicon atom-containing hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms. . When a plurality of Xs are included, the plurality of Xs may be the same as or different from each other. Of the X, a halogen atom, a hydrocarbon group and an alkylamide group are preferably used.
 Yは、メタロセン錯体における架橋基を表す。一般式(1)のメタロセン錯体においては、2個の(RCpを架橋する架橋基を表す。一般式(2)のメタロセン錯体においては、(RCpとZとを結合する架橋する架橋基である。mは0~2の整数を表す。 Y represents a bridging group in the metallocene complex. In the metallocene complex of the general formula (1), it represents a crosslinking group that bridges two (R 1 ) n Cp. In the metallocene complex of the general formula (2), it is a bridging group that crosslinks (R 1 ) n Cp and Z. m represents an integer of 0-2.
 好ましい架橋基Yとしては、(RSi、(RGe、(RCが挙げられる。ここでRは、水素原子、或いはケイ素原子またはゲルマニウム原子を含有していてもよい炭素数1~12の炭化水素基であり、隣接するRが互いに環を形成してもよい。また、2つのRは互いに同じでも異なっていてもよい。 Preferred bridging groups Y include (R 2 ) 2 Si, (R 2 ) 2 Ge, and (R 2 ) 2 C. Here, R 2 is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms which may contain a silicon atom or a germanium atom, and adjacent R 2 may form a ring with each other. Two R 2 may be the same or different from each other.
 架橋基Yとして、具体的には下記のようなものが挙げられる。すなわち、メチレン基、エチレン基のようなアルキレン基、エチリデン基、プロピリデン基、イソプロピリデン基、フェニルメチリデン基、ジフェニルメチリデン基のようなアルキリデン基、ジメチルシリレン基、ジエチルシリレン基、ジプロピルシリレン基、ジフェニルシリレン基、メチルエチルシリレン基、メチルフェニルシリレン基、メチル-t-ブチルシリレン基、ジシリレン基、テトラメチルジシリレン基のようなケイ素原子含有架橋基、ジメチルゲルミレン基、ジエチルゲルミレン基、ジフェニルゲルミレン基、メチルフェニルゲルミレン基のようなゲルマニウム原子含有架橋基、アルキルホスフィン、アミン基等である。これらのうち、アルキレン基、アルキリデン基、ケイ素原子含有架橋基、ゲルマニウム原子含有架橋基が特に好ましく用いられる。 Specific examples of the bridging group Y include the following. That is, an alkylene group such as a methylene group, an ethylene group, an ethylidene group, a propylidene group, an isopropylidene group, a phenylmethylidene group, an alkylidene group such as a diphenylmethylidene group, a dimethylsilylene group, a diethylsilylene group, a dipropylsilylene group A silicon atom-containing cross-linking group such as a diphenylsilylene group, a methylethylsilylene group, a methylphenylsilylene group, a methyl-t-butylsilylene group, a disilylene group or a tetramethyldisylylene group, a dimethylgermylene group, a diethylgermylene group, Examples thereof include a germanium atom-containing crosslinking group such as a diphenylgermylene group and a methylphenylgermylene group, an alkylphosphine, and an amine group. Among these, an alkylene group, an alkylidene group, a silicon atom-containing crosslinking group, and a germanium atom-containing crosslinking group are particularly preferably used.
 Zは、Yに結合し、金属イオンMに配位可能な基である。一般に、Zは酸素原子、窒素原子、リン原子から選択されるヘテロ原子であるか、または、これらへテロ原子を含有する基である。具体的には、Zは、O、R’N、R’P(R’の意味は後記するRと同様である。)である。 Z is a group that binds to Y and can coordinate to the metal ion M. In general, Z is a heteroatom selected from an oxygen atom, a nitrogen atom, and a phosphorus atom, or a group containing these heteroatoms. Specifically, Z is O, R′N, R′P (the meaning of R ′ is the same as R 1 described later).
 ((RCp)は、置換または非置換のシクロペンタジエニル基を表す。Rは水素原子、または炭化水素基であり、炭化水素基は酸素原子、窒素原子、リン原子、ケイ素原子、ゲルマニウム原子で置換されていてもよく、また隣接するRが相互に環を形成してもよい。Rが炭化水素基の場合、好ましいRの炭素数は、1以上30以下、より好ましくは1以上20以下、最も好ましくは1以上15以下である。Rとしては、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、フェニル基、シクロヘキシル基等が好ましい。n個のRは互いに同じでも異なっていてもよい。
 nは0~4の整数を表し、好ましくは0または1である。
((R 1 ) n Cp) represents a substituted or unsubstituted cyclopentadienyl group. R 1 is a hydrogen atom or a hydrocarbon group, and the hydrocarbon group may be substituted with an oxygen atom, a nitrogen atom, a phosphorus atom, a silicon atom, or a germanium atom, and adjacent R 1 forms a ring with each other May be. When R 1 is a hydrocarbon group, R 1 preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and most preferably 1 to 15 carbon atoms. Specifically, R 1 is preferably a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, phenyl group, cyclohexyl group or the like. The n R 1 s may be the same as or different from each other.
n represents an integer of 0 to 4, preferably 0 or 1.
 (RCpの具体的な例としては、以下の(i)~(iv)などが挙げられる。
(i)1個のRを有する(R)Cp
(ii)2個のRを有する(RCp
(iii)2個の隣接するRを有する(RCpであって、2個のRが環を形成しているもの
(iv)4個のRを有する(RCpであって、2個のRが隣接して環を形成し、残りの2個のRが隣接して環を形成するもの
Specific examples of (R 1 ) n Cp include the following (i) to (iv).
(I) having one R 1 (R 1) Cp
(Ii) having two R 1 (R 1) 2 Cp
And (iii) a two adjacent having R 1 (R 1) 2 Cp, two R 1 has those that form a ring (iv) 4 pieces of R 1 (R 1) 4 Cp, in which two R 1's are adjacent to form a ring, and the remaining two R 1's are adjacent to form a ring
 (i)の具体的な例としては、MeCp、EtCp、nPrCp、iPrCp、nBuCp、iBuCp、tBuCp、PhCp、CyCp等が挙げられる。 Specific examples of (i) include MeCp, EtCp, nPrCp, iPrCp, nBuCp, iBuCp, tBuCp, PhCp, CyCp and the like.
 (ii)の具体的な例としては、シクロペンタジエニル基の1位と2位が置換基Rで置換された置換体を、1,2-(RCpと表した場合、1,2-(RCpや1,3-(RCpが挙げられ、より好ましくはRがメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基であるもの等が挙げられ、具体的には、1,2-MeCp、1,3-MeCp、1-Me-2-EtCp、1-Me-2-nPrCp、1-Me-2-nBuCp、1-Me-3-EtCp、1-Me-3-nPrCp、1-Me-3-nBuCp、1,2-EtCp、1,3-EtCp、1-Me-3-iPrCp、1-Me-3-tBuCp等が挙げられる。 Specific examples of (ii), if the 1-position and 2-position of the cyclopentadienyl group to have been substituents substituted with a substituent R 1, expressed and 1,2- (R 1) 2 Cp, 1,2- (R 1 ) 2 Cp and 1,3- (R 1 ) 2 Cp are preferable, and R 1 is more preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, or n-butyl. Group, i-butyl group, t-butyl group, and the like. Specifically, 1,2-Me 2 Cp, 1,3-Me 2 Cp, 1-Me-2-EtCp, 1- Me-2-nPrCp, 1-Me-2-nBuCp, 1-Me-3-EtCp, 1-Me-3-nPrCp, 1-Me-3-nBuCp, 1,2-Et 2 Cp, 1,3- Et 2 Cp, 1-Me-3-iPrCp, 1-Me-3-tBuCp and the like can be mentioned.
 (iii)の具体的な例としては、(RCpが、インデニル基、アズレニル基、ベンゾインデニル基、テトラヒドロインデニル基、テトラヒドロアズレニル基であるもの等を挙げることができる。なお、これらはさらに置換基を有していてもよい。 Specific examples of (iii) include those in which (R 1 ) 2 Cp is an indenyl group, an azulenyl group, a benzoindenyl group, a tetrahydroindenyl group, or a tetrahydroazurenyl group. These may further have a substituent.
 (iv)の具体例としては、(RCpがフルオレニル基、オクタヒドロフルオレニル基であるもの等を挙げることができる。なお、これらはさらに置換基を有していてもよい。 Specific examples of (iv) include those in which (R 1 ) 4 Cp is a fluorenyl group or an octahydrofluorenyl group. These may further have a substituent.
 前記一般式(1)~(3)で表されるメタロセン錯体のうち、本発明においては、得られるエチレン系重合体の分子量および融点を容易に適度な範囲に制御することができ、また、均質なエチレン系重合体が得られやすいという観点で、前記一般式(1)で表されるメタロセン錯体を含むメタロセン触媒が好ましい。
 なお、上記のメタロセン錯体は、1種類を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
Among the metallocene complexes represented by the general formulas (1) to (3), in the present invention, the molecular weight and melting point of the obtained ethylene polymer can be easily controlled within an appropriate range, A metallocene catalyst containing the metallocene complex represented by the general formula (1) is preferable from the viewpoint that a simple ethylene polymer can be obtained.
In addition, said metallocene complex may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
2.2.2 非メタロセン触媒
 本発明においては、非メタロセン触媒、すなわち、シクロペンタジエニル基を持たず、窒素、酸素、リンのようなヘテロ原子で金属イオンに配位する有機配位子を有する錯体を触媒成分とするシングルサイト触媒も使用することができる。
2.2.2 Non-metallocene catalyst In the present invention, a non-metallocene catalyst, that is, an organic ligand that does not have a cyclopentadienyl group and coordinates to a metal ion with a heteroatom such as nitrogen, oxygen, or phosphorus. A single site catalyst having the complex as a catalyst component can also be used.
 このような非メタロセン触媒に用いられる金属錯体の具体的な例としては、以下の(i)~(x)などが挙げられる。
(i) 日本国特表平10-513489号公報記載の配位子、すなわち、α-ジイミンを配位子とするニッケルまたはパラジウム錯体
(ii) 日本国特表2001-512522号公報記載の配位子、すなわち、α-ジイミンを配位子とするニッケルまたはパラジウム錯体
(iii) R. Grubbs et al., Organomet., 1998, 17, 3149に記載の配位子、すなわち、フェノキシイミンを配位子とするニッケルまたはパラジウム錯体
(iv) 日本国特開平11-315109号記載の配位子、すなわち、フェノキシイミンを配位子とするチタン、ジルコニウム、またはハフニウム錯体
(v) G. W. Coates et al., J. Am. Chem. Soc., 2004, 126, 16326に記載の配位子、すなわち、フェノキシケチミンを配位子とするチタン、ジルコニウム、ハフニウム、ニッケル、パラジウム錯体
(vi) G. C. Bazan et al., Organomet., 2005, 24, 5644に記載の配位子、すなわち、α-イミノカルボキサミドを配位子とするニッケルまたはパラジウム錯体
(vii) 米国特許出願公開第2004/0220050号明細書に記載の配位子、すなわち、ピリジルアミドを配位子とするハフニウム錯体
(viii) 米国特許出願公開第2007/0049712号明細書に記載の配位子、すなわち、ホスフィノスルホン酸を配位子とするニッケルまたはパラジウム錯体
(ix) 米国特許第4,698,403号明細書記載のリンおよび酸素でキレート配位する配位子を有するニッケルまたはパラジウム錯体
(x) 日本国特許第4524335号公報記載のリンおよび酸素でキレート配位する配位子を有するニッケルまたはパラジウム錯体
Specific examples of the metal complex used for such a nonmetallocene catalyst include the following (i) to (x).
(I) A ligand described in Japanese National Patent Publication No. 10-513289, that is, a nickel or palladium complex having α-diimine as a ligand (ii) Coordination described in Japanese Special Table 2001-512522 A nickel or palladium complex (iii) having an α-diimine ligand (iii) Grubbs et al. , Organomet. , 1998, 17, 3149, ie a nickel or palladium complex having phenoxyimine as a ligand (iv) a ligand described in Japanese Patent Application Laid-Open No. 11-315109, ie, phenoxyimine. Titanium, zirconium or hafnium complex (v) as ligand W. Coates et al. , J. et al. Am. Chem. Soc. , 2004, 126, 16326, that is, titanium, zirconium, hafnium, nickel, palladium complex (vi) having phenoxyketimine as a ligand (vi) C. Bazan et al. , Organomet. , 2005, 24, 5644, that is, a nickel or palladium complex having a ligand of α-iminocarboxamide (vii), a ligand described in US Patent Application Publication No. 2004/0220050, That is, a hafnium complex having pyridylamide as a ligand (viii) A ligand described in US Patent Application Publication No. 2007/0049712, that is, a nickel or palladium complex having phosphinosulfonic acid as a ligand ( ix) nickel or palladium complex having a ligand chelating with phosphorus and oxygen described in US Pat. No. 4,698,403 (x) chelating with phosphorus and oxygen described in Japanese Patent No. 45524335 Or palladium complexes with ligands located
 これらの錯体のうち、前記(iv)、(v)、(vi)、(vii)、(viii)、(x)の錯体が、メチル分岐に代表される短鎖分岐の生成が比較的少なく、高結晶性のエチレン系重合体を得やすい点において好ましい。
 なお、上記の金属錯体は、1種類を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
Among these complexes, the complexes of (iv), (v), (vi), (vii), (viii), and (x) have relatively little short-chain branching represented by methyl branching, This is preferable because a highly crystalline ethylene polymer is easily obtained.
In addition, said metal complex may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
2.2.3 共触媒
 本発明のエチレン系重合体の製造に使用可能なメタロセン錯体または非メタロセン錯体は、錯体自体が重合触媒機能を有している場合と、有していない場合がある。錯体がエチレンやα-オレフィンに対して重合触媒機能を有していない場合は、重合触媒機能を発現させるための共触媒(活性化剤と呼ぶ場合もある)を使用することができる。
2.2.3 Cocatalyst The metallocene complex or nonmetallocene complex that can be used in the production of the ethylene polymer of the present invention may or may not have a polymerization catalyst function. When the complex does not have a polymerization catalyst function with respect to ethylene or α-olefin, a cocatalyst (sometimes referred to as an activator) for expressing the polymerization catalyst function can be used.
 共触媒は、本発明のエチレン系重合体の製造に使用する上述のようなメタロセン錯体または非メタロセン錯体に、エチレンやα-オレフィンに対する重合触媒機能を付与する、すなわち該錯体を活性化させるものであれば、特に限定されるものではないが、具体的には、下記(A)~(D)からなる群より選択される1種以上の物質を用いるのが好ましい。
 (A)有機アルミニウムオキシ化合物
 (B)錯体と反応して、該成分をカチオンに交換することが可能なイオン性化合物
 (C)ルイス酸
 (D)ケイ酸塩を除くイオン交換性層状化合物または無機ケイ酸塩
 上記(A)~(D)の共触媒は、いずれも1種類を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。また、(A)~(D)のうちの2種以上の共触媒を併用してもよい。
The cocatalyst is a catalyst that imparts a polymerization catalyst function for ethylene or α-olefin to the metallocene complex or nonmetallocene complex used in the production of the ethylene polymer of the present invention, that is, activates the complex. Although there is no particular limitation as long as it is present, specifically, it is preferable to use one or more substances selected from the group consisting of the following (A) to (D).
(A) Organoaluminum oxy compound (B) An ionic compound capable of reacting with the complex to exchange the component with a cation (C) Lewis acid (D) Ion exchange layered compound or inorganic except silicate Silicates Any of the above-mentioned cocatalysts (A) to (D) may be used alone, or two or more may be used in any combination and in any ratio. Two or more cocatalysts of (A) to (D) may be used in combination.
(A)有機アルミニウムオキシ化合物
 本発明においては、メタロセン錯体または非メタロセン錯体の共触媒として、有機アルミニウムオキシ化合物を用いることができる。有機アルミニウムオキシ化合物は、分子中にAl-O-Al結合を有し、その結合数は通常1~100、好ましくは1~50個の範囲にある。
(A) Organoaluminum oxy compound In the present invention, an organoaluminum oxy compound can be used as a cocatalyst of a metallocene complex or a nonmetallocene complex. The organoaluminum oxy compound has Al—O—Al bonds in the molecule, and the number of bonds is usually in the range of 1 to 100, preferably 1 to 50.
 有機アルミニウムオキシ化合物として、具体的には、次の一般式(4)、(5)、(6)で表される化合物が挙げられる。 Specific examples of the organoaluminum oxy compound include compounds represented by the following general formulas (4), (5), and (6).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(4)~(6)中、R22は、水素原子または炭化水素基、好ましくは炭素数1~10、特に好ましくは炭素数1~6の炭化水素基を示す。また、複数のR22はそれぞれ同一でも異なっていてもよい。またpは0~40、好ましくは2~30の整数を示す。 In the general formulas (4) to (6), R 22 represents a hydrogen atom or a hydrocarbon group, preferably a hydrocarbon group having 1 to 10 carbon atoms, particularly preferably a hydrocarbon group having 1 to 6 carbon atoms. The plurality of R 22 may be the same or different. P represents an integer of 0 to 40, preferably 2 to 30.
 一般式(4)および(5)で表される化合物は、アルミノキサンとも呼ばれる化合物であって、一種類のトリアルキルアルミニウムまたは二種類以上のトリアルキルアルミニウムと水との反応により得られる。具体的には、
 (a-1)一種類のトリアルキルアルミニウムと水とから得られる、メチルアルミノキサン、エチルアルミノキサン、プロピルアルミノキサン、ブチルアルミノキサン、イソブチルアルミノキサン、
 (a-2)二種類のトリアルキルアルミニウムと水とから得られる、メチルエチルアルミノキサン、メチルブチルアルミノキサン、メチルイソブチルアルミノキサン、等が挙げられる。
 これらの中では、メチルアルミノキサン、メチルイソブチルアルミノキサンが好ましい。上記のアルミノキサンは、複数種併用することも可能である。そして、上記のアルミノキサンは、公知のように様々な条件下に調製することができる。
The compounds represented by the general formulas (4) and (5) are also called aluminoxanes, and are obtained by reaction of one type of trialkylaluminum or two or more types of trialkylaluminum with water. In particular,
(A-1) methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane, obtained from one kind of trialkylaluminum and water,
(A-2) Methyl ethyl aluminoxane, methyl butyl aluminoxane, methyl isobutyl aluminoxane, etc. obtained from two types of trialkylaluminum and water.
Of these, methylaluminoxane and methylisobutylaluminoxane are preferred. A plurality of the above aluminoxanes can be used in combination. And said aluminoxane can be prepared on various conditions as well-known.
 一般式(6)で表される化合物は、一種類のトリアルキルアルミニウムまたは二種類以上のトリアルキルアルミニウムと下記一般式(7)で表されるアルキルボロン酸との10:1~1:1(モル比)の反応により得ることができる。一般式(6)および(7)中、R23は、炭素数1~10、好ましくは炭素数1~6の炭化水素基またはハロゲン化炭化水素基を示す。 The compound represented by the general formula (6) is 10: 1 to 1: 1 (one type of trialkylaluminum or two or more types of trialkylaluminum and an alkylboronic acid represented by the following general formula (7). (Molar ratio) reaction. In the general formulas (6) and (7), R 23 represents a hydrocarbon group or halogenated hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms.
    R23B(OH)    (7) R 23 B (OH) 2 (7)
 具体的には、以下の様な反応生成物、すなわち、
 (b-1)トリメチルアルミニウムとメチルボロン酸の2:1の反応物、
 (b-2)トリイソブチルアルミニウムとメチルボロン酸の2:1反応物、
 (b-3)トリメチルアルミニウムとトリイソブチルアルミニウムとメチルボロン酸の1:1:1反応物、
 (b-4)トリメチルアルミニウムとエチルボロン酸の2:1反応物、
 (b-5)トリエチルアルミニウムとブチルボロン酸の2:1反応物、
などを挙げることができる。
Specifically, the following reaction product, that is,
(B-1) 2: 1 reaction product of trimethylaluminum and methylboronic acid,
(B-2) 2: 1 reaction product of triisobutylaluminum and methylboronic acid,
(B-3) a 1: 1: 1 reaction product of trimethylaluminum, triisobutylaluminum and methylboronic acid,
(B-4) 2: 1 reaction product of trimethylaluminum and ethylboronic acid,
(B-5) 2: 1 reaction product of triethylaluminum and butylboronic acid,
And so on.
 このような有機アルミニウムオキシ化合物は、通常、有機アルミニウム化合物と水とを反応させて得られる。
 有機アルミニウムオキシ化合物の調製に用いる有機アルミニウム化合物は、下記一般式(8)で表される化合物がいずれも使用可能であるが、好ましくはトリアルキルアルミニウムが使用される。
Such an organoaluminum oxy compound is usually obtained by reacting an organoaluminum compound with water.
As the organoaluminum compound used for the preparation of the organoaluminum oxy compound, any of the compounds represented by the following general formula (8) can be used, but trialkylaluminum is preferably used.
    (R24Al(Q)3-q   (8)
 ここで、R24は炭素数1~18、好ましくは1~12の、アルキル基、アルケニル基、アリール基、アラルキル基等の炭化水素基を表す。Qは、水素原子またはハロゲン原子を示し、qは1~3の整数を示す。
(R 24 ) q Al (Q) 3-q (8)
Here, R 24 represents a hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 12 carbon atoms, such as an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. Q represents a hydrogen atom or a halogen atom, and q represents an integer of 1 to 3.
 R24の具体的な例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基などが挙げられるが、メチル基またはイソブチル基が好ましく、特に好ましくはメチル基である。 Specific examples of R 24 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, cyclohexyl group, n-octyl group, Examples thereof include an n-decyl group and an n-dodecyl group, and a methyl group or an isobutyl group is preferable, and a methyl group is particularly preferable.
 上記の有機アルミニウム化合物は、2種以上混合して使用することもできる。また、水と有機アルミニウム化合物との反応比(水/Alモル比)は、特に限定されないが、通常0.25/1以上、好ましくは0.5/1以上であり、通常1.2/1以下、好ましくは1/1以下の範囲で選ばれる。
 反応温度は、特に限定されないが、通常-70℃以上、好ましくは-20℃以上であり、通常100℃以下、好ましくは20℃以下の範囲で選ばれる。
 反応時間は、特に限定されないが、通常5分以上、好ましくは10分以上であり、通常24時間以下、好ましくは5時間以下の範囲で選ばれる。
Two or more of the above organoaluminum compounds can be mixed and used. The reaction ratio of water and the organoaluminum compound (water / Al molar ratio) is not particularly limited, but is usually 0.25 / 1 or more, preferably 0.5 / 1 or more, and usually 1.2 / 1. Hereinafter, it is preferably selected within a range of 1/1 or less.
The reaction temperature is not particularly limited, but is usually −70 ° C. or higher, preferably −20 ° C. or higher, and is usually selected within a range of 100 ° C. or lower, preferably 20 ° C. or lower.
Although reaction time is not specifically limited, Usually, 5 minutes or more, Preferably it is 10 minutes or more, and is 24 hours or less normally, Preferably it is chosen in 5 hours or less.
 反応に要する水として、単なる水のみならず、硫酸銅水和物、硫酸アルミニウム水和物等に含まれる結晶水や、反応系中に水が生成しうる成分も利用することもできる。 As water required for the reaction, not only mere water but also crystal water contained in copper sulfate hydrate, aluminum sulfate hydrate and the like, and components capable of generating water in the reaction system can be used.
 アルキルアルミニウムと水とを反応させて得られる有機アルミニウムオキシ化合物は、通常アルモキサンまたはアルミノキサンと呼ばれ、特にメチルアルモキサン(メチルアルミノキサン)は、有機アルミニウムオキシ化合物として好適である。さらに、メチルアルモキサンのメチル基の一部をイソブチル基などの異なるアルキル基に置き換えた変性アルモキサンや、メチルアルモキサンにアルコールやフェノールなどの変性剤を反応させて製造した変性アルモキサンも好適に用いることができる。 An organoaluminum oxy compound obtained by reacting an alkylaluminum with water is usually called an alumoxane or an aluminoxane, and methylalumoxane (methylaluminoxane) is particularly suitable as the organoaluminum oxy compound. Furthermore, modified alumoxane in which a part of the methyl group of methylalumoxane is replaced with a different alkyl group such as isobutyl group, and modified alumoxane produced by reacting a modifying agent such as alcohol or phenol with methylalumoxane are also preferably used. Can do.
 また、アルモキサンは一般に不純物として原料に用いたアルキルアルミニウムが残存していることがあるが、そうしたアルキルアルミニウムを減圧下に除去したアルモキサンも好適に用いることができる。 In addition, although alumoxane generally contains alkylaluminum used as a raw material as an impurity, alumoxane from which such alkylaluminum has been removed under reduced pressure can also be suitably used.
 本発明においては、前記した有機アルミニウムオキシ化合物の2種以上を組み合わせて使用することもでき、また有機アルミニウムオキシ化合物を前述の不活性炭化水素溶媒に溶解させた溶液や、分散させた分散物を用いることもできる。さらに、シリカ、粘土、ポリマー担体など、オレフィンの重合触媒に通常使用される担体に有機アルミニウム化合物を接触させたり、担持させたりして用いることもできる。 In the present invention, two or more of the above-described organoaluminum oxy compounds can be used in combination, and a solution in which the organoaluminum oxy compound is dissolved in the aforementioned inert hydrocarbon solvent or a dispersed dispersion is used. It can also be used. Furthermore, an organoaluminum compound can be brought into contact with or supported on a carrier usually used for an olefin polymerization catalyst such as silica, clay, or polymer carrier.
(B)錯体と反応して、該成分をカチオンに変換することが可能なイオン性化合物
 このようなイオン性化合物としては、下記一般式(9)で表される化合物が挙げられる。
    [CA]e+[AN]e-   (9)
(B) An ionic compound capable of reacting with the complex to convert the component into a cation. Examples of such an ionic compound include compounds represented by the following general formula (9).
[CA] e + [AN] e- (9)
 一般式(9)中、[CA]e+はカチオン成分であって、例えば、カルボニウムカチオン、トロピリウムカチオン、アンモニウムカチオン、オキソニウムカチオン、スルホニウムカチオン、ホスホニウムカチオン等が挙げられる。また、それ自体が還元されやすい金属の陽イオンや有機金属の陽イオン等も挙げられる。 In the general formula (9), [CA] e + is a cation component, and examples thereof include a carbonium cation, a tropylium cation, an ammonium cation, an oxonium cation, a sulfonium cation, and a phosphonium cation. In addition, metal cations that are easily reduced by themselves, organic metal cations, and the like are also included.
 上記のカチオンの具体例としては、トリフェニルカルボニウム、ジフェニルカルボニウム、シクロヘプタトリエニウム、インデニウム、トリエチルアンモニウム、トリプロピルアンモニウム、トリブチルアンモニウム、N,N-ジメチルアニリニウム、ジプロピルアンモニウム、ジシクロヘキシルアンモニウム、トリフェニルホスホニウム、トリメチルホスホニウム、トリス(ジメチルフェニル)ホスホニウム、トリス(ジメチルフェニル)ホスホニウム、トリス(メチルフェニル)ホスホニウム、トリフェニルスルホニウム、トリフェニルスルホニウム、トリフェニルオキソニウム、トリエチルオキソニウム、ピリリウム、銀イオン、金イオン、白金イオン、銅イオン、パラジウムイオン、水銀イオン、フェロセニウムイオン等が挙げられる。 Specific examples of the cation include triphenylcarbonium, diphenylcarbonium, cycloheptatrienium, indenium, triethylammonium, tripropylammonium, tributylammonium, N, N-dimethylanilinium, dipropylammonium, dicyclohexylammonium, Triphenylphosphonium, trimethylphosphonium, tris (dimethylphenyl) phosphonium, tris (dimethylphenyl) phosphonium, tris (methylphenyl) phosphonium, triphenylsulfonium, triphenylsulfonium, triphenyloxonium, triethyloxonium, pyrylium, silver ion, Gold ion, platinum ion, copper ion, palladium ion, mercury ion, ferrocenium ion, etc. That.
 上記の一般式(9)中、[AN]e-は、アニオン成分であり、遷移金属化合物が変換されたカチオン種に対して対アニオンとなる成分(一般には非配位の成分)である。アニオンの具体例としては、有機ホウ素化合物アニオン、有機アルミニウム化合物アニオン、有機ガリウム化合物アニオン、有機ヒ素化合物アニオン、有機アンチモン化合物アニオン等が挙げられる。 In the above general formula (9), [AN] e− is an anion component, which is a component (generally a non-coordinating component) that becomes a counter anion with respect to the cation species into which the transition metal compound is converted. Specific examples of the anion include an organic boron compound anion, an organic aluminum compound anion, an organic gallium compound anion, an organic arsenic compound anion, and an organic antimony compound anion.
 錯体と反応して、該成分をカチオンに変換することが可能なイオン性化合物としては、具体的には、次のような化合物が挙げられる。 Specific examples of the ionic compound capable of reacting with the complex and converting the component into a cation include the following compounds.
 テトラフェニルホウ素、テトラキス(3,4,5-トリフルオロフェニル)ホウ素、テトラキス{3,5-ビス(トリフルオロメチル)フェニル}ホウ素、テトラキス{3,5-ジ(t-ブチル)フェニル}ホウ素、テトラキス(ペンタフルオロフェニル)ホウ素等のホウ素化合物
 テトラフェニルアルミニウム、テトラキス(3,4,5-トリフルオロフェニル)アルミニウム、テトラキス{3,5-ビス(トリフルオロメチル)フェニル}アルミニウム、テトラキス{3,5-ジ(t-ブチル)フェニル}アルミニウム、テトラキス(ペンタフルオロフェニル)アルミニウム等のアルミニウム化合物
 テトラフェニルガリウム、テトラキス(3,4,5-トリフルオロフェニル)ガリウム、テトラキス{3,5-ビス(トリフルオロメチル)フェニル}ガリウム、テトラキス{3,5-ジ(t-ブチル)フェニル}ガリウム、テトラキス(ペンタフルオロフェニル)ガリウム等のガリウム化合物
 テトラフェニルリン、テトラキス(ペンタフルオロフェニル)リン等のリン化合物
 テトラフェニルヒ素、テトラキス(ペンタフルオロフェニル)ヒ素等のヒ素化合物
 テトラフェニルアンチモン、テトラキス(ペンタフルオロフェニル)アンチモン等のアンチモン化合物
 更に、デカボレート、ウンデカボレート、カルバドデカボレート、デカクロロデカボレート等も挙げられる。
Tetraphenylboron, tetrakis (3,4,5-trifluorophenyl) boron, tetrakis {3,5-bis (trifluoromethyl) phenyl} boron, tetrakis {3,5-di (t-butyl) phenyl} boron, Boron compounds such as tetrakis (pentafluorophenyl) boron Tetraphenylaluminum, tetrakis (3,4,5-trifluorophenyl) aluminum, tetrakis {3,5-bis (trifluoromethyl) phenyl} aluminum, tetrakis {3,5 -Aluminum compounds such as di (t-butyl) phenyl} aluminum and tetrakis (pentafluorophenyl) aluminum Tetraphenylgallium, tetrakis (3,4,5-trifluorophenyl) gallium, tetrakis {3,5-bis (trifluoro) Methyl Phenyl} gallium, tetrakis {3,5-di (t-butyl) phenyl} gallium, gallium compounds such as tetrakis (pentafluorophenyl) gallium phosphorus compounds such as tetraphenylphosphorus, tetrakis (pentafluorophenyl) phosphorus tetraphenyl arsenic, Arsenic compounds such as tetrakis (pentafluorophenyl) arsenic Antimony compounds such as tetraphenylantimony and tetrakis (pentafluorophenyl) antimony Furthermore, decaborate, undecaborate, carbadodecaborate, decachlorodecaborate and the like can be mentioned.
(C)ルイス酸
 錯体をカチオンに変換可能なルイス酸としては、種々の有機ホウ素化合物、金属ハロゲン化合物、固体酸などが例示され、その具体例としては次の化合物が挙げられる。
 トリフェニルホウ素、トリス(3,5-ジフルオロフェニル)ホウ素、トリス(ペンタフルオロフェニル)ホウ素等の有機ホウ素化合物
 塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化臭化マグネシウム、塩化ヨウ化マグネシウム、臭化ヨウ化マグネシウム、塩化マグネシウムハイドライド、塩化マグネシウムハイドロオキシド、臭化マグネシウムハイドロオキシド、塩化マグネシウムアルコキシド、臭化マグネシウムアルコキシド等の金属ハロゲン化合物
 アルミナ、シリカ・アルミナ等の固体酸など
(C) Lewis acid Examples of the Lewis acid capable of converting the complex into a cation include various organic boron compounds, metal halogen compounds, solid acids, and the like, and specific examples thereof include the following compounds.
Organoboron compounds such as triphenylboron, tris (3,5-difluorophenyl) boron, tris (pentafluorophenyl) boron Aluminum chloride, aluminum bromide, aluminum iodide, magnesium chloride, magnesium bromide, magnesium iodide, chloride Metal halides such as magnesium bromide, magnesium chloroiodide, magnesium bromoiodide, magnesium chloride hydride, magnesium chloride hydroxide, magnesium bromide hydroxide, magnesium chloride alkoxide, magnesium bromide alkoxide such as alumina, silica / alumina, etc. Solid acid etc.
(D)ケイ酸塩を除くイオン交換性層状化合物または無機ケイ酸塩
 ケイ酸塩を除くイオン交換性層状化合物は、イオン結合等によって構成される面が互いに弱い結合力で平行に積み重なった結晶構造をとる化合物であり、含有するイオンが交換可能なものを言う。
(D) Ion exchange layered compound excluding silicate or inorganic silicate Ion exchange layered compound excluding silicate has a crystal structure in which planes formed by ionic bonds and the like are stacked in parallel with weak bonding force Is a compound that can exchange ions contained therein.
 ケイ酸塩を除くイオン交換性層状化合物としては、六方最密パッキング型、アンチモン型、CdCl型、CdI型等の層状の結晶構造を有するイオン結晶性化合物等を例示することができる。具体的には、α-Zr(HAsO)・HO、α-Zr(HPO、α-Zr(KPO)・3HO、α-Ti(HPO、α-Ti(HAsO・HO、α-Sn(HPO・HO、γ-Zr(HPO、γ-Ti(HPO、γ-Ti(NHPO・HO等の多価金属の結晶性酸性塩が挙げられる。 Examples of the ion-exchangeable layered compound excluding silicate include ion-crystalline compounds having a layered crystal structure such as hexagonal close-packed type, antimony type, CdCl 2 type, CdI 2 type, and the like. Specifically, α-Zr (HAsO 4 ) · H 2 O, α-Zr (HPO 4 ) 2 , α-Zr (KPO 4 ) · 3H 2 O, α-Ti (HPO 4 ) 2 , α-Ti (HAsO 4 ) 2 .H 2 O, α-Sn (HPO 4 ) 2 .H 2 O, γ-Zr (HPO 4 ) 2 , γ-Ti (HPO 4 ) 2 , γ-Ti (NH 4 PO 4 ) Examples thereof include crystalline acidic salts of polyvalent metals such as 2 · H 2 O.
 また、無機ケイ酸塩としては、粘土、粘土鉱物、ゼオライト、珪藻土等が挙げられる。これらは、合成品を用いてもよいし、天然に産出する鉱物を用いてもよい。
 粘土、粘土鉱物の具体例としては、アロフェン等のアロフェン族、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロイサイト、ハロイサイト等のハロイサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ソーコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、アタパルジャイト、セピオライト、パイゴルスカイト、ベントナイト、木節粘土、ガイロメ粘土、ヒシンゲル石、パイロフィライト、リョクデイ石群等が挙げられる。これらは混合層を形成していてもよい。
Examples of the inorganic silicate include clay, clay mineral, zeolite, and diatomaceous earth. A synthetic product may be used for these, and the mineral produced naturally may be used.
Specific examples of clays and clay minerals include allophanes such as allophane, kaolins such as dickite, nacrite, kaolinite and anorcite, halloysites such as metahalloysite and halloysite, and serpentine such as chrysotile, lizardite and antigolite. Stone group, Montmorillonite, Sauconite, Beidellite, Nontronite, Saponite, Hectorite, etc. Examples include clay, gyrome clay, hysingelite, pyrophyllite, and ryokdeite group. These may form a mixed layer.
 人工合成物としては、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライト等が挙げられる。
 これら具体例のうち好ましくは、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロサイト、ハロサイト等のハロサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ソーコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられ、特に好ましくはモンモリロナイト、ソーコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられる。
Examples of the artificial compound include synthetic mica, synthetic hectorite, synthetic saponite, and synthetic teniolite.
Among these specific examples, preferably, kaolins such as dickite, nacrite, kaolinite, anorcite, halosites such as metahalosite, halosite, chrysotile, lizardite, serpentine such as antigolite, montmorillonite, Smectites such as soconite, beidellite, nontronite, saponite, hectorite, vermiculite minerals such as vermiculite, mica minerals such as illite, sericite, sea chlorophyll, synthetic mica, synthetic hectorite, synthetic saponite, synthetic teniolite Particularly preferred are montmorillonite, sauconite, beidellite, nontronite, saponite, smectite such as hectorite, vermiculite mineral such as vermiculite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic Taeniolite.
 これら、ケイ酸塩を除くイオン交換性層状化合物、または無機ケイ酸塩は、そのまま用いてもよいが、塩酸、硝酸、硫酸等による酸処理、および、LiCl、NaCl、KCl、CaCl、MgCl、LiSO、MgSO、ZnSO、Ti(SO、Zr(SO、Al(SO等の塩類処理のうち少なくとも一方の処理を行って用いることが好ましい。なお、処理にあたり、対応する酸と塩基を混合して反応系内で塩を生成させて処理を行ってもよい。また、粉砕や造粒等の形状制御を行ってもよく、粒子流動性に優れた固体触媒成分を得るためには、造粒することが好ましい。また、上記成分は、通常脱水乾燥してから用いる。 These ion-exchange layered compounds excluding silicates or inorganic silicates may be used as they are, but acid treatment with hydrochloric acid, nitric acid, sulfuric acid, etc., and LiCl, NaCl, KCl, CaCl 2 , MgCl 2 , Li 2 SO 4 , MgSO 4 , ZnSO 4 , Ti (SO 4 ) 2 , Zr (SO 4 ) 2 , Al 2 (SO 4 ) 3, etc. are preferably used after performing at least one treatment. . In the treatment, the corresponding acid and base may be mixed to produce a salt in the reaction system. In addition, shape control such as pulverization and granulation may be performed, and granulation is preferable in order to obtain a solid catalyst component having excellent particle fluidity. The above components are usually used after being dehydrated and dried.
2.2.4 任意成分
2.2.4.1 微粒子担体
 シングルサイト触媒の任意成分として微粒子担体を共存させてもよい。
 微粒子担体は、無機または有機の化合物からなり、その大きさは特に限定されないが、通常5μm以上、好ましくは10μm以上であって、通常5mm以下、好ましくは2mm以下の粒径を有する微粒子状の担体である。
2.2.4 Optional component 2.2.4.1 Fine particle carrier A fine particle carrier may coexist as an optional component of the single site catalyst.
The fine particle carrier is composed of an inorganic or organic compound, and its size is not particularly limited, but is usually 5 μm or more, preferably 10 μm or more, and a fine particle carrier having a particle size of usually 5 mm or less, preferably 2 mm or less. It is.
 無機担体としては、例えば、SiO、Al、MgO、ZrO、TiO、B、ZnO等の金属酸化物、SiO-MgO、SiO-Al、SiO-TiO、SiO-Cr、SiO-Al-MgO等の複合金属酸化物などが挙げられる。 Examples of inorganic carriers include metal oxides such as SiO 2 , Al 2 O 3 , MgO, ZrO, TiO 2 , B 2 O 3 , ZnO, SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —. Examples thereof include composite metal oxides such as TiO 2 , SiO 2 —Cr 2 O 3 , SiO 2 —Al 2 O 3 —MgO.
 これら担体の比表面積は、特に限定されないが、通常20m/g以上、好ましくは50m/g以上であり、通常1,000m/g以下、好ましくは700m/g以下である。
 担体の細孔容積は、特に限定されないが、通常0.1cm/g以上、好ましくは0.3cm/g以上、更に好ましくは0.8cm/g以上である。
The specific surface area of these carriers is not particularly limited, but is usually 20 m 3 / g or more, preferably 50 m 3 / g or more, and usually 1,000 m 3 / g or less, preferably 700 m 3 / g or less.
The pore volume of the carrier is not particularly limited, but is usually 0.1 cm 2 / g or more, preferably 0.3 cm 2 / g or more, more preferably 0.8 cm 2 / g or more.
 有機担体としては、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等の炭素数2~14のα-オレフィンの重合体(重合体と共重合体を含む)、スチレン、ジビニルベンゼン等の芳香族不飽和炭化水素等の重合体(重合体と共重合体を含む)、などからなる多孔質ポリマーの微粒子担体が挙げられる。 Examples of the organic carrier include polymers of α-olefins having 2 to 14 carbon atoms such as ethylene, propylene, 1-butene, 4-methyl-1-pentene (including polymers and copolymers), styrene, divinyl Examples include porous polymer fine particle carriers made of polymers such as benzene and other aromatic unsaturated hydrocarbons (including polymers and copolymers).
2.2.4.2 有機アルミニウム化合物
 本発明においてはまた、シングルサイト触媒の助触媒として有機アルミニウム化合物を共存させてもよい。
 助触媒の有機アルミニウム化合物は、AlR25 3-r(式中、R25は、炭素数1~20の炭化水素基、Zは、水素原子、ハロゲン原子、アルコキシ基もしくはアリールオキシ基を表し、rは1≦r≦3の整数)で示される化合物が挙げられる。
2.2.4.2 Organoaluminum compound In the present invention, an organoaluminum compound may also be present as a co-catalyst for the single site catalyst.
The co-catalyst organoaluminum compound is AlR 25 r Z 3-r (wherein R 25 represents a hydrocarbon group having 1 to 20 carbon atoms, Z represents a hydrogen atom, a halogen atom, an alkoxy group or an aryloxy group) , R is an integer of 1 ≦ r ≦ 3).
 具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムエトキシド等のハロゲン原子もしくはアルコキシ基含有アルキルアルミニウム、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド等の水素原子含有有機アルミニウム化合物が挙げられる。またこの他、メチルアルミノキサン等のアルミノキサン等も使用することができる。これらのうち、特に好ましいのはトリアルキルアルミニウムである。 Specifically, trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, halogen aluminum or alkoxy group-containing alkylaluminum such as diethylaluminum monochloride, diethylaluminum ethoxide, diethylaluminum hydride, diisobutylaluminum Examples include hydrogen atom-containing organoaluminum compounds such as hydride. In addition, aluminoxane such as methylaluminoxane can also be used. Of these, trialkylaluminum is particularly preferred.
 これら任意成分は2種以上組み合わせて用いてもよい。また、重合開始後等に、新たに該任意成分を追加してもよい。 These optional components may be used in combination of two or more. Moreover, you may add this arbitrary component newly after superposition | polymerization start.
3.オレフィン重合用触媒の製造方法
 本発明でエチレン系重合体の製造に用いるシングルサイト触媒は、シングルサイト触媒を構成する遷移金属化合物、および必要に応じて共触媒および/または助触媒等の任意成分を接触させることによって得られるが、その接触方法については特に限定がない。この接触は、触媒調製時だけでなく、モノマーの予備重合時または重合時に行ってもよい。
3. Method for Producing Olefin Polymerization Catalyst The single site catalyst used in the production of the ethylene polymer in the present invention comprises a transition metal compound constituting the single site catalyst, and optional components such as a cocatalyst and / or a cocatalyst as necessary. Although it is obtained by contacting, there is no particular limitation on the contact method. This contact may be performed not only during the catalyst preparation but also during the prepolymerization or polymerization of the monomer.
 また、触媒各成分の接触時、または接触後に前記微粒子担体を共存させるか、もしくは接触させてもよい。 Further, the fine particle carrier may be allowed to coexist or contact when the catalyst components are in contact with each other or after the contact.
 上記接触は窒素等の不活性ガス中で行ってもよいし、ペンタン、ヘキサン、ヘプタン、トルエン、キシレン等の不活性炭化水素溶媒中で行ってもよい。これらの溶媒は、水や硫黄化合物などの被毒物質を除去する操作を施したものを使用するのが好ましい。接触温度は、通常、-20℃以上、使用する溶媒の沸点以下であり、特に、室温(20℃程度)から使用する溶媒の沸点の間で行うのが好ましい。 The above contact may be carried out in an inert gas such as nitrogen or in an inert hydrocarbon solvent such as pentane, hexane, heptane, toluene, xylene. These solvents are preferably used after an operation for removing poisoning substances such as water and sulfur compounds. The contact temperature is usually −20 ° C. or higher and not higher than the boiling point of the solvent to be used, and it is particularly preferably performed between room temperature (about 20 ° C.) and the boiling point of the solvent to be used.
 触媒各成分の使用比に特に制限はないが、共触媒成分として、ケイ酸塩を除くイオン交換性層状化合物または無機ケイ酸塩を用いる場合または前述の微粒子担体を用いる場合は、特に限定はされないが、通常、共触媒成分または微粒子担体1gあたり、遷移金属化合物が通常0.0001mmol以上、好ましくは0.001mmol以上、通常10mmol以下、好ましくは5mmol以下である。任意成分である有機アルミニウム化合物や共触媒である有機アルミニウムオキシ化合物を用いる場合、特に限定はされないが、これらの成分1gあたり、遷移金属化合物が通常0mmol以上、好ましくは0.01mmol以上、通常10,000mmol以下、好ましくは100mmol以下となるように設定することにより、重合活性などの点で好適な結果が得られる。 There are no particular restrictions on the ratio of each catalyst component used, but there is no particular limitation when using an ion-exchange layered compound or inorganic silicate excluding silicate as the cocatalyst component or when using the above-mentioned fine particle carrier. However, the transition metal compound is usually 0.0001 mmol or more, preferably 0.001 mmol or more, usually 10 mmol or less, preferably 5 mmol or less per 1 g of the cocatalyst component or fine particle support. When an organoaluminum compound as an optional component or an organoaluminum oxy compound as a cocatalyst is used, the transition metal compound is usually 0 mmol or more, preferably 0.01 mmol or more, usually 10, per gram of these components. By setting it to be 000 mmol or less, preferably 100 mmol or less, a favorable result can be obtained in terms of polymerization activity.
 また、特に限定はされないが、遷移金属化合物中の遷移金属と任意成分である有機アルミニウム化合物や共触媒である有機アルミニウムオキシ化合物中のアルミニウムの原子比が通常1:0以上、好ましくは1:0.1以上、通常1:1,000,000以下、好ましくは、1:100,000以下となるように制御することが、同様に重合活性などの点で好ましい。 Further, although not particularly limited, the atomic ratio of the transition metal in the transition metal compound and the aluminum in the organoaluminum compound as an optional component or the organoaluminum oxy compound as a cocatalyst is usually 1: 0 or more, preferably 1: 0. .1 or more, usually 1: 1,000,000 or less, preferably 1: 100,000 or less, similarly from the viewpoint of polymerization activity and the like.
 このようにして得られた触媒は、n-ペンタン、n-ヘキサン、n-ヘプタン、トルエン、キシレン等の不活性炭化水素溶媒で洗浄して使用してもよいし、洗浄せずに用いてもよい。
 洗浄の際に、必要に応じて、新たに上述の有機アルミニウム化合物または有機アルミニウムオキシ化合物を組合せて用いてもよい。この際に用いられる有機アルミニウム化合物または有機アルミニウムオキシ化合物の量は、遷移金属化合物中の遷移金属に対する有機アルミニウム化合物または有機アルミニウムオキシ化合物中のアルミニウムの原子比で1:0~10,000になるようにするのが好ましい。
The catalyst thus obtained may be used after washing with an inert hydrocarbon solvent such as n-pentane, n-hexane, n-heptane, toluene, xylene, or may be used without washing. Good.
At the time of washing, a new combination of the above-described organoaluminum compound or organoaluminum oxy compound may be used as necessary. The amount of the organoaluminum compound or organoaluminum oxy compound used at this time is 1: 0 to 10,000 in terms of the atomic ratio of the aluminum in the organoaluminum compound or the organoaluminum oxy compound to the transition metal in the transition metal compound. Is preferable.
4. 重合反応
4.1 溶媒
 本発明のエチレン系重合体を製造するための重合反応は、プロパン、n-ブタン、イソブタン、n-ヘキサン、n-ヘプタン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素溶媒や液化α-オレフィン等の液体、または、ジエチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン、酢酸エチル、安息香酸メチル、アセトン、メチルエチルケトン、ホルムアミド、アセトニトリル、メタノール、イソプロピルアルコール、エチレングリコール等の極性溶媒の存在下、あるいは非存在下に行われる。また、ここで記載した液体化合物の混合物を溶媒として使用してもよい。なお、高い重合活性や高い分子量のエチレン系重合体を得るうえでは、上述の炭化水素溶媒を用いることが好ましい。
4). 4. Polymerization reaction 4.1 Solvent The polymerization reaction for producing the ethylene polymer of the present invention includes hydrocarbons such as propane, n-butane, isobutane, n-hexane, n-heptane, toluene, xylene, cyclohexane and methylcyclohexane. Liquid such as solvent or liquefied α-olefin, or polar solvent such as diethyl ether, ethylene glycol dimethyl ether, tetrahydrofuran, dioxane, ethyl acetate, methyl benzoate, acetone, methyl ethyl ketone, formamide, acetonitrile, methanol, isopropyl alcohol, ethylene glycol Performed in the presence or absence. Moreover, you may use the mixture of the liquid compound described here as a solvent. In order to obtain an ethylene polymer having a high polymerization activity and a high molecular weight, it is preferable to use the above hydrocarbon solvent.
4.2 触媒使用量
 本発明のエチレン系重合体を製造する際のシングルサイト触媒の使用量には特に制限はなく、所望の重合反応が円滑に進行する程度であればよいが、例えば、製造される重合体重量に対する触媒由来金属含量の割合で10,000~0.1重量ppm、特に1,000~0.1重量ppm程度用いることが好ましい。
4.2 Amount of catalyst used The amount of the single-site catalyst used in the production of the ethylene polymer of the present invention is not particularly limited as long as the desired polymerization reaction proceeds smoothly. The catalyst-derived metal content is preferably 10,000 to 0.1 ppm by weight, particularly 1,000 to 0.1 ppm by weight, based on the polymer weight.
4.3 重合形式
 本発明のエチレン系重合体を製造する際の重合形式に特に制限はなく、媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自体を媒体とするバルク重合、気化したモノマー中で行う気相重合、または、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが好ましく用いられる。また、バッチ重合、セミバッチ重合、連続重合のいずれの形式でもよい。また、リビング重合であってもよいし、連鎖移動を併発しながら重合を行ってもよい。
4.3 Polymerization format There is no particular limitation on the polymerization format when producing the ethylene-based polymer of the present invention, and slurry polymerization in which at least a part of the produced polymer in the medium becomes a slurry, and the liquefied monomer itself is used as the medium. Bulk polymerization, gas phase polymerization performed in a vaporized monomer, or high pressure ion polymerization in which at least a part of the produced polymer is dissolved in a monomer liquefied at high temperature and high pressure are preferably used. Further, any of batch polymerization, semi-batch polymerization, and continuous polymerization may be used. Moreover, living polymerization may be sufficient and superposition | polymerization may be performed, combining chain transfer.
 重合反応器への触媒とモノマーの供給に関しても特に制限はなく、目的に応じてさまざまな供給法をとることができる。たとえばバッチ重合の場合、あらかじめ所定量のモノマーを重合反応器に供給しておき、そこに触媒を供給する手法をとることが可能である。この場合、追加のモノマーや追加の触媒を重合反応器に供給してもよい。また、連続重合の場合、所定量のモノマーと触媒を重合反応器に連続的に、または間歇的に供給し、重合反応を連続的に行う手法をとることもできる。 There are no particular restrictions on the supply of catalyst and monomer to the polymerization reactor, and various supply methods can be used depending on the purpose. For example, in the case of batch polymerization, it is possible to take a technique in which a predetermined amount of monomer is supplied to a polymerization reactor in advance and a catalyst is supplied thereto. In this case, an additional monomer or an additional catalyst may be supplied to the polymerization reactor. In the case of continuous polymerization, a method in which a predetermined amount of monomer and catalyst are continuously or intermittently supplied to the polymerization reactor to continuously perform the polymerization reaction may be employed.
 未反応モノマーや媒体は、生成重合体から分離し、リサイクルして使用してもよい。リサイクルの際、これらのモノマーや媒体は、精製して再使用してもよいし、精製せずに再使用してもよい。生成重合体と未反応モノマーおよび媒体との分離には、従来公知の方法が使用できる。たとえば、濾過、遠心分離、溶媒抽出、貧溶媒を使用した再沈などの方法が使用できる。 The unreacted monomer and medium may be separated from the produced polymer and recycled. In recycling, these monomers and media may be purified and reused, or may be reused without purification. A conventionally known method can be used for separating the produced polymer from the unreacted monomer and the medium. For example, methods such as filtration, centrifugation, solvent extraction, and reprecipitation using a poor solvent can be used.
4.4 重合条件
 本発明のエチレン系重合体を製造する際の重合温度、重合圧力および重合時間に特に制限はないが、通常は、以下の範囲から生産性やプロセスの能力を考慮して、最適な設定を行うことができる。
 重合温度は特に限定されないが、通常-20℃以上、好ましくは0℃以上、通常290℃以下、好ましくは250℃以下である。
 重合圧力は特に限定されないが、通常0.1MPa以上、好ましくは0.3MPa以上、通常100MPa以下、好ましくは90MPa以下である。
 重合時間は特に限定されないが、通常0.1分以上、好ましくは0.5分以上、より好ましくは1分以上、通常10時間以下、好ましくは7時間以下、より好ましくは6時間以下の範囲から選ぶことができる。
4.4 Polymerization Conditions There are no particular restrictions on the polymerization temperature, polymerization pressure and polymerization time when producing the ethylene polymer of the present invention, but usually considering the productivity and process capability from the following ranges, Optimal settings can be made.
The polymerization temperature is not particularly limited, but is usually −20 ° C. or higher, preferably 0 ° C. or higher, usually 290 ° C. or lower, preferably 250 ° C. or lower.
The polymerization pressure is not particularly limited, but is usually 0.1 MPa or more, preferably 0.3 MPa or more, usually 100 MPa or less, preferably 90 MPa or less.
The polymerization time is not particularly limited, but is usually 0.1 minutes or more, preferably 0.5 minutes or more, more preferably 1 minute or more, usually 10 hours or less, preferably 7 hours or less, more preferably 6 hours or less. You can choose.
 本発明において、重合は通常不活性ガス雰囲気下で行われる。その不活性ガスとしては、たとえば、窒素、アルゴン、二酸化炭素雰囲気を使用することができ、窒素雰囲気が好ましく使用される。なお、雰囲気中に少量の酸素や空気の混入があってもよい。 In the present invention, the polymerization is usually carried out in an inert gas atmosphere. As the inert gas, for example, nitrogen, argon, carbon dioxide atmosphere can be used, and nitrogen atmosphere is preferably used. Note that a small amount of oxygen or air may be mixed in the atmosphere.
4.5 組成制御
 得られるエチレン系重合体の共重合組成の制御に関しては、複数のモノマーを反応器に供給し、その供給比率を変えることによって制御する方法を一般に用いることができる。その他、触媒の構造の違いによるモノマー反応性比の差異を利用して共重合組成を制御する方法や、モノマー反応性比の重合温度依存性を利用して共重合組成を制御する方法が挙げられる。
4.5 Composition Control Regarding the control of the copolymer composition of the resulting ethylene-based polymer, a method of controlling by supplying a plurality of monomers to the reactor and changing the supply ratio can be generally used. In addition, there are a method of controlling the copolymer composition using the difference in the monomer reactivity ratio due to the difference in the structure of the catalyst, and a method of controlling the copolymer composition using the polymerization temperature dependence of the monomer reactivity ratio. .
4.6 分子量の調整方法
 得られるエチレン系重合体の分子量制御には、従来公知の方法を使用することができる。すなわち、重合温度を制御して分子量を制御する方法、モノマー濃度を制御して分子量を制御する方法、連鎖移動剤を使用して分子量を制御する方法、シングルサイト触媒の遷移金属錯体中のリガンド構造の制御により分子量を制御する方法等が挙げられる。連鎖移動剤を使用する場合には、従来公知の連鎖移動剤を用いることができる。たとえば、水素、メタルアルキルなどを使用することができる。
4.6 Molecular Weight Adjustment Method Conventionally known methods can be used to control the molecular weight of the resulting ethylene polymer. That is, a method for controlling the molecular weight by controlling the polymerization temperature, a method for controlling the molecular weight by controlling the monomer concentration, a method for controlling the molecular weight by using a chain transfer agent, and a ligand structure in a transition metal complex of a single site catalyst. And a method of controlling the molecular weight by controlling. When a chain transfer agent is used, a conventionally known chain transfer agent can be used. For example, hydrogen, metal alkyl, etc. can be used.
 また、成形工程で重合体の分子量を高める方法として、各種架橋反応が知られている。例えば過酸化物の使用や各種放射線照射を行うことにより、ラジカル機構による架橋反応が進行し、得られる重合体の分子量が増大することが知られている。 Also, various cross-linking reactions are known as methods for increasing the molecular weight of the polymer in the molding process. For example, it is known that when a peroxide is used or various types of radiation are applied, a crosslinking reaction by a radical mechanism proceeds and the molecular weight of the resulting polymer increases.
4.7 融点の調整方法
 得られるエチレン系重合体の融点制御には、従来公知の方法を使用することができる。すなわち、重合温度を制御する方法、モノマー濃度を制御する方法、シングルサイト触媒の遷移金属錯体中のリガンド構造の制御により短鎖分岐量を制御する方法等が挙げられる。
4.7 Adjustment Method of Melting Point Conventionally known methods can be used to control the melting point of the resulting ethylene polymer. That is, a method for controlling the polymerization temperature, a method for controlling the monomer concentration, a method for controlling the amount of short chain branching by controlling the ligand structure in the transition metal complex of the single site catalyst, and the like.
4.8 砂/ラバーホイール摩耗性能の調整方法
 得られるエチレン系重合体の砂/ラバーホイール摩耗性能には、エチレン系重合体の重量平均分子量、分子量分布、融点、結晶化度が深く関連している。優れた耐摩耗性発現のためには、重量平均分子量は高い方が好ましく、分子量分布は狭いことが望ましく、融点は高いことが望ましく、結晶化度は高いことが好ましい。これらの因子のうち、エチレン系重合体の重量平均分子量、分子量分布、融点は主に重合プロセスにおいて決定され、これらの制御方法は前述の通りである。結晶化度は成形プロセスにおいて決定される。一般に、熱成形の後の除熱速度を遅くすることにより、結晶化度を高めることが可能である。同じく、成形後にアニール処理を行うことにより結晶化度を高める手法も知られている。
4.8 Method for adjusting sand / rubber wheel wear performance The sand / rubber wheel wear performance of the resulting ethylene polymer is closely related to the weight average molecular weight, molecular weight distribution, melting point, and crystallinity of the ethylene polymer. Yes. In order to exhibit excellent wear resistance, it is preferable that the weight average molecular weight is high, the molecular weight distribution is desirably narrow, the melting point is desirably high, and the crystallinity is preferably high. Among these factors, the weight average molecular weight, molecular weight distribution, and melting point of the ethylene polymer are mainly determined in the polymerization process, and the control method thereof is as described above. Crystallinity is determined in the molding process. Generally, it is possible to increase the crystallinity by slowing the heat removal rate after thermoforming. Similarly, a technique for increasing the crystallinity by performing an annealing treatment after molding is also known.
[耐摩耗性樹脂成形体製造用エチレン系樹脂組成物]
 本発明の耐摩耗性樹脂成形体製造用エチレン系樹脂組成物(以下、「本発明のエチレン系樹脂組成物」と称する場合がある。)は、上述の本発明のエチレン系重合体の1種または2種以上に必要に応じて各種の添加剤を配合して製造される。
[Ethylene-based resin composition for producing wear-resistant resin molded article]
The ethylene-based resin composition for producing an abrasion-resistant resin molded body of the present invention (hereinafter sometimes referred to as “the ethylene-based resin composition of the present invention”) is one kind of the above-described ethylene-based polymer of the present invention. Or it manufactures by mix | blending various additives with two or more types as needed.
 即ち、本発明においては、本発明の課題である溶融流動性と砂/ラバーホイール摩耗性能を両立させるという目的を損なわない範囲で、成形体の用途に応じて、帯電防止剤、酸化防止剤、中和剤、滑剤、抗ブロッキング剤、防曇剤、有機あるいは無機系顔料、充填剤、無機フィラー、紫外線劣化防止剤、分散剤、耐候剤、架橋剤、発泡剤、難燃剤などの公知の添加剤を配合することができる。
 また、核剤、ガラス繊維、アラミド繊維、炭素繊維、セルロース繊維、カーボンブラック、ゴム、本発明のエチレン系重合体以外の他の樹脂などを配合してもよい。
That is, in the present invention, an antistatic agent, an antioxidant, and an antioxidant according to the use of the molded body, within a range that does not impair the object of the present invention to achieve both the melt fluidity and the sand / rubber wheel wear performance. Known additives such as neutralizers, lubricants, anti-blocking agents, anti-fogging agents, organic or inorganic pigments, fillers, inorganic fillers, UV degradation inhibitors, dispersants, weathering agents, crosslinking agents, foaming agents, flame retardants, etc. An agent can be blended.
Further, a nucleating agent, glass fiber, aramid fiber, carbon fiber, cellulose fiber, carbon black, rubber, other resin other than the ethylene polymer of the present invention may be blended.
 特に、本発明のエチレン系樹脂組成物には、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸バリウム、ラウリン酸カルシウム、ラウリン酸バリウム、ラウリン酸亜鉛、リシノール酸カルシウム等の長鎖脂肪酸金属塩を、滑剤あるいは離型剤として配合することが好ましい。これらの滑剤あるいは離型剤は、1種類を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。 In particular, the ethylene resin composition of the present invention contains a long-chain fatty acid metal salt such as calcium stearate, magnesium stearate, zinc stearate, barium stearate, calcium laurate, barium laurate, zinc laurate, calcium ricinoleate, etc. It is preferable to blend as a lubricant or a release agent. One of these lubricants or mold release agents may be used alone, or two or more thereof may be used in any combination and ratio.
 本発明のエチレン系樹脂組成物がステアリン酸カルシウム等の滑剤あるいは離型剤を含む場合、その含有量は、本発明のエチレン系重合体100重量部に対して10~0.01重量部、特に5~0.01重量部であることが好ましい。使用量が少な過ぎると滑剤あるいは離型剤を用いたことによる上記効果を十分に得ることができず、多過ぎると樹脂の機械物性を損なう恐れがある。 When the ethylene resin composition of the present invention contains a lubricant or mold release agent such as calcium stearate, the content thereof is 10 to 0.01 parts by weight, particularly 5 parts per 100 parts by weight of the ethylene polymer of the present invention. The amount is preferably 0.01 parts by weight. If the amount used is too small, the above-mentioned effect due to the use of a lubricant or mold release agent cannot be obtained sufficiently, and if it is too large, the mechanical properties of the resin may be impaired.
 また、本発明のエチレン系重合体およびエチレン系樹脂組成物は、有機過酸化物の存在下に溶融加工した場合、架橋反応を進行させてエチレン系重合体の分子量を高め、砂/ラバーホイール摩耗性能を高めることができることから、本発明のエチレン系樹脂組成物は、有機過酸化物を含んでいてもよい。 In addition, when the ethylene polymer and the ethylene resin composition of the present invention are melt-processed in the presence of an organic peroxide, the cross-linking reaction is advanced to increase the molecular weight of the ethylene polymer, and sand / rubber wheel wear Since performance can be improved, the ethylene-based resin composition of the present invention may contain an organic peroxide.
 本発明のエチレン系樹脂組成物が含有し得る有機過酸化物としては、特に制限はないが、例えば、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、1,1-ジ(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン等のジアルキルパーオキシド類、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキシン-3等のパーオキシエステル類、アセチルパーオキシド、ラウロイルパーオキシド、ベンゾイルパーオキシド、p-クロロベンゾイルパーオキシド、2,4-ジクロロベンゾイルパーオキシド等のジアシルパーオキシド類、ジイソプロピルベンゼンヒドロパーオキシド等のヒドロパーオキシド類等が挙げられる。これらのうち、特に、1分間の半減期温度が140℃以上のものが好ましく、例えば、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3等が好ましい。これらの有機過酸化物は、1種類を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。 The organic peroxide that can be contained in the ethylene-based resin composition of the present invention is not particularly limited, and examples thereof include di-t-butyl peroxide, t-butyl cumyl peroxide, dicumyl peroxide, 2,5 -Dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3,1,3-bis (t-butylperoxy) Isopropyl) benzene, dialkyl peroxides such as 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, t-butylperoxybenzoate, t-butylperoxyisopropyl carbonate, 2,5 -Dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexyne-3, etc. Peroxyesters, acetyl peroxide, lauroyl peroxide, benzoyl peroxide, p-chlorobenzoyl peroxide, diacyl peroxides such as 2,4-dichlorobenzoyl peroxide, hydroperoxides such as diisopropylbenzene hydroperoxide Etc. Of these, those having a one-minute half-life temperature of 140 ° C. or more are preferred, for example, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2 , 5-di (t-butylperoxy) hexyne-3 and the like are preferable. These organic peroxides may be used alone or in combination of two or more in any combination and ratio.
 また、上記有機過酸化物と共に必要に応じて架橋助剤を用いてもよく、有機過酸化物と併用し得る架橋助剤としては、例えば、硫黄、p-キノンジオキシム、p-ジニトロソベンゼン、1,3-ジフェニルグアニジン、m-フェニレンビスマレイミド等の過酸化物架橋助剤、ジビニルベンゼン、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート等の多官能ビニル化合物、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アリル(メタ)アクリレート等の多官能(メタ)アクリレート化合物等が挙げられる。
 これらの架橋助剤は、1種類を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
Further, a crosslinking aid may be used together with the organic peroxide as necessary. Examples of the crosslinking aid that can be used in combination with the organic peroxide include sulfur, p-quinonedioxime, and p-dinitrosobenzene. , Peroxide crosslinking aids such as 1,3-diphenylguanidine and m-phenylenebismaleimide, polyfunctional vinyl compounds such as divinylbenzene, triallyl cyanurate, triallyl isocyanurate and diallyl phthalate, ethylene glycol di (meth) Examples thereof include polyfunctional (meth) acrylate compounds such as acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and allyl (meth) acrylate.
These crosslinking aids may be used alone or in combination of two or more in any combination and ratio.
 また、溶融加工時の酸化劣化を防止するために、酸化防止剤を存在させてもよく、その酸化防止剤として、例えば、2,4-ジメチル-6-t-ブチルフェノール、2,6-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-p-クレゾール、2,6-ジ-t-ブチル-4-エチルフェノール、2,4,6-トリ-t-ブチルフェノール、2,5-ジ-t-ブチルハイドロキノン、ブチル化ヒドロキシアニソール、n-オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート等のモノフェノール系、4,4’-ジヒドロキシジフェニル、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、2,6-ビス(2’-ヒドロキシ-3’-t-ブチル-5’-メチルベンジル)-4-メチルフェノール等のビスフェノール系、1,1,3-トリス(2’-メチル-4’-ヒドロキシ-5’-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス〔β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン等のトリ以上のポリフェノール系、2,2’-チオビス(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス(2-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)等のチオビスフェノール系、アルドール-α-ナフチルアミン、フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン等のナフチルアミン系、p-イソプロポキシジフェニルアミン等のジフェニルアミン系、N,N’-ジフェニル-p-フェニレンジアミン、N,N’-ジ-β-ナフチル-p-フェニレンジアミン、N-シクロヘキシル-N’-フェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン等のフェニレンジアミン系のもの等が挙げられ、中で、モノフェノール系、ビスフェノール系、トリ以上のポリフェノール系、チオビスフェノール系等が好ましい。これらの酸化防止剤は1種類を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。 In order to prevent oxidative degradation during melt processing, an antioxidant may be present. Examples of the antioxidant include 2,4-dimethyl-6-tert-butylphenol, 2,6-di- t-butylphenol, 2,6-di-t-butyl-p-cresol, 2,6-di-t-butyl-4-ethylphenol, 2,4,6-tri-t-butylphenol, 2,5-di -T-butylhydroquinone, butylated hydroxyanisole, n-octadecyl-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate, stearyl-β- (3,5-di-t Monophenols such as -butyl-4-hydroxyphenyl) propionate, 4,4'-dihydroxydiphenyl, 2,2'-methylenebis (4-methyl-6-t-butylphenone) ), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6) -T-butylphenol), 2,6-bis (2′-hydroxy-3′-t-butyl-5′-methylbenzyl) -4-methylphenol, and the like, 1,1,3-tris (2 ′ -Methyl-4'-hydroxy-5'-t-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3 ', 5'-di-t-butyl-4'-hydroxy Benzyl) benzene, tris (3,5-di-t-butyl-4-hydroxyphenyl) isocyanurate, tris [β- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxyethyl] Tri- or higher polyphenols such as socyanurate, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,2′-thiobis (4-methyl-6) -T-butylphenol), 4,4'-thiobis (2-methyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol) and the like, aldol-α Naphthylamines such as naphthylamine, phenyl-α-naphthylamine and phenyl-β-naphthylamine, diphenylamines such as p-isopropoxydiphenylamine, N, N′-diphenyl-p-phenylenediamine, N, N′-di-β- Naphthyl-p-phenylenediamine, N-cyclohexyl-N′-phenyl-p-phen Examples thereof include phenylenediamine-based compounds such as nylenediamine, N-isopropyl-N′-phenyl-p-phenylenediamine, and the like, among which monophenol-based, bisphenol-based, tri- or higher polyphenol-based, thiobisphenol-based, and the like are preferable. These antioxidants may be used alone or in combination of two or more in any combination and ratio.
 前述の有機過酸化物を用いる場合、有機過酸化物は、本発明のエチレン系重合体100重量部に対して0.1~10重量部、特に0.1~2重量部用いることが好ましい。有機過酸化物の使用量が少な過ぎると有機過酸化物を用いたことによる高分子量化を十分に得ることができず、多過ぎると有機過酸化物分解後に残る低分子有機化合物が樹脂物性および成形体外観に悪影響を及ぼすことがある。 When the above-described organic peroxide is used, the organic peroxide is preferably used in an amount of 0.1 to 10 parts by weight, particularly 0.1 to 2 parts by weight, based on 100 parts by weight of the ethylene polymer of the present invention. If the amount of the organic peroxide used is too small, it will not be possible to sufficiently obtain a high molecular weight due to the use of the organic peroxide. The appearance of the molded product may be adversely affected.
 また、前述の架橋助剤を用いる場合、架橋助剤は、有機過酸化物100重量部に対して1~200重量部、特に10~100重量部用いることが好ましい。架橋助剤の使用量が少な過ぎると架橋助剤を用いたことによる架橋反応の促進効果を十分に得ることができず、多過ぎると未反応の架橋助剤の残存による着色や異臭など樹脂成形体の品質不良が容認できない水準となる場合がある。 Further, when the above-mentioned crosslinking aid is used, the crosslinking aid is preferably used in an amount of 1 to 200 parts by weight, particularly 10 to 100 parts by weight, per 100 parts by weight of the organic peroxide. If the amount of the crosslinking aid used is too small, the effect of promoting the crosslinking reaction due to the use of the crosslinking aid cannot be sufficiently obtained, and if too much, resin molding such as coloring or odor due to the remaining unreacted crosslinking aid. Body quality defects may be unacceptable.
 また、前述の酸化防止剤を用いる場合、酸化防止剤は、本発明のエチレン系重合体100重量部に対して10~0.01重量部、特に5~0.01重量部用いることが好ましい。酸化防止剤の使用量が少な過ぎると酸化防止剤を用いたことによる酸化劣化防止効果を十分に得ることができず、多過ぎるとブリードアウトにより加工成形機の汚れや樹脂成形体の外観悪化に繋がる。 Further, when the above-mentioned antioxidant is used, the antioxidant is preferably used in an amount of 10 to 0.01 parts by weight, particularly 5 to 0.01 parts by weight, based on 100 parts by weight of the ethylene polymer of the present invention. If the amount of antioxidant used is too small, the effect of preventing oxidative deterioration due to the use of antioxidant cannot be obtained sufficiently, and if too much, bleeding out causes deterioration of the appearance of processing molding machines and resin moldings. Connected.
 なお、本発明のエチレン系樹脂組成物には、1種類の本発明のエチレン系重合体を用いてもよいし、2種類以上の本発明のエチレン系重合体を混合して用いてもよい。2種類以上のエチレン系重合体を用いる場合、同一の触媒を用いて、モノマーや重合条件を変えて重合した2種類以上のエチレン系重合体を用いてもよいし、異なる触媒を用いて重合した2種類以上のエチレン系重合体を用いてもよい。また、分子量や融点、共重合成分の有無、共重合組成の異なるエチレン系重合体を2種以上用いてもよい。
 なお、本発明のエチレン系樹脂組成物が2種以上の本発明のエチレン系重合体を含有する場合、本発明のエチレン系樹脂組成物中のエチレン系重合体の物性とは、これら2種以上のエチレン系重合体の混合物に対して測定された値であり、エチレン系樹脂組成物中のエチレン系重合体に、本発明のエチレン系重合体の物性を満たさないエチレン系重合体を含んでいても、混合物としてのエチレン系重合体が本発明のエチレン系重合体の物性を満たすものであればよい。
In the ethylene resin composition of the present invention, one type of the ethylene polymer of the present invention may be used, or two or more types of the ethylene polymer of the present invention may be mixed and used. When two or more types of ethylene polymers are used, two or more types of ethylene polymers polymerized by changing the monomer and polymerization conditions using the same catalyst may be used, or polymerization is performed using different catalysts. Two or more types of ethylene polymers may be used. Two or more ethylene polymers having different molecular weights, melting points, presence / absence of copolymerization components, and copolymerization compositions may be used.
When the ethylene resin composition of the present invention contains two or more kinds of the ethylene polymer of the present invention, the physical properties of the ethylene polymer in the ethylene resin composition of the present invention are those two or more kinds. The ethylene polymer in the ethylene resin composition contains an ethylene polymer that does not satisfy the physical properties of the ethylene polymer of the present invention. However, the ethylene polymer as a mixture may satisfy the physical properties of the ethylene polymer of the present invention.
 エチレン系重合体への添加剤の配合に際しては、ミキサー、ミル、押出機などを用いて物理的に添加剤をエチレン系重合体と配合するのが通常であるが、溶媒を用いて、エチレン系重合体を溶解させ、該エチレン系重合体溶液に添加剤を加えて配合する溶液ブレンドを用いてもよい。なお、添加剤の存在下にエチレン系重合体の製造を行うことによって添加剤を配合するようにしてもよい。 When blending an additive into an ethylene polymer, it is usual to physically blend the additive with the ethylene polymer using a mixer, mill, extruder, etc. A solution blend in which a polymer is dissolved and an additive is added to the ethylene polymer solution may be used. In addition, you may make it mix | blend an additive by manufacturing an ethylene-type polymer in presence of an additive.
 本発明においては、本発明のエチレン系重合体が溶融流動性を有するため、従来の超高分子量ポリエチレンに比較して、添加剤の配合がきわめて容易であり、添加剤の配合によって、得られたエチレン系樹脂組成物に所望の機能を容易に付与することが可能となることも本発明の利点の一つである。 In the present invention, since the ethylene-based polymer of the present invention has melt fluidity, the blending of the additive is extremely easy as compared with the conventional ultrahigh molecular weight polyethylene, and it was obtained by blending the additive. One of the advantages of the present invention is that a desired function can be easily imparted to the ethylene-based resin composition.
 本発明のエチレン系樹脂組成物は、元のエチレン系重合体の粉体形状を維持した粉体であってもよいし、該粉体を粉砕したものであってもよいし、押出機を用いて造粒工程を用いて製造したペレットであってもよい。 The ethylene resin composition of the present invention may be a powder maintaining the powder shape of the original ethylene polymer, or may be a pulverized powder, or using an extruder. Pellets produced using a granulation step may be used.
 本発明のエチレン系樹脂組成物は、砂/ラバーホール摩耗試験において、0.035cm以上、0.24cm以下の耐摩耗性能を示す。砂/ラバーホイール摩耗性能が前記上限超過では実用に十分な耐摩耗性を有さず、前記下限未満では、加工性が下がる場合がある。本発明のエチレン系樹脂組成物の砂/ラバーホイール摩耗性能の下限値として好ましくは0.04cm、上限値として好ましくは0.20cmである。 The ethylene-based resin composition of the present invention exhibits a wear resistance of 0.035 cm 3 or more and 0.24 cm 3 or less in a sand / rubber hole wear test. When the sand / rubber wheel wear performance exceeds the above upper limit, the wear resistance is not sufficient for practical use, and when it is less than the lower limit, the workability may be lowered. The lower limit of the sand / rubber wheel wear performance of the ethylene-based resin composition of the present invention is preferably 0.04 cm 3 and the upper limit is preferably 0.20 cm 3 .
 なお、本発明のエチレン系樹脂組成物の砂/ラバーホイール摩耗性能は、本発明のエチレン系樹脂組成物を用いてプレス成形により得られたプレス片から、後掲の実施例の項に記載される方法で砂/ラバーホイール摩耗試験用の試験片を作製し、この試験片に対して後掲の実施例の項に記載される方法で砂/ラバーホイール摩耗試験を行うことにより測定することができる。 The sand / rubber wheel wear performance of the ethylene resin composition of the present invention is described in the Examples section below from a press piece obtained by press molding using the ethylene resin composition of the present invention. The test piece for the sand / rubber wheel wear test is prepared by the following method, and the test is performed by performing a sand / rubber wheel wear test on the test piece by the method described in the example section below. it can.
 本発明のエチレン系樹脂組成物のその他の物性については、通常、本発明のエチレン系重合体の物性に準ずる物性を有するが、使用目的等により添加する成分によって適宜調整することができる。 The other physical properties of the ethylene resin composition of the present invention usually have physical properties similar to the physical properties of the ethylene polymer of the present invention, but can be appropriately adjusted depending on the components added depending on the purpose of use and the like.
[耐摩耗性樹脂成形体の製造]
 本発明のエチレン系重合体ならびに本発明のエチレン系重合体に添加剤を配合した本発明のエチレン系樹脂組成物は、溶融流動性を有するため、熱可塑性ポリマーに用いられる従来公知の成形法を用いて成形体を製造することができる。これらの成形法においては、エチレン系重合体またはエチレン系樹脂組成物を、エチレン系重合体の融点以上に加熱し、エチレン系重合体またはエチレン系樹脂組成物が溶融状態となった後、所望の形状になるように賦型する。成形法については、成形体の使用目的ならびに生産性の観点から、最適な成形法を選択する。
[Manufacture of wear-resistant resin moldings]
Since the ethylene-based polymer of the present invention and the ethylene-based resin composition of the present invention in which an additive is blended with the ethylene-based polymer of the present invention have melt fluidity, a conventionally known molding method used for thermoplastic polymers is used. It can be used to produce a molded body. In these molding methods, the ethylene polymer or ethylene resin composition is heated to a temperature equal to or higher than the melting point of the ethylene polymer, and after the ethylene polymer or ethylene resin composition is in a molten state, a desired state is obtained. Mold to shape. As for the molding method, an optimal molding method is selected from the viewpoint of the purpose of using the molded body and the productivity.
 具体的な成形法としては、射出成形、トランスファー成形、ブロー成形、射出ブロー成形、押出ブロー成形、溶融圧縮成形、溶融押出成形、溶融紡糸成形、溶融塗布、溶融接着、溶融回転成形、発泡成形などが挙げられる。 Specific molding methods include injection molding, transfer molding, blow molding, injection blow molding, extrusion blow molding, melt compression molding, melt extrusion molding, melt spinning molding, melt coating, melt bonding, melt rotation molding, foam molding, and the like. Is mentioned.
 特に、本発明のエチレン系重合体またはエチレン系樹脂組成物の溶融成形に際しては、前述の如く、有機過酸化物を存在させることにより、エチレン系重合体を高分子量化してより一層砂/ラバーホイール摩耗性能に優れた成形体を得ることができ、好ましい。 In particular, in the melt molding of the ethylene polymer or the ethylene resin composition of the present invention, as described above, the presence of an organic peroxide increases the molecular weight of the ethylene polymer to further increase the sand / rubber wheel. A molded article having excellent wear performance can be obtained, which is preferable.
 本発明の特色は、砂/ラバーホイール摩耗性能に優れた成形体が、従来公知の溶融成形法で得られるため、生産性に優れる点にあるが、必要に応じて、従来公知の超高分子量ポリエチレン用の成形法を適用してもよい。具体的には、ラム押出、圧縮成形、焼結、機械加工、スカイビング、高静水圧加工、溶液法、ゲル法等を用いてもよい。 A feature of the present invention is that a molded body having excellent sand / rubber wheel wear performance is obtained by a conventionally known melt molding method, and thus is excellent in productivity. A molding method for polyethylene may be applied. Specifically, ram extrusion, compression molding, sintering, machining, skiving, high hydrostatic pressure processing, solution method, gel method and the like may be used.
 また、こうした成形法で得られた成形体を、真空成形、1軸延伸、2軸延伸、研磨、切削加工などの成形法により、2次加工してもよい。さらに、アニーリング、熱処理、急冷、化学処理などの処理を加えても良い。 Further, the molded body obtained by such a molding method may be subjected to secondary processing by a molding method such as vacuum molding, uniaxial stretching, biaxial stretching, polishing, and cutting. Furthermore, treatments such as annealing, heat treatment, rapid cooling, and chemical treatment may be added.
 このようして本発明のエチレン系重合体または本発明のエチレン系樹脂組成物を成形することにより、後掲の実施例の項に記載される砂/ラバーホイール摩耗試験により測定された砂/ラバーホイール摩耗性能が0.035cm以上0.24cm以下、好ましくは0.040cm以上0.16cm以下である本発明の耐摩耗性樹脂成形体を得ることができる。 Thus, by molding the ethylene-based polymer of the present invention or the ethylene-based resin composition of the present invention, the sand / rubber measured by the sand / rubber wheel abrasion test described in the section of Examples below. wheel wear performance 0.035Cm 3 or 0.24 cm 3 or less, preferably to obtain a wear-resistant resin molded article of the present invention which is a 0.040 cm 3 or more 0.16 cm 3 or less.
[耐摩耗性樹脂成形体の用途]
 本発明のエチレン系重合体または本発明のエチレン系樹脂組成物から得られる本発明の耐摩耗性樹脂成形体は、市販されている超高分子量ポリエチレンが使用されている用途に適用可能であり、具体的には、ワイヤー、ケーブル、印刷回路板、半導体、自動車部品、屋外製品、食品産業製品、生物医学中間体または製品、たとえば、人工股関節、人工肩関節、人工脊椎、人工膝関節、人工肘関節、人工足関節、人工指関節、人工移植組織片、整形移植組織片等の人工移植組織用部材、複合材料、モノフィラメント繊維、マルチフィラメント繊維、配向または無配向繊維、中空、織布または不織布、フィルター、膜、フィルム、シート、プレート、ブロック、ロッド、丸棒、多層フィルム、多成分フィルム、バリヤーフィルム、一次または二次電池(たとえば、リチウムイオン電池)用のバッテリーセパレーターフィルム、コンテナー、バッグ、ボトル、容器、チューブ、ホース、パイプ、弁、O-リング、カラム、タンク、継手、ガスケット、熱交換器、射出成形品、T-ダイ成形品、ヒートシール性パッキング異形材、熱収縮性フィルム、熱可塑性接合部品、ブロー成形部品、ラム押出部品、スクリュー押出異形材などに適用することができる。
[Uses of wear-resistant resin moldings]
The wear-resistant resin molded article of the present invention obtained from the ethylene polymer of the present invention or the ethylene resin composition of the present invention can be applied to applications where commercially available ultra-high molecular weight polyethylene is used, Specifically, wires, cables, printed circuit boards, semiconductors, automotive parts, outdoor products, food industry products, biomedical intermediates or products such as artificial hip joints, artificial shoulder joints, artificial spines, artificial knee joints, artificial elbows Artificial graft tissue members such as joints, artificial ankle joints, artificial finger joints, artificial graft tissue pieces, orthopedic graft tissue pieces, composite materials, monofilament fibers, multifilament fibers, oriented or non-oriented fibers, hollow, woven or non-woven fabrics, Filter, membrane, film, sheet, plate, block, rod, round bar, multilayer film, multi-component film, barrier film, primary or secondary Battery separator films for ponds (eg lithium ion batteries), containers, bags, bottles, containers, tubes, hoses, pipes, valves, O-rings, columns, tanks, fittings, gaskets, heat exchangers, injection molded products, The present invention can be applied to T-die molded products, heat-sealable packing profiles, heat-shrinkable films, thermoplastic joint parts, blow-molded parts, ram extruded parts, screw extruded profiles, and the like.
 その他の各種の中間体および最終使用者用の耐摩耗性生成物への適用例として、ガスハウス濾過バッグ、ドクターブレード、異形材、スキーソール、スノーボードソール、スノーモービルランナー、コーティング用微粒子添加剤、ホースライニング、ホッパーのライニング、シュートのライニング、鋼管被覆材、保護コーティング、静電コーティング、ワイヤーコーティング、光学繊維コーティング、容器のライニングおよび内部成分、タンク、カラム、パイプ、取り付け部品、ポンプ、ポンプハウジング、弁、弁座、飲料分配装置のチューブおよび取り付け部品、継手、シール、容器、バッグ、ボトル、ホース、チューブ、工業部品、ギア、カム、スライダー、レバー、アーム、クラッチ、プーリー、ローラー、コロ、キーステム、キートップ、シャッター、リール、ワッシャー、ピストン、シリンダー、ガイドレール、軸、軸受け、ボールベアリング、スクリュー、釘、ナット、ボルト、熱交換器、テープガイド、印刷装置における滑り部品(機構部品)、家庭電化製品における滑り部品、自動車のステアリング装置やスチールケーブルガイドにおける滑り部品、コンベヤー装置における滑り部品、エレベーターおよびエスカレーターにおける滑り部品などが挙げられる。 Examples of applications for various other intermediates and wear-resistant products for end users include gas house filtration bags, doctor blades, profiles, ski soles, snowboard soles, snowmobile runners, particulate additives for coating, Hose lining, hopper lining, chute lining, steel pipe coating, protective coating, electrostatic coating, wire coating, optical fiber coating, container lining and internal components, tanks, columns, pipes, fittings, pumps, pump housings, Valves, valve seats, beverage dispenser tubes and fittings, fittings, seals, containers, bags, bottles, hoses, tubes, industrial parts, gears, cams, sliders, levers, arms, clutches, pulleys, rollers, rollers, key stems ,Key , Shutters, reels, washers, pistons, cylinders, guide rails, shafts, bearings, ball bearings, screws, nails, nuts, bolts, heat exchangers, tape guides, sliding parts (mechanical parts) in printing equipment, home appliances Examples include sliding parts in products, sliding parts in automobile steering devices and steel cable guides, sliding parts in conveyor devices, and sliding parts in elevators and escalators.
 以下に合成例、実施例および比較例を挙げて本発明をさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to synthesis examples, examples and comparative examples. However, the present invention is not limited by the following examples unless it exceeds the gist.
[重量平均分子量Mw、数平均分子量Mnの測定方法]
 MwおよびMnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、以下の手法によって測定した。
・ 測定装置:GPCV2000(検出器RI検出器付)(ウォーターズ社製)
・ 検出波長:598nm
・ カラム:TSKgelGMH-HT(30cm×4本)(東ソー社製)
・ 前処理装置:高温GPC用前処理装置PL-SP260VS(ポリマーラボラトリー社製)
・ 測定条件 :試料溶液注入量:約520ml
        カラム温度:135℃
        溶媒:o-ジクロロベンゼン
        流量:1.0ml/min
・ 試料前処理条件
 試料約20mgを前記前処理装置用のバイアル瓶に採取し、安定剤としてBHT(ブチルヒドロキシトルエン)を含有するo-ジクロロベンゼン(BHT濃度=0.5g/L)を加え、ポリマー濃度が0.1重量%になるように調整した。ポリマーを前記前処理装置中で135℃に加熱して溶解させた後、グラスフィルターを用いて濾過して試料を調製した。
・ 分子量算出方法
 標準試料として市販の単分散のポリスチレンを使用し、該ポリスチレン標準試料およびエチレン系重合体の粘度式から、保持時間と分子量に関する校正曲線を作成し、該校正曲線に基づいて分子量の算出を行った。
 算出に用いた粘度式としては、[η]=K×Mαを使用し、ポリスチレンに対しては、K=1.38×10-4、α=0.70を使用し、エチレン系重合体に対しては、K=4.77×10-4、α=0.70を使用した。
[Method of measuring weight average molecular weight Mw, number average molecular weight Mn]
Mw and Mn were measured by the following method using gel permeation chromatography (GPC).
・ Measuring device: GPCV2000 (with detector RI detector) (manufactured by Waters)
・ Detection wavelength: 598nm
・ Column: TSKgelGMH-HT (30cm x 4) (manufactured by Tosoh Corporation)
・ Pretreatment equipment: Pretreatment equipment for high temperature GPC PL-SP260VS (manufactured by Polymer Laboratory)
Measurement conditions: Sample solution injection amount: about 520 ml
Column temperature: 135 ° C
Solvent: o-dichlorobenzene Flow rate: 1.0 ml / min
Sample pretreatment conditions About 20 mg of sample was collected in the vial for the pretreatment device, and o-dichlorobenzene (BHT concentration = 0.5 g / L) containing BHT (butylhydroxytoluene) as a stabilizer was added. The polymer concentration was adjusted to 0.1% by weight. The polymer was dissolved by heating to 135 ° C. in the pretreatment apparatus, and then filtered using a glass filter to prepare a sample.
・ Molecular weight calculation method Using a commercially available monodispersed polystyrene as a standard sample, create a calibration curve for retention time and molecular weight from the viscosity formula of the polystyrene standard sample and ethylene polymer, and calculate the molecular weight based on the calibration curve. Calculation was performed.
As the viscosity formula used for the calculation, [η] = K × Mα is used, and for polystyrene, K = 1.38 × 10 −4 and α = 0.70 are used. For this, K = 4.77 × 10 −4 and α = 0.70 were used.
[流動性(MFR、HMFR)の測定方法]
 JIS規格、JIS7210(1999)に準拠して測定した。
・ 測定装置:宝工業社製MX-101-B
・ 荷重:MFR 2.16kg、HMFR 21.6kg
[Measurement method of fluidity (MFR, HMFR)]
It measured based on JIS specification and JIS7210 (1999).
・ Measuring equipment: MX-101-B manufactured by Takara Kogyo Co., Ltd.
・ Load: MFR 2.16kg, HMFR 21.6kg
[融点Tmの測定方法]
 融点Tmは以下のDSC測定によって求めた。
・測定装置:PYRIS Diamond DSC示差走査熱量測定装置(PerkinElmer社製)
・測定条件:
 試料約5mgを210℃で5分間融解後、降温速度10℃/分で-20℃まで降温し、-20℃で5分間保持した後に、10℃/分の昇温速度で210℃まで昇温することにより融解曲線を得る。融解曲線を得るために行った最後の昇温段階における主吸熱ピークのピークトップ温度を融点Tmとした。
[Measuring method of melting point Tm]
The melting point Tm was determined by the following DSC measurement.
-Measuring device: PYRIS Diamond DSC differential scanning calorimeter (manufactured by PerkinElmer)
·Measurement condition:
About 5 mg of sample was melted at 210 ° C. for 5 minutes, cooled to −20 ° C. at a cooling rate of 10 ° C./minute, held at −20 ° C. for 5 minutes, and then heated to 210 ° C. at a heating rate of 10 ° C./minute. To obtain a melting curve. The peak top temperature of the main endothermic peak in the final temperature increase stage performed to obtain the melting curve was defined as the melting point Tm.
[摩耗試験用試験片の作成方法]
 評価するエチレン系重合体の質量を100部として、添加剤としてステアリン酸カルシウムを0.05部加え、ドライブレンドにより樹脂組成物を調製した。得られた樹脂組成物を用いて、プレス成形によりプレス片を作成した。プレスの際、165.5℃で45分加熱した後、35分間冷却した。プレス圧力は3.24MPaであった。得られたプレス片を使用して、下記の砂/ラバーホイール摩耗試験用の試験片、および、必要に応じて砂スラリー摩耗試験用の試験片を作成し、それぞれ摩耗試験を実施した。
[How to make a specimen for wear test]
The mass of the ethylene polymer to be evaluated was 100 parts, 0.05 part of calcium stearate was added as an additive, and a resin composition was prepared by dry blending. A press piece was prepared by press molding using the obtained resin composition. During pressing, after heating at 165.5 ° C. for 45 minutes, it was cooled for 35 minutes. The press pressure was 3.24 MPa. Using the obtained press pieces, the following test pieces for sand / rubber wheel wear test and, if necessary, test pieces for sand slurry wear test were prepared, and the wear test was performed.
[砂/ラバーホイール摩耗試験(Sand Wheel Abrasion Test)]
 砂/ラバーホイール摩耗試験は、ASTM(American Society For Testing and Materials)規格、ASTM G65に規定されている方法に準拠して行った。すなわち、砂/ラバーホイール摩耗試験は、ASTM G65によって規定されている試験法であり、該規格を満足する砂/ラバーホイール摩耗試験機を使用する。
・ 測定装置:Custom Scientific Instruments社製CSI-#227
・ 試験用砂:American Foundry Sand社製 50-70試験用砂粒径約50メッシュ(300μm)から70メッシュ(212μm)の範囲に調整され、以下の仕様を満足する粒径分布に調整されている。
  砂の仕様:粒径が212μm以上300μm未満の砂が全体の95重量%以上で、300μm以上425μm未満の砂が5重量%以下。
・ 測定試料:
 前述のプレス片から、帯鋸を用いて0.25インチ×1.00インチ×3.00インチの試験片を作成した。
・ 測定方法:
 砂/ラバーホイール摩耗試験機のホッパーに試験用砂(22.7kg)を入れた。試験片の質量(g)を測定した後、砂/ラバーホイール摩耗試験機の固定治具に固定し、試験用砂を300g/分で流しながらラバーホイールを200rpmで回転させ、室温で、試験片を該ラバーホイールに荷重30ポンドで押し当てた。ラバーホイールが3200回転したところで試験を終了した。
 試験片を固定治具から取り外し、試験片表面に付着した砂をふき取った。次いで試験片の質量(g)を測定した。摩耗による試験片の質量減少量(g)を計算し、該質量減少量(g)を試験片の密度(g/cm)で割って摩耗による損失体積(cm)を求めた。
 本発明では、本手法で得られた損失体積(cm)を、砂/ラバーホイール摩耗性能(SWA,Sand Wheel Abrasion)と称する。
[Sand / Wheel Abrasion Test]
The sand / rubber wheel abrasion test was performed in accordance with ASTM (American Society For Testing and Materials) standard, ASTM G65. That is, the sand / rubber wheel wear test is a test method defined by ASTM G65, and a sand / rubber wheel wear tester that satisfies the standard is used.
Measuring device: CSI- # 227 manufactured by Custom Scientific Instruments
・ Test sand: 50-70 sand size made by American Foundry Sand Co., Ltd. Adjusted to a particle size distribution ranging from about 50 mesh (300 μm) to 70 mesh (212 μm), and satisfying the following specifications. .
Specification of sand: 95% by weight or more of sand having a particle size of 212 μm or more and less than 300 μm, and 5% by weight or less of sand having a particle size of 300 μm or more and less than 425 μm.
・ Measurement sample:
A test piece of 0.25 inch × 1.00 inch × 3.00 inch was prepared from the above-mentioned press piece using a band saw.
· Measuring method:
Test sand (22.7 kg) was placed in the hopper of a sand / rubber wheel abrasion tester. After measuring the mass (g) of the test piece, the test piece was fixed to a fixing jig of a sand / rubber wheel abrasion tester, and the rubber wheel was rotated at 200 rpm while flowing the test sand at 300 g / min. Was pressed against the rubber wheel with a load of 30 pounds. The test was terminated when the rubber wheel rotated 3200 times.
The test piece was removed from the fixing jig, and the sand adhering to the test piece surface was wiped off. Subsequently, the mass (g) of the test piece was measured. The mass reduction amount (g) of the test piece due to wear was calculated, and the loss volume (cm 3 ) due to wear was obtained by dividing the mass reduction amount (g) by the density (g / cm 3 ) of the test piece.
In the present invention, the loss volume (cm 3 ) obtained by this method is referred to as sand / rubber wheel wear performance (SWA, Sand Wheel Ablation).
[砂スラリー摩耗試験(Sand Slurry Abrasion Test)]
 砂スラリー摩耗試験は、ASTM規格、ASTM D4020に準拠して、ASTM D4020に準拠する測定装置を用いて行った。
・ 試験用アルミナ:American Foundry Sand社製 50-70試験用アルミナ粒径約50メッシュ(300μm)から70メッシュ(212μm)の範囲に調製され、以下の仕様を満足する粒径分布に調整されている。
・ アルミナの仕様:粒径が212μm以上300μm未満のアルミナが全体の95重量%以上で、300μm以上425μm未満のアルミナが5重量%以下
・ 測定試料:
 前述のプレス片から、0.250インチ×1.000インチ×2.750インチの試験片を切削加工にて作成した。得られた試験片の中心に、ドリルを用いて11/32インチの穴を開け、この穴から約1/8インチ離れた場所に、9/64インチのもう一つの穴を開け、試験片とした。
・ 測定方法:
 試験片の質量(g)を測定し、試験片の切削加工面を上にし、中心に開けた11/32インチの穴を通してボルトで試験片を装置に固定した。次に、シャフトから出ているピンを9/64インチの穴に通し、試験片の装着角度を決めた。
 試験用アルミナ(450g)を測り取り、カップに注いだ。次いで300gの水を測り取り、カップに加え、水/アルミナスラリーとした。水/アルミナスラリーの入ったカップを装置に固定し、試験片を該スラリーに完全に浸した。
 チラーユニットを作動させて温度を23℃±2℃に保持しながら、シャフトならびに試験片を1750rpmで120分間回転させた。終了後、試験片を装置から取り外し、試験片表面に残った水およびアルミナを拭き取った後、乾燥させた。水が完全に乾燥したことを確認した後、試験片の質量(g)を測定し、摩耗による試験片の質量減少量(g)を計算した。最後に、該質量減少量(g)を試験片の密度(g/cm)で割って摩耗による損失体積(cm)を求めた。
 本発明では、本手法で得られた損失体積(cm)を、砂スラリー耐摩耗性能(Sand Slurry Abrasion)と称する。
[Sand Slurry Abrasion Test]
The sand slurry wear test was performed using a measuring device conforming to ASTM D4020 in accordance with ASTM standards and ASTM D4020.
・ Test Alumina: Made by American Foundry Sand Co., Ltd. 50-70 Test alumina particle size is adjusted in the range of about 50 mesh (300 μm) to 70 mesh (212 μm) and adjusted to a particle size distribution satisfying the following specifications. .
・ Specifications of alumina: Alumina with a particle size of 212 μm or more and less than 300 μm is 95% by weight or more, and alumina with a particle size of 300 μm or more and less than 425 μm is 5% or less.
A test piece of 0.250 inch × 1.000 inch × 2.750 inch was prepared by cutting from the above-mentioned press piece. Drill a 11/32 inch hole in the center of the resulting specimen and drill another 9/64 inch hole about 1/8 inch away from the hole. did.
· Measuring method:
The mass (g) of the test piece was measured, the cut surface of the test piece was turned up, and the test piece was fixed to the apparatus with a bolt through a 11/32 inch hole opened in the center. Next, the pin protruding from the shaft was passed through a 9/64 inch hole to determine the mounting angle of the test piece.
Test alumina (450 g) was weighed and poured into a cup. Next, 300 g of water was measured and added to the cup to form a water / alumina slurry. The cup containing the water / alumina slurry was fixed to the apparatus, and the test piece was completely immersed in the slurry.
The shaft and the test piece were rotated at 1750 rpm for 120 minutes while operating the chiller unit and maintaining the temperature at 23 ° C. ± 2 ° C. After completion, the test piece was removed from the apparatus, and water and alumina remaining on the surface of the test piece were wiped off and then dried. After confirming that the water was completely dried, the mass (g) of the test piece was measured, and the mass reduction amount (g) of the test piece due to wear was calculated. Finally, the mass loss (g) was divided by the density (g / cm 3 ) of the test piece to determine the loss volume (cm 3 ) due to wear.
In the present invention, the loss volume (cm 3 ) obtained by this method is referred to as sand slurry abrasion resistance (Sand Slurry Ablation).
[触媒の合成、エチレン系重合体の製造]
 以下の触媒の合成およびエチレン系重合体の製造において、特に断わりのない限り、操作は精製窒素雰囲気下で行い、溶媒および重合モノマーは脱水・脱酸素処理をしたものを用いた。
 また、エチレン重合あるいはエチレン/1-ヘキセン共重合は、下記の手順に沿って行った。
 内容積2Lの誘導攪拌翼付きオートクレーブに溶媒としてn-ヘキサンおよびスカベンジャーとして有機アルミニウム化合物を仕込んだ。1-ヘキセンとの共重合を行う場合には、所定量の1-ヘキセンをこの時点でオートクレーブに仕込んだ。次に、オートクレーブに装着された触媒フィーダーに触媒を仕込んだ。オートクレーブの気相部をエチレンで3回置換し、所定の重合温度まで昇温した。温度が所定温度に達したところで、触媒をオートクレーブ内部に供給し、引き続きエチレンを所定圧力まで供給した。内圧が所定圧力に達したところを重合開始時刻とし、温度・圧力一定条件下で所定時間の重合を行った。場合により、分子量調節のため、水素をオートクレーブに供給した。その場合は、重合中に所定の水素濃度が保持されるように、触媒供給前にオートクレーブに所定量の水素を供給し、さらに、重合中に、所定濃度の水素を含有するエチレンを供給した。所定時間重合させた後、未反応モノマーをパージして重合を停止した。エチレン系重合体のスラリーを回収し、有機溶媒を濾別し、得られたエチレン系重合体パウダーを乾燥させた。詳細は各合成例の中で示す。
[Catalyst synthesis, ethylene polymer production]
In the following catalyst synthesis and ethylene polymer production, unless otherwise specified, the operation was performed in a purified nitrogen atmosphere, and the solvent and polymerization monomer were dehydrated and deoxygenated.
Further, ethylene polymerization or ethylene / 1-hexene copolymerization was performed according to the following procedure.
An autoclave with an induction stirring blade having an internal volume of 2 L was charged with n-hexane as a solvent and an organoaluminum compound as a scavenger. When copolymerizing with 1-hexene, a predetermined amount of 1-hexene was charged into the autoclave at this point. Next, the catalyst was charged into the catalyst feeder attached to the autoclave. The gas phase part of the autoclave was replaced with ethylene three times, and the temperature was raised to a predetermined polymerization temperature. When the temperature reached a predetermined temperature, the catalyst was supplied into the autoclave, and ethylene was continuously supplied up to the predetermined pressure. The time when the internal pressure reached the predetermined pressure was set as the polymerization start time, and polymerization was carried out for a predetermined time under the constant temperature and pressure conditions. In some cases, hydrogen was fed to the autoclave for molecular weight control. In that case, a predetermined amount of hydrogen was supplied to the autoclave before supplying the catalyst so that a predetermined hydrogen concentration was maintained during the polymerization, and further, ethylene containing a predetermined concentration of hydrogen was supplied during the polymerization. After polymerization for a predetermined time, the unreacted monomer was purged to terminate the polymerization. The ethylene polymer slurry was collected, the organic solvent was filtered off, and the resulting ethylene polymer powder was dried. Details are shown in each synthesis example.
<合成例1>
 500mLの3口フラスコに、担体として平均粒径50ミクロンのシリカゲル(2g)、溶媒としてトルエン(10mL)、メタロセン錯体としてジクロロビス(n-ブチルシクロペンタジエニル)ハフニウム(以下、BCHと略す。)(0.05mmol、Aldrich社製)、共触媒としてメチルアルミノキサン(以下、MAOと略す。)(東ソーファインケム社製PMAO)(10mmol)を順次加え、60℃で1時間攪拌した。溶媒を全て減圧除去し、シリカゲル担持メタロセン触媒Aを得た。
<Synthesis Example 1>
In a 500 mL three-necked flask, silica gel (2 g) having an average particle size of 50 microns as a carrier, toluene (10 mL) as a solvent, and dichlorobis (n-butylcyclopentadienyl) hafnium (hereinafter abbreviated as BCH) as a metallocene complex ( 0.05 mmol, manufactured by Aldrich) and methylaluminoxane (hereinafter abbreviated as MAO) (PMAO manufactured by Tosoh Finechem) (10 mmol) were sequentially added as a cocatalyst and stirred at 60 ° C. for 1 hour. All the solvents were removed under reduced pressure to obtain silica gel-supported metallocene catalyst A.
<合成例2>
 メタロセン錯体をBCHからジクロロビス(n-ブチルシクロペンタジエニル)ジルコニウム(以下、BCZと略す。)(Aldrich社製)に変更した以外は、合成例1と同様に合成し、触媒Bを得た。
<Synthesis Example 2>
A catalyst B was obtained in the same manner as in Synthesis Example 1 except that the metallocene complex was changed from BCH to dichlorobis (n-butylcyclopentadienyl) zirconium (hereinafter abbreviated as BCZ) (manufactured by Aldrich).
<合成例3>
 担体として硫酸処理されたモンモリロナイト粘土担体(以下、Clayと略す)(100mg)をトリエチルアルミニウムで洗浄し、メタロセン錯体としてジクロロビス(シクロペンタジエニル)ジルコニウム(以下、CZと略す。)(0.003mmol)およびトリエチルアルミニウム(0.006mmol)のトルエン溶液と接触させ、触媒Cのトルエンスラリー(濃度0.1g/mL)を得た。
<Synthesis Example 3>
A montmorillonite clay carrier treated with sulfuric acid (hereinafter abbreviated as Clay) (100 mg) as a carrier was washed with triethylaluminum, and dichlorobis (cyclopentadienyl) zirconium (hereinafter abbreviated as CZ) (0.003 mmol) as a metallocene complex. Then, it was brought into contact with a toluene solution of triethylaluminum (0.006 mmol) to obtain a toluene slurry of catalyst C (concentration: 0.1 g / mL).
<合成例4>
 メタロセン錯体としてBCH(0.003mmol)を用いた以外は、合成例3と同様に実施し、触媒Dのトルエンスラリーを得た。
<Synthesis Example 4>
Except having used BCH (0.003 mmol) as a metallocene complex, it implemented similarly to the synthesis example 3, and the toluene slurry of the catalyst D was obtained.
<合成例5>
 MAOとしてアクゾ製RMAO(10mmol)を使用した以外は、合成例2と同様に実施し、触媒Eを得た。
<Synthesis Example 5>
A catalyst E was obtained in the same manner as in Synthesis Example 2 except that RMAO (10 mmol) manufactured by Akzo was used as MAO.
<合成例6>
 非特許文献Organometallics2007,26,5339.の記載に基づき、[N-(2,6-ジイソプロピルフェニル)-2-(2,6-ジイソプロピルフェニルイミノ)プロパンアミダト-κ2N,O(η1-ベンジル)]ニッケル(2,6-ルチジン)、(以下、BL錯体という。)を合成した。このBL錯体(10mmol)を酸処理モンモリロナイト粘土担体(5g)とトルエン溶液中で10分間攪拌し、触媒Fのトルエンスラリーを得た。
<Synthesis Example 6>
Non-patent literature Organometallics 2007, 26, 5339. [N- (2,6-diisopropylphenyl) -2- (2,6-diisopropylphenylimino) propaneamidato-κ2N, O (η1-benzyl)] nickel (2,6-lutidine), (Hereinafter referred to as BL complex) was synthesized. This BL complex (10 mmol) was stirred in an acid-treated montmorillonite clay carrier (5 g) and a toluene solution for 10 minutes to obtain a toluene slurry of catalyst F.
<合成例7>
 非特許文献J.Am.Chem.Soc.2001,123,5352.に基づき、[N-(2,6-ジイソプロピルフェニル)-2-(2,6-ジイソプロピルフェニルイミノ)プロパンアミダト-κ2N,O(η1-ベンジル)]ニッケル(トリメチルホスフィン)、(以下、BP錯体という。)を合成した。この錯体(1mmol)を等量のニッケルビス(1,5-シクロペンタジエン)とトルエン中で反応させることにより、触媒Gのトルエンスラリーを得た。
<Synthesis Example 7>
Non-patent literature Am. Chem. Soc. 2001, 123, 5352. [N- (2,6-diisopropylphenyl) -2- (2,6-diisopropylphenylimino) propaneamidato-κ2N, O (η1-benzyl)] nickel (trimethylphosphine), (hereinafter referred to as BP complex) Was synthesized. This complex (1 mmol) was reacted with an equal amount of nickel bis (1,5-cyclopentadiene) in toluene to obtain a toluene slurry of catalyst G.
<合成例8>
 平均粒径11ミクロンのシリカゲルを使用した以外は、全て合成例1と同様に触媒調整を行い、触媒Hを得た。
<Synthesis Example 8>
Catalyst H was prepared in the same manner as in Synthesis Example 1 except that silica gel having an average particle diameter of 11 microns was used.
 以上の合成例1~8で製造した触媒A~Hの構成を下記表1にまとめる。 The structures of the catalysts A to H produced in Synthesis Examples 1 to 8 are summarized in Table 1 below.
 なお、表1で使用されている略号については、以下の意味を表す。
  BCH:ジクロロビス(n-ブチルシクロペンタジエニル)ハフニウム
  BCZ:ジクロロビス(n-ブチルシクロペンタジエニル)ジルコニウム
  CZ:ジクロロビス(シクロペンタジエニル)ジルコニウム
  BL:[N-(2,6-ジイソプロピルフェニル)-2-(2,6-ジイソプロピルフェニルイミノ)プロパンアミダト-κ2N,O(η1-ベンジル)]ニッケル(2,6-ルチジン)
  BP:[N-(2,6-ジイソプロピルフェニル)-2-(2,6-ジイソプロピルフェニルイミノ)プロパンアミダト-κ2N,O(η1-ベンジル)]ニッケル(トリメチルホスフィン)
  SiO:シリカ担体
  Clay:モンモリロナイト担体
  MAO:メチルアルミノキサン
 「BCH/MAO」という表現は、担体にBCHとMAOを共担持した触媒であることを示す。
In addition, about the symbol used in Table 1, the following meaning is represented.
BCH: Dichlorobis (n-butylcyclopentadienyl) hafnium BCZ: Dichlorobis (n-butylcyclopentadienyl) zirconium CZ: Dichlorobis (cyclopentadienyl) zirconium BL: [N- (2,6-diisopropylphenyl)- 2- (2,6-Diisopropylphenylimino) propaneamidato-κ2N, O (η1-benzyl)] nickel (2,6-lutidine)
BP: [N- (2,6-diisopropylphenyl) -2- (2,6-diisopropylphenylimino) propaneamidato-κ2N, O (η1-benzyl)] nickel (trimethylphosphine)
SiO 2 : Silica support Clay: Montmorillonite support MAO: Methylaluminoxane The expression “BCH / MAO” indicates that the catalyst is a catalyst in which BCH and MAO are co-supported.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例1>
 内容積2Lの誘導攪拌翼付きオートクレーブに溶媒としてn-ヘキサン(1000mL)およびスカベンジャーとしてトリエチルアルミニウム(0.5mmol)を仕込んだ。次に、オートクレーブに装着された触媒フィーダーに触媒A(150mg)を仕込んだ。オートクレーブの気相部をエチレンで3回置換した後、加熱を開始し、温度が80℃に達したところで、触媒Aをオートクレーブ内部に供給し、引き続きエチレンを2.5MPaまで供給した。内圧が所定圧力(2.5MPa)に達したところを重合開始時刻とし、温度・圧力一定条件下で60分間の重合を行った後、未反応モノマーをパージして重合を停止した。ポリエチレンのスラリーを回収し、n-ヘキサンを濾別し、得られた重合体パウダーを乾燥させて、エチレン単独重合体である重合体1を298g得た。
 この重合体1の物性値を測定し、結果を表2に示した。
 また、得られた重合体1を用い、前記の試験片作成方法に基づきプレス片を作成し、摩耗試験を行った。結果を表2に示す。
<Example 1>
An autoclave with an induction stirring blade having an internal volume of 2 L was charged with n-hexane (1000 mL) as a solvent and triethylaluminum (0.5 mmol) as a scavenger. Next, catalyst A (150 mg) was charged into a catalyst feeder attached to the autoclave. After replacing the gas phase part of the autoclave with ethylene three times, heating was started, and when the temperature reached 80 ° C., the catalyst A was supplied into the autoclave, and then ethylene was supplied up to 2.5 MPa. The time when the internal pressure reached a predetermined pressure (2.5 MPa) was set as the polymerization start time, polymerization was performed for 60 minutes under a constant temperature and pressure condition, and then the unreacted monomer was purged to stop the polymerization. The polyethylene slurry was recovered, n-hexane was filtered off, and the resulting polymer powder was dried to obtain 298 g of polymer 1 which is an ethylene homopolymer.
The physical properties of this polymer 1 were measured, and the results are shown in Table 2.
Moreover, the obtained polymer 1 was used, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The results are shown in Table 2.
<実施例2>
 触媒Aに代えて前記触媒B(150mg)を用い、重合温度を45℃に変更し、エチレン圧力を3.0MPaに変更したこと以外は実施例1と同様にエチレンの重合を実施し、エチレン単独重合体である重合体2を222g得た。重合体2の評価結果を表2に示す。
<Example 2>
Instead of catalyst A, the catalyst B (150 mg) was used, the polymerization temperature was changed to 45 ° C., and the ethylene polymerization was carried out in the same manner as in Example 1 except that the ethylene pressure was changed to 3.0 MPa. As a result, 222 g of the polymer 2 was obtained. The evaluation results of Polymer 2 are shown in Table 2.
<実施例3>
 触媒Aに代えて触媒C(150mg)を用い、重合時間を90分としたこと以外は実施例1と同様にエチレンの重合を実施し、エチレン単独重合体である重合体3を309g得た。重合体3の評価結果を表2に示す。
<Example 3>
Polymerization of ethylene was carried out in the same manner as in Example 1 except that the catalyst C (150 mg) was used in place of the catalyst A and the polymerization time was 90 minutes, to obtain 309 g of a polymer 3 which was an ethylene homopolymer. The evaluation results of the polymer 3 are shown in Table 2.
<実施例4>
 触媒Aに代えて触媒D(150mg)を用い、反応器に添加する有機アルミニウムをトリイソブチルアルミニウム(0.5mmol)に変更し、重合時間を90分間としたこと以外は実施例1と同様にエチレンの重合を実施し、エチレン単独重合体である重合体4を363g得た。重合体4の評価結果を表3に示した。
<Example 4>
Except that catalyst D (150 mg) was used instead of catalyst A, the organoaluminum added to the reactor was changed to triisobutylaluminum (0.5 mmol), and the polymerization time was 90 minutes, ethylene was the same as in Example 1. Then, 363 g of polymer 4 which is an ethylene homopolymer was obtained. The evaluation results of the polymer 4 are shown in Table 3.
<実施例5>
 重合温度を60℃としたこと以外は実施例4と同様にエチレンの重合を実施し、エチレン単独重合体である重合体5を403g得た。重合体5の評価結果を表3に示した。
<Example 5>
Ethylene was polymerized in the same manner as in Example 4 except that the polymerization temperature was 60 ° C., to obtain 403 g of polymer 5 which was an ethylene homopolymer. The evaluation results of the polymer 5 are shown in Table 3.
<比較例6>
 重合温度を95℃、エチレン圧力を1.2MPaとしたこと以外は実施例4と同様にエチレンの重合を実施し、エチレン単独重合体である重合体6を257g得た。重合体6の評価結果を表3に示した。
<Comparative Example 6>
Except that the polymerization temperature was 95 ° C. and the ethylene pressure was 1.2 MPa, ethylene was polymerized in the same manner as in Example 4 to obtain 257 g of polymer 6 which was an ethylene homopolymer. The evaluation results of the polymer 6 are shown in Table 3.
<比較例7>
 内容積2Lの誘導攪拌翼付きオートクレーブに溶媒としてn-ヘキサン(1000mL)、コモノマーとして1-ヘキセンを70mL、およびスカベンジャーとしてトリエチルアルミニウム(0.5mmol)を仕込んだ。次に、オートクレーブに装着された触媒フィーダーに触媒D(100mg)を仕込んだ。オートクレーブの気相部をエチレンで3回置換した後、加熱を開始し、温度が65℃に達したところで、触媒Dをオートクレーブ内部に供給し、引き続きエチレンを2.5MPaまで供給した。内圧が所定圧力(2.5MPa)に達したところを重合開始時刻とし、温度・圧力一定条件下で60分間の重合を行った後、未反応モノマーをパージして重合を停止した。重合体のスラリーを回収し、n-ヘキサンを濾別し、得られた重合体パウダーを乾燥させて、エチレン/1-ヘキセン共重合体である重合体7を296g得た。重合体7の評価結果を表3に示す。
<Comparative Example 7>
An autoclave with an induction stirring blade having an internal volume of 2 L was charged with n-hexane (1000 mL) as a solvent, 70 mL of 1-hexene as a comonomer, and triethylaluminum (0.5 mmol) as a scavenger. Next, catalyst D (100 mg) was charged into a catalyst feeder attached to the autoclave. After replacing the gas phase part of the autoclave with ethylene three times, heating was started. When the temperature reached 65 ° C., the catalyst D was supplied into the autoclave, and then ethylene was supplied up to 2.5 MPa. The time when the internal pressure reached a predetermined pressure (2.5 MPa) was set as the polymerization start time, polymerization was performed for 60 minutes under a constant temperature and pressure condition, and then the unreacted monomer was purged to stop the polymerization. The polymer slurry was collected, n-hexane was filtered off, and the resulting polymer powder was dried to obtain 296 g of polymer 7 which is an ethylene / 1-hexene copolymer. The evaluation results of the polymer 7 are shown in Table 3.
<比較例8>
 内容積2Lの誘導攪拌翼付きオートクレーブに溶媒としてn-ヘキサン(1000mL)、コモノマーとして1-ヘキセンを220mL、およびスカベンジャーとしてトリエチルアルミニウム(0.2mmol)を仕込んだ。次に、オートクレーブに水素を含有するエチレンを供給し、引き続きオートクレーブに装着された触媒フィーダーに触媒E(100mg)を仕込んだ。オートクレーブの気相部をエチレンで3回置換した後、加熱を開始し、温度が40℃に達したところで、触媒Eをオートクレーブ内部に供給し、引き続き水素を含有するエチレンを2.5MPaまで供給した。内圧が所定圧力(2.5MPa)に達したところを重合開始時刻とし、反応器気相部の平均水素濃度を70ppmに維持し、温度・圧力一定条件下で60分間の重合を行った後、未反応モノマーをパージして重合を停止した。重合体のスラリーを回収し、n-ヘキサンを濾別し、得られた重合体パウダーを乾燥させて、エチレン/1-ヘキセン共重合体である重合体8を296g得た。重合体8の評価結果を表3に示す。
<Comparative Example 8>
An autoclave with an induction stirring blade having an internal volume of 2 L was charged with n-hexane (1000 mL) as a solvent, 220 mL of 1-hexene as a comonomer, and triethylaluminum (0.2 mmol) as a scavenger. Next, ethylene containing hydrogen was supplied to the autoclave, and then catalyst E (100 mg) was charged into a catalyst feeder attached to the autoclave. After replacing the gas phase part of the autoclave with ethylene three times, heating was started, and when the temperature reached 40 ° C., the catalyst E was supplied into the autoclave and subsequently ethylene containing hydrogen was supplied up to 2.5 MPa. . The time when the internal pressure reached a predetermined pressure (2.5 MPa) is set as the polymerization start time, the average hydrogen concentration in the gas phase part of the reactor is maintained at 70 ppm, and after performing polymerization for 60 minutes under a constant temperature and pressure condition, Unreacted monomer was purged to stop the polymerization. The polymer slurry was recovered, n-hexane was filtered off, and the resulting polymer powder was dried to obtain 296 g of polymer 8 which is an ethylene / 1-hexene copolymer. The evaluation results of the polymer 8 are shown in Table 3.
<比較例9>
 触媒Eの代りに触媒B(100mg)を用い、重合温度を50℃とし、反応器気相部の平均水素濃度を120ppmに維持したこと以外は比較例8と同様にエチレンと1-ヘキセンの共重合を実施し、エチレン/1-ヘキセン共重合体である重合体9を120g得た。重合体9の評価結果を表3に示した。
<Comparative Example 9>
In the same manner as in Comparative Example 8, except that catalyst B (100 mg) was used in place of catalyst E, the polymerization temperature was 50 ° C., and the average hydrogen concentration in the gas phase of the reactor was maintained at 120 ppm, ethylene and 1-hexene Polymerization was performed to obtain 120 g of polymer 9 which was an ethylene / 1-hexene copolymer. The evaluation results of the polymer 9 are shown in Table 3.
<比較例10>
 1-ヘキセンの使用量を30mLとし、重合温度を55℃とし、エチレン圧力を1.4MPaとし、反応器気相部の平均水素濃度を170ppmとしたこと以外は比較例8と同様にエチレンと1-ヘキセンの共重合を実施し、エチレン/1-ヘキセン共重合体である重合体10を215g得た。重合体10の評価結果を表3に示した。
<Comparative Example 10>
The amount of 1-hexene used was 30 mL, the polymerization temperature was 55 ° C., the ethylene pressure was 1.4 MPa, and the average hydrogen concentration in the reactor gas phase was 170 ppm. -Hexene copolymerization was carried out to obtain 215 g of polymer 10 which was an ethylene / 1-hexene copolymer. The evaluation results of the polymer 10 are shown in Table 3.
<比較例11>
 触媒Aの代りに触媒F(0.5g)を用い、重合時にトリエチルアルミニウムを使用せず、重合温度を43℃、エチレン圧力を2.0MPaとしたこと以外は実施例1と同様にエチレンの重合を実施し、エチレン単独重合体である重合体11を154g得た。重合体11の評価結果を表3に示した。
<Comparative Example 11>
Polymerization of ethylene in the same manner as in Example 1 except that catalyst F (0.5 g) was used instead of catalyst A, triethylaluminum was not used during the polymerization, the polymerization temperature was 43 ° C., and the ethylene pressure was 2.0 MPa. And 154 g of polymer 11 which is an ethylene homopolymer was obtained. The evaluation results of the polymer 11 are shown in Table 3.
<比較例12>
 触媒Aの代りに触媒G(450mg)を用い、重合時にトリエチルアルミニウムを使用せず、重合温度を25℃、エチレン圧力を0.7MPaとし、重合時間を50分間としたこと以外は実施例1と同様にエチレンの重合を実施し、エチレン単独重合体である重合体12を127g得た。重合体12の評価結果を表3に示した。
<Comparative Example 12>
Example 1 except that catalyst G (450 mg) was used instead of catalyst A, triethylaluminum was not used during the polymerization, the polymerization temperature was 25 ° C., the ethylene pressure was 0.7 MPa, and the polymerization time was 50 minutes. Similarly, ethylene was polymerized to obtain 127 g of polymer 12 which is an ethylene homopolymer. The evaluation results of the polymer 12 are shown in Table 3.
<実施例6>
 内容積24Lの誘導攪拌翼付きオートクレーブに溶媒としてn-ヘキサン(10L)およびスカベンジャーとしてトリエチルアルミニウム(5mmol)を仕込んだ。次に、オートクレーブに装着された触媒フィーダーに触媒H(330mg)を仕込んだ。オートクレーブの気相部をエチレンで3回置換した後、加熱を開始し、温度が85℃に達したところで、触媒Hをオートクレーブ内部に供給し、引き続きエチレンを2.0MPaまで供給した。内圧が所定圧力(2.0MPa)に達したところを重合開始時刻とし、温度・圧力一定条件下で180分間の重合を行った後、未反応モノマーをパージして重合を停止した。ポリエチレンのスラリーを回収し、n-ヘキサンを濾別し、得られた重合体パウダーを乾燥させたて、エチレン単独重合体である重合体13を1250g得た。重合体13の評価結果を表3に示した。
<Example 6>
An autoclave with an induction stirring blade having an internal volume of 24 L was charged with n-hexane (10 L) as a solvent and triethylaluminum (5 mmol) as a scavenger. Next, catalyst H (330 mg) was charged into a catalyst feeder attached to the autoclave. After replacing the gas phase part of the autoclave with ethylene three times, heating was started, and when the temperature reached 85 ° C., the catalyst H was supplied into the autoclave, and then ethylene was supplied up to 2.0 MPa. The time when the internal pressure reached a predetermined pressure (2.0 MPa) was set as the polymerization start time, and after performing the polymerization for 180 minutes under the constant temperature and pressure conditions, the unreacted monomer was purged to terminate the polymerization. The polyethylene slurry was recovered, n-hexane was filtered off, and the resulting polymer powder was dried to obtain 1250 g of polymer 13 which was an ethylene homopolymer. The evaluation results of the polymer 13 are shown in Table 3.
<実施例7>
 触媒H(1g)を用い、重合温度を80℃、反応時間を240分としたこと以外は実施例6と同様にエチレンの重合を実施し、エチレン単独重合体である重合体14を4000g得た。重合体14の評価結果を表3に示した。
<Example 7>
Polymerization of ethylene was carried out in the same manner as in Example 6 except that the catalyst H (1 g) was used, the polymerization temperature was 80 ° C., and the reaction time was 240 minutes, to obtain 4000 g of polymer 14 as an ethylene homopolymer. . The evaluation results of the polymer 14 are shown in Table 3.
<比較例1>
 超高分子量ポリエチレン(Ticona社製 GUR4150 Mw=770万)について、実施例1と同様に評価を行った。結果を表2に示す。
<Comparative Example 1>
Ultra-high molecular weight polyethylene (Gicon 4150 Mw = 7.7 million manufactured by Ticona) was evaluated in the same manner as in Example 1. The results are shown in Table 2.
<比較例2>
 超高分子量ポリエチレン(Ticona社製 GUR4120 Mw=500万)について、実施例1と同様に評価を行った。結果を表2に示す。
<Comparative example 2>
Ultra-high molecular weight polyethylene (Gicon 4120 Mw = 5 million manufactured by Ticona) was evaluated in the same manner as in Example 1. The results are shown in Table 2.
<比較例3>
 市販のチーグラー・ナッタ系触媒を用いて製造されたポリエチレン(Basell社製 Lupolen 5261Z)を用い、実施例1と同様に摩耗試験を行った。なお、このポリエチレンの物性値等はBasell社製品データベースに記載されている。結果を表2に示す。
<Comparative Example 3>
A wear test was conducted in the same manner as in Example 1 using polyethylene (Lupolen 5261Z manufactured by Basell) manufactured using a commercially available Ziegler-Natta catalyst. In addition, the physical property value etc. of this polyethylene are described in the product database of Basell. The results are shown in Table 2.
<比較例4>
 市販のポリエチレン(日本ポリエチレン社製 HY320)について、実施例1と同様に評価を行った。結果を表2に示す。
<Comparative Example 4>
A commercially available polyethylene (HY320 manufactured by Nippon Polyethylene Co., Ltd.) was evaluated in the same manner as in Example 1. The results are shown in Table 2.
<比較例5>
 市販のポリエチレン(Equistar社製 LM776031)について、実施例1と同様に評価を行った。結果を表2に示す。
<Comparative Example 5>
Evaluation was performed in the same manner as in Example 1 for commercially available polyethylene (LM776031 manufactured by Equistar). The results are shown in Table 2.
 なお、表2、表3および後掲の表4で使用されている略号については、以下の意味を表す。
   Mw:重量平均分子量
   Mn:数平均分子量
   Tm:融点
   MFR:メルトフローレート
   HLMFR:フローレシオメルトフローレート
   SWA:砂/ラバーホイール摩耗性能
   Sand Slurry:砂スラリー摩耗性能
In addition, about the symbol used in Table 2, Table 3, and Table 4 of the postscript, the following meaning is represented.
Mw: weight average molecular weight Mn: number average molecular weight Tm: melting point MFR: melt flow rate HLMFR: flow ratio melt flow rate SWA: sand / rubber wheel wear performance Sand Slurry: sand slurry wear performance
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例8>
 重合体1(300g)と重合体2(700g)の各粉末をヘンシェルミキサーでドライブレンドした。得られた重合体組成物について、物性評価を行うと共に、前記の試験片作成方法に基づきプレス片を作成し、摩耗試験を行った。評価結果を表4に示す。
<Example 8>
Each powder of polymer 1 (300 g) and polymer 2 (700 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
<実施例9>
 重合体1(550g)と重合体2(450g)の各粉末をヘンシェルミキサーでドライブレンドした。得られた重合体組成物について、物性評価を行うと共に、前記の試験片作成方法に基づきプレス片を作成し、摩耗試験を行った。評価結果を表4に示す。
<Example 9>
Each powder of polymer 1 (550 g) and polymer 2 (450 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
<実施例10>
 重合体1(550g)と重合体3(450g)の各粉末をヘンシェルミキサーでドライブレンドした。得られた重合体組成物について、物性評価を行うと共に、前記の試験片作成方法に基づきプレス片を作成し、摩耗試験を行った。評価結果を表4に示す。
<Example 10>
Each powder of polymer 1 (550 g) and polymer 3 (450 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
<実施例11>
 重合体1(300g)と重合体12(700g)の各粉末をヘンシェルミキサーでドライブレンドした。得られた重合体組成物について、物性評価を行うと共に、前記の試験片作成方法に基づきプレス片を作成し、摩耗試験を行った。評価結果を表4に示す。
<Example 11>
Each powder of polymer 1 (300 g) and polymer 12 (700 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
<実施例12>
 重合体1(550g)と重合体6(450g)の各粉末をヘンシェルミキサーでドライブレンドした。得られた重合体組成物について、物性評価を行うと共に、前記の試験片作成方法に基づきプレス片を作成し、摩耗試験を行った。評価結果を表4に示す。
<Example 12>
Each powder of polymer 1 (550 g) and polymer 6 (450 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
<実施例13>
 重合体2(550g)と重合体5(450g)の各粉末をヘンシェルミキサーでドライブレンドした。得られた重合体組成物について、物性評価を行うと共に、前記の試験片作成方法に基づきプレス片を作成し、摩耗試験を行った。評価結果を表4に示す。
<Example 13>
Each powder of polymer 2 (550 g) and polymer 5 (450 g) was dry blended with a Henschel mixer. About the obtained polymer composition, while evaluating physical properties, the press piece was created based on the said test piece preparation method, and the abrasion test was done. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[考察]
 以上の実施例および比較例の結果から、以下の結論が得られる。
[Discussion]
From the results of the above examples and comparative examples, the following conclusions can be obtained.
 (1) 溶融流動性
 比較例1~2では、Mwが100万を超えている。このため、融点以上に加熱しても溶融粘度が高すぎて樹脂が流動しない。樹脂が流動しないため、MFR,HLMFRは測定不能となっている。これに対して、実施例1~7では、Mwが100万未満であるため、融点以上に加熱することによって樹脂が流動し、MFRおよびHLMFRが測定可能となっている。
(1) Melt fluidity In Comparative Examples 1 and 2, Mw exceeds 1 million. For this reason, even if it heats more than melting | fusing point, melt viscosity is too high and resin does not flow. Since the resin does not flow, MFR and HLMFR cannot be measured. On the other hand, in Examples 1 to 7, since Mw is less than 1 million, the resin flows when heated to the melting point or higher, and MFR and HLMFR can be measured.
 (2) 摩耗試験方法と砂/ラバーホイール摩耗性能
 商業的に耐摩耗用途に使用されている超高分子量ポリエチレン(比較例1および2)を、砂スラリー摩耗試験で評価すると、摩耗量はそれぞれ0.17cm、0.19cmを示した(表2、比較例1、2参照)。
 これに対して、商業的に耐摩耗用途には使用できないMw=15万~50万程度の通常のポリエチレンでも、砂スラリー摩耗試験による摩耗量は0.29~0.59cm程度と、超高分子量ポリエチレンに匹敵する良好な値を示す(比較例3~5)。
 この結果は、超高分子量ではない、比較的低分子量のポリエチレンに対しては、砂スラリー摩耗試験は、適切な評価法ではないことを示している。
 これに対して、砂/ラバーホイール摩耗試験は、広い分子量範囲で材料の耐摩耗性能を明確に示す。たとえば、上記の比較例1,2で用いた超高分子量ポリエチレンの摩耗量を砂/ラバーホイール摩耗試験で求めると、いずれも約0.04(cm)となる(比較例1,2)。同様に、Mw=15万~50万程度の低分子量ポリエチレンでは、約0.25~1.7(cm)となり(比較例3~5)、超高分子量ポリエチレンと低分子量ポリエチレンとの差は明確である。さらに、後述するように、触媒の種類を決めてポリエチレンの分子量Mwを変化させると、砂/ラバーホイール摩耗試験による摩耗量と分子量Mwは良好な相関を示し、Mwを上げると摩耗量は減少する。この相関関係は、従来より考えられてきた耐摩耗性と分子量の関係に一致している。この事実も、砂/ラバーホイール摩耗試験が、単に超高分子量ポリエチレンの耐摩耗性評価にとどまらず、低分子量ポリエチレンを含む広い分子量範囲で、材料の耐摩耗性を評価しうる適切な手法であることを示している。これにより、以降の耐摩耗性の評価については、主として「砂/ラバーホイール摩擦試験」による評価を用いて行なうこととした。
(2) Wear test method and sand / rubber wheel wear performance When the ultra-high molecular weight polyethylene (Comparative Examples 1 and 2) commercially used for wear resistance is evaluated by the sand slurry wear test, the wear amount is 0 for each. .17Cm 3, showed 0.19 cm 3 (see Table 2, Comparative examples 1 and 2).
On the other hand, even with ordinary polyethylene having a Mw of about 150,000 to 500,000 that cannot be used commercially for wear resistance, the amount of wear by the sand slurry wear test is about 0.29 to 0.59 cm 3, which is extremely high. Good values comparable to molecular weight polyethylene are shown (Comparative Examples 3 to 5).
This result shows that the sand slurry wear test is not an appropriate evaluation method for relatively low molecular weight polyethylene, which is not ultra-high molecular weight.
In contrast, the sand / rubber wheel wear test clearly shows the wear resistance performance of the material over a wide molecular weight range. For example, when the wear amount of the ultrahigh molecular weight polyethylene used in Comparative Examples 1 and 2 is determined by a sand / rubber wheel abrasion test, both are about 0.04 (cm 3 ) (Comparative Examples 1 and 2). Similarly, in the case of low molecular weight polyethylene having Mw = 150,000 to 500,000, it is about 0.25 to 1.7 (cm 3 ) (Comparative Examples 3 to 5), and the difference between ultra high molecular weight polyethylene and low molecular weight polyethylene is It is clear. Further, as will be described later, when the molecular weight Mw of polyethylene is changed by determining the type of catalyst, the wear amount by the sand / rubber wheel wear test and the molecular weight Mw show a good correlation, and when the Mw is increased, the wear amount decreases. . This correlation is consistent with the relationship between wear resistance and molecular weight that has been conventionally considered. Again, the sand / rubber wheel wear test is not just a wear resistance assessment for ultra high molecular weight polyethylene, but is also an appropriate method for assessing the wear resistance of materials over a wide molecular weight range including low molecular weight polyethylene. It is shown that. As a result, the subsequent evaluation of wear resistance was performed mainly using the evaluation by the “sand / rubber wheel friction test”.
 (3) 本発明の評価
 実施例1~7では、エチレン系重合体がシングルサイト触媒によって製造され、かつ、Mwが30万以上100万未満の範囲に制御されている。このため、該重合体に添加剤を加えて形成した樹脂組成物を成形して得られる試験片は、砂/ラバーホイール摩耗性能として0.13cmを下回る良好な耐摩耗性を示している。
 なお、実施例1~7から、シングルサイト触媒として、メタロセン触媒単独を用いてもよいし、複数のメタロセン触媒を用いてエチレン系重合体のブレンドを用いてもよいことがわかる。また、担体として、シリカ担体を用いてもモンモリロナイト担体を用いてもよいことがわかる。さらに、非メタロセン触媒を用いてエチレン系重合体を形成してもよいことがわかる。
 実施例8~10および13から、複数のエチレン系重合体をブレンドしたものであっても、Mwが30万以上100万未満の範囲に制御されていればよいことがわかる。また、実施例11および12から、複数のエチレン系重合体をブレンドする場合は、個々のエチレン系重合体樹脂のMwが30万以上100万未満の範囲に制御されていなくても、ブレンド後の組成物が当該条件を満たしていればよいことがわかる。
(3) Evaluation of the Invention In Examples 1 to 7, the ethylene-based polymer is produced by a single site catalyst, and the Mw is controlled in the range of 300,000 to less than 1 million. For this reason, a test piece obtained by molding a resin composition formed by adding an additive to the polymer exhibits good wear resistance of less than 0.13 cm 3 as sand / rubber wheel wear performance.
Examples 1 to 7 show that a metallocene catalyst alone or a blend of ethylene polymers using a plurality of metallocene catalysts may be used as the single site catalyst. It can also be seen that a silica carrier or a montmorillonite carrier may be used as the carrier. Furthermore, it turns out that an ethylene-type polymer may be formed using a nonmetallocene catalyst.
From Examples 8 to 10 and 13, it can be seen that even if a blend of a plurality of ethylene polymers is used, it is sufficient that the Mw is controlled within the range of 300,000 to less than 1,000,000. In addition, when blending a plurality of ethylene polymers from Examples 11 and 12, even if the Mw of each ethylene polymer resin is not controlled within the range of 300,000 to less than 1,000,000, It can be seen that the composition only needs to satisfy the conditions.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2012年3月26日出願の日本特許出願(特願2012-069395)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on March 26, 2012 (Japanese Patent Application No. 2012-069395), the contents of which are incorporated herein by reference.
 本発明の耐摩耗性樹脂成形体は、従来、超高分子量ポリエチレンが使用されてきた応用分野に適用可能であり、当該成形体が、溶融成形法によって高い生産性で製造可能となるため、工業的にきわめて有用である。また、本発明の耐摩耗性樹脂成形体は結晶性が比較的高く、耐熱性を求められる分野・環境での使用が可能となり、工業的に極めて有用である。 The wear-resistant resin molded body of the present invention can be applied to application fields where ultrahigh molecular weight polyethylene has been used, and the molded body can be manufactured with high productivity by a melt molding method. Is extremely useful. In addition, the wear-resistant resin molded article of the present invention has a relatively high crystallinity and can be used in fields and environments where heat resistance is required, and is extremely useful industrially.

Claims (10)

  1.  下記(1)~(5)を満たす耐摩耗性樹脂成形体製造用エチレン系重合体。
    (1)エチレン単独重合体、またはエチレンと炭素数3以上20以下のα-オレフィンとの共重合体である
    (2)シングルサイト触媒を用いて重合されたものである
    (3)重量平均分子量Mwが、30万以上100万未満である
    (4)融点Tmが、130℃以上135℃未満である
    (5)該エチレン系重合体をプレス成形して得られたプレス片より作製した砂/ラバーホイール摩耗試験用の試験片について測定した砂/ラバーホイール摩耗性能が、0.035cm以上0.24cm以下である
    An ethylene polymer for producing a wear-resistant resin molded article that satisfies the following (1) to (5).
    (1) An ethylene homopolymer or a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms (2) Polymerized using a single site catalyst (3) Weight average molecular weight Mw (4) Melting point Tm is 130 ° C. or higher and lower than 135 ° C. (5) Sand / rubber wheel produced from a press piece obtained by press molding the ethylene-based polymer The sand / rubber wheel wear performance measured for the test specimen for wear test is 0.035 cm 3 or more and 0.24 cm 3 or less.
  2.  下記(1)~(4)を満たすエチレン系重合体を含み、下記(6)を満たす、耐摩耗性樹脂成形体製造用エチレン系樹脂組成物。
    (1)エチレン単独重合体、またはエチレンと炭素数3以上20以下のα-オレフィンとの共重合体である
    (2)シングルサイト触媒を用いて重合されたものである
    (3)重量平均分子量Mwが、30万以上100万未満である
    (4)融点Tmが、130℃以上135℃未満である
    (6)該エチレン系樹脂組成物をプレス成形して得られたプレス片より作製した砂/ラバーホイール摩耗試験用の試験片について測定した砂/ラバーホイール摩耗性能が、0.035cm以上0.24cm以下である
    An ethylene resin composition for producing an abrasion-resistant resin molded article, which contains an ethylene polymer satisfying the following (1) to (4) and satisfies the following (6).
    (1) An ethylene homopolymer or a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms (2) Polymerized using a single site catalyst (3) Weight average molecular weight Mw (4) Melting point Tm is 130 ° C. or higher and lower than 135 ° C. (6) Sand / rubber made from a press piece obtained by press-molding the ethylene-based resin composition Sand / rubber wheel wear performance measured on a test piece for wheel wear test is 0.035 cm 3 or more and 0.24 cm 3 or less.
  3.  砂/ラバーホイール摩耗性能が0.035cm以上0.24cm以下である耐摩耗性樹脂成形体を製造する方法であって、請求項1に記載の耐摩耗性樹脂成形体製造用エチレン系重合体、または請求項2に記載の耐摩耗性樹脂成形体製造用エチレン系樹脂組成物を、溶融流動可能な状態にして成形する、耐摩耗性樹脂成形体の製造方法。 The method for producing a wear-resistant resin molded product having a sand / rubber wheel wear performance of 0.035 cm 3 or more and 0.24 cm 3 or less, wherein the ethylene-based heavy for producing the wear-resistant resin molded product according to claim 1 is used. A method for producing a wear-resistant resin molded article, wherein the coalescence or the ethylene resin composition for producing a wear-resistant resin molded article according to claim 2 is molded in a melt-flowable state.
  4.  請求項3に記載の耐摩耗性樹脂成形体の製造方法により得られる耐摩耗性樹脂成形体。 A wear-resistant resin molded article obtained by the method for producing a wear-resistant resin molded article according to claim 3.
  5.  請求項4に記載の耐摩耗性樹脂成形体よりなる耐摩耗性樹脂部材。 A wear-resistant resin member comprising the wear-resistant resin molded product according to claim 4.
  6.  前記耐摩耗性樹脂部材が、ギア、カム、スライダー、レバー、アーム、クラッチ、プーリー、ローラー、コロ、キーステム、キートップ、シャッター、リール、ワッシャー、ピストン、シリンダー、ガイドレール、ボールベアリング、ナット、ボルト、スクリュー、軸、及び軸受け、等に代表される機構部品である請求項5に記載の耐摩耗性樹脂部材。 The wear-resistant resin member is a gear, cam, slider, lever, arm, clutch, pulley, roller, roller, key stem, key top, shutter, reel, washer, piston, cylinder, guide rail, ball bearing, nut, bolt The wear-resistant resin member according to claim 5, which is a mechanical component represented by a screw, a shaft, a bearing, and the like.
  7.  前記耐摩耗性樹脂部材が、ライニング材、鋼管被覆材、コーティング材、スキーのソール、およびスノーボードのソール、等に代表される被覆材である請求項5に記載の耐摩耗性樹脂部材。 The wear-resistant resin member according to claim 5, wherein the wear-resistant resin member is a coating material represented by a lining material, a steel pipe coating material, a coating material, a ski sole, a snowboard sole, and the like.
  8.  前記耐摩耗性樹脂部材が、人工股関節、人工肩関節、人工脊椎、人工膝関節、人工肘関節、人工足関節、及び人工指関節、等に代表される人工移植組織用部材である請求項5に記載の耐摩耗性樹脂部材。 6. The wear-resistant resin member is a member for an artificial graft tissue represented by an artificial hip joint, an artificial shoulder joint, an artificial spine, an artificial knee joint, an artificial elbow joint, an artificial ankle joint, an artificial finger joint, and the like. The wear-resistant resin member according to 1.
  9.  前記耐摩耗性樹脂部材が、チューブ、ホース、パイプ、弁、継ぎ手、シール、ガスケット、O-リング、カラム、タンク、コンテナー、バッグ、及びボトル、等に代表される液体または気体の導通経路用部材である請求項5に記載の耐摩耗性樹脂部材。 The wear-resistant resin member is a member for a liquid or gas conduction path represented by tubes, hoses, pipes, valves, joints, seals, gaskets, O-rings, columns, tanks, containers, bags, bottles, etc. The wear-resistant resin member according to claim 5.
  10.  前記耐摩耗性樹脂部材が、シート、プレート、ロッド、ブロック、及び丸棒、等に代表される耐摩耗性樹脂部材用中間加工品である請求項5に記載の耐摩耗性樹脂部材。 The wear-resistant resin member according to claim 5, wherein the wear-resistant resin member is an intermediate processed product for a wear-resistant resin member represented by a sheet, a plate, a rod, a block, a round bar, and the like.
PCT/JP2013/058873 2012-03-26 2013-03-26 Ethylene-based polymer for producing abrasion-resistant resin molding, ethylene-based resin composition for producing abrasion-resistant resin molding, abrasion-resistant resin molding, and method for producing same WO2013146825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-069395 2012-03-26
JP2012069395 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146825A1 true WO2013146825A1 (en) 2013-10-03

Family

ID=49260076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058873 WO2013146825A1 (en) 2012-03-26 2013-03-26 Ethylene-based polymer for producing abrasion-resistant resin molding, ethylene-based resin composition for producing abrasion-resistant resin molding, abrasion-resistant resin molding, and method for producing same

Country Status (2)

Country Link
JP (1) JP2013227539A (en)
WO (1) WO2013146825A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292663A (en) * 2021-06-03 2021-08-24 杭州培生医疗科技有限公司 Preparation method of supported metallocene catalyst and wear-resistant polyethylene

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6357781B2 (en) * 2014-01-28 2018-07-18 東ソー株式会社 Ultra high molecular weight polyethylene compression molding
JP6357820B2 (en) * 2014-03-17 2018-07-18 東ソー株式会社 Cutting film made of ultra high molecular weight polyethylene
JP6357819B2 (en) * 2014-03-17 2018-07-18 東ソー株式会社 Ultra high molecular weight polyethylene cutting
KR102304973B1 (en) * 2017-11-29 2021-09-24 롯데케미칼 주식회사 Polyethylene, method for preparing the same and separator using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072917A (en) * 1992-12-18 1995-01-06 Idemitsu Kosan Co Ltd Polymerization catalyst and production of polymer using the same
JPH11106417A (en) * 1997-10-06 1999-04-20 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight ethylene polymer excellent in wear property and composition thereof
JPH11255816A (en) * 1998-03-11 1999-09-21 Mitsubishi Chemical Corp Catalyst component for alpha-olefin polymerization, catalyst and process for polymerization of alpha-olefin using it
JP2002249518A (en) * 2000-12-21 2002-09-06 Japan Polychem Corp Ethylenic polymer
JP2004515591A (en) * 2000-12-06 2004-05-27 オムリドン テクノロジーズ エルエルシー Melt-processable wear-resistant polyethylene
JP2007529584A (en) * 2004-03-17 2007-10-25 ディーエスエム アイピー アセッツ ビー.ブイ. Polymerization catalyst containing amidine ligand

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072917A (en) * 1992-12-18 1995-01-06 Idemitsu Kosan Co Ltd Polymerization catalyst and production of polymer using the same
JPH11106417A (en) * 1997-10-06 1999-04-20 Asahi Chem Ind Co Ltd Ultra-high-molecular-weight ethylene polymer excellent in wear property and composition thereof
JPH11255816A (en) * 1998-03-11 1999-09-21 Mitsubishi Chemical Corp Catalyst component for alpha-olefin polymerization, catalyst and process for polymerization of alpha-olefin using it
JP2004515591A (en) * 2000-12-06 2004-05-27 オムリドン テクノロジーズ エルエルシー Melt-processable wear-resistant polyethylene
JP2002249518A (en) * 2000-12-21 2002-09-06 Japan Polychem Corp Ethylenic polymer
JP2007529584A (en) * 2004-03-17 2007-10-25 ディーエスエム アイピー アセッツ ビー.ブイ. Polymerization catalyst containing amidine ligand

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292663A (en) * 2021-06-03 2021-08-24 杭州培生医疗科技有限公司 Preparation method of supported metallocene catalyst and wear-resistant polyethylene

Also Published As

Publication number Publication date
JP2013227539A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
JP4377587B2 (en) Propylene polymer composition, molded product, and polyolefin copolymer
JP5414971B2 (en) Film made of ethylene resin composition
JP2007154204A (en) Polyethylene film with improved physical properties
JP2002544344A (en) Highly crystalline EAODM interpolymer
JP4726371B2 (en) Method for producing cross-copolymerized olefin-aromatic vinyl compound-diene copolymer
JP2007169339A (en) Ethylene-based polymer
WO2013146825A1 (en) Ethylene-based polymer for producing abrasion-resistant resin molding, ethylene-based resin composition for producing abrasion-resistant resin molding, abrasion-resistant resin molding, and method for producing same
JP2022505078A (en) Olefin polymerization catalyst
JP2022510678A (en) Olefin-based copolymer and its production method
JP7177262B2 (en) Olefin polymer
WO2002016450A1 (en) 1-butene polymer and molded product consisting of the polymer
JP5560161B2 (en) Polyethylene resin composition for container lid
JPH10180964A (en) Biaxially oriented multilayer film
JP2007177187A (en) Polyethylene-based film and the use
JP2001064426A (en) Porous film and its production
JP2013204015A (en) Polyethylene resin composition for container and molded body comprising the same
WO1998030614A1 (en) Propylene/ethylene copolymer, process for the production thereof, and molded articles thereof
JP4240634B2 (en) Biaxially stretched multilayer film
JP2005002279A (en) Polyolefin resin composition and its molded item
JP2022024535A (en) Branched propylene polymer
CN102245698B (en) Thermoplastic olefin compositions
JP4149862B2 (en) Soft polypropylene composite material and molded product thereof
JP4902050B2 (en) Polyolefin resin composition, molded product and film thereof
JP2015227459A (en) Polyethylene resin composition for container and molded body containing the same
JP5593202B2 (en) Polyethylene for container lid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767373

Country of ref document: EP

Kind code of ref document: A1