WO2013146556A1 - Polarizing plate - Google Patents

Polarizing plate Download PDF

Info

Publication number
WO2013146556A1
WO2013146556A1 PCT/JP2013/058191 JP2013058191W WO2013146556A1 WO 2013146556 A1 WO2013146556 A1 WO 2013146556A1 JP 2013058191 W JP2013058191 W JP 2013058191W WO 2013146556 A1 WO2013146556 A1 WO 2013146556A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
polarizing plate
adhesive
film
protective film
Prior art date
Application number
PCT/JP2013/058191
Other languages
French (fr)
Japanese (ja)
Inventor
智恵 阪上
悠司 淺津
岩田 智
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013146556A1 publication Critical patent/WO2013146556A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a polarizing plate in which a protective film made of a transparent resin is bonded to a polarizer made of a polyvinyl alcohol resin.
  • the polarizing plate is useful as one of the optical components constituting the liquid crystal display device.
  • a polarizing plate usually has a structure in which protective films are laminated on both sides of a polarizer, and is incorporated in a liquid crystal display device. It is also known that a protective film is provided only on one side of the polarizer, but in many cases, a layer having an optical function as another function is not provided on the other side. It is also pasted.
  • a method for producing a polarizer a method in which a uniaxially stretched polyvinyl alcohol-based resin film dyed with a dichroic dye is treated with boric acid, washed with water and dried is widely adopted.
  • a protective film is bonded to the polarizer immediately after washing and drying as described above. This is because the dried polarizer has a weak physical strength, and once it is wound, there is a problem that it is easily broken in the processing direction. Therefore, usually, a water-based adhesive that is an aqueous solution of a polyvinyl alcohol resin is immediately applied to the polarizer after drying, and protective films are simultaneously bonded to both sides of the polarizer via this adhesive. Usually, a triacetyl cellulose film having a thickness of 30 to 100 ⁇ m is used as the protective film.
  • Triacetyl cellulose has a high moisture permeability, and the polarizing plate bonded as a protective film has a problem of causing deterioration under wet heat, for example, at a temperature of 70 ° C. and a relative humidity of 90%. Therefore, it is also known to use an amorphous polyolefin resin having a lower moisture permeability than that of triacetyl cellulose, for example, an amorphous polyolefin resin represented by a norbornene resin as a protective film.
  • a protective film made of a resin with low moisture permeability is bonded to a polyvinyl alcohol polarizer, a polyvinyl alcohol resin that has been conventionally used as an adhesive for bonding a polyvinyl alcohol polarizer and triacetyl cellulose.
  • the aqueous solution has a problem that the adhesive strength is not sufficient or the appearance of the obtained polarizing plate becomes poor. This is because a resin film having low moisture permeability is generally hydrophobic, and water that is a solvent cannot be sufficiently dried due to low moisture permeability.
  • one side of the polarizer is made of a resin with low moisture permeability such as an amorphous polyolefin resin.
  • a resin with low moisture permeability such as an amorphous polyolefin resin.
  • a protective film and bonding a protective film made of a highly moisture-permeable resin such as cellulose resin including triacetyl cellulose to the other surface of the polarizer. Therefore, high adhesion between a protective film made of a resin with low moisture permeability and a polyvinyl alcohol polarizer and high adhesion between a resin with high moisture permeability such as a cellulose resin and a polyvinyl alcohol polarizer.
  • an active energy ray-curable adhesive as an adhesive that gives force.
  • Patent Document 1 discloses an adhesive mainly composed of an epoxy compound that does not contain an aromatic ring, and this adhesive is obtained by cationic polymerization by irradiation with active energy rays. It has been proposed to cure and bond the polarizer and the protective film.
  • Patent Document 2 discloses a photocurable adhesive in which an alicyclic epoxy compound and an epoxy compound having no alicyclic epoxy group are combined and blended with a cationic photopolymerization initiator. A technique using an agent for bonding a polarizer and a protective film is disclosed.
  • the adhesive of the composition specifically disclosed in Patent Document 1 and Patent Document 2 adheres the polarizer and the protective film with an appropriate adhesive force
  • the adhesive force is not necessarily sufficient, for example,
  • the polarizing plate obtained by adhering the polarizer and the protective film using the photocurable adhesive is cut into a predetermined size or when the cut polarizing plate is handled, an impact is exerted on the end of the polarizing plate.
  • the protective film sometimes peeled off from the polarizer at the end.
  • a polarizing plate obtained by adhering a polarizer and a protective film using these photocurable adhesives is discolored by sunlight or the heat of a backlight when applied to a liquid crystal display device.
  • JP 2010-32766 combines a glycidyl ether group-containing resin, a hydrolyzable silyl group, and an epoxy group-containing compound, and is combined with a photocationic polymerization initiator.
  • the technique which uses the photocurable adhesive agent used for bonding with a polarizer and a protective film is disclosed.
  • the photocurable adhesive having the composition specifically disclosed in Patent Document 3 expresses an appropriate adhesive force, and the discoloration of the polarizing plate due to heat can be moderately suppressed, but the adhesive layer after curing is not necessarily provided.
  • an object of the present invention is to provide a polarizing plate that has excellent adhesion between the polarizer and the protective film, suppresses discoloration of the polarizer due to heat, and does not easily crack the polarizer even when subjected to a severe temperature history. It is.
  • the present inventors have determined that a predetermined amount of a silane coupling agent and a photocationic polymerization initiator is added to a photocurable component containing an epoxy compound having an alicyclic epoxy group.
  • a polarizing plate which is formed from a photocurable composition containing a photocurable component containing an epoxy compound having a formula epoxy group, a silane coupling agent, and a photocationic polymerization initiator. .
  • the silane coupling agent preferably has a glycidyloxy group or a cyclic epoxy group in the molecule.
  • the photocurable component forming the adhesive further contains an aliphatic epoxy compound in the molecule.
  • the photocurable composition preferably contains 4 to 40 parts by weight of the silane coupling agent with respect to 100 parts by weight of the photocurable component.
  • a cycloolefin-based resin form is bonded to one surface of the polarizer via the adhesive, and an acetylcellulose-based resin film is bonded to the other surface of the polarizer via the adhesive.
  • a pressure-sensitive adhesive layer having an antistatic function is formed on the surface opposite to the surface on which the polarizing film of the acetylcellulose-based resin film is bonded.
  • the polarizing plate of the present invention is obtained by bonding a protective film to at least one surface of a polarizer via an adhesive layer.
  • the polarizer is composed of a polyvinyl alcohol-based resin film in which a dichroic dye is adsorbed and oriented.
  • the polyvinyl alcohol resin constituting the polarizer can be obtained by saponifying a polyvinyl acetate resin.
  • the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • Examples of other monomers copolymerized with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, and unsaturated sulfonic acids.
  • the saponification degree of the polyvinyl alcohol-based resin is usually in the range of 85 to 100 mol%, preferably 98 to 100 mol%.
  • the polyvinyl alcohol-based resin may be further modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually 1,000 to 10,000, preferably 1,500 to 5,000.
  • the polarizer is a process of uniaxially stretching such a polyvinyl alcohol-based resin film, a step of dyeing the polyvinyl alcohol-based resin film with a dichroic dye and adsorbing the dichroic dye, and a dichroic dye being adsorbed It is manufactured through a step of treating the polyvinyl alcohol resin film with a boric acid aqueous solution.
  • the uniaxial stretching may be performed before dyeing with a dichroic dye, may be performed simultaneously with dyeing with a dichroic dye, or may be performed after dyeing with a dichroic dye. When uniaxial stretching is performed after dyeing with a dichroic dye, this uniaxial stretching may be performed before boric acid treatment or during boric acid treatment.
  • uniaxial stretching in these plural stages.
  • stretching may be performed between rolls having different peripheral speeds, or stretching may be performed by sandwiching between rolls.
  • atmosphere may be sufficient
  • stretches in the state swollen with the solvent may be sufficient.
  • the draw ratio is usually about 4 to 8 times.
  • the polyvinyl alcohol resin film may be immersed in an aqueous solution containing the dichroic dye. Specifically, iodine or a dichroic organic dye is used as the dichroic dye.
  • iodine When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed.
  • the content of iodine in this aqueous solution is usually about 0.01 to 0.5 parts by weight per 100 parts by weight of water, and the content of potassium iodide is usually about 0.5 to 10 parts by weight per 100 parts by weight of water. It is.
  • the temperature of this aqueous solution is usually about 20 to 40 ° C.
  • the immersion time (dyeing time) in this aqueous solution is usually about 30 to 300 seconds.
  • a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic organic dye is usually employed.
  • the content of the dichroic organic dye in this aqueous solution is usually 1 ⁇ 10 5 per 100 parts by weight of water. -3 ⁇ 1 ⁇ 10 -2 About parts by weight.
  • This aqueous solution may contain an inorganic salt such as sodium sulfate.
  • the temperature of this aqueous solution is usually about 20 to 80 ° C., and the immersion time (dyeing time) in this aqueous solution is usually about 30 to 300 seconds.
  • the boric acid treatment after dyeing with a dichroic dye is performed by immersing the dyed polyvinyl alcohol resin film in an aqueous boric acid solution.
  • the boric acid content in the boric acid aqueous solution is usually about 2 to 15 parts by weight, preferably about 5 to 12 parts by weight per 100 parts by weight of water.
  • the aqueous boric acid solution preferably contains potassium iodide.
  • the content of potassium iodide in the boric acid aqueous solution is usually about 2 to 20 parts by weight, preferably 5 to 15 parts by weight per 100 parts by weight of water.
  • the immersion time in the boric acid aqueous solution is usually about 100 to 1,200 seconds, preferably about 150 to 600 seconds, and more preferably about 200 to 400 seconds.
  • the temperature of the boric acid aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C.
  • the polyvinyl alcohol resin film after the boric acid treatment is usually washed with water.
  • the water washing treatment is performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water. A drying process is performed after water washing, and a polarizer is obtained.
  • the water temperature in the water washing treatment is usually about 5 to 40 ° C., and the immersion time is usually about 2 to 120 seconds.
  • the drying process performed after that is normally performed using a hot air dryer or a far-infrared heater.
  • the drying temperature is usually 40 to 100 ° C.
  • the drying treatment time is usually about 120 to 600 seconds.
  • the thickness of the polarizer which consists of a polyvinyl alcohol-type resin film obtained can be about 10-50 micrometers.
  • the polarizer thus obtained has a protective film made of a transparent resin bonded to at least one surface thereof through an adhesive layer to form a polarizing plate.
  • the adhesive for bonding the protective film to the polarizer is a photocurable component composed of an epoxy compound having an alicyclic epoxy group, a silane coupling agent, and a photocationic polymerization initiator.
  • the formula diepoxy compound is preferably used because it provides excellent adhesion.
  • Specific examples of the alicyclic epoxy compound are listed below. Here, the compound name is given first, and then the chemical formula corresponding to each is shown, and the same symbol is attached to the chemical name and the corresponding chemical formula.
  • An aliphatic epoxy compound is a compound having in its molecule at least one oxirane ring (3-membered cyclic ether) bonded to an aliphatic carbon atom.
  • a monofunctional compound such as butyl glycidyl ether or 2-ethylhexyl glycidyl ether.
  • trifunctional or higher functional epoxy compounds such as trimethylolpropane triglycidyl ether and pentaerythritol tetraglycidyl ether.
  • An epoxy compound having one epoxy group directly bonded to an alicyclic ring and an oxirane ring bonded to an aliphatic carbon atom such as 4-vinylcyclohexene dioxide and limonene dioxide, also falls under this category.
  • an aliphatic diepoxy compound having two oxirane rings bonded to an aliphatic carbon atom in the molecule is preferable.
  • Such a suitable aliphatic diepoxy compound can be represented by the following formula (II), for example.
  • Y in the formula is an alkylene group having 2 to 9 carbon atoms, an alkylene group having 4 to 9 carbon atoms having an ether bond between them, or a divalent hydrocarbon group having 6 to 18 carbon atoms having an alicyclic structure. is there.
  • the aliphatic diepoxy compound represented by the above formula (II) is diglycidyl ether of alkanediol, diglycidyl ether of oligoalkylene glycol having a repetition number of up to about 4, or diglycidyl ether of alicyclic diol. is there.
  • diol (glycol) that can be an aliphatic diepoxy compound represented by the formula (II) are listed below.
  • alkanediol examples include ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, and 1,4-butanediol.
  • Neopentyl glycol 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentane Diol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol, 1,8-octanediol, 2-methyl-1,8 -Octanediol, 1,9-nonanediol and the like.
  • Examples of the oligoalkylene glycol include diethylene glycol, triethylene glycol, tetraethylene glycol, and dipropylene glycol.
  • Examples of the alicyclic diol include cyclohexanediol, cyclohexanedimethanol, hydrogenated bisphenol A, and hydrogenated bisphenol F.
  • diglycidyl ethers of alkanediols are preferred, and particularly preferred ones because of their availability are 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether and the like. is there.
  • the blending ratio of both is 50 to 95% by weight of the alicyclic epoxy compound and the aliphatic epoxy compound based on the total amount of the cationic polymerizable compound. It is preferably 5% by weight or more.
  • an aliphatic epoxy compound for example, a diglycidyl ether compound of the formula (II) in an amount of 5% by weight or more based on the whole cationic polymerizable compound, the adhesion between the polarizer and the protective film is further improved.
  • the amount is preferably 45% by weight or less based on the total amount of the cationically polymerizable compound.
  • the sum total of the mixture ratio of an alicyclic epoxy compound and an aliphatic epoxy compound does not exceed 100 weight%.
  • Epoxy compounds not corresponding to formula (I) include compounds having only one epoxy group directly bonded to the alicyclic ring in the molecule, and epoxy compounds not corresponding to formula (II) include those other than formula (II)
  • An aliphatic epoxy compound having an oxirane ring bonded to an aliphatic carbon atom, an aromatic epoxy compound, and the like are included.
  • An oxetane compound is a compound having an oxetane ring (4-membered ring ether).
  • Examples of aliphatic epoxy compounds having an oxirane ring bonded to an aliphatic carbon atom other than formula (II) include triglycidyl ether of glycerin, triglycidyl ether of trimethylolpropane, and diglycidyl ether of polyethylene glycol. .
  • the aromatic epoxy compound may be a glycidyl ether of an aromatic polyhydroxy compound having at least two phenolic hydroxyl groups in the molecule. Specific examples thereof include diglycidyl ether of bisphenol A and diglycidyl ether of bisphenol F. Bisphenol S diglycidyl ether, phenol novolac resin glycidyl ether, and the like.
  • An oxetane compound is a compound having a 4-membered ring ether (oxetanyl group) in the molecule, and specific examples thereof include the following compounds. 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 3-ethyl-3- (phenoxymethyl) oxetane, di [(3-ethyl-3 -Oxetanyl) methyl] ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (cyclohexyloxymethyl) oxetane, phenol novolac oxetane, 1,3-bis [(3-ethyloxetane -3-yl) methoxy] benzene, oxetanylsilsesquioxane, o
  • the oxetane compound described above is improved in curability as compared with the case where only the epoxy compound is used as the cationic polymerizable compound by blending at a ratio of 30% by weight or less based on the total amount of the cationic polymerizable compound. An effect may be expected.
  • the silane coupling agent can be a compound in which at least one hydrolyzable alkoxy group and another organic group are bonded to a silicon atom.
  • silane coupling agent for example, hydrogen fluoride produced as a by-product due to decomposition of the photocationic polymerization initiator is captured and discoloration of the polarizer is suppressed, and as a result, discoloration of the polarizing plate can be suppressed.
  • silane coupling agents include methyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane.
  • 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Epoxycyclohexyl) ethyltriethoxysilane has a glycidyloxy group or an alicyclic epoxy group in the molecule, so that when the photocurable composition is irradiated with active energy rays, it is cation with a photocurable component. Cures by polymerization reaction.
  • the silane coupling agent may be used alone or in combination of two or more.
  • the compounding amount of the silane coupling agent is about 4 to 50 parts by weight, preferably 7 to 50 parts by weight, and more preferably about 7 to 20 parts by weight with respect to 100 parts by weight of the photocurable component.
  • the amount of the silane coupling agent with respect to 100 parts by weight of the photocurable component is 4 parts by weight or less, the effect of suppressing the change in hue at the time of heating is not sufficient, and further, the adhesion with the polarizer and the protective film is improved. Almost no effect is obtained.
  • the amount of the silane coupling agent with respect to 100 parts by weight of the photocurable component is 50 parts by weight or more, the viscosity change with time in the photocurable composition increases, or the storage elastic modulus in the adhesive after curing. Tend to decrease significantly.
  • Photocationic polymerization initiator In the present invention, the photocurable component described above is cured by cationic polymerization by irradiation with active energy rays to form an adhesive layer, and therefore a photocationic polymerization initiator is blended in the photocurable composition.
  • the cationic photopolymerization initiator generates a cationic species or a Lewis acid upon irradiation with an active energy ray such as visible light, ultraviolet ray, X-ray, or electron beam, and initiates a polymerization reaction of the photocationic curable component. . Since the cationic photopolymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with the cationic photocuring component. Examples of the compound that generates a cationic species or a Lewis acid upon irradiation with active energy rays include onium salts such as aromatic iodonium salts and aromatic sulfonium salts, aromatic diazonium salts, and iron-arene complexes.
  • the aromatic iodonium salt is a compound having a diaryl iodonium cation, and typical examples of the diaryl iodonium cation include a diphenyl iodonium cation.
  • An aromatic sulfonium salt is a compound having a triarylsulfonium cation, and typical examples of the triarylsulfonium cation include triphenylsulfonium cation and 4,4′-bis (diphenylsulfonio) diphenylsulfide cation. Can do.
  • the aromatic diazonium salt is a compound having a diazonium cation, and typical examples of the diazonium cation include a benzenediazonium cation.
  • the iron-arene complex is typically a cyclopentadienyl iron (II) arene cation complex salt.
  • II cyclopentadienyl iron
  • the cations shown above constitute a photocationic polymerization initiator in pairs with anions (anions).
  • anions constituting the photocationic polymerization initiator include hexafluorophosphate anion PF 6 ⁇ , Hexafluoroantimonate anion SbF 6 ⁇ , Pentafluorohydroxyantimonate anion SbF 5 (OH) ⁇ , Hexafluoroarsenate anion AsF 6 ⁇ , Tetrafluoroborate anion BF 4 ⁇ , Tetrakis (pentafluorophenyl) borate anion B (C 6 F 5 ) 4 ⁇ and so on.
  • cationic photopolymerization initiators especially aromatic sulfonium salts have ultraviolet absorption characteristics even in the wavelength region near 300 nm, and therefore provide a cured product having excellent curability and good mechanical strength and adhesive strength. Therefore, it is preferably used.
  • Various photocationic polymerization initiators are commercially available. Examples of commercially available products include the “CPI” series sold by Sun Apro Co., Ltd., the “CYRACURE UVI” series sold by Dow Chemical Co., Ltd., and the “Adekaoptomer” sold by ADEKA Corporation.
  • the compounding amount of the photocationic polymerization initiator is 1 to 10 parts by weight based on 100 parts by weight of the whole cationic polymerizable compound.
  • the cationically polymerizable compound can be sufficiently cured, and high mechanical strength and adhesive strength are given to the obtained polarizing plate.
  • the amount of the cationic photopolymerization initiator is preferably 2 parts by weight or more per 100 parts by weight of the cationic polymerizable compound, and preferably 6 parts by weight or less.
  • the photocurable composition may contain other components in addition to the photocationic curable component and the photocationic polymerization initiator described above.
  • photosensitizers examples include photosensitizers, photosensitizers, thermal cationic polymerization initiators, chain transfer agents, thermoplastic resins, flow regulators, antifoaming agents, leveling agents, organic There are solvents.
  • a photosensitizer is a compound that exhibits maximum absorption at a wavelength longer than the maximum absorption wavelength exhibited by the photocationic polymerization initiator and promotes the polymerization initiation reaction by the photocationic polymerization initiator.
  • an anthracene compound is preferably used.
  • anthracene compounds that can be used as photosensitizers, 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-diisopropoxyanthracene, 9,10-dibutoxyanthracene 9,10-dipentyloxyanthracene, 9,10-dihexyloxyanthracene and the like.
  • the photosensitizing assistant is a compound that further promotes the action of the photosensitizer. As such a photosensitizing assistant, naphthalene compounds are preferably used.
  • the amount thereof is, for example, in the range of 10 parts by weight or less to the blending purpose with respect to 100 parts by weight of the photocationic curable component that is the main component of the photocurable composition. May be selected as appropriate.
  • a polarizer comprising the above-described polyvinyl alcohol-based resin film is laminated with a protective film via the photocurable composition described above, and the photocurable composition is cured to form a polarizing plate.
  • the protective film can be composed of an acetylcellulose-based resin film such as triacetylcellulose, which has been most widely used as a protective film for polarizing plates, or a resin film having a lower moisture permeability than triacetylcellulose.
  • the moisture permeability of triacetyl cellulose is approximately 400 g / m. 2 / 24 hr.
  • the protective film bonded to at least one surface of the polarizer is composed of an acetylcellulose-based resin.
  • the protective film bonded to at least one surface of the polarizer is a resin film having a moisture permeability lower than that of triacetyl cellulose, such as a moisture permeability of 300 g / m. 2 / 24hr or less of resin film.
  • the resin constituting such a resin film with low moisture permeability include amorphous polyolefin resin, polyester resin, acrylic resin, polycarbonate resin, and chain polyolefin resin.
  • a protective film made of an acetylcellulose-based resin is bonded to one surface of the polarizer via the adhesive layer, and the other surface of the polarizer is also interposed via the adhesive layer. Then, a protective film made of a transparent resin having a low moisture permeability as described above is bonded.
  • An acetyl cellulose resin is a resin in which at least a part of hydroxyl groups in cellulose is acetate esterified, even if it is a mixed ester in which part is acetated and partly esterified with another acid. Good.
  • acetyl cellulose resin examples include triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, and cellulose acetate butyrate.
  • An amorphous polyolefin-based resin is a polymer having a polymerized unit of cyclic olefin, such as norbornene, tetracyclododecene (also known as dimethanooctahydronaphthalene), or a compound having a substituent bonded thereto. It may be a copolymer obtained by copolymerizing a chain olefin and / or an aromatic vinyl compound.
  • thermoplastic norbornene resins are typical.
  • the polyester resin is a polymer obtained by condensation polymerization of a dibasic acid and a dihydric alcohol, and polyethylene terephthalate is representative.
  • Acrylic resin is a polymer with methyl methacrylate as the main monomer.
  • methyl methacrylate and acrylic esters and aromatic vinyl compounds such as methyl acrylate It may be a copolymer.
  • the polycarbonate-based resin is a polymer having a carbonate bond (—O—CO—O—) in the main chain, and is typically obtained by condensation polymerization of bisphenol A and phosgene.
  • the chain polyolefin-based resin is a polymer mainly containing a chain olefin such as ethylene or propylene, and can be a homopolymer or a copolymer. Among them, a propylene homopolymer and a copolymer in which a small amount of ethylene is copolymerized with propylene are representative.
  • Such a protective film has various surface treatment layers such as a hard coat layer, an antireflection layer, an antiglare layer, and an antistatic layer on the surface opposite to the surface to be bonded to the polarizer. Also good.
  • the protective film can have a thickness of about 5 to 150 ⁇ m including the case where such a surface treatment layer is formed. The thickness is preferably 10 ⁇ m or more, preferably 120 ⁇ m or less, more preferably 100 ⁇ m or less.
  • Adhesion between polarizer and protective film In adhering the polarizer and the protective film, the photocurable composition described above is applied to one or both of the bonded surfaces of the polarizer and the protective film, and the polarizer and the protective film are interposed through the coating layer.
  • the application layer of the uncured photocurable composition is bonded and cured by irradiating active energy rays, and the protective film is fixed on the polarizer.
  • the coating layer of a photocurable composition may be formed in the bonding surface of a polarizer, and may be formed in the bonding surface of a protective film.
  • various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used.
  • the system which casts a photocurable composition in the meantime can also be employ
  • each coating method has an optimum viscosity range, it is also a useful technique to adjust the viscosity using a solvent.
  • a solvent that dissolves the photocurable composition satisfactorily without degrading the optical performance of the polarizer is used, but the type is not particularly limited.
  • organic solvents such as hydrocarbons typified by toluene and esters typified by ethyl acetate can be used.
  • the thickness of the adhesive layer after curing is usually 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. When the adhesive layer becomes thick, the reaction rate of the adhesive composition decreases, and the wet heat resistance of the polarizing plate tends to deteriorate.
  • the corona discharge treatment, plasma treatment, flame treatment, primer treatment, anchor coating treatment is performed on one or both of the bonding surfaces of the polarizer before applying the photocurable composition.
  • Such an easy adhesion treatment may be performed.
  • the light source used for irradiating the application layer of the photocurable composition with active energy rays may be any light source that generates ultraviolet rays, electron beams, X-rays, and the like.
  • a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp and the like having a light emission distribution at a wavelength of 400 nm or less are preferably used.
  • the irradiation intensity of the active energy ray to the photocurable composition is determined for each composition of the photocurable composition, and is not particularly limited, but the irradiation intensity in the wavelength region effective for activation of the initiator.
  • Irradiation intensity to the photocurable composition is 0.1 mW / cm 2 If it is less than 100 mW / cm, the reaction time becomes too long. 2 If it exceeds 1, the heat radiated from the lamp and the heat generated during polymerization of the photocurable composition may cause yellowing of the photocurable composition or deterioration of the polarizer.
  • the light irradiation time to the photocurable composition is controlled for each composition to be cured and is not particularly limited, but the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is 10 to 5,000 mJ. / Cm 2 It is preferable to set so that.
  • Integrated light quantity to the photocurable composition is 10 mJ / cm 2
  • the amount is less than 1, the generation of active species derived from the initiator is not sufficient, and the resulting adhesive layer may be insufficiently cured, while the integrated light amount is 5,000 mJ / cm. 2 If it exceeds 1, irradiation time becomes very long, which is disadvantageous for productivity improvement.
  • active energy rays may be irradiated from either protective film side.
  • one protective film contains an ultraviolet absorber and the other protective film
  • the ultraviolet absorber When the ultraviolet absorber is not contained, it is preferable to irradiate the active energy ray from the protective film side not containing the ultraviolet absorber in order to effectively utilize the irradiated active energy ray and increase the curing rate.
  • the polarizing plate of the present invention is excellent in heat resistance because it hardly deteriorates even when exposed to high temperature conditions by blending a predetermined amount of a silane coupling agent into the photocurable composition. For example, an ab value expressed by the square root value of the sum of the square value of the a value and the square value of the b value of the transmitted hue is 0.
  • the above transmission hue means the hue of light transmitted from the other surface when light is applied from one surface of the polarizing plate.
  • the hue here can be expressed by a value and b value in the Lab color system, and is measured using standard light.
  • the transmission hue of the polarizing plate was actually measured on the polarizing film with a protective film (a cycloolefin-based film and an acetylcellulose-based film in the examples described later) stuck on the acetylcellulose-based film.
  • An adhesive layer is provided and the adhesive layer is bonded to the glass plate.
  • the Lab color system is represented by Hunter's lightness index L and hues a and b, as described in “5.5 Accelerated weather resistance test” of JIS K 5981: 2006 “Synthetic resin powder coating”. Is. As a concept similar to the Lab color system, JIS Z 8729: 2004 “Color Display Method-L * a * b * Color system and L * u * v * L defined in "color system” * a * b * Although there is a color system, the Lab color system is adopted in the present invention.
  • the values of the lightness index L and hues a and b are calculated from the tristimulus values X, Y and Z defined in JIS Z 8722: 2009 “Color Measurement Method-Reflection and Transmission Object Color” by the following formula: .
  • the hue a value and b value can indicate positions corresponding to saturation, and when the hue a value increases, the hue changes to red, and when the hue b value increases, the hue changes to yellow. Each changes.
  • the ab value representing the change in hue is calculated by the following formula (III).
  • the polarizing plate of the present invention can be made into a laminated optical member by laminating optical layers having optical functions other than the polarizing plate.
  • a laminated optical member is obtained by laminating and attaching an optical layer to a protective film of a polarizing plate via an adhesive or a pressure-sensitive adhesive.
  • a protective film can be bonded via a photocurable composition, and an optical layer can be laminated and bonded to the other surface of the polarizer via an adhesive or a pressure-sensitive adhesive.
  • the optical layer can simultaneously be a protective film defined in the present invention.
  • the optical layer laminated on the polarizing plate for the polarizing plate arranged on the back side of the liquid crystal cell, the reflective layer is laminated on the opposite side of the polarizing plate from the side facing the liquid crystal cell.
  • the reflective layer, transflective layer, or light diffusion layer is a reflective polarizing plate (optical member), a transflective polarizing plate (optical member), or a diffusing polarizing plate (optical member), respectively.
  • the reflective polarizing plate is used in a liquid crystal display device of a type that reflects and displays incident light from the viewing side. Since a light source such as a backlight can be omitted, the liquid crystal display device can be easily thinned.
  • the transflective polarizing plate is used as a reflection type in a bright place and used in a liquid crystal display device that displays light from a backlight in a dark place.
  • An optical member as a reflective polarizing plate can form a reflective layer by attaching a foil or a vapor deposition film made of a metal such as aluminum to a protective film on a polarizer, for example.
  • An optical member as a transflective polarizing plate can be formed by using the reflective layer as a half mirror, or by adhering a reflective plate containing a pearl pigment or the like and exhibiting light transmittance to the polarizing plate.
  • an optical member as a diffusion type polarizing plate can be obtained by various methods such as a method of performing a mat treatment on a protective film on a polarizing plate, a method of applying a resin containing fine particles, and a method of adhering a film containing fine particles. Use to form a fine relief structure on the surface.
  • an optical member can be formed as a polarizing plate for both reflection and diffusion. In that case, for example, a method of providing a reflective layer reflecting the concavo-convex structure on the fine concavo-convex structure surface of the diffusing polarizing plate is adopted. it can.
  • the reflective layer having a fine concavo-convex structure has advantages such that incident light is diffused by irregular reflection, directivity and glare can be prevented, and uneven brightness can be suppressed.
  • the resin layer or film containing fine particles also has an advantage that incident light and its reflected light are diffused when passing through the fine particle-containing layer, and light and dark unevenness can be suppressed.
  • the reflective layer reflecting the surface fine concavo-convex structure can be formed by directly attaching a metal to the surface of the fine concavo-convex structure by a method such as vapor deposition such as vacuum deposition, ion plating, sputtering, or plating.
  • the fine particles to be blended to form the fine surface uneven structure include, for example, silica, aluminum oxide, titanium oxide, zirconia, tin oxide, indium oxide, cadmium oxide, and antimony oxide having an average particle size of 0.1 to 30 ⁇ m. It can be inorganic fine particles, organic fine particles such as crosslinked or non-crosslinked polymers, and the like.
  • the condensing plate is used for the purpose of optical path control and can be formed as a prism array sheet, a lens array sheet, or a dot-attached sheet.
  • the brightness enhancement film is used for the purpose of improving the brightness in a liquid crystal display device.
  • a plurality of thin film films having different refractive index anisotropies are laminated to produce anisotropy in reflectance.
  • examples thereof include a reflective polarization separation sheet designed as described above, an alignment film of a cholesteric liquid crystal polymer, and a circular polarization separation sheet in which the alignment liquid crystal layer is supported on a film substrate.
  • the above-mentioned retardation plate as an optical layer is used for the purpose of compensation of retardation by a liquid crystal cell.
  • examples thereof include a birefringent film made of a stretched film of various plastics, a film in which a discotic liquid crystal or a nematic liquid crystal is oriented and fixed, and a film substrate on which the above liquid crystal layer is formed.
  • a cellulose resin film such as triacetyl cellulose is preferably used as the film substrate.
  • the plastic forming the birefringent film include amorphous polyolefin resins, polycarbonate resins, acrylic resins, chain polyolefin resins such as polypropylene, polyvinyl alcohol, polystyrene, polyarylate, polyamide, and the like. It is done.
  • the stretched film can be processed by an appropriate method such as uniaxial or biaxial. Two or more retardation plates may be used in combination for the purpose of controlling optical characteristics such as broadening the band.
  • the laminated optical members those including a retardation plate as an optical layer other than the polarizing plate are preferably used because optical compensation can be effectively performed when applied to a liquid crystal display device.
  • the optimum retardation value (in-plane and thickness direction) of the retardation plate may be selected according to the liquid crystal cell to be applied.
  • the laminated optical member can be a laminate of two layers or three or more layers by combining a polarizing plate and one or more layers selected according to the purpose of use from the various optical layers described above. In that case, the various optical layers forming the laminated optical member are integrated with the polarizing plate using an adhesive or pressure-sensitive adhesive, but the adhesive or pressure-sensitive adhesive layer used for this purpose is good. As long as it is formed, there is no particular limitation.
  • a pressure-sensitive adhesive also referred to as a pressure-sensitive adhesive
  • a pressure-sensitive adhesive those having a base polymer such as an acrylic polymer, a silicone polymer, polyester, polyurethane, or polyether can be used.
  • acrylic adhesives it has excellent optical transparency, retains appropriate wettability and cohesion, has excellent adhesion to substrates, and has weather resistance and heat resistance.
  • alkyl esters of (meth) acrylic acid having an alkyl group having 20 or less carbon atoms such as methyl, ethyl and butyl groups, and (meth) acrylic acid and hydroxyethyl (meth) acrylate Based on an acrylic copolymer having a weight average molecular weight of 100,000 or more, which is blended with a functional group-containing acrylic monomer comprising a glass transition temperature of preferably 25 ° C. or less, more preferably 0 ° C. or less. Useful as a polymer.
  • the pressure-sensitive adhesive layer is formed on the polarizing plate by, for example, dissolving or dispersing the pressure-sensitive adhesive composition in an organic solvent such as toluene or ethyl acetate to prepare a 10 to 40% by weight solution, which is directly applied on the polarizing plate. It can be performed by a coating method or a method in which a pressure-sensitive adhesive layer is previously formed on a protective film and then transferred onto a polarizing plate.
  • the thickness of the pressure-sensitive adhesive layer is determined according to the adhesive force and the like, but a range of about 1 to 50 ⁇ m is appropriate.
  • the pressure-sensitive adhesive layer is filled with glass fiber, glass beads, resin beads, metal powder, other inorganic powders, pigments, colorants, antioxidants, antistatic agents, UV absorbers, etc., as necessary.
  • Antistatic agents include ionic compounds and nonionic compounds. Examples of ultraviolet absorbers include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds.
  • the laminated optical member can be arranged on one side or both sides of the liquid crystal cell.
  • the liquid crystal cell to be used is arbitrary.
  • a liquid crystal display device using various liquid crystal cells such as an active matrix drive type typified by a thin film transistor type and a simple matrix drive type typified by a super twisted nematic type. Can be formed.
  • a pressure-sensitive adhesive is usually used for bonding the laminated optical member and the liquid crystal cell.
  • (A2) 1,4-butanediol diglycidyl ether obtained from Nagase ChemteX Corporation, trade name EX-214L. In Table 1 below, it is abbreviated as “(a2)”.
  • KBM-403 3-glycidoxypropyltrimethoxysilane, liquid, obtained from Shin-Etsu Chemical Co., Ltd. In Table 1 below, it is abbreviated as “KBM-403”.
  • KBM-303 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, liquid, obtained from Shin-Etsu Chemical Co., Ltd. In Table 1 below, it is abbreviated as “KBM-303”.
  • CPI-100P 4,4′-bis (diphenylsulfonio) phenyl sulfide bis (hexafluorophosphate) photocationic polymerization initiator, obtained from San Apro Co., Ltd.
  • CPI-100P 4,4′-bis (diphenylsulfonio) phenyl sulfide bis (hexafluorophosphate) photocationic polymerization initiator
  • acetylcellulose film (trade name “N-TAC KC4FR-1”, obtained from Konica Minolta Opto Co., Ltd.) was subjected to corona discharge treatment, and the corona discharge treatment surface was The same photocurable composition was applied with a bar coater so that the film thickness after curing was about 3.5 ⁇ m.
  • the polarizer having the cycloolefin-based film prepared above bonded on one side was bonded on the polarizer side to prepare a laminate.
  • ⁇ Isocyanate-based crosslinking agent Coronate L: Trimethylolpropane adduct of tolylene diisocyanate in ethyl acetate solution (solid content: 75%), obtained from Nippon Polyurethane Co., Ltd.
  • Acrylic pressure-sensitive adhesive prepared by adding an isocyanate-based crosslinking agent, a silane coupling agent, and an antistatic agent to a copolymer of butyl acrylate, methyl acrylate, acrylic acid, and hydroxyethyl acrylate.
  • An organic solvent solution of the agent is applied to the release treatment surface of a 38 ⁇ m-thick polyethylene terephthalate film (trade name “SP-PLR382020”, obtained from Lintec Co., Ltd., called release film) that has been subjected to a release treatment.
  • the film was dried with a filter so that the thickness after drying was 20 ⁇ m, and a sheet-like adhesive with a release film was produced.
  • the surface (adhesive surface) opposite to the release film of the sheet-like pressure-sensitive adhesive obtained above was bonded to the acetylcellulose-based film surface of the polarizing plate prepared in (2) above with a laminator, and the temperature was 23. Curing was carried out for 7 days under the conditions of ° C. and relative humidity of 65% to obtain a polarizing film with an adhesive.
  • an ultraviolet / visible spectrophotometer “UV-2450” manufactured by Shimadzu Corporation is used with an optional accessory “film holder with polarizer” set, and a polarizing plate in the wavelength range of 380 nm to 780 nm
  • the transmission spectrum was obtained, and the a value and b value of the transmission hue were calculated by software “UV-Probe” attached to the spectrophotometer. Based on this measured value, the ab value of the transmitted hue was calculated according to the following equation.
  • an acrylic pressure-sensitive adhesive layer is provided on the acetylcellulose-based film side to form a test piece for measuring the peel strength between the acetylcellulose-based film and the polarizer, and this pressure-sensitive adhesive layer is attached to a glass plate.
  • a cutter blade between the polarizer and the protective film (acetylcellulose film) on the adhesive side peel off 30 mm from the end in the length direction, and test the peeled cycloolefin film and polarizer I grabbed at the grip part.
  • the test piece in this state was subjected to JIS K 6854-2: 1999 “Adhesive—Peeling adhesive strength test method—Part 2: 180 degree peeling” in an atmosphere at a temperature of 23 ° C.

Abstract

A polarizing plate in which a protective membrane comprising a transparent resin film is bonded, via an adhesive, to a polarizer comprising a polyvinyl alcohol-based resin on which a dichroic dye is adsorbed and oriented, wherein the adhesive comprises a photocurable composition that contains a photocurable component containing an epoxy compound having an alicyclic epoxy group, a silane coupling agent and a photo cationic polymerization initiator.

Description

偏光板Polarizer
 本発明は、ポリビニルアルコール系樹脂からなる偏光子に透明樹脂からなる保護膜が貼合された偏光板に関するものである。 The present invention relates to a polarizing plate in which a protective film made of a transparent resin is bonded to a polarizer made of a polyvinyl alcohol resin.
 偏光板は、液晶表示装置を構成する光学部品の一つとして有用である。偏光板は通常、偏光子の両面に保護膜が積層された構造を有し、液晶表示装置に組み込まれる。偏光子の片面にのみ保護膜を設けることも知られているが、多くの場合、もう一方の面には、単なる保護膜ではなく、別の機能として例えば光学機能を有する層が、保護膜を兼ねて貼合される。また偏光子の製造方法として、二色性色素により染色された一軸延伸ポリビニルアルコール系樹脂フィルムをホウ酸処理し、水洗後、乾燥する方法が広く採用されている。
 通常、偏光子には、上述の水洗及び乾燥の後、直ちに保護膜が貼合される。これは、乾燥後の偏光子は物理的な強度が弱く、一旦これを巻き取ると、加工方向に裂けやすいなどの問題があるためである。したがって、通常、乾燥後の偏光子には直ちに、ポリビニルアルコール系樹脂の水溶液である水系の接着剤が塗布され、この接着剤を介して偏光子の両面に同時に保護膜が貼合される。通例、保護膜としては、厚さ30~100μmのトリアセチルセルロースフィルムが使用されている。
 トリアセチルセルロースは透湿度が高く、これを保護膜として貼合した偏光板は、湿熱下、例えば、温度70℃、相対湿度90%といった条件下では劣化を引き起こすなどの問題があった。そこで、トリアセチルセルロースより透湿度の低い、例えば、ノルボルネン系樹脂を代表例とする非晶性ポリオレフィン系樹脂を保護膜とすることも知られている。
 透湿度の低い樹脂からなる保護膜をポリビニルアルコール系偏光子に貼合する場合、従来からポリビニルアルコール系偏光子とトリアセチルセルロースとの貼合に接着剤として一般に用いられているポリビニルアルコール系樹脂の水溶液では、接着強度が十分でなかったり、得られる偏光板の外観が不良になったりする問題があった。これは、透湿度の低い樹脂フィルムは一般的に疎水性であることや、透湿度が低いために溶媒である水を十分に乾燥できないことなどの理由による。一方で、偏光子の両面に異なる種類の保護膜を貼合することも知られており、例えば、偏光子の一方の面には、非晶性ポリオレフィン系樹脂等の透湿度の低い樹脂からなる保護膜を貼合し、偏光子の他方の面には、トリアセチルセルロースをはじめとするセルロース系樹脂等の透湿度の高い樹脂からなる保護膜を貼合する提案もある。
 そこで、透湿度の低い樹脂からなる保護膜とポリビニルアルコール系偏光子との間で高い接着力を与えるとともに、セルロース系樹脂等の透湿度の高い樹脂とポリビニルアルコール系偏光子との間でも高い接着力を与える接着剤として、活性エネルギー線硬化型接着剤を用いる試みがある。例えば、特開2004−245925号公報(特許文献1)には、芳香環を含まないエポキシ化合物を主成分とする接着剤が開示されており、活性エネルギー線の照射によるカチオン重合でこの接着剤を硬化させ、偏光子と保護膜とを接着することが提案されている。また、特開2008−257199号公報(特許文献2)には、脂環式エポキシ化合物と脂環式エポキシ基を有さないエポキシ化合物とを組み合わせ、光カチオン重合開始剤とともに配合した光硬化性接着剤を、偏光子と保護膜との接着に用いる技術が開示されている。
 しかしながら、特許文献1や特許文献2に具体的に開示される組成の接着剤は、偏光子と保護膜を適度な接着力で接着するものの、その接着力は必ずしも十分とはいえず、例えば、その光硬化性接着剤を用いて偏光子と保護膜を接着させることにより得られる偏光板を、所定サイズに裁断するときや、裁断した状態の偏光板を取り扱うときに偏光板端部に衝撃が与えられた場合、その端部で偏光子から保護膜が剥離することがあった。
 また、これらの光硬化性接着剤を用いて偏光子と保護膜を接着させることにより得られる偏光板は、液晶表示装置に適用したときに、太陽光やバックライトの熱により変色するということが知られている。これを解決する方法として、例えば、特開2010−32766号公報(特許文献3)に、グリシジルエーテル基含有樹脂と加水分解性シリル基及びエポキシ基含有化合物とを組み合わせ、光カチオン重合開始剤とともに配合した光硬化性接着剤を、偏光子と保護膜との貼合に用いる技術が開示されている。
 しかしながら、特許文献3に具体的に開示される組成の光硬化性接着剤は、適度な接着力を発現し、熱による偏光板の変色は適度に抑えられるものの、硬化後の接着剤層が必ずしも十分な貯蔵弾性率を示さず、結果として、偏光板が高温保持と低温保持を急激に繰り返す冷熱衝撃試験のような激しい温度履歴を受けたとき、前記接着剤の硬化膜が偏光子の収縮を十分に抑えることが出来ず、偏光子が割れてしまうという問題がある。
The polarizing plate is useful as one of the optical components constituting the liquid crystal display device. A polarizing plate usually has a structure in which protective films are laminated on both sides of a polarizer, and is incorporated in a liquid crystal display device. It is also known that a protective film is provided only on one side of the polarizer, but in many cases, a layer having an optical function as another function is not provided on the other side. It is also pasted. As a method for producing a polarizer, a method in which a uniaxially stretched polyvinyl alcohol-based resin film dyed with a dichroic dye is treated with boric acid, washed with water and dried is widely adopted.
Usually, a protective film is bonded to the polarizer immediately after washing and drying as described above. This is because the dried polarizer has a weak physical strength, and once it is wound, there is a problem that it is easily broken in the processing direction. Therefore, usually, a water-based adhesive that is an aqueous solution of a polyvinyl alcohol resin is immediately applied to the polarizer after drying, and protective films are simultaneously bonded to both sides of the polarizer via this adhesive. Usually, a triacetyl cellulose film having a thickness of 30 to 100 μm is used as the protective film.
Triacetyl cellulose has a high moisture permeability, and the polarizing plate bonded as a protective film has a problem of causing deterioration under wet heat, for example, at a temperature of 70 ° C. and a relative humidity of 90%. Therefore, it is also known to use an amorphous polyolefin resin having a lower moisture permeability than that of triacetyl cellulose, for example, an amorphous polyolefin resin represented by a norbornene resin as a protective film.
When a protective film made of a resin with low moisture permeability is bonded to a polyvinyl alcohol polarizer, a polyvinyl alcohol resin that has been conventionally used as an adhesive for bonding a polyvinyl alcohol polarizer and triacetyl cellulose. The aqueous solution has a problem that the adhesive strength is not sufficient or the appearance of the obtained polarizing plate becomes poor. This is because a resin film having low moisture permeability is generally hydrophobic, and water that is a solvent cannot be sufficiently dried due to low moisture permeability. On the other hand, it is also known to bond different types of protective films on both sides of the polarizer. For example, one side of the polarizer is made of a resin with low moisture permeability such as an amorphous polyolefin resin. There is also a proposal for bonding a protective film and bonding a protective film made of a highly moisture-permeable resin such as cellulose resin including triacetyl cellulose to the other surface of the polarizer.
Therefore, high adhesion between a protective film made of a resin with low moisture permeability and a polyvinyl alcohol polarizer and high adhesion between a resin with high moisture permeability such as a cellulose resin and a polyvinyl alcohol polarizer. There is an attempt to use an active energy ray-curable adhesive as an adhesive that gives force. For example, Japanese Patent Application Laid-Open No. 2004-245925 (Patent Document 1) discloses an adhesive mainly composed of an epoxy compound that does not contain an aromatic ring, and this adhesive is obtained by cationic polymerization by irradiation with active energy rays. It has been proposed to cure and bond the polarizer and the protective film. JP-A-2008-257199 (Patent Document 2) discloses a photocurable adhesive in which an alicyclic epoxy compound and an epoxy compound having no alicyclic epoxy group are combined and blended with a cationic photopolymerization initiator. A technique using an agent for bonding a polarizer and a protective film is disclosed.
However, although the adhesive of the composition specifically disclosed in Patent Document 1 and Patent Document 2 adheres the polarizer and the protective film with an appropriate adhesive force, the adhesive force is not necessarily sufficient, for example, When the polarizing plate obtained by adhering the polarizer and the protective film using the photocurable adhesive is cut into a predetermined size or when the cut polarizing plate is handled, an impact is exerted on the end of the polarizing plate. When given, the protective film sometimes peeled off from the polarizer at the end.
In addition, a polarizing plate obtained by adhering a polarizer and a protective film using these photocurable adhesives is discolored by sunlight or the heat of a backlight when applied to a liquid crystal display device. Are known. As a method for solving this, for example, JP 2010-32766 (Patent Document 3) combines a glycidyl ether group-containing resin, a hydrolyzable silyl group, and an epoxy group-containing compound, and is combined with a photocationic polymerization initiator. The technique which uses the photocurable adhesive agent used for bonding with a polarizer and a protective film is disclosed.
However, the photocurable adhesive having the composition specifically disclosed in Patent Document 3 expresses an appropriate adhesive force, and the discoloration of the polarizing plate due to heat can be moderately suppressed, but the adhesive layer after curing is not necessarily provided. As a result, when the polarizing plate is subjected to a severe temperature history such as a thermal shock test in which the high temperature holding and the low temperature holding are repeated rapidly, the cured film of the adhesive does not shrink the polarizer. There is a problem that the polarizer cannot be sufficiently suppressed and the polarizer is broken.
 そこで本発明の課題は、偏光子/保護膜間の接着力に優れ、熱による偏光子の変色が抑制され、激しい温度履歴を受けたときでも偏光子に割れが生じにくい偏光板を提供することである。
 本発明者らは、かかる課題を解決するために鋭意研究を行った結果、脂環式エポキシ基を有するエポキシ化合物を含む光硬化性成分に、シランカップリング剤及び光カチオン重合開始剤を所定量配合し、これを偏光子と保護膜との貼合に用いることにより、偏光子と保護膜とが強固に接着され、耐熱性にも優れ、激しい温度履歴による偏光子の割れが抑制される偏光板が得られることを見出し、本発明を完成するに至った。
 すなわち本発明は、二色性色素が吸着配向しているポリビニルアルコール系樹脂からなる偏光子に接着剤を介して透明樹脂フィルムからなる保護膜が貼合されており、前記接着剤は、脂環式エポキシ基を有するエポキシ化合物を含む光硬化性成分、シランカップリング剤及び光カチオン重合開始剤を含有する光硬化性組成物から形成されていることを特徴とする偏光板を提供するものである。
 前記シランカップリング剤は、分子内にグリシジルオキシ基又は環式エポキシ基を有するものであることが望ましい。
 また、前記接着剤を形成する光硬化性成分は、分子内に脂肪族エポキシ化合物をさらに含むことが望ましい。
 前記光硬化性組成物は、光硬化性成分100重量部に対して、前記シランカップリング剤を4~40重量部含有することが望ましい。
 これらの偏光板は、前記偏光子の片面に前記接着剤を介してシクロオレフィン系樹脂フォルムが貼合され、偏光子の他方の面に前記接着剤を介してアセチルセルロース系樹脂フィルムが貼合され、そのアセチルセルロース系樹脂フィルムの偏光フィルムが貼合された面と反対側の面に帯電防止機能を有する粘着剤層が形成されていることが望ましい。
Accordingly, an object of the present invention is to provide a polarizing plate that has excellent adhesion between the polarizer and the protective film, suppresses discoloration of the polarizer due to heat, and does not easily crack the polarizer even when subjected to a severe temperature history. It is.
As a result of intensive studies to solve such problems, the present inventors have determined that a predetermined amount of a silane coupling agent and a photocationic polymerization initiator is added to a photocurable component containing an epoxy compound having an alicyclic epoxy group. Blended, and used for bonding the polarizer and protective film, the polarizer and protective film are firmly bonded, heat resistance is excellent, and the polarizer is prevented from cracking due to intense temperature history It discovered that a board was obtained and came to complete this invention.
That is, in the present invention, a protective film made of a transparent resin film is bonded via an adhesive to a polarizer made of a polyvinyl alcohol-based resin in which a dichroic dye is adsorbed and oriented. Provided is a polarizing plate which is formed from a photocurable composition containing a photocurable component containing an epoxy compound having a formula epoxy group, a silane coupling agent, and a photocationic polymerization initiator. .
The silane coupling agent preferably has a glycidyloxy group or a cyclic epoxy group in the molecule.
Moreover, it is desirable that the photocurable component forming the adhesive further contains an aliphatic epoxy compound in the molecule.
The photocurable composition preferably contains 4 to 40 parts by weight of the silane coupling agent with respect to 100 parts by weight of the photocurable component.
In these polarizing plates, a cycloolefin-based resin form is bonded to one surface of the polarizer via the adhesive, and an acetylcellulose-based resin film is bonded to the other surface of the polarizer via the adhesive. It is desirable that a pressure-sensitive adhesive layer having an antistatic function is formed on the surface opposite to the surface on which the polarizing film of the acetylcellulose-based resin film is bonded.
 以下、本発明を詳細に説明する。本発明の偏光板は、偏光子の少なくとも一方の面に、接着剤層を介して保護膜を貼合したものである。
 [偏光子]
 偏光子は、二色性色素が吸着配向されたポリビニルアルコール系樹脂フィルムで構成される。偏光子を構成するポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニル及びこれと共重合可能な他の単量体の共重合体などが例示される。酢酸ビニルに共重合される他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類などが挙げられる。ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%、好ましくは98~100モル%の範囲である。ポリビニルアルコール系樹脂は、さらに変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールなども使用し得る。ポリビニルアルコール系樹脂の重合度は、通常1,000~10,000、好ましくは1,500~5,000の範囲である。
 偏光子は、このようなポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色して、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程を経て、製造される。
 一軸延伸は、二色性色素による染色の前に行ってもよいし、二色性色素による染色と同時に行ってもよいし、二色性色素による染色の後に行ってもよい。一軸延伸を二色性色素による染色後に行う場合、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。またもちろん、これらの複数の段階で一軸延伸を行うことも可能である。一軸延伸するには、周速の異なるロール間を通して延伸してもよいし、熱ロールで挟む方式で延伸してもよい。また、大気中で延伸を行う乾式延伸であってもよいし、溶剤により膨潤した状態で延伸を行う湿式延伸であってもよい。延伸倍率は、通常4~8倍程度である。
 ポリビニルアルコール系樹脂フィルムを二色性色素で染色するには、例えば、ポリビニルアルコール系樹脂フィルムを、二色性色素を含有する水溶液に浸漬すればよい。二色性色素として、具体的には、ヨウ素又は二色性有機染料が用いられる。
 二色性色素としてヨウ素を用いる場合は、通常、ヨウ素及びヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液におけるヨウ素の含有量は通常、水100重量部あたり0.01~0.5重量部程度であり、ヨウ化カリウムの含有量は通常、水100重量部あたり0.5~10重量部程度である。この水溶液の温度は、通常20~40℃程度であり、また、この水溶液への浸漬時間(染色時間)は、通常30~300秒程度である。
 一方、二色性色素として二色性有機染料を用いる場合は、通常、水溶性の二色性有機染料を含む水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液における二色性有機染料の含有量は、通常、水100重量部あたり1×10−3~1×10−2重量部程度である。この水溶液は、硫酸ナトリウム等の無機塩を含有していてもよい。この水溶液の温度は、通常20~80℃程度であり、また、この水溶液への浸漬時間(染色時間)は、通常30~300秒程度である。
 二色性色素による染色後のホウ酸処理は、染色されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液に浸漬することにより行われる。ホウ酸水溶液におけるホウ酸含有量は、通常、水100重量部あたり2~15重量部程度、好ましくは5~12重量部程度である。二色性色素としてヨウ素を用いる場合には、このホウ酸水溶液はヨウ化カリウムを含有するのが好ましい。ホウ酸水溶液におけるヨウ化カリウムの含有量は、通常水100重量部あたり2~20重量部程度、好ましくは5~15重量部である。ホウ酸水溶液への浸漬時間は、通常100~1,200秒程度、好ましくは150~600秒程度、さらに好ましくは200~400秒程度である。ホウ酸水溶液の温度は、通常50℃以上、好ましくは50~85℃である。
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは、通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬することにより行われる。水洗後に乾燥処理が施されて、偏光子が得られる。水洗処理における水の温度は、通常5~40℃程度であり、浸漬時間は、通常2~120秒程度である。その後に行われる乾燥処理は、通常、熱風乾燥機や遠赤外線ヒーターを用いて行われる。乾燥温度は、通常40~100℃である。また、乾燥処理の時間は、通常120~600秒程度である。
 かくして得られるポリビニルアルコール系樹脂フィルムからなる偏光子の厚さは、10~50μm程度とすることができる。
 [接着剤層]
 このようにして得られる偏光子は、その少なくとも一方の面に接着剤層を介して透明樹脂からなる保護膜が貼合され、偏光板となる。本発明では、偏光子に保護膜を貼合するための接着剤が、脂環式エポキシ基を有するエポキシ化合物からなる光硬化性成分、シランカップリング剤及び光カチオン重合開始剤からなる光硬化性組成物から形成されている。
 (カチオン重合性化合物)
 上記の脂環式エポキシ化合物について説明すると、下式(I)のように(CH中の水素原子を1個又は複数個取り除いた形の基が他の化学構造に結合した化合物である。脂環式環を形成する(CH中の1個又は複数個の水素原子は、メチル基やエチル基のような直鎖状アルキル基で適宜置換されていてもよい。
Figure JPOXMLDOC01-appb-I000001
 上記式(I)で示される脂環式エポキシ化合物のなかでも、エポキシシクロペンタン環(上記式においてm=3のもの)や、エポキシシクロヘキサン環(上記式においてm=4のもの)を有する脂環式ジエポキシ化合物は、優れた接着性を与えることから好ましく用いられる。以下に、脂環式エポキシ化合物の具体的な例を掲げる。ここでは、まず化合物名を挙げ、その後それぞれに対応する化学式を示すこととし、化合物名とそれに対応する化学式には同じ符号を付す。
 A:3,4−エポキシシクロヘキシルメチル 3,4−エポキシシクロヘキサンカルボキシレート、
 B:3,4−エポキシ−6−メチルシクロヘキシルメチル 3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート、
 C:エチレンビス(3,4−エポキシシクロヘキサンカルボキシレート)、
 D:ビス(3,4−エポキシシクロヘキシルメチル) アジペート、
 E:ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル) アジペート、
 F:ジエチレングリコールビス(3,4−エポキシシクロヘキシルメチルエーテル)、
 G:エチレングリコールビス(3,4−エポキシシクロヘキシルメチルエーテル)、
 H:2,3,14,15−ジエポキシ−7,11,18,21−テトラオキサトリスピロ[5.2.2.5.2.2]ヘンイコサン、
 I:3−(3,4−エポキシシクロヘキシル)−8,9−エポキシ−1,5−ジオキサスピロ[5.5]ウンデカン、
 J:ビス(2,3−エポキシシクロペンチル)エーテル、
 K:ジシクロペンタジエンジオキサイドなど。
Figure JPOXMLDOC01-appb-I000002
 脂肪族エポキシ化合物は、脂肪族炭素原子に結合するオキシラン環(3員の環状エーテル)を分子内に少なくとも1個有する化合物であり、例えば、ブチルグリシジルエーテルや2−エチルヘキシルグリシジルエーテルのような単官能のエポキシ化合物、トリメチロールプロパントリグリシジルエーテルやペンタエリスリトールテトラグリシジルエーテルのような3官能以上のエポキシ化合物が挙げられる。4−ビニルシクロヘキセンジオキサイドやリモネンジオキサイドのような、脂環式環に直接結合するエポキシ基を1個と、脂肪族炭素原子に結合するオキシラン環を有するエポキシ化合物もこれに該当するが、典型的には、脂肪族炭素原子に結合するオキシラン環を分子内に2個有する脂肪族ジエポキシ化合物が好ましい。かかる好適な脂肪族ジエポキシ化合物は、例えば、下式(II)で表すことができる。
Figure JPOXMLDOC01-appb-I000003
 式中のYは、炭素数2~9のアルキレン基、間にエーテル結合を有する総炭素数4~9のアルキレン基、又は脂環構造を有する炭素数6~18の2価の炭化水素基である。
 上記式(II)で示される脂肪族ジエポキシ化合物は、具体的には、アルカンジオールのジグリシジルエーテル、繰り返し数4程度までのオリゴアルキレングリコールのジグリシジルエーテル、又は脂環式ジオールのジグリシジルエーテルである。
 式(II)で示される脂肪族ジエポキシ化合物となり得るジオール(グリコール)の具体例を、以下に掲げる。アルカンジオールとしては、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、3−メチル−2,4−ペンタンジオール、2,4−ペンタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,4−ジエチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、3,5−ヘプタンジオール、1,8−オクタンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオールなどがある。オリゴアルキレングリコールとしては、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコールなどがある。脂環式ジオールとしては、シクロヘキサンジオール、シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールFなどがある。
 これら脂肪族ジエポキシ化合物の中でも、アルカンジオールのジグリシジルエーテルが好ましく、とりわけ、入手が容易などの理由から好ましいものを挙げると、1,4−ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテルなどがある。
 脂環式エポキシ化合物と脂肪族エポキシ化合物を併用する場合、両者の配合割合は、カチオン重合性化合物全体の量を基準に、脂環式エポキシ化合物を50~95重量%、そして脂肪族エポキシ化合物を5重量%以上とするのが好ましい。脂環式エポキシ化合物、なかでも脂環式ジエポキシ化合物をカチオン重合性化合物全体中で50重量%以上配合することにより、硬化物の80℃における貯蔵弾性率が1,000MPa以上になり、それを介して偏光子と保護膜とが接着された状態の偏光板における偏光子が割れにくくなる。また、脂肪族エポキシ化合物、例えば式(II)のジグリシジルエーテル化合物をカチオン重合性化合物全体に対して5重量%以上配合することにより、偏光子と保護膜との密着性がさらに向上するが、その量があまりにも多くなると硬化物の貯蔵弾性率が低下し、偏光子が割れやすくなるので、カチオン重合性化合物全体の量を基準に45重量%以下とするのが好ましい。なお、脂環式エポキシ化合物と脂肪族エポキシ化合物の配合割合の合計が100重量%を超えることはない。
 光硬化性組成物を構成するカチオン重合性化合物として、以上説明したような式(I)の脂環式エポキシ化合物、及び式(II)のジグリシジルエーテル化合物を併用する場合、それぞれが上で説明した量となる範囲において、これらに加えて、他のカチオン重合性化合物を含んでいてもよい。他のカチオン重合性化合物としては、式(I)及び式(II)に該当しないエポキシ化合物、オキセタン化合物などが挙げられる。式(I)に該当しないエポキシ化合物には、脂環式環に直接結合するエポキシ基を分子内に1個だけ有する化合物が、式(II)に該当しないエポキシ化合物には、式(II)以外の脂肪族炭素原子に結合するオキシラン環を有する脂肪族エポキシ化合物、及び芳香族エポキシ化合物などが、それぞれ包含される。また、オキセタン化合物とは、オキセタン環(4員環エーテル)を有する化合物である。
 式(II)以外の脂肪族炭素原子に結合するオキシラン環を有する脂肪族エポキシ化合物の例を挙げると、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテルなどがある。
 芳香族エポキシ化合物は、分子内に少なくとも2個のフェノール性水酸基を有する芳香族ポリヒドロキシ化合物のグリシジルエーテルであることができ、その具体例として、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、ビスフェノールSのジグリシジルエーテル、フェノールノボラック樹脂のグリシジルエーテルなどがある。
 オキセタン化合物は、分子内に4員環エーテル(オキセタニル基)を有する化合物であり、その具体例として、次のような化合物が挙げられる。
 3−エチル−3−ヒドロキシメチルオキセタン、1,4−ビス〔(3−エチル−3−オキセタニル)メトキシメチル〕ベンゼン、3−エチル−3−(フェノキシメチル)オキセタン、ジ〔(3−エチル−3−オキセタニル)メチル〕エーテル、3−エチル−3−(2−エチルヘキシルオキシメチル)オキセタン、3−エチル−3−(シクロヘキシルオキシメチル)オキセタン、フェノールノボラックオキセタン、1,3−ビス〔(3−エチルオキセタン−3−イル)メトキシ〕ベンゼン、オキセタニルシルセスキオキサン、オキセタニルシリケートなど。
 上記のオキセタン化合物は、カチオン重合性化合物全体の量を基準に、30重量%以下の割合で配合することにより、エポキシ化合物だけをカチオン重合性化合物として用いた場合に比べ、硬化性が向上するといった効果が期待できることがある。
 (シランカップリング剤)
 シランカップリング剤は、ケイ素原子に、加水分解性のアルコキシ基と他の有機基がそれぞれ少なくとも1個結合した化合物であることができる。シランカップリング剤の添加により、例えば光カチオン重合開始剤の分解によって副生するフッ化水素が捕捉され、偏光子の変色が抑制されるため、結果として偏光板の変色を抑えることができる。
 シランカップリング剤として例えば、メチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メタクリロイルオキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルジメトキシメチルシラン、3−グリシドキシプロピルエトキシジメチルシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシランなどが挙げられる。これらシランカップリング剤の中でも、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシランについては、グリシジルオキシ基又は脂環式エポキシ基を分子内に有していることから、光硬化性組成物に活性エネルギー線の照射したとき、光硬化性成分とともにカチオン重合反応で硬化する。そのため、これらの添加により樹脂の弾性率及び偏光子/保護膜間の接着力を低下させることがないことから、特に好ましく使用される。
 前記シランカップリング剤は、単独で使用してもよいし、2種類以上のものを組み合わせて使用してもよい。
 前記シランカップリング剤の配合量は、光硬化性成分100重量部に対して、4~50重量部程度であり、好ましくは7~50重量部、さらに好ましくは7~20重量部程度である。光硬化性成分100重量部に対するシランカップリング剤の量が4重量部以下であると、加熱時の色相変化の抑制効果が十分でなく、さらには、偏光子及び保護フィルムとの密着性の向上効果がほとんど得られない。また、光硬化性成分100重量部に対するシランカップリング剤の量が50重量部以上であると、光硬化性組成物における経時での粘度変化が大きくなったり、硬化後の接着剤における貯蔵弾性率が著しく低下したりする傾向にある。
 (光カチオン重合開始剤)
 本発明では、以上説明した光硬化性成分を活性エネルギー線の照射によるカチオン重合で硬化させて接着剤層を形成することから、光硬化性組成物には、光カチオン重合開始剤を配合する。光カチオン重合開始剤は、可視光線、紫外線、X線、又は電子線の如き活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、光カチオン硬化性成分の重合反応を開始するものである。光カチオン重合開始剤は光で触媒的に作用するため、光カチオン硬化性成分に混合しても保存安定性や作業性に優れる。活性エネルギー線の照射によりカチオン種又はルイス酸を生じる化合物として、例えば、芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩、芳香族ジアゾニウム塩、鉄−アレーン錯体などを挙げることができる。
 芳香族ヨードニウム塩は、ジアリールヨードニウムカチオンを有する化合物であり、そのジアリールヨードニウムカチオンとして、典型的にはジフェニルヨードニウムカチオンを挙げることができる。芳香族スルホニウム塩は、トリアリールスルホニウムカチオンを有する化合物であり、そのトリアリールスルホニウムカチオンとして、典型的にはトリフェニルスルホニウムカチオンや4,4′−ビス(ジフェニルスルホニオ)ジフェニルスルフィドカチオンなどを挙げることができる。芳香族ジアゾニウム塩は、ジアゾニウムカチオンを有する化合物であり、そのジアゾニウムカチオンとして、典型的にはベンゼンジアゾニウムカチオンを挙げることができる。また、鉄−アレーン錯体は、典型的にはシクロペンタジエニル鉄(II)アレーンカチオン錯塩である。
 上に示したカチオンは、アニオン(陰イオン)と対になって光カチオン重合開始剤を構成する。光カチオン重合開始剤を構成するアニオンの例を挙げると、ヘキサフルオロホスフェートアニオンPF 、ヘキサフルオロアンチモネートアニオンSbF 、ペンタフルオロヒドロキシアンチモネートアニオンSbF(OH)、ヘキサフルオロアーセネートアニオンAsF 、テトラフルオロボレートアニオンBF 、テトラキス(ペンタフルオロフェニル)ボレートアニオンB(C などがある。
 これらの光カチオン重合開始剤の中でも、特に芳香族スルホニウム塩は、300nm付近の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械強度や接着強度を有する硬化物を与えることができるため、好ましく用いられる。
 光カチオン重合開始剤は各種のものが市販されている。市販品の例を挙げると、サンアプロ(株)から販売されている“CPI”シリーズ、ダウ・ケミカル社から販売されている“CYRACURE UVI”シリーズ、(株)ADEKAから販売されている“アデカオプトマーSP”シリーズ、ドイツBASF社から販売されている“IRGACURE”シリーズ(ただし、カチオン系光重合開始剤に分類されるもの)、三新化学工業(株)から販売されている“サンエイドSI”シリーズ、ダイセル・サイテック(株)から販売されている“UVACURE 1590”などがある。
 光カチオン重合開始剤の配合量は、カチオン重合性化合物全体を100重量部として、1~10重量部とする。カチオン重合性化合物100重量部あたり光カチオン重合開始剤を1重量部以上配合することにより、カチオン重合性化合物を十分に硬化させることができ、得られる偏光板に高い機械強度と接着強度を与える。一方、その量が多くなると、硬化物中のイオン性物質が増加することで硬化物の吸湿性が高くなり偏光板の耐久性能を低下させる可能性があるため、光カチオン重合開始剤の量は、カチオン重合性化合物100重量部あたり10重量部以下とする。光カチオン重合開始剤の配合量は、カチオン重合性化合物100重量部あたり2重量部以上とするのが好ましく、また6重量部以下とするのが好ましい。
 (光硬化性接着剤に配合しうるその他の成分)
 光硬化性組成物は、以上説明した光カチオン硬化性成分及び光カチオン重合開始剤に加え、他の成分を含んでいてもよい。配合しうる他の成分の具体例を挙げると、光増感剤、光増感助剤、熱カチオン重合開始剤、連鎖移動剤、熱可塑性樹脂、流動調整剤、消泡剤、レベリング剤、有機溶剤などがある。偏光子に貼合される保護膜の種類によっては、光増感剤、さらには光増感助剤を配合するのが好ましいことがある。
 光増感剤は、光カチオン重合開始剤が示す極大吸収波長よりも長い波長に極大吸収を示し、光カチオン重合開始剤による重合開始反応を促進させる化合物である。このような光増感剤としては、アントラセン系化合物が好ましく使用される。光増感剤となりうるアントラセン系化合物として、9,10−ジメトキシアントラセン、9,10−ジエトキシアントラセン、9,10−ジプロポキシアントラセン、9,10−ジイソプロポキシアントラセン、9,10−ジブトキシアントラセン、9,10−ジペンチルオキシアントラセン、9,10−ジヘキシルオキシアントラセンなどが挙げられる。
 光増感助剤は、光増感剤の作用を一層促進させる化合物である。このような光増感助剤としては、ナフタレン系化合物が好ましく使用される。光増感助剤となりうるナフタレン系化合物として、1,4−ジメトキシナフタレン、1−エトキシ−4−メトキシナフタレン、1,4−ジエトキシナフタレン、1,4−ジプロポキシナフタレン、1,4−ジブトキシナフタレンなどが挙げられる。
 これら他の成分を配合する場合、その量は、光硬化性組成物の主成分である光カチオン硬化性成分100重量部に対して、例えば、それぞれ10重量部以下の範囲から、配合目的に合わせて適宜選択すればよい。
 [保護膜]
 本発明では、先に説明したポリビニルアルコール系樹脂フィルムからなる偏光子に、上で説明した光硬化性組成物を介して、保護膜を積層し、光硬化性組成物を硬化させて偏光板とする。保護膜は、従来から偏光板の保護膜として最も広く用いられているトリアセチルセルロースをはじめとするアセチルセルロース系樹脂フィルムや、トリアセチルセルロースよりも透湿度の低い樹脂フィルムで構成することができる。トリアセチルセルロースの透湿度は、概ね400g/m/24hr程度である。
 一つの好ましい形態では、偏光子の少なくとも一方の面に貼合される保護膜が、アセチルセルロース系樹脂で構成される。もう一つの好ましい形態では、偏光子の少なくとも一方の面に貼合される保護膜が、トリアセチルセルロースより透湿度の低い樹脂フィルム、例えば、透湿度が300g/m/24hr以下の樹脂フィルムで構成される。このような透湿度の低い樹脂フィルムを構成する樹脂として、非晶性ポリオレフィン系樹脂、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、鎖状ポリオレフィン系樹脂などを挙げることができる。さらにもう一つの好ましい形態では、偏光子の一方の面に前記接着剤層を介して、アセチルセルロース系樹脂からなる保護膜が貼合され、偏光子の他方の面に同じく前記接着剤層を介して、上記のような透湿度の低い透明樹脂からなる保護膜が貼合される。
 アセチルセルロース系樹脂は、セルロースにおける水酸基の少なくとも一部が酢酸エステル化されている樹脂であり、一部が酢酸エステル化され、一部が他の酸でエステル化されている混合エステルであってもよい。アセチルセルロース系樹脂の具体例として、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどを挙げることができる。
 非晶性ポリオレフィン系樹脂は、ノルボルネンやテトラシクロドデセン(別名ジメタノオクタヒドロナフタレン)、あるいはそれらに置換基が結合した化合物のような、環状オレフィンの重合単位を有する重合体であり、環状オレフィンに鎖状オレフィン及び/又は芳香族ビニル化合物を共重合させた共重合体であってもよい。環状オレフィンの単独重合体、あるいは2種以上の環状オレフィンの共重合体の場合は、開環重合によって二重結合が残るので、そこに水素添加されたものが、非晶性ポリオレフィン系樹脂として一般的に用いられる。なかでも、熱可塑性ノルボルネン系樹脂が代表的である。
 ポリエステル系樹脂は、二塩基酸と二価アルコールとの縮合重合によって得られる重合体であり、ポリエチレンテレフタレートが代表的である。アクリル系樹脂は、メタクリル酸メチルを主な単量体とする重合体であり、メタクリル酸メチルの単独重合体のほか、メタクリル酸メチルと、アクリル酸メチルのようなアクリル酸エステルや芳香族ビニル化合物などとの共重合体であってもよい。ポリカーボネート系樹脂は、主鎖にカーボネート結合(−O−CO−O−)を持つ重合体であり、ビスフェノールAとホスゲンとの縮合重合によって得られるものが代表的である。鎖状ポリオレフィン系樹脂は、エチレンやプロピレンの如き鎖状オレフィンを主な単量体とする重合体であり、単独重合体や共重合体であることができる。なかでも、プロピレンの単独重合体や、プロピレンに少量のエチレンが共重合されている共重合体が代表的である。
 このような保護膜は、偏光子に貼合される面とは反対側の面に、ハードコート層、反射防止層、防眩層、帯電防止層の如き各種の表面処理層を有していてもよい。保護膜は、このような表面処理層が形成されている場合を含めて、その厚さを5~150μm程度とすることができる。その厚さは、好ましくは10μm以上であり、また好ましくは120μm以下、さらに好ましくは100μm以下である。
 [偏光子と保護膜の接着]
 偏光子と保護膜の接着にあたっては、上で説明した光硬化性組成物を、偏光子と保護膜の貼合面の一方又は両方に塗布し、その塗布層を介して偏光子と保護膜を貼合し、未硬化の光硬化性組成物の塗布層に、活性エネルギー線を照射して硬化させ、保護膜を偏光子上に固着させる。光硬化性組成物の塗布層は、偏光子の貼合面に形成してもよいし、保護膜の貼合面に形成してもよい。塗布層の形成には、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーターなど、種々の塗工方式が利用できる。また、偏光子と保護膜を両者の貼合面が内側となるように連続的に供給しながら、その間に光硬化性組成物を流延させる方式を採用することもできる。各塗工方式には、各々最適な粘度範囲があるため、溶剤を用いて粘度調整を行うことも有用な技術である。このための溶剤には、偏光子の光学性能を低下させることなく、光硬化性組成物を良好に溶解するものが用いられるが、その種類に特別な限定はない。例えば、トルエンに代表される炭化水素類、酢酸エチルに代表されるエステル類などの有機溶剤が使用できる。硬化後の接着剤層の厚さは、通常20μm以下、好ましくは10μm以下、さらに好ましくは5μm以下である。接着剤層が厚くなると、接着剤組成物の反応率が低下し、偏光板の耐湿熱性が悪化する傾向にある。
 偏光子と保護膜を接着するにあたり、両者の貼合面の一方又は双方には、光硬化性組成物を塗布する前に、コロナ放電処理、プラズマ処理、火炎処理、プライマー処理、アンカーコーティング処理の如き易接着処理が施されてもよい。
 光硬化性組成物の塗布層に活性エネルギー線を照射するために用いる光源は、紫外線、電子線、X線などを発生するものであればよい。特に波長400nm以下に発光分布を有する、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが好適に用いられる。光硬化性組成物への活性エネルギー線の照射強度は、光硬化性組成物の組成毎に決定されるものであって、特に限定されないが、開始剤の活性化に有効な波長領域の照射強度が0.1~100mW/cmであることが好ましい。光硬化性組成物への照射強度が0.1mW/cm未満であると、反応時間が長くなりすぎ、100mW/cmを超えると、ランプから輻射される熱及び光硬化性組成物の重合時の発熱により、光硬化性組成物の黄変や偏光子の劣化を生じる可能性がある。光硬化性組成物への光照射時間は、硬化する組成物毎に制御されるものであって、特に限定されないが、照射強度と照射時間の積として表される積算光量が10~5,000mJ/cmとなるように設定されることが好ましい。光硬化性組成物への積算光量が10mJ/cm未満であると、開始剤由来の活性種の発生が十分でなく、得られる接着剤層の硬化が不十分となる可能性があり、一方でその積算光量が5,000mJ/cmを超えると、照射時間が非常に長くなり、生産性向上には不利なものとなる。
 偏光子の両面に保護膜を貼合する場合、活性エネルギー線の照射はどちらの保護膜側から行ってもよいが、例えば、一方の保護膜が紫外線吸収剤を含有し、他方の保護膜が紫外線吸収剤を含有しない場合には、紫外線吸収剤を含有しない保護膜側から活性エネルギー線を照射するのが、照射される活性エネルギー線を有効に利用し、硬化速度を高めるうえで好ましい。
 [偏光板の光学特性]
 本発明の偏光板は、光硬化性組成物にシランカップリング剤を所定量配合することで、高温の条件にさらされても劣化しにくく、耐熱性に優れている。例えば、温度90℃の環境下に24時間保管する加熱試験を行った後でも、透過色相のa値の二乗値とb値の二乗値の和の平方根値で表されるab値を、0.5~4の範囲に保つことができるため、高温による偏光板の変色が生じにくい。
 上記の透過色相とは、偏光板の一方の面から光をあてたときに他方の面から透過してくる光の色相を意味する。ここでの色相は、Lab表色系においてa値及びb値で表すことができ、標準の光を用いて測定される。なお本発明において、偏光板の透過色相の実測は偏光フィルムの両面に保護フィルム(後述する実施例ではシクロオレフィン系フィルム及びアセチルセルロース系フィルム)を貼った偏光板の、アセチルセルロース系フィルム上に粘着剤層を設け、その粘着剤層側でガラス板に貼合した状態で行っている。Lab表色系は、JIS K 5981:2006「合成樹脂粉体塗膜」の「5.5 促進耐候性試験」に記載されるように、ハンターの明度指数Lと色相a及びbで表されるものである。Lab表色系に類似する概念として、JIS Z 8729:2004「色の表示方法− L表色系及びL表色系」に規定されるL表色系があるが、本発明ではLab表色系を採用する。明度指数Lと色相a及びbの値は、JIS Z 8722:2009「色の測定方法−反射及び透過物体色」に規定される三刺激値X、Y及びZから、次の式によって計算される。
 L=10Y1/2
 a=17.5(10.2X−Y)/Y1/2
 b=7.0(Y−0.847Z)/Y1/2
 Lab表色系において、色相a値及びb値は、彩度に相当する位置を示すことができ、色相a値が増加すると色相は赤系に、色相b値が増加すると色相は黄系に変化それぞれ変化する。色相の変化を表すab値は、下式(III)によって計算される。
 ab=(a+b1/2          (III)
 [積層光学部材]
 本発明の偏光板は、偏光板以外の光学機能を有する光学層を積層して、積層光学部材とすることができる。典型的には、偏光板の保護膜に、接着剤や粘着剤を介して光学層を積層貼着することにより、積層光学部材とされるが、その他、例えば、偏光子の一方の面に本発明に従って光硬化性組成物を介して保護膜を貼合し、偏光子の他方の面に接着剤や粘着剤を介して光学層を積層貼着することもできる。後者の場合、偏光子と光学層を貼着するための接着剤として、本発明で規定する光硬化性組成物を用いれば、その光学層は、同時に本発明で規定する保護膜ともなりうる。
 偏光板に積層される光学層の例を挙げると、液晶セルの背面側に配置される偏光板に対しては、その偏光板の液晶セルに面する側とは反対側に積層される、反射層、半透過反射層、光拡散層、集光板、輝度向上フィルムなどがある。また、液晶セルの前面側に配置される偏光板及び液晶セルの背面側に配置される偏光板のいずれに対しても、その偏光板の液晶セルに面する側に積層される位相差板などがある。
 反射層、半透過反射層、又は光拡散層は、それぞれ反射型の偏光板(光学部材)、半透過反射型の偏光板(光学部材)、又は拡散型の偏光板(光学部材)とするために設けられる。反射型の偏光板は、視認側からの入射光を反射させて表示するタイプの液晶表示装置に用いられ、バックライト等の光源を省略できるため、液晶表示装置を薄型化しやすい。また半透過型の偏光板は、明所では反射型として、暗所ではバックライトからの光で表示するタイプの液晶表示装置に用いられる。反射型偏光板としての光学部材は、例えば、偏光子上の保護膜にアルミニウム等の金属からなる箔や蒸着膜を付設して、反射層を形成することができる。半透過型の偏光板としての光学部材は、前記の反射層をハーフミラーとしたり、パール顔料などを含有して光透過性を示す反射板を偏光板に接着したりすることで形成できる。一方、拡散型偏光板としての光学部材は、例えば、偏光板上の保護膜にマット処理を施す方法、微粒子含有の樹脂を塗布する方法、微粒子含有のフィルムを接着する方法など、種々の方法を用いて、表面に微細凹凸構造を形成する。
 さらに、反射拡散両用の偏光板としての光学部材を形成することもでき、その場合は、例えば、拡散型偏光板の微細凹凸構造面にその凹凸構造が反映した反射層を設けるなどの方法が採用できる。微細凹凸構造の反射層は、入射光を乱反射により拡散させ、指向性やギラツキを防止し、明暗のムラを抑制しうるなどの利点を有する。また、微粒子を含有した樹脂層やフィルムは、入射光及びその反射光が微粒子含有層を透過する際に拡散され、明暗ムラを抑制しうるなどの利点も有する。表面微細凹凸構造を反映させた反射層は、例えば、真空蒸着、イオンプレーティング、スパッタリングの如き蒸着やメッキ等の方法により、金属を微細凹凸構造の表面に直接付設することで形成できる。表面微細凹凸構造を形成するために配合する微粒子は、例えば、平均粒径が0.1~30μmであるシリカ、酸化アルミニウム、酸化チタン、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモンの如き無機系微粒子、架橋又は非架橋のポリマーの如き有機系微粒子などでありうる。
 集光板は、光路制御等を目的に用いられるもので、プリズムアレイシートやレンズアレイシート、あるいはドット付設シートなどとして、形成することができる。
 輝度向上フィルムは、液晶表示装置における輝度の向上を目的に用いられるもので、その例としては、屈折率の異方性が互いに異なる薄膜フィルムを複数枚積層して反射率に異方性が生じるように設計された反射型偏光分離シート、コレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持した円偏光分離シートなどが挙げられる。
 他方、上記した光学層としての位相差板は、液晶セルによる位相差の補償などを目的として使用される。その例としては、各種プラスチックの延伸フィルム等からなる複屈折性フィルム、ディスコティック液晶やネマチック液晶が配向固定されたフィルム、フィルム基材上に上記の液晶層が形成されたものなどが挙げられる。フィルム基材上に液晶層を形成する場合、フィルム基材として、トリアセチルセルロースなどのセルロース系樹脂フィルムが好ましく用いられる。
 複屈折性フィルムを形成するプラスチックとしては、例えば、非晶性ポリオレフィン系樹脂、ポリカーボネート系樹脂、アクリル系樹脂、ポリプロピレンのような鎖状ポリオレフィン系樹脂、ポリビニルアルコール、ポリスチレン、ポリアリレート、ポリアミドなどが挙げられる。延伸フィルムは、一軸や二軸等の適宜な方式で処理したものであることができる。なお、位相差板は、広帯域化等の光学特性の制御を目的として、2枚以上を組み合わせて使用してもよい。
 積層光学部材においては、偏光板以外の光学層として位相差板を含むものが、液晶表示装置に適用したときに有効に光学補償を行えることから、好ましく用いられる。位相差板の位相差値(面内及び厚み方向)は、適用される液晶セルに応じて、最適なものを選べばよい。
 積層光学部材は、偏光板と、上述した各種の光学層から使用目的に応じて選択される1層又は2層以上とを組み合わせ、2層又は3層以上の積層体とすることができる。その場合、積層光学部材を形成する各種光学層は、接着剤や粘着剤を用いて偏光板と一体化されるが、そのために用いる接着剤や粘着剤は、接着剤層や粘着剤層が良好に形成されるものであれば特に限定はない。接着作業の簡便性や光学歪の発生防止などの観点から、粘着剤(感圧接着剤とも呼ばれる)を使用することが好ましい。粘着剤には、アクリル系重合体や、シリコーン系重合体、ポリエステル、ポリウレタン、ポリエーテルなどをベースポリマーとするものを用いることができる。なかでも、アクリル系粘着剤のように、光学的な透明性に優れ、適度な濡れ性や凝集力を保持し、基材との接着性にも優れ、さらには耐候性や耐熱性などを有し、加熱や加湿の条件下で浮きや剥がれ等の剥離問題を生じないものを選択して用いることが好ましい。アクリル系粘着剤においては、メチル基やエチル基やブチル基等の炭素数が20以下のアルキル基を有する(メタ)アクリル酸のアルキルエステルと、(メタ)アクリル酸や(メタ)アクリル酸ヒドロキシエチルなどからなる官能基含有アクリル系モノマーとを、ガラス転移温度が好ましくは25℃以下、さらに好ましくは0℃以下となるように配合した、重量平均分子量が10万以上のアクリル系共重合体がベースポリマーとして有用である。
 偏光板への粘着剤層の形成は、例えば、トルエンや酢酸エチル等の有機溶媒に粘着剤組成物を溶解又は分散させて10~40重量%の溶液を調製し、これを偏光板上に直接塗工する方式や、予めプロテクトフィルム上に粘着剤層を形成しておき、それを偏光板上に移着する方式などにより、行うことができる。粘着剤層の厚さは、その接着力などに応じて決定されるが、1~50μm程度の範囲が適当である。
 また、粘着剤層は必要に応じて、ガラス繊維やガラスビーズ、樹脂ビーズ、金属粉やその他の無機粉末等からなる充填剤、顔料や着色剤、酸化防止剤、帯電防止剤、紫外線吸収剤などを含有することができる。帯電防止剤には、イオン性化合物と非イオン性化合物などがある。紫外線吸収剤には、サリチル酸エステル系化合物やベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などがある。
 積層光学部材は、液晶セルの片側又は両側に配置することができる。用いる液晶セルは任意であり、例えば、薄膜トランジスタ型に代表されるアクティブマトリクス駆動型のもの、スーパーツイステッドネマチック型に代表される単純マトリクス駆動型のものなど、種々の液晶セルを使用して液晶表示装置を形成することができる。積層光学部材と液晶セルの接着には、通常粘着剤が用いられる。
Hereinafter, the present invention will be described in detail. The polarizing plate of the present invention is obtained by bonding a protective film to at least one surface of a polarizer via an adhesive layer.
[Polarizer]
The polarizer is composed of a polyvinyl alcohol-based resin film in which a dichroic dye is adsorbed and oriented. The polyvinyl alcohol resin constituting the polarizer can be obtained by saponifying a polyvinyl acetate resin. Examples of the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. Examples of other monomers copolymerized with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, and unsaturated sulfonic acids. The saponification degree of the polyvinyl alcohol-based resin is usually in the range of 85 to 100 mol%, preferably 98 to 100 mol%. The polyvinyl alcohol-based resin may be further modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually 1,000 to 10,000, preferably 1,500 to 5,000.
The polarizer is a process of uniaxially stretching such a polyvinyl alcohol-based resin film, a step of dyeing the polyvinyl alcohol-based resin film with a dichroic dye and adsorbing the dichroic dye, and a dichroic dye being adsorbed It is manufactured through a step of treating the polyvinyl alcohol resin film with a boric acid aqueous solution.
The uniaxial stretching may be performed before dyeing with a dichroic dye, may be performed simultaneously with dyeing with a dichroic dye, or may be performed after dyeing with a dichroic dye. When uniaxial stretching is performed after dyeing with a dichroic dye, this uniaxial stretching may be performed before boric acid treatment or during boric acid treatment. Of course, it is also possible to perform uniaxial stretching in these plural stages. For uniaxial stretching, stretching may be performed between rolls having different peripheral speeds, or stretching may be performed by sandwiching between rolls. Moreover, the dry-type extending | stretching which extends | stretches in air | atmosphere may be sufficient, and the wet extending | stretching which extends | stretches in the state swollen with the solvent may be sufficient. The draw ratio is usually about 4 to 8 times.
In order to dye the polyvinyl alcohol resin film with the dichroic dye, for example, the polyvinyl alcohol resin film may be immersed in an aqueous solution containing the dichroic dye. Specifically, iodine or a dichroic organic dye is used as the dichroic dye.
When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed. The content of iodine in this aqueous solution is usually about 0.01 to 0.5 parts by weight per 100 parts by weight of water, and the content of potassium iodide is usually about 0.5 to 10 parts by weight per 100 parts by weight of water. It is. The temperature of this aqueous solution is usually about 20 to 40 ° C., and the immersion time (dyeing time) in this aqueous solution is usually about 30 to 300 seconds.
On the other hand, when a dichroic organic dye is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic organic dye is usually employed. The content of the dichroic organic dye in this aqueous solution is usually 1 × 10 5 per 100 parts by weight of water.-3~ 1 × 10-2About parts by weight. This aqueous solution may contain an inorganic salt such as sodium sulfate. The temperature of this aqueous solution is usually about 20 to 80 ° C., and the immersion time (dyeing time) in this aqueous solution is usually about 30 to 300 seconds.
The boric acid treatment after dyeing with a dichroic dye is performed by immersing the dyed polyvinyl alcohol resin film in an aqueous boric acid solution. The boric acid content in the boric acid aqueous solution is usually about 2 to 15 parts by weight, preferably about 5 to 12 parts by weight per 100 parts by weight of water. When iodine is used as the dichroic dye, the aqueous boric acid solution preferably contains potassium iodide. The content of potassium iodide in the boric acid aqueous solution is usually about 2 to 20 parts by weight, preferably 5 to 15 parts by weight per 100 parts by weight of water. The immersion time in the boric acid aqueous solution is usually about 100 to 1,200 seconds, preferably about 150 to 600 seconds, and more preferably about 200 to 400 seconds. The temperature of the boric acid aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C.
The polyvinyl alcohol resin film after the boric acid treatment is usually washed with water. The water washing treatment is performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water. A drying process is performed after water washing, and a polarizer is obtained. The water temperature in the water washing treatment is usually about 5 to 40 ° C., and the immersion time is usually about 2 to 120 seconds. The drying process performed after that is normally performed using a hot air dryer or a far-infrared heater. The drying temperature is usually 40 to 100 ° C. Further, the drying treatment time is usually about 120 to 600 seconds.
Thus, the thickness of the polarizer which consists of a polyvinyl alcohol-type resin film obtained can be about 10-50 micrometers.
[Adhesive layer]
The polarizer thus obtained has a protective film made of a transparent resin bonded to at least one surface thereof through an adhesive layer to form a polarizing plate. In the present invention, the adhesive for bonding the protective film to the polarizer is a photocurable component composed of an epoxy compound having an alicyclic epoxy group, a silane coupling agent, and a photocationic polymerization initiator. It is formed from the composition.
(Cationically polymerizable compound)
The above alicyclic epoxy compound will be described as shown in the following formula (I) (CH2)mIt is a compound in which a group in the form of removing one or more hydrogen atoms is bonded to another chemical structure. Form an alicyclic ring (CH2)mOne or a plurality of hydrogen atoms therein may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
Figure JPOXMLDOC01-appb-I000001
Among the alicyclic epoxy compounds represented by the above formula (I), an alicyclic ring having an epoxycyclopentane ring (m = 3 in the above formula) or an epoxycyclohexane ring (m = 4 in the above formula). The formula diepoxy compound is preferably used because it provides excellent adhesion. Specific examples of the alicyclic epoxy compound are listed below. Here, the compound name is given first, and then the chemical formula corresponding to each is shown, and the same symbol is attached to the chemical name and the corresponding chemical formula.
A: 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate,
B: 3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexanecarboxylate,
C: ethylene bis (3,4-epoxycyclohexanecarboxylate),
D: Bis (3,4-epoxycyclohexylmethyl) adipate,
E: Bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate,
F: Diethylene glycol bis (3,4-epoxycyclohexyl methyl ether),
G: Ethylene glycol bis (3,4-epoxycyclohexyl methyl ether),
H: 2,3,14,15-diepoxy-7,11,18,21-tetraoxatrispiro [5.2.2.5.2.2] henicosane,
I: 3- (3,4-epoxycyclohexyl) -8,9-epoxy-1,5-dioxaspiro [5.5] undecane,
J: bis (2,3-epoxycyclopentyl) ether,
K: Dicyclopentadiene dioxide and the like.
Figure JPOXMLDOC01-appb-I000002
An aliphatic epoxy compound is a compound having in its molecule at least one oxirane ring (3-membered cyclic ether) bonded to an aliphatic carbon atom. For example, a monofunctional compound such as butyl glycidyl ether or 2-ethylhexyl glycidyl ether. And trifunctional or higher functional epoxy compounds such as trimethylolpropane triglycidyl ether and pentaerythritol tetraglycidyl ether. An epoxy compound having one epoxy group directly bonded to an alicyclic ring and an oxirane ring bonded to an aliphatic carbon atom, such as 4-vinylcyclohexene dioxide and limonene dioxide, also falls under this category. Specifically, an aliphatic diepoxy compound having two oxirane rings bonded to an aliphatic carbon atom in the molecule is preferable. Such a suitable aliphatic diepoxy compound can be represented by the following formula (II), for example.
Figure JPOXMLDOC01-appb-I000003
Y in the formula is an alkylene group having 2 to 9 carbon atoms, an alkylene group having 4 to 9 carbon atoms having an ether bond between them, or a divalent hydrocarbon group having 6 to 18 carbon atoms having an alicyclic structure. is there.
Specifically, the aliphatic diepoxy compound represented by the above formula (II) is diglycidyl ether of alkanediol, diglycidyl ether of oligoalkylene glycol having a repetition number of up to about 4, or diglycidyl ether of alicyclic diol. is there.
Specific examples of diol (glycol) that can be an aliphatic diepoxy compound represented by the formula (II) are listed below. Examples of alkanediol include ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, and 1,4-butanediol. Neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentane Diol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol, 1,8-octanediol, 2-methyl-1,8 -Octanediol, 1,9-nonanediol and the like. Examples of the oligoalkylene glycol include diethylene glycol, triethylene glycol, tetraethylene glycol, and dipropylene glycol. Examples of the alicyclic diol include cyclohexanediol, cyclohexanedimethanol, hydrogenated bisphenol A, and hydrogenated bisphenol F.
Among these aliphatic diepoxy compounds, diglycidyl ethers of alkanediols are preferred, and particularly preferred ones because of their availability are 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether and the like. is there.
When the alicyclic epoxy compound and the aliphatic epoxy compound are used in combination, the blending ratio of both is 50 to 95% by weight of the alicyclic epoxy compound and the aliphatic epoxy compound based on the total amount of the cationic polymerizable compound. It is preferably 5% by weight or more. By blending 50% by weight or more of the alicyclic epoxy compound, especially the alicyclic diepoxy compound in the whole cationically polymerizable compound, the storage elastic modulus at 80 ° C. of the cured product becomes 1,000 MPa or more. Thus, the polarizer in the polarizing plate in a state where the polarizer and the protective film are bonded is not easily broken. In addition, by blending an aliphatic epoxy compound, for example, a diglycidyl ether compound of the formula (II) in an amount of 5% by weight or more based on the whole cationic polymerizable compound, the adhesion between the polarizer and the protective film is further improved. When the amount is too large, the storage elastic modulus of the cured product is lowered and the polarizer is easily cracked. Therefore, the amount is preferably 45% by weight or less based on the total amount of the cationically polymerizable compound. In addition, the sum total of the mixture ratio of an alicyclic epoxy compound and an aliphatic epoxy compound does not exceed 100 weight%.
When the alicyclic epoxy compound of the formula (I) and the diglycidyl ether compound of the formula (II) as described above are used in combination as the cationic polymerizable compound constituting the photocurable composition, each is explained above. In addition to these, other cationically polymerizable compounds may be included within the range of the above amount. Examples of other cationically polymerizable compounds include epoxy compounds and oxetane compounds that do not fall under the formula (I) and formula (II). Epoxy compounds not corresponding to formula (I) include compounds having only one epoxy group directly bonded to the alicyclic ring in the molecule, and epoxy compounds not corresponding to formula (II) include those other than formula (II) An aliphatic epoxy compound having an oxirane ring bonded to an aliphatic carbon atom, an aromatic epoxy compound, and the like are included. An oxetane compound is a compound having an oxetane ring (4-membered ring ether).
Examples of aliphatic epoxy compounds having an oxirane ring bonded to an aliphatic carbon atom other than formula (II) include triglycidyl ether of glycerin, triglycidyl ether of trimethylolpropane, and diglycidyl ether of polyethylene glycol. .
The aromatic epoxy compound may be a glycidyl ether of an aromatic polyhydroxy compound having at least two phenolic hydroxyl groups in the molecule. Specific examples thereof include diglycidyl ether of bisphenol A and diglycidyl ether of bisphenol F. Bisphenol S diglycidyl ether, phenol novolac resin glycidyl ether, and the like.
An oxetane compound is a compound having a 4-membered ring ether (oxetanyl group) in the molecule, and specific examples thereof include the following compounds.
3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 3-ethyl-3- (phenoxymethyl) oxetane, di [(3-ethyl-3 -Oxetanyl) methyl] ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (cyclohexyloxymethyl) oxetane, phenol novolac oxetane, 1,3-bis [(3-ethyloxetane -3-yl) methoxy] benzene, oxetanylsilsesquioxane, oxetanyl silicate and the like.
The oxetane compound described above is improved in curability as compared with the case where only the epoxy compound is used as the cationic polymerizable compound by blending at a ratio of 30% by weight or less based on the total amount of the cationic polymerizable compound. An effect may be expected.
(Silane coupling agent)
The silane coupling agent can be a compound in which at least one hydrolyzable alkoxy group and another organic group are bonded to a silicon atom. By adding a silane coupling agent, for example, hydrogen fluoride produced as a by-product due to decomposition of the photocationic polymerization initiator is captured and discoloration of the polarizer is suppressed, and as a result, discoloration of the polarizing plate can be suppressed.
Examples of silane coupling agents include methyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3 -Glycidoxypropyltriethoxysilane, 3-glycidoxypropyldimethoxymethylsilane, 3-glycidoxypropylethoxydimethylsilane, 2- (3,4-epoxycyclohexyl) Such as triethoxysilane and the like. Among these silane coupling agents, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Epoxycyclohexyl) ethyltriethoxysilane has a glycidyloxy group or an alicyclic epoxy group in the molecule, so that when the photocurable composition is irradiated with active energy rays, it is cation with a photocurable component. Cures by polymerization reaction. Therefore, these additions do not particularly reduce the elastic modulus of the resin and the adhesive force between the polarizer and the protective film, and thus are particularly preferably used.
The silane coupling agent may be used alone or in combination of two or more.
The compounding amount of the silane coupling agent is about 4 to 50 parts by weight, preferably 7 to 50 parts by weight, and more preferably about 7 to 20 parts by weight with respect to 100 parts by weight of the photocurable component. When the amount of the silane coupling agent with respect to 100 parts by weight of the photocurable component is 4 parts by weight or less, the effect of suppressing the change in hue at the time of heating is not sufficient, and further, the adhesion with the polarizer and the protective film is improved. Almost no effect is obtained. Further, when the amount of the silane coupling agent with respect to 100 parts by weight of the photocurable component is 50 parts by weight or more, the viscosity change with time in the photocurable composition increases, or the storage elastic modulus in the adhesive after curing. Tend to decrease significantly.
(Photocationic polymerization initiator)
In the present invention, the photocurable component described above is cured by cationic polymerization by irradiation with active energy rays to form an adhesive layer, and therefore a photocationic polymerization initiator is blended in the photocurable composition. The cationic photopolymerization initiator generates a cationic species or a Lewis acid upon irradiation with an active energy ray such as visible light, ultraviolet ray, X-ray, or electron beam, and initiates a polymerization reaction of the photocationic curable component. . Since the cationic photopolymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with the cationic photocuring component. Examples of the compound that generates a cationic species or a Lewis acid upon irradiation with active energy rays include onium salts such as aromatic iodonium salts and aromatic sulfonium salts, aromatic diazonium salts, and iron-arene complexes.
The aromatic iodonium salt is a compound having a diaryl iodonium cation, and typical examples of the diaryl iodonium cation include a diphenyl iodonium cation. An aromatic sulfonium salt is a compound having a triarylsulfonium cation, and typical examples of the triarylsulfonium cation include triphenylsulfonium cation and 4,4′-bis (diphenylsulfonio) diphenylsulfide cation. Can do. The aromatic diazonium salt is a compound having a diazonium cation, and typical examples of the diazonium cation include a benzenediazonium cation. The iron-arene complex is typically a cyclopentadienyl iron (II) arene cation complex salt.
The cations shown above constitute a photocationic polymerization initiator in pairs with anions (anions). Examples of anions constituting the photocationic polymerization initiator include hexafluorophosphate anion PF6 , Hexafluoroantimonate anion SbF6 , Pentafluorohydroxyantimonate anion SbF5(OH), Hexafluoroarsenate anion AsF6 , Tetrafluoroborate anion BF4 , Tetrakis (pentafluorophenyl) borate anion B (C6F5)4 and so on.
Among these cationic photopolymerization initiators, especially aromatic sulfonium salts have ultraviolet absorption characteristics even in the wavelength region near 300 nm, and therefore provide a cured product having excellent curability and good mechanical strength and adhesive strength. Therefore, it is preferably used.
Various photocationic polymerization initiators are commercially available. Examples of commercially available products include the “CPI” series sold by Sun Apro Co., Ltd., the “CYRACURE UVI” series sold by Dow Chemical Co., Ltd., and the “Adekaoptomer” sold by ADEKA Corporation. "SP" series, "IRGACURE" series sold by BASF Germany (however, classified as a cationic photopolymerization initiator), "Sun-Aid SI" series sold by Sanshin Chemical Industry Co., Ltd., There are “UVACURE 1590” sold by Daicel-Cytec.
The compounding amount of the photocationic polymerization initiator is 1 to 10 parts by weight based on 100 parts by weight of the whole cationic polymerizable compound. By blending 1 part by weight or more of the cationic photopolymerization initiator per 100 parts by weight of the cationically polymerizable compound, the cationically polymerizable compound can be sufficiently cured, and high mechanical strength and adhesive strength are given to the obtained polarizing plate. On the other hand, when the amount increases, the ionic substance in the cured product increases, which may increase the hygroscopicity of the cured product and reduce the durability of the polarizing plate. And 10 parts by weight or less per 100 parts by weight of the cationically polymerizable compound. The amount of the cationic photopolymerization initiator is preferably 2 parts by weight or more per 100 parts by weight of the cationic polymerizable compound, and preferably 6 parts by weight or less.
(Other components that can be added to the photo-curable adhesive)
The photocurable composition may contain other components in addition to the photocationic curable component and the photocationic polymerization initiator described above. Specific examples of other components that can be blended include photosensitizers, photosensitizers, thermal cationic polymerization initiators, chain transfer agents, thermoplastic resins, flow regulators, antifoaming agents, leveling agents, organic There are solvents. Depending on the type of protective film to be bonded to the polarizer, it may be preferable to blend a photosensitizer and further a photosensitization aid.
The photosensitizer is a compound that exhibits maximum absorption at a wavelength longer than the maximum absorption wavelength exhibited by the photocationic polymerization initiator and promotes the polymerization initiation reaction by the photocationic polymerization initiator. As such a photosensitizer, an anthracene compound is preferably used. As anthracene compounds that can be used as photosensitizers, 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-diisopropoxyanthracene, 9,10-dibutoxyanthracene 9,10-dipentyloxyanthracene, 9,10-dihexyloxyanthracene and the like.
The photosensitizing assistant is a compound that further promotes the action of the photosensitizer. As such a photosensitizing assistant, naphthalene compounds are preferably used. 1,4-dimethoxynaphthalene, 1-ethoxy-4-methoxynaphthalene, 1,4-diethoxynaphthalene, 1,4-dipropoxynaphthalene, 1,4-dibutoxy as naphthalene compounds that can serve as photosensitizers And naphthalene.
In the case of blending these other components, the amount thereof is, for example, in the range of 10 parts by weight or less to the blending purpose with respect to 100 parts by weight of the photocationic curable component that is the main component of the photocurable composition. May be selected as appropriate.
[Protective film]
In the present invention, a polarizer comprising the above-described polyvinyl alcohol-based resin film is laminated with a protective film via the photocurable composition described above, and the photocurable composition is cured to form a polarizing plate. To do. The protective film can be composed of an acetylcellulose-based resin film such as triacetylcellulose, which has been most widely used as a protective film for polarizing plates, or a resin film having a lower moisture permeability than triacetylcellulose. The moisture permeability of triacetyl cellulose is approximately 400 g / m.2/ 24 hr.
In one preferred embodiment, the protective film bonded to at least one surface of the polarizer is composed of an acetylcellulose-based resin. In another preferred embodiment, the protective film bonded to at least one surface of the polarizer is a resin film having a moisture permeability lower than that of triacetyl cellulose, such as a moisture permeability of 300 g / m.2/ 24hr or less of resin film. Examples of the resin constituting such a resin film with low moisture permeability include amorphous polyolefin resin, polyester resin, acrylic resin, polycarbonate resin, and chain polyolefin resin. In still another preferred embodiment, a protective film made of an acetylcellulose-based resin is bonded to one surface of the polarizer via the adhesive layer, and the other surface of the polarizer is also interposed via the adhesive layer. Then, a protective film made of a transparent resin having a low moisture permeability as described above is bonded.
An acetyl cellulose resin is a resin in which at least a part of hydroxyl groups in cellulose is acetate esterified, even if it is a mixed ester in which part is acetated and partly esterified with another acid. Good. Specific examples of the acetyl cellulose resin include triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, and cellulose acetate butyrate.
An amorphous polyolefin-based resin is a polymer having a polymerized unit of cyclic olefin, such as norbornene, tetracyclododecene (also known as dimethanooctahydronaphthalene), or a compound having a substituent bonded thereto. It may be a copolymer obtained by copolymerizing a chain olefin and / or an aromatic vinyl compound. In the case of a homopolymer of a cyclic olefin or a copolymer of two or more kinds of cyclic olefins, a double bond remains by ring-opening polymerization, and hydrogenated ones are generally used as amorphous polyolefin-based resins. Used. Of these, thermoplastic norbornene resins are typical.
The polyester resin is a polymer obtained by condensation polymerization of a dibasic acid and a dihydric alcohol, and polyethylene terephthalate is representative. Acrylic resin is a polymer with methyl methacrylate as the main monomer. In addition to methyl methacrylate homopolymer, methyl methacrylate and acrylic esters and aromatic vinyl compounds such as methyl acrylate It may be a copolymer. The polycarbonate-based resin is a polymer having a carbonate bond (—O—CO—O—) in the main chain, and is typically obtained by condensation polymerization of bisphenol A and phosgene. The chain polyolefin-based resin is a polymer mainly containing a chain olefin such as ethylene or propylene, and can be a homopolymer or a copolymer. Among them, a propylene homopolymer and a copolymer in which a small amount of ethylene is copolymerized with propylene are representative.
Such a protective film has various surface treatment layers such as a hard coat layer, an antireflection layer, an antiglare layer, and an antistatic layer on the surface opposite to the surface to be bonded to the polarizer. Also good. The protective film can have a thickness of about 5 to 150 μm including the case where such a surface treatment layer is formed. The thickness is preferably 10 μm or more, preferably 120 μm or less, more preferably 100 μm or less.
[Adhesion between polarizer and protective film]
In adhering the polarizer and the protective film, the photocurable composition described above is applied to one or both of the bonded surfaces of the polarizer and the protective film, and the polarizer and the protective film are interposed through the coating layer. The application layer of the uncured photocurable composition is bonded and cured by irradiating active energy rays, and the protective film is fixed on the polarizer. The coating layer of a photocurable composition may be formed in the bonding surface of a polarizer, and may be formed in the bonding surface of a protective film. For forming the coating layer, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used. Moreover, the system which casts a photocurable composition in the meantime can also be employ | adopted, supplying a polarizer and a protective film continuously so that both bonding surfaces may become inside. Since each coating method has an optimum viscosity range, it is also a useful technique to adjust the viscosity using a solvent. As the solvent for this purpose, a solvent that dissolves the photocurable composition satisfactorily without degrading the optical performance of the polarizer is used, but the type is not particularly limited. For example, organic solvents such as hydrocarbons typified by toluene and esters typified by ethyl acetate can be used. The thickness of the adhesive layer after curing is usually 20 μm or less, preferably 10 μm or less, more preferably 5 μm or less. When the adhesive layer becomes thick, the reaction rate of the adhesive composition decreases, and the wet heat resistance of the polarizing plate tends to deteriorate.
In adhering the polarizer and the protective film, the corona discharge treatment, plasma treatment, flame treatment, primer treatment, anchor coating treatment is performed on one or both of the bonding surfaces of the polarizer before applying the photocurable composition. Such an easy adhesion treatment may be performed.
The light source used for irradiating the application layer of the photocurable composition with active energy rays may be any light source that generates ultraviolet rays, electron beams, X-rays, and the like. In particular, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp and the like having a light emission distribution at a wavelength of 400 nm or less are preferably used. The irradiation intensity of the active energy ray to the photocurable composition is determined for each composition of the photocurable composition, and is not particularly limited, but the irradiation intensity in the wavelength region effective for activation of the initiator. 0.1 ~ 100mW / cm2It is preferable that Irradiation intensity to the photocurable composition is 0.1 mW / cm2If it is less than 100 mW / cm, the reaction time becomes too long.2If it exceeds 1, the heat radiated from the lamp and the heat generated during polymerization of the photocurable composition may cause yellowing of the photocurable composition or deterioration of the polarizer. The light irradiation time to the photocurable composition is controlled for each composition to be cured and is not particularly limited, but the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is 10 to 5,000 mJ. / Cm2It is preferable to set so that. Integrated light quantity to the photocurable composition is 10 mJ / cm2When the amount is less than 1, the generation of active species derived from the initiator is not sufficient, and the resulting adhesive layer may be insufficiently cured, while the integrated light amount is 5,000 mJ / cm.2If it exceeds 1, irradiation time becomes very long, which is disadvantageous for productivity improvement.
When a protective film is bonded to both sides of the polarizer, active energy rays may be irradiated from either protective film side. For example, one protective film contains an ultraviolet absorber and the other protective film When the ultraviolet absorber is not contained, it is preferable to irradiate the active energy ray from the protective film side not containing the ultraviolet absorber in order to effectively utilize the irradiated active energy ray and increase the curing rate.
[Optical characteristics of polarizing plate]
The polarizing plate of the present invention is excellent in heat resistance because it hardly deteriorates even when exposed to high temperature conditions by blending a predetermined amount of a silane coupling agent into the photocurable composition. For example, an ab value expressed by the square root value of the sum of the square value of the a value and the square value of the b value of the transmitted hue is 0. Since it can be kept in the range of 5 to 4, discoloration of the polarizing plate due to high temperature hardly occurs.
The above transmission hue means the hue of light transmitted from the other surface when light is applied from one surface of the polarizing plate. The hue here can be expressed by a value and b value in the Lab color system, and is measured using standard light. In the present invention, the transmission hue of the polarizing plate was actually measured on the polarizing film with a protective film (a cycloolefin-based film and an acetylcellulose-based film in the examples described later) stuck on the acetylcellulose-based film. An adhesive layer is provided and the adhesive layer is bonded to the glass plate. The Lab color system is represented by Hunter's lightness index L and hues a and b, as described in “5.5 Accelerated weather resistance test” of JIS K 5981: 2006 “Synthetic resin powder coating”. Is. As a concept similar to the Lab color system, JIS Z 8729: 2004 “Color Display Method-L*a*b*Color system and L*u*v*L defined in "color system"*a*b*Although there is a color system, the Lab color system is adopted in the present invention. The values of the lightness index L and hues a and b are calculated from the tristimulus values X, Y and Z defined in JIS Z 8722: 2009 “Color Measurement Method-Reflection and Transmission Object Color” by the following formula: .
L = 10Y1/2
A = 17.5 (10.2X-Y) / Y1/2
B = 7.0 (Y-0.847Z) / Y1/2.
In the Lab color system, the hue a value and b value can indicate positions corresponding to saturation, and when the hue a value increases, the hue changes to red, and when the hue b value increases, the hue changes to yellow. Each changes. The ab value representing the change in hue is calculated by the following formula (III).
Ab = (a2+ B2)1/2(III)
[Laminated optical member]
The polarizing plate of the present invention can be made into a laminated optical member by laminating optical layers having optical functions other than the polarizing plate. Typically, a laminated optical member is obtained by laminating and attaching an optical layer to a protective film of a polarizing plate via an adhesive or a pressure-sensitive adhesive. According to the invention, a protective film can be bonded via a photocurable composition, and an optical layer can be laminated and bonded to the other surface of the polarizer via an adhesive or a pressure-sensitive adhesive. In the latter case, if the photocurable composition defined in the present invention is used as an adhesive for adhering the polarizer and the optical layer, the optical layer can simultaneously be a protective film defined in the present invention.
As an example of the optical layer laminated on the polarizing plate, for the polarizing plate arranged on the back side of the liquid crystal cell, the reflective layer is laminated on the opposite side of the polarizing plate from the side facing the liquid crystal cell. A layer, a transflective layer, a light diffusion layer, a light collector, a brightness enhancement film, and the like. In addition, for both the polarizing plate disposed on the front side of the liquid crystal cell and the polarizing plate disposed on the back side of the liquid crystal cell, a retardation plate laminated on the side of the polarizing plate facing the liquid crystal cell, etc. There is.
The reflective layer, transflective layer, or light diffusion layer is a reflective polarizing plate (optical member), a transflective polarizing plate (optical member), or a diffusing polarizing plate (optical member), respectively. Is provided. The reflective polarizing plate is used in a liquid crystal display device of a type that reflects and displays incident light from the viewing side. Since a light source such as a backlight can be omitted, the liquid crystal display device can be easily thinned. The transflective polarizing plate is used as a reflection type in a bright place and used in a liquid crystal display device that displays light from a backlight in a dark place. An optical member as a reflective polarizing plate can form a reflective layer by attaching a foil or a vapor deposition film made of a metal such as aluminum to a protective film on a polarizer, for example. An optical member as a transflective polarizing plate can be formed by using the reflective layer as a half mirror, or by adhering a reflective plate containing a pearl pigment or the like and exhibiting light transmittance to the polarizing plate. On the other hand, an optical member as a diffusion type polarizing plate can be obtained by various methods such as a method of performing a mat treatment on a protective film on a polarizing plate, a method of applying a resin containing fine particles, and a method of adhering a film containing fine particles. Use to form a fine relief structure on the surface.
Furthermore, an optical member can be formed as a polarizing plate for both reflection and diffusion. In that case, for example, a method of providing a reflective layer reflecting the concavo-convex structure on the fine concavo-convex structure surface of the diffusing polarizing plate is adopted. it can. The reflective layer having a fine concavo-convex structure has advantages such that incident light is diffused by irregular reflection, directivity and glare can be prevented, and uneven brightness can be suppressed. In addition, the resin layer or film containing fine particles also has an advantage that incident light and its reflected light are diffused when passing through the fine particle-containing layer, and light and dark unevenness can be suppressed. The reflective layer reflecting the surface fine concavo-convex structure can be formed by directly attaching a metal to the surface of the fine concavo-convex structure by a method such as vapor deposition such as vacuum deposition, ion plating, sputtering, or plating. The fine particles to be blended to form the fine surface uneven structure include, for example, silica, aluminum oxide, titanium oxide, zirconia, tin oxide, indium oxide, cadmium oxide, and antimony oxide having an average particle size of 0.1 to 30 μm. It can be inorganic fine particles, organic fine particles such as crosslinked or non-crosslinked polymers, and the like.
The condensing plate is used for the purpose of optical path control and can be formed as a prism array sheet, a lens array sheet, or a dot-attached sheet.
The brightness enhancement film is used for the purpose of improving the brightness in a liquid crystal display device. For example, a plurality of thin film films having different refractive index anisotropies are laminated to produce anisotropy in reflectance. Examples thereof include a reflective polarization separation sheet designed as described above, an alignment film of a cholesteric liquid crystal polymer, and a circular polarization separation sheet in which the alignment liquid crystal layer is supported on a film substrate.
On the other hand, the above-mentioned retardation plate as an optical layer is used for the purpose of compensation of retardation by a liquid crystal cell. Examples thereof include a birefringent film made of a stretched film of various plastics, a film in which a discotic liquid crystal or a nematic liquid crystal is oriented and fixed, and a film substrate on which the above liquid crystal layer is formed. When the liquid crystal layer is formed on the film substrate, a cellulose resin film such as triacetyl cellulose is preferably used as the film substrate.
Examples of the plastic forming the birefringent film include amorphous polyolefin resins, polycarbonate resins, acrylic resins, chain polyolefin resins such as polypropylene, polyvinyl alcohol, polystyrene, polyarylate, polyamide, and the like. It is done. The stretched film can be processed by an appropriate method such as uniaxial or biaxial. Two or more retardation plates may be used in combination for the purpose of controlling optical characteristics such as broadening the band.
Among the laminated optical members, those including a retardation plate as an optical layer other than the polarizing plate are preferably used because optical compensation can be effectively performed when applied to a liquid crystal display device. The optimum retardation value (in-plane and thickness direction) of the retardation plate may be selected according to the liquid crystal cell to be applied.
The laminated optical member can be a laminate of two layers or three or more layers by combining a polarizing plate and one or more layers selected according to the purpose of use from the various optical layers described above. In that case, the various optical layers forming the laminated optical member are integrated with the polarizing plate using an adhesive or pressure-sensitive adhesive, but the adhesive or pressure-sensitive adhesive layer used for this purpose is good. As long as it is formed, there is no particular limitation. It is preferable to use a pressure-sensitive adhesive (also referred to as a pressure-sensitive adhesive) from the viewpoint of easy bonding work and prevention of optical distortion. As the pressure-sensitive adhesive, those having a base polymer such as an acrylic polymer, a silicone polymer, polyester, polyurethane, or polyether can be used. Among them, like acrylic adhesives, it has excellent optical transparency, retains appropriate wettability and cohesion, has excellent adhesion to substrates, and has weather resistance and heat resistance. However, it is preferable to select and use a material that does not cause peeling problems such as floating and peeling under the conditions of heating and humidification. In acrylic adhesives, alkyl esters of (meth) acrylic acid having an alkyl group having 20 or less carbon atoms such as methyl, ethyl and butyl groups, and (meth) acrylic acid and hydroxyethyl (meth) acrylate Based on an acrylic copolymer having a weight average molecular weight of 100,000 or more, which is blended with a functional group-containing acrylic monomer comprising a glass transition temperature of preferably 25 ° C. or less, more preferably 0 ° C. or less. Useful as a polymer.
The pressure-sensitive adhesive layer is formed on the polarizing plate by, for example, dissolving or dispersing the pressure-sensitive adhesive composition in an organic solvent such as toluene or ethyl acetate to prepare a 10 to 40% by weight solution, which is directly applied on the polarizing plate. It can be performed by a coating method or a method in which a pressure-sensitive adhesive layer is previously formed on a protective film and then transferred onto a polarizing plate. The thickness of the pressure-sensitive adhesive layer is determined according to the adhesive force and the like, but a range of about 1 to 50 μm is appropriate.
In addition, the pressure-sensitive adhesive layer is filled with glass fiber, glass beads, resin beads, metal powder, other inorganic powders, pigments, colorants, antioxidants, antistatic agents, UV absorbers, etc., as necessary. Can be contained. Antistatic agents include ionic compounds and nonionic compounds. Examples of ultraviolet absorbers include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds.
The laminated optical member can be arranged on one side or both sides of the liquid crystal cell. The liquid crystal cell to be used is arbitrary. For example, a liquid crystal display device using various liquid crystal cells such as an active matrix drive type typified by a thin film transistor type and a simple matrix drive type typified by a super twisted nematic type. Can be formed. A pressure-sensitive adhesive is usually used for bonding the laminated optical member and the liquid crystal cell.
 以下に実施例を示して、本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。例中、使用量ないし含有量を表す「部」及び「%」は特記ない限り重量基準である。また、以下の例で用いたカチオン重合性化合物、シランカップリング剤及び光カチオン重合開始剤は次のとおりであり、以下それぞれの記号で表示する。
 〈カチオン重合性化合物〉
 (a1)3,4−エポキシシクロヘキシルメチル 3,4−エポキシシクロヘキサンカルボキシレート:ダイセル化学工業(株)から入手、商品名セロキサイド2021P。後掲の表1では「(a1)」と略記する。
 (a2)1,4−ブタンジオールジグリシジルエーテル:ナガセケムテックス(株)から入手、商品名EX−214L。後掲の表1では「(a2)」と略記する。
 〈シランカップリング剤〉
 KBM−403 :3−グリシドキシプロピルトリメトキシシラン、液体、信越化学工業(株)から入手。後掲の表1では「KBM−403」と略記する。
 KBM−303 :2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、液体、信越化学工業(株)から入手。後掲の表1では「KBM−303」と略記する。
 〈光カチオン重合開始剤〉
 CPI−100P :4,4’−ビス(ジフェニルスルホニオ)フェニルスルフィドビス(ヘキサフルオロホスフェート)系光カチオン重合開始剤、サンアプロ(株)から入手。後掲の表1では「CPI−100P」と略記する。
[実施例1~8及び比較例1]
 (1)光硬化性組成物の調製
 表1に示す配合割合(単位は部)で各成分を混合した後、脱泡して、光硬化性組成物を調製した。なお、光カチオン重合開始剤は、50%プロピレンカーボネート溶液として配合し、表1にはその固形分量で表示した。
Figure JPOXMLDOC01-appb-T000004
 (2)偏光板の作製
 厚さ50μmのシクロオレフィン系フィルム〔商品名“ZEONOR”、日本ゼオン(株)から入手〕の表面にコロナ放電処理を施し、そのコロナ放電処理面に、バーコーターを用いて、上で調製したそれぞれの光硬化性組成物を、硬化後の膜厚が約3.5μmとなるように塗工した。その塗工面に、厚さ28μmのポリビニルアルコール−ヨウ素系偏光子を貼合した。また、厚さ40μmのアセチルセルロース系フィルム〔商品名“N−TAC KC4FR−1”、コニカミノルタオプト(株)から入手〕の貼合面にコロナ放電処理を施し、そのコロナ放電処理面に、上と同じ光硬化性組成物を硬化後の膜厚が約3.5μmとなるようにバーコーターで塗工した。その塗工面に、上で作製したシクロオレフィン系フィルムが片面に貼合された偏光子を偏光子側で貼合し、積層物を作製した。この積層物のアセチルセルロース系フィルム側から、ベルトコンベア付き紫外線照射装置〔ランプはフュージョンUVシステムズ社製の“Dバルブ”使用〕を用いて積算光量が500mJ/cmとなるように紫外線を照射し、光硬化性組成物を硬化させた。こうして、偏光子の両面に保護膜が貼合された偏光板を作製した。
 次に、上で作製した偏光板を用いて粘着剤付き偏光板を作製した。イソシアネート系架橋剤、シランカップリング剤及び帯電防止剤として、以下のものを用いた。
 〈イソシアネート系架橋剤〉
 コロネートL:トリレンジイソシアネートのトリメチロールプロパンアダクト体の酢酸エチル溶液(固形分濃度75%)、日本ポリウレタン(株)から入手。
 〈シランカップリング剤〉
 KBM−403 :3−グリシドキシプロピルトリメトキシシラン、液体、信越化学工業(株)から入手。
 〈帯電防止剤〉
 1−ヘキシルピリジニウム ヘキサフルオロフォスフェート、下式(IV)で示され、融点45℃の化合物。
Figure JPOXMLDOC01-appb-I000005
 (3)粘着剤付き偏光板の作製
 ブチルアクリレートとメチルアクリレートとアクリル酸とヒドロキシエチルアクリレートの共重合体に、イソシアネート系架橋剤、シランカップリング剤、及び帯電防止剤を添加してなるアクリル系粘着剤の有機溶剤溶液を、離型処理が施された厚さ38μmのポリエチレンテレフタレートフィルム〔商品名“SP−PLR382050”、リンテック(株)から入手、剥離フィルムと呼ぶ〕の離型処理面に、ダイコーターにて乾燥後の厚みが20μmとなるように塗工し、剥離フィルム付きシート状粘着剤を作製した。次いで、上記(2)で作製した偏光板のアセチルセルロース系フィルム面に、上で得たシート状粘着剤の剥離フィルムと反対側の面(粘着剤面)をラミネーターにより貼り合わせたのち、温度23℃、相対湿度65%の条件で7日間養生して、粘着剤付き偏光フィルムを得た。
 (4)偏光板の光学特性評価
 上記(3)で作製した粘着剤付き偏光板を30mm×30mmの大きさに裁断して、剥離フィルムを剥がして露出した粘着剤の表面を無アルカリガラス〔商品名“EAGLE XG”、コーニング社から入手〕に貼合し、それぞれの透過色相のa値及びb値を測定した。測定には、(株)島津製作所製の紫外可視分光光度計“UV−2450”にオプションアクセサリーである“偏光子付きフィルムホルダー”をセットしたものを用い、波長380nmから780nmの範囲における偏光板の透過スペクトルを求めて、その分光光度計に付属するソフトウェア“UV−Probe”によって、透過色相のa値及びb値を算出した。この測定値をもとに、以下の式に従い透過色相のab値を算出した。
 ab=(a+b1/2          (III)
 (5)加熱下における偏光板の耐久性評価
 上記(4)で作製した無アルカリガラスに貼合した偏光板を、温度90℃の加熱環境下に24時間保管する加熱試験を行い、試験後の偏光板の透過色相のa値及びb値を測定した。測定及びab値の算出は、上記(4)と同様の方法で行った。加熱試験前後の透過色相の変化Δab値を表2に示した。
 Δab=加熱試験後のab値−加熱試験前のab値
 (6)180度はく離試験
 上記(2)で作製した偏光板を長さ200mm×幅25mmの大きさに裁断した。そして、アセチルセルロース系フィルム側にアクリル系の粘着剤層を設けて、そのアセチルセルロース系フィルムと偏光子の間のはく離強さを測定するための試験片とし、この粘着剤層をガラス板に貼り、偏光子と粘着剤側の保護フィルム(アセチルセルロース系フィルム)の間にカッターの刃を入れ、長さ方向に端から30mm剥がして、その剥がした部分のシクロオレフィン系フィルムと偏光子を試験機のつかみ部でつかんだ。この状態の試験片を、温度23℃及び相対湿度55%の雰囲気中にて、JIS K 6854−2:1999「接着剤−はく離接着強さ試験方法−第2部:180度はく離」に準じて、つかみ移動速度300mm/分で180度はく離試験を行ない、つかみ部の30mmを除く170mmの長さにわたる平均はく離力を求めた。はく離強さが0.5N/25mmよりも小さい場合、偏光板を裁断するときや、裁断した状態の偏光板を取り扱うときに偏光板端部に衝撃が与えられた場合、その端部で偏光子から保護膜が剥離することがあるため、その値は0.5N/25mm以上であることが望ましい。結果を表2に示した。
(7)硬化物の貯蔵弾性率の測定
 ポリエチレンテレフタレートフィルム〔東洋紡績(株)製の商品名“東洋紡エステルフィルムE7002”〕の片面に、塗工機〔バーコーター、第一理化(株)製〕を用いて、上記(1)で調製したそれぞれの光硬化性組成物を硬化後の膜厚が約30μmとなるように塗工した。次に、フュージョンUVシステムズ社製の“Dバルブ”により紫外線を積算光量が3,000mJ/cmとなるように照射して、光硬化性組成物を硬化させた。これを幅5mm×長さ30mmの大きさに裁断し、ポリエチレンテレフタレートフィルムを剥がして光硬化性組成物のシート状の硬化物を得た。このシート状の硬化物をその長辺が引張り方向となるように、アイティー計測制御(株)製の動的粘弾性測定装置“DVA−220”を用いてつかみ具の間隔2cmで把持し、引張りと収縮の周波数を10Hz、昇温速度を3℃/分に設定して、温度30℃及び80℃における貯蔵弾性率を測定した。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000006
 表2に示すように、脂環式エポキシ基を有するエポキシ化合物を含む光硬化性成分、シランカップリング剤及び光カチオン重合開始剤を含有する光硬化性組成物を使用した実施例1~8で得られた偏光板は、加熱後の偏光板の変色を抑えることができ、保護フィルムと偏光子の密着性も良好で、また樹脂の硬化物の弾性率も良好であることを確認された。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the examples, “parts” and “%” representing amounts used or contents are based on weight unless otherwise specified. Moreover, the cationically polymerizable compound, the silane coupling agent, and the photocationic polymerization initiator used in the following examples are as follows, and are denoted by respective symbols below.
<Cationically polymerizable compound>
(A1) 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate: obtained from Daicel Chemical Industries, Ltd., trade name Celoxide 2021P. In Table 1 below, it is abbreviated as “(a1)”.
(A2) 1,4-butanediol diglycidyl ether: obtained from Nagase ChemteX Corporation, trade name EX-214L. In Table 1 below, it is abbreviated as “(a2)”.
<Silane coupling agent>
KBM-403: 3-glycidoxypropyltrimethoxysilane, liquid, obtained from Shin-Etsu Chemical Co., Ltd. In Table 1 below, it is abbreviated as “KBM-403”.
KBM-303: 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, liquid, obtained from Shin-Etsu Chemical Co., Ltd. In Table 1 below, it is abbreviated as “KBM-303”.
<Photocationic polymerization initiator>
CPI-100P: 4,4′-bis (diphenylsulfonio) phenyl sulfide bis (hexafluorophosphate) photocationic polymerization initiator, obtained from San Apro Co., Ltd. In Table 1 below, it is abbreviated as “CPI-100P”.
[Examples 1 to 8 and Comparative Example 1]
(1) Preparation of photocurable composition After mixing each component by the mixture ratio (unit is a part) shown in Table 1, it degas | defoamed and prepared the photocurable composition. In addition, a photocationic polymerization initiator was mix | blended as a 50% propylene carbonate solution, and displayed in Table 1 with the solid content.
Figure JPOXMLDOC01-appb-T000004
(2) Preparation of polarizing plate Corona discharge treatment was applied to the surface of a cycloolefin film [trade name “ZEONOR”, obtained from Nippon Zeon Co., Ltd.] having a thickness of 50 μm, and a bar coater was used on the corona discharge treatment surface. Each of the photocurable compositions prepared above was applied so that the film thickness after curing was about 3.5 μm. A 28 μm-thick polyvinyl alcohol-iodine polarizer was bonded to the coated surface. In addition, a 40 μm thick acetylcellulose film (trade name “N-TAC KC4FR-1”, obtained from Konica Minolta Opto Co., Ltd.) was subjected to corona discharge treatment, and the corona discharge treatment surface was The same photocurable composition was applied with a bar coater so that the film thickness after curing was about 3.5 μm. On the coated surface, the polarizer having the cycloolefin-based film prepared above bonded on one side was bonded on the polarizer side to prepare a laminate. From the acetylcellulose film side of this laminate, ultraviolet rays were irradiated using an ultraviolet irradiation device with a belt conveyor (the lamp uses a “D bulb” manufactured by Fusion UV Systems) so that the integrated light amount was 500 mJ / cm 2. The photocurable composition was cured. Thus, a polarizing plate in which protective films were bonded to both sides of the polarizer was produced.
Next, the polarizing plate with an adhesive was produced using the polarizing plate produced above. The following were used as the isocyanate-based crosslinking agent, silane coupling agent and antistatic agent.
<Isocyanate-based crosslinking agent>
Coronate L: Trimethylolpropane adduct of tolylene diisocyanate in ethyl acetate solution (solid content: 75%), obtained from Nippon Polyurethane Co., Ltd.
<Silane coupling agent>
KBM-403: 3-glycidoxypropyltrimethoxysilane, liquid, obtained from Shin-Etsu Chemical Co., Ltd.
<Antistatic agent>
1-hexylpyridinium hexafluorophosphate, a compound represented by the following formula (IV) and having a melting point of 45 ° C.
Figure JPOXMLDOC01-appb-I000005
(3) Production of polarizing plate with pressure-sensitive adhesive Acrylic pressure-sensitive adhesive prepared by adding an isocyanate-based crosslinking agent, a silane coupling agent, and an antistatic agent to a copolymer of butyl acrylate, methyl acrylate, acrylic acid, and hydroxyethyl acrylate. An organic solvent solution of the agent is applied to the release treatment surface of a 38 μm-thick polyethylene terephthalate film (trade name “SP-PLR382020”, obtained from Lintec Co., Ltd., called release film) that has been subjected to a release treatment. The film was dried with a filter so that the thickness after drying was 20 μm, and a sheet-like adhesive with a release film was produced. Next, the surface (adhesive surface) opposite to the release film of the sheet-like pressure-sensitive adhesive obtained above was bonded to the acetylcellulose-based film surface of the polarizing plate prepared in (2) above with a laminator, and the temperature was 23. Curing was carried out for 7 days under the conditions of ° C. and relative humidity of 65% to obtain a polarizing film with an adhesive.
(4) Evaluation of optical properties of polarizing plate The polarizing plate with the adhesive prepared in (3) above was cut into a size of 30 mm × 30 mm, and the surface of the adhesive that was exposed by peeling off the release film was alkali-free glass [product Name “EAGLE XG”, obtained from Corning Inc.], and the a value and b value of each transmitted hue were measured. For measurement, an ultraviolet / visible spectrophotometer “UV-2450” manufactured by Shimadzu Corporation is used with an optional accessory “film holder with polarizer” set, and a polarizing plate in the wavelength range of 380 nm to 780 nm The transmission spectrum was obtained, and the a value and b value of the transmission hue were calculated by software “UV-Probe” attached to the spectrophotometer. Based on this measured value, the ab value of the transmitted hue was calculated according to the following equation.
ab = (a 2 + b 2 ) 1/2 (III)
(5) Durability evaluation of polarizing plate under heating A heating test is performed in which the polarizing plate bonded to the alkali-free glass prepared in (4) above is stored in a heating environment at a temperature of 90 ° C. for 24 hours. The a value and b value of the transmission hue of the polarizing plate were measured. The measurement and the calculation of the ab value were performed by the same method as in (4) above. Table 2 shows the change Δab value of the transmitted hue before and after the heating test.
Δab = ab value after heating test−ab value before heating test (6) 180 degree peeling test The polarizing plate produced in the above (2) was cut into a size of 200 mm length × 25 mm width. Then, an acrylic pressure-sensitive adhesive layer is provided on the acetylcellulose-based film side to form a test piece for measuring the peel strength between the acetylcellulose-based film and the polarizer, and this pressure-sensitive adhesive layer is attached to a glass plate. Put a cutter blade between the polarizer and the protective film (acetylcellulose film) on the adhesive side, peel off 30 mm from the end in the length direction, and test the peeled cycloolefin film and polarizer I grabbed at the grip part. The test piece in this state was subjected to JIS K 6854-2: 1999 “Adhesive—Peeling adhesive strength test method—Part 2: 180 degree peeling” in an atmosphere at a temperature of 23 ° C. and a relative humidity of 55%. A 180 degree peeling test was performed at a gripping moving speed of 300 mm / min, and an average peeling force over a length of 170 mm excluding 30 mm of the gripping part was obtained. When the peel strength is less than 0.5 N / 25 mm, when the polarizing plate is cut, or when an impact is applied to the end of the polarizing plate when handling the cut polarizing plate, the polarizer at the end Since the protective film may be peeled off, the value is preferably 0.5 N / 25 mm or more. The results are shown in Table 2.
(7) Measurement of storage modulus of cured product Polyethylene terephthalate film [trade name “Toyobo Ester Film E7002” manufactured by Toyobo Co., Ltd.] on one side, coating machine [Bar coater, manufactured by Daiichi Rika Co., Ltd.] Each of the photocurable compositions prepared in (1) above was applied so that the film thickness after curing was about 30 μm. Next, the photocurable composition was cured by irradiating ultraviolet rays with a “D bulb” manufactured by Fusion UV Systems Co., Ltd. so that the integrated light amount was 3,000 mJ / cm 2 . This was cut into a size of 5 mm wide × 30 mm long, and the polyethylene terephthalate film was peeled off to obtain a sheet-like cured product of the photocurable composition. This sheet-like cured product is gripped at a distance of 2 cm between grips using a dynamic viscoelasticity measuring device “DVA-220” manufactured by IT Measurement Control Co., Ltd. so that its long side is in the pulling direction. The storage elastic modulus at temperatures of 30 ° C. and 80 ° C. was measured by setting the frequency of tension and shrinkage to 10 Hz and the temperature rising rate to 3 ° C./min. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
As shown in Table 2, in Examples 1 to 8 using a photocurable composition containing a photocurable component containing an epoxy compound having an alicyclic epoxy group, a silane coupling agent, and a photocationic polymerization initiator It was confirmed that the obtained polarizing plate can suppress the discoloration of the polarizing plate after heating, the adhesiveness between the protective film and the polarizer is good, and the elastic modulus of the cured product of the resin is also good.

Claims (5)

  1.  二色性色素が吸着配向しているポリビニルアルコール系樹脂からなる偏光子に接着剤を介して透明樹脂フィルムからなる保護膜が貼合されており、
     前記接着剤は、脂環式エポキシ基を有するエポキシ化合物を含む光硬化性成分、シランカップリング剤及び光カチオン重合開始剤を含有する光硬化性組成物から形成されていることを特徴とする偏光板。
    A protective film made of a transparent resin film is bonded via an adhesive to a polarizer made of a polyvinyl alcohol-based resin on which a dichroic dye is adsorbed and oriented,
    The adhesive is formed from a photocurable composition containing a photocurable component containing an epoxy compound having an alicyclic epoxy group, a silane coupling agent, and a photocationic polymerization initiator. Board.
  2.  前記シランカップリング剤は、分子内にグリシジルオキシ基又は脂環式エポキシ基を有する請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the silane coupling agent has a glycidyloxy group or an alicyclic epoxy group in the molecule.
  3.  前記接着剤を形成する光硬化性成分は、脂肪族エポキシ化合物をさらに含む、請求項1又は2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the photocurable component forming the adhesive further contains an aliphatic epoxy compound.
  4.  前記光硬化性組成物は、光硬化性成分100重量部に対して、前記シランカップリング剤を4~50重量部含有する、請求項1~3のいずれかに記載の偏光板。 4. The polarizing plate according to claim 1, wherein the photocurable composition contains 4 to 50 parts by weight of the silane coupling agent with respect to 100 parts by weight of the photocurable component.
  5.  前記偏光子の片面に前記接着剤を介してシクロオレフィン系樹脂フィルムが貼合され、偏光子の他面に前記接着剤を介してアセチルセルロース系樹脂フィルムが貼合され、そのアセチルセルロース系樹脂フィルムの偏光子に接する面と反対側に帯電防止機能を有する粘着剤層が形成されている、請求項1~4に記載の偏光板。 A cycloolefin-based resin film is bonded to one side of the polarizer via the adhesive, and an acetylcellulose-based resin film is bonded to the other surface of the polarizer via the adhesive, and the acetylcellulose-based resin film. 5. The polarizing plate according to claim 1, wherein a pressure-sensitive adhesive layer having an antistatic function is formed on the side opposite to the surface in contact with the polarizer.
PCT/JP2013/058191 2012-03-30 2013-03-14 Polarizing plate WO2013146556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-079324 2012-03-30
JP2012079324A JP2013210445A (en) 2012-03-30 2012-03-30 Polarizing plate

Publications (1)

Publication Number Publication Date
WO2013146556A1 true WO2013146556A1 (en) 2013-10-03

Family

ID=49259812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058191 WO2013146556A1 (en) 2012-03-30 2013-03-14 Polarizing plate

Country Status (3)

Country Link
JP (1) JP2013210445A (en)
TW (1) TW201346356A (en)
WO (1) WO2013146556A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112041707A (en) * 2018-04-27 2020-12-04 住友化学株式会社 Optical film, optical laminate, and flexible image display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439794B2 (en) * 2014-05-30 2018-12-19 住友化学株式会社 Polarizing plate with adhesive and liquid crystal display device
JP6383210B2 (en) * 2014-08-01 2018-08-29 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. Adhesive composition, optical member and adhesive sheet
CN107076907B (en) * 2014-09-29 2020-04-14 株式会社Adeka Photocurable adhesive, and polarizing plate, laminated optical member, and liquid crystal display device using same
JP6829012B2 (en) * 2015-10-07 2021-02-10 住友化学株式会社 Polarizer
JP6408046B2 (en) * 2016-02-17 2018-10-17 住友化学株式会社 Photocurable adhesive, polarizing plate and laminated optical member using the same
US20210109268A1 (en) * 2017-10-31 2021-04-15 Zeon Corporation Polarizing film and method for producing same
JP2020126276A (en) * 2020-05-18 2020-08-20 住友化学株式会社 Polarizing plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229392A (en) * 2009-03-05 2010-10-14 Dic Corp Cationically polymerizable adhesive and polarizing plate obtained using the same
WO2011013663A1 (en) * 2009-07-28 2011-02-03 東亞合成株式会社 Actinic-energy-ray-curable adhesive composition for plastic film or sheet
WO2011021441A1 (en) * 2009-08-21 2011-02-24 Dic株式会社 Cationically polymerizable adhesive and polarizing plate obtained using same
JP2011225764A (en) * 2010-04-22 2011-11-10 Sumitomo Chemical Co Ltd Resin film with adhesive and optical laminate using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038224B2 (en) * 2007-05-08 2012-10-03 日東電工株式会社 Adhesive optical film and image display device
JP2011154267A (en) * 2010-01-28 2011-08-11 Sumitomo Chemical Co Ltd Polarizing plate with adhesive layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229392A (en) * 2009-03-05 2010-10-14 Dic Corp Cationically polymerizable adhesive and polarizing plate obtained using the same
WO2011013663A1 (en) * 2009-07-28 2011-02-03 東亞合成株式会社 Actinic-energy-ray-curable adhesive composition for plastic film or sheet
WO2011021441A1 (en) * 2009-08-21 2011-02-24 Dic株式会社 Cationically polymerizable adhesive and polarizing plate obtained using same
JP2011225764A (en) * 2010-04-22 2011-11-10 Sumitomo Chemical Co Ltd Resin film with adhesive and optical laminate using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112041707A (en) * 2018-04-27 2020-12-04 住友化学株式会社 Optical film, optical laminate, and flexible image display device
CN112041707B (en) * 2018-04-27 2022-04-15 住友化学株式会社 Optical film, optical laminate, and flexible image display device

Also Published As

Publication number Publication date
TW201346356A (en) 2013-11-16
JP2013210445A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5557281B2 (en) Polarizing plate and laminated optical member using the same
JP5855947B2 (en) Photocurable adhesive, polarizing plate and laminated optical member using the same
JP5448024B2 (en) Photocurable adhesive, polarizing plate using the photocurable adhesive, method for producing the same, optical member, and liquid crystal display device
JP5120715B2 (en) Polarizing plate, method for manufacturing the same, optical member, and liquid crystal display device
WO2013146556A1 (en) Polarizing plate
JP5945098B2 (en) Polarizing plate and laminated optical member
JP6408101B2 (en) Photocurable adhesive, polarizing plate and laminated optical member using the same
JP2013160775A (en) Polarizer and optical member
WO2012133161A1 (en) Photocurable adhesive, polarizing plate, and laminate optical member
JP2011017820A (en) Polarizing plate and layered optical member including the same
JP6394011B2 (en) Manufacturing method of polarizing plate
JP2014137477A (en) Polarizing plate
JP6047905B2 (en) Polarizing plate and laminated optical member using the same
JP2016118779A (en) Photocurable adhesive, polarizing plate using the same, and laminated optical member
JP5827483B2 (en) Polarizing plate and laminated optical member using photocurable adhesive
JP5949123B2 (en) Polarizer
JP5953875B2 (en) Polarizing plate and laminated optical member using the same
JP2009216874A (en) Polarizing plate and liquid crystal display
JP5966310B2 (en) Polarizing plate and laminated optical member using the same
JP7375506B2 (en) Photocurable adhesives, polarizing plates, and laminated optical components
JP6773108B2 (en) Polarizing plate and laminated optical member using it
JP6679454B2 (en) Polarizing plate and laminated optical member using the same
JP2017122881A (en) Photo-curable adhesive, and polarizing plate and laminate optical member using the same
JP2016191926A (en) Polarizing plate and laminated optical member using the same
WO2017119323A1 (en) Photocurable adhesive, polarizing plate using same, and multilayer optical member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768101

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13768101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE